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Abstract

Background: Many gene expression normalization algorithms exist for Affymetrix GeneChip microarrays. The most

popular of these is RMA, primarily due to the precision and low noise produced during the process. A significant

strength of this and similar approaches is the use of the entire set of arrays during both normalization and

model-based estimation of signal. However, this leads to differing estimates of expression based on the starting set

of arrays, and estimates can change when a single, additional chip is added to the set. Additionally, outlier chips

can impact the signals of other arrays, and can themselves be skewed by the majority of the population.

Results: We developed an approach, termed IRON, which uses the best-performing techniques from each of

several popular processing methods while retaining the ability to incrementally renormalize data without altering

previously normalized expression. This combination of approaches results in a method that performs comparably to

existing approaches on artificial benchmark datasets (i.e. spike-in) and demonstrates promising improvements in

segregating true signals within biologically complex experiments.

Conclusions: By combining approaches from existing normalization techniques, the IRON method offers several

advantages. First, IRON normalization occurs pair-wise, thereby avoiding the need for all chips to be normalized

together, which can be important for large data analyses. Secondly, the technique does not require similarity in

signal distribution across chips for normalization, which can be important for maintaining biologically relevant

differences in a heterogeneous background. Lastly, IRON introduces fewer post-processing artifacts, particularly in

data whose behavior violates common assumptions. Thus, the IRON method provides a practical solution to

common needs of expression analysis. A software implementation of IRON is available at [http://gene.moffitt.org/

libaffy/].
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Background
An important first step of any microarray experiment is

the normalization of the samples. Although the relative

impacts differ from platform to platform and sample

preparation, non-biological differences in microarray sig-

nals can stem from a variety of factors, such as: global

constant background noise, non-specific binding signal,

non-linear signal response between samples, bad spots

on the chip due to dust or bubbles or rare manufactur-

ing defects, labeling efficiency, hybridization efficiency,

and RNA quality. While some can be difficult or impos-

sible to detect and correct for computationally, most can

be addressed to some extent by how the raw data is

processed in order to yield the final transcript intensities.

Thus, the methods used to post-process the raw data

can have a large impact on the final biological signal.

We also here want to make a clear distinction between

what is commonly called “batch-effects” and the kind of

variance that should be minimized with a good

normalization method. Batch effects are as real as any

biological signal, and are indistinguishable from bio-

logical signal without post-normalization interpretation

of experiment-related metadata. As such, they are not

suitable for removal by chip normalization methods.

There are other tools which specifically focus on remo-

ving batch effect after initial chip post-processing, such

as COMBAT [1], and our focus in this manuscript will

be on removing non- batch-related technical variation.* Correspondence: Eric.Welsh@moffitt.org
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The three most commonly used software packages for

processing Affymetrix microarrays, as evidenced by

recently querying the GEO [2] and ArrayExpress [3]

microarray repositories, are: RMA [4], MAS5 [5], and

dChip [6]. Each of these employs different methods for

background subtraction, signal normalization, and

probeset summarization (an issue unique to Affymetrix

arrays, where multiple probes for the same transcript are

condensed into a single representative signal). A flow-

chart of these pipelines is given in Figure 1. There are

various theoretical and empirical advantages and disad-

vantages to the various steps in each processing pipeline,

many of which have been discussed previously [7,8], and

will be further discussed below.

We present here a new pipeline, IRON (Iterative

Rank-Order Normalization), which combines what we

consider the most desirable steps of each pipeline, and

further improves upon the normalization approach of

dChip. We introduce a novel method for normalization

of Affymetrix arrays based on rank-invariant probesets,

combined with steps from both the RMA and MAS5

pipelines (Figure 1). Our design goals for IRON include

(1) the ability to incrementally normalize additional data,

(2) the ability to process as few as two chips without nega-

tively impacting quality, (3) provide robust normalization

under noisy or systematic effects as commonly seen in

biologically complex datasets (e.g., samples with a complex

or heterogeneous background), and (4) efficiently handle

large numbers of samples. IRON seeks to avoid limitations

of existing algorithms where possible, and selects the algo-

rithm that best incorporates our design goals. Each step of

the normalization and summarization algorithm is moti-

vated by empirical examples and demonstrates the utility

of the IRON approach.

This pipeline is implemented in the freely available

libaffy C library and associated applications. A generic

pipeline, lacking Affymetrix-specific modules, is also

provided for use on non-Affymetrix datasets.

Results and discussion
RMA background subtraction does not introduce

low-intensity variability

The choice of background subtraction methodology can

have a large impact on the final processed signal inten-

sities. For Affymetrix arrays, MM (mis-match) probes

differ from PM (perfect match) probes by a single base

in the center of the 25-mer. These probes were originally

intended for use in estimating non-specific binding sig-

nal. However, the subtraction of MM intensities from

PM intensities, exemplified by MAS5, has been shown

to be less than optimal, due to the amount of target-

gene specific binding present in the presumably non-

specific MM signal [4]. Although Choe et al. [7] and

Irizarry et al. [8] arrived at opposite conclusions regard-

ing the suitability of MAS5 background subtraction, this

can largely be explained by differences in the method-

ology used to determine differentially expressed genes.

Both manuscripts agree that MAS5 background subtrac-

tion introduces high variability into low-intensity probes,

which agrees with subjective visual inspection of resul-

ting probeset scatterplots (Figure 2B).

RMA background subtraction deconvolves, in log2-

space, a low-intensity normally distributed background

from an exponentially decaying signal, ignoring the MM

probes entirely. The assumption of normal and exponen-

tial background and signal distributions generally holds

in practice, is justified from physical binding consider-

ations, and the resulting background-subtracted signals

preserve the overall shape and patterns of the unpro-

cessed scatterplots without introducing additional low-

intensity variability (Figure 2D). dChip uses a probeset-

level probe-specific background model (MBEI), trained

from all chips within a dataset, and defaults to using

MM-subtracted PM intensities. As a result of the model-

based approach, this method generates differing results

depending on the populations of chips processed to-

gether. Although it is comparable to either MAS5 or

Figure 1 Comparison of MAS5, RMA, dChip, and IRON microarray post-processing pipelines. IRON combines components of both MAS5

and RMA, substituting a novel pair-wise iterative rank-order normalization method for normalization steps.
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RMA [7,8] in spike-in experiments, dChip does not

support background subtraction prior to probe-level

normalization and probeset summarization. Thus, RMA

background subtraction was chosen for use in IRON,

due to its non-specific binding signal deconvolution

methodology, lack of introduced noise, and chip

independence.

Pair-wise iterative rank-order normalization minimizes

introduced artifacts in biologically complex data

There are three major normalization methods that are

commonly employed: linear scaling (MAS5), quantile

normalization (RMA), and pair-wise rank-invariant

normalization (dChip). Linear normalization is the sim-

plest of the methods, which applies a global scaling

Figure 2 Effect of background subtraction method on probeset distributions. Color denotes spatial density (red: high, blue: low). Raw

unprocessed log10 probe signal intensities are plotted in (A). MAS5 probesets (B) exhibit a markedly different distribution than the underlying

probe-level data, with a large increase in variance at low intensities due to MM subtraction. dChip probesets (C) are similar to those of MAS5,

despite the large difference in probeset summarization methodology, due to similar use of mis-match probe subtraction. IRON probesets

(D), due to the use of RMA background subtraction, exhibit a distribution similar to that of the underlying probe-level data. RMA probesets

(data not shown) produce a distribution highly similar to that of IRON, due to shared background subtraction methodology.
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factor to each chip (at the probeset level in MAS5) in

order to scale all chips to the same trimmed mean inten-

sity. Quantile normalization ranks the intensities for each

chip, then replaces the intensities at each rank with the

mean intensity for all probes of that rank across all chips,

effecting a non-linear rank-dependent normalization. Pair-

wise rank-invariant normalization normalizes all chips

against a single reference chip by identifying a different

subset of rank-invariant genes for each sample/reference

chip pair, fitting a curve through the training set, then

adjusting the intensities of the target chip in an intensity-

dependent manner so that the fit curve will lie on the

sample vs. reference diagonal of the scatterplot.

Linear normalization is unable to correct for non-

linear, intensity-dependent differences in gene expres-

sion between chips, but can be applied to a single chip,

independently of other chips. Quantile normalization as-

sumes that differential gene expression is symmetric, in

that there will be a roughly equal number of up and

down regulated genes with equal magnitude distribu-

tions. Due to its population-based signal, it requires a

moderately large number of chips in order to work well,

and may introduce unexpected artifacts, particularly in

outlier samples, in small experiments, or experiments in

which different cell/tissue types are represented. Rank-

invariant normalization makes similar assumptions to

those of quantile normalization, since both are rank

based, but can be applied to as few as two chips.

Since linear normalization performs the least amount

of manipulation to the original data, it is arguably the

least destructive when its assumptions are violated.

Quantile and rank-invariant normalization perform well

when the symmetric distribution assumption holds, but

can dramatically distort the data when this assumption

is violated (Figure 3F). IRON normalization attempts to

provide as flexible a solution as linear and traditional

Figure 3 IRON normalization. Scatterplots of log10 non- background-subtracted probe intensities are used to demonstrate the IRON

normalization algorithm. Points are colored by density (red: high, blue: low) in A, D, E, F. Initial points (A), are filtered in (B) to remove extreme

low- and high- intensity points (grey). Iterative rank-order pruning (B) further removes outlier points at each iteration (red: high %Δ rank, blue:

low %Δ rank), leaving the final training set (magenta) differing by ≤ 1 %Δ rank. Sparsely sampled regions (red) within the training set are

up-weighted in (C), prior to fitting a smoothed piece-wise linear curve (green) in (D). Non-linear intensity-dependent scaling is applied to the

sample (GSM467826) using the fit curve, so as to shift the fit curve onto the X,Y diagonal (E). The non-linear scaling resulting from quantile

normalization (F), is unable to cope with the asymmetry between the samples, effectively fitting a line (diagonal in green) between the highest

density distribution and the lesser density subpopulation, resulting in greater non-linear distortion than originally present in the unprocessed

data.
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rank-invariant normalization, which are not limited to

large homogenous datasets, while minimizing errors in-

troduced from violations of the underlying assumptions

of the algorithm.

Large numbers of genes changing in a single direction,

and/or large magnitudes of change in one direction, dis-

place the ranks of unchanged genes, causing the

unchanged genes to exhibit large changes in rank. This

is evident in Figure 3, where ~10% of the probes are

highly up-regulated in sample GSM467526 of GEO [2]

dataset GSE18864, creating an upper “arm”. Both

traditional fixed-cutoff rank-invariant fitting (Additional

file 1: Figure S1A), as well as quantile normalization

(Figure 3F), effectively fit a line passing between the true

high density diagonal and the secondary distribution

arm. IRON iteratively decreases the rank difference cut-

off, starting at the maximum observed difference in the

dataset, until convergence to a set of probes that differ

by ≤ 1% rank. This differs from previously described it-

erative rank-invariant methods, which iterate a fixed cut-

off, or, in the case of dChip, a narrow range of strict

cutoffs, until convergence. The iterative use of a grad-

ually more stringent cutoff largely eliminates the prob-

lem of asymmetric changes inducing false-positive shifts

in rank, since most of the offending outlier points are it-

eratively discarded before they can negatively impact the

final rank-order analysis (Figure 3B). Interestingly,

dChip, despite its average-rank dependent cutoff be-

tween 0.3%–0.7%, produced results that were more simi-

lar to IRON than to fixed-cutoff rank-invariant

normalization (Additional file 1: Figure S1).

To observe the effects of background subtraction

(specifically, RMA background subtraction) on probe-

level normalization, we also examined normalization as

it would occur within the IRON and RMA pipelines

(Additional file 2: Figure S2). The same effects of

violation of the symmetry assumption are observed in

the background-subtracted figures as in the non-

background-subtracted figure (Figure 3, Additional

file 2: Figure S2). Since dChip subtracts background after

probe-level normalization, and MAS5 normalizes at

the probeset level, background-subtracted probe-level

normalization comparisons are not applicable.

MAS5 probeset summarization reduces both false-

correlation and removal of biological signal

Probesets, often a collection of 10 or more PM/MM

probe pairs, must be summarized into a single intensity

value representative of the behavior of the set of probes

as a whole, which reflects the expression of the target

transcript. The most commonly used approaches are

Tukey’s Biweight (MAS5) and Median Polish (RMA).

Tukey’s Biweight is a weighted average of the individual

log2 probe intensities, down-weighting probes more

distant from the median of the probeset. This should be

more tolerant of outlier probes/spots than an

unweighted average [5]. RMA probeset summarization

fits a linear additive model of signal + probe-affinity +

error terms, using Median Polish to estimate the model

parameters for each probeset across all chips. Giorgi

et al. [9] have shown that RMA probeset summarization

introduces false correlation, via the median polish pro-

cedure in high variability probesets yielding identical

values across chips.

Additionally, we have observed that median polish

often blurs the differences between biologically distinct

groups of samples. This is exemplified in Figure 4, where

we compare the results from a Principle Component

Analysis (PCA) on the same dataset using four different

post-processing pipelines: IRON, dChip, MAS5, and

RMA. The separation between the two classes is com-

pletely in the first principle component for the IRON

and MAS5 normalized data, while the separation of the

two classes is spread between both components one and

two for the dChip and RMA normalized data. dChip

separates the samples similarly to IRON, suggesting that

MBEI may not remove as much variation as median pol-

ish. Substituting median polish probeset summarization

into the IRON pipeline produces a similar result to that

seen for RMA (data not shown), indicating that median

polish probeset summarization may degrade biological

signal. This, together with the findings of Giorgi et al.

[9], suggests that median polish may be overcorrecting

by removing biologically-derived variation in addition to

technically-derived variation. Given the undesirable

behaviors of lack of chip-independence, introduction of

false-correlation, and removal of biological signal,

Tukey’s Biweight was chosen over median polish as the

default IRON probeset summarization method.

Probeset-level normalization corrects further intensity-

dependent differences

Regardless of the background subtraction, probe-level

normalization, and probeset summarization method

used, we have observed that the resulting probeset

intensities often exhibit similar patterns of non-linear

intensity-dependent differences in signal levels as

those of their underlying raw unprocessed data. Choe

et al. [7] also commented on the high frequency of

this occurrence, and demonstrated marked improve-

ment in signal quality by applying an additional pass

of pair-wise normalization at the probeset level. We

observed similar positive effects, both visually and

biologically (data not shown). Thus, IRON performs

a final pass of pair-wise normalization at the

probeset level, after all other processing has been

performed.
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Comparison of techniques on spike-in benchmarks

The Affycomp III [10] and Golden Spike [7] spike-in

benchmarks were used to compare the IRON pipeline to

existing techniques. The Affycomp spike-ins are a small

number of symmetrically altered transcript concentra-

tions in a common background, with little normalization

required between samples. The Golden Spike experi-

ment, on the other hand, spikes in uni-directionally

varying concentrations of 1309 out of 3860 transcripts

(34%), resulting in significant violations of the symmetry

assumption inherent to many normalization methods.

As such, differences in Affycomp metrics may be driven

by choice of background subtraction and probeset

summarization methodology, while differences in the

Golden Spike dataset results are driven by the ability of

the normalization method to cope with violations of the

symmetry assumption [11].

Due to its combination of RMA background subtrac-

tion and Tukey’s Biweight probeset summarization,

IRON performs somewhere between MAS5 and RMA

in the Affycomp benchmark (Table 1). IRON is closer

to RMA performance for metrics dominated by back-

ground subtraction (e.g. Median SD), and closer to

MAS5 in metrics dominated by probeset summarization

(e.g. AUC). The IRON approach thus performs similarly

in Affycomp to MAS5, RMA, and dChip. AUC measure-

ments of spike-in detection on the Golden Spike experi-

ment (Figure 5) show IRON as the top-performer

(AUC = 0.898), followed closely by dChip (0.890). Both

IRON and dChip perform noticeably better than MAS5

Figure 4 Principle component analysis. Lung adenocarcinoma derived samples (triangles) separate from small-cell derived samples (circles).

Replicate outliers are designated by their respective unfilled shapes. (A) IRON normalized; adenocarcinoma samples cleanly separate from

small-cell samples along the first principle component. Biological separation is captured almost entirely by the first principle component, with

negligible separation along the second component. Outlier replicate samples group with their respective cohort. (B) dChip normalized; results are

similar to those of IRON, but separation of the two groups is slightly less clean, and the small-cell outlier is on the adenocarcinoma side of the

first principle component. (C) MAS5 normalized; adenocarcinoma and small-cell samples cleanly separate from one another, together with their

respective outlier samples. Two distinct sub-clusters are evident in both the adenocarcinoma and small-cell derived samples, which are not

observed in the results from other methods. (D) RMA normalized; adenocarcinoma and small-cell samples do not separate well along the first

component, requiring a combination of both the first and second components to achieve separation. Replicate outlier samples group with

themselves, rather than with their respective biological cohorts.
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Table 1 Affycomp III results

HG-U95a HG-U133a

Metric # Metric Name MAS5-apt IRON RMA-apt dChip MAS5-apt IRON RMA-apt dChip

1 Median SD 0.59 0.20 0.11 0.32 0.29 0.14 0.07 0.20

2 null log-fc IQR 0.84 0.33 0.19 0.38 0.47 0.24 0.13 0.26

3 null log-fc 99.9% 4.46 1.59 0.57 10.83 4.01 1.42 0.40 9.61

4 Signal detect R2 0.86 0.82 0.80 0.61 0.91 0.90 0.90 0.65

5 Signal detect slope 0.71 0.67 0.63 0.91 0.77 0.69 0.68 0.98

6 low.slope 0.69 0.44 0.35 1.17 0.65 0.41 0.31 1.29

7 med.slope 0.81 0.82 0.76 0.87 0.71 0.68 0.71 0.75

8 high.slope 0.45 0.50 0.47 0.34 0.77 0.83 0.80 0.69

9 Obs-intended-fc slope 0.69 0.66 0.61 0.87 0.77 0.69 0.68 0.99

10 Obs-(low)int-fc slope 0.65 0.44 0.36 1.68 0.64 0.40 0.31 1.17

11 low AUC 0.00 0.03 0.40 0.04 0.00 0.08 0.51 0.08

12 med AUC 0.00 0.03 0.87 0.00 0.00 0.10 0.88 0.00

13 high AUC 0.00 0.00 0.46 0.00 0.00 0.13 0.93 0.00

14 weighted avg AUC 0.00 0.03 0.52 0.03 0.00 0.08 0.60 0.06

IRON generally performs in-between MAS5 and RMA, as expected, due to the mix of RMA background subtraction (RMA) and Tukey’s Biweight probeset

summarization (MAS5). Metrics 1–10 are closer to RMA due to the use of RMA background subtraction, while metrics 11–14 are closer to MAS5 due to the use of

Tukey’s Biweight probeset summarization.

Figure 5 Golden Spike experiment. Post-processing pipelines involving pair-wise rank-invariant normalization methods (IRON: black, dChip: red)

outperform methods that employ linear scaling (MAS5: green) or quantile normalization (RMA: blue).
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(0.712) and RMA (0.703). Due to the asymmetric prop-

erties of the Golden Spike dataset, the performance of

IRON and dChip can be attributed to the ability of their

respective normalization procedures to accommodate

asymmetric gene expression changes.

Comparison of AUC measurements across the spike-

in literature can be difficult, due to differences in how

differentially expressed probesets are identified. These

differences can lead to opposite and seemingly contra-

dictory conclusions. As noted by Choe et al. [7], and

also shown by Irizary et al. [12], MAS5 can perform sig-

nificantly better or worse than RMA, depending on

whether fold-change or variance-based metrics are used

to determine differentially expressed (DE) probesets.

Fold-change based methods are highly sensitive to vari-

ation within the low-intensity region, where small (noise

level) changes in intensity can result in overly-large fold-

changes. These probesets are identified as differentially

expressed, which, in turn, results in low AUC measures.

Thus, methods that minimize variation perform well in

Affycomp, which uses only fold-change to determine DE

probesets. Variance-based evaluation methods, such as

those used in Choe et al. and Irizary et al. ([12],

Figure 2D), as well as in this manuscript, do not impli-

citly favor minimization of low-intensity variation. Post-

processing techniques in which variation is not as

aggressively reduced could then potentially lead to in-

creased sensitivity. Direct comparison of AUC results

from different evaluation methods can be challenging,

and we believe that evaluation must be performed in

the larger context of how the various methods affect

background-subtracted intensities, signal normalization,

probeset summarized intensities, and other biological-

signal related methods.

Application

The simple, ideal spike-in experiments are far from cap-

turing behavior observed in biologically complex data,

particularly when it comes to heterogeneous samples

such as human tumors. We have frequently observed

difficulties with cancer datasets, particularly in publicly

available data. The combination of tumor heterogeneity,

batch effects, and differing protocols for generating the

microarrays leads to less than ideal conditions for ana-

lysis. The choices in IRON for background subtraction,

normalization, and probeset summarization were made

on both theoretical grounds and empirical observations

of behavior in existing datasets. Our goal is an algorithm

that seeks to best preserve true differences between sam-

ples, including batch effects, while minimizing technical

variation and processing-introduced artifacts. We have

shown that the resulting combination of microarray

normalization pipelines provides a robust method that is

suitable for diverse datasets.

A challenge in expression normalization is the exist-

ence of large patient cohorts or cell line datasets that

must be processed together. For instance, IGC [13] con-

sists of ~2100 tumors, the ArrayExpress [3] cancer cell

line dataset E-MTAB-37 has 950 samples, and our insti-

tution has collected over 19,600 GeneChips from tumors

[14]. There are clearly diminishing returns from estimat-

ing model parameters (in methods such as RMA) from

such large datasets [15]. The need for dataset-specific

parameters/normalization is arguably necessary for spe-

cific tumor types. IRON addresses these issues by

avoiding multi-chip calculations without sacrificing the

advantages in precision from these approaches. The al-

gorithm identifies a single median chip to normalize the

set against. This is the only global analysis performed,

and the remaining processing can be done serially or

distributed across many parallel nodes.

Increased focus has been placed on avoiding methodo-

logical biases in analysis of gene expression. One area

that is not typically highlighted is the normalization step.

A validation of a gene expression signature should be

completely independent of the process of generating the

signature. However, in the case of RMA, building separ-

ate models of normalization for both training and test

sets can lead to systematic differences due to the

process. IRON avoids this difficulty through the use of a

single reference sample. By incorporating this approach,

any single sample can be successfully classified by nor-

malizing against the median sample. While it is possible

to take parameters from an existing RMA model [15,16]

and apply them to new data, the drift in expression from

the initial training set could negatively impact norma-

lization of new samples. By normalizing against the me-

dian (reference) sample, this difficulty is minimized. We

have observed little difference in gene expression esti-

mates based on selection of the reference sample, so

long as the chosen reference sample is not an outlying

sample (data not shown).

The IRON algorithm is amenable to distributed pro-

cessing. The selection of the median chip is disk and

memory intensive, since it requires an all vs. all chip

comparison which is difficult to efficiently parallelize.

However, this is generally not a limiting step, as we have

performed median chip analysis of ~15,700 chips (at the

probeset level) on a single CPU core, using 5.7 GB of

memory in less than 6 hours. If, in the future, data size

scales more rapidly than memory capacity, the memory

limitation could be easily addressed through techniques

such as sparse sampling of probes and probesets with

minimal impact on the accuracy of median chip selection.

The normalization itself can be run in a highly parallel

fashion in which every chip is processed independently.

Each pair-wise normalization does require an iter-

ative procedure that must converge. However, both in
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computational time and memory requirements, the

maximum amount needed scales linearly with the number

of samples analyzed, normalizing greater than four

Affymetrix HG-U133 Plus 2.0 chips per minute, per core,

on modern hardware.

Conclusions
Each of several commonly used microarray normalization

pipelines (MAS5, RMA, dChip), contain background sub-

traction, normalization, and probeset summarization algo-

rithms that are more or less desirable compared to others.

The new pipeline presented here, IRON, recombines these

algorithms, extending the pair-wise normalization proced-

ure with a new iterative rank-order method, so as to limit

the amount of potential harm to the processed data while

maintaining the ability to correct for common technical ar-

tifacts. The intensities of each chip, while still dependent

on the choice of reference chip, are independent from

those of other chips, allowing for processing of small num-

bers of samples (≥ 2), and avoiding the problem of outlier

chips negatively impacting the quality of other chips. IRON

should be generally applicable to any dataset, whether it

contains large or small numbers of samples, and whether it

contains highly similar or dissimilar samples.

IRON is implemented as part of the libaffy C library

and set of tools [17]. Source code for these tools, along

with pre-compiled binaries for selected platforms, is

available at [http://gene.moffitt.org/libaffy/] under the

GNU Public License (GPL).

Methods
Overview of processing pipeline

The IRON array processing pipeline employs RMA

background subtraction [4], Tukey’s Biweight probeset

summarization [5], and a novel pair-wise iterative rank-

order normalization (IRON) method that is able to

largely handle violations of the symmetry assumption

implicit in quantile normalization and traditional pair-

wise normalization algorithms. For each chip, IRON

normalization performs a pair-wise (sample vs. reference)

normalization against a common reference array

(Figure 3). For each pair-wise normalization, a smoothed

piece-wise linear fit is performed against a core set

of non-differentially expressed probes (Figure 3D),

identified through an iterative rank-order procedure

(Figure 3B). The fit line is then used to non-linearly scale

the sample intensities (Figure 3E). Normalization is ap-

plied at both the probe and probeset level. The major

improvement of IRON over previous rank-based algo-

rithms is its iterative rank-order refinement of the train-

ing set. The common reference array is selected by

performing an all vs. all chip comparison to identify the

median chip.

Reference chip selection

A reference chip is selected by first calculating all vs. all

root mean squared distances (RMSD) between chips,

with each chip consisting of a vector of all raw log2
probe intensities, excluding undefined and quality con-

trol probes. Tukey’s Biweight probeset summarization

can, optionally, be performed prior to RMSD calcula-

tions to greatly reduce memory usage in large datasets.

For each chip, the RMSD from all other chips is calcu-

lated using the previous pair-wise RMSDs. The chip with

the smallest RMSD is chosen as the median chip and

used as the reference chip during normalization. Use of

pair-wise RMSD performs better for the selection of a

median chip than pair-wise correlation-based distance

metrics, due to its ability to select a chip of median

brightness while concurrently selecting for minimal rela-

tive curvature (data not shown).

Pair-wise normalization

Each chip is then processed independently. First, RMA

background subtraction is performed. Then, the set of

probes to be used for training the best-fit non-linear

curve is identified. Probes that are not part of a probeset

are excluded, as are masked probes. Of the remaining

probes, probes with the lowest intensity value are ex-

cluded, as well as probes with the highest intensity value

and any probes deemed to be saturated (intensity >

64,000 for 16-bit data). Iterative rank-order pruning is

then performed vs. the reference chip, removing the

most highly rank-divergent probes (max percentile dif-

ference per iteration, minus 0.5%), to a convergence of

1% rank-invariance.

The remaining training points are then sorted by

log(X*Y), where X is the intensity on the reference chip

and Y the intensity on the sample chip. A sliding win-

dow 10% the size of the training set is then used to cal-

culate a series of best-fit log(X/Y) vs. log(X*Y) weighted

least-squared lines. As observed by Li and Wong [6],

sparsely sampled regions, particularly at high intensities,

require up-weighting in order to achieve better fits in

these regions, since otherwise the fits would be domi-

nated by the higher density areas of the scatterplot. To

adjust for density, points are weighted by σavg
4 prior to

fitting, where σavg is the average standard deviation cal-

culated from each sliding log(X*Y) window (1% of train-

ing set) containing the point. Although σavg
4 performs

well for all microarray data we have encountered, user-

definable smaller exponents may be more appropriate

for small training sets (hundreds of points) of more

homogenous density. For each point in the training set,

the slope and offset of all best-fit lines containing the

point are averaged and applied to the log(X*Y) value to

yield the fit log(X/Y) correction factor for that point.

This produces a similar result to the commonly used
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LOESS [18] fit, but results in better fit lines for the pur-

pose of normalization (data not shown).

The distance from the fit curve, d, is calculated for

each point as (log(X/Y)fit – log(X/Y)obs), where log(X/Y)fit
and log(X/Y)obs are the fit and original observed correc-

tion factors. The final set of adjusted (log(X), log(Y))

points describing the non-linear fit curve, approximating

the shortest path of highest density through the

scatterplot, is generated by projecting the observed

training probe coordinates (log(Xobs), log(Yobs)) onto the

best-fit curve by (log(Xproj) = log(Xobs) + ½ d, log(Yproj) =

log(Yobs) – ½ d). Where multiple probes project onto the

same fit Y coordinate, their fit correction factors are av-

eraged. Every probe on the chip is then normalized by

applying the final correction factor corresponding to the

nearest point (nearest in Y) on the fit curve, using linear

interpolation between fit points. For points outside the

bounds of the training set, the averaged correction factor

for the first 10 or last 10 fit points is used for points

below or above the training set, respectively.

Querying method popularity within public data

repositories

The relative popularity of normalization methods was

assessed by querying the GEO [2] and ArrayExpress [3]

websites on June 28th, 2012 for the following keywords:

RMA, MAS5, dChip, GCRMA, PLIER, VSN. Array-

Express queries were limited to RNA assays. Both sets of

queries resulted in the following top-four ordering:

RMA > MAS5 > dChip > GCRMA.

Figure 1 was created in Microsoft PowerPoint 2003

(Microsoft Corporation, Redmond, WA, USA). All results

pertaining to MAS5 and RMA were derived from data

processed with the Affymetrix Power Tools software,

v1.12.0 (Affymetrix, Inc., Santa Clara, CA, USA). All re-

sults pertaining to dChip were derived from data

processed with the December 17th, 2010 Windows binary.

All plots and PCA analyses were generated with Evince,

v2.5.5 (UmBio AB, Umeå, Sweden). Final figures were

composited using Inkscape, v0.48 (http://inkscape.org/).

The data for Figures 2, 3, Additional file 1: Figure S1,

and Additional file 2: Figure S2 were generated using

GEO [2] dataset GSE18864, after excluding GSM467575

as a bad chip. Both IRON and non- background-

subtracted quantile normalization were performed using

libaffy. IRON normalization was performed versus chip

GSM467598. dChip normalization was performed

against GSM467598 for Figure 3, Additional file 1:

Figure S1, and Additional file 2: Figure S2, and against

the default median brightness chip for all other analyses.

The data for Figure 4 was generated from ArrayExpress

[3] dataset E-MTAB-37, using the subset of adenocarcin-

oma and small-cell lung tumor-derived cell line chips.

IRON normalization was performed versus sample NCI-

H1437-Rep3. Three samples (NCI-H1355-Rep1, NCI-

H1792-Rep2, NCI-H2107-Rep1), denoted with ‘X’ sym-

bols in the figure, were outlier technical replicates. Three

technical replicates were run for most cell lines, and

these three samples were unlike the other two replicates

for their respective cell lines. These outlier replicates

were left in the analysis to highlight the effect of choice

of post-processing algorithm on the behavior of the

principle component analysis. Removal of the outliers

prior to PCA analysis does not noticeably impact the be-

havior of the non-outliers (data not shown).

Normalized expression data for Figure 5 was loaded into

R 2.15.1. The GoldenSpike package (v0.5) was used and

modified to evaluate spike-in probesets. Briefly, cyberT

was used to identify differentially expressed probesets, and

the statistic was used as the score for ROC analysis. ROC

and AUC analysis was performed using the pROC package

[19], using spike-in probesets as positives (cases), back-

ground / not spiked-in probesets as negatives (controls),

requiring cases to have larger scores than controls.

Table 1 was generated by submitting MAS5, RMA,

and IRON results to the Affycomp III web-server

[10,20], then entering the results into Microsoft Excel

2007 (Microsoft Corporation, Redmond, WA, USA).

dChip results were taken directly from the Affycomp III

competition results webpage.

Additional files

Additional file 1: Figure S1. Background-subtracted normalization.

Scatterplots are of log10 background-subtracted probe intensities. Points

are colored by density (red: high, blue: low). Background subtraction was

performed prior to normalization, reflecting the behavior of normalization

within the IRON (A) and RMA (B) pipelines. IRON normalization centers

the highest density distribution along the diagonal (thick green line),

while quantile normalization centers the region between the two density

distributions along the diagonal. Although generally down-shifted in

intensity, the same patterns are observed in the background-subtracted

data as in non- background-subtracted examples.

Additional file 2: Figure S2. IRON vs. fixed-rank pair-wise

normalization. Scatterplots are of log10 non- background-subtracted

probe intensities. Points are colored by density (red: high, blue: low).

Iterative rank order normalization (B), with a gradually decreasing

rank-difference cutoff, is more robust to symmetry violations than a fixed

rank-difference cutoff of 0.5% (A), and better centers the distribution of

highest density along the diagonal (thick green line) than dChip (C).
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