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Abstract

In this article, we study the existence of iterative positive solutions for a class of

singular nonlinear fractional differential equations with Riemann-Stieltjes integral

boundary conditions, where the nonlinear term may be singular both for time and

space variables. By using the properties of the Green function and the fixed point

theorem of mixed monotone operators in cones we obtain some results on the

existence and uniqueness of positive solutions. We also construct successively some

sequences for approximating the unique solution. Our results include the multipoint

boundary problems and integral boundary problems as special cases, and we also

extend and improve many known results including singular and non-singular cases.
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1 Introduction

Fractional differential equations have attracted more and more attention in recent

decades, which is partly due to their numerous applications in many branches of science

and engineering including fluid flow, rheology, diffusive transport akin to diffusion, elec-

trical networks, probability, etc.Werefer the reader to [–] and the references therein.On

the other hand, boundary value problems with integral boundary conditions for ordinary

differential equations arise often in many fields of applied mathematics and physics such

as heat conduction, chemical engineering, undergroundwater flow, thermo-elasticity, and

plasma physics. The existence and uniqueness of positive solutions for such problems have

become an important area of investigation in recent years.

In this article, we consider the existence and uniqueness of the iterative positive solu-

tions for the following class of singular fractional differential equations:

⎧

⎪

⎨

⎪

⎩

Dα
+x(t) + p(t)f (t,x(t),x(t)) + q(t)g(t,x(t)) = ,  < t < ,

x() = x′() = · · · = x(n–)() = ,

x() =
∫ 


k(s)x(s)dA(s),

(.)
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where n –  < α ≤ n, n ≥ , n ∈ N, p,q : (, ) → [,∞) are continuous, and p(t), q(t) are

allowed to be singular at t =  or t = , f : (, )× (,∞)× (,∞) → [,∞) is continuous,

and f (t,u, v) may be singular at t = ,  and u = v = ; g : (, ) × (,∞) → [,∞) is con-

tinuous, and g(t, v) may be singular at t = ,  and v = ; k : (, ) → [,∞) is continuous

with k ∈ L(, ), and
∫ 


k(s)x(s)dA(s) denotes the Riemann-Stieltjes integral with a signed

measure, in which A : [, ] →R is a function of bounded variation.

There are various results related to the positive solutions of a nonlinear fractional dif-

ferential equation with integral boundary value conditions. The number and variety of the

methods for dealing with the above solutions has been constantly increasing, such as cone

expansion and compression fixed point theorem [, ], the monotone iteration method

[–], the properties of the Green function, and the fixed point index theory []. For

example, by cone expansion and compression fixed point theorem Cabada and Hamdi []

studied the existence of positive solutions of the following nonlinear fractional differential

equation with integral boundary value conditions:

{

Dα
+x(t) + f (t,x(t)) = ,  < t < ,

x() = x′() = , x() = λ
∫ 


x(s)ds,

where  < α ≤ ,  < λ, λ �= α, Dα
+ is the Riemann-Liouville fractional derivative, and f :

[, ]× [,∞)→ [,∞) is a continuous function.

In [], by means of the monotone iteration method, Sun and Zhao investigated the ex-

istence of positive solutions for the following fractional differential equation with integral

boundary conditions:

{

Dα
+x(t) + q(t)f (t,x(t)) = ,  < t < ,

x() = x′() = , x() =
∫ 


g(s)x(s)ds,

where  < α ≤ , Dα
+ is the standard Riemann-Liouville derivative of order α, f : [, ] ×

[,∞) → [,∞) is continuous, and g,q : (, ) → [,∞) are also continuous with g,q ∈
L(, ).

Zhang et al. [], by using the properties of the Green function and the fixed point index

theory, considered the existence of a positive solution of the following nonlinear fractional

differential equation with integral boundary conditions:

{

Dα
+x(t) + h(t)f (t,x(t)) = ,  < t < ,

x() = x′() = x′′() = , x() = λ
∫ η


x(s)ds,

where  < α ≤ ,  < η ≤ ,  ≤ ληα

α
< , Dα

+ is the Riemann-Liouville fractional derivative,

h : (, ) → [,∞) is continuous with h ∈ L(, ), and f : [, ] × [,∞) → [,∞) is also

continuous.

Based on a method originally due to Zhai and Hao [], Jleli and Samet [] presented

the existence and uniqueness criteria for positive solutions to the following nonlinear ar-

bitrary order fractional differential equation:

⎧

⎪

⎨

⎪

⎩

Dα
+x(t) + f (t,x(t),x(t)) + g(t,x(t)) = , t ∈ (, ),

x(i)() = , i = , , , . . . ,n – ,

[D
β

+x(t)]t= = ,  ≤ β ≤ n – ,
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where n –  < α ≤ n, n > , n ∈ N, and f : [, ]× [,∞)× [,∞) → [,∞) and g : [, ]×
[,∞)→ [,∞) are given continuous functions.

Recently, by cone expansion fixed point theorem, Li et al. [], obtained the positive

solutions of the following class of singular fractional differential equations:

⎧

⎪

⎨

⎪

⎩

Dα
+x(t) + p(t)f (t,x(t)) + q(t)g(t,x(t)) = ,  < t < ,

x() = x′() = · · · = x(n–)() = ,

x() =
∫ 


k(s)x(s)dA(s),

where n –  < α ≤ n, n ≥ , n ∈ N, p,q : (, ) → [,∞) are continuous with p,q ∈ L(, )

and are allowed to be singular at t =  or t = , f , g : [, ] × (,∞) → [,∞) are con-

tinuous, and f (t,u), g(t,u) may be singular at u = ; k : (, ) → [,∞) is continuous with

k ∈ L(, ), and
∫ 


k(s)x(s)dA(s) denotes the Riemann-Stieltjes integral with a signedmea-

sure, in which A : [, ] →R is a function of bounded variation. In that paper, they needed

the following two conditions to prove the operator to be completely continuous:

(a) p,q : (, )→ [,∞) are continuous, p(t) �≡ , q(t) �≡ , t ∈ [, ], and

∫ 



φ(s)p(s)ds < ∞,

∫ 



φ(s)q(s)ds < ∞;

(b) f , g : [, ]× (,∞)→ [,∞) are continuous, and for any  < r < R <∞,

lim
m→∞

sup
u∈KR\Kr

∫

H(m)

(

p(s)f
(

s,u(s)
)

+ q(s)g
(

s,u(s)
))

ds = ,

where

H(m) =

[

,


m

]

∪
[

m – 

m
, 

]

, φ(s) = φ(s) +
gA(s)

 –M
,

φ(s) =
τ (s)α–s( – s)α–

Ŵ(α – )
, τ (s) =

s

 – ( – s)
α–
α–

,

M =

∫ 



tα–k(t)dA(t) < , gA(s) =

∫ 



G(t, s)k(t)dA(t),

G(t, s) =


Ŵ(α)

{

(t( – s))α– – (t – s)α–,  ≤ s ≤ t ≤ ,

(t( – s))α–,  ≤ t ≤ s≤ .

Then, by using cone expansion fixed point theorem they obtain the existence of positive

solutions.

However, up to now, the singular fractional differential equationswith Riemann-Stieltjes

integral conditions have seldom been considered by using fixed point theorem. In partic-

ular, we consider that f (t,u, v) has singularity at t =  or  and v = , g(t, v) has singularity

at t =  or  and v = . In this article, we apply the fixed point theorem of mixed mono-

tone operators to get the existence and uniqueness of the iterative solutions for singular

fractional differential equations (.) without using the above condition (b).

Obviously, what we discuss is different from those in [, , , , –]. Comparing

with the results in [], we are based on a new method dealing with problem (.). More-

over, f (t,u, v) not only has three variables, but also is singular both for time and space
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variables. Comparing with the results in [, , ], we do not need f (t,u, v) to be con-

tinuous at t =  or  and at u = v = . The main new features presented in this article are

as follows. Firstly, the boundary value problem has a more general form in which p(t),

q(t) are allowed to be singular at t = ,  and f may be singular for time and space vari-

ables, that is, f (t,u, v) and g(t, v) may be singular at t =  or  and v = . Secondly, by

using the fixed point theorem of mixed monotone operators, we obtain a unique positive

solution of the boundary value problem (.), and we also construct successively some se-

quences for approximating the unique positive solution. Thirdly, let
∫ 


x(s)dA(s) denote

the Riemann-Stieltjes integral, where A is a function of bounded variation, and dA may

be a signed measure. As applications, the multipoint problems and integral problems are

particular cases. In this paper, we also extend and improve many known results including

singular and nonsingular cases.

The rest of the paper is organized as follows. In Section , we present some preliminaries

and lemmas that are to be used to prove our main results. In Section , we discuss the

existence and uniqueness positive solution of the BVP (.) and also construct successively

some sequences for approximating the unique positive solution. In Section , we give an

example to demonstrate the application of our theoretical results.

2 Preliminaries and lemmas

In this section, we present some definitions, lemmas, and basic results that will be used in

the article. For convenience of readers, we refer to [, , , ] for details.

Let (E,‖ · ‖) be a Banach space. We denote the zero element of E by θ . Recall that a

nonempty closed convex set P ⊂ E is a cone if it satisfies () x ∈ P, λ ≥  ⇒ λx ∈ P; () x ∈
P, –x ∈ P ⇒ x = θ . In this paper, suppose that (E,‖ · ‖) is a Banach space partially ordered

by a cone P ⊂ E, that is, x ≤ y if and only if y – x ∈ P.

For x,x ∈ E, the set [x,x] = {x ∈ E | x ≤ x ≤ x} is called the order interval between

x and x. For x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such

that λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > , we denote by Ph the

set Ph = {x ∈ P | x ∼ h}. It is easy to see that Ph ⊂ P is a component of P. A cone P is

called normal if there exists a constant N >  such that for all x, y ∈ E, θ ≤ x ≤ y implies

‖x‖ ≤ N‖y‖; the smallest such N is called the normality constant of P.

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function

x : (,∞)→R is given by

Iα+x(t) =


Ŵ(α)

∫ t



(t – s)α–x(s)ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of a con-

tinuous function x : (,∞)→R is given by

Dα
+x(t) =



Ŵ(n – α)

(

d

dt

)n ∫ t



x(s)

(t – s)α–n+
ds,

where n = [α] + , [α] denotes the integer part of the number α, provided that the right-

hand side is pointwise defined on (,∞).
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Definition . ([]) Suppose that (E,‖ · ‖) is a Banach space, P is a cone in E, and D⊂ P.

An operator A :D → P is said to be α-concave if there exists α ∈ (, ) such that

A(tx) ≥ tαAx, ∀t ∈ (, ),x ∈ D.

Definition . ([]) Suppose that (E,‖ · ‖) is a Banach space, P is a cone in E, andD⊂ P.

An operator B :D → P is said to be subhomogeneous if

B(tx)≥ tBx, ∀t ∈ (, ),x ∈D.

Definition . ([]) Suppose that (E,‖ · ‖) is a Banach space, P is a cone in E, andD⊂ P.

An operator A :D×D → P is said to be a mixedmonotone operator if A(x, y) is increasing

in x and decreasing in y, that is, for all xi, yi ∈D (i = , ), x ≤ x, y ≥ y imply A(x, y) ≤
A(x, y).

Lemma . ([]) Let α > . If x ∈ C(, )∩L(, ), then the fractional differential equation

Dα
+x(t) = 

has

x(t) = Ct
α– +Ct

α– + · · · +CN t
α–N , Ci ∈ R, i = , , . . . ,N ,

as the unique solution, where N = [α] + .

From the definition of the Riemann-Liouville derivative we obtain the following result.

Lemma . ([]) Assume that x ∈ C(, )∩L(, ) is a fractional derivative of order α > 

that belongs to C(, )∩ L(, ). Then

Iα+D
α
+x(t) = x(t) +Ct

α– +Ct
α– + · · · +CN t

α–N

for some Ci ∈R (i = , , . . . ,N ), where N = [α] + .

In the following, we present the Green function of the fractional differential equation

boundary value problem.

Lemma . ([]) Let M �=  and y ∈ C(, )∩ L(, ), n –  < α ≤ n. Then the problem

⎧

⎪

⎨

⎪

⎩

Dα
+x(t) + y(t) = ,  < t < ,

x() = x′() = · · · = x(n–)() = ,

x() =
∫ 


k(s)x(s)dA(s)

(.)

is equivalent to

x(t) =

∫ 



G(t, s)y(s)ds,
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where

G(t, s) =G(t, s) +
tα–

 –M
gA(s),

in which

G(t, s) =


Ŵ(α)

{

(t( – s))α– – (t – s)α–,  ≤ s ≤ t ≤ ,

(t( – s))α–,  ≤ t ≤ s≤ ,
(.)

M =

∫ 



tα–k(t)dA(t), gA(s) =

∫ 



G(t, s)k(t)dA(t).

Lemma . Let  ≤ M <  and gA(s) ≥  for s ∈ [, ]. Then the Green function G(t, s)

defined by (.) satisfies the following:

() G : [, ]× [, ] → [,∞) is continuous;

() For any t, s ∈ [, ], we have tα–

–M
gA(s)≤ G(t, s)≤ tα–

(–M)Ŵ(α)
( – s)α–.

Proof

() By Lemma . in [] we have that G : [, ]× [, ]→ [,∞) is continuous.

() From (.) we have

 ≤G(t, s)≤


Ŵ(α)

(

t( – s)
)α–

, ∀t, s ∈ [, ]. (.)

So for all t, s ∈ [, ], we have

tα–

 –M
gA(s) ≤ G(t, s) =G(t, s) +

tα–

 –M
gA(s)

≤ tα–
(



Ŵ(α)
( – s)α– +



 –M
gA(s)

)

. (.)

By (.) it is obvious that

gA(s) =

∫ 



G(t, s)k(t)dA(t)

≤
∫ 





Ŵ(α)
tα–( – s)α–k(t)dA(t)

=


Ŵ(α)
( – s)α–

∫ 



tα–k(t)dA(t)

=
M

Ŵ(α)
( – s)α–.

Thus, for all t, s ∈ [, ], we have

tα–

 –M
gA(s) ≤ G(t, s) =G(t, s) +

tα–

 –M
gA(s)≤

tα–

( –M)Ŵ(α)
( – s)α–. (.)

�

Taking A : Ph × Ph → Ph, B : Ph → Ph in Theorem . in [] and Corollary . in [],

and also taking A : Ph × Ph → Ph, B : Ph → Ph, C = θ ϕ(t) = tγ in Corollary . in [], it is

easy to get the following lemma.
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Lemma . Let (E,‖ · ‖) be a Banach space, and P be a normal cone in E. Suppose that

there exist h ∈ P and h > θ such that A : Ph × Ph → Ph is a mixed monotone operator and

B : Ph → Ph is a decreasing operator satisfying the following conditions:

() There exists γ ∈ (, ) such that A(tx, t–y) ≥ tγA(x, y), t ∈ (, ), x, y ∈ Ph.

() B(t–y) ≥ tBy, t ∈ (, ), y ∈ Ph.

() There exists a constant δ >  such that A(x, y) ≥ δBy, ∀x, y ∈ Ph.

Then the operator equation A(x,x) + Bx = x has a unique solution x∗ ∈ Ph, and for any

initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Byn–, yn = A(yn–,xn–) + Bxn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n→ ∞.

3 Main result

Theorem . Assume that the following conditions hold.

(H) p,q : (, ) → [,∞) are continuous, and p(t), q(t) are allowed to be singular at t = 

or t = .

(H) f : (, )× (,∞)× (,∞) → [,∞), g : (, )× (,∞)→ [,∞) are continuous, and

f (t,u, v), g(t, v) may be singular at t =  and v = .

(H) For fixed t ∈ (, ), and v ∈ (,∞), f (t,u, v) is increasing in u ∈ (,∞); for fixed t ∈ (, )

and u ∈ (,∞), f (t,u, v) is decreasing in v ∈ (,∞); and for fixed t ∈ (, ), g(t, v) is

decreasing in v ∈ (,∞).

(H) There exists a constant γ ∈ (, ) such that for all λ, t ∈ (, ) and u, v ∈ (,∞),

f
(

t,λu,λ–v
)

≥ λγ f (t,u, v), g
(

t,λ–v
)

≥ λg(t, v). (.)

(H)
∫ 


( – s)α–p(s)sγ (–α)f (s, , )ds < ∞ and

∫ 


( – s)α–q(s)s–αg(s, )ds < ∞.

(H) There exists a constant δ >  such that, for all t ∈ (, ) and u, v ∈ (,∞), f (t,u, v) ≥
δg(t, v).

Then the singular fractional differential equation (.) has a unique positive solution x∗,

which satisfies atα– ≤ x∗(t) ≤ btα–, t ∈ [, ], for two constants a,b > .Moreover, for any

initial values x, y ∈ Ph, h = tα–, the sequences {xn}, {yn} of successive approximations

defined by

xn(t) =

∫ 



G(t, s)p(s)f
(

s,xn–(s), yn–(s)
)

ds +

∫ 



G(t, s)q(s)g
(

s, yn–(s)
)

ds,

yn(t) =

∫ 



G(t, s)p(s)f
(

s, yn–(s),xn–(s)
)

ds +

∫ 



G(t, s)q(s)g
(

s,xn–(s)
)

ds,

n = , , . . . ,

both convergence uniformly to x∗ on [, ] as n→ ∞.

Proof Let E = C[, ] and ‖u‖ = sup≤t≤ |u(t)|. Obviously, (E,‖ · ‖) is a Banach space. Let

P = {u ∈ E : u(t)≥ , t ∈ [, ]}, and h(t) = tα–. Define

Ph =

{

x ∈ C[, ]
∣

∣

∣
∃D≥  :



D
tα– ≤ x(t)≤ Dtα–, t ∈ [, ]

}

.
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Then P is a cone of E, and Ph is a component of P. From Lemma . we have that x(t) is

the solution of the singular fractional differential equations (.) if and only if it satisfies

the following integral equation:

x(t) =

∫ 



G(t, s)
[

p(s)f
(

s,x(s),x(s)
)

+ q(s)g
(

s,x(s)
)]

ds

=

∫ 



G(t, s)p(s)f
(

s,x(s),x(s)
)

ds +

∫ 



G(t, s)q(s)g
(

s,x(s)
)

ds,

where G(t, s) is given in Lemma .. Define two operators A : Ph × Ph → P and B : Ph → P

by

A(x, y)(t) =

∫ 



G(t, s)p(s)f
(

s,x(s), y(s)
)

ds, By(t) =

∫ 



G(t, s)q(s)g
(

s, y(s)
)

ds,

respectively. Then it is easy to prove that x is the solution of the singular fractional differ-

ential equations (.) if it satisfies x = A(x,x) + Bx.

() Firstly, we show that A, B are well defined. From (H) we have that, for all λ ∈ (, ),

t ∈ (, ), and u, v ∈ (,∞),

f (t,u, v) = f
(

t,λλ–u,λ–λv
)

≥ λγ f
(

t,λ–u,λv
)

, (.)

g(t, v) = g
(

t,λ–λv
)

≥ λg(t,λv). (.)

So by (.), for all λ ∈ (, ), t ∈ (, ), and u, v ∈ (,∞), we have

f
(

t,λ–u,λv
)

≤ λ–γ f (t,u, v), g(t,λv)≤ λ–g(t, v). (.)

Taking u = v =  in (.), (.), and (.), we have

f
(

t,λ,λ–
)

≥ λγ f (t, , ), f
(

t,λ–,λ
)

≤ λ–γ f (t, , ), ∀λ ∈ (, ), t ∈ (, ), (.)

g
(

t,λ–
)

≥ λg(t, ), g(t,λ)≤ λ–g(t, ), ∀λ ∈ (, ), t ∈ (, ). (.)

For any x, y ∈ Ph, we can choose a constant D ≥  such that 
D
tα– ≤ x, y ≤ Dt

α–, t ∈
[, ]. On the one hand, from (H), (H), (.), and (.) we have

f
(

t,x(t), y(t)
)

≤ f
(

t,Dt
α–,D–

 tα–
)

≤ f
(

t,Dt
–α ,D–

 tα–
)

≤ tγ (–α)f
(

t,D,D
–


)

≤ tγ (–α)D
γ

 f (t, , ), t ∈ (, ), (.)

f
(

t,x(t), y(t)
)

≥ f
(

t,D–
 tα–,Dt

α–
)

≥ f
(

t,D–
 tα–,Dt

–α
)

≥ tγ (α–)f
(

t,D–
 ,D

)

≥ tγ (α–)D
–γ

 f (t, , ), t ∈ (, ). (.)

On the other hand, from (H), (H), (.), and (.), we get

g
(

t, y(t)
)

≤ g
(

t,D–
 tα–

)

≤ t–αg
(

t,D–


)

≤ t–αDg(t, ) ≤ t–αD
g(t, ), t ∈ (, ), (.)
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g
(

t, y(t)
)

≥ g
(

t,Dt
α–

)

≥ g
(

t,Dt
–α

)

≥ tα–g(t,D)

≥ tα–D–
 g(t, ) ≥ tα–D–

 g(t, ), t ∈ (, ). (.)

By (H), (.), and (.) we get that

∫ 



G(t, s)p(s)f
(

s,x(s), y(s)
)

ds

≤
∫ 



G(t, s)p(s)sγ (–α)D
γ

 f (s, , )ds

≤
tα–

( –M)Ŵ(α)

∫ 



( – s)α–p(s)sγ (–α)D
γ

 f (s, , )ds

<∞, (.)

∫ 



G(t, s)q(s)g
(

s, y(s)
)

ds

≤
∫ 



G(t, s)q(s)s–αD
g(s, )ds

≤
tα–

( –M)Ŵ(α)

∫ 



( – s)α–q(s)s–αD
g(s, )ds

<∞. (.)

FromLemma . we have thatG : [, ]× [, ]→ [,∞) is continuous. SoA : Ph ×Ph → P

and B : Ph → P are well defined.

() Secondly, we prove that A : Ph × Ph → Ph and B : Ph → Ph. Let D ≥  be such that

D > max

{



( –M)Ŵ(α)

∫ 



( – s)α–p(s)sγ (–α)D
γ

 f (s, , )ds,

(



 –M

∫ 



gA(s)p(s)s
γ (α–)D

–γ

 f (s, , )ds

)–

,



( –M)Ŵ(α)

∫ 



( – s)α–q(s)s–αD
g(s, )ds,

(



 –M

∫ 



gA(s)q(s)s
α–D–

 g(s, )ds

)–}

.

Then from Lemma . and (.) and (.), for all t ∈ [, ], x, y ∈ Ph, we have

A(x, y)(t) =

∫ 



G(t, s)p(s)f
(

s,x(s), y(s)
)

ds

≤
∫ 



G(t, s)p(s)sγ (–α)D
γ

 f (s, , )ds

≤
tα–

( –M)Ŵ(α)

∫ 



( – s)α–p(s)sγ (–α)D
γ

 f (s, , )ds

≤ Dtα–,
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A(x, y)(t) =

∫ 



G(t, s)p(s)f
(

s,x(s), y(s)
)

ds

≥
∫ 



G(t, s)p(s)sγ (α–)D
–γ

 f (s, , )ds

≥
tα–

 –M

∫ 



gA(s)p(s)s
γ (α–)D

–γ

 f (s, , )ds

≥


D
tα–,

By(t) =

∫ 



G(t, s)q(s)g
(

s, y(s)
)

ds

≤
∫ 



G(t, s)q(s)s–αD
g(s, )ds

≤
tα–

( –M)Ŵ(α)

∫ 



( – s)α–q(s)s–αD
g(s, )ds

≤ Dtα–,

By(t) =

∫ 



G(t, s)q(s)g
(

s, y(s)
)

ds

≥
∫ 



G(t, s)q(s)sα–D–
 g(s, )ds

≥
tα–

 –M

∫ 



gA(s)q(s)s
α–D–

 g(s, )ds

≥


D
tα–.

So A : Ph × Ph → Ph and B : Ph → Ph.

() Next, by (H) it is easy to prove that A is a mixed monotone operator and B is an

decreasing operator.

() From (H), for any t ∈ [, ] and x, y ∈ Ph, we have

A
(

λx,λ–y
)

(t) =

∫ 



G(t, s)f
(

s,λx(s),λ–y(s)
)

ds ≥ λγ

∫ 



G(t, s)f
(

s,x(s), y(s)
)

ds

= λγA(x, y)(t),

B
(

λ–y
)

(t) =

∫ 



G(t, s)g
(

s,λ–y(s)
)

ds≥ λ

∫ 



G(t, s)g
(

s, y(s)
)

ds = λBy(t),

that is, A(λx,λ–y)(t) ≥ λγA(x, y)(t), B(λ–y)(t) ≥ λBy(t) for all t ∈ [, ], x, y ∈ Ph.

() By (H), for all t ∈ [, ], x, y ∈ Ph,

A(x, y)(t) =

∫ 



G(t, s)f
(

s,x(s), y(s)
)

ds

≥ δ

∫ 



G(t, s)g
(

s, y(s)
)

ds

= δBy(t).

Then by Lemma . the conclusions of Theorem . hold. �
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Remark . The fractional differential equation with Riemann-Stieltjes integral condi-

tions considered in Theorem . is singular, that is, f (t,u, v) has singularity at t =  or

t =  and v = , and g(t, v) has singularity at t =  or t =  and v = , which generalizes and

improves the known results for continuous functions in [, –].

Remark . The function g(t, v) we considered in Theorem . is decreasing and has sin-

gularity at t =  or t =  and v = , which generalizes and improves the results in [].

Remark . Comparing with the main results in [, ], the nonlinear fractional differ-

ential equation we considered is also continuous. However, we get the iterative positive

solutions for boundary value problem (.) by using the fixed point theorem of the mixed

monotone operator, which generalizes and improves the results including singular and

nonsingular cases in [, –].

4 An example

Let α = 

, p(t) = q(t) = t–


 , f (t,u, v) = 

√

u
tv
+ √

tv
, g(t, v) = √

tv(v+)
.

() It is obvious that p(t), q(t) are singular at t = . The functions f : (, ) × (,∞) ×
(,∞) → [,∞) and g : (, ) × (,∞) → [,∞) are continuous. So the conditions (H)

and (H) hold.

() It is obvious that, for fixed t ∈ (, ) and v ∈ (,∞), f (t,u, v) is increasing in u ∈ (,∞),

for fixed t ∈ (, ) and u ∈ (,∞), f (t,u, v) is decreasing in v ∈ (,∞), and, for fixed t ∈
(, ), g(t, v) is decreasing in v ∈ (,∞).

() Taking γ = 


∈ (, ), for all t ∈ (, ) and u, v ∈ (,∞), we have

f
(

t,λu,λ–v
)

=


√

λu

tλ–v
+


√
tλ–v

≥ λ

 

√

u

tv
+ λ





√
tv

≥ λ



(



√

u

tv
+


√
tv

)

= λγ f (t,u, v),

and, for all t ∈ (, ) and v ∈ (,∞),

g
(

t,λ–v
)

=


√

tλ–v(λ–v + )
≥ λ


√
tv(v + )

= λg(t, v).

() It is easy to prove that

∫ 



( – s)α–p(s)sγ (–α)f (s, , )ds =

∫ 



( – s)

 s–


 s


×(– 

 )
(

s–

 + s–



)

ds < ∞,

∫ 



( – s)α–q(s)s–αg(s, )ds =

∫ 



( – s)

 s–


 s–


 (s)–


 ds <∞.

() Take δ =  >  such that, for all t ∈ (, ), u, v ∈ (,∞),

f (t,u, v) = 

√

u

tv
+


√
tv

≥


√
tv

≥


√
tv(v + )

= g(t, v).

Therefore, the assumptions of Theorem . are satisfied. Thus, the conclusions follow

from Theorem ..
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7. Lazarević, MP, Spasić, AM: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach.

Math. Comput. Model. 49(3-4), 475-481 (2009)

8. Podlubny, I: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications, xxiv+340 pp. (1999)

9. Yuan, C: Existence and uniqueness of positive solutions of boundary value problems for coupled systems of singular

second-order three-point non-linear differential and difference equations. Appl. Anal. 87(8), 921-932 (2008)

10. Li, H, Liu, L, Wu, Y: Positive solutions for singular nonlinear fractional differential equation with integral boundary

conditions. Bound. Value Probl. 2015, 232 (2015)

11. Nanware, JA, Dhaigude, DB: Existence and uniqueness of solutions of Riemann-Liouville fractional differential

equation with integral boundary condition. Int. J. Nonlinear Sci. 14(4), 410-415 (2012)

12. Nanware, JA, Dhaigude, DB: Existence and uniqueness of solutions of differential equations of fractional order with

integral boundary conditions. J. Nonlinear Sci. Appl. 7, 246-254 (2014)

13. Sun, Y, Zhao, M: Positive solutions for a class of fractional differential equations with integral boundary conditions.

Appl. Math. Lett. 34, 17-21 (2014)

14. Wang, T, Xie, F: Existence and uniqueness of fractional differential equations with integral boundary conditions.

J. Nonlinear Sci. Appl. 1(4), 206-212 (2008)

15. Zhang, X, Wang, L, Sun, Q: Existence of positive solutions for a class of nonlinear fractional differential equations with

integral boundary conditions and a parameter. Appl. Math. Comput. 226, 708-718 (2014)

16. Zhai, C, Hao, M: Fixed point theorems for mixed monotone operators with perturbation and applications to fractional

differential equation boundary value problems. Nonlinear Anal., Theory Methods Appl. 75(4), 2542-2551 (2012)

17. Jleli, M, Samet, B: Existence of positive solutions to an arbitrary order fractional differential equation via a mixed

monotone operator method. Nonlinear Anal., Model. Control 20, 367-376 (2015)

18. Wang, Y, Liu, L, Wu, Y: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal., Theory

Methods Appl. 74(11), 3599-3605 (2011)

19. Yuan, C, Wen, X, Jiang, D: Existence and uniqueness of positive solution for nonlinear singular 2mth-order continuous

and discrete Lidstone boundary value problems. Acta Math. Sci. 31(1), 281-291 (2013)

20. Zhao, Y, Chen, H, Huang, L: Existence of positive solutions for nonlinear fractional functional differential equation.

Comput. Math. Appl. 64(10), 3456-3467 (2012)

21. Lomtatidze, A, Malaguti, L: On a nonlocal boundary value problem for second-order nonlinear singular differential

equations. Georgian Math. J. 7(1), 133-154 (2000)

22. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integral and Derivative: Theory and Applications (1993)

23. Wang, H, Zhang, L: The solution for a class of sum operator equation and its application for fractional differential

equation boundary value problems. Bound. Value Probl. 2015, 203 (2015)

24. Guo, DJ, Cho, YJ, Zhu, J: Partial Ordering Methods in Nonlinear Problems. Nova Science Publishers, Inc., New York

(2004)

25. Liu, L, Zhang, X, Jiang, J, Wu, Y: The iterative unique solution for a class of sum mixed monotone operator equation

and its application for fractional differential equation boundary value problems. J. Nonlinear Sci. Appl. 9, 2943-2958

(2016)

26. Zhang, X, Liu, L, Wu, Y: Fixed point theorems for the sum of three classes of mixed monotone operators and

applications. Fixed Point Theory Appl. 2016, 49 (2016)

27. Li, S, Zhai, C: New existence and uniqueness results for an elastic beam equation with nonlinear boundary

conditions. Bound. Value Probl. 2015, 104 (2015)

28. Tan, J, Cheng, C: Fractional boundary value problems with Riemann-Liouville fractional derivatives. Adv. Differ. Equ.

2015, 80 (2015)

29. Yang, C, Zhai, C, Hao, M: Existence and uniqueness of positive periodic solutions for a first-order functional differential

equation. Adv. Differ. Equ. 2015, 5 (2015)

30. Zhang, X, Liu, L, Wu, Y: The uniqueness of positive solutions for a fractional order model of turbulent flow in a porous

medium. Appl. Math. Lett. 37, 26-33 (2014)



Liu et al. Advances in Difference Equations  ( 2016)  2016:154 Page 13 of 13

31. Cui, Y, Liu, L, Zhang, X: Uniqueness and existence of positive solutions for singular differential systems with coupled

integral boundary value conditions. Abstr. Appl. Anal. 2013, 340487 (2013)

32. Zhang, X, Liu, L, Wiwatanapataphee, B, Wu, Y: The eigenvalue for a class of singular p-Laplacian fractional differential

equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412-422 (2014)

33. Wang, Y, Liu, L, Zhang, X, Wu, Y: Positive solutions for (n – 1, 1)-type singular fractional differential system with

coupled integral boundary conditions. Abstr. Appl. Anal. 2014, 142391 (2014)


	Iterative positive solutions for singular nonlinear fractional differential equation with integral boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and lemmas
	Main result
	An example
	Competing interests
	Authors' contributions
	Acknowledgements
	References


