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Iterative Multiuser Joint Decoding: Unified
Framework and Asymptotic Analysis

Joseph Boutros, Member, IEEE,and Giuseppe Caire, Member, IEEE

Abstract—We present a framework for iterative multiuser joint
decoding of code-division multiple-access (CDMA) signals, based
on the factor-graph representation and on thesum-productalgo-
rithm. In this framework, known parallel and serial, hard and soft
interference cancellation algorithms are derived in a unified way.
The asymptotic performance of these algorithms in the limit of
large code block length can be rigorously analyzed by usingdensity
evolution. We show that, for random spreading in thelarge-system
limit, density evolution is considerably simplified. Moreover, by
making a Gaussian approximation of the decoder soft output, we
show that the behavior of iterative multiuser joint decoding is ap-
proximately characterized by the stable fixed points of a simple
one-dimensional nonlinear dynamical system.

Index Terms—Density evolution, interference cancellation, iter-
ative decoding, multiuser detection (MUD).

I. INTRODUCTION

M ULTIUSER detection (MUD) has been traditionally re-
garded as an ensemble of techniques to detect uncoded

data in a multiple-access waveform channel (see [1] and refer-
ences therein).

More recently, research has been focused on the combination
and interaction of MUD and channel coding. From an informa-
tion-theoretic point of view, all points in the capacity region of
the Gaussian multiple-access channel are achievable by succes-
sive single-user decoding and interference cancellation (IC) [2],
[3]. In correlated waveform channels, such as code division mul-
tiple access (CDMA), the optimal successive IC decoder takes
on the structure of a decision-feedback minimum mean-square
error (MMSE) detector, where at each stage the already decoded
users are subtracted from the received signal [4].

Information-theoretic results hinge upon the existence of
optimal (i.e., capacity-achieving) user codes. A different and
perhaps more practical approach to multiuser joint decoding
considers a given class of finite-complexity channel codes and
investigates the achievable spectral efficiency at given target
bit-error rate (BER). The number of works in this direction
is overwhelming. Without even trying to be exhaustive, we
refer to [5]–[21] and references therein. In these works, joint
maximum-likelihood (ML) decoding and some low-complexity
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iterative IC-based approximations have been investigated, sev-
eral different algorithms have been proposed, and performance
has been evaluated mainly via computer simulation.

This paper contributes to the above stream of work in two
ways. First, we provide a unified framework where a large class
of previously proposed algorithms can be elegantly derived.
Second, we provide an asymptotic performance analysis of
iterative IC decoding enabling the quantitative and qualitative
evaluation of systems for which simulation would be just
impossible.

Our framework is based on the application of thesum-
product algorithm [22] to the factor-graph representation
[22]–[25] of the a posteriori joint probability mass function
(pmf) of the users information bits. The factor-graph for the
problem at hand has cycles if the number of users is larger
than one. Therefore, the resulting algorithms are intrinsically
iterative. Depending on the algorithm execution scheduling
we obtain classical parallel and serial iterative decoding as
special cases. By making some simple approximations of thea
posterioripmf at the decoders output, we obtain in a direct way
several previously proposed iterative IC decoding algorithms,
which were motivated mainly by heuristics.

Although formally similar, the algorithms derived from the
sum-product algorithm differ by a fundamental detail with re-
spect to their heuristic counterparts: the estimated interference
at each iteration is a function of the decodersextrinsic pmf(in
brief, EXT),1 rather than of the decodersa posteriori pmf(a
posterioriprobability (APP)), as in [5], [7], [9], [12], [19]–[21].
This has two important consequences: from the performance
viewpoint, we show that EXT-based iterative algorithms out-
perform their APP-based counterparts in terms of maximum
achievable spectral efficiency at given target BER. From the
analysis viewpoint, EXT-based iterative algorithms can be rig-
orously analyzed by the general technique known asDensity
Evolution(DE) [27], developed to analyze the performance of
various families of random-like code ensembles under message-
passing decoding (see [28] and references therein).

For the class of iterative multiuser IC decoders derived in this
paper and for a class of user channel codes having certain sym-
metry properties we prove a rigorous concentration result [27]
showing that, for large block length, the decoder BER perfor-
mance converges almost surely to the limit calculated by DE.
We show that DE is considerably simplified for random CDMA
in the large-systemregime, i.e., when the number of users and
the spreading factor grow without bound while their ratio stays

1In the parlance of “Turbo Coding” literature, this is commonly referred to as
decoder “extrinsic information” [26].
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constant [29]–[31]. Finally, we provide aGaussian approxima-
tion [32]–[34] of the exact DE that yields accurate results and
allows the characterization of the decoder performance limits
in terms of the stable fixed points of a simple one-dimensional
nonlinear dynamical system.

The paper is organized as follows. Section II presents the
system model. Section III deals with the factor-graph and the
sum-product algorithm and derives iterative joint decoding
schemes. In Section III-C, we obtain low-complexity IC
decoders. Section IV is dedicated to the asymptotic analysis of
IC decoders. Numerical examples are presented in Section V
and in Section VI, we point out some recent results originated
by this work and some suggestions for further work. All proofs
are given in Appendix A, and Appendix B gives the details of
the calculation of the Gaussian approximation of DE for the
important case of binary convolutional codes and quaternary
phase-shift keying (QPSK) modulation.

Notation Definitions: For a matrix , , , and denote
its th row, th column, and element, respectively. For a
row or column vector , denotes itsth component. de-
notes the indicator function of the event. denotes
the circularly symmetric complex multivariate Gaussian distri-
bution [35] with mean vector and covariance matrix . The
symbol means “distributed as.”

II. SYNCHRONOUSCDMA SYSTEM MODEL

We consider the “canonical” CDMA discrete-time syn-
chronous system (see [1], [29], [31] and references therein)
described by

(1)

where is the signal vector received at time,
is the corresponding noise vector,

is the vector of transmitted user modulation symbols at time
, is the spreading matrix,

containing the user spreading sequences by columns, and
is a matrix of complex ampli-

tudes. The integers , , and denote the number of users,
the spreading factor(chips per symbol), and the code block
length (symbols per block), respectively.

Users send independently encoded information. We assume
that the user codewords are aligned in time. Hence, (1) de-
scribes the channel during the transmission of one codeword.
User codewords are interleaved before transmission. We let
and denote the code and the complex modulation signal
set of user , respectively, and we let denote the
encoding function for (including interleaving). The coding
rate is bits per symbol. We have

(2)

Since we put no restrictions on the encoding function, any
code over the complex signal set can be expressed by (2).

The user complex amplitudes are given by
where the ’s are random independent and iden-
tically distributed (i.i.d.) phases whose distribution is
such that . Phase randomization is arti-
ficially introduced by the transmitters in order to make
multiple access interference(MAI) circularly symmetric

with respect to any user.2 The receiver knows per-
fectly the CDMA system parameters ,

, and the user
codes . In practice, the spreading sequences
and the phases are pseudorandomly generated according to
some known algorithm and the ’s are imposed by the power
control algorithm.

The modulation signal sets have zero mean and unit av-
erage energy, i.e.,

and

Therefore, the average signal-to-noise ratio (SNR) of useris
given by

(3)

Assuming that an ideal Nyquist pulse with zero excess band-
width [37] is used for modulating the chips, the system spectral
efficiency in bits per second per hertz (bit/s/Hz) is given by [31]

(4)

For an equal-rate system ( for all users), we get ,
where is the number of “users per chip,” referred to
as thechannel load[29].

III. JOINT DECODING: GRAPH REPRESENTATION AND

ITERATIVE ALGORITHMS

In this section we derive thefactor-graphrepresentation [22],
[23], [25] of thea posteriorijoint pmf of the user information
bits. By applying thesum-productalgorithm to the resulting
factor-graph, we obtain a class of iterative decoding algorithms
approximating optimal maximuma posteriori(MAP) decoding.
In the particular case of parallel and serialscheduling, we ob-
tain the algorithms proposed in several works (see, for example,
[7], [15], [16], [20]). Finally, by making some simplifications,
we derive in a unified and direct way well-known parallel and
serial iterative IC decoding algorithms [5], [8], [10], [12], [13],
[17], [19]–[21].

A. Factor-Graph Representation

Throughout the paper, we use the proportionality symbol
in order to indicate that the quantity in the right-hand side (RHS)
is defined up to a multiplicative factor chosen in order to make
it a true probability density (or mass) function.

Let be the vector of in-
formation bits of user , and let
be the received signal and the transmitted code
array obtained by stacking by rows the transmitted codewords

(the transmitted symbol vector is the th
column of ). The multiuser channel with coding is fully de-

2In actual CDMA implementations, phase randomization is common practice
[36]. In our context, it is mathematically convenient for the analysis of Section
IV.
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Fig. 1. An instance of the factor-graph for a multiuser coded CDMA system
with K = 3 users and block lengthN = 4.

scribed by thea posterioripmf of given , de-
noted by .3 By using the fact that the vector
channel (1) is memoryless, that users codewords are indepen-
dently generated and that the user information bits have uniform
a priori probability, we can write

(5)

where we define thecode constraint functions

(6)

and thechannel transition functions

(7)

The factor-graph for is a representation of the
factorization (5) via a bipartite graph , where variables
( and ) are represented by “variable nodes” and
functions ( and ) by “function nodes” . Each node
is connected to all nodesfor which the corresponding variables
are arguments of the function. Fig. 1 shows the factor-graph
for for , , and

.

Remark 1: Each code constraint function block can also
be represented as a factor-graph, depending on the code
structure. In particular, if code is a trellis code, turbo code
[38], low-density parity check (LDPC) code (see [28] and
references therein), repeat–accumulate (RA) code [39], etc.,
the subgraph formed by the variable nodes

, and by the function node can be expanded
in well-known forms [22]. For example, if all codes in the
factor-graph of Fig. 1 are trellis codes of rate 1 bit/symbol, the
function nodes and in Fig. 1 can be replaced by the
corresponding factor subgraph given in Fig. 2. However, in
order to keep our treatment as general as possible, we shall not
expand further the factor-graph of Fig. 1.

3Conditioning with respect tofWWW ; . . . ; WWW g andSSS, which are known to
the receiver, is omitted for the sake of notational simplicity.

Fig. 2. Factor-graph of a trellis-terminated trellis code of rate 1 bit/symbol and
block lengthN = 4. Black circles denotestate variablesand the squares denote
the trellis transition functions(see [22]).

B. The Sum-Product Algorithm

Let denote the th information bit of user . The optimal
MAP detection rule minimizing the average BER for each user
is given by

for all (8)

where APP denotes the marginal APP of bit , given
by

APP (9)

Computing the APP of the information bits by brute force has
complexity of the order of . Even for small , this is
intractable for practical user code sizes. Also in the case where
all user codes are trellis codes, the complexity of joint decoding
applied to the Cartesian-product trellis of is pro-
hibitive in practice [6], [11].

A general method for approximating (9) consists of applying
the sum-product algorithm [22] to the factor-graph. In the sum-
product algorithm, adjacent nodes in the factor-graph exchange
“messages” in the form of real-valued functions. If and

are connected by the edge , the messages
passed along in either directions are functions of.

We let and denote the messages calculated
at the th-channel transition function node and at the

th-code constraint function node , respectively, and sent
to the variable node , where denotes a dummy variable
taking on values in the symbol alphabet . It is understood
that both and are pmf defined over . By
following the general sum-product computation rules of [22],
we obtain the following.

• Computation at the channel transition function nodes:

for (10)

• Computation at the code constraint function nodes:

for (11)
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• Computation at the variable nodes : since these nodes
have degree, they act as relays, i.e., sends
to and to .

• Computation at the variable nodes : since these nodes
have degree, they just receive a message from. This
is given by

APP for (12)

The information bit detection is obtained by using the
aboveapproximatedAPP in (8).

Remark 2 (Extrinsic pmfs, Soft-In–Soft-Out (SISO) Decoding,
and Optimal MUD): A fundamental characteristic of the sum-
product algorithm is that “ …a message sent from a node along
an adjacent edge cannot depend on the message previously re-
ceived along the same edge” [27]. As observed in [27], it is pre-
cisely this restriction that enables the analysis of the iterative
decoder. We notice that and defined in (10)
and (11) fulfill the above requirement.

The quantity defined in (11) is the “extrinsic pmf” (EXT)
of the decoder [26], [38], [40]. The APP of , given
the a priori marginal pmfs , is
given by . The calculation of the EXT in
(11) is often referred to assoft-in soft-out(SISO) decoding
[26]. If the user codes admit a trellis representation (e.g.,
they are trellis-terminated convolutional codes), the SISO
computation (11) can be carried out by the forward-backward
Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [41] with linear
complexity in .

The quantity defined in (10) is the EXT for Verdú’s optimal
symbol-by-symbol multiuser detector [1] witha priori marginal
pmfs . Unfortunately, the CDMA
vector channel (1) has no particular structure enabling efficient
evaluation of (10). Therefore, the computation of (10) has com-
plexity of the order of , i.e., exponential in . For
large , the iterative sum-product algorithm is still too com-
plex for practical implementations.

Scheduling: It can be shown that the sum-product algorithm
is able to compute exactly the marginals of the underlying mul-
tivariate function in a finite number of steps if the corresponding
factor-graph is cycle-free (see [22], [24] and reference therein).
It is apparent from direct inspection of Fig. 1 that our problem
yields a factor-graph with cycles unless or the users
codes are trivial (i.e., for all ). The consequences of
cycles are: 1) detection based on (12) is in general suboptimal;
2) the result is sensitive to the order in which computation is car-
ried out through the nodes (scheduling); 3) different scheduling
yields generally nonequivalent iterative algorithms.

A scheduling is defined by a sequence of node subsets to be
activated. Nodes in the same subset can be activated in any ar-
bitrary order, as the value of their output messages does not de-
pend on the activation order within the subset. When a node is
activated, all its output messages are calculated by using the cur-
rent value of its input messages.

In our case, the simplest and most intuitive schedulings are
parallel andserial. In parallel scheduling, one iteration is given
by the sequence

(13)

In serial scheduling, users are considered in a given cyclic order
(without loss of generality, we consider the natural ordering

). One iteration is given by the sequence

...

(14)

In both cases, the algorithm is initialized by the uniform pmf
for all , and

.

C. Low-Complexity Approximations: IC Schemes

We notice that (10) consists of computing thea posterioripmf
of given the observation , assuming that the interfering
symbols are statistically independent with marginal
pmf . The exponential complexity of (10) is due to the
fact that the symbols take on values in the discrete set.
By artificially modifying the marginal pmfs of the interfering
symbols, several low-complexity algorithms can be derived in a
unified way.

Hard IC: By replacing with its single mass point
approximation

(15)

(10) reduces to

(16)

where

(17)

and where

(18)

with

and
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In the following, we refer to the subtraction of the MAI esti-
mate from the received signal followed by filtering (as in (18))
as “IC-MUD.” In the case of (18), the MAI estimate is
formed by using the symbol-by-symbol hard decisions based
on the SISO decoders EXT pmfs, and the filter is the conven-
tional single-user matched filter (SUMF). Depending on the
scheduling, we obtain the well-known serial and parallel hard
IC schemes.

The coefficient defined in (17) can be interpreted
as the nominal signal-to-interference-plus-noise ratio
(SINR) at the output of the IC-MUD. In fact, by letting

, if all symbol-by-symbol hard decision
were correct (i.e., for all ), then the variance
of the residual interference-plus-noise term would be

.
Linear MMSE (LMMSE)-Based Soft IC:By replacing

with a complex circularly symmetric Gaussian proba-
bility density function (pdf) with the same mean and variance
[9], given by

(19)

where

(20)

the MAI can be treated as a Gaussian vector with covariance
matrix

(21)

and mean

(22)

With the above assumption, and are con-
ditionally jointly Gaussian given , and (10) corre-
sponds to the marginalization of a multivariate Gaussian pdf.
After some algebra, (10) can be put in the form (16) with nom-
inal SINR

(23)

and with

(24)

In this case, the IC-MUD output is obtained by subtracting
from the MAI estimate formed by using the soft
symbol-by-symbol estimates (20) based on the SISO decoders
EXT pmfs, and the filter is thenominalunbiased linear MMSE
(LMMSE) filter defined by the vector of filter coefficients

(25)

Depending on the scheduling, we refer to this algorithm as the
LMMSE-based serial or parallel soft IC scheme.

SUMF-Based Soft IC:If, in addition to the above conditional
Gaussian assumption, is assumed to be conditionally white
with the same MAI noise total power, the assumed conditional
covariance matrix for is

and (10) takes on again the form (16) with nominal SINR

(26)

and

(27)

with given by (22). In this case, the IC-MUD output is
obtained by passing the same difference signal as in (24) through
the SUMF. Depending on the scheduling, we refer to this algo-
rithm as the SUMF-based serial or parallel soft IC scheme.

Remark 3 (Using APPs Instead of EXTs):In several papers
(e.g., [5], [8], [10], [12], [13], [17], [19]–[21], [42], [43]),
in (20) is calculated from the APP at the SISO output instead of
the EXT , thus violating the basic principle of the sum-
product algorithm. As a consequence, the residual interference
plus noise at the IC-MUD output (where

is given by (18), (24) or (27)), is biased conditionally on
, i.e., . Moreover, it can be shown that

the conditional biasreducesthe useful signal component in
[44], [45].

A consequence of this bias effect is that the APP-based IC
algorithms cannot be analyzed by simply tracking thevariance
of the residual MAI plus noise through the decoder iterations,
as done in in [5], [46], [47]. As a matter of fact, the “variance”
analysis applied to APP-based algorithms yields too optimistic
results.

Remark 4 (Relation With Uncoded Iterative IC-MUD):A
large number of recent works proposed and analyzed itera-
tive IC-MUD for uncoded CDMA (see [44], [48]–[54] and
references therein). In particular, withlinear feedbackthese
algorithms can be seen as matrix-polynomial approximations
of linear multiuser detectors (decorrelator and LMMSE [1])
while, with nonlinear feedback, they can be seen as low-com-
plexity approximations of the optimal multiuser detector [1]
obtained via theExpectation Maximization(EM) or the Sub-
space Alternating Generalized EM(SAGE) approaches [55].
Finally, both linear and nonlinear feedback iterative IC-MUD
with parallel or serial scheduling can be derived in a unified
way as the iterative solution of a constrained ML detection
problem [52].

It is natural to ask whether the iterative multiuser IC decoding
algorithms presented in this paper are related to IC-MUD algo-
rithms for uncoded CDMA. A closer look at the factor-graph of
Fig. 1 reveals that, despite obvious analogies, these two classes
of algorithms are qualitatively very different. In fact, the factor-
graph for an uncoded system is obtained by removing the code
constraint function nodes from the graph of Fig. 1. The resulting
graph is aforest, i.e., a collection of mutually disconnected
trees , for . The



BOUTROS AND CAIRE: ITERATIVE MULTIUSER JOINT DECODING 1777

sum-product algorithm applied to each treeyields a noniter-
ative algorithm which (essentially) coincides with the optimal
symbol-by-symbol multiuser detector. Therefore, no estimated
MAI signal can be iteratively produced by the sum-product al-
gorithm applied to the uncoded case.

In conclusions, we claim that while iterative MUD for un-
coded CDMA finds its natural explanation in the framework
of iterative solution of linear systems of equations [44], [51],
of multistage Wiener filtering [50], [53], [54], and of iterative
solution of (constrained) ML estimation problems [52], [55],
the natural framework for iterative multiuser IC decoding is the
factor-graph and sum-product algorithm approach, as illustrated
in this paper.

Remark 5 (An Alternative Interpretation of the LMMSE-
Based IC Algorithms):In [12], [20], [21], the LMMSE-based
parallel and serial schemes are derived from aconditional
MMSE argument. Namely, in (24) is obtained as the
conditional LMMSE estimate of given that the symbols

for are distributed according to . Indeed,
assuming that are statistically independent
of and of the noise , has the structure of a Wiener
MMSE linear estimator for with observation , where
the observation mean value

(28)

is subtracted from the observation and the difference is filtered
by given in (25), solution of the conditional unbiased
MMSE problem

subject to .

(29)

For finite , this interpretation is not exact, since messages
are statisticallydependenton and on

and neither (22) is obtained from (28) nor (25) is the solution
of (29). However, under certain assumptions,
are asymptotically statistically independent of and of
for , and the above “conditional MMSE” interpretation
holds (see Remark 8 in Section IV).

Interestingly, if the APPs instead of EXTs are fed back from
the SISO decoders (as in [12], [20], [21]) the above interpreta-
tion is never exact, even in the limit for large and random
interleaving, since the APP for depends on , which con-
tains and , no matter how large is.

Remark 6 (Implementation Issues):The nominal LMMSE
filter (25) must be recalculated for every user, every de-
coder iteration, and every symbol interval. Therefore, the
LMMSE-based algorithms are much more complex than the
SUMF-based (or hard-decision based) algorithms. As an
alternative, the LMMSE filters can be calculated adaptively, as
proposed in [14], [42]. Another approach for low-complexity
implementation of the LMMSE-based algorithms is proposed
in [56], where the term in (20) is replaced by its ensemble
average

which can be approximated by

and can be easily computed from theth SISO decoder output.
In this way, the LMMSE filter (25) must be recalculated for
every user and every iteration, but its is constant for all symbol
intervals. This heuristic simplification of LMMSE-based algo-
rithms is referred to asunconditional LMMSEin [56], since the
resulting filter can be interpreted as the solution of the uncondi-
tional unbiased MMSE problem

subject to

(30)

under the assumption that are statistically
independent of and of , which holds asymptotically for

.
For practically relevant system size (say, ),

the LMMSE-based algorithm previously derived is prohibi-
tively complex, while its unconditional LMMSE approximation
is easily implementable.

IV. A SYMPTOTIC PERFORMANCEANALYSIS FOR -PSK
TRELLIS CODES

In this section, we provide a rigorous BER analysis (asymp-
totically for large block length ) of the iterative multiuser IC
decoders derived in Section III-C in the special case where the
user codes are derived from the same trellis code over-PSK.
Our analysis is based on the DE method, introduced in [27] to
study LDPC codes on binary-input symmetric-output memo-
ryless channels, and in [57] for LDPC codes on binary-input
time-invariant intersysmbol interference (ISI) Gaussian chan-
nels with finite memory.

The main principle underlying DE is that, as , the
pdf of the messages generated by the iterative decoder after any
fixed number of iterations concentratesaround the expected
pdf resulting from a random cycle-free graph. Furthermore, we
show that for random spreading sequences and in the limit for
large and , with fixed channel load , DE for par-
allel scheduling is greatly simplified and, for this case, we pro-
vide an accurate and computationally very efficientGaussian
approximation(GA) of the exact DE (GA-DE).

A. Assumptions and Definitions

User Codes and Phase Randomization:We assume that all
user codes are derived by the same “basic” code, and
differ only by the interleaver, that is randomly and indepen-
dently chosen with uniform probability in the set of all permu-
tations of . is a block code obtained by trellis ter-
mination of a time-invariant trellis code with code symbols
(encoder outputs) per trellis section. We assume thatis a geo-
metrically uniform code [58] over the -PSK signal set

with , obtained from
a linear trellis code over the ring via the natural mapping
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such that . Furthermore, we
assume that the phase randomization sequences

have i.i.d. elements uniformly distributed on
. We need the following.

Definition 1: The additive-noise memoryless channel
is said to be -invariant if for any

.

It follows immediately that, for a fixed sequence of
phases known to the receiver with elements in

, the statistics of the
SISO EXT pmfs given that is
transmitted over the -invariant additive-noise memoryless
channel , does not depend on . Hence,
without loss of generality, in a -invariant channel we can
always assume that the all-one codeword belongs to the code.

SISO Decoders:The message at the output of the
th SISO decoder is computed by the “windowed” BCJR al-

gorithm [59], i.e., by the forward–backward recursion [41] ap-
plied to a window including trellis sections to the right and

trellis sections to the left of the trellis section containing the
coded symbol transmitted, after interleaving, at time.4 The
forward and backward recursions on each window are initialized
by uniform probabilities of the trellis states. It is well known
that, as increases, the windowed BCJR algorithm converges
to the performance of the full BCJR algorithm [59].

Computation Flowgraph and Oriented Neighborhoods:
From the factor-graph, we derive acomputation flowgraphcon-
taining only the nodes where computation actually takes place:
the IC-MUD nodes and the SISO decoder nodes (corresponding
to the nodes and in the original factor-graph of Fig. 1).
Moreover, the SISO decoder nodes are expanded into (generally
overlapping) windows of trellis sections each, corre-
sponding to the computation carried out by the windowed BCJR
algorithm. We need the following definition.

Definition 2: Consider the oriented edge between the
th IC-MUD node and the th SISO decoder node in the com-

putation flowgraph. Theoriented neighborhood of
is defined as the collection of all paths of lengthstarting at
the th IC-MUD node and not containing [27].5

For example, Fig. 3 shows an instance of with
in a computation flowgraph with users,

symbols per trellis section, and decoder trellis windows
of width . The edges in are oriented according
to the computation message flow. In particular, each IC-MUD
node has input edges and oneoutputedge.

The neighborhoodsupport is defined as the collec-
tion of all (user , time ) index pairs such that theth

4Because of trellis termination, the computation window is truncated to the
left (resp., to the right) for symbols in trellis sections1; . . . ; W (resp.,N=s�
W + 1; . . . ; N=s).

5We define a neighborhood as a collection of paths, and not as a subgraph.
Then, a neighborhood can contain repeated nodes and edges. In general, we use
the term “collection” to denote a multiset, where elements might be repeated.

Fig. 3. An instance of the oriented neighborhoodN in a computation
flowgraph withK = 3 users and trellis window widthW = 1.

IC-MUD node has an input edge coming from a trellis window
of the th user SISO decoder.

Thetype of is defined as therestrictionof the

transmitted codewords onto the support , i.e.,

(31)

We have

(32)

where . In the example of Fig. 3,
we have and

Random Graphs Ensemble:We consider the ensemble of all
computation flowgraphs defined by the edge connec-
tions in the system factor-graph(which, in its turn, is defined
by the random interleavers) and by the random phase sequences

, while the spreading sequencesand the basic code are
fixed.

The message sent over edge , is a function of

the IC-MUD output variable , where the su-
perscript indicates the decoder iteration. The empiricalcu-
mulative distribution function(cdf) of , for a given instance
of and of the channel noise , and for
given transmitted codewords , is defined by

(33)

For fixed , is a function of and
of . Hence, for random (defined over a common
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probability space), is a random variable taking on
values in .

We define also the (nonrandom) cdf

is cycle-free (34)

where expectation is with respect to . It is evident by
symmetry that does not depend on.

B. Concentration and Density Evolution

The results of this section show that, for every
and a given finite , as the random empirical cdf

converges almost surely to the nonrandom cdf
and that the latter does not depend on. It fol-

lows that the limit for large block length of the residual inter-
ference cdf for user at decoder iterationcan be computed by
propagating the expected “densities” of the messages through
a cycle-free random neighborhood. The corresponding density
propagation algorithm is referred to as DE [27]. We need the
following preliminary results, proved in Appendix A.

Lemma 1: For given and the ensemble of random
computation flow graphs defined in Section IV-A

is not cycle-free (35)

where depends on and , but it is independent of .

Lemma 2: Let be a geometrically uniform code over
as defined in Section IV-A and consider the transmission of
over a memoryless -invariant channel with noise pdf .
Let be the th output message produced
by the SISO decoder (11) when the transmitted codeword is,
the channel observation is , and the corresponding
input messages are . Let

, for some and , be the pdf
of the output message . Then, for any
with , there exists a permutationof that
depends only on and such that

Corollary 1: Given that is cycle-free

is a Markov chain, i.e., is independent of given the
neighborhood type.

Corollary 2: For the ensemble of computation flowgraphs
and channel noise and for a user basic code
in the class defined in Section IV-A, ,
independent of .

Then, our main concentration result is as follows.

Proposition 1: For all and for any ,
there exists independent of and such that, if

, then

(36)

Proof: See Appendix A.

Remark 8: An immediate consequence of Proposition 1 is
that the EXT messages from SISO decoders sent to the

th IC-MUD node are asymptotically statistically independent
of and of the noise . In fact, in a cycle-free neighbor-
hood these EXT messages depend only on the noise and sym-
bols corresponding to IC-MUD nodes that are children of the

th IC-MUD node. Because of the cycle-freeness, these nodes
correspond to time indexes .

From Proposition 1 and the first Borel–Cantelli lemma [60,
p. 53], since is arbitrary we get that
holds almost surely. Hence, for , the residual inter-
ference variables contributing to same trellis window of the
SISO decoder of any userat iteration is almost surely i.i.d.,

. It follows that the BER of user at iteration is the
same as if were transmitted over a memoryless time-invariant
additive-noise channel with noise cdf . Since the BER
is a continuous functional of the noise cdf, we conclude that the
BER for any user after decoder iterations can be calculated
from . The iterative computation of is obtained
by the following DE algorithm.

Density Evolution: We let be the pdf corresponding
to . Because of the phase randomization and since the
noise is circularly symmetric, it is easy to see that the residual
interference variable is -invariant. Let

be the pdf of the symbol estimate conditioned
on , at the th DE iteration. Lemma 2 implies that

By exploiting this symmetry, only the evaluation of the condi-
tional pdf is actually required and, without loss of
generality, DE can be run by assuming that the all-one codeword
is transmitted by all users. For the sake of notational simplicity,
we indicate simply by .

IC-MUD and SISO decoding define the (random) mappings

(37)

and

(38)

respectively, where, because of what was said earlier, it is un-
derstood that is the transmitted symbol, and where
randomness comes from the phasesand the channel noise.

We define the pdf mappings and
corresponding to (37) and to (38), respectively,

under the assumption of statistically independent inputs. This
means that, if
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then , and if

then .
The estimated modulation symbols are initialized as

yielding , where denotes a Dirac distri-
bution centered at zero. DE for parallel scheduling can be con-
cisely expressed as follows. Let
for . Then, for , let

(39)
Similarly, DE for serial scheduling is given by

and, for , by

(40)

By inspection of (39) and (40) we see that
is a fixed point of the parallel DE, i.e., it satisfies

for all

if and only if it is a fixed point of the serial DE. Therefore, serial
and parallel scheduling have (almost surely, as ) the
same set of fixed points. If , the two schedulings yield
identical DE and, therefore, yield the same BER. For , it
is difficult to say if they converge to the same stable fixed point
for any choice of the system parameters.

The DE algorithms (39) and (40) are easily implemented
by Monte Carlo simulation of the empirical histograms cor-
responding to the pdfs and . The BER after a
given number of iterations can be measured from the output
of the SISO decoder, as in standard Monte Carlo simulation.
A faster approximated method for BER evaluation consists of
making the Gaussian approximation

(41)

Let BER be the BER versus SNR function for
the basic code in additive white Gaussian noise (AWGN).6

Then, the th user BER at iteration can be approximated as
BER . In the next section, we shall see
that this approximation holds exactly for random CDMA in the
limit for large and .

C. Large-System Limit and Gaussian Approximation

In this subsection, we consider the large-system limit per-
formance of the iterative IC decoders for random CDMA
[29]–[31]. We assume that the spreading sequences are ran-
domly generated with elements , where

6The functione ( ) can be either obtained by simulation or by standard
union bound [37], or by a combination of both. For example, for low SNR,
we can use simulation and for high SNR, where simulation would be too time-
consuming and union bound is tight, we can use the union bound.

for and are i.i.d. complex
circularly symmetric random variables with ,

, and , and we let
with , for fixed channel load . The DE limiting
pdfs (provided that they exist), depend on the basic code,
on the user amplitudes and on the spreading matrix

. Hence, for random the limiting users’ BER is a random
variable. We shall show that, in the large-system regime, the
BER performance of each user converges almost surely to a
deterministic quantity. Moreover, the resulting DE is much
simpler than the general DE for givenand finite .

An importantcaveatshould be made about the order of the
limits with respect to and . In fact, Proposition 1 holds for
finite .7 Then, our results are valid if we letfirst and
then , and notvice versa. In practice, this means that
a random CDMA system with finite and performs with
high probability very close to the limit provided in this section if

. Fortunately, this is a realistic assumption for practical
CDMA systems [36].

In this subsection and in the rest of the paper we focus on
parallel IC algorithms only, since in the limit for infinite it is
not clear how to compute the serial DE. The following result and
its corollary characterize the large-system limit of the iterative
multiuser IC decoders with parallel scheduling.

Proposition 2: Assume that, for all , the user squared signal
amplitudes satisfy for some finite indepen-
dent of , and that the empirical cdf of the ’s, defined by

(42)

converges weakly [60, Ch. 5] to a given (nonrandom) cdf
as . Then, as with ,
converges almost surely to the Gaussian distribution

where, for hard IC and SUMF-based soft-IC,

is given by

(43)

where the cdf of is defined by the limit

(44)

(that exists and is independent of) and, for LMMSE-based
soft-IC, is given by the unique nonnegative solution of

(45)

where the cdf of is defined by the limit

(46)

(that exists and is independent of).
Proof: See Appendix A.

7In general, concentration [27] requires that the maximum degree in the
random graph representing the message-passing decoder is finite, while the
size of the graph grows to infinity.
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Corollary 3: Under the assumptions of Proposition 2, DE
with parallel scheduling converges almost surely to a stable
fixed point (which exists almost surely), uniquely identified by
the limit , where is given in Proposition 2.

Proof: See Appendix A.

From Proposition 2 it follows that the Gaussian approxima-
tion (41) of the SISO decoder input holds exactly in the large-
system limit. Next, we propose a Gaussian approximation of the
SISO decoderoutput[32]–[34], which makes the iterative com-
putation of very simple. The resulting Gaussian approxima-
tion of the DE algorithm will be referred to as the GA-DE.

Let denote the symbol error rate (SER) versus.
SNR function for the basic codeover AWGN,8 when decision
are made according to the EXT-based hard detection rule

(47)

The SER of user at iteration is given by

(48)

For hard IC we can write

(49)

where we assumed that, if a symbol is in error, any other symbol
appears with uniform probability , and we used the
fact that for . By using (49) and
(48) in (43) we obtain the recursion

(50)

initialized by .
For soft IC, we assume that the SISO decoder output

messages are produced by a virtual uncoded AWGN
channel , whose SNR is such that the SER with
symbol-by-symbol detection is equal togiven in (48).9 Denote
by the SNR of such virtual channel and, without loss of
generality, assume that is the transmitted symbol.
Then, the GA of the SISO output yields the estimated symbol

(51)

From the above approximation, we can write

(52)

8As for the BER functione ( ), also the functione ( ) can be obtained
by the combination of simulation (for low SNR) and union bound (for high
SNR).

9The GA proposed here is based on matching the SER at the decoder output,
and differs from the GA proposed in [32], [33], that matches the conditional
mean valueof the EXT log-likelihood ratioL = log given

x = +1 and from the GA proposed in [34], that matches the mutual
information I(L ; x ). These two GA’s methods can be applied to
binary antipodal signaling, and are widely used in the analysis and design of
random-like codes under iterative message-passing decoding.

where denotes expectation with respect to
, and where we used the fact that, for a given

modulation alphabet , in (52) depends only
on the SNR , which is a one-to-one function of the SER
; therefore, the function is well defined.

By using this into (43) we obtain the GA-DE recursion for the
SUMF-based iterative soft IC decoder as

(53)

with initial condition .
For the LMMSE-based algorithm, notice that the statistics

of is completely defined by the parameter. Define the cdf
. Then, from (45), the GA-DE re-

cursion for the LMMSE-based iterative soft IC decoder is given
by solution of

(54)

initialized again by . Despite its apparent complica-
tion, the recursion (54) is easily computable in several cases of
interest (see the example in Appendix B).

Recursions (50), (53), and (54), completely characterize, up
to the approximations in (49) and in (51), the behavior of the
hard IC, the SUMF-based soft IC, and the LMMSE-based soft
IC iterative multiuser decoders in terms of one-dimensional dy-
namical systems with state variable . In brief, these dynam-
ical systems can be written as

(55)

with , and where themapping function depends on
the particular algorithm considered and on the system parame-
ters: the channel loadand the cdf of the users’ SNRs .
By replicating the proof of Corollary 3, it is immediate to see
that the iterated map (55) with initial condition con-
verges always to a limit . As shown in Section V, for
most choices of the system parametersis a good approxima-
tion of the limit of the exact DE.

V. RESULTS

In this section, we present some numerical examples in order
to illustrate the main theoretical results of this work. All results
are based on binary convolutional codes (CCs), with bit-inter-
leaving, Gray mapping [37], and QPSK modulation. We focus
on this case since it is very important in CDMA applications
[36] and the computation of the GA-DE is particularly simple.
The details of the DE-GA calculation are given in Appendix B.

The Mapping and Its Fixed Points:Fig. 4 shows the func-
tion defined in (55) for the LMMSE-based
soft IC decoder, different values of the channel loadand
equal-power users, i.e., . The user
basic code is the binary CC of rate with octal generators

(see [37]), briefly denoted in the following by “CC
.” Users have all the same equal to 6 dB, cor-

responding to . For and ,
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Fig. 4. 	 mapping function for the GA-DE of LMMSE-based soft IC decoding, with CC(5; 7), QPSK modulation, equal power users withE =N = 6 dB,
and� = 1:0; 1:4; 1:8; 2:2; and2:6.

the equation has only one solution
, corresponding to the unique (stable) fixed point of

the GA-DE. Since is very close to , we expect that all
users achieve near-single-user BER after a sufficiently large
number of decoder iterations. On the contrary, for , the
equation has three solutions (given by
the intersections of the curve with the first
quadrant diagonal ). In this case, the limit is given by
the smallest solution, which is . Hence, we expect that
for all users perform very far from the single-user BER
(the SINR penalty in decibels with respect to the single-user
SNR is given by 8.53 dB).

We notice that the iterative multiuser decoder has a threshold
behavior with respect to the channel load, i.e., there exist a
value such that, for all near-single-user performance
is achieved by all users, while for all , the degradation
with respect to the single-user performance is very large for all
users. The value corresponds to afold bifurcation[61] of the
dynamical system defined by (55), i.e., it is the value below
which the second stable fixed point disappears.

The fixed-point analysis is confirmed by Fig. 5, showing a
snapshot simulation of a random finite-dimensional system with

, , and the same user basic code, modula-
tion, and of the infinite-dimensional system of Fig. 4,
but where the user spreading sequences and interleavers are ran-
domly generated at each frame. A total of 10 frames (each cor-
responding to a block of length coded QPSK symbols) were
generated. The scattered points in Fig. 5 show the minimum and
maximum empirical SINR/ ratio over the user population, for

each simulated frame. The empirical SINR for userat itera-
tion is evaluated as

The exact DE and the GA-DE trajectories of versus the
number of iterations for the infinite-dimensional system are
shown for comparison.

Two observations should be pointed out here. 1) The GA-DE
and exact DE trajectories agree very well for and ,
i.e., for far from the threshold . On the contrary, for
that is close to the thresholdthe two trajectories converge to
nearly the same fixed point but in a different number of itera-
tions. In particular, the GA-DE is slightly optimistic in terms of
the number of iterations needed to converge. 2) The behavior of
the random finite-dimensional system is very well predicted by
the infinite-dimensional DE, and quite accurately predicted (at
least in terms of the limiting fixed point) by the GA-DE.

Fig. 6 shows the GA-DE mapping functionfor CC ,
equal-power users with 6 dB, , and LMMSE,
SUMF, and hard IC iterative multiuser decoders. The threshold
load characterizing the decoder fold bifurcation depends on
the decoder algorithm. In the example of Fig. 6, we observe that
the LMMSE-based decoder is below its threshold load while
the hard-IC and SUMF-based soft IC decoders are above their
threshold load.

Finally, Fig. 7 shows the GA-DE mapping functionfor the
LMMSE-based decoder for a system with CC basic code,
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Fig. 5. Evolution of� versus the number of iterations for LMMSE-based soft IC decoding, with CC(5; 7), QPSK modulation, equal power users with
E =N = 6 dB, and� = 1:8; 2:2; and2:6. Solid lines with triangles and squares denote the GA-DE and the exact DE trajectories, respectively, and lozenges
denote simulation snapshots of a finite-dimensional system with spreading factorL = 60 and block lengthN = 2000.

Fig. 6. 	 mapping function for the GA-DE of different IC decoders, with CC(5; 7), QPSK modulation, equal power users withE =N = 6 dB, and� = 1:8.
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Fig. 7. 	 mapping function for the GA-DE of LMMSE-based soft IC decoding, with CC(5; 7), QPSK modulation, block-fading with averageE =N = 6 dB,
and� = 1:0; 1:4; 1:8; 2:2; and2:6.

for an unequal-power system where the users SNR is distributed
according to a truncated exponential pdf, with corresponding
cdf given by

(in this example we chose and such that
averaged over all users is equal to 6 dB). This case is repre-
sentative of a block-fading channel where the channel gain for
each user is constant over the whole codeword duration (see
[31]) and where the fading gain cdf is given by . Sup-
pose that the fading of each user is governed by an ergodic
process [62]. Then, the average BER of each user can be eval-
uated as BER , where expectation is with respect
to given above, and where is the BER versus
SNR function characteristic of the basic user code.

We notice that, with such unequal power distribution, the iter-
ative decoder behavior is quite different from the corresponding
equal-power case of Fig. 4. In fact, here the unique decoder fixed
point decreases smoothly as the load increases, and no fold bi-
furcation appears for the considered range of channel load.

EXT Versus APP Feedback, and the Bias Effect:In Re-
mark 3 of Section III-C we anticipated that feeding back MAI
estimates obtained from the APPs rather than from the EXT
of SISO decoders makes residual interference conditionally
biased and degrades the decoder performance. Figs. 8 and 9
illustrate this fact for the SUMF-based decoder. A random
finite-dimensional system with , , ,

CC , equal-power users with 6 dB was
simulated with EXT-based and APP-based feedback. Fig. 8
shows the simulated SINR/ ratio (defined as in Fig. 5) for
the two decoders, versus the number of iterations. We notice
that the EXT-based decoder converges to , and its
behavior agrees very well with the GA-DE trajectory, while
the APP-based decoder does not improve its performance with
iterations. Fig. 9 shows the corresponding evolution of the
conditional residual interference bias for the signal in-phase
component, defined by . We
notice that the EXT-based system converges rapidly to zero
bias for all users, while the APP-based system gets trapped into
an oscillatory behavior. Notice also that, for the APP-based
decoder, the bias averaged over all users is negative, i.e., on the
average it reduces the useful signal component.

System Spectral Efficiency:We can use the GA-DE as arule
of thumbfor a quick evaluation of the spectral efficiency achiev-
able with given codes and iterative multiuser IC decoders. Spec-
tral efficiency is calculated as follows. We fix the target BER
to be achieved by all users and we compute necessary
to achieve the target BER in the single-user case. If the target
BER is sufficiently small, because of the threshold behavior il-
lustrated above, it can be achieved only if the decoder works
below threshold. Then, the resulting spectral efficiency is given
by , where is the threshold load for the value of
obtained and is the coding rate.

For example, Fig. 10 shows the spectral efficiency for target
BER equal to achieved by the optimal CCs of rate
with 4, 8, 16, 32, and 64 states [37], with Gray-mapped QPSK
modulation and different iterative IC decoding algorithms, for
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Fig. 8. Evolution of� versus the number of iterations for SUMF-based soft IC decoding, with CC(5; 7), QPSK modulation, equal power users withE =N =
6 dB, and� = 1:4. The solid line with triangles denotes the GA-DE trajectory. Lozenges and circles denote simulation snapshots with EXT-based and APP-based
IC, respectively, of a finite-dimensional system with spreading factorL = 60 and block lengthN = 2000.

Fig. 9. Evolution of the residual interference conditional bias versus the number of iterations for SUMF-based soft IC decoding, with CC(5; 7), QPSK
modulation, equal power users withE =N = 6 dB, and� = 1:4. Lozenges and circles denote simulation snapshots with EXT-based and APP-based IC,
respectively, of a finite-dimensional system with spreading factorL = 60 and block lengthN = 2000. Solid lines represent the trajectories of the bias mean
values (averaged over the users).
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Fig. 10. Spectral efficiency of iterative IC decoders with equal power users and CCs of rate1=2 with 4, 8, 16, 32, and 64 states and QPSK modulation. The
different code/decoder pairs are represented by points in the(E =N ; �) plane. The number of trellis states increases from right to left (i.e., the rightmost point
corresponds to the four-state code and the leftmost point to the 64-state code). Solid, dashed, and dotted lines represent the achievable spectral efficiency of CDMA
with optimal Gaussian random codes and joint decoding, linear MMSE front-end followed by single-user decoding, and SUMF followed by single-user decoding,
respectively.

equal-power users. The different code/decoder pairs are repre-
sented by points in the plane. The number of trellis
states increases from right to left (i.e., the rightmost point cor-
responds to the four-state code and the leftmost point to the
64-state code). Larger spectral efficiency is achieved by sim-
pler codes, at the price of a larger required to achieve
the target BER.

For the sake of comparison, the spectral efficiency with
random spreading in a large-system regime achieved by linear
detectors (SUMF and LMMSE) with single-user decoding and
by the optimal joint decoder with ideal Gaussian random codes
is also shown (adapted from [30]).

VI. CONCLUDING REMARKS

We would like to conclude by pointing out some recent re-
sults originated by this work and some suggestions for future
research.

The GA-DE analysis proposed in this paper was recently used
to study the performance of iterative IC decoding with LDPC
codes in [63]. We expect that, by following in the footsteps of the
concentration result provided here, a rigorous concentration re-
sult and the corresponding DE can be proved for several classes
of user codes, and for systems where users make use of different
codes with possibly different coding rates.

By using the GA-DE, the optimization of achievable spectral
efficiency with respect to the SNR distribution is solved
for binary CCs and QPSK modulation in [56]. Interestingly, it

turns out that this problem is a linear program that can be solved
very efficiently. In [56] and [63], it is also shown that a nonuni-
form user SNR distribution is the key to achieve large spec-
tral efficiencies with iterative multiuser decoding. These results
are in agreement with the conjectures made in [9], [10], based
on information-theoretic arguments. Intuitively, the nonuniform
SNR distribution shapes the multiaccess capacity region such
that the transmitted rate -tuple is close to a vertex (i.e., to a
successively decodable point [2], [3]).

In [64], an improved iterative IC decoder based on widely
linear filtering is proposed. Namely, it is recognized that the
residual interference conditioned with respect to the phases

and EXT messages is not circularly
symmetric. Therefore, a widely linear filter (see [65] and ref-
erences therein) instead of the complex LMMSE filter (25) can
be used in the IC-MUD nodes, providing better residual inter-
ference mitigation.

The framework developed in this paper can be extended to
more general CDMA models, involving asynchronous transmis-
sion and multipath propagation. From the analysis point of view,
DE may be extended by using the results of [57] to handle asyn-
chronism and frequency-selective channels in the finite-dimen-
sional case, and the results of [66] and [67] of to handle asyn-
chronism and frequency-selective channels in the large-system
limit.

Finally, iterative multiuser decoding can be naturally coupled
with iterative channel estimation in the case of unknown user
channels. First steps in this direction are reported in [46], [68],
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[69]. A rigorous concentration result and the corresponding DE
analysis of iterative joint data detection and channel estimation
is still missing, and it represents an interesting area of research.

APPENDIX A
PROOFS

A.1 Proof of Lemma 1

The neighborhood is cycle-free if and only if no
IC-MUD node appears more than once in its node collection.
The total number of IC-MUD nodes is , where

was already introduced in
(32). We enumerate the IC-MUD nodes in from top to
bottom and, inside each layer, from left to right (see Fig. 3),
and define the sequence of nested neighborhoods , for

such that contains all IC-MUD nodes

from to , and the edges connected to them. Then, [1]

is obviously cycle-free, and .

The events is cycle-free are nested, i.e.,
. Hence,10

and, since the ’s are nested, the events in the above union are
disjoint. Therefore, we have

(56)

where we have used the fact that, for a given set of distinct
IC-MUD nodes of size , the probability that a new ran-
domly selected node out of the possible nodes belongs to the
set is . This concludes the proof.

A.2 Proof of Lemma 2

Without loss of generality, we assume that the all-one se-
quence is a codeword. Any geometrically uniform codeover

as defined in Section IV-B can be written as
, where is a group of diagonal

matrices with diagonal elements .
Let be the transmitted codeword, such that

for some , and let be the channel output. Let
denote the subcode of all codewords having symbol

in position . The th output message produced by the SISO
decoder is given by

(57)

10The complement of an eventE is denoted byE .

where is the subgroup of all matrices having
and is any matrix in having . We

have the coset decomposition , and for
all we can write

for some coset leader .
Let be the th SISO output message when

is the transmitted codeword, with for some .
We have

(58)

where follows from the definition of -invariance of
, follows from the obvious relation

valid for any nonzero , follows by letting
and by noticing that, since ,

then also and the coset generates the
subcode , and follows from (57), after noticing that

and are identically distributed.
We have shown that is distributed as a

permuted version of , where the permutation
is the cyclic shift defined by . This

concludes the proof.

A.3 Proofs of Corollaries 1 and 2

Corollary 1 follows from Lemma 2 and from the fact that
the residual interference at the output of any IC-MUD node in
a cycle-free neighborhood is -invariant, since the Gaussian
noise is circularly-symmetric and the complex amplitudes
have i.i.d. phases uniformly distributed on

. Therefore, multiplying the residual interference
term by any does not change its pdf.

Consider a trellis window of the th SISO decoder in the
neighborhood , connected to theth IC-MUD node, and let

be the th user transmitted codeword. From Lemma 2 we have
that the distribution of the EXT message produced by the trellis
window for symbol is the same for all codewords that
coincide with in the th position. As a consequence, the sta-
tistics of residual interference at the output of theth IC-MUD
node depends only on the symbols labeling its input edges.

By definition, the collection of such symbols is the neighbor-
hood type . Since is a function of the messages

propagated through the neighborhood, we conclude thatis

independent of given .
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Corollary 2 is proved by iterating expectation. In the fol-
lowing, all expectations and probabilities are conditioned with
respect to the event that is cycle-free. We do not write it
explicitly for the sake of notational simplicity, as it is obvious
from the context. We have

(59)

where follows from the fact that, by Corollary 1 and by
the general fact that for the
Markov chain , follows from defining

follows from the fact that is uniformly distributed over
all possible phase sequences, follows from the fact that for
every there exists such that
, therefore, after summing over all possible, the result is in-

dependent of. Finally, follows from the fact that the argu-
ment in the expectation is deterministic and independent of.

A.4 Proof of Proposition 1

The proof of the concentration result stated in Proposition 1
follows closely the proofs given in [27], [57]. We include the
main steps here for the sake of completeness.

Fix . For random variables we have

(60)

where follows from the triangular inequality and from
the union bound. We define

where expectation is with respect the random computational
flowgraph ensemble of block length and with re-

spect to the channel noise, conditioned on the transmitted
codewords . From (60) we have

(61)

We show that for , where is the constant appearing
in Lemma 1, the second term in the RHS of (61) is equal to zero.
In fact, let is cycle-free, then

is cycle-free

is not cycle-free (62)

where follows from symmetry. Since the indicator function
is , by using Lemma 1 and recalling that, by definition

is cycle-free

which is independent of by Corollary 2, we have that, for
all

(63)

which implies

Then, by choosing we have

For the first term in the RHS of (61), for fixed, we form
an edges-phases-and-noise revealing Doob’s martingale on
the joint probability space and apply Azuma’s
inequality (see [27] and references therein). For a given

, we order its edges such that theth edge in the list, for
corresponds to with

and . Then, we expose the edges ofone
by one, in the above order, and in the subsequentsteps we
expose the phase randomization vectorand the noise vectors

corresponding to theth IC-MUD node, for .
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We define a sequence of equivalence relations inducing
a sequence of nested partitions of into equivalence
classes as follows: if they coin-
cide for the first steps of the above edges-phases-and-noise
revealing procedure. Then, for every fixed and

, the Doob’s martingale is defined by

(64)

for , where is the residual interfer-
ence at edge of the graph , after steps of the
iterative IC decoder. Clearly

and

Since every edge participates in at most neighborhoods
of depth , the difference can be uniformly
bounded by a constantthat depends on and , but it
is independent of .11 Hence, Azuma’s inequality yields

which yields

with . This concludes the proof.

A.5 Proof of Proposition 2

Recall that we take the limits with respect to the block length
and to the number of users and spreading factor by

letting first and then , with fixed ratio
. Since for all finite the block length grows

without bounds, by Proposition 1 the iterative multiuser IC de-
coder after iterations is completely characterized by the DE of
Section IV-B, i.e., by the expected cdfs of the messages prop-
agated through a randomly generated cycle-free neighborhood

. Hence, we can prove Proposition 2 by induction on the
DE iterations.

For the sake of brevity, we show Proposition 2 for the case of
LMMSE-based algorithms (the cases of SUMF-based soft IC
and hard-IC follow the same lines). The main results from the
analysis of random CDMA in the large system limit, which will
be used to prove Proposition 2, are summarized in the following
result [29]–[31], [70].

Large-System Lemma:Consider a -user CDMA system
with spreading factor defined by

11After noticing that� is a function of the variables appearing in the neigh-
borhoodN , and that the maximum number of neighborhoods containing a
given edge~e is finite and independent ofN , the explicit evaluation of� is a
straightforward exercise. We skip the details for the sake of brevity, since they
are totally analogous to [27].

where is random, with statistics defined in Section IV-C,
where the symbols are independent,

with mean zero, and covariance , and where
. Assume that the ’s are uni-

formly upper-bounded by a constant independent of
, and, as , the empirical cdf of the ’s converges

weakly to a given cdf .
Then, as with fixed ratio , the conditional dis-

tribution of the residual interference plus noise givenat the
output of the th user SUMF and LMMSE filters converges al-
most surely to a complex circularly symmetric Gaussian distri-
bution independent of and the SINR at the filter output con-
verges almost surely to the nonrandom quantity, where is
given by

for the SUMF and by the unique nonnegative solution of the
equation

for the LMMSE filter.

At step of the DE recursion, the symbol estimates
are all equal to zero. Then, because of the assumptions of Propo-
sition 2, we find that the Large-System Lemma directly applies
by letting . Now, suppose that Proposition 2
holds for step . If Proposition 2 holds for iteration as-
suming that it holds for iteration , the proof follows by
induction.

In order to show that Proposition 2 holds at step, it is suf-
ficient to show that the empirical cdf of the interfering residual
symbol instantaneous conditional variances converges
weakly to a nonrandom cdf . For -PSK, we have
(see (20))

The empirical cdf of is given by

(65)

Hence, the proof is complete if we show that the limit in (46)
holds for step .

Since Proposition 2 is assumed true at step , the input of
each th SISO decoder at step is of the form ,
where . Moreover, since the neighbor-
hood is cycle-free, the interferencein all inputs contributing
to the same trellis window of the windowed BCJR decoder is
an i.i.d. sequence. Finally, sinceis rotationally invariant (and
hence also -invariant), by Lemma 2 we incur no loss of gen-
erality by assuming .

In order to prove convergence of , we need
to treat the SISO decoder as a mapping between (random)
messages, and consider the associated mapping between the



1790 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

messages distributions. Letbe the space of all pmfs over .
Then, a SISO decoder can be seen as a sequence of mappings

(66)

for . For the exact sum-product SISO decoder,
is given by (11). However, (66) is

more general, allowing for approximated implementations of
the exact SISO decoder. For example, the windowed BCJR
decoder takes the form (66), where the mappingsact on a
sliding window of the input message sequence
centered on symbol and comprising trellis sections.

A pmf in can be seen as a real -dimensional vector
lying in the simplex defined by , . For a
given transmitted codeword, the SISO decoder input and output
messages are random vectors in. We denote by the space
of all joint cdfs over . When the SISO decoder input is pro-
duced by a memoryless time-invariant channel, the input mes-
sages form an independent sequence condition-
ally on the transmitted codeword. We define the message cdf
mapping associated to the SISO decoder as

(67)

such that if

then .
We have the following definition [71].

Definition (Unisotropy Degree):Consider a geometrically
uniform code over and (without loss of generality) as-
sume that the all-ones sequence is a codeword. Consider the
transmission of the all-ones codeword over a complex circularly
symmetric AWGN channel. The unisotropy degreeof with
respect to the SISO decoder given by is
defined as the number of distinct output message cdfs generated
by the associated mappings .

When is a trellis code with trellis termination and the SISO
decoder is the windowed BCJR algorithm, the unisotropy de-
gree is finite for any . In fact, trellis termination affects a finite
number (say, ) of trellis sections ( at the beginning and
at the end of the block), therefore, only a finite number

of output messages are affected by the asymmetry due to
trellis termination. For all the remaining

messages, the SISO decoder behaves as if the trellis
were infinite, and due to the fact that the trellis is time-invariant
with symbols per trellis section, the SISO decoder can pro-
duce at most distinct cdfs. By letting , the fraction

of symbols affected by trellis termination van-
ishes. Hence, in the limit for large we get that the unisotropy
degree of with respect to the windowed BCJR decoder is
upper-bounded by.

For simplicity, we assume that the user amplitudes can take
on values in a discrete and finite set of values

, for some integer , and let

be the limiting fraction of users transmitted with squared
complex amplitude , for .12 Consider the

symbols transmitted at time, for an arbitrary choice of
. Let denote the subset of such symbols

transmitted with signal squared amplitude and appearing
in position of their branch label in the corresponding trellis
section of the basic code. Then, we can write

(68)

The soft symbol estimates for all are i.i.d.,
since they are produced by the same SISO decoder mapping
with identically distributed input (recall that the unisotropy de-
gree of is at most ).

From the strong law of large numbers [60], the fraction of
user symbols belonging to subset converges almost
surely to , since for a random selection of the neighborhood

a symbol transmitted at timeoccupies position
in its trellis branch label with equal probability. Hence, the fol-
lowing limit holds almost surely:

(69)

where we define the cdf

This concludes the proof.
Notice that the fact that the basic codehasfinite unisotropy

degree is crucial. In fact, if the number of different output mes-
sage distributions generated by the SISO decoder grows linearly
with the block length , the convergence (69) is not ensured any
longer.

12The extension to a continuous limiting distributionG (u) is a straight-
forward but tedious exercise, and follows from standard continuity arguments.
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A.6 Proof of Corollary 3

Define the mapping function such that
coincides with (43) or with (45), depending on the IC algo-
rithm considered. All DE fixed points must satisfy the equa-
tion for some . By inspection, we have
that the mapping , defined on the domain , is contin-
uous and has range , with . Hence, the equation

has at least one solution in . Moreover, we have
that . Therefore, is
a stable fixed point and the iterated mapwith initial condition

converges to the limit . From Proposition 2, it fol-
lows that the DE recursion with initial condition has
limit

for all , that is uniquely identified by .

APPENDIX B
QPSK WITH GRAY MAPPING AND BIT INTERLEAVING

The QPSK signal set is naturally matched
to the binary field via the Gray mapping
such that

In CDMA applications, the case of binary convolutional codes
Gray-mapped onto QPSK is particularly important [36]. In
this appendix, we provide the details of the calculation of the
DE-GA used to generate the results of Section V.

The Gray-mapped QPSK does not fit directly the theory de-
veloped for -PSK and linear trellis codes over the ring ,
since the additive group of is not isomorphic to the
cyclic group of order . However, the results of Section IV
can be extended to this case by considering binary convolu-
tional codes withbit interleaving [72]. Namely, we shall as-
sume that each user code is obtained by concatenating the
same “basic” binary convolutional codewith a randomly and
independently selected bit interleaver, and that the QPSK mod-
ulation with Gray mapping is applied to the resulting bit-inter-
leaved binary sequence. Finally, phase randomization is applied
independently on the real and imaginary parts of the modulated
symbols, so that the resulting CDMA channel model is given by

(70)

where contain the in-phase () and quadra-
ture ( ) components of the transmitted symbols,

is a real diagonal matrix of amplitudes,
and are diagonal matrices with diagonal elements
in , representing the and phase randomization se-
quences. We shall refer to the model (70) as the “I&Q” channel.

With bit-interleaving, the and components of the residual
interference contributing to the input messages to any trellis
window in a cycle-free neighborhood are independent.
The concentration result of Section IV-B extends immediately
to the I&Q channel, and it is easy to show that, in the large-

system limit, the residual interference at the input of the SISO
decoder of user at iteration is complex Gaussian, with iden-
tically distributed and components, with mean zero and
per-component variance , where is given by
Proposition 2 (the proof of these facts is a straightforward exer-
cise by following the proofs of Proposition 1 and 2).

The SISO decoders produce output messages in the form of
EXT log-likelihood ratios

for the coded binary symbols (not for the modulated QPSK sym-
bols!). From now on, we drop the user and time indexes as there
is no risk of confusion. Let denote the SER versus SNR
function of transmitted with Gray mapping and QPSK modu-
lation over AWGN, were decision about the coded symbolis
made according to the rule

(71)

( is a short-hand notation to indicate the EXT log-likelihood
ratio relative to a certain coded symbol.) As in Section IV-C,
we want to approximate defined in Proposition 2 directly
in terms of the SER at iteration , that for a user received at
SNR level is given by .

We denote by and the and binary antipodal symbols
relative to a Gray-mapped QPSK symbol, and byand their
estimate produced by the SISO decoder. For the hard-IC decoder
(49) becomes

(72)
Hence, (50) reduces to

(73)

initialized by .
For soft IC, by using (20) with binary antipodal symbols, we

obtain the soft estimates of theand symbols as

Equation (52) reduces to

(74)

As in (51), we make a Gaussian approximation of the SISO
decoder output and let [32], [33]

(75)

for , where is chosen to match the SER. By using (75)
in (71), we get , where
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which yields

(76)

Hence, (74) gives the function

(77)

where, from (75) and (76), the log-likelihood pdf is given by

(78)

The function in (77) can be used in the GA-DE recursion
(53) for the SUMF-based decoder.

For the LMMSE-based decoder, we have

(79)

Then, after a change of variable and some algebra, the inner
integral (with respect to) in (54) can be written as

(80)

where (80) is obtained by using repeatedly the identity
, a symmetry condition of log-likeli-

hood ratios that holds for any binary-input symmetric-output
memoryless channel [73].

Integrals (77) and (80) can be easily and accurately computed
by using Gauss–Hermite quadratures, and make DE-GA com-
putationally much simpler than exact DE.
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