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Abstract 

A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based 

stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric match- 

ing in general is a difficult unsolved problem in computer vision. Fortunately, in many practical applications, 

some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, 

the motion between successive positions is usually approximately known. From this initial estimate, our algo- 

rithm computes observer motion with very good precision, which is required for environment modeling (e.g., 

building a Digital Elevation Map). Objects are represented by a set of 3-D points, which are considered as the 

samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based 

on iteratively matching points in one set to the closest points in the other. A statistical method based on the 

distance distribution is used to deal with outliers, occlusion, appearance and disappearance, which allows us to 

do subset-subset matching. A least-squares technique is used to estimate 3-D motion from the point correspon- 

dences, which reduces the average distance between points in the two sets. Both synthetic and real data have 

been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion 

estimate. 

1 Introduction 

The work described in this paper was carried out 

in the context of autonomous vehicle navigation in 

rugged terrain based on vision. A single view is usu- 

ally not sufficient for path planning and manipulation, 

and it is preferable to combine several views to pro- 

duce a more credible interpretation. The objective of 

this work is to compute precisely the displacement of 

the vehicle between successive views in order to reg- 

ister different 3-D visual maps. A 3-D visual map can 

be a set of curves obtained by using either an edge- 

based stereovision system (Pollard et al. 1985; Robert 

and Faugeras 1991) or a range imaging sensor (Samp- 

son 1987). It can also be a dense 3-D map either 

acquired by an active sensor (e.g., ERIM (Sampson 

1987)), or reconstructed by a correlation-based stere- 

ovision system (Fua 1992), or obtained by fusing the 

two. The reader is referred to (Faugeras et al. 1992) 

for a quantitative and qualitative comparison of some 

area and feature-based stereo algorithms. The regis- 

tration step is indispensable for the following rea- 

sons: 

• better localize the mobile vehicle, 

• eliminate errors introduced in stereo matching and 

reconstruction, 

• build a more global Digital Elevation Map (DEM) 

of the environment. 

Geometric matching remains one of the bottle- 

necks in computer and robot vision, although progress 

has been made in recent years for some particular 

applications. There are two main applications: ob- 

ject recognition and visual navigation. The problem 

in object recognition is to match observed data to a 

prestored model representing different objects of in- 

terest. The problem in visual navigation is to match 

data observed in a dynamic scene at different in- 

stants in order to recover object motions and to inter- 

pret the scene. Registration for inspection/validation 

is also an important application of geometric match- 

ing (Menq et al. 1992). Besl and Jain (1985), and 

Chin and Dyer (1986) have made two excellent sur- 

veys ofpre-1985 work on matching in object recogni- 

tion. Besl (1988) surveys the current methods for geo- 

metric matching and geometric representations while 

emphasizing the latter. Most of the previous work 

focused on polyhedral objects; geometric primitives 

such as points, lines and planar patches were usu- 
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ally used. This is of course very limited compared 

with the real world we live in. Recently, curved ob- 

jects have attracted the attention of many researchers 

in computer vision. This paper deals with objects 

represented by free-form curves and surfaces, i.e., 

arbitrary space shapes of the type found in prac- 

tice. 

A free-form curve can be represented by a set 

of chained points. Several matching techniques for 

flee-form curves have been proposed in the litera- 

ture. In the first category of techniques, curvature ex- 

trema are detected and then used in matching (Bolles 

and Cain 1982). However, it is difficult to localize 

precisely curvature extrema (Waiters 1987; Milios 

1989), especially when the curves are smooth. Very 

small variations in the curves can change the num- 

ber of curvature extrema and their positions on the 

curves. Thus, matching based on curvature extrema 

is highly sensitive to noise. In the second category, 

a curve is transformed into a sequence of local, ro- 

tationally and translationally invariant features (e.g., 

curvature and torsion). The curve matching prob- 

lem is then reduced to a 1-D string matching prob- 

lem (Pavtidis 1980; Schwartz and Sharir 1987; Wolf- 

son 1990; Gueziec and Ayache 1992). As more 

information is used, the methods in this category tend 

to be more robust than those in the first category. 

However, these methods are still subject to noise dis- 

turbance because they use arclength sampling of the 

curves to obtain point sets. The arclength itself is sen- 

sitive to noise. 

A dense 3-D map is a set of 3-D points. We can 

divide the methods proposed in the literature for reg- 

istering two dense 3-D maps in two categories (the 

reader is referred to Zhang (1991) for a more detailed 

review): 

• Primitive-based approach. A set of primitives are 

first extracted. A dense 3-D map can then be de- 

scribed by a graph with primitives defining the 

nodes and geometric relations defining the links. 

The registration of two maps becomes the map- 

ping of the two graphs: subgraph isomorphism. 
Some heuristics are usually introduced to reduce 

the complexity. 

• Surface-based approach. A 3-D map is consid- 

ered as a surface, having the form (a Monge patch) 

x ( x , y ) = [ x ,  y, z(x,y)]r w i t h ( x , y )  E]R e . 

The idea is to find the transformation by minimiz- 

ing a criterion relating the distance between the 

two surfaces. 

In the primitive-based approach, one often uses 

some differential properties invariant to rigid trans- 

formation such as Gaussian curvature. The primitives 

often used are 

1. special points (Goldgof et al. 1988; Hebert et al. 

1989; Kweon and Kanade 1992), whose curvature 

is locally maximal and is bigger than a threshold. 

2. contours. A contour can indicate where the eleva- 

tion changes significantly, which is called a cliff 
in Rodrfguez and Aggarwal (1989). It can also be 

a distance profile (Radack and Badler 1989), each 

point on which has the same distance to a common 

point. In certain specific cases, a contour can be 

a curve of a constant depth (Kamgar-Parsi et al. 

1991). 

3. surface patches (Kehtarnavaz and Mohan 1989; 

Liang and Todhunter 1990). Each surface patch 

is classified into different categories according 

to the sign of the Gaussian and mean curva- 

tures. This type of primitives is usually used 

in a limited scene, for example, a scene con- 

taining several objects to be recognized. In 

a natural scene, there will be many surface 

patches such that the mapping becomes imprac- 

tical. 

Among the surface-based methods, we find 

1. a technique similar to the correlation (Gennery 

1989), applicable when the number of degrees of 

freedom of the transformation between two maps 

is reduced (2, for example). 

2. a differential technique (Horn and Harris 1991), 

applicable when the motion between two views is 

very small or when we have a very good initial 

estimate of the motion, and when the data are not 

very noisy. 

3. a technique based on the coherence and com- 

patibility between two maps (Hebert et at. 1989; 

Kweon and Kanade 1992) (quantified by the dis- 

tance between two surfaces). Szeliski (1988) pro- 

posed a similar technique by adding a smoothness 

constraint. 

The main difference between the above two 

approaches resides in the information to be pro- 



Iterative Point Matching for Registration of Free-Form Curves and Surfaces 121 

cessed during the registration. The information used 

in the primitive-based approach is much more concise 

than in the surface-based approach, and is in gen- 

eral preferable. But in a natural environment, with 

the state of the art of the current methods, we cannot 

detect robustly and localize precisely primitives (Wai- 

ters 1987; Milios t989). The surface-based approach 

uses all available information. The large redundancy 

allows for a precise computation of the transforma- 

tion between the two maps, but this approach usually 

requires some a priori knowledge of the transforma- 

tion. 

The primitive-based approach and the curve 

matching methods cited above exploit global match- 

ing criteria in the sense that they can deal with two 

sets of free-form curves and surfaces which differ by a 

large motion/transformation. This ability to deal with 

large motions is usually essential for applications to 

object recognition. In many other applications, for ex- 

ample, visual navigation, the motion between curves 

in successive frames is in general either small (be- 

cause the maximum velocity of an object is limited 

and the sample frequency is high) or known within a 

reasonable precision (because a mobile vehicle is usu- 

ally equipped with several instruments such as odo- 

metric and inertial systems which can provide such 

information). In the latter case, we can first apply the 

rough estimate of the motion to the first frame to pro- 

duce an intermediate frame; then the motion between 

the intermediate frame and the second frame can be 

considered to be small. A surface-based method is 

attractive for such applications. 

This paper describes a method, similar to the third 

technique of the surface-based approach but much 

faster, to register two 3-D maps differing by a small 

motion. The key idea underlying our approach is the 

following. Given that the motion between two suc- 

cessive frames is small, a point in the first frame is 

close to the corresponding point in the second frame. 

By matching points in the first frame to their clos- 

est points in the second, we can find a motion that 

brings the two sets of points closer. Iteratively apply- 

ing this procedure, the algorithm yields a better and 

better motion estimate. 

Recently, several pieces of independent work ex- 

ploiting the similar ideas have been published. They 

are Besl and McKay (1992); Chen and Medioni 

(1992); Menq et al. (1992); Champleboux et al. 

(1992). A detailed comparison between these meth- 

ods and ours will be given in Section 8. 

2 Problem Statement 

A parametric 3-D (space) curve segment C is a vector 

function x : [a, b] --+ R 3, where a and b are scalar. 

In computer vision applications, the data of a space 

curve are usually available in the form of a set of 

chained 3-D points. If  we know the type of the curve, 

we can obtain its description x by fitting, say, con- 

ics to the point data (Safaee-Rad et al. 1991; Taubin 

1991). 

A parametric surface S is a vector function x : 

1R 2 -+ R 3. In computer vision applications, the data 

of a surface are usually available in the form of a set 

of 3-D points. I f  we know the type of the surface, 

we can obtain its description x by fitting, say, planes 

or quadratic surfaces to the point data (Faugeras and 

Hebert 1986; Taubin 1991). 

In this work, we shall use directly the chained 

points for curves and point sets for surfaces, i.e., we 

are interested in free-form shapes without regard to 

particular primitives. This is very appropriate for a 

non-structured environment. In the following, if  not 

explicitly stated, the property that a curve is a set of 

chained points is not used, i.e., we shall treat curve 

data in the same way as surface data (a set of points). 

The word shape (S) will refer to either curves or sur- 

faces. The points in the first 3-D map are noted by 

xi (i = 1 . . . . .  m), and those in the second map are 

noted by x} (j  = 1 . . . . .  n). These points are sam- 

pled from S and S', where S = C when curves are in 

consideration and S = S when surfaces are in con- 

sideration. 

In the noise-free case, if S and S' are registered 

by a transformation T, then the distance of a point 

on S, after applying T, to S' is zero, and the distance 

of a point on S', after applying the inverse of T, to S 

should be zero, too. The objective of registration is to 

find the motion between the two frames, i.e., R for 

rotation and t for translation, such that the following 

criterion 

trt 

1 ~ Pi d2(Rxi + t, S') ( I)  
f ' ( R , t )  -- ~im__l Pi i=1 

1 n 

-1- ~j=l  qJ "= qJ d2(Rrx j  - R r t '  S) 

is minimized, where d(x, S) denotes the distance of 

the point x to S (to be defined below), and pi (resp. 

qj) takes value 1 if the point xi (resp. x}) can be 
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matched to a point on S t in the second flame (resp. 

S in the first frame) and takes value 0 otherwise. The 

minimum of ~ ( R ,  t)  will be zero in the noise-free 

case. It is necessary to have the parameters pi and qj 

because some points are only visible from one point 

of view and some are outliers, as to be described in 

Section 8. 

The above criteria are symmetric in the sense that 

neither of the two frames prevails over the other. To 

economize computation, we shall only use the first 

part of the right hand side of Equation 1. In other 

words, the objective function to be minimized is 

m 

1 Z Pi d2(Rxi + t;, St). 
f ' ( R ,  t)  -- ~i=1 Pi i=I 

(2) 

The effect of this simplification is described in Sec- 

tion 7.3. 

However, the minimization of 5C(R, t)  is very dif- 

ficult not only because d (Rxi  -t- t, S t) is highly non- 

linear (the corresponding point of xi on S' is not 

known beforehand) but also because Pi can take ei- 

ther 0 or 1 (an Integer Programming Problem). As 

said in the introduction, we follow a heuristic ap- 

proach by assuming the motion between the two 

frames is small or approximately known. In the latter 

case, we can first apply the approximate estimate of 

the motion between the two frames to the first one to 

produce an intermediate flame; then the motion be- 

tween the intermediate flame and the second frame 

can be considered to be small. Small depends essen- 

tially on the scene of interest. If  the scene is domi- 

nated by a repetitive pattern, the motion should not be 

bigger than half of the pattern distance. For example, 

in the situation illustrated in Figure 1, our algorithm 

will converge to a local minimum. In this case, other 

methods based on more global criteria, such as those 

cited in the introduction section, could be used to re- 

cover a rough estimate of the motion. The algorithm 

described in this paper can then be used to obtain a 

precise motion estimate. 

3 iterative Pseudo Point Matching Algorithm 

We describe in this section an iterative algorithm for 

3-D shape registration by matching points in the first 

frame, after applying the previously recovered mo- 

tion estimate (R, t),  with their closest points in the 

second. A least-squares estimation reduces the aver- 

age distance between the matched points in the two 

frames. As a point in one flame and its closest point 

in the other do not necessarily correspond to a single 

point in space, several iterations are indispensable. 

Hence the name of the algorithm. 

3.1 Finding Closest Points 

l_~t us first define the distance d(x,  S') between point 

x and shape S', which is used in Equation 2. By 

definition, we have 

d(x, S') = min d(x,  x ') ,  (3) 
x'~S' 

where d(xl ,  x2) is the Euclidean distance between the 

two points xl and x2, i.e., d(x l ,  x2) = llxl -x2tl .  In 

our case, S' is available as a set of  points x~ (j  = 

1 . . . . .  n). We use the following simplification: 

d(x, S') = min d(x, x~). (4) 
j~{ l , . , . , n}  

See Section 7.4 for more discussions on the distance. 

The closest point y in the second flame to a given 

point x is the one satisfying 

d ( x , y )  < d ( x , z ) ,  V z ~ S ' .  

The worst case cost of finding the closest point 

is O(n), where n is the number of points in the 

second frame. The total cost while performing the 

above computation for each point in the first frame 

is O(mn), where m is the number of points in 

the first flame. There are several methods which can 

considerably speed up the search process, includ- 

ing bucketing techniques and k-D trees (abbreviation 

for k-dimensional binary search tree) (Preparata and 

Shamos 1986). k-D trees are implemented in our al- 

gorithm, see Appendix A of this article for the details. 

3.2 Pseudo Point Matching 

For each point x we can always find a closest point 

y. However, because there are some spurious points 

in both frames due to sensor error, or because some 

points visible in one frame are not in the other due 

to sensor or object motion, it probably does not 

make any sense to pair x with y. Many constraints 

can be imposed to remove such spurious pairings. 

For example, distance continuity in a neighborhood, 

which is similar to the figural continuity in stereo 
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Fig. 1. Our algorithm exploits a local matching technique, and converges to the closest local minimum, which is not necessarily the optimal 

one 

matching (Mayhew and Frisby 1981; Pollard et al. 

1985; Grimson 1985), should be very useful to dis- 

card the false matches. These constraints are not in- 

corporated in our algorithm in order to maintain the 

algorithm in its simplest form. Instead, we can ex- 

ploit the following two simple heuristics, which are 

all unary. 

The first is the maximum tolerance for distance. 

If the distance between a point xi and its closest one 

Yi, denoted by d(xi, yi), is bigger than the maximum 

tolerable distance Dmax, then we set Pi = 0 in Equa- 

tion 2, i.e., we cannot pair a reasonable point in the 

second frame with the point xi. This constraint is eas- 

ily justified since we know that the motion between 

the two frames is small and hence the distance be- 

tween two points reasonably paired cannot be very 

big. In our algorithm, Drnax is set adaptively and in 

a robust manner during each iteration by analyzing 

distances statistics. See Section 3.3. 

The second is the orientation consistency. We can 

estimate the surface normal or the curve tangent (both 

referred below as orientation vector) at each point. It 

can be easily shown that the angle between the ori- 

entation vector at point x and that at its correspond- 

ing point y in the second frame can not go beyond 

the rotation angle between the two frames (Zhang et 

al. 1988). Therefore, we can impose that the angle 

between the orientation vectors at two paired points 

should not be bigger than a prefixed value ®, which is 

the maximum of the rotation angle expected between 

the two frames. This constraint is not implemented 

for surface registration, because the computation of 

the surface normals from 3-D scattered points is rela- 

tively expensive. For curves, we compute an approx- 

imate tangent for each point from the vector linking 

its neighboring points (Zhang 1992b; Zhang 1992a). 

It is the only place where the property that points of 

a curve are chained is used. In our implementation, 

we set ® = 60 ° to take into account noise effect in 

the tangent computation. If  the tangents can be pre- 

cisely computed, ® can be set to a smaller value. 

This constraint is especially useful when the motion 

is relatively big. 

3.3 Updating the Matching 

Instead of using all matches recovered so far, we ex- 

ploit a robust technique to discard several of them 

by analyzing the statistics of the distances. The basic 

idea is that the distances between reasonably paired 

points should not be very different from each other. 

To this end, one parameter, denoted by 79, needs to be 

set by the user, which indicates when the registration 

between two frames is good. See Section 4.1 for the 

choice of the value 79. 
i Let Dma x denote the maximum tolerable distance 

in iteration I. At this point, each point in the first 

frame (after applying the previously recovered mo- 

tion) whose distance to its closest point is less than 
I--1 Dma x is retained, together with its closest point and 

their distance. Let {xi }, {yi }, and {di } be, respectively, 

the resulting sets of original points, closest points, and 

their distances after the pseudo point matching, and 

let N be the cardinal of the sets. Now compute the 

mean/z and the sample deviation cr of the distances, 

which are given by 

1 N 

# = ~ ~ d i , . =  

= 

i=1 

Depending on the value of/z, we adaptively set the 

maximum tolerable distance Dtmax as shown below: 1 
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if=~ < 79 

/* the registration is quite good */ 

Dlaax =/z q- 30"; 

elseif/z < 379 

/*  the registration is still good */  

DImax = / x  + 2o-; 

elseif/~ < 679 

/*  the registration is not too bad */  

Dtmax = / z  + o- ; 

e l s e  

/* the registration is really b a d  */ 

DImax = $; 

endif 

The explanation of ~ is deferred to Section 4.2. 

a reasonable motion estimate, which is sufficient for 

the algorithm to converge to the correct solution. 

3.4 Computing Motion 

At this point, we have a set of 3-D points which have 

been reasonably paired with a set of closest points, 

denoted respectively by {xi} and {y/}. Let N be the 

number of pairs. Because N is usually much greater 

than 3 (three points are the minimum for the com- 

puted rigid motion to be unique), it is necessary to 

devise a procedure for computing the motion by mini- 

mizing the following mean-squares objective function 

1 N 

~ ( R ,  t) = ~ [Iax~ + t - y ~ l l  2, (5) 
i=l 

which is the direct result of Equation 2 with the def- 

inition of distance given by Equation 4. Any opti- 

mization method, such as steepest descent, conjugate 

gradient, or simplex, can be used to find the least- 

squares rotation and translation. Fortunately, sev- 

eral much more efficient algorithms exist for solv- 

ing this particular problem. They include quaternion 

method (Fangeras and Hebert 1986; Horn 1987), sin- 

gular value decomposition (Arun et al. 1987), dual 

number quaternion method (Walker et al. 1991), and 

the method proposed by Brockett (1989). We have 

implemented both the quaternion method and the dual 

number quaternion one. They yield exactly the same 

motion estimate. For completeness, the dual quater- 

nion method (Walker et al. 1991) is summarized in 

Appendix B. 

Fig. 2. A histogram of distances 

At this point, we use the newly set D~a x to update 

the matching previously recovered: a paring between 

x /and  Yi is removed if their distance di is bigger than 

D~a x. The remaining pairings are used to compute the 

motion between the two frames, as to be described 

below. 

Because Dmax is adaptively set based on the staffs- 

tics of the distances, our algorithm is rather robust to 

relatively big motion and to gross outliers (as to be 

shown in the experiment section). Even if there re- 

main several false matches in the retained set after 

update, the use of least-squares technique still yields 

3.5 Summary 

We can now summarize the iterative pseudo point 

matching algorithm as follows: 

• input: Two 3-D frames containing m and n 3-D 

points, respectively. 

• output: The optimal motion between the two 

frames. 

• procedure: 

1. in i t ia l izat ion 
o Dma x is set to 2079, which implies that ev- 

ery point in the first frame whose distance to 

its closest point in the second frame is big- 
0 get than Dma x is discarded from considera- 
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tion during the first iteration. The number 20 

is not crucial in the algorithm, and can be 

replaced by a larger one. 

2. preprocessing 

(a) Compute the tangent at each point of the 

two frames (only for curves). 

(b) Build the k-D tree representation of the 

second frame. 

3. iteration until convergence of the computed 

motion 

(a) Find the closest points satisfying the dis- 

tance and orientation constraints, as de- 

scribed in Section 3.2. 

(b) Update the recovered matches through 

statistical analysis of distances, as de- 

scribed in Section 3.3. 

(c) Compute the motion between the two 

frames from the updated matches, as de- 

scribed in Section 3.4. 

(d) Apply the motion to all points (and their 

tangents for curves) in the first frame. 

Several remarks should be made here. First, the 

construction and the use of k-D trees for finding clos- 

est points are explained in Appendix A. Second, the 

motion is computed between the original points in 

the first frame and the points in the second frame. 

Therefore, the final motion given by the algorithm 

represents the transformation between the original 
first frame and the second frame. Last, the iteration- 

termination condition is defined as the change in the 

motion estimate between two successive iterations. 

The change in translation at iteration I is defined as 

~t = [[t~ - t M  II/lltlll. To measure the change in ro- 

tation, we use the rotation axis representation, which 

is a 3-D vector, denoted by r. Let 0 = Ilrll and 

n = r/[Irll, the relation between r and the quater- 

nion q is q = [sin(O/2)n r, cos(0/2)] r .  We do 

not use the quaternions because their difference does 

not make much sense. We then define the change 

in rotation at iteration I as Sr = l l r i -  r i - l  II/llr~ll. 
We terminate the iteration when both Sr and 3t 

are less than 1%, or when the number of iterations 

achieves a prefixed threshold (20 for curves and 40 

for surfaces). One could also define the termina- 

tion condition as the absolute change, i.e., ~r = 

I l r l -  r l - i  II and 8t = I l t l -  tI-~ II- We stop the it- 

eration if 8r is less than a threshold, say 0.5 de- 

grees, and 3t is less than a threshold, say 0.5 cen- 

timeters. 

4 Practical Considerations 

In this section, we consider several important aspects 

in practice, including choice of the parameters 79 and 

~, and coarse-to-fine strategy. 

4.1 Choice of the Parameter 79 

The only parameter needed to be supplied by the user 

is 79, which indicates when the registration between 

two frames can be considered to be good. In other 

words, the value of 79 should correspond to the ex- 

pected average distance when the registration is good. 

When the motion is big, 79 should not be very small. 
0 Because we set Dma x --= 2079, if 79 is very small we 

cannot find any matches in the first iteration and of 

course we cannot improve the motion estimate. (A 
o solution to this is to set Dma x bigger, say 30/9). In 

practice, if we know the precision of the initial esti- 
0 mate, say, within 20 centimeters, we can se t  Dma x tO 

that value. 

The value of 79 has an impact on the convergence 

of the algorithm. If  79 is smaller than necessary, then 

more iterations are required for the algorithm to con- 

verge because many good matches will be discarded 

at the step of matching update. On the other hand, if 

79 is much bigger than necessary, it is possible for 

the algorithm not to converge to the correct solution 

because possibly many false matches will not be dis- 

carded. Thus, to be prudent, it is better to choose a 

small value for 79. 

In our implementation, we relate 79 to the resolu- 

tion of the data. Let /) be the average distance be- 

tween neighboring points in the second frame. Con- 

sider a perfect registration shown in Figure 3. Points 

from the first frame are marked by a cross and those 

from the second, by a dot. Assume that a cross is lo- 

cated in the middle of two dots. Then in this case, the 

mean/z  of the distances between two sets of  points 

is equal to I3/2. In general, we can expect # > / 9 / 2 .  

So, i f / )  is computed, we can set 79 = / 3 .  For curves, 

we do compute b for each run. For surfaces, 79 

is set to 10 centimeters, which corresponds roughly 

twice the resolution of a 3-D map reconstructed by 

a correlation-based stereo for a depth range of about 

10 meters. This gives us satisfactory results. 
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Fig. 3. Illustration of a perfect registration to show how to 

choose 79 

4.2 Choice of the Parameter 

In Section 3.3, we described how to update matches 

through a statistical analysis of distances, and we have 

assumed that the distribution of distances is approx- 

imately Gaussian when the registration between two 

frames is good. Because of the local property of the 

matching criterion used, our algorithm converges to 

the closest minimum. It is thus best applied in sit- 

uations where the motion is small or approximately 

known and a precise estimate of the motion is re- 

quired. In the case of a very bad initial estimate of  

the motion between two frames, one observes that 

the form of the distribution of distances is in general 

very complex, We show in Figure 4 one such typical 

histogram. 

As can be observed, the form of the histogram in 

Figure 4 is irregular. There are several peaks. Further- 

more, many points are found near zero. This shows 

the difficulty of our approach. When the initial esti- 

mate is very bad, we probably find matches having 

small distances due to occasionally bad alignments, 

that is, these matches are in fact not reasonable. We 

cannot guarantee that our algorithm yields the correct 

estimate of the motion. One possible method is to 

generate a hypothesis for each peak, And then evalu- 

ate each hypothesis in parallel. The criterion for mea- 

suring the quality of a hypothesis can be a function 

of the number of matches and of the final average 

distance. In the end, the hypothesis which gives the 

best score is retained as the transformation between 

the two frames. 

We have adopted a simpler method. The maximal 

peak gives in general, at least we expect, a hint of a 
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Fig. 4. Histogram of distances when the initial estimate of the 

motion is very bad 
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Fig. 5. How to choose the value of 

reasonable correspondence between the two flames. 

We have chosen in our implementation the valley af- 

ter the maximal peak as the value of ~ (see Figure 5). 

That is, all matches after the valley are discarded from 

consideration. To avoid the noise perturbation, we im- 

pose that the number of  points at the valley must not 

go beyond 60% of the number of points at the peak. 

In all our experiments, this method provides us with 

sufficient results, as to be shown below. 
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4.3 Coarse-to-Fine Strategy 

As to be shown in the next section, we find fast con- 

vergence of the algorithm during the first few itera- 

tions that slows down as it approaches the local min- 

imum. We find also that more search time is required 

during the first few iterations because the search space 

is larger at the beginning. Since the total search time 

is linear in the number of points in the first frame, 

it is natural to exploit a coarse-to-fine strategy. Dur- 

ing the first few iterations, we can use coarser sam- 

ples (e.g., every five) instead of all sample points on 

the curve. When the algorithm almost converges, we 

use all available points in order to obtain a precise 

estimate. 

5 Experimental Results with Curves 

The proposed algorithm has been implemented in C. 

In order to maintain the modularity, the code is not 

optimized. The program is run on a SUN 4/60 work- 

station, 2 and any quoted times are given for execution 

on that machine. 

This section is divided into three subsections. In 

the first the algorithm is applied to synthetic data. 

The results show clearly the typical behavior of the 

algorithm to be expected in practice. The second de- 

scribes the robustness and efficiency of the algorithm 

using synthetic data with different levels of noise and 

different samplings. The third describes the experi- 

mental restflts with real data. 

5.1 A Case Study 

In this experiment, the parametric curve described by 

x(u) = [u 2, 5u sin(u) + 10u cos(1.5u), 0] r is used. 

The curve is sampled twice in different ways. Each 

sample set contains 200 points. The second set is then 

rotated and translated with r ------ [0.02, 0.25, -0 .15]  r 

and t = [40.0, 120.0, -50.0]  T. We thus get two 

noise-free frames. (The same noise-free data are used 

in the experiments described in the next section.) 

For each point, zero-mean Gaussian noise with a 

standard deviation equal to 2 is added to its x, y and 

z components. We show in Figure 6 the front and 

top views of the noisy data. For visual convenience, 

points are linked. The solid curve is the one in the 

first frame, and the dashed one, in the second frame. 

The data are used as is; no smoothing is performed. 

The first step is then to find matches for the points 

in the first frame. As /)°max is big, each point has 

a match. We find 200 matches in total, which are 

shown in Figure 7, where matched points are linked. 

Many false matches are observed. We then update 

these matches using the technique described in Sec- 

tion 3.3, and 100 matches survive, which are shown 

in Figure 8. 

Even after the updating, there are still some false 

matches. Because there are more good matches then 

false matches, the motion estimation algorithm still 

yields a reasonable estimate. This can be observed 

in Figure 9, where the motion estimated has been 

applied to the points in the first frame. We can observe 

the improvement of the registration of the two curves, 

especially in the top view. 

Now we enter the second iteration. We find at this 

time 176 matches, which are shown in Figure 10a- 

(Top view is not shown, because the two curves are 

very close.) Several false matches are observable. Af- 

ter updating, 146 matches remain, as shown in Fig- 

ure 10b. Almost all these matches are correct. Motion 

is then computed from these matches. 

We iterate the process in the same manner. The 

motion result after 10 iterations is shown in Figure 11. 

The registration between the two curves is already 

quite good. 

The algorithm yields after 15 iterations the follow- 

ing motion estimate: 

~ =  

[2.442 x 10 -2, 2.503 x 10 - t ,  -1 .484  x 10-i] r ,  

= [3.879 x 10 l, 1.139 x 102, -4 .967  x 101] T. 

To measure the precision in the motion estimate, we 

define the rotation error as 

er = I l r -  ~ll/[[rll × i00%, (6) 

where r and ~ are respectively the real and estimated 

rotation parameters, and the translation error as 

et = l i t -  tll/lltll x 100%, (7) 

where t is the real translation parameter and t is the 

estimated one. In Figure 12, we show the evolution 

of the rotation and translation errors versus the num- 

ber of  iterations. Fast convergence is observed during 

the first few iterations and relatively slower later. Af- 

ter 15 iterations, the rotation error is 1.6% and the 

translation error is 4.6%. 
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Fig. 6. Front and top views of the data 

Fig. 7. Matched points in the first iteration before updating (front and top views) 

Fig. 8. Matched points in the first iteration after updating (front and top views) 
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Fig. 9. Front and top views of the motion result after the first iteration 
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Fig. 10. Matched points before and after updating in the second iteration (only the front view) 
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Fig. 11. Front and top views of the motion result after ten iterations 
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Fig. 12. Evolution of the rotation and translation errors versus the 
number of iterations 

We show in Table 1 several intermediate results 

during different iterations. The results are divided 

into three parts. The second to fourth rows indicate 

the execution time (in seconds) required for finding 

matches, updating the matching, and computing the 

motion, respectively. The fifth row shows the val- 

ues of Omax used in different iterations. The last row 

shows the comparison of the numbers of matches 

found in different iterations before and after updat- 

ing. We have the following remarks: 

• Dmax almost decreases monotonically with the 

number of iterations. This is because the registra- 

tion becomes better and better, and Dmax is com- 

puted dynamically through the statistical analysis 

of distances. 

• The time required for finding matches almost de- 

creases monotonically, too. This is because of the 

almost monotonic decrease of Dm~- Less search 

in k-D tree is required when the search region be- 

comes smaller. 

• The time required for updating the matching is 

negligible. 

• The time required for computing the motion is al- 

most constant, as it is related to the number of 

matches (here almost constant). Furthermore, the 

motion algorithm is very efficient: about 0.05 sec- 

onds for 145 matches. 

• The numbers of matches before and after updating 

do not vary much after the first few iterations. This 

also implies that the Gaussian assumption of the 

distance distribution is reasonable. 

The total execution time is 6.5 seconds in this exper- 

iment. 

5.2 Synthetic Data 

In this section, we describe the robustness and effi- 

ciency of the algorithm using the same synthetic data 

as in the last section, but with different levels of noise 

and different samplings. All results given below are 

the average of ten tries. 

The first series of experiments are carried out with 

respect to different levels of noise. The standard de- 

viation of the noise added to each point varies from 

0 to 20. Similar to Figure 12, we show, as a sam- 

ple, in Figure 13 and Figure 14 the evolutions of the 

rotation and translation errors versus the number of 

iterations with a standard deviation equal to 2 and 8. 

From these results, we observe that 

• The translation error decreases almost monotoni- 

cally, while the behavior of the rotation error is 

more complex. 

• Noise has a stronger impact on the rotation pa- 

rameters than on the translation parameters. When 

noise is small, there is in general a smaller error 

in rotation than in translation. When noise is sig- 

nificant, the inverse is observed. 
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Fig. I3. Evolution of the rotation and translation errors versus the 
number of iterations with a standard deviation equal to 2 
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Table 1. Several detailed results in different iterations 

iteration 1 2 3 4 5 6 7 8 9 I0 1I 12 13 14 15 

matching time 2.20 1.30 0.62 0.33 0.25 0.28 0.22 0.17 0.15 0.17 0.15 0.12 0.13 0.13 0.12 

update time 0,03 0.02 0,02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0,00 0.02 0.00 0,02 

motion time 0.05 0.05 0,05 0.05 0,05 0.03 0.05 0.03 0.02 0,07 0.05 0.03 0,03 0.02 0.02 

Dma× 235 140 78.5 46.1 32.8 34.7 28.0 22.4 18.9 16.7 t5.3 13.6 12.3 t0.7 9.89 

148 148 147 I46 143 I43 t43 before 
n b . I  

after 

200 176 I50 148 147 148 148 148 

100 146 143 137 147 148 147 147 146 t46 I47 I45 143 I43 143 
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Fig. 14. Evolution of the rotation and translation errors versus the 

number of iterations with a standard deviation equal to 8 

We think the above phenomena are due to the fact 

that the relation between the measurements and the 

rotation parameters is nonlinear while that between 

the measurements and the translation parameters is 

linear. 

To visually demonstrate the effect of  the noise 

added and the ability of  the algorithm, we show in 

Figure 15 and Figure 16 two sample results. In each 

figure, the upper row displays the front and top views 

of  the two noisy curves before registration; the lower 

row displays the front and top views of  the two noisy 

curves after registration. In Figure 15 and Figure 16, 

we have added, to each x, y, and z components of 

each point of  the two curves, zero-mean Gaussian 

noise with a standard deviation equal to 8 and 16, re- 

spectively. Even though the curves are so noisy, the 

registration between them is surprisingly good. 

We now summarize more results in Table 2. The 

rotation and translation errors are measured in per- 

cents, and the execution time, in seconds. Each num- 

ber shown is the average of 10 tries. 15 iterations have 

been applied. We have the following conclusions: 

• The errors in rotation and in translation increase 

with the increase in the noise added to the data, as 

expected. 

• Noise in the measurements has more effect in the 

rotation than in translation. 

• The algorithm is robust to noise. It yields a rea- 

sonable motion estimate even when the data are 

significantly corrupted. 

• The execution time increases also with the increase 

in the noise added to the data. This is because 

when the data are very noisy the value of/)max 

stays big, and the search has to be performed in a 

large space. 

We now investigate the ability of  the algorithm 

with respect to different samplings of  curves. The 

same dam are used. Zero-mean Ganssian noise with 

a standard deviation equal to 2 is added to each x, y, 

and z components of  each point of  the two curves. 

We will describe in Section 7.4 the effect o f  different 

samplings of  the curves in the. second frames. Here 

we vary the sampling of  the curve in the first frame 

from I (i.e., all points) to 10 (i.e., one out of  every ten 

points). Ten tries are carried out for each sampling. 

The errors in rotation and in translation (in percents), 

and the execution time (in seconds) versus different 

samplings are shown in Table 3. Two remarks can be 

made: 

• Generally speaking, the more samples there are 

in a curve, the less the error in the estimation of  

the rotation and translation. However, the exact 

relation is not very clear. Consider sampling ----- 1 

and sampling = I0. The latter has only 20 points 
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Fig. 15. Front and top views of two noisy curves with a standard deviation equal to 8 before and after registration 

Table 2. A summary of the experimental results with synthetic data 

standard deviation 0 2 4 6 8 10 12 14 16 18 20 

rotation error 2.25 2.12 4.63 9.62 13.73 14.31 20.47 18.07 23.87 37.04 33.20 

translation error 1.77 4.36 4.55 4.84 5.70 7.81 8.93 9.89 17.15 22.00 27.17 

execution time 6.27 6.82 8.58 9.26 11.12 11.86 12.59 13.35 16.40 16.56 17.32 

while the former has 200 points. The motion error, 

however, is only twice as large. 

• The execution time decreases monotonically as the 

number of sample points decreases. If  disregarding 

the preprocessing time, the execution time is linear 

in the number of  points in the first frame. 

In the foregoing discussions we have observed 

that using coarsely sampled points in the curves in 

the first frame does not affect too much the ac- 

curacy of  the final motion estimate, but it con- 

siderably speeds up the whole process. It is nat- 

ural to think about using a coarse-to-fine strategy 

such as that described in Section 4.3. The finding 

of  fast convergence of  the algorithm during the first 

few iterations (see Figure 13 and Figure 14) and 

the finding of  relatively expensive search (see Ta- 

ble 1) justify the following strategy. During the first 

few iterations, we use coarser, instead of  all, sam- 

ple points, which allows for finding an estimate close 

to the optimal. We then use all sample points to 

refine this estimate. We have conducted ten experi- 

ments using the same data as before by adding zero- 

mean Gaussian noise with a standard deviation equal 

to 3. During the first five iterations, only 40 points 

(one out of  every five points) are used. These are 

followed by ten iterations using all points. The av- 

erage results o f  the ten experiments are: rotation 
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Fig. 16. Front and top views of two noisy curves with a standard deviation equal to 16 before and after registration 

Table 3. Results with respect to different samplings 

fraction of points 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 I/9 1/10 

rotation error 2.12 3.44 4,19 4.88 4.09 7.52 4.75 6,09 5.98 4.90 

translation error 4.36 5.14 4.27 4.75 4.11 6.67 8.54 7,45 8.52 7.34 

execution time 6.82 3.53 2.4t 1.85 1,52 1.28 1.1t 1.0t 0.89 0.83 

error = 4.56%, translation error = 4.29%, and exe- 

cution time = 3.39 s. For comparison, we performed 

15 iterations using all points. The average results of 

the ten tries are: rotation error = 4.68%, translation 

error = 4.14%, and execution time = 7.49 s. Only 

little difference between the final motion estimates is 

observed, but the algorithm is more than twice faster 

by exploiting the coarse-to-fine strategy. 

5.3 Real Data 

In this section, we provide an example with real data. 

A trinocular stereo system mounted on our mobile 

vehicle is used to take images of a chair scene (the 

scene is static but the robot moves). We show" in Fig- 

ure 17 two images taken by the first camera from two 

different positions. The displacement between the two 

positions is about 4 degrees in rotation and 100 mil- 

limeters in translation. The chair is about 3 meters 

from the mobile vehicle. 

The curve-based trinocular stereo algorithm devel- 

oped in our laboratory (Robert and Faugeras 1991) is 

used to reconstruct the 3-D frames corresponding to 

the two positions. There are 36 curves and 588 points 

in the first frame, and 48 curves and 763 points in the 

second frame. We show in the upper row of Figure 18 
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Fig. IZ Images of a chair scene taken by the first camera from two different positions 

: \ 

~t'\ 

Fig. 18. Superposition of two 3-D flames before and after registration: front and top views 

the front view and the top view of  the superposition 

of  the two 3-D frames. The curves in the first frame 

is displayed in solid lines while those in the second 

flames, in dashed lines, We apply the algorithm to 

the two flames. The algorithm converges after 12 it- 

erations, It takes in total 32.5 seconds on a SUN 4/60 

workstation and half  o f  the time is spent in the first 

iteration (so we could speed up the process by setting 
o Dma x to a smaller value). The final motion est imate 

is 

[--1.527 x 10 -3, 6.639 x 10 -2, 2.894 x 10-3] r ,  
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Fig. 19. The first triplet of images of a rock scene 

Fig. 20. The second triplet of images of a rock scene 

[ -4 .266  x 10 °, - 1 . 5 8 6  x l0 °, - 1 . 0 0 9  x 10z] r ,  

where r is in radians and t is in centimeters. The 

motion change is: 3r  = 0.78% and 6t  = 0.53%. 

The result is shown in the lower row of Figure 18 

where we have applied the estimated motion to the 

first frame. Excellent registration is observed for the 

chair. The registration of  the border of  the wall is 

a little bit worse because more error has been intro- 

duced during the 3-D reconstruction, for it is far away 

from the cameras. 

Now we exploit the coarse-to-fine strategy. As be- 

fore, we do coarse matching in the first five iterations 

by sampling evenly one out of  every five points on 

the curves in the first frame, followed by fine match- 

ing using all points. The algorithm converges after 

I2 iterations and yields exactly the same motion es- 

timate as when only doing fine matching. The execu- 

tion time, however, decreases from 32.5 seconds to 

10.5 seconds, about three times faster. If we now sam- 

ple evenly one out of  every ten points on the curves 

in the first frame, and do coarse matching in the first 

five iterations and fine matching in the subsequent 

ones, the algorithm converges after 13 iterations (one 

iteration more), and the final motion estimate is 

[ -1 .438  x t0 3, 6.653 x 10 -2 , 2.995 x 10-3] r ,  

--7- 

[ -4 .282  x 10 °, --1.637 x 10 °, --1.007 x 102] r ,  

which is almost the same as the one estimated using 

directly all points. The motion change is: 3r ------ 0.71% 

and t = 0.50%. The execution time is now 8.8 sec- 

onds. 

6 Experimental Results with Surfaces 

We provide in this section two examples. In the first 

example, two 3-D frames of  a rock scene are recon- 

structed by a correlation-based stereovision system. 

They are first registered manually. Then we want to 

see the limit of  our algorithm by using different initial 

estimates. The second example shows the registration 

of  two range images of  a head figure. 

6.1A Rock Scene 

We show in Figure 19 and Figure 20 two triplets of  

images of a rock scene. The stereo rig is about 6 

meters from the scene. The two positions differ by 

30 degrees in rotation and 3.75 meters in translation. 

The correlation-based stereo system reconstructs 

71505 points for the first position and 51503 points 

for the second position. For experimental purpose, 
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we have taken two similar triplets of images having 

marks put on the rocks. From these marks, we are 

able to manually compute the displacement between 

the two positions. This result is shown in Figure 21 

(see color figure section), where the first map is drawn 

in quadrangles, and the second in grayed surface. The 

registration is reasonable. One can observe that many 

points are only visible from one position. In the se- 

quel, we vary the initial motion estimate, run our al- 

gorithm on the two frames, and then compare the 

results obtained by our algorithm with the result ob- 

tained manually. Note that the two frames are now 

expressed in the same coordinate system by applying 

the manual estimate to the first frame. Thus, the final 

estimate of the displacement between the two frames 

is expected to be zero, and the estimate given by the 

algorithm is directly the motion error with respect to 

the manual estimate. We have done several tests, and 

three of them are shown in the following. The initial 

estimate will be represented by a 6-vector: the first 

three elements constitute the r vector, and the last 

three, the t vector. 

I f  we set the initial estimate to [0.0, 0.0, 0.35, 

0.5, -2.0, 0.2] r (i.e., a rotation of 20 degrees and a 

translation of 2.07 meters). The difference between 

the two frames corresponding to this estimate is 

shown in Figure 22 (see color figure section). Af- 

ter 40 iterations, the motion estimate given by our 

algorithm is [7.885261 x 10 -3, -1.208467 x 10 -2, 

4.158183 x 10 -3 , 2.661822 x 10 -2, - 1.230099 x 10 -2, 

-4.845936 x 10-2] r.  Thus, there is a difference of 

0.86 degrees in rotation and 5.66 centimeters in trans- 

lation from the manual estimate. The result after the 

registration is shown in Figure 23 (see color figure 

section). We see that even when the initial estimate 

is very different from the real one, we still obtain 

satisfactory results. After several more iterations, we 

obtain a better result. 

What happens if we increase further the differ- 

ence  between the initial and final estimates? The 

initial estimate in this test is [0.0, 0.0, 0.35, -0.5, 

-2.5, 0.2] r (i.e., a rotation of 20 degrees and a 

translation of 2.56 meters). The difference between 

the two frames corresponding to this estimate is 

shown in Figure 24 (see color figure section). Af- 

ter 40 iterations, the motion estimate given by our 

algorithm is [-3.825570 x 10 -2, 6.001669 x 10 -2, 

3.071064 x 10 - I  , 3.449387 x 10 -1 , -1.795149 x 10 °, 

3.954597 x 10-1] T. The result is mediocre, as shown 

in Figure 25 (see color figure section), but it is better 

than the initial estimate. 

I f  we continue, the result shows some further im- 

provement. After 80 iterations, the motion estimate 

is [1.012586 x 10 -2, -9.563972 x 10 -3, 8.020001 

x l 0  -3, 3.110009 x 10 -2, -3.634908 x 10 -2, 

-3.905361 x 10-2] r.  The difference with the manual 

estimate is of 0.92 degrees in rotation and 6.18 cen- 

timeters in translation, which is reasonably small, as 

shown in Figure 26 (see color figure section). 

Up to now, the tests we have carried out are all 

with a rotation around an axis perpendicular to the 

ground plane. What happens if the vehicle is found 

in two different slopes (e.g., the vehicle scrambles 

on a pile of rocks)? Here is an example. The ini- 

tial estimate is [0.35, 0.0, 0.17, -0.5, -2.5, 0.2] r.  

Thus, there is a rotation of 20 degrees with respect 

to the ground plane, and a rotation of t0 degrees 

around an axis perpendicular to the ground plane. 

The translation between the two views is 2.56 me- 

ters. The difference between the two frames cor- 

responding to this estimate is shown in Figure 27 

(see color figure section). After 40 iterations, the mo- 

tion estimate is [1.125988 x 10 -2, 4.676589 x 10 -4, 

1.893187 x t0 -3, 4.918958 x 10 -3, -2.754730 x 10 -2, 

6.532630 x 10-3] r. The difference with the manual 

estimate is of 0.65 degrees in rotation and 2.87 cen- 

timeters in translation. The registration result is quite 

good, as shown in Figure 28 (see color figure section). 

6.2 A Head Figure 

The proposed algorithm is used by Chen for range 

image registration (Chen 1992). One modification he 

has made is the closest point search procedure. He 

uses the technique proposed by Chen and Medioni 

(1992) (see Section 8). One example is shown in this 

section. Figure 29a and Figure 29d show two range 

images of a head figure. For display purpose, they 

are shown in shaded intensity image form. The co- 

ordinate system is defined as follows: The origin is 

in the center of the image, the x-axis is parallel to 

the columns of the images (unit in pixels), the y-axis 

is parallel to the rows (unit in pixels), and the z-axis 

points out of the paper (unit in grey levels). The two 

images differ by [-0.1745, 0, 0, 0, 0, 0] r .  

Instead of using all points, about 150 points on a 

regular grid are chosen from the first image, as shown 
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Fig. 29. A head figure. (a) First view; (b) Result after one iteration; (c) Result after five iterations; (d) Result after 39 iterations 

in Figure 29a as small circles overlaid on the origi- 

nal image. The initial motion estimate is [0.0873, 0, 

0, 0, 0, 0] r ,  i.e., a difference of 15 degrees in ro- 

tation from the real transformation. The result after 

one iteration is shown in Figure 29b, where the points 

from the first image after transformation (in circles) 

are projected to the second image. The result is very 

bad. After five iterations, the estimated transforma- 

tion is already reasonable, as shown in Figure 29c. 

The algorithm converges after 39 iterations, yielding 

a result as shown in Figure 29d. The corresponding 

motion estimate is [ -0 .1702,  0.0016, .0008, -0 .0461 ,  

0.1529, -0 .1244]  T. The error is less than 0.3 degrees 

in rotation and 0.2 pixels in translation. 

7 Discussions 

Z1 About Complexity 

As described earlier, each iteration of our algorithm 

consists of  four main steps. The first is to find clos- 

est points, at an expected cost of  O (m log n), where 

m and n are the numbers of  points in the first and 

second frames, respectively. The second is to update 

the matches recovered in the first step, at a cost of  

O(m). The third step is to compute the 3-D motion, 

also at a cost of O(m). The last step is to apply the 

estimated motion to all points in the first frame, at a 

cost of O(m). Thus the total complexity of our algo- 
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ri thm is O(m logn) .  In Zhang (1992a), we show that 

our algorithm has a lower bound of computational 

cost than the string-based curve matching algorithms, 

e.g., Schwartz and Sharir (1987). 

7.2 About Convergence 

Convergence is always an important issue of  an it- 

erative procedure. Our algorithm cannot be guar- 

anteed to reach the global minimum. Although we 

have observed, given a reasonable start point, a 

good convergence of  our algorithm in the exper- 

imental sections, we are not able to show that 

it converges monotonically to a local minimum. 

This is not like the algorithm of  Besl and McKay 

(1992) (see Section 8) which converges always mono- 

tonically to a local minimum. The difference is 

that Pi in our objective function (2) can take a 

value of  either one or zero depending on situations. 

As will be clear, however, our algorithm is well- 

behaved. 

Let us make a thorough investigation during each 

iteration. As described in Section 3.2, only points 

whose distances to their closest points in the sec- 

ond frame are less than ~-l Dma x a r e  retained as poten- 

tial matches. The mean squared e r ro r  d~loses t o f  these 

matches, given by 

m 

d~io~e~t - ~ Y~. Pi l )Rt-Ixi  + t )-1 - Yi l[ 2, 

I - I  I I - I  
d~loses t < Then  is upper-bounded by Dmax, i.e., _ Dma x. 

a statistical analysis of  distances is carried out, and a 

new distance threshold DImax is computed. The pair- 

ings whose distances are greater than Dlm~x are dis- 

carded, i.e., their p i ' s  are turned to be zero. Thus the 
I mean squared error du~paate of  the updated matches, 

given by 

d~pdate - -  m ~ Pi l I R a - i x / +  tI-~ - Yi II 2, 
Y~-i=I P~ i=1 

is less than I ) I d~loses t, i.e., dupdate < dcltosest . W e  have of 
I I course d~paate < Dma x. The least-squares technique 

described in Section 3.4 is applied to the remaining 

matches, and a new motion estimate ( R  E, t I) is avail- 

able. Let  

i t /  

1 , Z P~ IlRIxi + ~I - -  Yi II 2- 
d[sq - -  ~ ' in l  Pi i=1 

I We have always d~s q <_ diupdate , because i f  dis q ;> 

d~pdate, then the zero motion ( R  x = I, t I = 0) would 

yield a smaller mean-squared error, which contradicts 

the hypothesis. Thus we have 

I - I 1 
d/s q _< dupdate _< mln(dcloses t, Dmax) , and 

I - I  
d~loses t _< Dma x. 

Unfortunately, we do not have the inequality: 

3~+1 contains two parts. The "closestdl+l --< d~s q. Indeed, ~closest 

first consists of x i ' s  which are also contained in d[s q. 

We can easily show that this part is always decreas- 

ing. The second part consists of  x i ' s  which are not 

contained in d~s q, but whose distances to their closest 

points are less than Dma x. The combination of the two 

parts is not necessarily less than d/s q. 

As is clear from the above discussions, the objec- 

tive function is upper-bounded by Dmax. As the reg- 

istration becomes better and better, Dmax in general 

becomes smaller and smaller, but it may be occa- 

sionally bigger. In order to ensure a monotonic de- 
1 I-1 crease of  Dmax, we must impose that Dma × _< Dma x 

I 
after computing Draax as described in Section 3.3. We 

have done this and rerun the algorithm with the syn- 

thetic and real data presented in Section 5, and exactly 

the same results have been obtained. We have also 

rerun the algorithm with the data presented in Sec- 

tion 6. For the test 1, the estimate after 40 iterations is 

[6.752922 x 10 -3, -1 .142817  x 10 -2, 5.471850 x 

10 -3, 2.741838 x 10 -z,  -1 .966461 x 10 -2, 

-4 .403366  x 10-2] T. There is a difference of 0.11 de- 

grees in rotation and 0.86 centimeters in translation. 

For the test 2, we obtained the same motion estimate 

after 40 iterations. The estimate after 80 iterations is 

[7.06317 x I0 -3, -7 .186778  x 10 -3, 1.308734 x 10 -2, 

3.428337 x 10 -2, -6 .574115 x 10 -2, -2 .475497  x 

10-2] r .  There is a difference of  0.37 degrees in rota- 

tion and 3.28 centimeters in translation. For the test 

3, the estimate after 40 iterations is [1.390749 x 10 -2, 

-2 .727281 x 10 -3, 1.089010 x 10 -3, 3.807930 x 10 -3, 

-2 .346437  x 10 -2, -1 .019406  x 10-2] r .  There is a 

difference of 0.24 degrees in rotation and 1.73 cen- 

timeters in translation. These differences are suffi- 

ciently small compared with the resolution of the data 

(about 5 centimeters). 

In Figure 30, two graphs are shown. The first plots 

the evolution of  the mean distance (i.e., the objec- 

tive function) versus iteration number. The second 

plots the evolution of  the number of  matches after 

update versus iteration number (one example has al- 
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ready been given in the last row of Table 1). The data 

presented in Section 6 have been used. Note that there 

are two curves for test 2: "Test 2" for iterations from 

1 to 40, and "Test 2bis" for iterations from 41 to 80. 

About one fourth (17749 points) of the points in the 

first view have been used. From Figure 30a, we see 

that the mean distance decreases towards 0.04 meters 

in all three tests. These curves confirm that our algo- 

rithm is well-behaved. As shown in Figure 30b, the 

number of matches varies continuously through the 

iterations and finally steadies towards 15800. 

7.3 About Simplifications 

For computation consideration, we have made two 

simplifications. The first is that the non-symmetric 

matching criterion (2) is used, instead of the sym- 

metric one (1). The second is that the approximate 

distance metric (4) is used, which will be discussed 

in Section 7.4. 

The symmetric matching criterion (1) is in fact 

also implemented for curves. Table 4 gives a com- 

parison of the results using the two criteria. The syn- 

thetic data in Section 5 are used. Different levels of 

Gaussian noise are added. Ten iterations are applied 

in each case. Rotation errors, translation errors, and 

execution times are shown, each being the average 

of ten tries. The algorithm using the symmetric cri- 

terion yields better motion estimates than that using 

the non-symmetric one. This is expected because the 

data in the two frames both contribute to the motion 

estimation and neither of the frames prevails over the 

other. On the other hand, the execution time using 

the symmetric criterion is twice as long. 

We have also carried out an experiment with the 

real data described in Section 5. The algorithm using 

the symmetric criterion converges after 12 iterations, 

yielding a motion estimate 

[ -1 .706 x 10 - 3 ,  6.673 x l0 -2, 2.774 x 1 0 - 3 ]  T, 

{ =  

[--4.294 x t0 °, -1 .613 x 10 °, -1 .003 x 10z] r.  

The difference compared with that using the non- 

symmetric criterion is 0.6% in both rotation and trans- 

lation. The execution time is 70.2 seconds on a SUN 

4/60 workstation, about twice as long. Thus in time 
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Fig. 30. Evolution of (a) the mean distance and (b) the number of 
matches versus iteration number 

critical applications the non-symmetric matching cri- 

terion is preferred. 

7.4 About Sampling 

As described earlier, the algorithm developed is based 

on the use of a simplified, instead of real, definition of 

the distance between a point and a shape (see Equa- 

tion 4). That is, we use the minimum of all distances 

from a given point to each sample point of the shape. 

Different sampling of a shape (even the approxima- 
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Table 4. Comparison between the matching criteria (1) and (2) 

tandard deviation 

:riterion 

otation error 

ranslation error 

xecution time 

0 

(2) (1) 

1.81 0.12 

8.22 5.83 

5.04 t0.04 

2 

(2) (1) 

4.36 2.68 

7.38 6.35 

5.32 10.80 

4 

(2) (1) 

4.60 3.63 

8.56 7.32 

6.10 12.54 

6 

(2) 

7.56 

7.61 

7.64 

(1) (2) 

6.40 11.35 

6,42 7.36 

15.88 8.18 

8 

(1) 

8.52 

7.08 

16.74 

10 

(2) (1) 

11.94 8.36 

8.96 7.92 

9.98 20,48 

tion error is negligible) does affect the final estimate 

of the motion. Take a simple example of curves as 

shown in Figure 31. The curve consists of two line 

segments (Figure 3 la). The sampling in the first frame 

consists of three points as indicated by the crosses in 

Figure 31a. We have two samplings in the second 

frame. The first sampling consists of three points as 

indicated by dark dots, and the second sampling con- 

sists of five points by adding two additional ones (in- 

dicated by empty dots) to the first sampling, as shown 

in Figure 31a. The motion result between the two 

frames with the first sampling is shown in Figure 3 lb, 

and that with the second sampling, in Figure 31c. 

Clearly, more samples, better results. To solve the 

problem resulted from sampling, we should ideally 

use the real distance definition (Equation 3), and use 

the real closest points instead of the closest sam- 

ple points. However, we lose the efficiency achieved 

with sample points. One possible improvement, as 

proposed in Besl and McKay (1992), could be the 

following: First, create a piecewise-simplex (line seg- 

ments or triangles) approximation of the shape in the 

second frame (e.g., the Delaunay triangulation from 

the sample points (Faugeras et al. 1990)). Then, given 

a point in the first frame, a pure Newton's minimiza- 

tion procedure can be used to find the real closest 

point, starting with the closest sample point. 

There is an easy way to overcome the sampling 

problem while maintaining the efficiency of the al- 

gorithm. It consists in simply increasing the number 

of sample points through interpolation. The more the 

number of sample points, the less the sampling will 

affect the final motion estimate. However, this causes 

two problems: the increase in the memory required 

and the increase in the search time (because we in- 

crease also the size of the k-D tree). Thus a tradeoff 

must be found. 

From the experiments we have carried out, we 

have obtained satisfactory results using directly clos- 

est sample points because the sample points are suf- 

ficiently dense. 

7.5 Uncertainty 

The importance of explicitly estimating and manipu- 

lating uncertainty is now well recognized by the com- 

puter vision and robotics community (Blostein and 

Huang 1987; Matthies and Shafer 1987; Kriegman et 

al. 1989; Ayache and Faugeras 1989; Szeliski 1990). 

This is extremely important when the data available 

have different uncertainty distribution for example in 

stereo where uncertainty increases significantly with 

depth. We have shown in Zhang and Faugeras (1991) 

that accounting for uncertainty in motion estimation 

(via, e.g., a Kalman filter) yields much better results. 

For computational tractability and as a reasonable 

approximation, the uncertainty in a 3-D point recon- 

structed from stereo is usually modeled as Gaussian; 

that is, it is characterized by a 3-D position vector 

and a 3 x 3 covariance matrix. The algorithm for 

motion computation described in Section 3.4 is very 

efficient. However, it assumes each point has equal 

uncertainty. And unfortunately it is difficult to ex- 

tend it to fully take uncertainty into account. To fully 

take uncertainty into account, we can use for example 

Kalman filtering techniques which have been widely 

and successfully applied to solve quite a number of 

vision problems (Zhang and Faugeras 1992a). How- 

ever, there will be a significant increase in computa- 

tion. 

The method described below can partially take 

uncertainty into account. Indeed, we can associate, to 

each pairing between the two frames, a scalar weight- 

ing factor wi. Instead of minimizing Equation 5, 

we compute R and t by minimizing the following 

weighted objective function: 
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X 

(b) (c) 

Fig. 31. Influence of curve sampling on motion estimation 

1 N 

5 r (R ' t )  = N/~I= willRxi + t - y i l l  2. (8) 

The quaternion or dual quaternion method can still 

be used to compute efficiently R and t. The weight- 

ing factor wi should be related to the uncertainty of 

R x i  -t-t --Yi. Let Axl, Ayl, and Ai be the covariance 

matrices of xi, yi, and Rxi  + t - Yi. A x i  and Ayl 

are given by the sensing system. Ai is then computed 

as 

Ai = R A x i R  r + Ayi, 

where R takes the rotation matrix computed during a 

previous iteration as an approximation. The trace of 

Ai roughly indicates the magnitude of the uncertainty 

of  R x i  q- t - Yi. Therefore, we choose wi as 

1 1 

wi - tr(Ai) -- tr(Axi) + t r (Ayl) '  

Thus, the weighting factor is independent of the mo- 

tion. We have not implemented this method in the 

current version. 

The mechanism for updating the matching, de- 

scribed in Section 3.3, has been designed without 

considering the different uncertainties in the data 

points. The same threshold Dmax has been used for 

all points. If the uncertainties in the data points and 

that in the motion are modeled, one would like to 

use a pruning criterion that better reflects the sources 

uncertainty. 3 The idea is the following, similar to that 

used in Zhang and Faugeras (1992a) for matching 

3-D line segments. Let the point under consideration 

in the first view be x with covariance matrix Ax. Let 

the points in the second view be {yi} with covari- 

ance matrix {Ayi}. Let the motion relating the two 

views be d with covariance matrix Ad. The vector 

d could be [r r, tv] r. To be general, we define two 

functions relating d to the rotation matrix R and the 

translation t: 

R = f(d) and t = g(d) . 

The (squared) Mahalanobis distance can be used to 

take into account the uncertainty. It is defined by 

d M = (f (d)x + g(d) - y i ) rAi  (f(d)x + g(d) - yi), 

which can be interpreted as the squared Euclidean 

distance weighted by the uncertainty measure. Ai is 

the covariance matrix of f (d )x  + g(d) - Yi, and is 

given, up to the first order, by 

Ai = f (d )Axf (d )  T + Ayi + JdAdJd  T, 

where Jd is the Jacobian 0 [f(d)x + g (d ) ] /0d .  Now 

the closest point to x is the point Yi having the small- 

est distance d/M. The reader is referred to Zhang and 

Faugeras (1992a) for more details on the Mahalanobis 

distance. 

As described in Section 3.3, we do not want to 

simply match the closest point yi with x. In order for 

Yi and x to be matched, the Mahalanobis distance d M 

must be less than some threshold z. As d M follows 

a X 2 distribution with three degrees of freedom, we 

can choose an appropriate e, for example, 7.81 for a 

probability of 89%. In summary, we can replace, if 

uncertainty is considered, the first two steps of the 

algorithm described in Section 3.5 by the following: 

1. Find, for each point x in the first view, the point 

Yi having the smallest Mahalanobis distance d, M. 
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2. Discard the pairings {(xi, yi)} whose d)t 's  are 

larger than the threshold s. 

finally group these patches into objects according to 

motion similarity. 

7.6 About Large Motion 

Because of the local property of the matching cri- 

terion used, our algorithm converges to the closest 

minimum. It is thus best applied in situations where 

the motion is small or approximately known, tn the 

case of large motion, the algorithm can be adapted in 

two different ways. The first way is to apply first the 

global methods as cited in the introductory section 

to obtain an estimate, which can then be refined by 

applying the algorithm described in this paper. The 

second way is to obtain a set of initial registrations 

by sampling the 6-D motion space, and then apply 

our algorithm to each initial registration. "The final 

estimate corresponding to the global minimum error 

is retained as the optimal one. A similar method has 

been used in Besl and McKay (1992) to solve the 

object recognition problem. 

Z7 Multiple Object Motions 

In a dynamic environment, there is usually more than 

one moving object. It is important to have a reliable 

algorithm for segmenting the scene into objects using 

motion information. However, little work has been 

done so far in this direction. 

We have proposed in Zhang and Fangeras (1992b) 

a framework to deal with multiple object motions. 

It consists of two levels. The first level deals with 

the tracking of 3-D tokens from frame to frame and 

the estimation of their motions. The processing is 

completely parallel for each token. The second level 

groups tokens into objects based on the similarity 

of motion parameters. Tokens coming from a sin- 

gle object should have the same motion parameters. 

In Zhang and Faugeras (1992b) the tokens used are 

3-D line segments, and the experiments have shown 

that the framework is flexible and powerful. This 

framework is used in Navab and Zhang (1992) to 

solve multiple object motions through motion and 

stereo cooperation. Now if we replace 3-D line seg- 

ments by 3-D curves and estimate 3-D motion for 

each curve, the general framework is still applica- 

ble. For surfaces, we need to over-segment them into 

patches such that each patch belongs only to one ob- 

ject. We can then compute motion for each patch and 

8 Highlights With Respect to Previous Work 

As mentioned in the introduction, several pieces of 

similar but independent work have recently been pub- 

lished. They include Besl and McKay (1992); Chen 

and Medioni (1992); Menq et al. (1992); Cham- 

pleboux et al. (1992). The same idea is: iteratively 

matching points in one set to the closest points in an- 

other set, given the transformation between the two 

sets is small. However, as each algorithm is devel- 

oped in its own context, different techniques have 

been used. 

One of the main differences lies in the matching 

criterion. Refer to Equation 2. In our algorithm, pi 

can take value either 1 or 0 depending on whether 

the point in the first set has a reasonable match in the 

second set or not. This is determined by the maximum 

tolerable distance Dmax, which, in turn, is set in a dy- 

namic way by analyzing the statistics of the distances 

as described in Section 3.3. Therefore, our algorithm 

is capable of dealing with the following situations: 

• Gross outliers in the data. The outliers are auto- 

matically discarded in the matching and thus have 

no effect on the final motion estimate. 

• Appearance and disappearance in which curves in 

one set do not appear in the other set. This is usu- 

ally the case in navigation where objects may enter 

or leave the field of view. 

• Occlusion. An object may occlude other objects, 

and it may itself be occluded. This is common in 

both object recognition and navigation. 

Besl and McKay (1992) have developed an algo- 

rithm for object recognition and location, where a 

portion of a given model shape is assumed to be 

observed. In their algorithm, Pi takes always value 

1. Thus, their algorithm can only deal with the case 

in which the first set is a subset of the second set. 

It is powerless in the situations described above. 

The quaternion algorithm is used to estimate the 

transformation between the two sets. The singular- 

value-decomposition algorithm by Haralick et al. 

(1989) is suggested to replace it in order to identify 

outliers. 

Chen and Medioni (1992) have developed an al- 

gorithm for registering multiple range images in or- 
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der to create a complete model of an object. About 

one hundred of points on a regular grid in the first 

range image, called control points, are used in order 

to save computation time. Only points in smooth areas 

are selected as the control points in order to find a 

reliable closest point by their method (see below). 

The method for motion estimation is not specified. 

Occlusion and outliers issues are not addressed. 

Menq et al. (1992) have developed an algorithm 

for registering range data points with a CAD model 

for the inspection purpose. In their algorithm, Pi al- 

ways takes the value t, too. Occlusion and outliers 

issues are not addressed. The transformation is esti- 

mated by solving a set of nonlinear equations. 

Champleboux et al. (1992) have developed an al- 

gorithm for the registration of two sets of 3-D points 

obtained with a laser range finder. Assume that most 

(about 99%) of points in one set match surfaces in 

the other, an iterative nonlinear least-squares tech- 

nique (the Levenberg-Marquardt algorithm) is ap- 

plied to find the rigid transformation between the two 

sets. When the iterative process converges, the points 

whose distances to the other set are larger than a pre- 

fixed threshold are considered as outliers and are re- 

jected. Some more iterations are then applied to the 

retained points. 

Another main difference is in the procedure for 

closest-point computation. In our applications, dense 

point sets are available, which are directly sorted in 

a k-D tree for efficient closest-point search. In Besl 

and McKay (1992), several methods are proposed to 

compute the closest point on a geometric entity (point 

set, curve, or surface) to a given point. In Chen and 

Medioni (1992), the surface normal for each control 

point in the first set is computed. The closest point 

is found, through an iterative process, at the intersec- 

tion of the surface normal to the digital surface in the 

second frame. In Menq et al. (1992), as the model 

is represented by a set of parametric surface patches, 

the closest point is determined by solving two non- 

linear equations. In Champleboux et al. (1992), the 

first set of 3-D points is converted into an octree- 

spline, which is a classical octree decomposition of 

the work volume, followed by a further division near 

surface points. The Euclidean distance from nodes 

to the surface are computed in an exhaustive man- 

ner, and saved in the octree-spline. This allows them 

to quickly compute approximate Euclidean distances 

from points to surface. 

9 Conclusions 

We have described an algorithm for registering two 

sets of 3-D curves obtained by using an edge-based 

stereo system, or two dense 3-D maps obtained by us- 

ing a correlation-based stereo system. We have used 

the assumption that the motion between two frames is 

small or approximately known, a realistic assumption 

in many practical applications including visual nav- 

igation. A number of experiments have been carried 

out and good results have been obtained. 

Our algorithm has the following features: 

• It is simple. The reader can easily reproduce the 

algorithm. 

• It is extensible. More sophisticated strategies such 

as figural continuity can be easily integrated in the 

algorithm. 

• It is general. First, the representation used, i.e., 

point sets, is general for representing arbitrary 

shapes of the type found in practice. Second, 

the ideas behind the algorithm are applicable to 

(many) other matching problems. The algorithm 

can easily be adapted to solve for example 2-D 

curve matching. 

• It is efficient. The most expensive computation is 

the process of finding closest points, which has a 

complexity O(N log N). Exploiting the coarse-to- 

fine strategy described in Section 4.3 considerably 

speeds up the algorithm with only a small change 

in the precision of the final estimate. 

• It is robust to gross errors and can deal with ap- 

pearance, disappearance and occlusion of objects, 

as described in Section 8. This is achieved by an- 

alyzing dynamically the statistics of the distances, 

as described in Section 3.3. 

• It yields an accurate estimation because all avail- 

able information is used in the algorithm. 

• It does not require any preprocessing of 3-D point 

data such as for example smoothing. The data are 

used as is in our algorithm. That is, there is no 

approximation error. 4 

• The registration results do not depend on any 

derivative estimation (which is sensitive to noise), 

in contrast with many other feature-based or string- 

based matching methods. However, imposing the 

orientation consistency in matching (Section 3.2) 

increases the convergence range of the algorithm. 
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Our algorithm can only partially take the uncer- 

tainty of measurements into account. To fully take 

into account the uncertainty, we should replace the 

quatemion or dual quaternion algorithm by other 

methods such as Kalman filtering techniques. This 

would cause a significant increase in the computa- 

tional cost of  the algorithm. 

In our algorithm, one parameter, the parameter 79, 

needs to be set. It indicates when the registration can 

be considered to be good. It has an impact on the con- 

vergence rate, as described in Section 4.1. This is a 

limitation of  our algorithm. In our implementation, 79 

is related to the resolution of  the data available. This 

method works well for all experiments we have car- 

ried out. The result of  our algorithm is not sensitive 

to the value of  79. Instead of  10 centimeters, we can 

set 79 to 8 or 12 centimeters, and the same results are 

obtained. However, a better method probably exists. 

One question raised is: can the parameter 79 be elimi- 

nated? The parameter 79 has been introduced with the 

concern that the initial estimate could be mediocre. If  

we have faith in the result provided by the instruments 

such as odometric and inertial systems on the mobile 

vehicle, then we can directly use 3or (the first case in 

Section 3.3) to update the matching. The parameter 

79 is thus not necessary. 

Our algorithm converges (not necessarily mono- 

tonically) to the closest local minimum, and thus is 

not appropriate for solving large motion problems. 

Two possible extensions of  the algorithm to deal with 

large motions have been described in Section 7.6: 

coupling with a global method or sampling the mo- 

tion space. 

The proposed algorithm works better in a rugged 

terrain than on a fiat ground. This is because there are 

many local minima for a flat ground which are very 

close to each other. Due to the local technique we ex- 

ploit, the final motion estimate will depend essentially 

on the initial one in this case. By the way, primitive- 

based methods will not work, either. No salient fea- 

tures can be extracted. 

A Search for Closest  Points  With k-D Trees 

Several methods exist to speed up the search pro- 

cess for closest points, including bucketing techniques 

and k-D trees (abbreviation for k-dimensional binary 

search tree). We have chosen k-D trees, because the 

data points we have are sparse in space. It is not ef- 

ficient enough to use bucketing techniques because 

only a few buckets would contain many points, and 

many others nothing. 5 

The k-D tree is a generalization of  bisection in one 

dimension to k dimensions (Preparata and Shamos 

1986). In our case, k = 3. A 3-D tree is constructed as 

follows. First choose a plane parallel to yz-plane pass- 

ing through a data point P to cut the whole space into 

two (generalized) rectangular parallelepipeds 6 such 

that there are approximately equal numbers of  points 

on either side of  the cut. We obtain then a left son 

and a right son. Next, each son is further split by a 

plane parallel to xz-plane such that there are approx- 

imately equal numbers of  points on either side of  the 

cut, and we obtain a left grandson and a right one. We 

continue splitting each grandson by choosing a plane 

parallel to xy-plane, and so on, letting at each step the 

direction of  the cutting plane alternate between yz-, 

xz- and xy-plane. This splitting process stops when 

we reach a rectangular parallelepiped not containing 

any point; the corresponding node is a leaf of  the tree. 

A k-D tree can be constructed in O (n log n) time with 

O(n) storage, which are both optimal (Preparata and 

Shamos 1986). 

w e  now investigate the use of  the 3-D tree in 

searching for closest points. The standard way of  us- 

ing k-D trees is to find all points whose distances to x 

are within a given value. In our case, we want to find 

the closest point. One possibility is to use the standard 

technique to find all points within a given distance, 

and then to find the point having the smallest distance. 

We have developed a recursive algorithm which al- 

lows the given distance to vary. The algorithm is thus 

more efficient. More formally, a node v of  the 3-D 

tree T is characterized by two items (P(v) ,  t(v)). 

Point P(v) is the point through which the space is 

cut into two. The parameter t (v), taking the value 0, 

1, or 2, indicates whether the cutting plane is paral- 

lel to yz-, xz-, or xy-plane. Two global variables P 

and D are used to save the point found and the cor- 

responding distance. They are initialized to - 1  and 

Dmax, respectively. At the output, if P is still - 1 ,  it 

implies that we cannot find any point with distance 

less than Dmax. The search for the closest points to x 

is conducted by calling SEARCH(root(T), x)  of  the 

following procedure: 

• input: a point x, a 3-D tree T; two global variables 

P and D initialized to - 1  and Dmax, respectively. 

• output:  the closest point P and the corresponding 

distance D. 
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• procedure: SEARCH(v, x) 

- -  i f  (v == leaf) re turn  ; 

- -  c t  = x [ t ( v ) ]  ; 

- - c 2  = P(v)[t(v)] ; / *  c2 has been used 

t o  cut  t h e  space  * /  

- -  i f  ( Iq  -- c21 < D )  a n d  (i[x - P ( v ) I t  < D )  

t h e n  P ~ P(v),  D ~ I I x -  P ( v ) l l  ; 

- -  i f  @1 - D < c2) t h e n  SEARCH(leftson(v), 

x); 

- -  i f  (c2 -- D < cl) t h e n  SEARCH(rightson(v), 

x); 

Unfortunately, the worst-case search time is 

O(n 2/3) with the 3-D tree method (see (Preparata 

and Shamos 1986; pp.77)). Other more efficient al- 

gorithms exist, such as a direct access method, but 

they require much more storage, In practice, we ob- 

served good performance with 3-D trees. We found 

that the search time depends on Dma×. When Dmax is 

small, the search can be performed very fast. As we 

update Dmax during each iteration, it becomes quite 

small after a few iterations. 

B M o t i o n  C o m p u t a t i o n  u s i n g  D u a l  N u m b e r  

Q u a t e r n i o n s  

For completeness, we summarize in this appendix the 

dual number quaternion method described in Walker 

et al. (1991), which can solve a weighted least- 

squares problem. We can compute R and t by mini- 

mizing the following function 

1 N 

Jr(R,  t) = ~ E wi IIRxi + t - Yi 112, (9) 
i=i 

where wi is the positive weighting factor associated 

with the pairing between xi and yi. We can relate 

wi to the uncertainty in xi and Yi as shown in Sec- 

tion 7.5. 

A quaternion q can be considered as being either 

a 4-D vector [ql, q2, q3, q4] T or a pair ((t, q4) where 

Cl = [qt, q2, q3] r .  A dual quatemion (t consists of 

two quaternions q and s, i.e., 

cl = q + ss, (10) 

where a special multiplication rule for s is defined 

by s 2 = 0. Two important matrix functions of quater- 

nions are defined as 

Q(q) = [q4I+K(0)_ct T q4Cl] , (11) 

I q4I - K(O) 51 I (12) 
W ( q )  = - O  r q4 ' 

where I is the identity matrix, and K((t) is the skew- 

symmetric matrix defined as 

K(0)  = 
I 0 --q3 q2 ] 

q3 0 - q l  • 
-q2 ql 0 

A 3-D rigid motion can be represented by a dual 

quatemion dl satisfying the following two constraints: 

q r q  ---- 1 and q r s  = 0. (13) 

Thus, we have still six independent parameters for 

representating a 3-D motion. The rotation matrix R 

can be expressed as 

R = (q42 - (tr61)I + 2C1(1T + 2q4K(O), (14) 

and the translation vector T = 15, where 15 is the 

vector part of the quaternion p given by 

p = W ( q ) W s .  (15) 

The scalar part P4 of p is always zero. 

A 3-D vector x is identified with the quatemion 

(x, 0) 7, and we shall also use x to represent its cor- 

responding quatemion if there is no ambiguity in the 

context. It can then be easily shown that 

R x  + t = W(Q)Ts  + W ( q ) T Q ( q ) x .  

Thus the objective function Equation 5 can be written 

as a quadratic function of q and s 

S = l [ q r C l q  + Wsrs + srC2q + const.], (16) 

where 

N 
C1 = - 2  E wiQ(yi )TW(xi )  

i=1 

N 
= - 2  wi 

i=l 

K ( y ) K ( x )  + y x  T 

- -yTK(x)  
- K ( y ) x  ] (17) 

yT x 
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N 

C2 = 2 E wi[W(xl)  - Q(yi)] 
i=1 

N[ ] = 2 E w i  - K ( x ) - K ( y )  x - y  (18) 
i=1 - - ( X  --  y ) T  0 ' 

N 

W = E wi, (19) 
i=1 

N 

const. = E wi (x/rxi + y/ryi). (20) 

i=1 

By adjoining the constraints (Equation 13), the op- 

timal dual quatemion is obtained by minimizing 

f "  = l [ q r C t q  + Wsrs + s rCzq + const. 
(21) 

-t- )~1 (qTq _ 1) + ~ 2 ( s T q ) ] ,  

where ,k I and ,k2 are Lagrange multipliers. Taking the 

partial derivatives gives 

0 f '  _ 1 [ ( C l + c r ) q + C f s + 2 £ l q + , k 2 s ]  
0q N 

= 0, (22) 

Of.' 1 
- -  [ 2 W s  q- C 2 q  + )~2q] = 0.  (23 )  

0s N 

Multiplying Equation 23 by q r  gives ,k2 = 

- q r C 2 q  = 0, because C2 is skew-symmetric. Thus 

s is given by 

1 
8 = -- C2q. (24) 

2W 

Substituting these into Equation 22 yields 

Aq = ,kl q, (25) 

where 

a=~ 

Thus, the quaternion q is an eigenvector of the matrix 

A and )~l is the corresponding eigenvalue. Substitut- 

ing the above result back into Equation 21 gives 

~ (const. - )~I). (27) 

The error is thus minimized if we select the eigen- 

vector corresponding to the largest eigenvalue. 

Having computed q, the rotation matrix R is com- 

puted from Equation 14. The dual part s is computed 

from Equation 24 and the translation vector t can 

then be solved from Equation 15. 

Acknowledgments 

This work was carried out in part in the French CNES 

program gAP. The author would like to thank Olivier 

Faugeras for stimulating discussions during the work, 

Steve Maybank for carefully reading the draft ver- 

sion, and Xin Chen for providing the result described 

in Section 6.2. The author would also like to thank 

the anonymous reviewers for their suggestions and 

comments which helped me improve this paper. 

Notes  

1. Here we assume the distribution of distances is approximately 

Gaussian when the registration is good. This has been con- 

firmed by experiments. A typical histogram is shown in Fig- 

ure 2. More strictly, the X distribution is a better approximation 

if we use the sum of squared distances. As is well known in 

statistics (central limit theorem), the distribution can be well 

approximated by a Gaussian if a large number of samples 

are available. Indeed, we have more than one hundred point 

matches. 

2. The double precision LINPACK rating for the SUN 4/60 is 1.05 

Mflops," 

3. I thank one of the reviewers for having raised this discussion. 

4. It is certain that errors have been introduced during the recon- 

struction of 3-D points, and that they have been propagated in 

the motion estimate. 

5. Another possibility is to apply bucketing techniques in 2-D, for 

example, by projecting all points on the ground or on the image 

plane of the sensors. We have not compared this technique with 

the k-D trees. 

6. A generalized rectangular parallelepiped is possibly an infinite 

volume. 

7. Note that in Walker et al. (1991) a 3-D vector x is identified 

with the quaternion (x/2, 0). 
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Color Figures 

Fig. 21. Superposition of the two 3-D maps of a rock scene after a manual registration: front and top views 

Fig. 22. Test 1: Superposition of two 3-D maps before registration: front and top views 
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Fig. 23. Test 1: Superposition of two 3-D maps after registration: front and top views 

Fig. 24. Test 2: Superposition of two 3-D maps before registration: front and top views 
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Fig. 25. Test 2: Superposition of two 3-D maps after 40 iterations: front and top views 

Fig. 26. Test 2: Superposition of two 3-D maps after 80 iterations: front and top views 
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Fig. 27. Test 3: Superposition of two 3-D maps before registration: front and top views 

Fig. 28. Test 3: Superposition of two 3-D maps after registration: front and top views 


