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Abstract— This paper presents the application of Iterative
Nonlinear Model Predictive Control, INMPC, to a semibatch
chemical reactor. The proposed control approach is derived
from a model-based predictive control formulation which takes
advantage of the repetitive nature of batch processes. The
proposed controller combines the good qualities of Model
Predictive Control (MPC) with the possibility of learning from
past batches, that is the base of Iterative Control. It uses a
nonlinear model and a quadratic objective function that is
optimized in order to obtain the control law. A stability proof
with unitary control horizon is given for nonlinear plants that
are affine in control and have linear output map.

The controller shows capabilities to learn the optimal tra-
jectory after a few iterations, giving a better fit than a linear
non-iterative MPC controller. The controller has applications in
repetitive disturbance rejection, because they do not modify
the model for control purposes. In this application, some
experiments with a disturbance in inlet water temperature has
been performed, getting good results.

I. INTRODUCTION

Batch and semibatch processes experience continuous

transitions and are usually highly nonlinear, involving com-

plex reaction mechanisms and model-plant mismatch. Batch

operation is done under unsteady state and reference trajec-

tories are frequently time-varying, making process variables

change over wide ranges and exhibiting therefore significant

nonlinear behavior. This leads to time-invariant models be-

ing unsuitable for describing the process and consequently

control strategies based upon linear models can drive to

significant errors. On the other hand, the repetitive way

of operation allows the extraction of information from past

batches in order to improve the new batch. In batch mode

of operation, batch-to-batch variations can be significant and

are of primary concern. In most industrial cases, the batch-

to-batch variations are strongly auto-correlated, providing the

possibility of using previous batch results to adjust the recipe

of a subsequent batch. The error that cannot be removed

by on-line feedback control can be eliminated or reduced

by the so called batch-to-batch or run-to-run control. This

can be done by means of Iterative Learning Control (ILC)

[18] which refers to a body of methodologies that attempt

to improve the control performance of a repeated run based

on the results from previous runs.

Because feedback control can respond to disturbances im-

mediately and batch-to-batch control can correct any bias left

uncorrected by the feedback controller, which may be due to

unmodelled disturbances, parameter errors and dynamics, a

combined scheme can potentially allow these to complement
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each other to render the benefits of both. The idea of combin-

ing batch-to-batch control with feedback control appeared in

[3]. In [19], a combination of GPC (Generalized Predictive

Control) and ILC has been successfully applied to robotic

manipulators.

Notice that, in this case, the problem is not easy to solve

since the feedback control of the on-going run is a difficult

problem itself, because it involves a nonlinear controller. The

inclusion of data collected during the on-going batch run (in

addition to those from the past runs) makes the feedback

control strategy capable of responding to new disturbances

that occur during the run.

The paper presents the application of a nonlinear iterative

controller to a multivariable semibatch reactor. This con-

troller is called Iterative Nonlinear Model Predictive Control

(INMPC) and was presented in [11] ([6] for monovariable

plants). This controller tries to improve existing strategies

by the use of a nonlinear controller devised along the last-

run trajectory as well as by the inclusion of filters. Tracking

the setpoint profile is tackled by a nonlinear controller based

on EPSAC (Extended Predictive Self-Adaptive Control) [17]

while its iterative nature improves the performance at each

batch. This papers extends the results to multivariable plants

and performs a stability analysis.

The paper is organized as follows. In section II, the plant is

described. Nonlinear and linear models for control purposes

are obtained and identified. INMPC controller is summarized

in section III, and a convergence result for unitary horizons

are given in section III-B. Simulations are presented in

section IV, where a comparison with a linear MPC and a

disturbance test is performed. Finally, in section V the major

conclusions are drawn.

II. PLANT DESCRIPTION

The plant is an example of a semibatch process that is

suitable to be implemented in laboratory equipment. This

plant has been used as a benchmark by several authors (see,

for example, [1], [2]). It is assumed to be composed of a

reaction vessel, where a chemical reaction is performed, and

a cooling loop. The idea is to transform the material via

an exothermic chemical reaction. A multivariable controller

is necessary in order to achieve control of temperature and

reactant concentration during the process duration.

The difference between batch and semibatch processes in

this example is clear. Batch process means that, once the

reaction has started, there is no input of more reactant into

the vessel. Therefore, the product concentration cannot be

controlled, and the system would be a single input-single

output one.
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In the case study, the process is semibatch. At initial

time there is a fixed reactant concentration (lower than

initial concentration in an equivalent batch process), but it is

possible to add more material after the chemical reaction has

started. It makes the control more difficult (multivariable)

because the reactant concentration can be controlled. For

this reason, semibatch processes can usually reach a better

performance than batch processes. The control objective is to

followa given reference trajectory of temperature and product

concentration. This reference is computed externally in some

optimal way minimizing some cost function. The reactant

concentration set point at the end of the batch is null in

order to minimize the reactant that can not be transformed.

A. Continuous-time model

It can be assumed that the mass inside the tank, m, is

constant since the inlet reactant flow, uc, is small enough

(ie. high reactant concentration). The equations describing

the system have the form [3]:{
dT/dt = F

m (Te − T ) + Q
mC

dCA/dt = −k0e
−E/RT C2

A + uc
(1)

Q = (−ΔH)V k0e
−E/RT C2

A (2)

F = afv + bf (3)

β = aiF + bi (Tew − T ) + ci (4)

Te − T = β (Tew
− T ) (5){

T (0) = T0

CA(0) = CA0

(6)

0 ≤ t ≤ Ts · N (7)

where the controlled variables are the temperature inside

the tank (T ) and the reactant concentration (CA), and the

manipulated variables are valve opening (v) and inlet reactant

flow (uc). System (1) describes the plant dynamics, equations

(2)-(5) are auxiliary static equations, describing the generated

heat inside the vessel, Q, the cooling water flow, F , and

the heat exchanger efficiency, β. Equation (6) represents the

(constant) initial batch conditions, and (7) defines the batch

duration, which in this case is considered to be constant.

When this time is variable (i.e. in a time span optimization),

several authors [4], [5] have proposed some methods to

convert the problem into a constant duration one.

Fig. 1 presents a graphical description of the plant. Para-

meters are enumerated in Table I. Values of af , bf , ai, bi and

ci are identified from a laboratory plant, in order to perform

real experiments later. Finally the measured temperature has

a delay of d seconds because of the sensor placement.

The generated heat inside the vessel could be emulated

using, for example, an electrical resistance in a stirred tank.

It has been done, for an equivalent monovariable batch

reactor, in [6] and, for another example, in [7]. A disturbance

can be easily introduced modifying the inlet cooling water

temperature, for example.

This plant seems to be a good candidate for testing nonlin-

ear multivariable control techniques. The two state variables

Fig. 1. Multivariable 2x2 plant

TABLE I

PLANT PARAMETERS

Variable Units Value
E/R K 13550
k0 l/(mol · s) 1.16 · 1017

m kg 29.6
C kJ/(kg · K) 4.18

(−ΔH)V
mC

K · l/mol 20

T0 K 308
Ca0 mol/l 0.5
Tew K 298
af kg/(s · %) 6.252
bf kg/s 5.35
ai s/kg −879 · 10−6

bi K−1 −243 · 10−6

ci - 0.964
d s 30

are strongly coupled by an exponential term depending on

temperature and the square of product concentration (1)-(2).

The effect of valve opening on the dynamics is quadratic

because of the definition of valve characteristics (3) and heat

exchanger efficiency (4).

Therefore, the control of this plant is a difficult task. The

product concentration tends to zero quickly because of the

quadratic term, and the cooling water and reactant flows are

constrained between strict physical limits. In practical non-

simulated applications additional problems of sensor noise

and plant disturbances will be found. These issues have

been partially addressed in this work by introducing small

disturbances in inlet cooling water temperature.

B. Transformation into an affine system and discretization

For stability issues, plant equations are better written in

discrete-time in a form that is affine in control and linear

in output (see section III-B). The controller may be applied

directly to plant equations (1)-(7), but the stability analysis

requires that the plant has the form given by{
xt+1 = f(xt) + g(xt)ut

yt = Cxt
(8)

The way to do this transformation is by defining a new

state equation and a new input u:

v̇ = u (9)
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The state variables are now T , CA and v, while the inputs

are u and uc. The affine plant, described by (1)-(5) and

(9), is discretized using, for simplicity, Euler method with

a sampling time Ts. Hence, the model is given by (2)-(4),

(8),

f(xt) =

⎛
⎜⎝

T + Ts

[
F
mβ (Tew

− T ) + Q
mC

]
CA − Tsk0e

−E/RT C2
A

v

⎞
⎟⎠ , (10)

g(xt) =

⎛
⎝ 0 0

Ts 0
0 Ts

⎞
⎠ (11)

Finally, the model for control (see section IV) must take

into account the plant delay d, which is equal to 2 when the

sampling time is 15 seconds. Hence, the plant description is

modified to

fm(xt) =

⎛
⎝ f(xt)

T1

T2

⎞
⎠ , gm(xt) =

⎛
⎝ g(xt)

0
0

⎞
⎠ (12)

and

C =
(

0 0 0 0 1
0 1 0 0 0

)
(13)

where the two last state variables (T1 and T2) denote the

delayed temperatures.

C. Identification of a linear model

In this section we address the problem of the computation

of an approximated linear model in order to make experi-

ments with linear MPC (section IV). A good linear model

cannot be found because of the process nonlinearity.

Step responses of this 2-input linear batch process can be

computed via 3 open loop experiments with constant input

[3]. Firstly, an experiment with constant input (v = 40 %
and uc = 3600 mol/s) is performed. The other experiments

are obtained modifying only one of the constant inputs

(v = 80 % and uc = 7200 mol/s, respectively). The

step responses are computed as the difference between the

obtained trajectories in the first experiment and the obtained

trajectories in the other experiments. Using this simple ap-

proach, the repetitive disturbance term is completely removed

into the step responses.

These obtained step responses are plotted in Fig. 2. It is

used to identify a linear model for MPC control purposes [8].

Reactant concentration response to a step in reactant flow has

an integrator effect, that cannot be appreciated in this figure

because of the finite batch duration.

III. ITERATIVE NONLINEAR MODEL-BASED PREDICTIVE

CONTROL (INMPC)

A. Controller description

It has already been observed in section II that the plant

dynamics are complex and nonlinear. Even a nonlinear

controller may have problems when controlling this plant.

Moreover, not every reference trajectory is reachable and

special care has to be taken in order to choose a correct

reference trajectory.
Michalska and Mayne [9] propose a suboptimal NMPC for

continuous processes that employs an initial feasible solution

which is improved iteratively. This idea can be adapted to

deal with batch processes. Indeed, the inherent repetitiveness

of these processes is an advantage, because the controller

has more information about the process, obtained from past

batches. It makes the achievement of a trajectory refinement

that improves the control at every batch possible.
In order to address the problem Iterative Nonlinear Model

Predictive Control (INMPC) is used. This controller [6]

combines a nonlinear model based controller with iterative

learning capabilities. In this paper, the multivariable applica-

tion of this controller is presented.
The controller belongs to the predictive type. It means

that it computes a prediction of the output variables, which

is optimized in order to get the control law. In this case,

the problem is formulated using batch incremental variables.

Denoting the batch number with a superindex, variables

are defined by x̃(t) = xk(t) − xk−1(t). Automatically,

repetitive and additive disturbances appearing in the process

are cancelled into the incremental variables model. Moreover,

if the difference from one batch to next one is not large,

superposition principle holds, and prediction can be divided

into a forced response plus a free response:

y = Gu + f (14)

where u ∈ RNu·m and y ∈ RNy·p are vectors containing

future values of the variables.
Free response f is computed iterating the nonlinear model

(8) and considering that the future value of the input is

equal to the last batch input at the same instants of time.

In the case that the plant is stable, free response will tend to

approximate to last batch trajectory. At the first time instant,

it will coincide with that trajectory, since it is assumed that

there is no variation in initial conditions. When incremental

variables are being used, this free response will be null at

the first instant of time.
In order to compute the forced response, a model lin-

earization has to be performed. This is done not around

an equilibrium point, but around last batch trajectory. A

dynamic matrix [8], which is different at every time instant of

every batch, is computed, so an accurate nonlinear prediction

can be known.
A standard objective function is minimized

J = ‖y − r‖2
Q + ‖ũ‖2

R (15)

possibly subjected to constraints of types⎧⎪⎪⎨
⎪⎪⎩

ymin ≤ y ≤ ymax

umin ≤ u ≤ umax

δumin ≤ uk − uk−1 ≤ δumax

Δumin ≤ ut − ut−1 ≤ Δumax

(16)

where

u =
(

ut|t ut+1|t · · · ut+m−1|t
)t

(17)

y =
(

ŷt+d+1|t ŷt+d+2|t · · · ŷt+d+p|t
)t

(18)
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Fig. 2. Step response of the plant

Only the values of the predicted output after the system delay

d are considered into the objective function. The solution of

(15)-(16) gives the control variable u. Only the first element

computed along the control horizon is applied to the plant,

as it is done with any receding horizon strategy.

Note that in a batch process, initial conditions are constant.

Closed-loop stability properties are different than in MPC for

continuous processes because the starting point is fixed. In

these conditions, a stability proof can be found without the

requirement of a terminal cost or constraint [10], see section

III-B.

The number of controller parameters is relatively small

(see Table II), similar to the number of parameters in MPC.

The major complexity comes from other point. It is the

necessity of an accurate plant model (8). Partial derivatives

of the functions involved on the model (f and g) are also

required by the controller in order to build the linearized

model, notably increasing computational load requirements.

B. Stability analysis

A stability analysis of the INMPC controlled system with-

out constraints can be done. A stability proof of a different

constrained linear model based controller (Batch MPC or

BMPC) is shown in [3].

Assume that the plant can be exactly described by equa-

tions (8). They can have a repetitive disturbance term vt (i.e.

it does not depend on the batch index). An iterative controller

will deal with this disturbance term and there is no need to

include it into the model, assuming that vt = vk−1
t and that

it appears in additive form into the model (8) [11].

The controller is a function of variables at time t in the

current batch, variables at every time in the last batch k− 1,

and the future estimated output along the prediction horizon

uk
t = uk−1

t + Φ
(
xk

t , xk−1
t+1 , xk−1

t . . .
) (

rt − fk
t

)
(19)

Note that fk
t is the free response of this system, and it is

computed assuming uk
t+i = uk−1

t+i . At t = 1, the free re-

sponse coincides with last batch trajectory yk−1
t , if identical

initialization conditions hold. The first control law term uk−1
t

is the manipulated variable at time t in the last batch and it

appears in most iterative controllers, when batch deviation

variables are used. The model for an iterative controller does

not need to consider the repetitive disturbances because the

control law does not depend on these disturbances.

It should be noted that many plants can be written or

transformed, via an output linearization approach [12] or

other procedure, in the form of equation (8). Moreover,

the controller can be applied to a fully nonlinear plant, but

stability is only guaranteed in this concrete case. If we can

write the system in the equation (8) form, it is possible to

find a stabilizing iterative controller.

In general, stability properties are quite sensitive to the

choice of the system delay d. The underestimation of this

value may lead to instability. For example, consider the

discrete-time ILC (Iterative Learning Controller) law:

uk
t = uk−1

t + k
(
rt+1 − yk−1

t+1

)
(20)

If the plant delay is 2, the control law would try to compen-

sate the error at t = 1 increasing continuously the control

variable at initial time. The closed loop system would be

unstable. Therefore, special care has to be taken into account

in the estimation of this value, because most iterative control

laws are extremely sensitive to it.

A certain robustness is achieved with respect to errors

in the estimation of the smooth functions f (x), g (x), the

output matrix C, or even when the terms v or w are not

exactly repetitive (i.e. they depend on the batch index) or

additive. These facts have been addressed in simulation

studies and laboratory applications [11].

1) Multivariable analysis with control and prediction
horizons m = p = 1: Assume that we fix the time t = 1
and take Q = I,R = Λ. Ignoring the repetitive terms, plant

equations (8) take the form

{
xk

1 = f (x0) + g (x0)uk
0 = f0 + g0u

k
0

yk
1 = Cxk

1 = Cg0u
k
0 + Cf0

, (21)
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where G1 = Cg0, u ∈ RNu , x ∈ RNx and y ∈ RNy . The

control law is given by

uk
0 = uk−1

0 +
(
GT

1 G1 + Λ
)−1

GT
1

(
r1 − yk−1

1

)
, (22)

where r1 is the vector of reference values. Note that yk−1
1 is

equal to the free response of the system, which is obtained

when uk
0 = uk−1

0 , or equivalently, when ũk
0 = 0. This can

be only assured if identical initialization condition holds.

Therefore the controller is suitable to be applied in iterative

control, but not in repetitive control, where state is not reset

from one batch to next one.
G1 is, in the general case, the dynamic matrix of the

linearized system around last batch trajectory at time t = 1.

In this simplified case, it is equal to Cg0. uk
0 contains only

control moves at initial time, because the control horizon m
is assumed to be 1. Substituting the input-output relation (21)

into (22), we have

uk
0 = uk−1

0 +
(
GT

1 G1 + Λ
)−1

GT
1

(
r1 − b1 − G1u

k−1
0

)
(23)

And using some matrix algebra, equation (23) can be

written in the form

uk
0 =

(
GT

1 G1 + Λ
)−1

Λuk−1
0 + constant (24)

This equation can be regarded as a fixed point iteration

x = �(x). It is assumed that set point is reachable, that is,

there exists u∗
0 such that r1 = Cg0u

∗
0 + Cf0 is verified. It

must be proven that the fixed point of (23) is stable. Absolute

stability concepts [14] for discrete-time systems [15] may be

applied in order to prove stability with nonlinear output map.

Here, we apply Banach theorem. It gives stability of the fixed

point if it is possible to find ρ < 1, such that

‖�(x) − �(y)‖ ≤ ρ‖x − y‖, ∀x, y ∈ R
Nu (25)

Using (24) and induced matrix norms, the desired expres-

sion is obtained

‖�(x) − �(y)‖ =
∥∥∥(

GT
1 G1 + Λ

)−1
Λ (x − y)

∥∥∥ (26)

≤
∥∥∥(

GT
1 G1 + Λ

)−1
Λ

∥∥∥
i
‖x − y‖

Now, we use the fact that Λ is a diagonal matrix, and G1

is full-rank (ie. the system has to be controllable). Then,

GT
1 G1 is symmetric positive definite and, therefore, it is

orthogonally diagonalizable, say GT
1 G1 = PΩPT , where

Ω is diagonal with nonzero elements. Applying some matrix

algebra (see for example [16]) and taking norm 2, we have

ρ =
∥∥∥(

PΩPT + Λ
)−1

Λ
∥∥∥

i
=

∥∥∥[
P (Ω + Λ) PT

]−1
Λ

∥∥∥
i

=
∥∥∥P (Ω + Λ)−1 ΛPT

∥∥∥
i
≤ 1

1 + Ωmin
Λmax

< 1 (27)

and it is concluded that system is convergent in t = 1. The

same reasoning can be argued to get a stability proof in t+1.

Assuming functions f and g are of class C1 (continuous and

differentiable), system equations at time t+1 can be written:⎧⎨
⎩

xk
t+1 = f

(
xk

t

)
+ g

(
xk

t

)
uk

t

= ft + gtu
k
t + ε

(
xk

t − x∗
t

)
yk

t+1 = Cxk
t+1

(28)

TABLE II

NONLINEAR INMPC CONTROLLER PARAMETERS

Parameter Symbol Value
Sample time Ts 15 s

Batch duration Ts · N 900 s
Control horizon m 1

Prediction horizon p 5
Roll-off factor α 0.1

Control weighting matrix Q diag 10−4 10−3

Error weighting matrix R diag 1 50
Valve limits % 0 100

Reactant limits mol/(l · s) 0 36000
Reactant concentration limits mol/l 0 1

TABLE III

LINEAR MPC CONTROLLER PARAMETERS

Parameter Symbol Value
Roll-off factor α 0.5

Control weighting matrix ΛMPC1 diag 10−4 10−3

Control weighting matrix ΛMPC2 diag 10−4 10−6

being x∗
t the equilibrium point, ft = f(x∗

t ) and gt =
g(x∗

t ). The same stability analysis is applicable, because

the term ε
(
x∗

t − xk
t

)
tends to zero when the batch index k

increases. It is concluded that disturbed system (28) is also

asymptotically stable at every time instant t.

IV. RESULTS

Simulation results are presented, showing a comparison

between a classical linear MPC and INMPC controllers applied

to the multivariable semibatch reactor described in section II.

The idea is to improve the performance of the MPC controller

in this semibatch process. In order to achieve that, a learning

INMPC controller is used.

Equations (1)-(7) have been implemented on a computer,

and integrated using a Runge-Kutta method. Parameters are

given in Table I. In the first simulations, MPC is used to

control this plant. The linear approximated model is obtained

performing several experiments with constant inputs, as

shown in section II-C. Controller parameters are given in

Table III and the result is presented in Fig. 3, where two

simulations with different values for the control weighting

matrix Λ are shown. It is clear from these experiments that
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Fig. 3. Experiments with linear MPC, different values of λ
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Fig. 4. Experiments with INMPC
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Fig. 5. Experiments with INMPC with a disturbance in inlet cooling water
temperature

linear MPC is not a quite good method in this concrete case,

even modifying the controller parameters. The mismatch be-

tween the linear model and the real one is too large, therefore,

the controller cannot achieve better trajectory tracking errors.

Later, INMPC controller is tested, using parameters given

in Table II and unitary horizons that guarantee stability. Some

batches are presented in Fig. 4. System trajectories are quite

close to reference trajectories after only three iterations. It

must be said that perfect tracking is not possible in this

case, because of the presence of physical constraints. The

controller is able to minimize the tracking error after several

batches.

A disturbance test is also realized. A variable inlet water

temperature is introduced into the plant. The result is pre-

sented in Fig. 5. The disturbance amplitude is around 6oC.

It cannot be much bigger, mainly because of the actuator

saturation, which would produce an unreachable reference

trajectory. Nevertheless, the controller is able to compensate

repetitive disturbances quite well. Notice that unitary horizon

are used to guarantee stability as proven in Section III-B and

better results could be obtained with longer values of it.

V. CONCLUSIONS

An iterative nonlinear multivariable constrained MPC con-

troller has been tested in a simulated semibatch chemical

reactor. The controller has shown capabilities to learn the

optimal trajectory after a few iterations, giving a better fit

than a linear non-iterative MPC controller.

The controller has applications in repetitive disturbance

rejection, which are adequately cancelled. If these distur-

bances are not additive, they have to be small enough. In this

application, a disturbance in inlet water temperature has been

studied, getting acceptable results with the INMPC controller.

A stability proof for unitary control horizon is given.
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