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Abstract

Wireless mobile communications were initially a way for people to communicate

through low data rate voice call connections. As data enabled devices allow users

the ability to do much more with their mobile devices, so to will the demand for

more reliable and pervasive wireless data. This is being addressed by so-called 4th

generation wireless systems based on orthogonal frequency division multiplexing

(OFDM) and multiple-input multiple-output (MIMO) antenna systems. Mobile

wireless customers are becoming more demanding and expecting to have a great

user experience over high speed broadband access at any time and anywhere, both

indoor and outdoor. However, these promising improvements cannot be realized

without an efficient design of the receiver.

Recently, receivers utilizing iterative detection and decoding have changed the

fundamental receiver design paradigm from traditional separated parameter esti-

mation and data detection blocks to an integrated iterative parameter estimator

and data detection unit. Motivated by this iterative data driven approach, we de-

velop low complexity iterative receivers with improved sensitivity compared to the

conventional receivers, this brings potential benefits for the wireless communication

system, such as improving the overall system throughput, increasing the macro cell

coverage, and reducing the cost of the equipments in both the base station and

mobile terminal.

It is a challenge to design receivers that have good performance in a highly

dynamic mobile wireless environment. One of the challenges is to minimize over-

head reference signal energy (preamble, pilot symbols) without compromising the

performance. We investigate this problem, and develop an iterative receiver with

enhanced data-driven channel estimation. We discuss practical realizations of the

iterative receiver for SISO-OFDM system. We utilize the channel estimation from

soft decoded data (the a priori information) through frequency-domain combining

and time-domain combining strategies in parallel with limited pilot signals. We

analyze the performance and complexity of the iterative receiver, and show that
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the receiver’s sensitivity can be improved even with this low complexity solution.

Hence, seamless communications can be achieved with better macro cell coverage

and mobility without compromising the overall system performance.

Another challenge is that a massive amount of interference caused by MIMO

transmission (spatial multiplexing MIMO) reduces the performance of the channel

estimation, and further degrades data detection performance. We extend the it-

erative channel estimation from SISO systems to MIMO systems, and work with

linear detection methods to perform joint interference mitigation and channel es-

timation. We further show the robustness of the iterative receivers in both indoor

and outdoor environment compared to the conventional receiver approach.

Finally, we develop low complexity iterative spatial multiplexed MIMO receivers

for nonlinear methods based on two known techniques, that is, the Sphere Decoder

(SD) method and the Markov Chain Monte Carlo (MCMC) method. These meth-

ods have superior performance, however, they typically demand a substantial in-

crease in computational complexity, which is not favorable in practical realizations.

We investigate and show for the first time how to utilize the a priori information

in these methods to achieve performance enhancement while simultaneously sub-

stantially reducing the computational complexity.

In our modified sphere decoder method, we introduce a new accumulated a pri-

ori metric in the tree node enumeration process. We show how we can improve the

performance by obtaining the reliable tree node candidate from the joint Maximum

Likelihood (ML) metric and an approximated a priori metric. We also show how

we can improve the convergence speed of the sphere decoder (i.e., reduce the com-

plexity) by selecting the node with the highest a priori probability as the starting

node in the enumeration process.

In our modified MCMC method, the a priori information is utilized for the first

time to qualify the reliably decoded bits from the entire signal space. Two new

robust MCMC methods are developed to deal with the unreliable bits by using

the reliably decoded bit information to cancel the interference that they generate.

We show through complexity analysis and performance comparison that these new

techniques have improved performance compared to the conventional approaches,

and further complexity reduction can be obtained with the assistance of the a

priori information. Therefore, the complexity and performance tradeoff of these

nonlinear methods can be optimized for practical realizations.
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Chapter 1

Introduction

1.1 Motivations and Summary of Contributions

Modern wireless communication systems promise to support users with high data

rates in a highly mobile environments. No matter which environment (or chan-

nel) the wireless communication system is experiencing, the signal processing at

the receiver is attempting to make the correct decision on the transmitted data to

minimize packet loss and maintain a reliable link for the appropriate application,

whether that is a voice call or data messaging. However, such dynamic wireless

systems with sparse spectrum resource impose many challenges in system design,

which therefore requires the investigation of enabling signal processing techniques.

As an example, high mobility users suffers from unstable channel quality, which

makes data detection almost impossible without advanced signal processing tech-

niques. Hence, how to manage mobility to fulfill the quality of service (QoS)

requirement becomes an open question in modern receiver design.

Under the conventional receiver design framework, channel estimation requires

a reference signal, i.e. preamble and/or pilot symbols, to be transmitted in par-

allel with the information data. The system performance heavily depends on the

quality of the reference signal, and the system throughput is compromised as the

reference signal occupies a certain amount of bandwidth or power, especially in

severe channel environments. Nevertheless, with the iterative detection and decod-

ing, the availability of the a priori information of the transmitted signal changes

the receiver design paradigm dramatically as the data is no longer a passive quan-

tity which the receiver uses to make a decision on but it can also take the initiative

to improve the overall system performance by enhancing other modules such as

channel estimation, etc. In the first part of this thesis, an iterative data-driven

1
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channel estimator, which utilizes channel estimation from soft data (the a priori

information) in parallel with the pilot-aided channel estimation is developed. A

standardized Orthogonal Frequency Division Multiplexing (OFDM) system is used

to show these techniques are realizable in practice.

Another important technical breakthrough in modern wireless communications

is the use of multiple antenna at both transmitting and receiving ends. Com-

pared to single-input-single-output (SISO) system, MIMO systems provide both

capacity and diversity enhancements, however, it also introduces a large amount of

interference between data streams from different antennas. Improperly managed

interference from multiple antennas at the receiver makes channel estimation and

data detection a challenging problem, especially in the high mobility environment.

In this thesis, the analysis of the channel estimation for the SISO-OFDM system is

extended, and an iterative receiver based on soft parallel interference cancelation

(SPIC) with channel estimation is proposed for the MIMO-OFDM system.

Furthermore, as mentioned before, data detection is a fundamental block in the

iterative detection and decoding. Hence, the second part of this thesis is focusing

on developing the advanced data-driven technique to perform the interference mit-

igation in a interference limited system. The developed technique can be applied

to any specific system that needs interference mitigation. Recently, a technique

known as sphere decoder (SD) is proposed for data detection in the MIMO spatial

multiplexing (SM) environment. The sphere decoder technique provides promising

performance, which is close to the ML detector. It also has less complexity than

the ML detector because unlike the ML detector searching the entire signal space,

the sphere decoder avoids the exhaustive search by restricting the signal search to

a limited signal enumeration set, known as the search sphere. Efficient sphere de-

coder algorithms are developed in the literature, however, they do not make full use

of the a priori information in the iterative decoding. In this thesis, efficient sphere

decoder algorithms are developed for the iterative receiver with spatial multiplexed

MIMO system by utilizing the a priori information to improve the performance as

well as the complexity.

Finally, a statistical data detection method known as Markov Chain Monte

Carlo (MCMC) Gibbs sampler (GS) is proposed primarily for the iterative receiver

in a code division multiple access (CDMA) system [1–3]. It has been applied for the

MIMO spatial multiplexing system as well and compared to the sphere decoder.

Unlike the sphere decoder which performs the deterministic search for the solution

close to the transmitted signal, the MCMC method walks though random samples



1.2 Turbo Receiver with Iterative Detection and Decoding 3

and performs the data detection by selecting statistically significant signal samples.

The MCMC method performs very well in low signal to noise ratio (SNR), however,

it suffers from an error floor in the high SNR region. In this thesis, two novel MCMC

methods are developed for the iterative receiver in the spatial multiplexed MIMO

system. Both MCMC methods can remove the error floor at high SNR while one

of the MCMC methods can also achieve significant complexity reduction through

interference cancelation.

In summary, this thesis investigates the application of the iterative data-driven

technique with the assistance from the evolution of the data information for wireless

communications. This thesis demonstrates that the data-driven channel estimation

and interference mitigation techniques can achieve significantly better receiver sen-

sitivity compared to conventional receivers. The improved coverage and capacity

lowers the cost per bit to users and wireless operators where this improvement

is simply achieved by the low cost data-driven receivers without any significant

alteration of the system architecture.

1.2 Turbo Receiver with Iterative Detection and

Decoding

The turbo principle [4–7] has recently emerged as one of the significant technical

breakthroughs in the modern wireless communication since the invention of the

powerful Turbo codes [8, 9]. Analogous to the original parallel turbo code is serial

turbo decoding where the encoding is performed by a Serial Concatenated Code

(SCC) [10], the turbo principle can be also utilized to model a wireless communica-

tion system as a serial concatenation of an inner code and a outer code, which are

separated by an interleaver. Fig. 1.1 shows the wireless communication system with

transmitter in the SCC structure and a generic iterative receiver. The inner code

refers to the combination of the data modulator and wireless communication chan-

nels, which can be either inter-symbol interference (ISI) channel, multiple-access

channel, or multiple-input-multiple-output (MIMO) channel. The outer code is

realized by the conventional channel encoder. The interleaver serves the purpose

of removing correlation between the inner and outer code. Obviously, the optimal

performance of the receiver can only be obtained by performing data detection

and decoding jointly. However, such joint detection and decoding would result an

unrealizable solution with prohibitive complexity, which is exponential in terms of

the system dimension, modulation order and channel code memory.
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Figure 1.1: Wireless communication system with transmitter and iterative receiver

Conventional receiver performs data detection and decoding as individual units

in a non-iterative (sequential) manner, which is not an optimal solution. Recently,

iterative receivers based on the Turbo principle have been shown to be able to

provide near-optimal performance with linearly increasing additional complexity

introduced by iterations. The main characteristics of the iterative receiver are

the utilization of the a priori probability of the transmitted signal over decoding

iterations.

More specifically, it is well known that the data detection rules are developed

from the optimal maximum a posteriori (MAP) probability detection criteria,

which is to find the signal with the maximum a posteriori probability (APP) of

the transmitted signal. The conventional receiver does not have the knowledge

of the a priori probability of the transmitted signal, hence, the detection rule is

reduced to maximum likelihood (ML) detection criteria, which assumes the trans-
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mitted signals are equally probable. On the other hand, from iterative detection

and decoding point of view, after the data detection and decoding are performed,

the receiver has the knowledge of the transmitted signal. This knowledge of the

transmitted signal is treated as a priori information. Hence, the iterative receiver

can utilize this a priori information to perform the data detection with true MAP

criteria by updating a priori probability of the transmitted signal. This is known

as the iterative detection and decoding (IDD) strategy.

Technically, the iterative receiver performs data detection and decoding not

just once, but over many iterations. Each iteration consists of one independent

data detection and decoding between which the “soft” information of the decoding

data is exchanged. By soft we mean that real valued data are used, as opposed

to the hard zeros and ones. This information exchanging process runs over it-

erations between detector and decoder, which are sub-optimal on their own but

after a number of iterations, the results converge to the optimum. In this thesis,

several iterative receiver techniques are developed for wireless communication sys-

tems to improve both the system performance and the complexity. Although this

work focuses on the single-user communications, we believe that the data-driven

techniques developed can be employed to multi-user communications easily.

1.3 Literature Review and Detailed Contributions

1.3.1 Iterative Receiver with Channel Estimation for SISO-

OFDM System

OFDM [11–14] is an attractive technique for high data rate transmission over wire-

less channels. The most important advantage of an OFDM system over a single

carrier system is that it transforms the frequency selective channel into a parallel

collection of flat fading subchannels, which simplifies the equalization at the re-

ceiver for a small penalty in performance due to a guard interval. OFDM has been

adopted in several wireless standards such as digital audio broadcasting (DAB),

digital video broadcasting (DVB-T), the IEEE 802.11a [15] Wireless Local Area

Network (WLAN) standard and the IEEE 802.16a/e [16,17] Metropolitan area net-

work (MAN) standard. OFDM is also a potential candidate for the next generation

mobile wireless communications.

With the knowledge of channel state information (CSI), coherent detection can

be performed on OFDM symbols. Realistic mobile radio channels are characterized
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by the time and frequency dispersive nature due to the multipath delay profile and

the Doppler spread of the channel. It has been shown in Chapter 2 Section 2.2.3

that the channel variation becomes more significant in both time and frequency

domain as the mobility and the delay spread increase. Therefore, rapid dispersive

fading channel with time and frequency selectivity makes channel estimation and

tracking a challenging problem in OFDM system design.

Generally speaking, in order to estimate time and frequency selective channels,

training signals are employed in OFDM packets, which are known as preamble

channel estimation and pilot-aided channel estimation [18, 19]. Another channel

estimation technique, known as blind adaptive technique [20–22], which does not

apply any training signals, is also well explored in the literature. However, the

blind estimation approach does not align with the practical systems which adopt

training signal based approach. Hence, this thesis is focusing on the training signal

based approach.

In the practical OFDM system, the training signal arrangements are different

for the uplink and downlink. In the uplink, pilot signals are inserted in OFDM data

symbols, while a preamble is transmitted prior to the data symbols in the downlink

OFDM frames. More specifically, conventional OFDM systems [15–17] assume the

channel is static within one frame, and only use channel estimates obtained from

the preamble for data symbol detection. Such an approach performs well in static

channels but incurs a severe performance degradation in the rapidly dispersive

fading channel. Dowler et al. [23] proposed a data derived method, which uses

decoded hard decision data of the current symbol to adjust the channel estimate

for the next symbol. This method partially tracks the channel variation, but also

introduces delays and error propagation.

In the uplink transmission, pilots are often multiplexed into the data sequence

and channel estimation can be performed by interpolation. Negi et al. [24] proposed

least square (LS) based channel estimation and discussed optimal pilot spacing. In

the papers [25–27], channel estimators for OFDM system have been proposed based

on the singular value decomposition (SVD) and frequency domain filtering. Time

domain filtering has been proposed in [28] to further improve the channel esti-

mator. Extended from Beek’s work, Li et al. [29]investigated the correlation of

channel frequency response over times and frequency and proposed a robust mini-

mum mean-square-error (MMSE) channel estimator. Robertson et.al [18] proposed

a two-dimensional Wiener filtering pilot symbol channel estimation. However, com-

plexity prohibits their application to practical systems.



1.3 Literature Review and Detailed Contributions 7

In order to resolve time selective channels, Stamoulis et al. [30] developed a

channel estimator based on linear interpolation of partial channel information.

Shin et al. [31], Zemen et.al [32, 33] and Kim et.al [34] approximated LMMSE es-

timation by representing the channel in basis expansion model (BEM) [35–37] to

obtain the channel impulse response from interpolation of the partial channel infor-

mation. Schniter et.al [38,39] proposed channel estimation using FFT and specific

time-domain pilot signals, however, due to the utilization of time-domain pilot

signals, it may not be compatible with existing OFDM standards. Furthermore,

although above methods can track the rapid dispersive channel, system throughput

is sacrificed due to the enormous amount of pilots inserted.

Song et al. [43] proposed iterative joint zero forcing (ZF) channel estimation and

signal detection algorithm based on hard decision feedback. To address dispersive

channels, Park et al. [44] proposed an iterative channel estimator by employing time

and frequency domain MMSE filters for mobile radio channels. Tomasin et al. [45]

proposed an iterative receiver with inter-carrier interference (ICI) cancelation and

MMSE channel estimation for extremely high mobility condition. These receivers

are computationally complex and infeasible for practical systems.

As we can see, in the rapid dispersive channel environment, conventional preamble-

based and pilot-aided channel estimation require numerous reference signals, which

significantly compromises the system throughput. On the other hand, data signals

are also part of transmission. In the iterative detection and decoding, soft data

signals are available and can be considered as reference signals but with limited

reliability. Therefore, a fundamental question is could the soft data signals make

contribution in the channel estimation? We believe that better channel estima-

tion will improve the data detection, and vice versa, the improved data detection

could benefit the channel estimation. Hence, a novel low complexity iterative turbo

channel estimation technique is developed, which makes use of preamble, pilots and

soft decoded data information in an iterative fashion to improve the system per-

formance over the time and frequency selective fading channel while maintaining

the system throughput.

1.3.2 Iterative Receiver with Channel Estimation for MIMO-

OFDM System

Digital communications using MIMO [3] have recently been proposed as one of

the most significant technical breakthroughs in modern communications. It also

attracts a lot of research attentions and many state-of-art results are published in
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the literature. Surprisingly, in a few year time after the invention, MIMO technol-

ogy has been adopted in large-scale standards-driven commercial wireless products

and networks such as Worldwide Interoperability for Microwave Access (WiMAX),

WLAN, 3G long term evolution (LTE) [46] and beyond.

MIMO systems can be defined a link for which the transmitting and receiving

ends are equipped with multiple antenna elements. The idea behind this is that

the signals on the transmitting antennas and receiving antennas are combined in

such a way that the quality of the communication can be improved from diversity

benefit [3]. MIMO systems also provide a capacity improvement of N times, where

N is the minimun number of antennas at either end of the link [47]. In a MIMO

system, channel modeling is particularly critical to properly determine algorithm

performance because of sensitivity with respect to correlations and system model

matrix rank properties, which are some fundamental differences compared to SISO

system.

The combination of MIMO and OFDM is a promising approach for broadband

wireless communication [15–17]. The difference between the MIMO-OFDM system

and the SISO-OFDM system is the additional space-time processing module [47],

which is applied to improve both the data rate and reliability of wireless link by

taking advantage of the spatial diversity achieved by spatially separated antennas

in a dense multipath scattering environment. The space-time processing techniques

typically fall into two categories: data rate maximization and diversity maximiza-

tion, although there has been some effort toward unification recently [48]. In the

first category, the data rate maximization is achieved through spatial multiplexing

data streams to different transmitting antennas, a particular example is the vertical

Bell labs layered space time (V-BLAST) system [49]. On the other hand, the in-

dividual streams could be encoded jointly in order to protect transmission against

errors caused by channel fading and noise plus interference. This leads to a second

kind of category in which one tries also to put a level of redundancy through the

space-time coding (STC) [50]. Effectively, a number of coded data symbols equal

to the number of transmitting antennas are generated and transmitted simulta-

neously, one symbol per antenna. These coded data symbols are generated by

the space-time encoder such that by using the appropriate signal processing and

decoding procedure at the receiver, the diversity gain and/or the coding gain is

maximized. Hence, each transmitting antenna sees a differently encoded, redun-

dant version of the same transmitting signal. In this case, the multiple antennas

are only used as a source of spatial diversity and not to increase the data rate.
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In practical MIMO-OFDM system, two mandatory MIMO space-time process-

ing profiles [51], namely the Alamouti STC [52] and Spatial Multiplexing (SM),

are employed. The typical example is IEEE 802.16e Mobile WiMAX system [17].

In both STC and SM systems, the received signal at each receiving antenna is the

superposition of the fading signals from all transmitting antennas. In time and

frequency dispersive fading environment, the channel is time varying over sym-

bols. The massive interferences and channel variations make channel estimation

and tracking a challenging problem and affect data detection significantly.

Conventional MIMO-OFDM receiver usually adopted one-shot channel estima-

tion and data detection, which can be achieved through well known signal pro-

cessing techniques [53] such as maximum ratio combing (MRC) for Alamouti STC

system, and ZF or MMSE for SM system. An important assumption made in the

STC-OFDM system is that the channel is static within the two consecutive OFDM

symbol period, then one-shot channel estimation from preamble can be done and

used for rest of OFDM symbols in a two-symbol STC block basis. The static chan-

nel assumption does not hold any more if the channel coherence time is shorter

than the radio frame. As seen in Fig 3.6 of Chapter 3 Section 3.3, the correla-

tion among consecutive OFDM symbols fades away when other OFDM symbols

are far away from the OFDM symbol of interest. In this case, the MRC receiver

will suffer from severe channel estimation mismatch. On the other hand, in SM-

OFDM system, the received signal is the superposition of the fading signals from

all transmitting antennas. In time and frequency dispersive fading environment,

the channel is time varying over symbols. The massive interference and channel

variations make channel estimation and tracking a challenging problem and affect

data detection significantly. In other words, the conventional channel estimation

fails in the mobile radio channel with time and frequency variations.

Li et al. [40–42] proposed decision-directed LS and MMSE channel estimators

for OFDM system with multiple antennas. Song et al. [43] proposed iterative joint

ZF channel estimation and signal detection algorithm based on hard decision feed-

back, error propagation may exist to degrade the receiver performance. Wang et

al. [54,55] proposed an iterative receiver for space-time block-coded (STBC) OFDM

system based on expectation-maximization (EM) approach. Such receiver assumes

that the fading process is constant over the duration of one STBC code word to

reduce the receiver complexity. Juntti et al. [56–59] also applied EM based chan-

nel estimator in MIMO-OFDM system. The EM channel estimator works in an

iterative procedure to avoid direct matrix inversion, which is necessary for the ZF
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channel estimator. However, the EM channel estimator is designed to approximate

the ZF channel estimator. It only achieves complexity reduction and doesn’t bring

further channel estimation improvement. Lim et al. [60] approximated a time

varying channel as polynomials, which is not practical due to high computation

complexity. Moon et al. [61] developed an iterative receiver well suited for WLAN.

However, the effectiveness of above mentioned systems substantially decreases un-

der high mobility situations. Hu et.al [62] discussed the optimal pilot sequence

and proposed a nonuniform distributed pilot arrangement for channel estimation

in MIMO-OFDM systems, which is not able to handle mobility environment.

In Chapter 3, an receiver with iterative turbo channel estimation has been devel-

oped, which are able to provide near-optimal channel estimation and data detection

performance in the realistic mobile radio channel environment with rapid time and

frequency dispersive fading characteristics. Hence, we are going to apply the pro-

posed receiver with iterative turbo channel estimation to MIMO-OFDM systems.

More specifically, a novel low complexity channel estimator with time-domain and

frequency-domain combining of channel estimates from preamble, pilots and soft

decoded data information is proposed to track the dynamics of channel frequency

response. This channel estimator is integrated with MRC receiver for Alamouti

STC system and interference canceler for the system with spatial multiplexing.

1.3.3 Iterative Receiver on Sphere Decoder

MIMO spatial multiplexing systems have been applied to improve both the data

rate and the reliability of wireless link. It takes the advantage of the multiplexing

gain and spatial diversity by spatially separated antennas in a dense multipath

scattering environment. A variety of detection algorithms have been proposed for

MIMO systems. The ML detection is an optimal detector compared to the conven-

tional ZF detector, decision feedback equalizer (DFE), and MMSE detector [63].

However, the complexity of ML detection grows exponentially with the number of

antennas.

Recently, a technique called sphere decoder [64] was proposed for MIMO sys-

tems. The sphere decoder provides the approximation of ML estimate of the trans-

mitted signal sequence by restricting the search range to a limited enumeration set

rather than to the entire signal space. It is generally agreed that the sphere decoder

technique has polynomial [65] computational complexity only for high SNRs.

Sphere decoder algorithms can be identified into three categories in the liter-

ature. The first category is known as depth-first algorithms [66–68], the second
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category is known as breadth-first algorithms [69], and the third category is known

as the metric-first algorithms [70]. Graphically, if the sphere decoder algorithms

are considered as a systematic procedure to perform a tree search, the depth-

first algorithms perform the search first vertically then horizontally. On the other

hand, the breadth-first algorithms perform the tree search first horizontally then

vertically. Juntti et al. [58] developed efficient breadth-first algorithm, known as

iterative K-best sphere decoder. Compared to the conventional K-best sphere de-

coder [69] which initialized the tree search by QR decomposition (QRD), authors

in [58] initializes the K-best sphere decoder by LMMSE estimate to obtain better

convergence behavior to reduce the complexity. Another difference is that authors

in [58] also introduced decision feedback to the K-best sphere decoder. Finally, the

metric-first algorithm is same as finding the shortest path in graph theory, which is

far more complex in the practical implementation. In this chapter, we focus on the

depth-first sphere decoder algorithms. The breadth-first and metric-first sphere

decoder algorithms are out of the scope of this thesis. Hence, unless otherwise

stated, the “sphere decoder” refers to the depth-first algorithms in the rest of the

thesis.

Fincke-Pohst (FP) enumeration [66] is a well known sphere decoding algorithm

to evaluate all the lattice points within a sphere. It consists of spanning the tree

search by defining a admissible interval at each level. All symbol hypotheses are

enumerated at each level between the lower and upper bounds determined by the

interval. Nevertheless, the FP algorithm has a prohibitive complexity which is

exponential with the dimension of the tree search in the worst case. The Schnorr-

Euchner (SE) enumeration [67] is a variation of the FP algorithm. Instead of

enumerating all the lattice points within the interval, the SE algorithm performs

the tree node search in a zig-zag order, starting from the zero forcing solution.

Numerical results in [71] showed that the SE enumeration is more efficient than

the FP implementation.

In [68], the authors made the connection between the sphere decoding and stack

sequential decoding, and applied the SE algorithm [67] in the tree search. Such

an approach could offer significant reductions in the computational complexity

compared to the FP enumeration-based sphere decoder. Although the SE algorithm

is not sensitive to the initial radius, there is a performance loss due to the poor

ZF-DFE estimate at the beginning of the tree search. Reference [68] proposed a

number of preprocessing algorithms to enhance the initial estimate, such as those

using ordered ZF-DFE and MMSE estimates.
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Iterative detection and decoding has been introduced to sphere decoding, known

as list sphere decoding [72]. Instead of finding the ML point, a list of candidates

with a specified radius close to ML points are generated by the a soft MIMO detec-

tor. Reference [73] had a similar approach but included the a priori information

to generate the list. Yuan et al. [74] proposed an approximated MAP-based iter-

ative receiver with modified sphere detection. The sphere decoder used in these

works is based on the FP enumeration, which is less efficient compared to the SE

algorithm [68].

Unlike previous approaches, we think that the a priori information metric could

play a significant role in the enumeration process, i.e. the tree node search, rather

than contributing as a term in the a posteriori probability evaluation. Firstly, the

sphere decoder is defined to estimate the MAP probability of the received sym-

bol sequence. Secondly, the FP and SE algorithms are modified by accumulating

the a priori information metric in the enumeration process. More specifically, the

Algorithms I and II in [68] are extended to iterative reception by including an

accumulated a priori information metric. Thirdly, for Algorithm II, an improved

ZF-DFE symbol estimation is developed by approximating the a priori informa-

tion with a quadratic metric in the sphere decoder tree search. Furthermore, an

improved tree search is developed to adjust the starting point in a priori zig-zag

fashion. These two novel schemes aim to improve the performance and reduce the

computational complexity even further over iterations.

1.3.4 Iterative Receiver on Markov Chain Mento Carlo

Methods

MIMO spatial multiplexing system has similar characteristics as a multiple access

system [75, 76], where each transmit antenna may be viewed as a user and the

channel gains between one transmit antenna and multiple receive antennas can

be viewed as spreading code for the corresponding user. Conventional subopti-

mal MIMO detection methods, e.g., ZF detector, DFE detector, MMSE detector,

and sphere decoder are proposed to perform deterministic search of the near ML

candidate in the signal space with a reduced complexity.

Recently, a statistical method called Gibbs sampling [22, 77–79] that is a par-

ticular realization of Markov Chain Monte Carlo simulation [80] has been applied

to MIMO detection. In MCMC, statistical inferences are developed by simulating

the underlying process through Markov chain. The Gibbs sampling is a particu-

lar Markov chain process that searches the state space defined by the transmitted
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signal. The basic idea is to draw random samples of unknown transmitted signal

from their conditional posterior distribution and then to calculate the marginal a

posteriori distribution by averaging over the random samples. Hence, Gibbs Sam-

pling starts from uniformly distributed samples and walks through the transmitted

signal space in a stochastic manner to look for the important/significant samples

close to the transmitted signal.

Hence, the MCMC method is an alternative search technique which is unique

in two ways. Firstly, the MCMC method is a stochastic approach. Secondly,

the growth of the size of the candidates (analogy to the nodes visited in sphere

decoder) that Gibbs sampling walks through and thus the complexity of the MIMO

detector is not exponential with the number of bits per channel users (analogy to

the dimensions in sphere decoder). In fact, the complexity of the MIMO detector

with MCMC is approximately linear [81].

Authors in [82] made the comparison between the MCMC detector and the

sphere decoder detector [72]. The results in [82] show that the MCMC detector

outperforms the sphere decoder in low SNR region with a significant reduction in

the complexity. However, it has been found that the MCMC detector has degraded

performance as the SNR increases, and the method suffers from error floors at the

high SNR [79, 81]. Authors in [79] proposed two solutions by running multiple

Markov chains in parallel and assuming a higher noise variance. These solutions

show performance improvement in the medium levels of SNRs.

The reason for this high SNR problem has been investigated in [81], that is

the samples, which are associated with large a priori probabilities (so called “ill

conditioned” bits), dominate the Markov chain process and stop the Markov chain

from converging to the correct result. In other words, the Markov chain is trapped

in the bad states, which is considered as equilibrium state although it is not, and

will never move out of this state. Such phenomenon challenges the fundamental

principle of the MCMC methods, as the Markov chain should cover as many states

as possible so that it can finally converge to the desired distribution. Authors in [81]

also proposed a number of ad-hoc methods, such as using ZF or MMSE solution

to initialize the Gibbs sampler, and run more iterations with increased number of

samples if error occurs after Cyclic Redundancy Check (CRC). These methods are

effective, however, the complexity inevitably increases.

Unlike the above mentioned ad-hoc methods, a better approach would be to

minimize the influence from the “ill conditioned” bits, the Markov chain should

be able to move forward as desired. And the a priori information should provide
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us the knowledge of quality of the samples. Hence, two novel MCMC methods

for the MIMO detector are developed, namely the reduced-state-space MCMC

(RSS-MCMC) detector and the force-state-transitions MCMC (FST-MCMC). Two

novel reliability constraints are first proposed to separate the reliable bits from

the unreliable ones. The RSS-MCMC cancels the interference from the reliable

bits obtained from previous iteration while keep running MCMC for undesired

samples. After canceling the interference from reliable bits, a heavily loaded MIMO

system is transformed into a channel with less interference. And the RSS-MCMC

detector draws random samples for the unreliable bits using the improved signal.

For the FST-MCMC, the preliminary work as shown in [83], while our method

differs from [83] in two ways. Firstly, the method in [83] flips the bit with the

minimum variance, which is not feasible because the “good bits” may also have

minimum variance. Our approach is to flip the “ill conditioned” bits only from the

unreliable signal set. Secondly, the method in [83] flips only one bit per sample,

where one sample is equivalent to the entire transmitted signal vector. This may

not be sufficient to move Markov chain out from the trapped state. Our approach

is to flip all “ill conditioned” bits so that the Markov chain could visit more states.

Theoretical analysis and simulation results show that both RSS-MCMC and FST-

MCMC improve the performance at the high SNR while the RSS-MCMC also

reduces the complexity from drawing less samples in the Gibbs sampler.

1.4 Outline of The Thesis

The rest of the thesis is organized as follows:

In Chapter 2, the system model employed for the rest of the chapters in this

thesis is presented. The system model for SISO system is introduced first, fol-

lowed by the modeling of SISO-OFDM system. Then the SISO channel charac-

teristics in terms of time selectivity and frequency selectivity are discussed and

a three-dimensional channel response with various mobilities is presented. After

that, MIMO system is introduced as a natural extension of the SISO counterpart.

Two popular MIMO system configurations, namely the space-time coded MIMO

and spatial multiplexed MIMO systems are presented. Based on these two con-

figurations, OFDM and MIMO are combined into a MIMO-OFDM system. After

defining all the systems models, the generic structure of the iterative detection

and decoding is introduced, followed by the soft parallel interference cancelation

approach.
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In Chapter 3, the iterative receiver with channel estimation for the SISO-OFDM

system is presented. Firstly, the channel estimation for SISO-OFDM system is for-

mulated, followed by the investigation of the inter-carrier interference (ICI) caused

by the mobilities in the channel estimation. A solution to minimize the influence

from the ICI is developed. Secondly, the conventional frequency domain pream-

ble and pilot-aided channel estimation techniques and their mean square error

(MSE) analysis are discussed, particularly for the ML and MMSE channel esti-

mator. Thirdly, the iterative turbo channel estimation technique for SISO-OFDM

system is developed. We start with a brief outline of the iterative receiver, then

introduce the three-stage iterative channel estimation technique. Furthermore, the

MSE bounds and complexity of the iterative channel estimation technique are an-

alyzed. Finally, the simulation results are presented by comparing the proposed

iterative receiver with the conventional receiver in terms of downlink performance,

uplink performance, performance under various mobilities, and performance with

carrier frequency offset.

In Chapter 4, the iterative receiver with channel estimation for MIMO-OFDM

system is presented. The conventional receivers are introduced first followed by the

development of the novel iterative MRC and iterative interference cancelation based

receivers for space time coded and spatial multiplexed OFDM systems, respectively.

The three-stage iterative channel estimation is modified for the MIMO-OFDM sys-

tems, and the MSE bounds analysis is presented. Furthermore, the complexity of

the iterative receivers including the complexity of the iterative channel estimation

is discussed. Finally, the simulation results are presented by comparing the pro-

posed iterative receivers with the conventional MRC and MMSE receivers. The

performance is compared in the space time coded OFDM system and the spatial

multiplexed OFDM system.

In Chapter 5, the iterative receiver using a sphere decoder is presented. The

MIMO system model is modified from the complex domain to the real domain

followed by the review of the original FP and SE sphere decoder algorithms. Based

on the original sphere decoder algorithms, the iterative receivers with modified

FP and SE algorithms are developed. To further improve the performance of the

SE sphere decoder algorithm, two schemes are developed by utilizing the a priori

information. After that, the complexity of the iterative receiver with modified

sphere decoder algorithms are briefly discussed. Finally, the simulation results

are presented to show the performance and complexity of iterative receiver with

modified sphere decoder algorithms.



16 Introduction

In Chapter 6, the iterative receivers on MCMC methods are presented. The new

MCMC methods are developed by first introducing the novel reliability constraints,

followed by the RSS-MCMC and FST-MCMC methods. And the complexity of the

different MCMC methods are discussed as well. Finally, the simulation results are

presented to compare the RSS-MCMC, FST-MCMC and the conventional MCMC

methods.

In Chapter 7, the general conclusion of the thesis and future research directions

are presented.



Chapter 2

System Model

2.1 Introduction

Given an arbitrary wireless communication system using a single point to point

connection, also known as a single-input single-output (SISO) channel, the wireless

link for which the transmitting end and the receiving end is equipped with single

antenna, and the information is sent over a single channel. The single channel can

be characterized in types of flat fading channel, frequency selective channel, slow

fading channel, or fast fading channel [84]. The performance of a SISO system can

be seriously degraded due to the lack of diversity in a wireless link. This lack of

diversity means that if the particular link has a poor link budget or is capacity

inhibited, then there is no other link that could be used.

In the wireless communication system with a MIMO configuration, multiple an-

tenna elements are adopted at both transmitter and receiver. Each transmitter and

receiver link can be modeled as a single channel, hence, the information is sent over

multiple channels in parallel. The advantage of MIMO system over conventional

SISO is promising due to two reasons [47]. Firstly, the capacity enhancement is

achieved from spatial multiplexed data streams at each transmitting antenna. And

secondly, the reliability improvement from spatial diversity as information is trans-

mitted and received over multiple wireless links, which can increase the network’s

QoS dramatically.

In this chapter, the SISO and MIMO system models used in this thesis are

discussed. In order to make the connection between generic and practical sys-

tems, the OFDM system is introduced to illustrate a practical SISO-OFDM and

MIMO-OFDM system model. Furthermore, the notation of the iterative receiver

techniques used in this thesis are introduced.

17
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2.2 Single-Input-Single-Output (SISO) System

In a wireless communication system with SISO configuration, both transmitting

and receiving ends are equipped with single antenna element. Fig. 2.1 shows the

transmitter, receiver and channel in the generic SISO system. The binary source

generates information bit sequence {b}. The information bit sequence {b} is en-

coded by channel encoder, and becomes coded bit sequence {d}. After passing

the coded bit sequence {d} through interleaver, the interleaved bit sequence {c} is

permutated and then modulated by the data modulator. The modulator outputs

transmitted data symbol sequence {x}, which is sent through the communication

channel.

Channel
Encoder

Binary

source

Interleaver Modulator

Channel

Channel

Encoder

Data

Sink

Interleaver
Demodulat

or

}{y

}{x}{d }{c}{b

Figure 2.1: SISO system model with transmitter, receiver and channel

At the receiver end, the received data symbol sequence {y} can be expressed

as:

y = Hx + w, (2.1)

where H is channel response and w is the additive noise, which can be modeled

by Gaussian distribution with zero mean and variance σ2. The channel response
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h can be additive white Gaussian noise (AWGN) channel, multiple access channel,

ISI channel, flat fading channel, and frequency selective channel. It is also worth

noting that expression (2.1) does not necessarily have to be restricted to a SISO

system, it can also represent a MIMO system with multiple inputs and outputs.

The received data symbol sequence y is demodulated and deinterleaved, and finally

decoded by the channel decoder. In the conventional non-iterative receiver, the

interleaver and deinterleaver spread the data bits across the transmission frame

the error bits for the channel decoder, which helps in the task to correct the bursty

errors in the fading channel. Furthermore, in the iterative receiver, the interleaver

and deinterleaver also decorrelate the adjacent coded bits in order to make them

independent to each other.

2.2.1 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is an attractive technique for high data rate transmission over wireless chan-

nels. OFDM system is a special realization of the multi-carrier [13] communication

system as shown in Fig. 2.2. In the multi-carrier system, the high-speed data is

serial to parallel multiplexed in to N data streams. Data streams X0, X1, . . . , XN−1

are modulated with different carrier frequency ejω0 , ejω1 , . . . , ejωN−1 correspond-

ingly, hence, the entire system bandwidth is divided into N narrow bands. It

transforms the frequency selective channel into a parallel collection of flat fad-

ing subchannels, which simplifies the equalization at the receiver, and thus makes

it possible to realize high speed data modems that wouldn’t have been possible

to build with single carrier systems. Fig. 2.3 shows the practical realization of

the multi-carrier system through OFDM technology. The multi-carrier modula-

tion/demodulation operations are realized by using both the inverse fast Fourier

transform (IFFT) and the fast Fourier transform (FFT) in the transmitter and

receiver. The cyclic prefix (CP) that is longer than the channel delay spread is at-

tached at the beginning of each symbol to prevent inter-symbol interference (ISI).

2.2.2 SISO-OFDM System

In this thesis, we consider the discrete-time OFDM system with N subcarriers. The

information bits {b(i)} are first encoded into coded bits {d(i)}, where i is the time

index. These coded bits are interleaved into a new sequence of {c(i)}, mapped into

M -ary complex symbols and serial-to-parallel (S/P) converted to a data sequence of

{X(i)
d }. Pilot sequence {X(i)

P } are inserted into data sequence {X(i)
d } at pilot subcar-
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Figure 2.2: Multi-carrier system

riers to form an OFDM symbol represented as X(i) = [X(i)(0), X(i)(1), · · · , X(i)(N−
1)]T . N -point inverse discrete Fourier transform (IDFT) is performed on X(i) given

by:

x(i)(n) =
1√
N

N−1∑

k=0

X(i)(k) · exp
j2πkn

N
, (2.2)

where 0 ≤ n ≤ N −1. After adding the CP of length G, the OFDM symbol is con-

verted into a time domain sample vector x(i) = [x(i)(−G), x(i)(−G+1), · · · , x(i)(N−
1)]T , where x(i)(−k) = x(i)(N − G + k), k = 1, . . . , G. These time domain samples

are then digital to analog converted and transmitted over the multi-path fading

channel.

The fading channel can be modeled by the time-variant discrete impulse re-

sponse with h(i)(n, l) representing the fading coefficient of the lth path at nth sample

for ith OFDM symbol. Assuming that the CP is longer than or at least equal to the

maximum channel delay spread L, i.e. L ≤ G, after removing the CP, the sampled

received signal can be characterized in the following tapped-delay-line model [85]:

y(i)(n) =
L−1∑

l=0

h(i)(n, l)x(i)(n − l) + w(i)(n), (2.3)

where w(i)(n) is the AWGN with zero mean and variance σ2
w. In the range of

0 ≤ n ≤ N−1, the received signal y(i)(n) is immune to the interference by previous

OFDM symbol due to the CP. The demodulated signal in the frequency domain is
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Figure 2.3: Practical OFDM system with transmitter and receiver

obtained by taking N -point DFT of y(i)(n) as:

Y (i)(m) =
1√
N

N−1∑

n=0

y(i)(n)e−j2πmn/N = H(i)
m,mX(i)(m)

+
N−1∑

k 6=m

H
(i)
m,kX

(i)(k) + W (i)(m), (2.4)

where

H(i)
m,m =

1

N

N−1∑

n=0

L−1∑

l=0

h(i)(n, l)e−j2πlm/N

=
1

N

N−1∑

n=0

~(i)
m (n), (2.5)

H
(i)
m,k =

1

N

N−1∑

n=0

{
L−1∑

l=0

h(i)(n, l)e−j2πlk/N}e−j2π(m−k)n/N

=
1

N

N−1∑

n=0

~
(i)
k (n)e−j2π(m−k)n/N , (2.6)
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and

W (i)(m) =
1√
N

N−1∑

n=0

w(i)(n)e−j2πmn/N , (2.7)

are the multiplicative distortion at the desired subcarrier m, the neighboring sub-

carrier k, and the noise after DFT respectively. In (2.5), ~
(i)
m (n) is the channel

frequency response of subcarrier m at time n in ith OFDM symbol. If the channel

is assumed to be time-invariant during one OFDM symbol period, ~
(i)
k (n) is con-

stant in (2.6), and H
(i)
m,k vanishes. In this case, Y (i)(m) in (2.4) only contains the

multiplicative distortion at the desired subcarrier, which can be easily compensated

by a one-tap frequency domain equalizer.

2.2.3 SISO Channel Modeling

Realistic mobile radio channels are characterized by the time and frequency dis-

persive nature. The channel time dispersive characteristic is determined by the

multi-path delay profile. In the time-domain, the channel impulse response has a

multi-path delay spread. In the frequency-domain, the channel frequency response

is varying with frequency. Fig. 2.4 illustrates the channel time dispersive nature.

Under such condition, the narrow band signal will experience flat fading whereas

the wideband signal will encounter frequency selective fading.

Flat fading channel response

Frequency selective fading channel 

response

)( fH

f

)(th

Exponential power delay profile

0 1 2 3

Time-domain Frequency-domain

Figure 2.4: Time dispersive/Frequency selective dual channel

The channel frequency dispersive characteristic is determined by the Doppler
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spread of the channel. In frequency-domain, Doppler spread is a measure of the

spectral broadening effect caused by the changing time rate of the mobile radio

channel. When the mobile station and base station are in movement relative to each

other, the received signal spectrum will have the frequency offset within doppler

spread in addition to that on the desired frequency as shown in Fig. 2.5. The

amount of the doppler spread depends on the relative velocity of the movement

and the angle between the direction of motion of the mobile and the base station.

In the time-domain, the channel frequency response is varying in time. If the

transmitted signal bandwidth is much greater than the Doppler spread, i.e. the

symbol period is shorter than the channel time variation, the effect of Doppler

spread is negligible at the receiver and the signal is classified as being under slow

fading conditions. Otherwise, if the transmitted signal bandwidth is much smaller

than the Doppler spread, i.e. the symbol period is longer than the channel time

variation, the signal is under fast fading.

Symbol 1 Symbol 2

Symbols 1-5

Short symbols: 
time flat channel

Long symbols: time 

selective channel

f t

)(th

)( fD

0
f

1
f

Doppler spread
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Figure 2.5: Frequency dispersive/Time selective dual channel

In the literature, the fading channel can be modeled by the time-variant discrete

impulse response with h(n, l) representing the coefficient of the lth path at nth sam-

ple. The fading coefficients are modeled as zero mean complex Gaussian random

variables. Based on the wide sense stationary uncorrelated scattering (WSSUS)

assumption [84], the fading coefficients for different paths are statistically indepen-

dent, while the fading coefficients for a particular path are correlated over time.

The time-domain autocorrelation function of h(n, l) is given by [86]:

E{h(n, l) · h∗(m, l)} = αl · J0(2π(n − m)fmTs), (2.8)



24 System Model

where J0(·) is the first kind of Bessel function of zero order, Ts = 1/BW is the

sample time, BW is the bandwidth of the system, fm is the maximum Doppler

spread and αl is the average power of the lth path. The channel gain is normalized

as given by:

L−1∑

l=0

E{‖h(i)(n, l)‖2} =
L−1∑

l=0

αl = 1, (2.9)

where the number of fading taps L = ⌈τmax/Ts⌉ is the maximum delay in terms of

OFDM samples. And the frequency-domain correlation is given by:

E{Hr,s · H∗
p,q} =

1

N2

L−1∑

l=0

αl · e−j2π(s−q)l/N ·
N−1∑

n=0

N−1∑

m=0

J0[2πfm(n − m)Ts]

·e−j2π(r−s)n/Nej2π(p−q)m/N , (2.10)

where H(·) is channel frequency response, {r, p} is the time index and {s, q} is the

frequency index.
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Figure 2.6: Channel time and frequency response at 3kmh

In OFDM system, data symbols are transmitted in both time and frequency

domain. Fig. 2.6, Fig. 2.7, and Fig. 2.8 show the channel frequency response of

ITU IMT-2000 vehicular-A channel [87] over subcarriers and OFDM symbols at

vehicular speeds 3kmh, 120kmh, and 333kmh respectively for the carrier frequency
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Figure 2.7: Channel time and frequency response at 120kmh

0

100

200

300

0

10

20

30

40
−50

−40

−30

−20

−10

0

10

Subcarrier indexSymbol index

S
ig

n
a
l 
e
n
e
rg

y

Figure 2.8: Channel time and frequency response at 333kmh

of 5GHz. It can be seen that the channel variation becomes more significant in

both time and frequency domain as mobility increases.
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2.3 Multiple-Input Multiple-Output (MIMO) Sys-

tem

The MIMO system can be considered as further extension from SISO system. Both

transmitter and receiver are equipped with multiple antenna elements. Such a setup

is illustrated in Fig. 2.9. Two mandatory MIMO profiles, namely the Alamouti STC

and SM, are employed in practical MIMO system [17]. The idea behind MIMO

system configuration is that the signals at the receive antennas are combined in

such a way that the quality or the data rate will be enhanced. As discussed in

Section 2.2, the generic MIMO system modeling is expressed as:

Y = HX + W, (2.11)

where Y is the received signal vector, W is the AWGN vector over receiving an-

tennas, and H is the MIMO channel matrix, which can be either a Alamouti STC

channel matrix or a SM channel matrix.

Channel
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Figure 2.9: MIMO system model with transmitter, receiver and channel

2.3.1 Alamouti Space-Time Coding (STC) System

The Alamouti STC [52] is a remarkable STBC scheme for transmission with two

transmitting antennas and one receiving antenna. This scheme supports ML de-

tection based only on linear processing at the receiver. Such a simple transmission
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structure and linear processing of the detection makes it a very attractive scheme

that is currently part of both the UMTS/WCDMA [84]. Another typical example

is IEEE 802.16e Mobile WiMAX system [17].

In the Alamouti STC system, the space-time multiplexer block in Fig. 2.9 is

implemented by a space-time block encoder, which divides the input symbols into

groups of two symbols each. At a given symbol period, the symbols in each group

{X0, X1} are transmitted simultaneously from both antennas, where the signal

transmitted from antenna 0 is X0 and the signal transmitted from antenna 1 is X1.

In the next symbol period, the signal −X∗
1 is transmitted from antenna 0 and the

signal X∗
0 is transmitted from antenna 1. Hence, two symbols are transmitted in

two symbol periods, which means the coding rate of the space-time block encoder

is one. Let h0 and h1 be the channel responses from the first and second transmit-

ting antennas to the receiving antenna. It is critical to assume that the channel

responses are constant over two consecutive symbol periods, i.e.

h0(2nT ) ≈ h0((2n + 1)T )

h1(2nT ) ≈ h1((2n + 1)T ), (2.12)

where T is the symbol duration. Denoting the received signal over two consecu-

tive symbol periods at receiving antenna as y0 and y1, the received signal can be

expressed as:

[
y0

y1

]
=

[
X0 −X∗

1

X1 X∗
0

]
·
[

h0

h1

]
+

[
w0

w1

]
. (2.13)

By taking the conjugate of y1, equation (2.13) can be rewritten as:

[
y0

y∗
1

]
=

[
h0 h1

h∗
1 −h∗

0

]
·
[

X0

X1

]
+

[
w0

w∗
1

]
. (2.14)

Link equation (2.14) to equation (2.11), it can be easily found that:

Y =

[
y0

y∗
1

]
,H =

[
h0 h1

h∗
1 −h∗

0

]
,X =

[
X0

X1

]
,W =

[
w0

w∗
1

]
.

Alamouti STC can also be applied with two receiving antennas. In such 2 × 2

configuration, similar to the 2×1 configuration, the received signals are taken from

two consecutive symbol periods but from both receiving antennas. Denoting yi
j and

ni
j as the received signal and noise for the ith symbol at the jth receiving antenna,



28 System Model

and hm,n as the channel responses from the nth transmitting antenna to the mth

receiving antenna, the 2 × 2 Alamouti STC system model can be expressed as:

[
y0

0 y1
0

y0
1 y1

1

]
=

[
h0,0 h0,1

h1,0 h1,1

]
·
[

X0 −X∗
1

X1 X∗
0

]
+

[
w0

0 w1
0

w0
1 w1

1

]
. (2.16)

By taking the conjugate of y1
0 and y1

1, equation (2.16) can be rewritten as:




y0
0

y0
1

(y1
0)

∗

(y1
1)

∗




=




h0,0 h0,1

h1,0 h1,1

h∗
0,1 −h∗

0,0

h∗
0,0 −h∗

1,0



·
[

X0

X1

]
+




w0
0

w0
1

(w1
0)

∗

(w1
1)

∗




. (2.17)

Link equation (2.17) to equation (2.11), it can be easily found that:

Y =




y0
0

y0
1

(y1
0)

∗

(y1
1)

∗




,H =




h0,0 h0,1

h1,0 h1,1

h∗
0,1 −h∗

0,0

h∗
0,0 −h∗

1,0




,X =

[
X0

X1

]
,W =




w0
0

w0
1

(w1
0)

∗

(w1
1)

∗




.

Equation (2.13) and (2.16)can be used for the channel estimation if symbols X0

and X1 are training symbols and equation (2.14) and (2.17) can be used for data

detection if channel responses h0 and h1 are known.

2.3.2 Spatial Multiplexing (SM) System

In MIMO spatial multiplexing system, streams of independent data are transmitted

over different antennas to maximize the average data rate over the MIMO system.

Unlike the Alamouti STC system, the symbols are transmitted from different trans-

mitting antennas in every symbol period. Hence, the space-time block encoder has

a coding rate of two. Considering a 2× 2 MIMO SM system, denoting X0 and X1

as the symbols transmitted in a symbol period for transmitting antennas, and hm,n

as the channel responses from the nth transmitting antenna to the mth receiving

antenna, the received signal y0 and y1 from each receiving antenna can be expressed

as: [
y0

y1

]
=

[
h0,0 h0,1

h1,0 h1,1

]
·
[

X0

X1

]
+

[
w0

w1

]
. (2.19)
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Link equation (2.19) to equation (2.11), it can be easily found that:

Y =

[
y0

y1

]
,H =

[
h0,0 h0,1

h1,0 h1,1

]
,X =

[
X0

X1

]
,W =

[
w0

w1

]
.

Unlike the STC approach which can recover the symbols without interference

the SM technique suffers significant interference which will be discussed in more

detail later in this thesis.

2.3.3 MIMO-OFDM System

The application of Alamouti STC or SM on the top of OFDM could be trivial

because each subcarrier of OFDM system can be considered as an independent

Alamouti STC or SM sub-system. In each subcarrier, the received signal is the

superposition of the fading signals from all transmitting antennas.
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Figure 2.10: MIMO-OFDM system with transmitter, iterative receiver and channel

The MIMO-OFDM system with N subcarriers considered in this thesis is shown

in Fig. 2.10. There are NT transmitting antennas and NR receiving antennas. The

information bits {bi} are first encoded into coded bits sequences {di}, where i is

the time index. These coded bits are interleaved into a new sequence of {ci},
mapped into M -ary complex symbols and serial-to-parallel converted to a data

sequence. A pilot sequence is inserted into data sequence to form an OFDM

symbol of N frequency-domain signals represented as a (N × NT ) × 1 vector

Xi = [XT
i,0,X

T
i,1, · · · ,XT

i,N−1]
T , where Xi,m = [X0

i,m, X1
i,m, · · · , XNT−1

i,m ]T is the NT×1

for the frequency-domain signals transmitted at the mth subcarrier for all trans-

mitting antennas.
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In the 2 × 1 Alamouti STC-OFDM system, the frequency-domain signal is

multiplexed into the STC encoder at each transmitting substreams. The STC

encoder will output coded symbols as discussed in Section 2.3.1. After adding the

CP of length G, the whole OFDM symbol is converted into time domain sample

vector. These time domain samples are transmitted over the multipath fading

channel, which can be modeled by the time-variant discrete impulse response. After

removing the CP at the receiver end, the demodulated frequency-domain signal is

defined as:

[
Y 0

i−1,m

(Y 0
i,m)∗

]

︸ ︷︷ ︸
Ym

=

[
H0,0

i,m H0,1
i,m

(H0,1
i,m)∗ −(H0,0

i,m)∗

]

︸ ︷︷ ︸
Hm

·
[

Xi−1,m

Xi,m

]

︸ ︷︷ ︸
Xm

+

[
W 0

i−1,m

(W 0
i,m)∗

]

︸ ︷︷ ︸
Wm

, (2.21)

where Y r
i,m as the received signal at rth receiving antenna for mth subcarrier of the

ith OFDM symbol, Xi,m as the transmitted signal at both transmitting antennas

for mth subcarrier of the ith OFDM symbol, Hr,t
i,m is the channel frequency response

between tth transmitting antenna and rth receiving antenna for the mth subcarrier

of ith OFDM symbol, and W r
i,m as the noise signal at rth receiving antenna for mth

subcarrier of the ith OFDM symbol. Similarly, in a 2 × 2 Alamouti STC-OFDM

system, we can easily obtain the demodulated frequency-domain signal as:




Y 0
i−1,m

Y 1
i−1,m

(Y 0
i,m)∗

(Y 1
i,m)∗




︸ ︷︷ ︸
Ym

=




H0,0
m H0,1

m

H1,0
m H1,1

m

(H0,1
m )∗ −(H0,0

m )∗

(H0,0
m )∗ −(H1,0

m )∗




︸ ︷︷ ︸
Hm

·
[

Xi−1,m

Xi,m

]

︸ ︷︷ ︸
Xm

+




W 0
i−1,m

W 1
i−1,m

(W 0
i,m)∗

(W 1
i,m)∗




︸ ︷︷ ︸
Wm

. (2.22)

On the other hand, in the SM-OFDM system, after removing the CP at the

receiver end, the demodulated frequency-domain signal is defined as (N ×NR)× 1

vector Yi = [YT
i,0,Y

T
i,1, · · · ,YT

i,N−1]
T , where Yi,m = [Y 0

i,m, Y 1
i,m, · · · , Y NR−1

i,m ]T is the

NR×1 signal vector at mth subcarrier for all receiving antennas. Hence, the overall

system model can be expressed as:

Yi = HiXi + Wi, (2.23)

Hi is (N × NR) × (N × NT ) channel frequency response matrix. If the channel is

assumed to be time-invariant during an OFDM symbol period, Hi can be defined
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as:

Hi = diag(Hi,m), (2.24)

where

Hi,m =




H0,0
i,m H0,1

i,m . . . H0,NT−1
i,m

H1,0
i,m H1,1

i,m . . . H1,NT−1
i,m

...
...

. . .
...

HNR−1,0
i,m HNR−1,1

i,m . . . HNR−1,NT−1
i,m




, (2.25)

is the channel frequency response matrix of mth subcarrier with each element rep-

resenting channel frequency response for a particular transmitter and receiver link.

On the other hand, if the channel is time variant, which occurs in real wireless

channels, then Hi is a full matrix where the off-diagonal items cause ICI [88,89]. A

central limit theorem (CLT) argument is used to model ICI as a Gaussian random

process, which is included in the (N ×NR)× 1 AWGN vector Wi with covariance

σ2
wI(N×NR). For a particular subcarrier m of interest, the received frequency-domain

signal from the tth transmitting antenna can be expressed as:

Yi,m = Hi,mXi,m + Wi,m

= Ht
i,mX t

i,m︸ ︷︷ ︸
desired signal

+
∑

k 6=t

Hk
i,mXk

i,m

︸ ︷︷ ︸
interference

+Wi,m, (2.26)

where Hk
i,m is the kth column of Hi,m.

2.4 Iterative Detection and Decoding (IDD)

In this section, we first present an overview of IDD with definitions of special terms

and notations used widely in the literature. A detailed mathematical formulation

for these special terms and notations are presented thereafter. Fig. 2.11 shows the

generic iterative receiver applied in this thesis. The core structure of an iterative re-

ceiver consists of a soft-input-soft-output detector, interleaver π, deinterleaver π−1,

and a soft-input-soft-output decoder, which exchange the detection and decoding

information in an iterative fashion. Depending on the applications, other receiver

modules could be included in the receiver, such as iterative channel estimator.

In Turbo decoder nomenclature [4], λ1, λe
1, and λe

2 are referred to as the a pos-

teriori information, extrinsic information, and a priori information, respectively.

The subscript “1” in λ1 and λe
1 means it is the output of the detector. The sub-
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Figure 2.11: Generic iterative receiver

script “2” in λe
2 means it is the output of channel decoder, which is fedback as input

of the detector. The superscript “e” means extrinsic information. The main idea

of an iterative receiver is that the detector takes the received signal Y and the a

priori information λe
2 as input, and outputs the reliability of the coded bits. This

reliability is fed back as a form of extrinsic information λe
1 to the channel decoder.

The channel decoder takes the extrinsic information λe
1 from the detector as the

a priori input and decodes the information bits. At the same time, the channel

decoder outputs the reliability of the coded bits and feeds them back to the detec-

tor as input, i.e., the a priori information λe
2. The above operations complete one

iteration. The extrinsic information and the a priori information are also known

as soft information.

Now we present the concepts of “extrinsic LLRs”, “a priori information”, and

“a posteriori information” mathematically. Given the SISO system in equation

(2.1) or the MIMO system model in equation (2.11), in the conventional non-

iterative receiver, the detector tries to maximize the likelihood of the transmitted

signal, that is, to minimize the Euclidian Distance to the received signal, which is



2.4 Iterative Detection and Decoding (IDD) 33

given by:

X̂ = arg max
X∈A

P (Y|X) = arg min
X∈A

‖Y − HX‖2, (2.27)

where A is the signal set with M -ary data modulation. On the other hand, in

the iterative receiver, the detector aims to maximize the a posteriori probability

of transmitted signal sequence, which is given by:

X̂ = arg max
X∈A

P (X|Y) = arg max
X∈A

P (Y|X)P (X)

P (Y)
. (2.28)

Assuming that the transmitted bits d0, d1 . . . , dlog2 M−1 are independent, P (X) can

be expressed as:

P (X) =

log2 M−1∏

k=0

P (dk(X)). (2.29)

Since P (Y) as a constant which is common to all X over A, (2.28) can be refor-

mulated as:

X̂ ≈ arg max
X∈A

{P (Y|X)P (X)}

≈ arg max
X∈A

{P (Y|X)

log2 M−1∏

k=0

P (dk(X))}. (2.30)

In the iterative detection and decoding, the soft information [90] rather than

the hard decision is computed for X̂. The soft information is measured by the

log likelihood ratio (LLR) [4] of the transmitted bit. The LLR λ(dk) of the coded

bit dk is computed by the log ratio of the probability of the bit to be 1 over the

probability of the information bit to be 0, i.e.

λ(dk) = ln
P (dk = 1)

P (dk = 0)
. (2.31)

Hence, denoting X̂\k = {d0, d1 . . . , dk−1, dk+1, . . . , dlog2 M−1} as the transmitted bits

excluding the bit of interest dk, the detector will output the a posteriori LLRs of

the transmitted bits d0, d1 . . . , dlog2 M−1 as:

λ1(dk(X̂)) = ln
P (dk = 1|X̂)

P (dk = 0|X̂)
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= ln

P (Y|dk = 1, X̂\k)
log2 M−1∏

l 6=k

P (dl(X̂))

P (Y|dk = 0, X̂\k)
log2 M−1∏

l 6=k

P (dl(X̂))

︸ ︷︷ ︸
Extrinsic information

+ ln
P (dk(X̂) = 1)

P (dk(X̂) = 0)︸ ︷︷ ︸
a priori information

= λe
1(dk(X̂)) + λe

2(dk(X̂)). (2.32)

As seen from equation (2.32), the a posteriori information λ1(dk(X̂)) is the

summation of the extrinsic information λe
1(dk(X̂)) and the a priori information

λe
2(dk(X̂)). The extrinsic information is the reliability measured from the Euclid-

ian Distance between the received signal and the hypothesis, and the a priori

probability of other bits as seen by the bit of interest. The a priori information

λe
2(dk(X̂)) is the reliability measured by the probability fed back by the channel

decoder on the bit of interest only. In the iterative detection and decoding, only

the extrinsic information is the reliability measure obtained from the detector in

the current iteration, the a priori information is the reliability measure from the

previous iteration. Hence, the extrinsic information λe
1(dk(X̂))

λe
1(dk(X̂)) = λ1(dk(X̂)) − λe

2(dk(X̂)) (2.33)

rather than the a posterior information λ1(dk(X̂)) is passed to the channel decoder

as input, as shown in Fig. 2.11.

The channel decoder takes λe
1(dk(X̂)) as input and output λe

2(dk(X̂)), which is

also the extrinsic information. In the next iteration, λe
2(dk(X̂)) is considered as the a

priori information to the detector as one of the inputs. It is worth noting that in the

first iteration, the a priori information from the channel decoder is not available.

Therefore, the coded bits are considered to have equal a priori probability of 0.5,

i.e. λe
2(dk(X̂)) = 0, for k = 0, 1, . . . , log2 M − 1. In this thesis, the channel decoder

is implemented as a MAP decoder based on the BCJR algorithm [91]. BCJR

algorithm involves a double recursion, i.e. one in forward direction and the other

in the reverse direction. Consequently, it has four times the complexity on average

and at least twice the complexity of the Viterbi algorithm [92,93] in its most general

form. However, it produces soft outputs, which is critical in the iterative detection

and decoding mechanism.

In summary, the main difference of the non-iterative receiver and iterative re-

ceiver is the usage of the a priori information. This difference is reflected in the

ML detector and MAP detector. The non-iterative receiver assumes there is no a
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priori knowledge of coded bits, hence, all the coded bits are assumed with equal

probability. Therefore, the ML detector is the optimal detector in non-iterative

receiver. On the other hand, in the iterative receiver, the a priori knowledge of

coded bits becomes available from the channel decoder after first iteration. From

second iteration onwards, the MAP detector can be utilized. Over iterations the a

priori probability P (X) makes a significant contribution in improving the a pos-

teriori probability of the coded transmitting bits in the detection mechanism as

shown in equation (2.28).
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Figure 2.12: ML and MAP receivers over ISI channel

Fig. 2.12 shows the bit error rate (BER) performance of ML detector based non-

iterative receiver and MAP detector based iterative receiver over a ISI channel. The

ISI channel response is ISI channel-B [0.407 0.815 0.407] [94]. The channel code

is the (5, 7)8 convolutional code, the data modulation is binary phase shift keying

(BPSK), and there are five iterations in the iterative receiver. The non-iterative

receiver is basically equivalent to the first iteration in the iterative receiver. This

is because in the first iteration, the a priori information is not available, hence,

the MAP detector is essentially reduced to ML detector. The dotted line is the
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AWGN channel performance which acts as the benchmark because it is the best

performance a receiver can achieve if it can entirely remove the effect of the ISI

channel. The x-axis shows the signal to noise ratio defined as Eb/N0, which is

computed in Appendix A.1. From the Fig. 2.12, it can be seen that the BER

performance improves over iterations. The most performance gain can be obtained

in the second iteration. And in later iterations, the performance gain is marginal.

And finally, the iterative receiver approaches AWGN performance at Eb/N0 = 5dB,

which the non-iterative receiver will not be able to achieve.

2.5 Soft Parallel Interference Cancelation (SPIC)

As discussed in the previous section, the a priori information can be generated

from iterative detection and decoding. Another advantage of using the a priori

information is to generate soft bits or symbols. In the interference limited system,

with soft bits or symbols, the interference can be reconstructed at the receiver and

removed from the received signal. Therefore, instead of performing joint detection

on the full set of coded bits as in equation (2.32), the individual data stream can

be separated and decoded so that a low complexity implementation is feasible.

Given the generic SISO/MIMO system model (2.1) and (2.11), we can extend

the formulation in equation (2.26) for MIMO-OFDM system by removing the time

and frequency index for brevity as:

Y = HX + W

= HtXt︸ ︷︷ ︸
desired signal

+
∑

k 6=t

HkXk

︸ ︷︷ ︸
interference

+W, (2.34)

where Hk is the kth column of H. Assuming that the soft symbol X̂k for k 6= t can

be generated from the a priori information, the interference can be reconstructed

and removed from the received signal as:

Yt = HtXt︸ ︷︷ ︸
desired signal

+
∑

k 6=t

Hk(Xk − X̂k)

︸ ︷︷ ︸
residual interference

+W, (2.35)

where X̂k is the soft symbol of Xk. Therefore, single-user detection methods can

be applied to detection in equation (2.35).
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The soft symbol X̂k is defined as the Bayesian estimate [95], which is the mean

value of Xk as given by:

X̂t =
∑

sj∈A
sj · P (Xt = sj), (2.36)

where sj is one of the constellation points, which is formed by {d0, d1, . . . , dlog2 M−1}
in the signal set A and

P (Xt = sj) =

log2 M−1∏

k=0

P (dk(Xt)). (2.37)

As discussed before, the soft symbol is computed by the a priori information in the

form of LLR value. Recalling the definition of the LLR value in equation (2.31),

and we also know that:

P (dk(Xt) = 1) + P (dk(Xt) = 0) = 1, (2.38)

P (dk(Xt)) can be obtained from the LLR value of λ(dk(Xt)) as follows:

P (dk(Xt) = 1) =
eλ(dk(Xt))

1 + eλ(dk(Xt))
, (2.39)

P (dk(Xt) = 0) =
1

1 + eλ(dk(Xt))
. (2.40)

In practical communication system, the computation of the soft symbol depends

on the data modulation scheme. In the case of BPSK and Gray-coded QPSK, the

soft data symbol can be obtained by:

X̂t = tanh(λ(d0(Xt))/2), (2.41)

X̂t =
1√
2
(tanh(λ(d0(Xt))/2) + j tanh(λ(d1(Xt))/2)). (2.42)

The detailed derivation is shown in Appendix A.2.

2.6 Summary

This chapter has investigated the SISO and MIMO system models used in this

thesis in later chapters. Both SISO and MIMO system can be expressed by a sin-

gle expression (2.1) or (2.11). In SISO system modeling, the channel channel time
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selectivity and frequency selectivity characteristics are discussed in detail. The

channel response can be shown in both time-domain and frequency-domain. It has

been shown that a realistic mobile radio channel varies significantly in time-domain

at high mobility and in frequency-domain with long multi-path delay spread. In

MIMO system modeling, two space-time transmission techniques, namely Alam-

outi STC and SM are discussed. The Alamouti STC is designed to use the MIMO

diversity to enhance signal reliability. The modeling of Alamouti STC is based on

the assumption that the channel is not varying for two-symbol period. In this case,

the channel matrix can be reformulated with orthogonal columns, hence, the Alam-

outi STC receiver only needs the linear processing to perform MRC for optimal

detection. The SM is designed to improve MIMO system capacity, however suffers

significant interference which needs to be removed and will be discussed in the fol-

lowing chapters. Benefits from diversity still remain in SM, however, the massive

interference dominates the system performance. By taking the analogy to multi-

user systems, the MIMO SM system is reformulated to a multiple access channel

by considering each transmitting antenna as a user. Therefore, the interference

cancelation technique is introduced, which can be used for detection.

In addition to the generic SISO/MIMO systems, the practical SISO-OFDM

and MIMO-OFDM system model are introduced, which are used in transmission

over wireless channels. The most important advantage of an OFDM system over

a single carrier system is that it transforms the frequency selective channel into a

collection of parallel flat fading subchannels, which simplifies the equalization at

the receiver. However, realistic mobile radio channels with rapid dispersive fading

in both time and frequency make channel estimation and tracking a challenging

problem in OFDM system design.

Furthermore, the notations of the iterative receiver techniques used in this thesis

are introduced. Iterative receiver realizes MAP detection by utilizing the a priori

information. The main idea behind the iterative receiver is to exchange of extrinsic

information between decoding blocks and enhance each block with the a priori

information. The simulation results show the step-by-step (iteration over iteration)

performance improvement achieved through the iterative detection and decoding.

Finally, the soft parallel interference cancelation is introduced. The concept of soft

information/symbol is introduced and how to compute the soft symbol from soft

information is discussed. The soft interference cancelation will be applied in the

iterative detection and decoding for MIMO systems.



Chapter 3

Iterative Receiver for

SISO-OFDM System

3.1 Introduction

This chapter presents a novel iterative receiver with channel estimation. The chan-

nel estimation for a SISO-OFDM system is investigated and the iterative detection

and decoding technique is applied to the channel estimation problem. A novel low

complexity iterative turbo channel estimation technique is proposed, which makes

use of preamble, pilots and soft decoded data information in an iterative fashion

to improve the system performance over the time and frequency selective fading

channel while maintaining the system throughput.

3.2 Frequency Domain Channel Estimation for

OFDM System

The literature on OFDM channel estimation is abundant, most of which can be

categorized into time-domain channel estimation and frequency-domain channel es-

timation. In the time-domain channel estimation, the channel impulse response is

obtained from the time-domain training samples. The channel frequency response

is then obtained by taking the Fourier transform of the channel impulse response.

Many time-domain channel estimation techniques [96] initially designed for single

carrier system can be used directly for the OFDM system. However, additional

complexity is introduced due to the pilot insertion in the time domain and the

Fourier transform of the channel impulse response. Furthermore, the time-domain

39
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channel estimation has another drawback besides high complexity, which is the

error propagation due to the FFT. This is because any error in the channel im-

pulse response for a particular path in the time-domain will produce error in the

channel frequency response across all subcarrier in the frequency-domain. On the

other hand, in the frequency-domain estimation approach, the training sequence is

embedded as frequency-domain signal samples. The channel frequency response is

obtained directly. Hence, the frequency-domain estimation approach usually has

less complexity. In this thesis, the frequency-domain estimation is investigated.

3.2.1 Channel Frequency Response for OFDM System

The channel estimation problem can be treated as a parameter estimation prob-

lem [97]. The basic idea is to estimate the channel response using maximum

likelihood criteria, which is known as the ML estimator (MLE) [98], or alterna-

tively, the minimum mean square error criteria, which is known as MMSE esti-

mator (MMSEE) [98]. we denote the transmitted frequency-domain signal by a

N × 1 vector X(i) = [X(i)(0), X(i)(1), · · · , X(i)(N − 1)]T , and the received time-

domain signal in (2.3) by a N × 1 vector y(i) = [y(i)(0), y(i)(1), · · · , y(i)(N − 1)]T ,

where (i) means ith OFDM symbol, the IDFT coefficients by a N × N matrix

whose (m,n)th element is [F]m,n = ej2πmn/N/
√

N , AWGN as N × 1 vector w(i) =

[w(i)(0), w(i)(1), · · · , w(i)(N − 1)]T , and time-domain channel matrix by N × N

matrix

h(i) =




h
(i)
0,0 0 0 . . . 0 h

(i)
0,L−1 h

(i)
0,L−2 . . . h

(i)
0,1

h
(i)
1,1 h

(i)
1,0 0 . . . 0 0 h

(i)
1,L−1 . . . h

(i)
1,2

...
...

...
. . . . . . . . . . . . . . .

...

0 0 0 . . . h
(i)
N−1,L−1 h

(i)
N−1,L−2 . . . . . . h

(i)
N−1,0




, (3.1)

(2.3) can be expressed as:

y(i) = h(i)FX(i) + w(i). (3.2)

And for the IDFT matrix F, we have following relation:

FHF = IN , (3.3)
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where FH is the DFT matrix with element [FH ]m,n = − expj2πmn/N /
√

N . The

received frequency-domain signal after DFT is given by:

Y(i) = FHy(i)

= FHh(i)FX(i) + FHw(i)

= H(i)X(i) + W(i), (3.4)

where H(i) = FHh(i)F and W(i) = FHw(i). For a general time-varying channel,

H(i) has non-trivial off-diagonal elements [H(i)]m,k given by (2.6). This off-diagonal

term leads to the ICI, which is caused by time varying nature of the channel rather

than the carrier frequency offset (CFO) in the synchronization. If the channel

is time invariant, these off-diagonal terms will vanish. In practice, estimation of

the entire N × N channel matrix incurs a prohibitive computational complexity.

In the literature, only the diagonal coefficients of H(i) are estimated [24, 25, 29].

Obviously, a performance degradation occurs by ignoring the ICI due to channel

time variation. In the next section, we will look at how severe the ICI is.

With above approach, we reformulate the OFDM system channel estimation

model in (3.4) as:

Y(i) = X
′(i)H

′(i) + W
′(i), (3.5)

where X
′(i) = diag(X

(i)
0 , X

(i)
1 , . . . , X

(i)
N−1) is the N × N diagonal matrix with the

assumption that pilot and data symbols are taken from a constellation with unit

mean energy, i.e.,E{|X(i)
m |2} = 1. H

′(i) is the N × 1 channel frequency response

(diagonal terms of H(i)) vector under investigation, and W
′(i) is the equivalent

N × 1 noise vector with σ2
w′ = σ2

w + σ2
ICI .

3.2.2 Degradation from Inter-Carrier Interference

The degradation caused by ignoring the off-diagonal ICI terms in H(i) can be

evaluated by investigating the cross-correlation between elements in H(i) as shown

in (2.10). The power of ICI for a particular subcarrier m is expressed as:

Pm
ICI = E{|

∑

k 6=m

H
(i)
m,kX

(i)(m)|2}

=
∑

m6=k

|H(i)
m,k|2

=
1

N2

∑

k 6=m

L−1∑

l=0

αl{N + 2
N−1∑

p=1

(N − p)
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·J0(2πfmpTs)cos[
2π(m − k)p

N
]}, (3.6)

and the average power of ICI over all subcarriers is given by:

PICI =
1

N

N−1∑

m=0

Pm
ICI

=
N − 1

N
+

4

N3

L−1∑

l=0

αl

N−1∑

p=1

(N − p)J0(2πfmpTs)

·
N−1∑

q=1

(N − q)cos(
2πpq

N
). (3.7)
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Figure 3.1: Power of ICI at 3kmh, 120kmh, and 333kmh

Fig. 3.1(a), Fig. 3.1(b), and Fig. 3.1(c) show the ICI power of IMT-2000 vehicular-

A channel [87] model over subcarriers and OFDM symbols at vehicular speeds

3kmh, 120kmh, and 333kmh respectively for the carrier frequency of 5GHz. The

bandwidth is 5MHz, and there are 256 subcarriers. The subcarrier spacing is

around 20KHz. It can be seen that in the low mobility environment, the power
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Figure 3.2: ICI Power at different vehicular speeds

of ICI is so small that the off-diagonal term in H(i) vanishes. As the mobility in-

creases, the power of ICI becomes larger and larger. However, such increasing of

the ICI power saturates at −20dB as shown in Fig. 3.1(b) and Fig. 3.1(c).

To validate the findings, the power of ICI in terms of vehicular speed is plotted

in Fig. 3.2. The dashed line shows the theoretical computation of the ICI power

by equation (3.7), and the red solid line with circle mark is the simulated ICI

power. The theoretical and simulated results coincide with each other. It can

be seen that the power of ICI for the mobile channel in most practical Doppler

spreads is below -20dB. Due to the very minor influence that the ICI has on the

receiver, we focus on the diagonal channel frequency response in H(i) and treat the

ICI term as an additional embedded Gaussian noise, according to the central limit

theorem [95]. The ICI variance is computed by equation (3.7), assuming that the

maximum doppler spread is estimated by the method developed in [99].
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3.2.3 Conventional Maximum Likelihood Estimator

In this section, the conventional ML estimator [97] is derived from first principles.

The same approach will be utilized in the derivation of the developed final stage

ML estimator in Section 3.3.4 and analysis of performance bonds in Section 3.4.

In the ML estimation criteria, the channel estimator tries to maximize the prob-

ability P (H
′(i)|Y(i)) without any knowledge of H

′(i), which is equivalent to finding

the channel frequency response such that the received signal can be reconstructed

with minimum error, i.e.

̂
H

′(i)
ML = arg max

H
′(i)

{P (H
′(i)|Y(i))}

= arg max
H

′(i)
{P (Y(i)|H′(i))}

= arg min
H

′(i)
‖Y(i) − X

′(i)Ĥ′(i)‖2

= arg min
H

′(i)
{(Y(i) − X

′(i)Ĥ′(i))H(Y(i) − X
′(i)Ĥ′(i))}, (3.8)

where X
′
works as training sequence and is known at the receiver. To solve equation

(3.8), the cost function for a ML channel estimation can be defined as:

JML = (Y − X
′

H
′H)(Y − X

′

H)

= YHY − YHX
′

H
′ − H

′HX
′HY + H

′HX
′HX

′

H
′

, (3.9)

where the symbol index (i) is dropped for brevity. By taking the derivative of cost

function JML with respect to H
′
, we have

∂JML

∂H′ = −2X
′HY + 2X

′HX
′

H
′

. (3.10)

Hence, the ML channel estimation solution is given by taking the equation (3.10)

to equal to zeros, i.e., ∂JML

∂H
′ = 0, and the solution is obtained as:

Ĥ
′

ML = (X
′HX

′

)−1X
′HY. (3.11)

Substituting equation (3.5) into equation (3.11) with symbol index (i) dropped,

the ML channel estimator can be expressed as:

Ĥ
′

ML = (X
′HX

′

)−1X
′H(X

′

H
′

+ W
′

)

= H
′

+ (X
′HX

′

)−1W
′

. (3.12)
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It is worth noting that from estimation theory [97, 98], the channel frequency re-

sponse estimated by the MLE is viewed as a deterministic but unknown quantity.

The ML approach minimizes the Euclidean Distance between the original received

signal and the reconstructed received signal with estimated channel frequency re-

sponse. the MSE is understood as an average over the observed data. Hence, the

mean value of Ĥ
′

ML is taking over the effective noise W
′
as:

E{Ĥ′

ML} = H
′

, (3.13)

and the covariance matrix is given by:

CML = E{(Ĥ′

ML − H
′

)(Ĥ
′

ML − H
′

)H}
= E{(X′HX

′

)−1W
′

W
′H((X

′HX
′

)−1)H}
= ((X

′HX
′

)−1E{W′HW
′}(X′HX

′

)−1)H

= σ
′2
w (X

′HX
′

)−1((X
′HX

′

)−1)H . (3.14)

The MSE of the MLE can be obtained by taking the average of the summed

covariance matrix elements as:

εML =
Tr(CML)

N

=
σ

′2
w

N
Tr((X

′HX
′

)−1((X
′HX

′

)−1)H), (3.15)

where Tr(·) is the trace operator.

3.2.4 Conventional Minimum Mean Square Error Estima-

tor

In this section, the conventional MMSE estimator [97] is derived from first princi-

ples. The same approach will be utilized in the derivation of the developed final

stage MMSE estimator in Section 3.3.4 and analysis of performance bonds in Sec-

tion 3.4.

In the minimum mean square error (MMSE) estimation criteria, the channel

estimator tries to find the possible channel frequency response such that the error

between the estimated channel frequency response and the true channel frequency
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response is minimized, i.e.,

̂
H

′(i)
MMSE = arg min

H
′(i)

E{‖Ĥ′(i) − H
′(i)‖2}

= arg min
H

′(i)
E{(Ĥ′(i) − H

′(i))H(Ĥ(i) − H
′(i))}, (3.16)

To solve equation (3.16), a linear filter can be designed as:

̂
H

′(i)
MMSE = FMMSEY. (3.17)

Substitute equation (3.17) into equation (3.16), we have the cost function for MM-

SEE as:

JMMSE = E{(FMMSEY − H
′

)H(FMMSEY − H
′

)}, (3.18)

where the symbol index (i) is dropped for brevity. As similar in Section 3.2.3,

the solution of MMSEE can be obtained by taking the derivative of JMMSE with

respect to FMMSE. An alternative approach is to use the Orthogonal Principle [100]

as follows:

E{(FMMSEY − H
′

)YH} = 0. (3.19)

Both approaches end up with the solution:

FMMSE = E{H′

YH}E{YYH}−1, (3.20)

where

E{H′

YH} = E{H′

(X
′

H
′

+ W
′

)H}
= E{H′

H
′HX

′H} + E{H′

W
′H}

= E{H′

H
′H}X′H , (3.21)

and

E{YYH} = E{(X′

H
′

+ W
′

)(X
′

H
′

+ W
′

)H}
= E{X′

H
′

H
′HX

′H} + E{W′

W
′H}

= X
′

E{H′

H
′H}X′H + σ

′2
w IN . (3.22)

Hence, substitute equation (3.20) into equation (3.17), the channel frequency re-
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sponse estimated by the MMSEE is given by:

̂
H

′(i)
MMSE = (X

′HX
′

+ σ
′2
w E{H′

H
′H}−1)−1X

′HY. (3.23)

From estimation theory [97, 98], the channel frequency response estimated by the

MMSEE is viewed as a a random quantity whose particular realization we want

to estimate. Hence, the MSE is understood as an average taken over not only the

observed data but also the channel frequency response probability density function

as well. By substituting equation (3.5) into equation (3.20), the mean value of

Ĥ
′

MMSE can be obtained by:

E{Ĥ′

MMSE} = (X
′HX

′

+ σ
′2
w E{H′

H
′H}−1)−1X

′HX
′

E{H′}, (3.24)

and the covariance matrix of Ĥ
′

MMSE can be obtained by Bayesian Gauss-Markov

Theorem [97]:

CMMSE = E{(Ĥ′

MMSE − H
′

)(Ĥ
′

MMSE − H
′

)H}
= σ

′2
w (X

′HX
′

+ σ
′2
w E{H′

H
′H}−1)−1. (3.25)

Similar to MLE, the MSE of the MMSEE can be obtained by taking the average

of the summed covariance matrix elements as:

εMMSE =
Tr(CMMSE)

N

=
σ

′2
w

N
Tr((X

′HX
′

+ σ
′2
w E{H′

H
′H}−1)−1). (3.26)

Some remarks regarding MLE and MMSEE are worth noting. Realistic mo-

bile radio channels vary in both frequency and time, and such variation becomes

more and more significant across sub-carriers and symbols in high mobility envi-

ronment, which requires more training signals to be embedded across time and

frequency. As in the derivations, we assume that the training sequence X
′

=

diag(X
(i)
0 , X

(i)
1 , . . . , X

(i)
N−1) is known to the receiver for MLE and MMSEE. How-

ever, it is impossible to introduce large amount of training signals in practical

systems, as the OFDM system throughput needs to be maintained. Hence, a fun-

damental problem is the trade off between channel estimation performance and

the system throughput. To obtain better data detection performance in a channel

environment which has both time and frequency selectivity, conventional preamble-

based and pilot-aided channel estimation require numerous reference signals, which
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significantly compromises the system throughput. On the other hand, system ca-

pacity will be significantly limited due to poor channel estimation performance

based on limited number of training signals.

In this thesis, estimates of the information bits are also utilized in the channel

estimation. As discussed in Chapter 2 Section 2.4, soft data information can be

obtained from the iterative detection and decoding. These soft data values are

computed from the feedback information from channel decoder and immediately

available after the first iteration. Hence, similar to the training signals, the soft

data can be applied as training signals. However, unlike the training signals which

are 100% reliable (as they are known at the receiver), the soft data information

should be treated differently in the channel estimation as their reliability will vary.

3.3 Iterative Receiver with Three-Stage Turbo

Channel Estimation

In this section, a novel iterative receiver with three-stage turbo channel estimation

technique is presented.

3.3.1 Receiver Structure Outline
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Figure 3.3: Iterative channel estimation for SISO-OFDM system

Assuming that OFDM symbols are transmitted on a frame by frame basis. In

the downlink transmission, each frame consists of one preamble followed by a num-

ber of data symbols. In each data symbol, pilots are evenly distributed across

available subcarriers. In the uplink transmission, there is no preamble but only
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pilots. The example configurations we utilize are specified in [16, 17]. The pro-

posed iterative receiver structure is shown in Fig. 3.3, where a three-stage turbo

channel estimator, a demapper module, and a MAP decoder work in an iterative

fashion. For each OFDM symbol, at each iteration, the three-stage turbo channel

estimator estimates the channel frequency response based on the soft decoded data

information from previous iteration, the demapper computes the a posteriori prob-

ability P (X(m)|Y (m), Ĥm,m), 0 ≤ m ≤ N − 1 given the channel estimates Ĥm,m

and received symbol Y (m), and outputs extrinsic information for the coded bits in

symbol X(m). More specifically, the demapper outputs LLR λe
1 of the kth coded

bits ck in symbol X(m) as in (3.27),

λe
1(ck(X(m))) = ln

∑
sj∈U+

k
(A) P (X(m) = sj|Y (m), Ĥm,m, λe

2)
∑

sj∈U−
k

(A) P (X(m) = sj|Y (m), Ĥm,m, λe
2)

, (3.27)

where

P (X(m) = sj|Y (m), Ĥm,m, λe
2) =

1

2πσ2
w

′

exp(−|Y (m) − Ĥm,mX(m)|2
2σ2

w
′

)

·
∏

l 6=k

p(cl(X(m))), (3.28)

and U+
k (A) is the constellation set that contains all the symbols whose kth bit is

1, and U−
k (A) is the constellation set that contains all the symbols whose kth bit

is 0. The conditional probability is computed using (3.28).

The LLRs on the coded bits are de-interleaved and passed to the MAP decoder

for decoding. The MAP decoder feedbacks the extrinsic information λe
2(ck(X(m))),

which is used to compute the soft data symbol as shown in equation (2.41) for

BPSK, equation (2.42) for Gray-coded QPSK, and equation (A.13)(A.14) for 16QAM.

The soft symbols will be used in channel estimation as detailed in the following

section.

Fig. 3.4 shows the three-stage turbo channel estimator, which estimates the

channel based on the improved a priori information of the decoded data, preamble

and the pilots by adaptively weighting the statistics according to the respective

levels of reliability. The performance of channel estimation is significantly enhanced

which in turn leads to improved system performance. The proposed receiver also

allows for high throughput transmission since there is a substantial saving on the

number of preambles and pilots required.
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Figure 3.4: Three-stage turbo channel estimator

3.3.2 Initial Coarse Estimation Stage

Initial coarse estimation stage is performed at the first iteration. Denoting the pilot

symbol at pth subcarrier and the data symbol at nth subcarrier for ith OFDM symbol

as X
(i)
P (p) and X

(i)
d (n) respectively, the system model for pilot symbol transmission

is given by:

Y (i)(p) = H(i)
p,p

√
EpX

(i)
P (p) +

∑

q 6=p

H(i)
p,q

√
EpX

(i)
P (q)

+
∑

n6=p,q

H(i)
p,n

√
EdX

(i)
d (n) + W (i)(p), (3.29)

where second and third terms on the right side of equation (3.29) are ICI from other

pilot subcarriers and data subcarriers, Ep and Ed are the energy of pilot and data

symbol, respectively. Channel frequency response at pilot subcarrier is obtained

by the LS approach:

Ĥ
(i)
p,p = Y (i)(p)

(X
(i)
P (p))∗√

Ep
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= H(i)
p,p +

∑

q 6=p

H(i)
p,qX

(i)
P (q)(X

(i)
P (p))∗

+
∑

n6=p,q

H(i)
p,n

√
Ed

Ep

X
(i)
d (n)(X

(i)
P (p))∗ +

W (i)(p)(X
(i)
P (p))∗√

Ep

= H(i)
p,p + W

′(i)
P (p), (3.30)

Assuming pilots and data symbols are independent, it can be shown in Appendix

B.1 that:

E{W ′(i)
P (p)} = 0, (3.31)

and

E{(W ′(i)
P (p))∗(W

′(i)
P (p))} =

σ2
w + σ2

ICI

Ep

. (3.32)

For OFDM data symbols, channel tracking is applied to obtain initial coarse

channel estimates. In the downlink transmission, channel estimates for the ith

symbol is given by:

Ĥ(i) = Ĥ(i−1) + F(Ĥ
(i)
P − ̂

H
(i−1)
P ), (3.33)

where ĤP is the channel estimates at pilot subcarriers. F(·) denotes the interpola-

tion filter, which can be FFT based [25], MMSE based [29], or linear interpolation

based [101]. In this thesis, linear interpolation is employed due to its low com-

plexity. More specifically, assuming the pilot spacing is δ, Ĥ
(i)
p,p and

̂
H

(i)
p+δ,p+δ are

the channel estimates from two adjacent pilots. The channel estimate
̂
H

(i)
m,m at

subcarrier m, which is between pilot subcarrier p and p + δ is given by:

̂
H

(i)
m,m =

[
1 − m−p

δ
m−p

δ

]
·


 Ĥ

(i)
p,p

̂
H

(i)
p+δ,p+δ


 , (3.34)

In contrast, in the uplink transmission, the initial channel estimates for the ith

symbol is given by:

Ĥ(i) = F(Ĥ
(i)
P ), (3.35)

where the design of the interpolation filter is based on the pilots allocation in

practical OFDM systems.
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3.3.3 Iterative Estimation Stage

In the iterative estimation stage, LS estimation is first performed for both pilot and

data subcarriers, followed by frequency-domain combining and time-domain com-

bining. Similar to the pilot tones, the system model for data symbol transmission

is given by:

Y (i)(m) = H(i)
m,m

√
EdX

(i)
d (m) +

∑

n6=m

H(i)
m,n

√
EdX

(i)
d (n)

+
∑

p 6=m

H(i)
m,p

√
EpX

(i)
P (p) + W (i)(m), (3.36)

and the LS channel estimation for data symbol is given by:

̂
H

(i)
m,m = Y (i)(m)

(X̂
(i)
d (m))∗√

Ed|X̂(i)(m)|2
. (3.37)

However, the data detection in previous iterations may not be reliable such that

the energy of soft decoded data symbol in (2.41) and (2.42) may be less than

unity. If the soft decoded data symbol is directly applied to LS estimation, the

channel estimates are subject to a bias due to the imperfect decoding information.

To overcome this problem, channel estimate at the mth subcarrier is normalized

by the average energy of the soft decoded data symbols within a moving average

window (MAW) Θ as:

̂
H

(i)
m,m = Y (i)(m)

(X̂
(i)
d (m))∗√

Ed| ̂
X

(i)
d∈Θ|2

= H(i)
m,m

X
(i)
d (m)(X̂

(i)
d (m))∗√

| ̂
X

(i)
d∈Θ|2

+
∑

n6=m

H(i)
m,n

X
(i)
d (n)(X̂

(i)
d (m))∗√

| ̂
X

(i)
d∈Θ|2

+
∑

p6=m

H(i)
m,p

√
EpX

(i)
P (p)(X̂

(i)
d (m))∗√

Ed| ̂
X

(i)
d∈Θ|2

+
W (i)(m)(X̂

(i)
d (m))∗√

Ed| ̂
X

(i)
d∈Θ|2

≈ H(i)
m,m

√
| ̂
X

(i)
d∈Θ|2 + W

′(i)
d (m), (3.38)

where

| ̂
X

(i)
d∈Θ|2 = E{̂

X
(i)
d∈Θ(m)(

̂
X

(i)
d∈Θ(m))∗}, (3.39)



3.3 Iterative Receiver with Three-Stage Turbo Channel Estimation 53

is the average energy of soft coded data information in the MAW Θ. Similar in

the pilot symbol channel estimation, assuming pilots and data symbols are inde-

pendent, it can be shown in Appendix B.2 that:

E{W ′(i)
d (m)} = 0, (3.40)

and

E{(W ′(i)
d (m))∗(W

′(i)
d (m))} =

σ2
w + σ2

ICI

Ed

. (3.41)

Mobile radio channel shows natural phenomenon of delay spread in the time-

domain, which is caused by the reflected and scattered propagation paths. In

the frequency-domain, the channel frequency response shows correlation, which

is measured by coherent bandwidth [84]. Coherent bandwidth is the range of

frequencies over which two frequency components are likely to be correlated in

amplitude and phase. Fig. 3.5 shows the frequency-domain correlation between

the 5th subcarrier and other subcarriers for IMT-2000 vehicular-A channel model

in SISO-OFDM system with 256 subcarrier over 5MHz bandwidth. The blue line

is the theoretical correlation result, and the black doted line with cross is the

simulation results. It can be seen that the channel frequency response at the

adjacent subcarriers near the 5th subcarriers are highly correlated. Knowing this

property can be used to improve the channel estimation technique.

More specifically, due to the correlation in the frequency domain, low pass fil-

tering can be performed by combining channel estimates from both pilot tones

and soft coded data information within a MAW to generate improved channel es-

timates. In the OFDM system, the size of the MAW is determined by the system

coherent bandwidth and subcarrier spacing. For example, in the system configu-

ration as mentioned in Section 2.2.3, the subcarrier spacing is 5.12kHz, while the

coherent bandwidth is 54kHz for the channel considered in this thesis. Therefore,

it is reasonable to define a MAW of size 9. In practical system, the coherent band-

width can be derived from channel delay profile, which can be obtained by taking

the inverse Fourier transform of channel frequency response estimated by reference

signals, such as preamble or pilots, in the training period [14]. Furthermore, the

idea of the combining strategies in the OFDM system can be generalized to other

systems too, such as 3GPP DS-CDMA system. In that case, the combining strat-

egy can be applied between control and data channel, where the size of MAW is

determined by the chip rate and channel coherence time.

Assuming within the MAW, the channel frequency response is highly correlated,
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Figure 3.5: Frequency-domain correlation between the 5th subcarrier and other
subcarriers for IMT-2000 vehicular-A channel model in SISO-OFDM system

i.e. H
(i)
p,p ≈ H

(i)
d,d ≈ H

(i)
m,m, the weighted average for the channel frequency response

at subcarrier m is given by:

H̃(i)
m,m = ωp

∑

p∈Θ

Ĥ
(i)
p,p + ωd

∑

d∈Θ

Ĥ
(i)
d,d

= ωp

∑

p∈Θ

(H(i)
m,m + W

′(i)
P ) + ωd

∑

d∈Θ

(H(i)
m,m

√
| ̂
X

(i)
d∈Θ|2 + W

′(i)
d )

= (Npωp + Ndωd

√
| ̂
X

(i)
d∈Θ|2)H(i)

m,m

+ (ωp

∑

p∈Θ

W
′(i)
P + ωd

∑

d∈Θ

W
′(i)
d )

︸ ︷︷ ︸
N (0, Npω

2
p

σ2

w
′

Ep
+ Ndω

2
d

σ2

w
′

Ed
)

, (3.42)

where Np and Nd are the number of pilot and data symbols within the MAW. It

can be observed from equation 3.42 that the channel estimate after frequency-main
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combining is the true channel frequency response H
(i)
m,m distored by a factor (Npωp+

Ndωd

√
| ̂
X

(i)
d∈Θ|2), and with noise added on (ωp

∑
p∈Θ

W
′(i)
P + ωd

∑
d∈Θ

W
′(i)
d ). Hence, an

convex optimization problem can be defined as follows: the optimal weight values

{ωp, ωd} should be obtained in such as way that the added on noise should have

mimimun variance subject to the constraint that the distortion factor is unity. The

optimal weight values {ωp, ωd}, can be determined using the MRC principle, which

is mathematically formulated into the following Lagrange multiplier problem:

{ωp, ωd} = argmin
ωp,ωd

{(Npω
2
p

σ2
w′

Ep

+ Ndω
2
d

σ2
w′

Ed

) + λ(Npωp

+Ndωd

√
| ̂
X

(i)
d∈Θ|2 − 1)}, (3.43)

where λ is the Lagrange multiplier. Hence, the optimal weights {ωp, ωd} can be

derived as:

ωp =
1

Np + Nd
Ed

Ep
| ̂
X

(i)
d∈Θ|2

, (3.44)

ωd =

√
| ̂
X

(i)
d∈Θ|2

Np
Ep

Ed
+ Nd| ̂

X
(i)
d∈Θ|2

. (3.45)

To further improve channel estimates, time-domain MAW combining can be

applied to the channel frequency response. The time-domain combining is designed

from the observation that the channel impulse response has correlated fading gains

within the coherence time [84]. The coherence time is the time duration over

which two channel fading gains have a strong likelihood of amplitude and phase

correlation. Hence, in the OFDM system, after transforming the correlated channel

impulse response within the coherence time to the frequency-domain, the channel

frequency response within the coherence time are correlated as well.

Fig. 3.6 shows the frequency response correlation at the 5th subcarrier over

20 OFDM symbols period between for IMT-2000 vehicular-A channel model at

333kmh in SISO-OFDM system. The blue solid line is the theoretical correlation

result, and the black doted line with cross is the simulation results. It can be seen

that channel frequency response for a particular subcarrier for the adjacent OFDM

symbols are highly correlated. This property can be used to improve the channel

estimation.

Therefore, based on the observation that OFDM channel frequency responses

are highly correlated in the time-domain for consecutive OFDM symbols, i.e.
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Figure 3.6: Frequency response correlation at the 5th subcarrier over 20 consecu-
tive symbols for IMT-2000 vehicular-A channel model at 333kmh in SISO-OFDM
system

H
(i−1)
m,m ≈ H

(i)
m,m. Therefore, another MRC can be performed, which is given by:

˜̂
H

(i)
m,m = αH̃(i−1)

m,m + βH̃(i)
m,m

= (α + β)H(i)
m,m + (αW

′′(i−1)(m) + βW
′′(i)(m))︸ ︷︷ ︸

N (0, α2σ2
w

′′(i−1) + β2σ2
w

′′(i))

, (3.46)

where α and β are weighting parameters obtained by minimizing the estimation

error, that is:

{α, β} = argmin
α,β

{(α2σ2
w

′′(i−1) + β2σ2
w

′′(i)) + λ(α + β − 1)}, (3.47)

and σ2
w

′′(i−1) and σ2
w

′′(i) are the variances after the frequency-domain combining for

the (i − 1)th and ith OFDM symbols, respectively.

σ2
w

′′(i−1) and σ2
w

′′(i) are obtained from the variance estimator in Fig. 3.4. Here,

we illustrate how the variance estimator computes σ2
w

′′(i) for the ith OFDM symbol.
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The variance σ2
w

′′(i−1) for the (i − 1)th OFDM symbol can be obtained similarly.

As shown in equation (3.42), the variance after the frequency-domain combining is

approximated as:

σ2
w

′′(i) ≈ (ωp

∑

p∈Θ

W
′(i)
P + ωd

∑

d∈Θ

W
′(i)
d )

≈ Npω
2
p

σ2
w

′

Ep

+ Ndω
2
d

σ2
w

′

Ed

. (3.48)

Substituting equations (3.44) and (3.45) in equation (3.48), the variance estimator

will output the variance for the time-domain combining as:

σ2
w

′′(i) ≈
Npσ

2
w

′

Ep(Np + Nd
Ed

Ep
| ̂
X

(i)
d∈Θ|2)2

+
Ndσ

2
w

′ | ̂
X

(i)
d∈Θ|2

Ed(Np
Ep

Ed
+ Nd| ̂

X
(i)
d∈Θ|2)2

. (3.49)

Hence, the optimal solution for α and β in the time-domain combining are

obtained as:

α =
σ2

w
′′(i)

σ2
w

′′(i−1) + σ2
w

′′(i)

, (3.50)

β =
σ2

w
′′(i−1)

σ2
w

′′(i−1) + σ2
w

′′(i)

. (3.51)

The advantage of the proposed method is that the weights in (3.44), (3.45), (3.50)

and (3.51) are adaptive to the number and power of pilots and data symbols in the

MAW, and most importantly, the reliability of the specific OFDM symbols. There-

fore, the combining is performed in proportion to the available information. As the

iterations proceed, the available a priori information on data signals improves,

the weights associated with the data-aided channel estimates increase accordingly,

where the decoding data serve as virtual reference signals.

It is worth mentioning that the frequency-domain combining and time-domain

combining strategies are developed based on the assumption that time and fre-

quency correlations remain valid. As discussed in both theoretical and practical

perspectives, time and frequency correlations are widely accepted concepts. This

assumption has been verified in the Fig. 3.5 and 3.6, and other references [14, 84]

in the literature as well. The impact of error in channel time and frequency corre-

lations is out of the scope of this chapter.
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3.3.4 Final Estimation Stage

The final estimation stage is performed on the final iteration, where the decoding

information from MAP decoder becomes very reliable, and is almost as reliable

as reference pilot signals. For an OFDM symbol with estimated reference signals,

the MLE or MMSEE techniques are able to provide a further improvement over

the LS based MRC channel estimator discussed in the previous section. Extended

from the reformulated OFDM system channel estimation model in (3.5), if X
′(i) is

perfectly known, the LS estimation is given by:

H̃′(i)
LS = [(X

′(i))HX
′(i)]−1(X

′(i))HY(i)

= H
′(i) + [(X

′(i))HX
′(i)]−1(X

′(i))HW
′(i)

= H
′(i) + (X

′(i))−1W
′(i), (3.52)

where (X
′(i))−1W

′(i) is statistically equivalent to W
′(i) for a PSK constellation.

Hence, a new signal model [97] based on (3.52) is used for estimating H
′(i), given

by:

H̃′(i)
LS = H

′(i) + [(X
′(i))HX

′(i)]−1(X
′(i))HW

′(i)

= Gh
′(i) + [(X

′(i))HX
′(i)]−1(X

′(i))HW
′(i)

= Gh
′(i) + (X

′(i))−1W
′(i), (3.53)

where G is the N × L matrix with element [G]n,l = e−j2πnl/N , 0 ≤ n ≤ N − 1 and

0 ≤ l ≤ L − 1. h
′(i) = [h

′(i)
0 , h

′(i)
1 , · · · , h

′(i)
L−1]

T is a L × 1 channel impulse response

vector, where h
′(i)
n is given by:

h
′(i)
l =

1

N

N−1∑

n=0

h(i)(n, l), (3.54)

As shown in Section 3.2.3, if H
′(i) is assumed to be a deterministic and unknown

vector, the MLE can be derived following the invariance property [98], given by:

̂
H

′(i)
MLE = G(GHG)−1GHH̃′(i)

LS

= G(GHG)−1GH [(X
′(i))HX

′(i)]−1(X̂′(i))HY(i)

=
1

N
GGH(X̂′(i))−1Y(i), (3.55)
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where X̂′(i) is soft coded OFDM symbol from the last second iteration with pilot

tones. On the other hand, as H
′(i) is random in nature, Bayesian estimators are

able to improve the performance by exploiting the priori knowledge on channel

statistics. Hence, similar in Section 3.2.4, we consider the MMSEE [97], given by:

̂
H

′(i)
MMSE = GR

h
′
h
′ (GHGR

h
′
h
′ + σ2

w′IL)−1GHH̃′(i)
LS

= GR
h
′
h
′ (NR

h
′
h
′ + σ2

w′IL)−1GHH̃′(i)
LS

= GR
h
′
h
′ (NR

h
′
h
′ + σ2

w′IL)−1GH(X̂′(i))−1Y(i), (3.56)

where R
h
′
h
′ = E{h′

h
′H} = diag(αl) is the L×L covariance matrix of h

′
based on

the WSSUS assumption. IL is the L × L identity matrix, and GHG = NIL.

3.4 Mean Square Error Analysis of Turbo Chan-

nel Estimation

In this section, we derive the lower bound of MSE for the three-stage turbo channel

estimator. It is difficult to analyze the MSE of the proposed iterative turbo channel

estimation technique because of the exchange of soft information and MAP decoder.

Instead, the MSE lower bounds are calculated for MLE and MMSEE in Section

3.3.4.

Extended from (3.55), the MLE can be expressed as:

̂
H

′(i)
MLE = H

′(i) + G(GHG)−1GH(X
′(i))−1W

′(i), (3.57)

whose mean can be obtained as E{( ̂
H

′(i)
MLE)} = H

′(i), and the covariance matrix

can be obtained as:

C ̂
H

′(i)
MLE

= E{( ̂
H

′(i)
MLE − H

′(i))(
̂
H

′(i)
MLE − H

′(i))H}

= σ2
w

′G((GHG)−1)HGH

=
σ2

w′

N
GGH , (3.58)

where (X
′(i))−1((X

′(i))−1)H = IN for PSK constellation considered in this thesis.

Hence, the corresponding MSE for MLE is given by:

MSEMLE =
1

N
Tr(C ̂

H
′(i)
MLE

) =
1

N
Tr(

σ2
w′

N
GGH) =

σ2
w′L

N
. (3.59)
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As shown in the Appendix C.1, the proposed iterative turbo MLE achieves the

Cramér-Rao lower bound (CRLB), which is the lower bound for the performance

that the minimum-variance unbiased (MVU) estimator [97, 98] can achieve. The

MVU estimator is known as the optimal estimator for the estimation of the deter-

ministic quantity. Since the proposed iterative turbo MLE achieves CRLB, it is a

MVU estimator.

Similarly, for the MMSEE, substitute equation (3.56) into equation (3.25), the

covariance matrix of
̂

H
′(i)
MMSE is given by:

C ̂
H

′(i)
MMSE

= σ2
w

′GR
h
′
h
′ (NR

h
′
h
′ + σ2

w
′IL)−1GH , (3.60)

and the Bayesian MSE is given by:

MSEMMSE =
1

N
Tr(C ̂

H
′(i)
MMSE

)

= σ2
w

′Tr{R
h
′
h
′ (NR

h
′
h
′ + σ2

w
′IL)−1}

=
σ2

w′

N
Tr{diag(

αl

αl + σ2
w′/N

)}

=
σ2

w
′

N

L−1∑

l=0

1

1 + σ2
w′/(Nαl)

. (3.61)

MSEs in (3.59) and (3.61) will be used as benchmarks to evaluate the perfor-

mance for proposed channel estimator in the following section. It can be shown

that MSEMMSE ≤ MSEMLE as the MMSE estimator utilizes channel statistical

information to enhance the performance.

3.5 Complexity Analysis for Turbo Channel Es-

timation

In this section, the computational complexity of the proposed iterative turbo chan-

nel estimation is evaluated by determining the number of multiplications. Assum-

ing there are altogether Nitr iterations, and N subcarriers. In the initial estimation

stage, pilot estimation requires Np multiplications. To obtain the coarse channel

frequency response at data tones, the linear interpolation between pilot tones re-

quires (N − Np) multiplications.

In the iterative estimation stage, every iteration requires the same computa-

tional complexity. More specifically, in each iteration, the soft data channel estima-
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tion requires (N−Np) multiplications. The calculation of ωp, ωd coefficients requires

N ×NFD
Θ multiplications, frequency-domain filtering requires N ×NFD

Θ multiplica-

tions, where NFD
Θ is the frequency-domain MAW size. The calculation of α, β co-

efficients is a single multiplication. The time-domain filtering requires 2N complex

multiplications. Therefore, there are totally (Nitr −2)× (3N −Np +2N ×NFD
Θ +1)

multiplications.

Table 3.1: Computational Complexity for Iterative Channel Estimation in SISO-
OFDM System

Operations First Stage Second Stage Final Stage

(per iteration)

Pilot Estimation Np 0 0

Soft Data Estimation 0 N − Np N − Np

Linear Interpolation N − Np 0 0

ωp, ωd Calculation 0 N × NFD
Θ 0

Frequency-domain Filtering 0 N × NFD
Θ 0

α, β Calculation 0 1 0

Time-domain Filtering 0 2N 0

ML Estimation 0 0 O(N2)

MMSE Estimation 0 0 O(N3)

Total for each stage O(N) O(N) O(N2)orO(N3)

In the final estimation stage, only soft data channel estimation and MLE or

MMSE operation are performed. Similar to iterative estimation stage, soft data

channel estimation requires (N − Np) multiplications. MLE operation requires

O(N2) multiplications and MMSE operation requires O(N3). Therefore, the total

complexity is N +O(N2) for MLE and N +O(N3) for MMSE estimator. Table 3.1

summarizes the number of multiplications involved in each stage. It can be seen

that if the final estimation stage is excluded, the complexity of initial coarse estima-

tion stage and iterative estimation stage is N+(Nitr−2)×(3N−Np+2N×NFD
Θ +1),

which is in the order of O(N). Fig. 3.7 shows the number of multiplications in the

different estimation stages for Nitr = 4, Np = 8, and NFD
Θ = 9. Compared to

conventional MLE or MMSE estimation, the additional complexity from iterative

channel estimation remains low.
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Figure 3.7: Number of multiplications in the initial coarse, iterative, and final
estimation stages for Nitr = 4, Np = 8, and NFD

Θ = 9

3.6 Numerical Results

3.6.1 Simulation Setup

In this section, an OFDM system with N = 256 subcarriers, and 8 pilot tones as

used in [17] is considered. The carrier frequency is 5GHz, and the bandwidth

is 5MHz. The subcarrier spacing is approximately 19.53kHz. The IMT-2000

vehicular-A channel [87] is generated by Jakes model [86], with exponential de-

cayed power profile {0, -1, -9, -10, -15, -20} in dB and relative path delay {0, 310,

710, 1090, 1730, 2510} in ns. The coherent bandwidth is approximately 54kHz. The

frequency-domain MAW size is set to 9 to ensure that the correlation of channel

frequency response within the window is sufficiently high. Unless stated other-

wise, the vehicular speed is 333kmh, which is translated to a Doppler frequency

of fm = 1540.125Hz. The CP duration is 16 samples. A rate-1/2 (5, 7)8 convo-

lutional code is used for channel coding. Random interleaving is adopted in the

simulation and the modulation scheme is QPSK. The maximum number of itera-
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tions is set to 6. There are ten OFDM symbols per frame transmission. The energy

of the pilot symbols is same as data symbols. Pilot tones are evenly distributed

across subcarriers. We demonstrated the performance under the simulation envi-

ronment that frame by frame transmission is adopted, which is the same setup as

the practical system. Hence, we think that frame error rate (FER) is the most

suitable performance metric to show the benefits of our technique. In the following

sections, performance comparisons are made in terms of FER and channel estima-

tion MSE. Performance of MSE will be compared to lower bounds for MLE and

MMSE estimators respectively, which are derived in Section 3.4. We refer the it-

erative receivers as “turbo...”, the conventional receivers as “conventional...”, and

the receiver performance with perfect CSI as “Perfect...”.

3.6.2 Downlink Performance

For the downlink transmission, the OFDM receiver with iterative turbo channel es-

timation technique is compared to the OFDM receiver with preamble-based chan-

nel estimation [14] and iterative data derived channel estimation [23]. Fig. 3.8 and

Fig. 3.9 show the downlink FER and MSE of the iterative receiver over a number

of iterations altogether with that using conventional preamble channel estimation

and data derived channel estimation. The conventional receiver with just preamble

estimation fails at such high mobility. The OFDM receiver with data derived chan-

nel estimation performs much better than the conventional preamble estimation,

while the OFDM receiver with the iterative channel estimation achieves the best

performance among the three, and approaches that with perfect CSI. As shown

in Fig. 3.9, in the last iteration, the MSE of iterative turbo channel estimation

approaches MLE lower bound. This verifies the observations shown in Fig. 3.8.

3.6.3 Uplink Performance

For the uplink transmission, the receiver is compared to the conventional OFDM

receiver with pilot-aided channel estimation [14,98] using P = 64 pilot tones. Here-

after, the iterative turbo MLE channel estimation and MMSE channel estimation

refer to the iterative methods with ML estimation and MMSE estimation performed

in the last iteration respectively.

Fig. 3.10 and Fig. 3.11 show the uplink FER and MSE of the iterative receiver

together with that using conventional pilot-aided channel estimation. Eight pilots

are embedded in each OFDM symbol for the iterative system while 64 subcarriers
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Figure 3.8: Downlink FER performance between OFDM receiver with iterative
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Figure 3.9: Downlink MSE performance between OFDM receiver with iterative
turbo channel estimation and OFDM receiver with conventional preamble channel
estimation and data derived channel estimation
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Figure 3.10: Uplink FER performance between OFDM receiver with iterative turbo
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Figure 3.11: Uplink MSE performance between OFDM receiver with iterative turbo
channel estimation and OFDM receiver with conventional preamble channel esti-
mation and data derived channel estimation
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are used for pilots in the other. In the first iteration, the iterative channel estimator

has poor performance due to fewer pilots available for initial coarse estimation

stage. However, as decoded soft data symbols are available for channel estimation

in the later iterations, the iterative channel estimator outperforms the pilot-aided

estimation with 64 inserted pilots. This demonstrates the advantage of iterative

channel estimator in both SNR and throughput. The mean square error for both

methods shown in Fig. 3.11 confirms the channel estimator performance.
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Figure 3.12: Uplink FER performance between OFDM receiver with iterative
turbo MLE/MMSE channel estimation and OFDM receiver with conventional
MLE/MMSE channel estimation

Fig. 3.12 and Fig. 3.13 show the uplink FER and MSE for the iterative re-

ceiver and that with pilot-aided MLE/MMSE channel estimation. It can be seen

that the iterative turbo channel estimation performs 1dB better with much fewer

pilots. This observation shows that in high Doppler environment, the iterative re-

ceiver maintains the system throughput and has a SNR gain over advanced channel

estimation filters.

3.6.4 Performance under Vehicle Mobility

In addition to the 333kmh vehicular speed case, the performances of the iterative

receiver at 120kmh and 60kmh are presented. Fig. 3.14 shows the FER performance

comparison for various vehicular speeds. The performance improves for receivers
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Figure 3.13: Uplink MSE performance between OFDM receiver with iterative
turbo MLE/MMSE channel estimation and OFDM receiver with conventional
MLE/MMSE channel estimation

with preamble based and data derived channel estimation as the vehicular speed

decreases. However, in all scenarios, the iterative receiver has a significant perfor-

mance gain over other methods. It is also interesting to note that in this paper we

assume ten data symbols per frame for simulations, while in the IEEE standard

802.16 [16, 17] the frame length can increase up to 16 symbols. In that case, the

channel variation can be considerable even at the vehicular speed of 60kmh and a

more significant improvement can be achieved by our iterative receiver.

3.6.5 Performance with Carrier Frequency Offset

Furthermore, the effect of CFO is considered as in the realistic OFDM systems

[16, 17] due to channel delays and the difference between transmitter and receiver

oscillators. The IEEE standard 802.16 [17] says residual CFO of up to 4% of the

subcarrier spacing is present after synchronization and acquisition, which causes

ICI and degrades the system performance. Fig. 3.15 shows the FER performance of

the iterative receiver with up to 4% residual CFO. This residual CFO is generated

from an uniform distribution [22] over [−0.04, 0.04]. It can be observed that the

degradation ranges from a fraction of a decibel (dB) for the 60kmh case to around

1dB for the 333kmh case, compared to that of the CFO-free system. To address a
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Figure 3.14: Frame error rate performance between OFDM receiver with iterative
turbo channel estimation and OFDM receiver with conventional preamble channel
estimation and data derived channel estimation at different mobilities.
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Figure 3.15: Frame error rate performance of iterative receiver with up to 4%
residual CFO.

more significant CFO, we can either employ a separate synchronization module to

perform frequency error estimation and compensation, or mitigate the resultant ICI
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by advanced interference reduction algorithms [45]. Discussion on these approaches

is beyond the scope of this paper.

To summarize, compared to OFDM receiver with existing channel estimation

techniques, the OFDM receiver with iterative turbo channel estimation can ap-

proach the MSE lower bounds. It approaches performance of perfect CSI even

with a small number of preambles and pilots in a rapid dispersive fading channel,

which makes it an efficient solution in terms of both SNR and throughput. Fur-

thermore, the iterative receiver is robust w.r.t residual CFO in practical OFDM

systems.

3.7 Summary and Contributions

This chapter has investigated the problem of OFDM transmission in a rapid dis-

persive fading channel. In such a highly mobile environment, the wireless channel

undergoes fast variations both in time and frequency. In order to track the fast

varying channel, large number of pilot tones are usually inserted to the OFDM

symbol for existing receivers, which incurs huge SNR and throughput loss. An it-

erative turbo channel estimation technique, which makes use of preamble, pilot and

decoded soft data information for channel estimation is developed to improve the

frame and bit error rate performance for a given signal to noise ratio while maximiz-

ing the system throughput at the same time. The channel estimation is conducted

by three estimation stages, where a frequency-domain and time-domain combining

strategy is developed to combine the channel estimates from above signals in an

efficient and low complexity manner. Numerical results and MSE analysis have

shown that, compared to the OFDM receiver with existing conventional channel

estimation, the OFDM receiver with iterative turbo channel estimation can ap-

proach the performance with nearly perfect CSI at various mobility scenarios. In

addition to the improvement in both SNR and throughput benefits, the receiver is

robust to frequency error and has low computational complexity which means it is

possible to implement in hardware.

Some specific contributions made in this chapter are as follows. First of all, the

system model for the SISO-OFDM system model is investigated, the degradation

from ICI due to realistic mobile radio channel is fully analyzed from theoretical

perspective and validated through simulations. The effect of ICI in the channel

estimation problem is modeled as Gaussian random process so that the system

model for the channel estimation of the OFDM system is reformulated and simpli-
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fied by combining the power of ICI with the white noise as effect noise. And the

ML channel estimator and MMSE channel estimator are investigated and the MSE

for MLE and MMSEE are analyzed through first and second order statistics of the

channel estimator. The literature review on the conventional and iterative channel

estimation techniques are presented.

Secondly, an iterative turbo channel estimator for the OFDM system is devel-

oped. The iterative turbo channel estimator consists of three estimation stages,

namely the initial coarse estimation stage, iterative estimation stage, and the final

estimation stage. The initial coarse estimation is performed in the first iteration,

the pilot estimation is performed. More specifically, in the downlink transmission,

the preamble estimation is performed, and channel tracking through linear filter-

ing is performed after the preamble estimation to obtain the channel estimation at

the data subcarriers. On the other hand, in the uplink transmission, pilot-aided

channel estimation is performed at the pilot subcarriers, and the linear interpo-

lation is performed among the channel estimates from pilot subcarriers to obtain

the channel estimates at the data subcarriers. After the initial coarse estimation,

the data detection and decoding are performed. The soft coded information is fed

back from channel decoder for the next iteration.

The iterative estimation is performed from the second iteration onwards. The

channel estimates can be obtained through pilots and soft coded data symbols. The

frequency-domain combining and time-domain combining are developed to explore

the frequency-domain and time-domain correlations. The moving average windows

along frequency and time directions are introduced to perform the combining. In

the frequency-domain combining, the channel estimates from the pilot and data

subcarriers are weighted in such a way the ratio of the pilot weights and the data

weights are evolved adaptively over iterations. More specifically, at the beginning,

the channel estimates from the soft coded data symbols are less weighted than the

pilot symbols because the soft coded data symbols are less reliable than the pilot

symbols due to the initial coarse channel estimation. Over iterations, the reliability

or the energy of the soft coded data symbols improves, and eventually the soft coded

data symbols can act as the pilot symbols. Hence, the wights between the pilot

and data symbols are adjusted adaptively. The time-domain combining is similar

to the frequency-domain combining, where the adjacent data symbols rather than

the adjacent subcarriers are combined.

The final estimation is performed in the last iteration, where the soft coded

data symbols can act as the pilot symbols eventually. If the channel statistics are
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not available at the receiver, the MLE is applied to perform the linear filtering to

improve the channel estimates. On the other hand, if the channel statistics are

known at the receiver, the MMSEE is employed.

Thirdly, the analysis of the lower MSE bounds that the iterative turbo channel

estimation can achieve is presented. Theoretically, the iterative MMSEE has lower

MSE than the iterative MLE where the additional gain is from the exploration of

the channel statistics, which is usually difficult to obtain in the practical system.

Furthermore, the complexity in terms of complex multiplications that the iterative

turbo channel estimation requires are analyzed. Compared to the conventional

MLE or MMSE estimation, the additional complexity from the iterative channel

estimation remains low, which is very feasible for practical implementation.

Finally, the performances of the receivers with the iterative turbo channel es-

timation and the conventional channel estimation techniques are compared. The

numerical and analytical results show that the developed technique can approach

the performance of systems with perfect CSI with much fewer preamble and pi-

lots symbols compared to existing channel estimation methods. Therefore, under

same system configuration, the iterative receiver improve the system performance

over the time and frequency selective fading channel while maintaining the system

throughput. Furthermore, the iterative receiver outperforms the conventional re-

ceivers under pedestrian, low, intermediate, and high mobilities. And with marginal

performance degradation, the iterative receiver is robust to within 4% carrier fre-

quency offset after frequency acquisition.





Chapter 4

Iterative Receiver for

MIMO-OFDM system

4.1 Introduction

In Chapter 3, a receiver with novel iterative turbo channel estimation technique is

presented, which shows how the near-optimal channel estimation and data detec-

tion performance can be achieved in the realistic mobile radio channel environment.

In this Chapter, the previous work is extended to MIMO-OFDM systems. A novel

low complexity channel estimator with time-domain and frequency-domain combin-

ing of channel estimates from preamble, pilots and soft decoded data information

is proposed to track the dynamics of channel frequency response. This channel

estimator is integrated with a MRC receiver for the Alamouti STC system and an

interference canceler for the system with spatial multiplexing.

4.2 Conventional MIMO-OFDM Receivers

The transmitting and receiving scheme on each subcarrier in the OFDM system

can be considered as an independent MIMO model. Hence, the receiver design is

on a per subcarrier basis. For the Alamouti STC system, the conventional MRC

receiver is attractive due to it’s low computational complexity. On the other hand,

the receiver for the SM system is much more complicated. With a ZF receiver,

a straight forward matrix inversion is needed, while the linear MMSE receiver

provides improved detection with the knowledge of MIMO channel statistics.

73
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4.2.1 Conventional Alamouti STC-OFDM Receiver

In this section, the conventional Alamouti STC-OFDM Receiver [14,47] is derived

from first principles. The same approach will be utilized in the derivation of the

developed iterative receiver for Alamouti STC-OFDM in Section 4.3.1.

Due to the space-time block encoder and channel invariant assumption in the

Alamouti STC system, symbols from different transmitting antennas need to be

orthogonal to each other. In Chapter 2 Section 2.3.3, the system model for 2 × 1

Alamouti STC is given by equation (2.21), which is represented here as:

Ym = Hm · Xm + Wm, (4.1)

where

Ym =

[
Y 0

i−1,m

(Y 0
i,m)∗

]
, (4.2)

Hm =

[
H0,0

m H0,1
m

(H0,1
m )∗ −(H0,0

m )∗

]
, (4.3)

Xm =

[
Xi−1,m

Xi,m

]
, (4.4)

and

Wm =

[
W 0

i−1,m

(W 0
i,m)∗

]
. (4.5)

Assuming that the transmitted symbols Xm are equiprobable, and the noise

vector Wm is assumed to be a multivariate white Gaussian noise, the optimal

detector is the ML detector, which is given by:

X̂m = arg min
X̂m

‖Ym − HmX̂m‖2. (4.6)

Generally speaking, the ML detector will search the entire signal constellation,

which has prohibitive computational complexity in practical implementation. Nev-

ertheless, if we examine the channel matrix Hm carefully, the columns of Hm are

orthogonal to each other regardless of what the channel fading coefficients are, i.e.

by taking the product of the first column H0
m and the second column H1

m of matrix

Hm, we have

(H0
m)HH1

m =
[

(H0,0
m )∗ H0,1

m

]
·
[

H0,1
m

−(H0,0
m )∗

]
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= 0. (4.7)

This property of the Alamouti STC is very desirable for the data detection because

the MIMO system can be considered as a multiple access system employing orthog-

onal spreading code. Then each transmitted coded data symbol is considered as a

user in the multiple access environment, i.e. equation (4.1) can be reformulated as

Ym = H0
m · Xi−1,m + H1

m · Xi,m + Wm. (4.8)

Hence, similar to the multiple access system, the linear combiner (or matched filter)

output can be obtained as:

Ŷm = HH
m · Ym

= HH
m · HmXm + HH

mWm

=
1∑

t=0

|H0,t
m |2Xm + W

′

m, (4.9)

where

HH
m · Hm =

[
|H0,0

m |2 + |H0,1
m |2 0

0 |H0,0
m |2 + |H0,1

m |2

]

=
1∑

t=0

|H0,t
m |2 · I2, (4.10)

and the noise at the output of linear combiner is

W
′

m =

[
(H0

m)HWm

(H1
m)HWm

]

=

[
(H0,0

m )∗W 0
i−1,m + H0,1

m (W 0
i,m)∗

(H0,1
m )∗W 0

i−1,m − H0,0
m (W 0

i,m)∗

]
. (4.11)

As the channel fading coefficients H0,0
m and H0,1

m from different wireless links are

independent and identical distributed (i.i.d), the noise W
′

m at the output of the

linear combiner has zero mean and scaled covariance matrix, i.e.

E{W′

m} = 0 · I2, (4.12)
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and

E{W′

m(W
′

m)H} = σ2
w

1∑

t=0

|H0,t
m |2 · I2. (4.13)

In this case, the detection becomes

X̂m = arg min
X̂m

‖Ŷm −
1∑

t=0

|H0,t
m |2 · X̂m‖2. (4.14)

Hence, it follows immediately that by using this linear combining (or match fil-

tering), the detection criteria (4.14) reduces to two separate decoding criteria for

Xi−1,m and Xi,m. And only two complex multiplications and one complex addition

per symbol per subcarrier are required for decoding, which is linear with respect to

N with order O(N). For example, consider a signal constellation with M points.

The detection criteria in (4.6) requires 22 log2 M point searches. On the other hand,

the detection criteria in (4.14) only requires 2×2log2 M point searches, which reduce

the computational complexity by 1 − 21−log2 M . In QPSK, M = 4, the complex-

ity reduction is 50%. In 16QAM, M = 8, the complexity reduction is 87.5%. In

addition to the complexity reduction, the SNR Es/N0 at the output of the linear

combiner (matched filtering) is given by:

Es

N0

=

Es(
1∑

t=0

|H0,t
m |2)2

σ2
w

1∑
t=0

|H0,t
m |2

=

Es

1∑
t=0

|H0,t
m |2

σ2
w

, (4.15)

where Es is the energy of transmitted symbol per subcarrier per transmitting an-

tenna, and N0 is the double sided white noise spectral density. It is straight forward

to observe that the energy of the transmitted symbol from different antennas are

combined to improve the SNR Es/N0, hence, the receiver maximum ratio combin-

ing is obtained.

4.2.2 Conventional SM-OFDM Receiver

In this section, the conventional SM-OFDM Receivers [14,47] are derived from first

principles. The same approach will be utilized in the derivation of the developed

iterative receiver for SM-OFDM in Section 4.3.2.
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In the SM-OFDM system, there is significant difference in the interference

among transmitting antennas experienced in the detection, as the transmitted sym-

bols are not repeated, unlike in the Alamouti scheme. In Chapter 2 Section 2.3.3,

the system model for NT × NR SM-OFDM is given by equation (2.26), which is

represented here as:

Yi,m = Hi,mXi,m + Wi,m

= Ht
i,mX t

i,m︸ ︷︷ ︸
desired signal

+
∑

k 6=t

Hk
i,mXk

i,m

︸ ︷︷ ︸
interference

+Wi,m, (4.16)

where Hk
i,m is the kth column of Hi,m. Assuming that the transmitted symbol X t

i,m

where 0 ≤ t < NT are equiprobable, the optimal detector is the joint ML detector,

which is given by:

X̂i,m = arg min
X̂i,m

‖Yi,m − Hi,mX̂i,m‖2. (4.17)

The joint ML detector searches the entire signal space which is spanned by vector

Xi,m. Consider a signal constellation with M points, each transmitted symbol

consists of log2 M number of bits. The joint ML detector requires 2NT log2 M -point

search per subcarrier detection. If N is the total number of subcarriers, the final

computational complexity is proportional to N × 2NT log2 M . For example, consider

a 2 × 2 SM-OFDM system with N = 256 subcarriers, and M = 4 for QPSK

modulation, the joint ML detection requires 4096-point search. If the number

of transmitted antennas is increased from NT = 2 to NT = 4, or the modulation

scheme is changed from QPSK (M = 4) to 16QAM (M = 8), the joint ML detection

requires a 65536-point search. Such exponential increase in the computational

complexity is prohibitive for practical implementations.

To reduce the complexity, linear detectors are proposed. The matched filter

(MF) receiver’s objective is to match the channel gains for the transmitted symbol

of interest, regardless of the interference from other transmitting symbols. The MF

detector for transmitted symbol X t
i,m is given by:

FMF = (Ht
i,m)H . (4.18)

The output of MF detector is given by:

Ŷi,m = FMFYi,m
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= (Ht
i,m)HHt

i,mX t
i,m︸ ︷︷ ︸

desired signal

+
∑

k 6=t

(Ht
i,m)HHk

i,mXk
i,m

︸ ︷︷ ︸
interference

+(Ht
i,m)HWi,m. (4.19)

This is similar to the single-user detector in the multiple-access environment.

Although the MF is optimal for a single user channel and does reduce the receiver

complexity, it is no longer optimal in a multiple user channel as can be seen in

(4.19). The detection rule reduced to individual X t
i,m for 0 ≤ t < NT with interfer-

ence modeled as additional noise component. The average signal-to-interference-

plus-noise ratio (SINR) Es/I0 at the output of the MF detector is obtained by

taking the ratio of signal energy and average noise power with interference power,

which is given by:

Es

I0

=

NT−1∑
t=0

|(Ht
i,m)HHt

i,m|2Es

NT−1∑
t=0

∑
k 6=t

|(Ht
i,m)HHk

i,m|2 + σ2
w(Ht

i,m)HHt
i,m

. (4.20)

Here it is evident that the MF receiver suffers severe interference from other trans-

mitted symbols because the columns of the channel matrix for SM-OFDM system

is not orthogonal to each other. Therefore, this massive interference reduces the

SINR Es/I0 significantly and compromises the system performance..

To completely remove the interference, a zero forcing (ZF) receiver FZF uses

a straight forward matrix inversion by assuming that HHH is invertible (unless

HHH has singular value), which is given by:

FZF = (HH
i,mHi,m)−1HH

i,m. (4.21)

The output of the ZF detector is given by:

Ŷi,m = FZFYi,m

= Xi,m + (HH
i,mHi,m)−1HH

i,mWi,m

= Xi,m + W
′

i,m. (4.22)

W
′

i,m is the noise vector at the output of the ZF detector. It has zero mean and

scaled covariance matrix, i.e.

E{W′

i,m} = (HH
i,mHi,m)−1HH

i,mE{Wi,m}
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= 0 · INT
, (4.23)

and

E{W′

i,m(W
′

i,m)H} = (HH
i,mHi,m)−1HH

i,mE{Wi,mWH
i,m}Hi,m((HH

i,mHi,m)−1)H

= σ2
w((HH

i,mHi,m)−1)H

= σ2
w((HH

i,mHi,m)H)−1

= σ2
w(HH

i,mHi,m)−1. (4.24)

Since the noise vector at the output of ZF detector is independent and identically

distributed (i.i.d), the detection rule reduces to the single term X t
i,m for 0 ≤ t < NT .

Hence, the total number of search points reduced to N × 2log2 M . The average SNR

Es/N0 at the output of the ZF detector is obtained by:

Es

N0

=
Es

σ2
wTr((HH

i,mHi,m)−1)

NT

=
EsNT

σ2
wTr((HH

i,mHi,m)−1)
, (4.25)

where Tr(·) is the trace operator. We can further simplify the equation (4.25) by

taking the SVD on HH
i,mHi,m:

HH
i,mHi,m = UΛUH , (4.26)

where Λ = diag(λ0, λ1, . . .) is the diagonal matrix with the eigenvalues of HH
i,mHi,m

as its diagonal elements, and U is the unitary matrix. The inverse of HH
i,mHi,m is

given by:

(HH
i,mHi,m)−1 = (UΛUH)−1

= UΛ−1UH . (4.27)

Substitute equation (4.27) into equation (4.25), the average SNR Es/N0 at the

output of the ZF detector is given by:

Es

N0

=
EsNT

σ2
wTr(UΛ−1UH)

=
EsNT

σ2
wTr(UHUΛ−1)
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=
EsNT

σ2
wTr(Λ−1)

=
EsNT

σ2
w

NT−1∑
t=0

1
λt

. (4.28)

It can be observed that the SNR Es/N0 is dominated by the the summation of

the inverse of the eigenvalues of HH
i,mHi,m. If the HH

i,mHi,m has eigenvalues which

are trivial, the SNR Es/N0 at the output of the ZF detector will suffer from sig-

nificant noise enhancement, hence, the performance of the ZF detector degrades

dramatically.

Another linear detector is the MMSE detector, which is given by:

FMMSE = (HH
i,mHi,m +

σ2
w

Es

INT
)−1HH

i,m. (4.29)

The output of MMSE detector is given by:

Ŷi,m = FMMSEYi,m

= (HH
i,mHi,m +

σ2
w

Es

INT
)−1HH

i,mHi,mXi,m

+(HH
i,mHi,m +

σ2
w

Es

INT
)−1HH

i,mWi,m. (4.30)

Similar to the ZF detector, the detection rule still reduces to the single term X t
i,m

for 0 ≤ t < NT . The noise at the output of the MMSE detector is i.i.d, however,

there is interference caused by the MMSE filtering. The average SINR Es/I0 at

the output of the MMSE detector is obtained by [102,103]:

Es

I0

=
1

NT

NT−1∑

t=0

Es|F t
MMSEHt

i,m|2
σ2

w|F t
MMSE|2 + Es

∑
k 6=t

|Fk
MMSEHt

i,m|2

=

NT−1∑
t=0

Es

NT−1∑
t=0

σ2
w[(HH

i,mHi,m + σ2
w

Es
INT

)−1]t,t

− 1, (4.31)

where F t
MMSE and Ht

i,m are the tth column of FMMSE and Ht
i,m respectively, and

[·]t,t is the tth diagonal element in matrix [·]. Hence, the SINR Es/I0 of MMSE
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receiver is upper bounded as:

Es

I0

≤

NT−1∑
t=0

Es

NT−1∑
t=0

σ2
w[(HH

i,mHi,m + σ2
w

Es
INT

)−1]t,t

=
EsNT

NT−1∑
t=0

σ2
w[(HH

i,mHi,m + σ2
w

Es
INT

)−1]t,t

=
EsNT

Tr(σ2
w(HH

i,mHi,m + σ2
w

Es
INT

)−1)

=
EsNT

Tr(σ2
w(UHΛU + σ2

w

Es
INT

)−1)

=
EsNT

σ2
w

NT−1∑
t=0

(λt + σ2
w

Es
)−1

(4.32)

It can be observed that at high SINR Es/I0, i.e. σ2
w

Es
≈ 0, the MMSE detector

reduces to the ZF detector, and their SINRs are asymptotically the same.

4.2.3 Performance of MIMO-OFDM Receivers

In this section, we briefly present the performance of the MIMO-OFDM receivers

as discussed in Section 4.2.1 and Section 4.2.2. We compare the MRC receiver for

the Alamouti STC, and MF, ZF, and MMSE receivers for the SM over a 2 × 2

MIMO-OFDM system with 256 subcarriers. To fairly compare to the Alamouti

STC MRC receiver, we also present the MRC receiver for a 2 × 1 MIMO-OFDM

channel. QPSK modulation is used for the symbols in the SM-OFDM system, while

16QAM modulation is used for the symbols in the Alamouti STC-OFDM system.

This is to ensure that both systems have the same spectral efficiency (equivalent

effective data rate), which is defined as the number of bits transmitted per second

per channel usage:

ρ =
Ni × log2 M

Ti × NT

, (4.33)

where Ni symbols with log2 M bits per symbol are transmitted over Ti seconds

and NT physical channels. In 2 × 2 or 2 × 1 Alamouti STC-OFDM with 16QAM

modulation, the parameters of interest are set to the following values, Ni = 2,

M = 4, Ti = 2, NT = 2, where ρ = 2 bits per second per channel usage. For 2 × 2

SM-OFDM with QPSK modulation, the parameters are set to, Ni = 2, M = 2,
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Ti = 1, NT = 2, where ρ = 2 bits per second per channel usage. The channel

fading coefficients for each wireless link is assumed i.i.d( this is equivalent to using

a large interleaver on the transmitted and receive symbols), and we assume that

the receiver has full knowledge of the channel state information.

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No in dB

U
n

c
o

d
e

d
 B

E
R

Alamouti 2x1 STC−OFDM MRC (16QAM)

Alamouti 2x2 STC−OFDM MRC (16QAM)

SM−OFDM 2x2 MF (QPSK)

SM−OFDM 2x2 ZF (QPSK)

SM−OFDM 2x2 MMSE (QPSK)

SM−OFDM 2x2 ML (QPSK)

Figure 4.1: Uncoded BER performance for 2× 1 and 2× 2 Alamouti STC-OFDM
MRC receiver, and 2 × 2 SM-OFDM MF, ZF and MMSE receiver

Fig. 4.1 shows the uncoded BER performance for the above mentioned receivers.

It can be seen from the figure that the MF receiver has very poor performance

compared to other receivers. This is expected because the MF receiver suffers from

the massive multiple access interference from other transmitted symbols. Hence,

it is not surprising that the error floor occurs at high SNR.

For other receivers, we can see that they have diverse performance in low and

high SNR regions. In the low SNR region, SM-OFDM receivers perform better than

the Alamouti STC-OFDM MRC receiver. On the other hand, at high SNR, the

slope of the BER curve for Alamouti STC-OFDM MRC receiver is more favorable.

This is because in the low SNR region, the channel is dominated by the noise

term. The additional coding in the Alamouti STC scheme makes the performance

even worse, which is similar to the performance between the coded and uncoded
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system in the low SNR. In the high SNR region, the system is interference limited,

the Alamouti STC scheme provides diversity of order 4, which is higher than the

diversity of order 2 introduced by the SM scheme in the 2 × 2 environment. This

observation suggests that the best MIMO scheme to use in practice depends on

the channel SNR and the required throughput (spectral efficiency) as well as on

other considerations such as the interference level. A possible solution is to design

a scheme to combine [104] the Alamouti STC and SM systems to reach the best

performance, which is out of the scope of this thesis.

We also observed that the 2 × 2 MRC receiver has better performance than

the 2 × 1 case. This is because the additional diversity is obtained from another

receive antenna. Furthermore, among SM-OFDM receivers, the ML receiver has

the best performance because it is optimal in the sense that it extracts diversity

gain in additional to the multiplexing gain [48]. The MMSE receiver improves

the performance of ZF receiver slightly because it reduces the combined effect of

interference the two parallel channels and additive noise. However, similar to the

ZF receiver, the MMSE receiver does not exploit the channel diversity, hence, both

the MMSE and ZF receivers are asymptotically close in the high SNR region.

4.3 Iterative Receiver for MIMO-OFDM

We have discussed the conventional non-iterative receivers for MIMO-OFDM sys-

tem and assumed perfect channel state information in Section 4.2. In a practical

system, the receiver has to estimate the channel. In this section, we develop joint

iterative channel estimation and data detection receivers for MIMO-OFDM system

over time and frequency dispersive fading channel.

4.3.1 Iterative Receiver for Alamouti STC-OFDM

The receiver is shown in Fig.4.2, with a space-time processing module performing

MRC for Alamouti STC-OFDM system, and a MAP decoder that operates in an

iterative fashion. The STC-OFDM channel matrix used in the data detection in

the demapper module is updated by a low complexity novel channel estimation

algorithm, which will be presented in the later section. In this section, we derive

the soft MRC receiver for the 2 × 2 Alamouti STC-OFDM. In the 2 × 2 Alamouti
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Figure 4.2: Iterative receiver for Alamouti STC-OFDM systems

STC system, the system model is also given by equation (4.1) with

Ym =




Y 0
i−1,m

Y 1
i−1,m

(Y 0
i,m)∗

(Y 1
i,m)∗




, (4.34)

Hm =




H0,0
m H0,1

m

H1,0
m H1,1

m

(H0,1
m )∗ −(H0,0

m )∗

(H0,0
m )∗ −(H1,0

m )∗




, (4.35)

and

Wm =




W 0
i−1,m

W 1
i−1,m

(W 0
i,m)∗

(W 1
i,m)∗




. (4.36)
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Again, the columns of channel matrix Hm are orthogonal to each other, i.e. by

taking the inner product of the first column H0
m and the second column H1

m of

matrix Hm, we have

(H0
m)HH1

m =
[

(H0,0
m )∗ (H1,0

m )∗ H0,1
m H0,0

m

]
·




H0,1
m

H1,1
m

−(H0,0
m )∗

−(H1,0
m )∗




= 0. (4.37)

By using the same approach in Section 4.2.1, the output of linear combiner is

given by:

ŶMRC
m = HH

m · Ym

= HH
m · HmXm + HH

mWm

=
1∑

r=0

1∑

t=0

|Hr,t
m |2Xm + W

′

m, (4.38)

where

HH
m · Hm =

1∑

r=0

1∑

t=0

|Hr,t
m |2 · I2. (4.39)

Then the mean and covariance matrix of the MRC linear combining output is

obtained as:

µMRC
m =

1∑

r=0

1∑

t=0

|Hr,t
m |2Xi,m, (4.40)

CMRC
m = σ2

w

1∑

r=0

1∑

t=0

|Hr,t
m |2 · I2. (4.41)

Data detection is performed by using a single-tap equalizer (this is essentially

the multiplication by the conjugate of the channel value), also known as demap-

per module. It assumes the output of mean and variance esitmator is Gaussian

distributed [105] as N (µMRC
m , CMRC

m ). The demapper outputs LLR λe
1 of the kth

coded bits ck for MRC output as:

λe
1(ck(Xm)) = ln

∑
Sj∈U+

k
(ANT )

P (Xm = Sj|ŶMRC
m ,Hm, λe

2)

∑
Sj∈U−

k
(ANT )

P (Xm = Sj|ŶMRC
m ,Hm, λe

2)
, (4.42)
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where the conditional probability P (Xm = Sj|ŶMRC
m ,Hm, λe

2) is proportional to its

Gaussian p.d.f, i.e.

P (Xm = Sj|ŶMRC
m ,Hm, λe

2) ∼ exp{− 1

2σ2
w

1∑
r=0

1∑
t=0

|Hr,t
m |2

‖ŶMRC
m − µMRC

m ‖2}

· ∏
l 6=k

P (cl(Xm)), (4.43)

and Sj = [S0
j , S

1
j , . . . , S

NT−1
j ]T is the jth signal vector in the signal constellation set

ANT , which contains all 2NT×log2 M possible symbols. U+
k (ANT ) is the constellation

subset in ANT that contains all the symbols with kth bit being 1, and U−
k (ANT )

minus is the constellation subset in ANT that contains all the symbols with kth bit

being 0.

In the 2×2 Alamouti STC detection approach, due to the fact that the channel

matrix has orthogonal columns, the MRC can be applied to data detection. As

in the multiple access environment, OFDM symbols from different transmitting

antennas do not interfere with each other. Therefore, the iterative structure is

limited to the loop between the channel estimation and decoding. In other words,

the soft decoded data information is fed back for channel re-estimation purposes

only.

4.3.2 Iterative Receiver for SM-OFDM

In the SM-OFDM system, the columns in the channel matrix are not orthogonal to

each other, i.e., the transmitting symbols from different transmitting antennas are

interfering with each other at the receiving antenna. As discussed in Section 4.2.2,

the MF receiver explores the MIMO diversity by combining the received energy

from all transmitting antennas, however, it suffers from massive level of interfer-

ence. The ZF receiver removes the interference completely, however, it does not

explore the diversity benefits and suffers from large noise enhancement. The MMSE

receiver makes the compromise between the interference and noise, however, it does

not explore the benefits of MIMO diversity either. Therefore, in order to explore

the MIMO diversity, remove the interference, and avoid noise enhancement at the

same time, we apply the iterative parallel interference cancelation approach to per-

form data detection. The receiver is shown in Fig.4.3, with a space-time processing

module performing MMSE detection, a parallel interference cancelation approach

for the SM-OFDM system, and a MAP decoder that performs data decoding while

also providing feedback information for the iterative detection technique. The
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switch is shown to initially allow the selection of the MMSE detector for the first

iteration and then select the interference canceler in subsequent iterations. In the

following, we present an iterative algorithm for the detection of an OFDM received

signal from multiple antennas, which performs data detection and decoding, while

canceling interference.
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Figure 4.3: Iterative receiver for SM-OFDM systems

In the first iteration, MMSE filtering is performed to reduce the error to a

reasonable level for further processing in the later iterations. Assuming that the

channel state information is perfectly known and the transmitted data symbols

are uncorrelated, the output of the MMSE filter for the signal transmitted by all

transmitting antennas is given by:

ŶMMSE
i,m = FMMSE

i,m Yi,m, (4.44)

where the MMSE filter is given by:

FMMSE
i,m = [HH

i,mHi,m +
σ2

w

Ed

INR
]−1HH

i,m, (4.45)

where Ed is the channel data symbol energy. The mean and covariance matrix of

MMSE filter output is obtained as:

µMMSE
i,m = FMMSE

i,m Hi,mXi,m, (4.46)
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CMMSE
i,m = σ2

w[HH
i,mHi,m +

σ2
w

Ed

INR
]−1. (4.47)

Hence, the demapper outputs LLR λe
1 of the kth coded bits ck for MMSE filter

output as:

λe
1(ck(Xi,m)) = ln

∑
Sj∈U+

k
(ANT )

P (Xi,m = Sj|ŶMMSE
i,m ,Hi,m, λe

2)

∑
Sj∈U−

k
(ANT )

P (Xi,m = Sj|ŶMMSE
i,m ,Hi,m, λe

2)
, (4.48)

where the conditional probability P (Xi,m = Sj|ŶMMSE
i,m ,Hi,m, λe

2) is proportional

to its Gaussian p.d.f, i.e.

P (Xi,m = Sj|ŶMMSE
i,m ,Hi,m, λe

2) ∼ exp{−1
2
(ŶMMSE

i,m − µMMSE
i,m )H(CMMSE

i,m )−1

·(ŶMMSE
i,m − µMMSE

i,m )} ∏
l 6=k

P (cl(Xi,m)). (4.49)

From the second iteration onwards, to separate the desired signal from the

interference signal, we define the NT × 1 interference cancelation vector as

et = [0, 0, . . . , 0, 1, 0, . . . , 0]T (4.50)

such that all elements in et are zeros except the tth element is 1. The interference

vector can be constructed as:

X
t

i,m = Xi,m − X t
i,met

= [X0
i,m, X1

i,m, · · · , X t−1
i,m , 0, X t+1

i,m , · · · , XNT−1
i,m ]T , (4.51)

where the symbol of interest X t
i,m is removed. Then the parallel co-antenna inter-

ference canceler is performed as

Yt,IC
i,m = Yi,m − Hi,mX

t

i,m

= Yi,m − Hi,m(Xi,m − X t
i,met)

= Ht
i,mX t

i,m︸ ︷︷ ︸
desired signal

+
∑

k 6=t

Hk
i,m(Xk

i,m − X̂k
i,m)

︸ ︷︷ ︸
residual interference

+Wi,m, (4.52)

where X̂k
i,m is the soft symbol of Xk

i,m. The residual interference term in equation

(4.52) will vanish if the soft symbol is estimated perfectly, i.e. X̂k
i,m = Xk

i,m. In
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that case, the interference canceler will have interference free performance, i.e.

Yt,IC
i,m = Ht

i,mX t
i,m + Wi,m, (4.53)

where a linear combiner (matched filter) as discussed in Section (4.3.1) provides

the optimal detection as:

Y t,IC−MF
i,m = FMF

i,m Yt,IC
i,m

= (Ht
i,m)HHt

i,mX t
i,m + (Ht

i,m)HWi,m

=

NR−1∑

r=0

|Hr,t
i,m|2X t

i,m + (Ht
i,m)HWi,m. (4.54)

Generally speaking, the reliability of the soft data symbols improves over iter-

ations, which means the co-antenna interference can not be removed completely

in the first few iterations. Hence, the residual interference has to be taken into

the consideration. Similar to the first iteration, data detection is performed in

the single-tap demapper by assuming the output of space-time processing module

is Gaussian distributed as N (µt,IC
i,m , Ct,IC

i,m ). The mean of the interference canceler

output is obtained by taking the expectation of equation (4.52) as:

µt,IC
i,m = E{Ht

i,mX t
i,m +

∑

k 6=t

Hk
i,m(Xk

i,m − X̂k
i,m) + Wi,m}

= E{Ht
i,mX t

i,m} +
∑

k 6=t

Hk
i,m(E{Xk

i,m} − X̂k
i,m︸ ︷︷ ︸

= 0

) + E{Wi,m}

= Ht
i,mX t

i,m. (4.55)

To compute the covariance matrix Ct,IC
i,m , firstly we compute the mean of the inter-

ference vector X
t

i,m, which is given by:

E{Xt

i,m} = E{Xi,m − X t
i,met}

= [X̂0
i,m, X̂1

i,m, · · · , X̂ t−1
i,m , 0, X̂ t+1

i,m , · · · , X̂NT−1
i,m ]T , (4.56)

and the covariance matrix of the interference vector X
t

i,m is given by:

Ct,IC

i,m = E{(Xt

i,m − E{Xt

i,m})(X
t

i,m − E{Xt

i,m})H}
= diag(γ2

i,m,0, γ
2
i,m,1, · · · , γ2

i,m,t−1, 0, γ
2
i,m,t+1, · · · , γ2

i,m,NT−1), (4.57)
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where

γ2
i,m,k = |Xk

i,m|2 − |X̂k
i,m|2. (4.58)

As shown in Chapter 2 Section 2.5, the energy of soft data symbol is computed as:

|X̂ t
i,m|2 = Ed|E{X̂ t

i,m}|2

= Ed|
∑

Sj∈A
Sj · P (X̂ t

i,m = Sj)|2, (4.59)

where A is the signal constellation set with 2log2 M signal points. For equal energy

constellation, like BPSK and QPSK, the average signal power of the data symbol

is given by:

|X t
i,m|2 = |E{X t

i,m}|2

= Ed, (4.60)

For unequal energy constellation, like 16QAM or 64QAM, by using Jensen’s in-

equality [106], the average signal power of of data symbols is given by:

|X t
i,m|2 = |E{X t

i,m}|2

≤ E{|X̂ t
i,m|2}

= Ed

∑

Sj∈A
|Sj|2 · P (X̂ t

i,m = Sj). (4.61)

Hence, the covariance matrix Ct,IC
i,m can be obtained by:

Ct,IC
i,m = Hi,mCt,IC

i,m HH
i,m + σ2

wINT
, (4.62)

With the Gaussian distribution N (µt,IC
i,m , Ct,IC

i,m ), the demapper outputs LLR λe
1 of

the kth coded bits ck for MMSE filter output as:

λe
1(ck(X

t
i,m)) = ln

∑
Sj∈U+

k
(A)

P (X t
i,m = Sj|ŶIC

i,m,Hi,m, λe
2)

∑
Sj∈U−

k
(A)

P (X t
i,m = Sj|ŶIC

i,m,Hi,m, λe
2)

, (4.63)

where the conditional probability P (X t
i,m = Sj|ŶIC

i,m,Hi,m, λe
2) is proportional to its
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Gaussian p.d.f, i.e.

P (X t
i,m = Sj|̂Y t,IC

i,m ,Hi,m, λe
2) ∼ exp{−1

2
( ̂Yt,IC

i,m − Ht
i,mX t

i,m)H(Ct,IC
i,m )−1

·( ̂Yt,IC
i,m − Ht

i,mX t
i,m)} ∏

l 6=k

p(cl(X
t
i,m)), (4.64)

Furthermore, the post interference cancelation process can be performed to

reduce the equalizer/demapper complexity. The IC-MF process is obtained by

taking the linear combiner or MF on the output of the interference canceler, i.e.

Y t,IC−MF
i,m = FMF

i,m Yt,IC
i,m

= (Ht
i,m)HHt

i,mX t
i,m +

∑

k 6=t

(Ht
i,m)HHk

i,m(Xk
i,m − X̂k

i,m)

+(Ht
i,m)HWi,m. (4.65)

Again, we compute the mean µt,IC−MF
i,m and covariance matrix Ct,IC−MF

i,m as:

µt,IC−MF
i,m = E{(Ht

i,m)HHt
i,mX t

i,m +
∑

k 6=t

(Ht
i,m)HHk

i,m(Xk
i,m − X̂k

i,m)

+(Ht
i,m)HWi,m}

= E{(Ht
i,m)HHt

i,mX t
i,m} +

∑

k 6=t

(Ht
i,m)HHk

i,m(E{Xk
i,m} − X̂k

i,m︸ ︷︷ ︸
= 0

)

+E{(Ht
i,m)HWi,m}

= (Ht
i,m)HHt

i,mX t
i,m, (4.66)

and

Ct,IC−MF
i,m = (Ht

i,m)H(Hi,mCt,IC

i,m HH
i,m + σ2

wINT
)Ht

i,m. (4.67)

Another post interference cancelation process is the IC-MMSE, which is ob-

tained by taking the MMSE filtering on the output of the interference canceler,

which is given by:

Y t,IC−MMSE
i,m = (F t,MMSE

i,m )HYt,IC
i,m . (4.68)

The mean µt,IC−MMSE
i,m and covariance matrix Ct,IC−MMSE

i,m can be obtained as:

µt,IC−MMSE
i,m = (F t,MMSE

i,m )HHt
i,mX t

i,m, (4.69)
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and

Ct,IC−MMSE
i,m = (F t,MMSE

i,m )H(Hi,mCt,IC

i,m HH
i,m + σ2

wINT
)F t,MMSE

i,m . (4.70)

4.4 Iterative Channel Estimation for MIMO-OFDM

System

In Chapter 3 Section 3.3, we have developed a low complexity iterative turbo

channel estimation technique for the SISO-OFDM systems. In this Section, we

extend it to a MIMO-OFDM system. With the soft decoded data symbol fed back

from MAP decoder, the channel frequency response at each symbol is updated

by a novel iterative channel estimation approach, where channel estimates from

preamble, pilot and soft coded data symbols are frequency and time combined in

two stages, which are referred to as initial coarse estimation stage, and iterative

estimation stage. We assume that OFDM symbols are transmitted continuously on

a frame by frame basis. Each frame consists of a preamble followed by a number

of data symbols. The data symbols have pilot tones inserted as specified in [17].

4.4.1 Initial Coarse Estimation Stage

In practical MIMO-OFDM systems, adjacent pilot tones are allocated and the mul-

tiple transmitting antennas are usually configured in on/off mode so that there is

no interference when the pilot tones are transmitted. For example, in the 2 × 2

MIMO-OFDM system, the even indexed subcarriers are dedicated for the first an-

tenna to transmit pilot symbols, and the odd indexed subcarriers are dedicated for

the second antenna to transmit pilot symbols. Therefore, at each receiver antenna,

each subcarrier only receives reference signal from one transmitting antenna so that

there is no interference. In this case, the channel frequency response between each

transmitting and receiving wireless link can be obtained at those dedicated subcar-

riers. Signal processing techniques can be applied to obtain the channel frequency

response for the subcarriers that were not used in the transmission.

The initial coarse estimation stage is performed at the first iteration. Extended

from Chapter 3 Section 3.3.2, channel estimate between the rth receiving antenna

and tth transmitting antenna at pilot subcarrier p for the ith OFDM symbol can be

obtained by the LS approach:

Ĥr,t
i,p = Hr,t

i,p + W
′r
i,p, (4.71)



4.4 Iterative Channel Estimation for MIMO-OFDM System 93

where Ep is the energy of preamble/pilot symbol, Hr,t
i,p is the true channel frequency

response, and W
′r
i,p is the estimation error at the output of the LS channel estimator.

As shown in Section 3.3.2, the estimation error is Gaussian distributed N (0, σ2
w

Ep
).

To obtain the channel frequency response at the non-transmitting subcarriers, lin-

ear interpolation is performed between two subcarriers where the pilot tones are

transmitted. More specifically, Ĥr,t
i,p and Ĥr,t

i,p+2 are the channel estimates from two

adjacent pilots. The channel estimate Ĥr,t
i,m at subcarrier m, which is between pilot

subcarrier p and p + 2, is given by:

Ĥr,t
i,m =

[
1 − m−p

2
m−p

2

]
·


 Ĥr,t

i,p

Ĥr,t
i,p+2


 , (4.72)

For OFDM data symbols, channel tracking is applied to obtain the initial coarse

channel estimates. The initial channel estimates for the ith data symbol is given

by:

Ĥi = Ĥi−1 + F(∆Ĥi−1,i,p)

= Ĥi−1 + F(Ĥi,p − Ĥi−1,p), (4.73)

where Ĥi,p is the channel estimates at pilot subcarriers. F(·) is the interpolation

filter, which can be FFT based [25], MMSE based [29], or linear interpolation

based [101].

4.4.2 Iterative Estimation Stage

Because the decoding data information from previous iterations may not be reliable,

the energy of soft decoded data symbol may be less than the unity. If the soft

decoded data symbol is directly applied in LS estimation, the so obtained channel

estimates are subject to a bias due to the unreliable decoding information. To

overcome this problem, a moving average window (MAW) around the subcarrier

of interest is defined, and the average energy of the soft data symbols within the

MAW is computed to normalize the LS channel estimation. Hence, using the LS

approach in Chapter 3 Section 3.3, channel estimation between the rth receiving

antenna and tth transmitting antenna at data subcarrier d for ith OFDM symbol

can be modeled as:

Ĥr,t
i,d ≈ Hr,t

i,d

√
|X̂ t

i,d∈Θ|2 + W
′r
i,d, (4.74)
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where

|X̂ t
i,d∈Θ|2 = E{X̂ t

i,d∈Θ(X̂ t
i,d∈Θ)∗}, (4.75)

is the average energy of soft coded data information in the MAW Θ, and W
′r
i,d is

the summation of residual interference and white noise, which is given by:

W
′r
i,d =

∑

k 6=t

[Hr,k
i,d (X t

i,d − X̂ t
i,d)

(X̂ t
i,d)

∗
√

|X̂ t
i,d∈Θ|2

] +
W r

i,d(X̂
t
i,d)

∗
√

Ed|X̂ t
i,d∈Θ|2

. (4.76)

In equation (4.76), Hr,k
i,d is the true channel frequency response from other trans-

mitting and receiving wireless link, which is not available in the practical system.

Hence, to truly represent the system, we model the true channel frequency response

as:

Hr,k
i,d = Ĥr,k

i,d + ∆Ĥr,k
i,d , (4.77)

where Ĥr,k
i,d is the channel estimate at the output of the LS channel estimator and

∆Ĥr,k
i,d is the channel estimation error, which can be approximated as a Gaussian

random process [107] with distribution N (0, σ2
∆Ĥ

) obtained from the previous iter-

ation. Substitute equation (4.77) into equation (4.76), we have

W
′r
i,d =

∑

k 6=t

[(Ĥr,k
i,d + ∆Ĥr,k

i,d )(X t
i,d − X̂ t

i,d)
(X̂ t

i,d)
∗

√
|X̂ t

i,d∈Θ|2
] +

W r
i,d(X̂

t
i,d)

∗
√

Ed|X̂ t
i,d∈Θ|2

. (4.78)

We can compute the mean and variance of W
′r
i,d as:

E{W ′r
i,d} =

∑

k 6=t

[(Ĥr,k
i,d + ∆Ĥr,k

i,d ) (E{X t
i,d} − X̂ t

i,d)︸ ︷︷ ︸
= 0

(X̂ t
i,d)

∗
√

|X̂ t
i,d∈Θ|2

]

+
E{W r

i,d}(X̂ t
i,d)

∗
√

Ed|X̂ t
i,d∈Θ|2

= 0, (4.79)

and

E{|W ′r
i,d|2} = E{|

∑

k 6=t

[(Ĥr,k
i,d + ∆Ĥr,k

i,d )(X t
i,d − X̂ t

i,d)
(X̂ t

i,d)
∗

√
|X̂ t

i,d∈Θ|2
]
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+
W r

i,d(X̂
t
i,d)

∗
√

Ed|X̂ t
i,d∈Θ|2

|2}

=
∑

k 6=t

(|Ĥr,k
i,d |2 + σ2

∆Ĥ
)(|Xk

i,d|2 − |X̂k
i,d|2) +

σ2
w

Ed

= σ2
eH

+
σ2

w

Ed

. (4.80)

After LS estimation, channel estimates from both pilot and soft decoded data

information are ready for the frequency-domain combining. Assuming that within

the MAW, the channel frequency response is highly correlated, i.e. Hr,t
i,p ≈ Hr,t

i,d, the

weighted average for the channel frequency response at particular subcarrier m of

interest is given by:

H̃r,t
i,m = ωp

∑

p∈Θ

Ĥr,t
i,p + ωd

∑

d∈Θ

Ĥr,t
i,d

= (Npωp + Ndωd

√
|X̂ t

i,d∈Θ|2)Hr,t
i,m + (ωp

∑

p∈Θ

W
′r
i,p + ωd

∑

d∈Θ

W
′r
i,d), (4.81)

where Np and Nd are the number of pilot and data symbols within the MAW. To

minimize the estimate variance

E{|ωp

∑

p∈Θ

W
′r
i,p + ωd

∑

d∈Θ

W
′r
i,d|2} = Npω

2
p

σ2
w

Ep

+ Ndω
2
d(σ

2
eH

+
σ2

w

Ed

), (4.82)

the optimal weight values {ωp, ωd}, can be obtained by solving the following La-

grange multiplier problem:

{ωp, ωd} = argmin
ωp,ωd

{(Npω
2
p

σ2
w

Ep

+ Ndω
2
d(σ

2
eH

+
σ2

w

Ed

))

+λ(Npωp + Ndωd

√
|X̂ t

i,d∈Θ|2 − 1)}, (4.83)

where λ is the Lagrange multiplier. Hence, the optimal weights {ωp, ωd} are given

by:

ωp =
1 + Ed

σ2
eH

σ2
w

Np(1 + Ed
σ2

eH

σ2
w

) + Nd
Ed

Ep
|X̂ t

d∈Θ|2
, (4.84)

and

ωd =

√
|X̂ t

i,d∈Θ|2

Np
Ep

Ed
(1 + Ed

σ2
eH

σ2
w

) + Nd|X̂ t
i,d∈Θ|2

. (4.85)
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It can be seen that the optimal weights {ωp, ωd} are dependent on the number of

pilot and data symbols within the MAW, the energy of pilot and data symbols,

the energy of the soft decoded data symbol, the residue interference variance, and

noise variance. Therefore, the combining is performed in perfect proportion to the

reliability of the available information. As the iterations proceed, the available a

priori information on data signals improves, the weights associated with the data-

aided channel estimates increase accordingly, where the decoding data serve as

virtual reference signals.

To further reduce the noise, time-domain MAW combining is applied to the

channel frequency response from consecutive symbols. Assuming that channel fre-

quency response between consecutive symbols are highly correlated, i.e. Hr,t
i,m ≈

Hr,t
i−1,m, by applying similar approach, the optimization problem can be defined as:

̂̂
Hr,t

i,m = αH̃r,t
i−1,m + βH̃r,t

i,m

= (α + β)Hr,t
i,m + (αW

′′r
i−1,m + βW

′′r
i,m)︸ ︷︷ ︸

N (0, α2σ2
w

′′r
i−1,m

+ β2σ2
w

′′r
i,m

)

, (4.86)

where α and β are the solution of following optimization problem

{α, β} = argmin
α,β

{(α2σ2
w

′′r
i−1,m

+ β2σ2
w

′′r
i,m

) + λ(α + β − 1)}, (4.87)

and σ2
w

′′r
i−1,m

and σ2
w

′′r
i,m

are the output of the variance estimator after the frequency-

domain combining for the (i−1)th and ith OFDM symbol respectively. Ignoring the

index i and m for brevity, these noise variance terms are obtained by substituting

the equations (4.84) and (4.85) into equation (4.82) as:

σ2
w′′r ≈ Npω

2
p

σ2
w

Ep

+ Ndω
2
d(σ

2
eH

+
σ2

w

Ed

)

≈
Npσ

2
w(1 + Ed

σ2
eH

σ2
w

)2

(Np(1 + Ed
σ2

eH

σ2
w

) + Nd
Ed

Ep
|X̂ t

d∈Θ|2)2
+

Nd(σ
2
eH

+ σ2
w

Ed
)|X̂ t

d∈Θ|2

(Np
Ep

Ed
(1 + Ed

σ2
eH

σ2
w

) + Nd|X̂ t
i,d∈Θ|2)2

.

(4.88)

Hence, the optimal weighing factors α and β are obtained as:

α =
σ2

w
′′r
i

σ2
w

′′r
i−1

+ σ2
w

′′
i

, (4.89)
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β =
σ2

w
′′r
i−1

σ2
w

′′r
i−1

+ σ2
w

′′r
i

, (4.90)

This process will continue for a number of iterations. The advantage of this iter-

ative method is that when the data decoding becomes more and more reliable as

iterations progress, soft coded data information acts as new “pilots”. Using the

information symbols is beneficial as their total power over a frame is significantly

more than that of the pilot symbols therefore adding noticeably to the channel

estimation performance, and thus the data detection performance.

4.4.3 Final Estimation Stage

The final estimation stage is performed on the last iteration. Similar in the SISO-

OFDM system, we have the option of MLE and MMSEE for the final channel

estimation. In the case of MLE, the channel estimate is given by:

Ĥr,t
i,MLE = G(GHG)−1GHH̃r,t

i,IC−LS

= G(GHG)−1GH [(Xt
i)

HXt
i]
−1(X̂t

i)
HYr,IC

i

=
1

N
GGH(X̂t

i)
−1Yr,IC

i , (4.91)

where X̂t
i is soft coded OFDM symbol vector at tth transmitting antenna from the

last second iteration with pilot tones, H̃r,t
i,IC−LS is the LS channel estimates vector

after interference cancelation, and Yr
i is the output of interference canceler at the

rth receiving antenna. In the case of MMSEE, the channel estimate is given by:

̂Hr,t
i,MMSE = GR

h
′
h
′ (GHGR

h
′
h
′ + σ2

w′IL)−1GHH̃r,t
i,IC−LS

= GR
h
′
h
′ (NR

h
′
h
′ + σ2

w
′IL)−1GHH̃r,t

i,IC−LSLS

= GR
h
′
h
′ (NR

h
′
h
′ + σ2

w′IL)−1GH(X̂t
i)

−1Yr,IC
i . (4.92)

4.4.4 Mean Square Error Analysis of Iterative Channel Es-

timation

Similar to the SISO-OFDM system, we can analyze the MSE of the developed

iterative turbo channel estimation technique. Again, it is difficult to analyze the

MSE of the iterative channel estimation technique because of the exchange of soft

information and MAP decoder. Instead, the MSE lower bounds are calculated for
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MLE and MMSEE in Section 4.4.3. In the case of the MLE, the MSE lower bound

can be obtained as:

MSEMLE =
1

NRNT

NR−1∑

r=0

NT−1∑

t=0

σ2
w′Lr,t

N
. (4.93)

In the case of MMSEE, the MSE can be obtained as:

MSEMMSE =
1

NRNT

NR−1∑

r=0

NT−1∑

t=0

σ2
w

′

N

Lr,t−1∑

l=0

1

1 + σ2
w′/(Nαr,t

l )
. (4.94)

4.5 Complexity of Iterative Receiver for MIMO-

OFDM Systems

Similar in Section 3.5, the computational complexity of the iterative receiver is

measured by the number of valued multiplications. And only the complexity of the

detector is compared because the complexity of the decoder is common to every

iterative receiver. In the 2×1 Alamouti STC-OFDM system, the MRC linear com-

biner requires two multiplications per symbol per subcarrier for detection, hence,

the overall complexity for the MRC linear combiner is proportional to 2×2N×Nitr,

where N is the total number of OFDM subcarriers and Nitr is the total number of

iterations. In the 2 × 2 Alamouti STC-OFDM system, the MRC linear combiner

requires four multiplications per symbol per subcarrier for the detection, and the

overall complexity is proportional to 4 × 2N × Nitr. Therefore, in both MIMO

configurations for the Alamouti STC-OFDM systems, the complexity of the MRC

receiver is O(N).

For the iterative receivers in the NR×NT SM-OFDM system, the MMSE detec-

tor in the first iteration requires O(N3
T ) complexity to obtain the MMSE filtering

coefficients per symbol per subcarrier, and total N × (NR + O(N3
T ))NT computa-

tional complexity to perform the filtering. From the second iteration onwards, the

interference canceler requires NT (NT − 1)NR complex multiplications per subcar-

rier to perform cancelation as shown in equation (4.52). For the IC-MF receiver,

an additional NT ×NR multiplications per subcarrier are required for the matched

filtering. Furthermore, for the IC-MMSE receiver, an additional NT ×NR +O(N3
T )

multiplications per subcarrier are required for the MMSE filtering. Table 4.1 sum-

marizes the computational complexity of the iterative receivers for MIMO-OFDM

systems. It can be seen that all the iterative receivers have a complexity of O(N).
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Table 4.1: Computational Complexity for Receivers in MIMO-OFDM Systems
Receivers Computational Complexity in Multiplications

2 × 1 MRC 2 × 2N × Nitr

2 × 2 MRC 4 × 2N × Nitr

MMSE+IC N × [(NR + O(N3

T ))NT + (NT (NT − 1)NR)(Nitr − 1)]

MMSE+IC-MF N × [(NR + O(N3

T ))NT + (NT (NT − 1)NR + NT NR)(Nitr − 1)]

MMSE+IC-MMSE N × [(NR + O(N3

T ))NT +

(NT (NT − 1)NR + NT NR + NTO(N3

T ))(Nitr − 1)]

Conventional ML N × 2NT NR
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Figure 4.4: Complexity for MIMO-OFDM receivers

Fig. 4.4 shows the complexity of MIMO-OFDM receivers including both iterative

receivers and conventional ML receiver. Among all the iterative receivers, the MRC

receiver is the simplest receiver due to the orthogonal space-timing coding property,

while the iterative receivers for the spatial multiplexing system are a bit complex.

Nevertheless, compared to the ML receiver which has exponential complexity with

respect to the number of transmitting antennas, receiving antennas, memory of

the channel, and order of the data modulation, the iterative receivers have lower
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complexity and therefore are more favorable for realization.

The complexity of the iterative channel estimation for the MIMO-OFDM sys-

tem can be obtained from the iterative channel estimation in the SISO-OFDM

system. Each transmitting and receiving wireless link requires separate channel

estimation. In the initial estimation stage, pilot estimation requires Np × NRNT

multiplications. To obtain the coarse channel frequency response at data tones,

the linear interpolation between pilot tones requires (N − Np) × NRNT multipli-

cations. In the iterative estimation stage, the soft data channel estimation re-

quires (N − Np) × NRNT multiplications. The calculation of ωp, ωd coefficients

requires N × NFD
Θ × NRNT multiplications, frequency-domain filtering requires

N × NFD
Θ × NRNT multiplications. The calculation of α, β coefficients requires a

single multiplication per transmitting and receiving link. The time-domain filtering

requires 2N × NRNT multiplications. Therefore, there in total (Nitr − 2) × (3N −
Np + 2N × NFD

Θ + 1) × NRNT multiplications.

In the final estimation stage, the soft data channel estimation requires (N −
Np) multiplications. MLE operation requires O(N2) multiplications and MMSE

operation requires O(N3). Therefore, the total complexity is N + O(N2) × NRNT

for MLE and N +O(N3)×NRNT for MMSE estimator. Table 4.2 summarizes the

number of multiplications involved in each stage. It can be seen that if the final

estimation stage is excluded, the complexity of initial coarse estimation stage and

iterative estimation stage is in the order of O(N). Compared to conventional MLE

or MMSE estimation, the additional complexity from iterative channel estimation

remains low.

4.6 Numerical Results

4.6.1 Simulation Setup

We consider an IEEE standar802.16e 2× 2 MIMO Mobile WiMAX [17] compliant

OFDM system with N = 256 subcarriers, and 8 pilot tones. 200 subcarriers are

used, CP length is 64. The carrier frequency is 3.5GHz, and the bandwidth is

2.5MHz. There are 4 OFDM data symbols per frame transmission. The energy

of each pilot symbol is the same as each data symbol. The 3GPP spatial chan-

nel model (SCM) [108] urban micro scenario is adopted in the simulation. The

mobile speeds are 3kmh and 120kmh, which corresponds to pedestrian and vehic-

ular environment. We also include an extreme vehicle speed of 333kmh for some

comparisons. A rate-1/2 (171, 133)8 convolutional code is used for channel coding.
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Table 4.2: Computational Complexity for Iterative Channel Estimation in MIMO-
OFDM System

Operations First Stage Second Stage Final Stage

(per iteration)

Pilot Estimation Np × NRNT 0 0

Soft Data Estimation 0 (N − Np) × NRNT (N − Np) × NRNT

Linear Interpolation (N − Np) × NRNT 0 0

ωp, ωd Calculation 0 N × NFD
Θ

× NRNT 0

Frequency-domain 0 N × NFD
Θ

× NRNT 0

Filtering

α, β Calculation 0 NRNT 0

Time-domain Filtering 0 2N × NRNT 0

ML Estimation 0 0 O(N2) × NRNT

MMSE Estimation 0 0 O(N3) × NRNT

Total for each stage O(N) O(N) O(N2)orO(N3)

The modulation scheme is 16QAM for STC system, and QPSK for SM system to

maintain the same throughput. The total number of iterations is set to 4. The

frequency-domain MAW size is set to 7 to ensure that the correlation of channel

frequency response within the MAW is sufficient high. Similar to Chapter 3, we

demonstrated the performance under the simulation environment that frame by

frame transmission is adopted, which is the same setup as the practical system.

The FER performance of the iterative receiver is compared to that of the conven-

tional MRC receiver for Alamouti STC system and MMSE receiver for SM system,

both employing one-shot preamble channel estimation. We refer to the proposed

iterative receivers as “turbo...” or “iterative..”, the conventional receivers as “con-

ventional...”, and the receiver performance with perfect CSI as “Perfect...”.

4.6.2 Performance in the Alamouti STC-OFDM System

Fig. 4.5 shows the FER performances of MRC receivers for both QPSK and 16QAM

modulations at 3kmh. The iterative receiver performs joint channel re-estimation

and MRC data detection. It can be seen that with iterative channel estimation, the

iterative MRC receiver outperforms the conventional MRC receiver with one-shot

preamble channel estimation by 2dB. And the performances are only 0.5dB away

from the the performance of the MRC receiver with perfect CSI.

Fig. 4.6 shows the FER performance of MRC receivers for QPSK modulation

at various mobilities. We also include the conventional MRC receiver at the mo-
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Figure 4.5: FER performance of the 2 × 2 Alamouti STC-OFDM MRC receivers
for QPSK and 16QAM modulation at 3kmh
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Figure 4.6: FER performance of the 2 × 2 Alamouti STC-OFDM MRC receivers
for QPSK modulation at various mobilities

bility of 333kmh. It can be seen that the performance of the receiver performance

degrades as the mobility increases. This is because as the mobile speed goes higher
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and higher, the channel variation becomes more and more significant among OFDM

symbols. The space-time coding techniques are developed based on the assump-

tion that the channel response between two consecutive data symbols is constant,

which is approximately true under a very low mobility environment. At high mo-

bility environments, this assumption does not hold. As we can observe that the

performance fades away from the low mobility case. Nevertheless, the iterative re-

ceiver still works at high mobility of 333kmh compared to the conventional receiver,

which completely fails in such high mobility.

4.6.3 Performance in the SM-OFDM System

Fig. 4.7 and Fig. 4.8 show the FER performances of various receivers discussed

in Section 4.3 in SM-OFDM system for QPSK modulation at 3kmh and 120kmh,

respectively. We also include the conventional MMSE receiver as discussed in

Section 4.2.2, which employs one-shot preamble channel estimation. It can be

observed that at pedestrian speed (3km/hr), the conventional MMSE receiver works

fine even without the updated CSI because the channel undergoes slow fading. The

iterative receivers outperform the conventional receiver by 2dB at an operating

point with a FER = 10−2. Their performance is less than 1dB away from the

performance if the CSI is known.
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Figure 4.7: FER performance of the 2 × 2 SM-OFDM receivers for QPSK modu-
lation at 3kmh
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Figure 4.8: FER performance of the 2 × 2 SM-OFDM receivers for QPSK modu-
lation at 120kmh

On the other hand, at high vehicular speed, the one-shot preamble channel

estimation is not sufficient for the conventional MMSE receiver, and the massive

interference in the SM-OFDM system results in the failure. The iterative receivers

perform well with 1dB away from the performance under perfect CSI. Furthermore,

among the iterative receivers, the additional signal processing, such as MMSE,

etc., does provide an additional 2dB gain compared to just using the interference

canceler.

Furthermore, Fig. 4.9 shows the MSE performance at 12dB between conven-

tional channel estimation and iterative channel estimation at 3kmh and 120kmh.

At both pedestrian and vehicular speeds, the iterative channel estimation outper-

forms the conventional one-shot channel estimation. At high mobility, the channel

varies significantly due to the short coherence time, the channel estimates from the

preamble in the conventional one-shot channel estimation shows a high MSE for the

OFDM symbols after preamble. The iterative receiver, however, tracks the channel

variations in every OFDM symbol, where the MSE remains lower for consecutive

OFDM symbols.



4.6 Numerical Results 105

1 2 3 4 5 6 7 8
10

−3

10
−2

10
−1

10
0

OFDM symbol index

M
S

E

conventional one−shot channel estimation

turbo channel estimation

120kmh

3kmh

Figure 4.9: MSE performance at 12dB in the conventional channel estimator and
iterative channel estimator at 3kmh and 120kmh

4.6.4 Comparison of the Performances of Receivers under

Same Spectrum Efficiency

Fig. 4.10 compares the FER performances of the conventional and the iterative

receivers for SM system and Alamouti STC system at same spectrum efficiency,

i.e. 4bits/s/Hz. In SM system, the iterative receiver performs joint channel re-

estimation and interference cancelation. It can be seen that 2dB gain is obtained

over MMSE receiver with conventional one-time preamble channel estimation, and

6dB gain over conventional Alamouti STC receiver. Fig. 4.11 shows the FER

performances among conventional almouti STC receiver, MMSE SM receiver and

iterative receiver at 120kmh. At such high mobility, the channel does not stay

stationary any more, but varies significantly from symbol to symbol within one

data packet. The conventional Alamouti STC receiver completely fails under these

conditions. The conventional SM MMSE receiver in this case performs better than

the conventional Alamouti STC receiver, however, the performance degrades from

that for the pedestrian case (3km/hr). Nevertheless, the iterative receiver is more

robust to high mobility environment and achieves more than 6dB gain over the

conventional receivers.
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Figure 4.11: FER performance comparisons among conventional MRC receiver,
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4.7 Summary and Contributions

This chapter has developed iterative receivers for practical MIMO-OFDM systems.

In MIMO-OFDM systems, the received signal at each receiving antenna is the
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superposition of the fading signals from all transmitting antennas. The massive

interference makes data detection a challenging problem. For the Alamouti STC-

OFDM system, an iterative linear MRC receiver is developed. For the SM-OFDM

system, interference canceler based iterative receivers with post-processing are de-

veloped. As discussed in previous chapters, channel estimation is a very critical

and fundamental problem for the receiver design, especially for the system oper-

ated under various mobility environment. The conventional MIMO-OFDM receiver

usually employs one-shot channel estimation, which is designed for static mobile

environment. Such time variation and frequency variation of the channel response

degrade the performance of the conventional receivers. As shown before, the pri-

mary advantage of the proposed iterative channel estimation technique is to further

improve the channel estimates with data decoding information in dynamic channel

environment. Extended from Chapter 3, a novel low complexity channel estima-

tor is developed. It tracks the dynamics of channel frequency response through

time-domain and frequency-domain combining of channel estimates from pream-

ble, pilots and soft decoded data information. This channel estimator is integrated

with iterative receivers.

Some specific contributions made in this chapter are as follows. First of all,

the system model for the MIMO-OFDM is investigated from the extension of the

SISO-OFDM system model. And the conventional MRC receiver in the Alamouti

STC-OFDM system is investigated. The MRC receiver makes use of the orthogonal

property of the channel matrix produced by the space-time encoder, hence, optimal

detection can be obtained through linear operations. Such approach is analogous

to the single user detection in the synchronous multiple access environment. The

conventional MF, ZF and MMSE receivers in the SM-OFDM system are studied.

The channel matrix in SM-OFDM system does not have the orthogonal property,

hence, the receiver for SM system is much more complicated. MF receiver simply

combines the energy from multiple receiving antennas. It suffers severe interferences

from other transmitting symbols because the columns of the channel matrix for SM-

OFDM system is not orthogonal to each other. ZF receiver uses a straight forward

matrix inversion. The linear MMSE receiver provides improved detection with the

knowledge of MIMO channel statistics. It makes the compromise between the MF

and ZF receivers.

Secondly, an iterative linear MRC receiver for Alamouti STC-OFDM system

is developed. The channel state information is updated in each iteration, and the

linear combining is performed on the updated channel estimates to improve the
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performance. Furthermore, an interference canceler receiver with post-processing

for the SM-OFDM system is developed. The MMSE filtering is performed in the

first iteration, followed by the interference cancelation in the remaining iterations.

In addition, several post interference cancelation processes, such as IC-MF and

IC-MMSE are also developed.

Thirdly, a low complexity iterative channel estimator is integrated with the iter-

ative receivers. Similar to the SISO-OFDM systems, the iterative channel estimator

consists of three estimation stages, namely the initial coarse estimation stage, it-

erative estimation stage, and the final estimation stage. It performs time-domain

and frequency-domain combining of channel estimates from preamble, pilots and

soft decoded data information to track the dynamics of channel frequency response.

The theoretical lower bounds of the MSE that the iterative channel estimation can

achieve is derived. And the complexity in terms of complex multiplications that

the iterative receiver requires is analyzed.

Finally, the performances of the iterative receivers and the conventional re-

ceivers are compared. The numerical and analytical results show that the iterative

receivers have 2dB gain compared to the conventional receivers in pedestrian low

mobility condition and more than 6dB gain in vehicular high Doppler environ-

ment. Among the iterative receivers, the post-processing provides further 2dB

performance improvement from the interference canceler. Furthermore, the iter-

ative channel estimation technique is robust in high mobility environment where

the conventional receiver fails due to poor channel estimation.



Chapter 5

Iterative Receiver on Sphere

Decoder

5.1 Introduction

In this Chapter, the iterative receiver techniques based on a new sphere decoder

are presented for the spatial multiplexed MIMO system. The Algorithms I and II

in [68] are extended to iterative reception by including accumulated a priori in-

formation metric in the enumeration process. Furthermore, we develop two novel

schemes for the SE algorithm by utilizing the a priori information. These two novel

schemes aim to improve the performance and reduce the computational complex-

ity even further over iterations. It is worth mentioning that as previous chapters

have demonstrated the iterative channel estimation approach in great detail, in

this chapter, we move to the detection method itself by assuming the MIMO sys-

tem model is generic and spatially multiplexed while the channel estimation is

perfect. We remove the focus including channel estimation, and concentrate our

analysis on how to utilize the data information to improve the overall detection-

decoding sensitivity while reducing the complexity at the same time. The derived

low complexity data-driven sphere decoder can be applied to any specific system

that needs interference mitigation. It may not be necessarily limited to MIMO

system, for example, a multi-user DS-CDMA system could also use this technique.

Iterative channel estimation could be easily added to the techniques discussed in

this Chapter.

109
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5.2 Modified Linear MIMO Model for Sphere De-

coder Detections

The MIMO spatial multiplexing system considered in this Chapter is shown in

Fig. 5.1. There are NT transmitting antennas and NR receiving antennas. The

information bits {b} are first encoded into coded bits sequences {d}. These coded

bits are interleaved into a new sequence {c}, mapped into M -ary complex symbols

sequence of {x} represented by a vector x = [x0, x1, · · · , xNT−1]
T .

Encoder

Information bits

Interleaver Multiplexing

BPSK/QPSK/

16QAM

Modulation

DeinterleaverDecoder

Decoded 

information bits

Interleaver

BPSK/QPSK/

16QAM

Mapping

Spatial 

Multiplexing

Spatial 

Multiplexing

MIMO

detector with 

sphere 

decoder

Figure 5.1: MIMO spatial multiplexing transmitter and iterative receiver with
sphere decoder

Assuming that each transmitting and receiving antenna link undergoes inde-

pendent flat fading, the system model can be expressed as:

y = hx + w, (5.1)

where y is the received signal defined as NR × 1 vector y = [y0, y1, · · · , yNR−1]
T . h

is NR × NT channel matrix. w is NR × 1 AWGN vector with covariance σ2
wINR

.

It is worth noting that the system model in Fig. 5.1 is in the complex signal

representation, and the real and imaginary parts of the model are assumed as

independent to each other. Generally speaking, the sphere decoder algorithms

perform tree search through the signal space. Hence, it is more convenient to

reformulate the system model from a complex value representation to a real value

representation. Therefore, by defining the 2NR × 1 vector Y, 2NT × 1 vector X,
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2NR × 1 vector W as:

Y =
[
ℜ(y)T ℑ(y)T

]T

, (5.2)

X =
[
ℜ(x)T ℑ(x)T

]T

, (5.3)

W =
[
ℜ(w)T ℑ(w)T

]T

, (5.4)

and 2NR × 2NT matrix H as:

H =

[
ℜ(h) −ℑ(h)

ℑ(h) ℜ(h)

]
, (5.5)

where ℜ(·) and ℑ(·) denote the real and imaginary parts of the argument, the

real-domain signal representation of the system model can be expressed as:

Y = HX + W (5.6)

The MIMO detector based on the original sphere decoder algorithm maximizes

the likelihood of the transmitted signal being detected. It is equivalent to mini-

mizing the Euclidian Distance of the transmitted signal and received signal given

that the channel is known, which is given as:

X̂ = arg max
X∈U

P (Y|X) = arg min
X∈U

‖Y − HX‖2, (5.7)

where U is the signal subset of dimension 2NT . As in the sphere decoder algo-

rithms, not all signal vectors in the complete constellation set A are examined,

only a partial constellation set U , where U ∈ A is employed in the detection. In

this Chapter, the sphere decoder is modified to estimate the MAP probability of

transmitted signal sequence given by:

X̂ = arg max
X∈U

P (X|Y) = arg max
X∈U

P (Y|X)P (X)

P (Y)
, (5.8)

where P (X) is the a priori information, which is sourced from the a-posteriori

probabilities of the channel decoder in the previous iteration. Because the a priori

information is not available in the first iteration, sphere decoding based on the

ML metric (5.7) is employed in the MIMO detector in Fig. 5.1. From the second

iteration onwards, the MAP detection metric (5.8) is employed. In each iteration,

the MIMO detector selects the most reliable points {X̂} to form a list U to compute
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the extrinsic LLR of the coded bit as:

λe
1(dk(X̂)) =

1

2

∑

X̂∈U+
k

(− 1

σ2
w

‖Y − HX̂‖2 + dT
\kλ

e

2,\k)

−1

2

∑

X̂∈U−
k

(− 1

σ2
w

‖Y − HX̂‖2 + dT
\kλ

e

2,\k), (5.9)

where dk(X̂) is the kth coded bit in sequence {d}, representing the sphere decoder

enumerated transmitted symbol vector X̂. U+
k and U−

k denote the subset of U
for which dk(X̂) is +1 and −1 respectively. d\k is obtained from sequence d by

removing the kth coded bit. λe
2,\k is the extrinsic LLR of sequence d\k from the

channel decoder. After MIMO detection, the sequence of extrinsic LLRs {λe
1} of

coded bits is deinterleaved and passed through the channel decoder to complete

one iteration.

5.3 The Original FP and SE Algorithms

The sphere decoder algorithms were developed initially to solve the lattice coding

problem for the pulse amplitude modulation (PAM) signals. In this section, we

give an brief overview of the sphere decoder.

As the name suggested, a geometrical searching sphere (Xo, C) is defined, where

Xo is the center of the sphere and
√

C is the radius of the sphere in the signal space.

In sphere decoding, the primary objective is to examine the signal points within

the searching sphere and find the signal point which is closest to the transmitted

signal. Hence, we need to know where to start (the center of the sphere), and how

far we should search (the radius of the sphere). Theoretically, the center of the

sphere can be anywhere in the signal space, and the radius of the sphere can be

as large as infinity, while judicious choice of there two parameters can significantly

speed up the search process.

The sphere decoder algorithms [66,67] determine the center of the sphere from

the unconstrained ML estimate of transmitted signal from the observed received

signal, i.e.

Xo = (HHH)−1HHY. (5.10)

Substituting equation (5.10) into equation (5.7), we have:

X̂ = arg min
X∈U

‖Y − HX‖2
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= arg min
X∈U

{(X − Xo)
HHHH(X − Xo) + K}

= arg min
X∈U

{(X − Xo)
HHHH(X − Xo)}, (5.11)

where

K = YH(I2NR
− H(HHH)−1HH)Y (5.12)

is a constant which is independent to X̂, and U is collection of the candidates X

within the searching sphere such that

(X − Xo)
HHHH(X − Xo) ≤ C. (5.13)

The sphere decoder algorithms first use the Cholesky factorization [109] to find

an upper triangular matrix Q such that QHQ = HHH whereby equation (5.13)

can be expressed as:

2NT−1∑

i=0

Q2
i,i(Xi − [Xo]j +

2NT−1∑

j=i+1

Qi,j

Qi,i

(Xj − [Xo]j))
2 ≤ C. (5.14)

Then, the sphere decoder algorithms start from the top level, i.e. i = 2NT − 1,

by ignoring the terms related to i = 0, 1, . . . , 2NT − 2, and the equation (5.14) is

simplified to:

Q2
2NT−1,2NT−1(X2NT−1 − [Xo]2NT−1)

2 ≤ C. (5.15)

The solution of X2NT−1 is upper bounded by

L2NT−1 :=

⌊
[Xo]2NT−1 +

√
C

Q2NT−1,2NT−1

⌋
(5.16)

and lower bounded by

V2NT−1 :=

⌈
[Xo]2NT−1 −

√
C

Q2NT−1,2NT−1

⌉
, (5.17)

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling operators to find the nearest integer. With

the lower and upper bounds, Xi can be obtained by selecting one of the possible

values from this interval. It is worth noting that in the above upper triangular

approach (Cholesky factorization), the precision of the previous value affects the

accuracy of the next value. In this case, once X2NT−1 is fixed, it will affect of the

selection of next level X2NT−2. To see this influence clearly, we keep the top two
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levels i = 2NT − 1, 2NT − 2, and ignoring the rest levels i = 0, 1, . . . , 2NT − 3, the

equation (5.14) is simplified to:

Q2
2NT−2,2NT−2(X2NT−2 − [Xo]2NT−2 +

Q2NT−2,2NT−1

Q2NT−2,2NT−2

(X2NT−1 − [Xo]2NT−1))
2

+Q2
2NT−1,2NT−1(X2NT−1 − [Xo]2NT−1)

2 ≤ C.(5.18)

Similarly, the solution of X2NT−2 is upper bounded by

L2NT−2 :=

⌊
[Xo]2NT−1 +

√
C − ϑ2NT−2 − ζ2NT−2

Q2NT−2,2NT−2

⌋
(5.19)

and lower bound by

V2NT−2 :=

⌈
[Xo]2NT−1 −

√
C − ϑ2NT−2 − ζ2NT−2

Q2NT−2,2NT−2

⌉
, (5.20)

where

ϑ2NT−2 = Q2
2NT−1,2NT−1(X2NT−1 − [Xo]2NT−1)

2 (5.21)

and

ζ2NT−2 = Q2NT−2,2NT−1(X2NT−1 − [Xo]2NT−1). (5.22)

The sphere decoder algorithms now choose a possible value within the new interval.

Based on above discussion, the FP and SE algorithms are the enumeration

strategies for the sphere decoder, or in other words, they are the tree search algo-

rithms on how to select the values in the interval. The FP enumeration algorithm

starts from the lower bound and search the entire interval till the upper bound.

On the other hand, The SE algorithm starts from the middle point of the interval

(center of the searching sphere Xo) and search the points near the middle point

through a zig-zag order. In summary, the main differences of FP and SE algo-

rithms are the number of nodes they visit at each dimension and the way that they

perform the search. It has been reported in the literature that the SE algorithm

is more efficient than the FP algorithm [68]. However, the SE algorithm may not

cover all points in the interval, hence, it has performance loss compared to the FP

algorithm.

No matter which algorithm is used, the idea of the sphere decoder algorithms is

to construct a search tree, whose nodes at each level representing the lattice points

in each dimension lying inside the sphere with certain radius. The algorithms start
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from the top level of the tree (first dimension in the signal space), then search

towards the next level. At each level, the algorithms scan the possible nodes, if

the node is within the sphere, the algorithms will go to its offsprings in the lower

levels, otherwise if the node is outside the sphere, that node and its offsprings in

the lower level will be pruned.

5.4 Iterative MIMO Detection with Modified FP

and SE Sphere Decoder

The authors in [68] looked at the sphere decoding from the viewpoint of stack

sequential decoding algorithm [93] and developed two new sphere decoding algo-

rithms. Algorithm I in [68] is based on FP enumeration by updating the upper

bound at each level to avoid enumerating previously examined partial paths. Algo-

rithm II in [68] is used to perform SE enumeration with pre-processing and order-

ing. Numerical results shows significant reductions in the computational complex-

ity with near ML detection performance compared to previously proposed sphere

decoding algorithms. However, the output of the FP and SE algorithms in [68] is

the lattice point of minimum Euclidean Distance to the received signal, which is

essentially the ML detection criteria as shown in equation (5.7). In this section, we

modify the FP and SE algorithms to estimate the MAP probability of the received

symbol sequence by introducing the accumulated a priori information metric in

the tree search.

5.4.1 MAP Criteria Reformulation

Starting from the MAP criteria in equation (5.8), we assume that the transmitted

symbols X0, X1 . . . , X2NT−1 are independent, the a priori probability P (X) can be

expressed as:

P (X) =

2NT−1∏

k=0

P (Xk) = exp(

2NT−1∑

k=0

ln P (Xk)). (5.23)

Hence, the MAP criteria in equation (5.8) can be reformulated as:

X̂ ≈ arg max
X∈U

P (Y|X)P (X)

≈ arg max
X∈U

exp(−‖Y − HX‖2

2σ2
w

+

2NT−1∑

k=0

ln P (Xk))
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≈ arg min
X∈U

(‖Y − HX‖2 − 2σ2
w

2NT−1∑

k=0

ln P (Xk)). (5.24)

The modified FP and SE algorithms narrow down the search region as:

‖Y − HX‖2 − 2σ2

2NT−1∑

k=0

ln P (Xk) ≤ C. (5.25)

By performing QR decomposition, the channel matrix H can be expressed as:

H =
[

Q Q′
] [

R

0

]
. (5.26)

where Q is a 2NR ×2NT unitary matrix, Q′ is 2NR × (2NR −2NT ) unitary matrix,

R is a 2NT × 2NT upper triangular matrix, and 0 is (2NR − 2NT ) × 2NT zero

matrix. Knowing that:

[
Q Q′

]H [
Q Q′

]
= I2NR

, (5.27)

Take (5.26) into (5.25), we have

‖
[

Q Q′
]
(Y − HX)‖2 − 2σ2

w

2NT−1∑

k=0

ln P (Xk) ≤ C

‖QHY − RX‖2 − 2σ2
w

2NT−1∑

k=0

ln P (Xk) ≤ C

‖Y′ − RX‖2 − 2σ2
w

2NT−1∑

k=0

ln P (Xk) ≤ C − ‖Q′HY‖2, (5.28)

where Y′ = QHY. By expanding the term ‖Y′ − RX‖2, we can further simplify

(5.28) as follows:

2NT−1∑

k=0

|Y ′

k −
2NT−1∑

j=k

Rk,jXj|2 − 2σ2
w

2NT−1∑

k=0

ln P (Xk) ≤ C
′

, (5.29)

where C
′
is the newly defined sphere radius.
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5.4.2 Iterative MIMO Detection with Modified FP Algo-

rithm

In this Section, we present the iterative MIMO detection with modified FP algo-

rithm. Fig. 5.2 illustrates the algorithm flow. The modules highlighted are modified

for the new algorithm. The algorithm can be summarized in the following six steps,

and the detailed description of each step is presented afterwards.

• Step 1: Initialization

• Step 2: Compute bounds

– Compute the accumulated a priori information metric

– Compute the branch metric

– Compute the path metric

– Compute lower and upper bounds

• Step 3: Enumerate the tree node

• Step 4: Go to next or upper level if out of bounds

• Step 5: Update the Node

• Step 6: Found candidate signal vector

– Save the vector

– Update bounds

– Go to upper level

The algorithm starts from Step 1 Initialization, which initializes all the parame-

ters required for the tree node search. These parameters include the received signal

and upper triangular matrix from preprocessing, the search sphere radius, branch

metric, path metric, and the accumulated a priori information metric, etc. Then

the search starts from the top level of the tree and computes the lower and upper

bounds for the tree node enumeration in Step 2. We include the computation of

the accumulated a priori information metric in addition to the branch metric and

path metric. And the a priori information is also utilized in the computation of

the boundaries.

In Step 3, the tree node is enumerated in an ascending order starting from the

lower bound. Step 4 directs the search one level up or one level down depending
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Figure 5.2: Algorithm flow chart for iterative MIMO detection with modified FP
algorithm

on whether the enumerated node is within the boundaries. Step 5 updates the

accumulated a priori information metric, the branch metric, and the path metric

if the tree node survives. Once the search reaches the lowest level with surviving

tree node, it means a candidate signal vector is found. Step 6 saves the candidate

signal vector and continue to search other possible candidates.

Mathematically, given Y′, R, the a priori information P (X̂), and the radius

C
′
, the modified FP algorithm can be outlined as follows:

1. Set tree search level index i := 2NT − 1, path metric ϑi := 0, branch metric

ζi := 0, accumulated a priori information metric δi := 0, constellation index

λj := 0, j ∈ [0, 2NT − 1], constellation set Φ, and current radius d := C
′
.

2. If (d < ϑi)

Go to Step 4.

Else {
Compute the lower bound Li :=

⌈
Y

′

i −ζi−
√

d−ϑi

Ri,i

⌉
,
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Compute the upper bound Vi :=
⌊

Y
′

i −ζi+
√

d−ϑi

Ri,i

⌋
,

λi := idx(Li, Φ)− 1, idx(·) is the operator that finds the index in constel-

lation set Φ.}

3. λi := λi + 1, X̂i := Φ(λi)

If (X̂i ≤ Vi)

X̂i Within the interval, go to Step 5.

Else

X̂i Outside the interval, go to Step 4.

4. If (i == 2NT − 1)

Go to Step 7.

Else

Go back to upper level i := i + 1, then go to Step 3.

5. If (i > 0) {
Update branch metric ζi−1 :=

2NT−1∑
k=i

Ri−1,kX̂k,

Update accumulate a priori information metric δi := δi−1 + 2σ2
w ln P (X̂i)

Update path metric ϑi−1 := ϑi + |Y ′

i − ζi − Ri,iX̂i|2 − δi,

Go to next level i := i − 1, then go to Step 2. }
Else if(i == 0)

Go to Step 6.

6. If (d > ϑi + |Y ′

i − ζi − Ri,iX̂i|2 − δi) {
Updating the radius d := ϑi + |Y ′

i − ζi − Ri,iX̂i|2 − δi,

Save X̂ in candidate list U ,

Go back to upper level i := i + 1, then go to Step 7.}

7. If (C
′
is within Upper bound)

If(List has less points as required)

Increase the radius C
′
, then go to Step 1.

Else

Terminate.

The new algorithm differs from the original FP algorithm in that it includes a

priori information metric δi accumulated along the way of tree search. The path

metric ϑi is determined not only by the accumulated branch metric ζi, but also the

additional accumulated priori information metric δi. If the visited nodes diverge

from the transmitted signal, δi is likely to grow, which in turn leads to an increasing
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path metric ϑi and a dramatically reduced search radius in (i+1)th level. Therefore,

invalid paths will be identified and pruned at an early stage, and the number of

tree nodes visited will be reduced.

5.4.3 Iterative MIMO detection with modified SE algo-

rithm

In this Section, we present the iterative MIMO detection with modified SE algo-

rithm. Fig. 5.3 illustrates the algorithm flow as described above. The algorithm

is summarized as follows, and the detailed description of each step is presented

afterwards.

• Step 1: Initialization

• Step 2: Enumerate the tree node

– Compute the ZF-DFE estimate

– Compute the a priori information metric

– Compute the branch metric

– Compute the path metric

• Step 3: Tree node check with Updates

– Within the sphere, accumulate the three metrics

– Outside the sphere, go to Step 6

– Outside the sphere and no more neighbor node, go to upper level

• Step 4: Go to next or upper level if outside the sphere or no more neighbor

node

• Step 5: A candidate signal vector is found, save the vector and go to upper

level

• Step 6: Zig-zag visit neighbor node

Similar to the modified FP algorithm, the modified SE algorithm starts from

Step 1 Initialization. In Step 2, the algorithm computes the ZF-DFE estimate and

the metrics. We include the computation of the accumulated a priori information

metric in addition to the computation of the branch metric and path metric. In

Step 3, the tree node is checked to see whether it is within the search radius.
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Figure 5.3: Algorithm flow chart for iterative MIMO detection with modified SE
algorithm

Compared to the original SE algorithm [67,68], the a priori information is utilized

in the computation of the accumulated path metric, which is compared with the

search radius to determine whether the tree node is within the sphere. Step 4

directs the tree search one level up or one level down or zig-zag in the same level

depending on whether the enumerated node is within the sphere. At the same time,

it updates the accumulated a priori information metric, the branch metric, and

the path metric if the new tree node is enumerated. Once the tree search reaches

the lowest level and the tree node is survived, it means a candidate signal vector is

found. Step 5 saves the candidate signal vector and continues to search for other

possible candidates. Step 6 performs the zig-zag searching of the neighboring tree

node.

Mathematically, given Y′, R, the a priori information P (X̂), and the radius

C
′
, the modified SE algorithm can be outlined as follows:

1. Set tree search level index i := 2NT − 1, path metric ϑi := 0, branch metric

ζi := 0, accumulated a priori information metric δi := 0, zig-zag search index

λj := 0, j ∈ [0, 2NT − 1], radius increasing index ∆ := 0, and current radius
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d := C
′
.

2. If (the node is first time visited) {
Compute the ZF-DFE estimate of transmitted symbol at level i as X̂i =

〈(Y ′

i − ζi)/Ri,i〉, where 〈·〉 is operator that finds the nearest constellation

point.

Create zig-zag lookup table Φi for constellation point X̂i. Define |Φi| as

the number of possible zig-zag points.

Compute the accumulated a priori information metric δi := δi−1+2σ2
w ln P (X̂i).

}
Else If (λi == |Φi| − 1)

If (i == 2NT − 1)

Go to Step 7.

Else

Reset the zig-zag scan λi := 0, X̂i = Φi(λi),

Go back to upper level i := i + 1, then go to Step 6.

Else

go to Step 6.

3. If (the current radius is less than the path metric at level i, i.e. d < ϑi +

|Y ′

i − ζi − Ri,iX̂i|2 − δi)

Out of sphere, go to Step 4.

Else If (i > 0) {
Update branch metric ζi−1 :=

2NT−1∑
k=i

Ri−1,kX̂k,

Update path metric ϑi−1 := ϑi + |Y ′

i − ζi − Ri,iX̂i|2 − δi,

Go to next level i := i − 1, then go to Step 2. }
Else If (i == 0)

go to Step 5.

4. If(i == 2NT − 1)

If (λi < |Φi| − 1)

Perform zig-zag scan λi := λi + 1, X̂i = Φi(λi).

Else

Go to Step 7.

Else

Go back to upper level i := i + 1, then go to Step 6.
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5. A point within the sphere is found, save X̂ in the candidate list U . Update

the radius d := ϑi + |Y ′

i − ζi − Ri,iX̂i|2 − δi, then go back to upper level

i := i + 1, go to Step 6.

6. Perform zig-zag scan λi := λi + 1,

while(No zig-zag scan available, i.e. λi > |Φi| − 1) {
Reset zig-zag scan λi := 0,

Go back to upper level i := i + 1.

If (i > 2NT − 1)

Go to Step 7.

Perform zig-zag scan λi := λi + 1. }
Compute the accumulated a priori information metric X̂i = Φi(λi), δi :=

δi−1 + 2σ2
w ln P (X̂i), go to Step 3.

7. If (C
′
is within Upper bound)

If(List has less points as required)

Increase the radius C
′
, ∆ := ∆ + 1, go to Step 1.

Else

Terminate.

Unlike the modified FP algorithm using the lower and upper boundary adaption

to prune the less likely path, the modified SE algorithm eliminates the path by

making the comparison between the current available sphere radius and the path

metric. A large path metric ϑi is more likely to be outside the available sphere

radius. Hence, further searches starting from less reliable enumerated nodes to its

children nodes will not be likely.

5.5 Further Modifications on Iterative SE Algo-

rithm

The SE algorithm has a drawback that there is a performance loss due to the

poor performance of the ZF-DFE estimate of the symbol at each level of the tree

search. The authors in [68] proposed many pre-processing algorithms to enhance

the initial estimate, such as those using ordered ZF-DFE and MMSE estimates, at

a cost of increasing complexity for the pre-processing. Similarly, the authors in [59]

proposed to initialize the K-best sphere decoder by LMMSE estimate rather than

the conventional QR decomposition. However, the LMMSE detection requires a
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matrix inversion, which is still considered as the operation with highest complexity.

In this section, we present two novel schemes to improve the ZF-DFE estimate by

utilizing the a priori information. These two novel schemes aim to improve the

performance and reduce the computational complexity even further over iterations.

5.5.1 Improved ZF-DFE Estimate Based on Approximated

a priori Information

In Step 2, the ZF-DFE estimate of transmitted signal at ith level depends on the

ML metric, which will affect the convergence of the tree search and introduce per-

formance loss [68]. With iterative detection and decoding, the ZF-DFE estimates

based on the MAP metric will be more accurate. Hence, the objective of this novel

scheme is to incorporate the a priori information, derived from the channel decoder

output, to obtain more accurate ZF-DFE estimates. The a priori information met-

ric −2σ2
w

2NT−1∑
k=0

ln P (Xk) as shown in equation (5.25) is, however, in the logarithm

form, which has infinite order in Taylor’s expansion. This means that a polynomial

with infinite order has to be solved, which is impractical.

Nevertheless, it can be seen that in (5.28), ‖Y′ − RX‖2 is in quadratic form.

Intuitively, if the a priori information metric can be approximated in the quadratic

form as shown in [74], the ZF-DFE estimates can still be obtained by backward

substitutions, which is a practical solution. Hence, by expressing the a priori

information metric in the Taylor’s series and ignoring the higher order terms, we

have the following:

−2σ2
w

2NT−1∑

k=0

ln P (Xk) ≈ XHαX + βHX + γ, (5.30)

where α is 2NT × 2NT diagonal matrix with diagonal elements being the quadratic

coefficients, β is 2NT × 1 vector contains linear coefficients, and γ =
2NT−1∑

k=0

γk is the

scalar coefficient. Hence, the left hand side of (5.28) can be reformulated as:

J = (Y′ − RX)H(Y′ − RX) + XHαX + βHX + γ

= XH(RHR + α)X − (Y′HR − 0.5βH)X

−XH(RHY′ − 0.5β) + Y′HY′ + γ. (5.31)

The optimal solution can be obtained by taking the derivative of J with respect
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to X as follows:

∂J
∂X

= −2(RHY′ − 0.5β) + 2(RHR + α)X = 0. (5.32)

By taking the QR decomposition (RHR+α) = UV, (5.32) can be solved by using

a ZF-DFE estimate as:

VX̂ = Y′′, (5.33)

where U is 2NT × 2NT unitary matrix, V is 2NT × 2NT upper triangular matrix,

and Y′′ = U−1(RHY′ − 0.5β). Therefore, the ZF-DFE estimate of Xi at level i of

tree search in Step 2 can be reformulated as:

X̂i = 〈(Y ′′

i − ζ
′

i)/Vi,i〉, (5.34)

where the branch metric is given by ζ
′

i :=
2NT−1∑

k=i

Vi−1,kX̂k.

The coefficients of α, β, and γ can be obtained by following the LS approxima-

tion approach [106]. More specifically, we have the following minimization problem:

{α, β, γ} = arg min(‖ − 2σ2
w

2NT−1∑

k=0

ln P (Xk)

−(XHαX + βHX + γ)‖2). (5.35)

The signals transmitted at different tree search level i are independent to each

other, hence, the coefficients of αi, βi, and γi at the ith level can be obtained by

solving the following three equations:

αi

M−1∑

k=0

X̂2
k + βi

M−1∑

k=0

X̂k + γiM = −2σ2
w

M−1∑

k=0

ln P (X̂k), (5.36)

αi

M−1∑

k=0

X̂3
k + βi

M−1∑

k=0

X̂2
k + γi

M−1∑

k=0

X̂k = −2σ2
w

M−1∑

k=0

X̂k ln P (X̂k), (5.37)

αi

M−1∑

k=0

X̂4
k + βi

M−1∑

k=0

X̂3
k + γi

M−1∑

k=0

X̂2
k = −2σ2

w

M−1∑

k=0

X̂2
k ln P (X̂k), (5.38)

where M is the size of signal enumeration set. For QPSK, M = 2. For 16QAM,



126 Iterative Receiver on Sphere Decoder

M = 4. The solution is given by:

αi =

−2σ2
w

M−1∑
k=0

ln P (X̂k)
M−1∑
k=0

X̂2
k + 2σ2

wM
M−1∑
k=0

X̂2
k ln P (X̂k)

(
M−1∑
k=0

X̂2
k)2 − M

M−1∑
k=0

X̂4
k

, (5.39)

βi = −
2σ2

w

M−1∑
k=0

X̂k ln P (X̂k)

M−1∑
k=0

X̂2
k

, (5.40)

γi = −
2σ2

w

M−1∑
k=0

ln P (X̂k) + αi

M−1∑
k=0

X̂2
k

M
. (5.41)

Substituting α, β and γ back in to equation (5.31), we can solve equation (5.32)-

(5.33). Finally, we summarize the Step 2 in Section 5.4.3 as follows:

2) If (the node is visited for the first time) {
If (first iteration)

Compute the ZF-DFE estimate as X̂i = 〈(Y ′

i − ζi)/Ri,i〉.
Else {

Compute α, β, and γ.

Compute the ZF-DFE estimate as X̂i = 〈(Y ′′

i − ζ
′

i)/Vi,i〉.
}
Create zig-zag lookup table Φi for constellation point X̂i.

Define |Φi| as the number of possible zig-zag points.

Compute the accumulated a priori information metric δi := δi−1+2σ2
w ln P (X̂i).

}
Else If (λi == |Φi| − 1)

If (i == 2NT − 1)

Go to Step 7.

Else

Reset zig-zag scan λi := 0, X̂i = Φi(λi),

Go back to upper level i := i + 1, then go to Step 6.

Else

Go to Step 6.
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5.5.2 Improved Tree Search Based on Starting Node a pri-

ori Zig-Zag Trial

The approach in this scheme is to make a trial on another constellation point rather

than the ZF-DFE estimate. In sphere decoding, randomly picking points at the

starting node of the tree search may not be an efficient approach. Hence, we can

do this on a priori zig-zag trial basis to visit the neighboring constellation point

of ZF-DFE estimate. The idea is to select the starting node with the best a priori

probability among the nodes around the original ZF-DFE estimates. The algorithm

is summarized in the following steps:

• Compute the ZF-DFE estimates

• Examine the a priori probability of the ZF-DFE estimates

• Perform zig-zag trial to visit the neighboring nodes of the ZF-DFE estimates

• Examine the a priori probability of the neighboring nodes around the ZF-

DFE estimates

• Select the starting node associating with the highest a priori probability for

the subsequent tree search

Subsequently, Step 2 in Section 5.4.3 can be modified as follows:

2) If (the node is visited for the first time) {
Compute the ZF-DFE estimate of transmitted symbol at level i as X̂i =

〈(Y ′

i − ζi)/Ri,i〉. Create zig-zag lookup table Φi for constellation point X̂i.

Define |Φ| as the number of possible zig-zag points.

If (i == 2NT − 1) {
while (λi < |Φi|) {

λi := λi + ∆ + 1, Xi = Φi(λi).

Compute the a priori probability of Xi, i.e. P (Xi)

X̂i = Xi if Xi has higher a priori probability P (Xi).

}
}
Compute the accumulated a priori information metric δi := δi−1+2σ2

w ln P (X̂i).

}
Else If (λi == |Φi| − 1)

If (i == 2NT − 1)
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Go to Step 7.

Else

Reset zig-zag scan λi := 0, X̂i = Φi(λi),

Go back to upper level i := i + 1, then go to Step 6.

Else

Go to Step 6.

5.6 Complexity of Iterative Receiver with Sphere

Decoder

The sphere decoder algorithms are developed for the so-called integer least-square

problem, which is to find the “closest” lattice point to the transmitted signal in

either finite or infinite sense. Compared to the standard least square problem,

the solution of integer least-square is much more difficult because the solution can

only be found through searching over the discrete signal space rather than the

simple pseudo-inverse approach. In fact, the solution of the integer least-square

problem is generally NP hard, both in a worst case sense as well as an average

sense. Therefore, it is very difficult to find the exact complexity for the sphere

decoder algorithms. Nevertheless, [65, 110] suggested that the complexity of the

sphere decoder algorithms are proportional to the number of lattice points visited.

And in general, the sphere decoding algorithms have the worst case and average

complexity that is exponential in the number of searching dimension 2NT . However,

in communication applications, the transmitting signal is within a finite alphabet,

and the received signal is the lattice point perturbed by the additive noise with

known statistics. Hence, the expected complexity is a relevant figure of merit. The

authors in [110] concluded that over a wide range of SNRs including the high SNR

region, the expected complexity of the sphere decoder is polynomial (often roughly

cubic).

By examining the sphere decoder algorithm carefully, we observed that the

complexity of sphere decoders depends on three factors. The first factor is the

noise variance (σ2) or SNR. The second factor is the signal constellation type. And

the third factor is the search radius. The SNR determines how noisy the wireless

channel is, the signal constellation determines the enumeration range of the possible

signal point, and the search radius determines how far we are going to search in

the signal space. For a system with fixed configuration, the first two factors are

out of the design control, only the third factor varies between algorithms. The



5.6 Complexity of Iterative Receiver with Sphere Decoder 129

iterative sphere decoder algorithms in this Chapter is the variation to the standard

sphere decoder mentioned in [65]. The main difference is the accumulated a priori

information metric δi. Rearranging equation (5.25), we have

‖Y − HX‖2 ≤ C + 2σ2
w

2NT−1∑

k=0

ln P (Xk)

︸ ︷︷ ︸
δ2NT−1

. (5.42)

It can be observed that once the search radius is determined, the accumulated a

priori information metric adjusts the radius in each search dimension. Obviously,

depending on how the points are enumerated, such adjustment can be either enlarge

the radius or shrink the radius, subject to the reliability of the visited node in

each iteration. Following the similar approach in [65], we have a rough estimate on

complexity of the iterative receivers over iterations, which is on the average number

of nodes visited in each iteration. For QPSK modulation, we have

Cn ≈
NT−1∑

i=0

2i∑

j=0

(
2i

j

)
Γ

(
C + δn−1

2NT−1

σ2 + j
,NR − NT + i

)
, (5.43)

and for 16QAM modulation, we have

Cn ≈
NT−1∑

i=0

∑

m

1

22i

2i∑

j=0

(
2i

j

)
φ2ij(m)Γ

(
C + δn−1

2NT−1

σ2 + j
,NR − NT + i

)
, (5.44)

where n means the nth iteration, Γ(·, ·) is the normalized gamma function, and

φ2ij(m) is the coefficient of φm in the polynomial (1+φ+φ4 +φ9)j(1+2φ+φ4)2i−j.

Some remarks are worth noting. Firstly, the above analysis on the complexity does

not take the preprocessing into account. We assume that the preprocessing oper-

ations, like QR decomposition, ZFE computation, etc., are common to all sphere

decoding algorithms. Secondly, the actual addition and multiplication operations

to determine which nodes to visit are not included in the complexity analysis.

We believe that the number of these operations are not going to make significant

influence on the complexity analysis because the number of nodes visited is the

dominant factor in the system complexity. Thirdly, in the iterative sphere decoder

algorithms, the accumulated a priori information metric is only available after

each iteration. To estimate the average number nodes visited in the tree search,

we need to know the radius of the search sphere at the current iteration, which is

not available. Hence, we use the accumulated a priori information metric from the
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previous iteration instead. Finally, although equation (5.43) and (5.44) give the

rough estimation on the average number of nodes visited for the iterative sphere

decoder, we do expect the accumulated a priori information metric to help improve

the path metric so that the most invalid nodes and branches would be identified

and pruned at an early stage. In this case, the number of tree nodes visited would

be reduced over iterations.

5.7 Numerical Results

5.7.1 Simulation Setup

We consider a 4 × 4 MIMO spatial multiplexing system. The channel model for

each transmit and receive antenna are independent flat Rayleigh fading channel.

A rate-1/2 (171, 133)8 convolutional code is used for channel coding. Each block

of information bits has the length of 9216. The modulation includes QPSK and

16QAM. The data-driven sphere decoder techniques in this Chapter focuses on the

detection method itself, which is MIMO block by block operated. We therefore

use bit error rate as the most suitable performance metric. We compared the BER

and complexity for the original sphere decoder algorithms and the iterative sphere

decoder algorithms. We refer to the original FP and SE algorithm in [68] as “FP

ML” and “SE ML” respectively, the iterative FP algorithm in Section 5.4.2 as

“FP MAP”, and the iterative SE algorithm in Section 5.4.3 as “SE MAP”. The

computation load is measured by the number of visited nodes in the tree search,

which dominates the system complexity and indicates the convergence speed of

algorithms.

5.7.2 Performance of Receivers with Sphere Decoder

Fig. 5.4 shows the BER performance for original FP and SE algorithms, and the

iterative FP and SE algorithms after 4 iterations. It can be observed that the

iterative sphere decoding algorithms have a 2dB gain for QPSK modulation, and

3dB gain for 16QAM modulation over the original sphere coding algorithms at an

operating point BER = 10−4. This observation suggests that the iterative receiver

with proposed sphere decoding algorithms can achieve significant performance gain

over the standard sphere decoders for the non-iterative receivers. Regarding the

performance of different sphere decoding algorithms, it can be seen that the FP

algorithm outperforms the SE algorithm by 0.5dB in QPSK and 1.5dB in 16QAM.
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This is because the SE algorithms only visit the ZF-DFE estimate and its surround-

ing points, and go to the next dimension once a suitable point is found. Intuitively,

if the ZF-DFE estimate is poor or is far away from the true transmitted signal, the

performance of SE algorithms degrades. On the other hand, the FP algorithms

visit all points between the lower and upper boundaries so that the FP algorithms

cover more signal point candidate in the searching sphere. Hence, naturally, the FP

algorithms have high probability to find the better candidates of the transmitted

signal.
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Figure 5.4: BER performance for original FP and SE algorithms, iterative FP
and SE algorithms in a 4 × 4 MIMO spatial multiplexing system with QPSK and
16QAM modulation

Fig. 5.5 shows computation complexity for the iterative FP and SE algorithms

over SNRs with 16QAM modulation. It can be seen that FP algorithm generally has

higher complexity than the SE algorithm. Again, this is because the FP algorithm

enumerates all the points within the admissible interval, while SE algorithm only

searches the points around the ZF-DFE estimate. Therefore, a favorable complexity

reduction can be obtained by the SE algorithm with performance loss compared

to the FP algorithm shown in Fig. 5.4. As expected, by employing the a priori

information, the complexity of modified algorithms can be further reduced over

iterations because the additional a priori information metric improves the search

by adjusting the overall path metric in addition to the Euclidian Distance. It helps

identify and discard the inaccurate search path so that the unnecessary search
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Figure 5.5: Computation complexity for iterative FP and SE algorithms over SNRs
in a 4 × 4 MIMO spatial multiplexing system with 16QAM modulation

efforts can be saved.
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Figure 5.6: Computation complexity for iterative FP and SE algorithms over iter-
ations in a 4 × 4 MIMO spatial multiplexing system with 16QAM modulation

Fig. 5.6 shows the computation complexity for the iterative FP and SE algo-

rithms over iterations with 16QAM modulation. It is interesting to notice that
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for the iterative FP algorithm, the complexity of the second iteration is higher

than that for the first iteration in the low SNR region, and this difference becomes

smaller as the SNR goes higher. However, this effect is not the case for the iterative

SE algorithm. This is because the enumeration in the FP algorithm always starts

from the lower bound and ends at higher bound. The lower/upper bound is ran-

dom in the sense of the choice of the search radius. The actual transmitted signal

may be far away from the lower and upper bounds, which results in a significant

mismatch between the enumerated point starting from the lower/upper bound and

the a priori information. This phenomenon leads to loose lower and upper bounds

and slows down the tree search. Such effects become marginal with more stable

priori information in the high SNR region as show in Fig. 5.6. Alternatively, for the

iterative SE algorithm, the zig-zag tree search started from the ZF-DFE estimate,

which is the unconstraint ML estimate without the a priori information. Then the

ZF-DFE estimate is fine tuned by the a priori information. This is because the

random nature of the lower/upper bounds subject to the search radius is avoided

so that the significant mismatch between the ZF-DFE estimate and the a priori

information is minimized.

5.7.3 Performance Comparison among SE Algorithms

In this section, we compare the performance among the SE algorithms. The scheme

with improved ZF-DFE estimate based on quadratic approximated a priori infor-

mation in 5.5.1 is referred as “Updated ZF-DFE MAP”, and the scheme with

improved tree search based on starting point a priori zig-zag trial in 5.5.2 is re-

ferred as “Zig-zag ZF-DFE MAP”. #2 and #4 at the end of the legend means the

2nd and 4th iteration respectively, where # represents the number of iterations.

Fig. 5.7 shows BER performance for original “SE ML” algorithm and proposed

iterative SE algorithms after 4 iterations. By picking up the operating point at BER

of 10−4, both schemes and the “Zig-zag ZF-DFE MAP” algorithms could improve

the performance of the “SE MAP” algorithm even further for both modulation

schemes. As an example, in the 16QAM modulation, the “Updated ZF-DFE MAP”

has a 1dB gain over the “SE MAP”. Such improvement becomes more significant

when higher data modulation scheme is employed. This is because in lower mod-

ulation schemes, for example in QPSK modulation, the constellation point choices

{-1,1} are limited in each level of the tree search. The “SE MAP” algorithm is

good enough to pick the reliable points within the sphere. On the other hand, in

higher modulation schemes, such as 16 QAM, the constellation point choices for
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each level has increased to a larger set {-3,-1,1,3}. The performance loss due to

a poor ZF-DFE estimate becomes more significant. The two schemes improve the

ZF-DFE estimate so that additional performance gain can be obtained.
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Figure 5.7: BER performance for the SE algorithms in a 4 × 4 MIMO spatial
multiplexing system with QPSK and 16QAM modulation

Furthermore, compare Fig. 5.7 and Fig. 5.4, we observed that the “Zig-zag

ZF-DFE MAP” algorithm have 2dB improvement over the “SE MAP” algorithm,

which bring the performance gap within 0.5dB compared to the “FP MAP” algo-

rithm. This is a significant improvement for the iterative SE algorithms in the sense

that the iterative SE algorithms can approach the performance of the iterative FP

algorithms while providing a significant complexity reduction.

Fig. 5.8 shows computation complexity for the SE algorithms with 16QAM

modulation. As expected, by employing the a priori information, the complexity

of the iterative SE algorithms can be further reduced over iterations because the

a priori information metric in Step 3 and Step 5 adjusts the overall path metric

adaptively according to the reliability of the enumerated point. Furthermore, the

two modified iterative SE algorithms reduce the complexity even further in each

iteration. This is expected because the better ZF-DFE estimate generates more

reliable accumulated a priori information metric. The more reliable a priori in-

formation leads to not only a further performance gain shown in Fig. 5.7, but also

fast convergence for sphere decoding over iterations.
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Figure 5.9: Normalized BER performance against complexity for the iterative SE
algorithms at the 4th iteration with 16QAM modulation

Finally, Fig. 5.9 shows the normalized BER performance against complexity

among the iterative SE algorithms proposed in this chapter at the 4th iteration

with the 16QAM modulation. We take the BER performance of the “SE MAP”
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algorithm as the reference to illustrate the performance and complexity benefits

from the “Updated ZF-DFE MAP” and “Zig-zag ZF-DFE MAP” schemes. It can

be seen that at different SNR points, the performance and complexity curves are

moving towards the left and lower corner of the figure, which means the “Updated

ZF-DFE MAP” scheme and the “Zig-zag ZF-DFE MAP” scheme improve the BER

performance and achieve further complexity reduction from “ZF-DFE MAP” algo-

rithm. It is worth mentioning the original SE algorithm, although it is not shown in

the figure, only shows complexity reduction as SNR goes up. However, the iterative

SE algorithms show both performance gain and complexity reduction.

5.8 Summary and Contributions

This chapter has investigated the FP and SE sphere decoder algorithms for the

iterative receiver in the MIMO spatial multiplexing system configuration. The

iterative FP and SE algorithms are developed by taking into account the a priori

information to estimate the MAP probability of the received symbol sequence.

In addition, two novel schemes are developed to further improve the performance

and reduce the complexity over iterations for the iterative SE algorithm. Hence,

significant performance gain can be achieved from iterative MAP approach over

the conventional ML approach and complexity reduction can be obtained from SE

algorithms.

Some specific contributions made in this chapter are as follows. First of all,

the system model for sphere decoder algorithms in the MIMO spatial multiplexing

system is investigated. A modified linear MIMO model for sphere decoder detection

is presented. The conventional system model in the complex domain is modified

to be in the real domain. The ML and MAP detection criteria are modified to

suit the sphere decoder algorithms. Based on the modified system model, the

literature review on the sphere decoder algorithms are presented. The original FP

and SE algorithms in [68] are presented to illustrate the tree search steps to perform

sphere decoding. The main difference between the FP and SE algorithms is the

signal enumeration strategy.

Secondly, the iterative FP and SE algorithms is developed. The main advantage

of the iterative algorithms compared to original algorithms is to include a priori

information metric δi, which serves the accumulated a priori probability for the

nodes visited along the way of tree search.

Thirdly, two novel schemes are developed for iterative SE algorithm to fur-
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ther improve the performance and reduce the complexity over iterations. The first

scheme is to improve the ZF-DFE estimate by using the quadratic approximation

to the a priori information, the second scheme is to improve the tree search by

employing a starting point with a priori zig-zag trial. Furthermore, a rough esti-

mation on complexity of the iterative receivers over iterations are presented. This

complexity estimation is measured on the average number of nodes visited in each

iteration.

Finally, simulation results show that at least 2dB gain can be obtained for the

QPSK modulation and 3dB gain can be obtained for the 16QAM modulation from

the iterative MAP approach. And the iterative FP algorithms outperforms the iter-

ative SE algorithms by 0.5dB in QPSK and 1.5dB in 16QAM. Among the iterative

SE algorithms, the two novel schemes could improve the performance further up

to 2dB in the 16QAM modulation. In addition to the bit error rate performance,

the simulation results regarding the complexity show that the FP algorithms have

the highest complexity, in both ML and MAP approach. Significant complexity

reduction can be obtained from the SE algorithms with minor performance loss

compared to FP algorithm. And the two novel schemes can also improve the com-

plexity reduction over iterations even further.





Chapter 6

Iterative Receiver on Markov

Chain Monte Carlo Methods

6.1 Introduction

In this Chapter, two novel MCMC methods for the MIMO detector, namely RSS-

MCMC detector and the FST-MCMC, are presented. First of all, two reliability

constraints are developed to separate the reliable bits from the unreliable bits. Then

the reliable bits are treated as interference. The RSS-MCMC cancels the interfer-

ence from the reliable bits obtained from the previous iteration while running the

MCMC on the unreliable samples. Similar to RSS-MCMC, the FST-MCMC also

works on the unreliable signal set by flipping the “ill conditioned” bits so that the

Markov chain could visit more states. Both RSS-MCMC and FST-MCMC improve

the performance at high SNR while the RSS-MCMC also reduces the complexity

from drawing less samples in the Gibbs sampler. Similar to Chapter 5, in this chap-

ter, we move to the detection method itself by assuming MIMO system is generic

spatial multiplexed and the channel estimation is perfect.

6.2 Modified Linear MIMO Model for MCMC

Methods

The MIMO spatial multiplexing system considered in this Chapter is shown in

Fig. 6.1. The system model is as same as the one presented in Section 5.2. The

modified linear MIMO model is obtained by separating the real and imaginary part

of the complex system model, as shown in equation (5.1)-(5.6). At the iterative

139
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Figure 6.1: MIMO spatial multiplexing transmitter and iterative receiver with
MCMC detector

receiver, in the first iteration, there is no a priori information, the MIMO detector

performs the detection based on the ML criteria as:

X̂ = arg max
X∈U

p(Y|X) = arg min
X∈U

‖Y − HX‖2, (6.1)

where U is the candidate signal set of dimension 2NT collected by the MCMC

processor. From the second iteration onwards, the sequence X can be divided into

two sets, namely the reliable signal set XR and unreliable signal set XU . The

reliable signal set XR contains the bits that satisfy the reliability constraint, are

considered as correctly detected in the previous iteration. Similarly, the unreliable

signal set XU contains the bits that not satisfy the reliability constraint and are

considered as unknown. Therefore, the system can be expressed as:

Y = H · diag(e) · X + H(I2NT
− diag(e))X + N

= HXU + HXR + N, (6.2)

where XU = diag(e)X, XR = (I2NT
−diag(e))X, diag(·) is the diagonal function,

and e is the 2NT × 1 vector which contains the position of the unreliable bits.

In this Chapter, the RSS-MCMC method treats the reliable signal set XR as the
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interference and that can be deterministically removed as:

YU = Y − HX̂R

= HXU + H(XR − X̂R) + N, (6.3)

where X̂R is the estimated soft data symbol vector for the reliable signal set. The

MIMO detector’s aim is to maximize a posteriori probability of transmitted signal

sequence in the unreliable signal set XU as:

X̂U = arg max
XU∈UU

P (XU |YU) = arg max
X∈UU

P (YU |XU)P (XU)

P (YU)
, (6.4)

where P (XU) is considered as the a priori information fed back from channel

decoder, and UU is the candidate list UU that the RSS-MCMC processor selects

points {X̂U,i} for the unreliable signal set from the completed signal constellation

set. The the RSS-MCMC processor computes the extrinsic LLR of the coded bit

as:

λe
1,U(dk(X̂U)) =

1

2

∑

X̂U∈U+
U,k

(− 1

σ2
w

‖Y − HX̂U‖2 + dT
U,\kλ

e

2,U,\k)

−1

2

∑

X̂U∈U−
U,k

(− 1

σ2
w

‖Y − HX̂U‖2 + dT
U,\kλ

e

2,U,\k), (6.5)

where dk(X̂U) is the kth coded bit in sequence {d} representing the RSS-MCMC

detector enumerated transmitted symbol vector X̂U . U+
U,k and U−

U,k denote the

subset of UU for which dk(X̂U) is +1 and −1 respectively. dU,\k is obtained from

sequence dU by removing the kth coded bit. λe
2,U,\k is the extrinsic LLR of sequence

dU,\k from the channel decoder. After MIMO detection, the sequence of extrinsic

LLR {λe
1,U} of coded bits is deinterleaved and passed on to the channel decoder to

complete one iteration.

6.3 Markov Chain Monte Carlo Method

In this section, we give an brief overview of the conventional Markov Chain Monte

Carlo (MCMC) [80] technique. The derivation from the first principle will be used

in later sections when we present two new MCMC methods. MCMC is a family

of algorithms that simulate the pseudo-random samples from a target probability

distribution. The basic idea behind MCMC method is that one can achieve the
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sampling from a target distribution p(θ) by running a Markov chain whose steady

state probability distribution approaches p(θ). In practice, how to realize such a

Markov chain is an active research area in the literature, where two basic MCMC

algorithms are most often used, namely the Metropolis-Hastings algorithm [111,

112] and the Gibbs sampler algorithm [113–117]. In this thesis, we focus on the

latter because the Gibbs sampler algorithm is more practical in the implementation.

Assuming we want to estimate Θ = {θi}, where 0 ≤ i < I − 1. Using the

Gibbs sampler, θi updates its value with a new sample drawn from the conditional

distribution p(θi|Θ\θi). This process starts from the random sample θ(0) at 0th

round, which is randomly generated with uniform distribution, the Gibbs sampler

algorithm is implemented as follows:

1. Given Θ(n) = (θ
(n)
0 , θ

(n)
1 , . . . , θ

(n)
I−1).

2. For i = 0, 1, . . . , I − 1,

Draw sample θ
(n+1)
i from the conditional distribution

p(θi|Θ\θi) = p(θi|θ(n+1)
0 , . . . , θ

(n+1)
i−1 , θ

(n)
i+1, . . . , θ

(n)
I−1).

3. When n → ∞, the distribution of Θ converges to p(Θ).

It can be shown that by performing above the steps, the Monte Carlo integral can

be replaced by the summation for any target function f(·) such that:

E{f(Θ)} =

∫

Θ

f(Θ)p(Θ)dΘ

=

∫

θ0

∫

θ1

· · ·
∫

θI−1

f(Θ)p(θi|Θ\θi)dθ0dθ1 · · · dθI−1

≈ 1

N

N−1∑

n=0

f(Θ(n)). (6.6)

The multi-dimensional integral is avoided in the equation (6.6) by translating the

integration as the summation through empirical average [118, 119]. As shown in

Step 3 above, the estimate of the distribution of Θ becomes more accurate as

number of samples N goes infinity. Hence, the MCMC method adopting equation

(6.6) normally requires a very long ”burn-in” period, for example, a few hundreds

of samples to get the accurate distribution [79]. Nevertheless, the equation (6.6)

suggests that a reasonable N is good enough to make the approximation.

Moreover, numerical studies show that the dimension of Θ and the number of

samples N are weakly related [79] in the sense that even though the dimension of

Θ increases, the number of samples N as required by the Markov chain remains
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almost unchanged. The conclusion is the exponential growth of the computational

complexity in performing a multi-dimensional integral may be avoided by using the

Monte Carlo method. Such a property is very desirable for the practical MIMO or

multiple access systems.

A practical approximation that has been motivated by the Importance Sampling

[119] results in a better evaluation of Monte Carlo integral than the approach in

equation (6.6). The idea is to perform a weighted empirical average [80] as:

E{f(Θ)} ≈
∑N−1

n=0 p(Θ(n))f(Θ(n))∑N−1
n=0 p(Θ(n))

, (6.7)

where p(Θ(n)) is the marginal distribution of the nth instance of Θ as Gibbs sampler

walks through. Marginal distribution p(Θ(n)) represents the reliability of the nth

instance of Θ, and it can be computed as:

p(Θ(n)) =

∫

θ
(n+1)
0

∫

θ
(n+1)
1

· · ·
∫

θ
(n)
I−1

p(θi|Θ\θi)dθ
(n+1)
0 dθ

(n+1)
1 · · · dθ

(n)
I−1

= p(θi|Θ\θi)
i−1∏

j=0

p(θ
(n+1)
j )

I−1∏

k=i+1

p(θ
(n)
k ), (6.8)

where p(θ
(n+1)
j ) and p(θ

(n)
k ) can be obtained from the extrinsic LLR λe

2 in the

iterative receiver. From Appendix A.2, we can simplify the equation (6.8) as:

p(Θ(n)) = p(θi|Θ\θi)
i−1∏

j=0

1

2

{
1 + (2θ

(n+1)
j − 1) tanh

λe
2(j)

2

}

·
I−1∏

k=i+1

1

2

{
1 + (2θ

(n)
k − 1) tanh

λe
2(k)

2

}
. (6.9)

The samples required by “importance sampling” approximation are very less

[79,119] by performing above weighted empirical average, which does not need the

“burn-in” period as required by equation (6.6). In this thesis, we are utilizing the

MCMC method with “importance sampling”. Furthermore, we also average over

multiple Markov chains, which improve the convergence of MCMC method from

diversity side point of view.
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6.4 MIMO detector with RSS-MCMC and FST-

MCMC Methods

Studies in [79,81] revealed that at high SNR, a high portion of the coded bits can

be detected in the first few iterations. The LLRs of these bits have large values

such that some of the transition probabilities in the underlying Markov chain may

become very small. As a result, the Markov chain may be divided into a number of

nearly disjoint chains between which transitions rarely happen. Hence, the Gibbs

sampler has less chance to visit sufficient points. This phenomenon is undesired

for the stochastic approach of MCMC, which requires a large number of samples

in order to cover the whole state space defined by the transmitted signal. In this

section, we develop two novel MCMC methods for MIMO detection, namely the

Reduced State Space MCMC (RSS-MCMC) method, and Forced State Transition

MCMC (FST-MCMC) method. In the RSS-MCMC method, our approach is to

remove the interference from the bits with reliable LLR values. Then we draw

random samples only for unreliable bits associated with unreliable LLR values in

the system with less interference. On the other hand, in the FST-MCMC method,

we flip the bits that did not change for a long time to force the Markov chain to

cover more states.

6.4.1 Reliability Constraints for Extrinsic LLRs

Defining an accurate reliable signal set is crucial, as otherwise canceling those

signals leads to error propagation. Hence, we first develop the reliability constraints

to construct the reliable signal set. Recall that the structure of iterative detection

and decoding consists of two constituent decoders. The extrinsic information are

exchanged between these two constituent decoders. Let us first look at the decoder

employed as the MIMO detector. As discussed in Section 6.2, the output of MIMO

detector (Extrinsic LLR) is given by:

λe
1(dk(X̂)) =

1

2

∑

X̂∈U+
k

(− 1

σ2
w

‖Y − HX̂‖2 + dT
\kλ

e

2,\k)

−1

2

∑

X̂∈U−
k

(− 1

σ2
w

‖Y − HX̂‖2 + dT
\kλ

e

2,\k), (6.10)
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where XR and XU are considered together in the full signal set X. Using the

max− log approximation [120,121], the equation (6.10) is simplified to:

λe
1(dk(X̂)) ≈ 1

2
max
X̂∈U+

k

{
− 1

σ2
w

‖Y − HX̂‖2 + dT
\kλ

e

2,\k

}

−1

2
max
X̂∈U−

k

{
− 1

σ2
w

‖Y − HX̂‖2 + dT
\kλ

e

2,\k

}

≈ 1

2σ2
w

{
−‖Y − HX̂+

max‖2 + ‖Y − HX̂−
max‖2

}

+
1

2

{
(d+

max,\k)
T λe

2,\k − (d−
max,\k)

T λe

2,\k

}
, (6.11)

where X̂+
max and X̂−

max are the signal vector candidates with the kth bit to be 1 and

0 in U+
k and U−

k respectively to perform the max{·}.

Assuming that the RSS-MCMC detector has consistent detection performance,

i.e. X̂+
max and X̂−

max are only different at the kth bit, and d+
max,−k = d−

max,−k because

the kth bit is excluded in the a priori coded bit sequence d. We can further simplify

the equation (6.11) as:

λe
1(dk(X̂)) ≈ 1

2σ2
w

{
−‖Y −

∑

j 6=k

HjX̂j − HkX̂
+
k ‖2 + ‖Y −

∑

j 6=k

HjX̂j − HkX̂
−
k ‖2

}

≈ 1

σ2
w

(
X̂+

k − X̂−
k

)
HT

k

(
Y −

∑

j 6=k

HjX̂j

)

+
1

2σ2
w

‖Hk‖2
(
|X̂−

k |2 − |X̂+
k |2

)

≈ 2

σ2
w

HT
k

(
Y −

∑

j 6=k

HjX̂j

)

≈ 2

σ2
w

‖Hk‖2

︸ ︷︷ ︸
µ

Xk +
2

σ2
HT

k N
︸ ︷︷ ︸

η

, (6.12)

where we take the average over the signal constellation so that E{X̂+
k − X̂−

k } = 2

and E{|X̂−
k |2 −|X̂+

k |2} = 0. µ can be viewed as the conditional mean of λe
1(X̂)) as:

µ = E{λe
1(dk(X̂))|Xk}

≈ 2

σ2
w

‖Hk‖2, (6.13)
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and η is the additive noise with the conditional variance as:

σ2
η = E

{(
λe

1(dk(X̂)) − E{λe
1(dk(X̂))}

)2

|Xk

}

≈ 4

σ2
w

‖Hk‖2. (6.14)

Above conditional mean and conditional variance relation complies with the Gaus-

sian distributed assumption, which has been verified by the empirical observations

from simulations in [122].

The decoder takes the output of the MIMO detector as shown in the equation

(6.12) as the input, and generates the LLRs fed back (a priori information) to

the MIMO detector. Unfortunately, the analytical treatment of the soft output of

channel decoder is difficult. Nevertheless, the Gaussian distribution assumption

in [122] states as follows. Firstly, for large interleavers the a priori information re-

main fairly uncorrelated from channel observation over many iterations. Secondly,

the probability density function of the extrinsic information of channel decoder

(a priori information of detector respectively) approach Gaussian-like distribution

with increasing number of iterations.

Hence, with the Gaussian distribution assumption and the derivation in equa-

tion (6.12), the a priori information as an input to the MIMO detector can be

modeled by applying an independent Gaussian random variable η with variance σ2
η

and zero mean in conjunction with the known coded bit dk ∈ {−1, 1} as follows:

λe
1(dk) = µ · dk + η, (6.15)

where the mean value µ satisfies the relation discussed above as

µ =
σ2

η

2
. (6.16)

To obtain µ and σ2
η, we can compute the second order statistics of LLRs, which

is given by:

E{|λe
1(dk)|2} = µ2 + σ2

η

= µ2 + 2µ. (6.17)
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The solution of µ can be obtained by taking the positive root of equation (6.17):

µ = −1 +
√

1 + E{|λe
1(dk)|2}

≈
√

E{|λe
1(dk)|2}, (6.18)

if E{|λe
1(dk)|2} is significant larger than one over iterations. And the solution of

σ2
η is obtained as:

σ2
η = 2µ

≈ 2
√

E{|λe
1(dk)|2}. (6.19)

Therefore, the conditional distribution of the a priori information given that dk = 1

and dk = −1 is Gaussian with N (µ, σ2
η) and N (−µ, σ2

η) respectively.

The next step is to construct the reliable signal set by determining whether the

signals are correctly decoded. This is done by examining the sign and the absolute

value of the LLRs. The larger the LLR value, the higher probability that the

bit is decoded reliably. However, there is still an open question in the literature

concerning how the value of the LLR corresponds to the level of reliability. In

other words, given a LLR value, how do you determine whether the decoded bit is

reliable or not?

With the conditional distribution of the a priori information, we can set up

a threshold ρ on the LLR values. An inappropriate threshold ρ may cause error

propagation. We link the threshold ρ with a confidence level, which is measured

by the probability of error for the a priori information as follows:

Case dk = −1:

P (error|dk = −1) =

∞∫

ρ

1√
2πσ2

η

exp(−(λe
1 + µ)2

2σ2
η

)dλe
1

=

∞∫

ρ+µ
ση

1√
2π

exp(−γ2

2
)dγ

= Q(
ρ + µ

ση

), (6.20)

where Q(·) is the Q-function. Then we can obtain the threshold ρ as:

ρ = ση · Q−1(p(error|dk = −1)) − µ, (6.21)
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where Q−1(·) is the inverse of Q-function.

Case dk = 1:

P (error|dk = 1) =

ρ∫

−∞

1√
2πσ2

η

exp(−(λe
1 − µ)2

2σ2
η

)dλe
1

=

∞∫

−ρ+µ
ση

1√
2π

exp(−γ2

2
)dγ

= Q(
−ρ + µ

ση

). (6.22)

Similarly, the threshold ρ in this case is obtained as:

ρ = −ση · Q−1(P (error|dk = 1)) + µ. (6.23)

After combining the cases of dk = −1 and dk = 1, this threshold ρ as becomes

the first reliability constraint on the a priori information, which can be obtained

as:

ρ = |ση · Q−1(P (error|dk = ±1)) − µ|. (6.24)

It can be seen that this threshold ρ is adaptive to the pre-defined error probability,

and first order and second order statistics of the a priori information over itera-

tions. The coded bits with absolute LLR values greater than this threshold will be

considered as reliable.

Furthermore, as discussed before, LLRs with large values result in disjoint

Markov chains with less chance to visit the significant samples. The insufficient

number of samples may generate ill-conditioned LLRs [72], which has large value

but sign flipped. This can be explained by equation (6.5). We can rewrite the LLR

in (6.5) as the summation of the ML LLR and the a priori LLR:

λe
1(dk(X̂)) = λe

1,ML(dk(X̂)) + λe
1,AP (dk(X̂)), (6.25)

where

λe
1,ML(dk(X̂)) =

1

2
(

∑

X̂∈U+
k

− 1

σ2
w

‖Y − HX̂‖2 +
∑

X̂∈U−
k

1

σ2
w

‖Y − HX̂‖2), (6.26)
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and

λe
1,AP (dk(X̂)) =

1

2


 ∑

X̂∈U+
k

dT
\kλ

e

2,\k −
∑

X̂∈U−
k

dT
\kλ

e

2,\k


 . (6.27)

The ML LLR is the measure of the Euclidian Distance between the enumerated

coded bits and the actual transmitted coded bits, and the a priori LLR is the

measure of likelihood of the coded bit of interest as seen by other interfering bits.

The computation of LLR in (6.5) relies on ML LLR initially, and is gradually

dominated by the a priori LLR. If we purely rely on the threshold as unique

reliability constraint, once an LLR error occurs in the reliable signal set, the large

sign flipped LLR value may dominate the computation of the a priori LLR for

the current bit of interest, even though the ML LLR has the correct sign. This

phenomenon is especially undesirable in MCMC, because the later drawn samples

are influenced by the earlier drawn samples. Our investigation shows that the

receiver suffers from error propagation as in the hard decision DFE. Therefore, we

develop the second reliability constraint that the sign of the a priori LLR should

be the same as the ML LLR as:

λe
1,ML(dk(X̂)) · λe

1,AP (dk(X̂)) > 0. (6.28)

This second reliability constraint ensures that only the coded bits with the a

priori LLR enhancing the ML LLR over iterations are considered to be reliable.

In practical implementations, the ML LLR from first iteration can be stored and

doesn’t have to be computed in every iteration. The a priori LLR in each iteration

can be obtained by subtracting the ML LLR from first iteration in equation (6.5).

6.4.2 Reduced State Space(RSS) MCMC Method

Fig. 6.2 shows the Iterative MIMO spatial multiplexing receiver with RSS-MCMC

detector, which consists of a pre-processor, interference canceler, Gibbs sampler,

and the extrinsic LLR computation module. The pre-processor is the module which

partitions the full signal set into the reliable and unreliable signal sets. The two

criteria to judge the reliability of the coded bits based on their extrinsic LLRs are

presented in Section 6.4.1. In this section, the interference canceler, Gibbs sampler,

and the extrinsic LLR computation modules are presented.

The interference canceler module performs interference cancelation once the

bits are determined as reliable by the pre-processor. The interference from the bits

in the reliable signal set XR = {dr,1, dr,2 . . .}as constructed by the two reliability
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Figure 6.2: Iterative MIMO spatial multiplexing receiver with RSS-MCMC detector

constraints is first canceled from received signal. Extended from equation 6.2, the

output of interference canceler can be obtain as:

YIC = Y − HX̂R

= HXU + H(XR − X̂R) + N︸ ︷︷ ︸
N (0,σ2

wI2NR
)

. (6.29)

The residual interference and noise have zero mean and covariance matrix σ2I2NR

because the LLRs of the bits in the reliable signal set are large.

The Gibbs sampler takes the output of the interference canceler as its input and

draws Markov chain samples for the coded bits in the unreliable signal set. Given

YIC and the a priori information λe
2, the a posterior probability is evaluated as

follows:

P (du,k = ±1|YIC, λe
2) =

∑

XU,\k

P (du,k = ±1,XU,\k|YIC, λe
2)

=
∑

XU,\k

P (du,k = ±1|YIC,XU,\k, λ
e
2)

·P (XU,\k|YIC, λe
2). (6.30)

Now if we treat

p(Θ) = P (XU,\k|YIC, λe
2) (6.31)
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as the marginal distribution, and

f(Θ) = P (du,k = ±1|YIC,XU,\k, λ
e
2) (6.32)

as the target function whose weighted sum is to be obtained, the estimate of the a

posterior probability is obtained by evaluating equation 6.7 as:

P (du,k = ±1|YIC, λe
2) ≈

N−1∑
n=0

P (du,k = ±1|YIC,X
(n)
U,\k, λ

e
2)P (X

(n)
U,\k|YIC, λe

2)

N−1∑
n=0

P (X
(n)
U,\k|YIC, λe

2)

.

(6.33)

The next question is how the RSS-MCMC detector finds the density function

p(Θ) and the target function f(Θ). We start from drawing random samples for

the coded bits in the unreliable signal set XU = {du,0, du,1, . . . , du,I−1}. The Gibbs

sampler initializes the samples in XU with equal probability of 0.5, and proceeds

with drawing one sample in XU at a time. The procedure is summarized as follows:

1. Initialize XU randomly with equal probability.

2. for n = 1 to N

draw d
(n)
u,0 from P (du,0|d(n−1)

u,1 , d
(n−1)
u,2 , . . . , d

(n−1)
u,I−1,Y

IC, λe
2)

draw d
(n)
u,1 from P (du,1|d(n)

u,0, d
(n−1)
u,2 , . . . , d

(n−1)
u,I−1,Y

IC, λe
2)

draw d
(n)
u,2 from P (du,2|d(n)

u,0, d
(n)
u,1, d

(n−1)
u,3 , . . . , d

(n−1)
u,I−1,Y

IC, λe
2)

...

draw d
(n)
u,k from P (du,k|d(n)

u,0 . . . , d
(n−1)
u,k+1, . . . , d

(n−1)
u,I−1,Y

IC, λe
2)

...

draw d
(n)
u,I−1 from P (du,I−1|d(n)

u,0 . . . , d
(n)
u,I−2,Y

IC, λe
2)

It is worth noting that in the nth sample d
(n)
u,k is drawn based on the probability

P (du,k = ±1|YIC,X
(n)
U,\k, λ

e
2) that partially depends on the (k−1) coded bits drawn

in the nth sample, and partially depends on the rest of the coded bits drawn in the

(n − 1)th sample. This probability is obtained by first computing the a posterior

LLR:

λ
(n)
1 (du,k) = ln

P (du,k = +1|YIC,X
(n)
U,\k, λ

e
2)

P (du,k = −1|YIC,X
(n)
U,\k, λ

e
2)

= ln
P (YIC|X(n)

U,\k, du,k = +1)P (X
(n)
U,\k, du,k = +1|λe

2)

P (YIC|X(n)
U,\k, du,k = −1)P (X

(n)
U,\k, du,k = −1|λe

2)
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= ln
P (YIC|X(n)

U,\k, du,k = +1)

P (YIC|X(n)
U,\k, du,k = −1)

+ ln
P (X

(n)
U,\k, du,k = +1|λe

2)

P (X
(n)
U,\k, du,k = −1|λe

2)

= ln
P (YIC|X(n)

U,\k, du,k = +1)

P (YIC|X(n)
U,\k, du,k = −1)

+ ln
P (X

(n)
U,\k|λe

2,\k)

P (X
(n)
U,\k|λe

2,\k)︸ ︷︷ ︸
= 0

+ ln
P (du,k = +1|λe

2(du,k))

P (du,k = −1|λe
2(du,k))︸ ︷︷ ︸

λe
2(du,k)

= ln
P (YIC|X(n)

U,\k, du,k = +1)

P (YIC|X(n)
U,\k, du,k = −1)

+ λe
2(du,k). (6.34)

The computation of P (YIC|X(n)
U,\k, du,k = ±1) follows the equation (6.29) as follows:

P (YIC|X(n)
U,\k, du,k = ±1) = K exp(−

‖YIC − HX
(n)
U,dk=±1‖2

2σ2
w

), (6.35)

where K is a constant. Once λ
(n)
1 (du,k) is obtained, we have

P (du,k = ±1|YIC,X
(n)
U,\k, λ

e
2) =

(1 − du,k) exp(−λ
(n)
1 (du,k)) + 1 + du,k

2
(
1 + exp(−λ

(n)
1 (du,k))

) . (6.36)

After going through the above procedure, N important samples [79] are drawn for

the bits in the unreliable set. These important samples will be used in computing

extrinsic LLR in a later stage.

The final step is to compute the extrinsic LLR for each coded bit in the un-

reliable signal set, which is performed in the extrinsic LLR computation module.

Starting from equation (6.33), we have:

λ1(du,k) ≈ ln

N−1∑
n=0

P (du,k = +1|YIC,X
(n)
U,\k, λ

e
2)P (X

(n)
U,\k|YIC, λe

2)

N−1∑
n=0

P (du,k = −1|YIC,X
(n)
U,\k, λ

e
2)P (X

(n)
U,\k|YIC, λe

2)

. (6.37)

We can further expand P (X
(n)
U,\k|YIC, λe

2) as:

P (X
(n)
U,\k|YIC, λe

2) =
P (X

(n)
U,\k,Y

IC|λe
2)

P (YIC|λe
2)



6.4 MIMO detector with RSS-MCMC and FST-MCMC Methods 153

=
P (YIC|X(n)

U,\k, λ
e
2)P (X

(n)
U,\k|λe

2)

P (YIC|λe
2)

, (6.38)

and expand P (du,k = ±1|YIC,X
(n)
U,\k, λ

e
2) by Bayes’ rule as:

P (du,k = ±1|YIC,X
(n)
U,\k, λ

e
2) =

P (YIC|X(n)
U,\k, du,k = ±1)P (du,k = ±1)

P (YIC|X(n)
U,\k, λ

e
2)

. (6.39)

Substituting equation (6.38) and (6.39) into equation (6.37), we have

λ1(du,k) ≈ ln

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = +1)P (X

(n)
U,\k|λe

2)P (du,k = +1)

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = −1)P (X

(n)
U,\k|λe

2)P (du,k = −1)

≈ ln

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = +1)P (X

(n)
U,\k|λe

2)

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = −1)P (X

(n)
U,\k|λe

2)

+ ln
P (du,k = +1)

P (du,k = −1)

≈ ln

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = +1)P (X

(n)
U,\k|λe

2)

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = −1)P (X

(n)
U,\k|λe

2)

+ λe
2(du,k). (6.40)

Hence, the extrinsic LLR for the kth coded bits in the unreliable signal set is

obtained as:

λe
1(du,k) ≈ λ1(du,k) − λe

2(du,k)

≈ ln

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = +1)P (X

(n)
U,\k|λe

2)

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = −1)P (X

(n)
U,\k|λe

2)

≈ ln

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = +1)

∏
j 6=k

P
(
d

(n)
u,j |λe

2(d
(n)
u,j )

)

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = −1)

∏
j 6=k

P
(
d

(n)
u,j |λe

2(d
(n)
u,j )

)

≈ ln

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = +1)

∏
j 6=k

1
2

{
1 + (2d

(n)
u,j − 1) tanh

λe
2(d

(n)
u,j )

2

}

N−1∑
n=0

P (YIC|X(n)
U,\k, du,k = −1)

∏
j 6=k

1
2

{
1 + (2d

(n)
u,j − 1) tanh

λe
2(d

(n)
u,j )

2

} .
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(6.41)

The most significant difference between the RSS-MCMC and conventional MCMC

detectors is that the statistically significant samples can be drawn in an interfer-

ence reduced system rather than over the entire signal space. In the RSS-MCMC

detector, interference from reliable bits is removed in (6.29), which results a MIMO

system with less interference, whereby the Gibbs sampler performance can be im-

proved. If all the bits are reliable, the RSS-MCMC detector is an interference

canceler. On the other hand, if all the bits are unreliable, the RSS-MCMC detec-

tor is the same as conventional MCMC detector. Otherwise, if the bits are partially

reliable, the RSS-MCMC detector is the hybrid conventional MCMC detector and

interference canceler.

6.4.3 Force State Transitions (FST) MCMC Method

Gibbs

Sampler with

bits fipping
DeinterleaverDecoder

Decoded

information bits

Interleaver
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Mapping
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computation
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Figure 6.3: Iterative MIMO spatial multiplexing receiver with FST-MCMC detec-
tor

Fig. 6.3 shows the Iterative MIMO spatial multiplexing receiver with FST-

MCMC detector, which consists of a pre-processor, Gibbs sampler with bit flipping,

and the extrinsic LLR computation module. The pre-processor and the extrinsic

LLR computation modules are the same as the RSS-MCMC detector. Hence, in

this section, the Gibbs sampler with bit flipping is presented for the FST-MCMC

detector.

As discussed before, the problem of Gibbs sampler at high SNR is that the LLRs

of the coded bits may have large values so that the transition probability in the

underlying Markov chain may becomes very small. Hence, the Markov chain would
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stay in the same state no matter how many samples are drawn. In this section,

we develop a forced state transitions MCMC method. In this method, we force

the Markov chain to move by manually changing some coded bits which stay the

same for a long period of time. In the MCMC methods, the event that the Markov

chain changes state occurs when a certain bit dk is to be drawn by the Gibbs

sampler will differ from the previous sample, i.e. d
(n)
k 6= d

(n−1)
k . The Gibbs sampler

draws the sample according to the conditional probability P (dk|Y,X
(n)
\k , λe

2), which

is directly related to the a posterior LLR in a non-linear manner. A small value of

LLR indicates that the coded bit is more likely to change state, while a large value

of the LLR indicates that the coded bits will stay the same. Obviously, the coded

bits that remain the same are normally associated with large LLR values.

In Section 6.4.1, it has been shown that the LLRs can be assumed as Gaussian

distributed with conditional mean µ and conditional variance σ2
η. The decision

error would occur at the tail of the Gaussian distribution, which falls into two

cases. In the first case, the LLR value is small and the sign of the LLR is flipped.

The Gibbs sampler will take care of this case because the coded bit associated

with such small LLR value will likely to be changed in the next sample so that the

Markov chain can visit more states. In the second case, the LLR value is large and

sign of the LLR is flipped. In this case, the coded bit associated with such large

LLR value will less likely to be changed in the next sample so that the Markov

chain would be trapped in the current state and never move forward. Hence, the

FST-MCMC method is going to flip these “ill conditioned” coded bits to force the

Markov chain to move to next state.

Similar to the RSS-MCMC method, the FST-MCMC method will first partition

the full signal set into the reliable signal set and unreliable signal set. The reliable

signal signal set will keep as it is. For the unreliable signal set, the FST-MCMC

method will check the following two criteria:

1. The coded bit has not been changed for the last m samples.

2. Its ML metric and the a priori metric is not consistent.

Then the FST-MCMC method will flip the bit once these two conditions are true,

and continue with the Gibbs sampler. The FST-MCMC method is summarized as

follows:

1. Partition X into XR and XU .

2. Initialize X randomly with equal probability.
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3. for n = 1 to N

for k = 0 to I − 1

draw d
(n)
k from P (dk|d(n)

0 . . . , d
(n−1)
k+1 , . . . , d

(n−1)
I−1 ,YIC, λe

2)

If (dk ∈ XU)

check the criterion 1.

check the criterion 2.

If (both criteria are true)

flip the coded bit d
(n)
k .

4. Compute the extrinsic LLRs for all coded bits.

The FST-MCMC is different from the RSS-MCMC method in such a way that we

keep the reliable bits while try to flip the unreliable bits as long as they are trapped

in the same state and would never move forward for a long period of time.

6.5 Complexity of MIMO Detector with MCMC

Methods

The complexity of the MIMO detector with MCMC methods is dominant by the

number of samples drawn by the Gibbs sampler. It is worth noting that the exact

complexity analysis is difficult because some parameters are a priori unknown

and approximations are varying depending on a particular hardware realization.

Nevertheless, we present a rough estimate in terms of the floating point operations.

We consider a NT × NR MIMO spatial multiplexing system. Assuming that the

iterative receiver with Nitr iterations consists of κ parallel Markov chains and each

Markov chain has N samples to be drawn by the Gibbs sampler. For M -ary

modulation in the MCMC, NT log2 M coded bits are considered as one sample,

hence, there are altogether N × NT log2 M coded bits are drawn by the Gibbs

sampler per Markov chain in each iteration.

In the pre-processing module, the main complexity is on the computation of

µ and σ2
η to obtain the statistical distribution of the a priori information. The

pre-processor requires 2NT log2 M + 1 operations. Then it requires 1 more multi-

plication to obtain σ2
η. Lastly, 4 operations are required to obtain the threshold.

Therefore, there are all together 2NT log2 M + 6 operations for the pre-processing

module.

In the Gibbs sampler module, the Gibbs sampler assigns a random bit with

equal probability in the initialization. This operation requires a random variable



6.5 Complexity of MIMO Detector with MCMC Methods 157

with uniform distribution. This random variable with uniform distribution can

be implemented by a linear feedback shift register circuit, which counts as one

operation per coded bit. In the drawing sample process, for each coded bit, the

Gibbs sampler requires 8NRNT + 8NR + 2 floating point operations to compute

P (Y|X(n)
\k , dk±1). Then it requires three operations for the computation of λ

(n)
1 (dk)

and three operations to compute P (dk ± 1|Y,X
(n)
\k , λe

2). Finally, the Gibbs sampler

requires one operation from a random variable to draw a coded bit.

In the extrinsic LLR computation module, the main complexity is the realiza-

tion of equation (6.41). The computation of P (Y|X(n)
\k , dk ± 1) has been performed

in the Gibbs sampler module. It needs to be stored in the memory and have

no additional complexity. The computation of the a priori probability requires

2 × 6(NT log2 M − 1) operations. And the product of NT log2 M − 1 such a priori

probabilities together with P (Y|X(n)
\k , dk ± 1) requires 2NT log2 M multiplications.

A further 2N summations are included in the calculation for the numerator and

denominator. Finally, two more operations are required to obtain the extrinsic

LLR for a coded bit.

Hence, the complexity of the MCMC methods is summarized as follows:

• Pre-processor: 2NT log2 M + 6 per iteration.

• Gibbs sampler

– Initialization: NT log2 M per iteration.

– Draw sample: N × (8N2
T NR + 8NT NR + 9NT ) log2 M per iteration.

• Extrinsic LLR computation: NT log2 M × (14NT log2 M − 10 + 2N) per iter-

ation.

Fig. 6.4 shows the number of multiplications per Markov chain against the number

of antennas in the pre-processor, Gibbs sampler, and the extrinsic LLR computa-

tion, respectively. The number of receiving antennas is the same as the number of

transmitting antennas, and there are five samples per Markov chain, i.e.N = 5. It

can be seen that the main complexity is from the Gibbs sampler, while the com-

plexity for the pre-processor and the extrinsic LLR computation is much lower.

Furthermore, the complexity of the individual modules is not sensitive to the in-

crease of the number of antennas.

By counting the entire Markov chain and summing the number of operations

for all iterations from above three modules, we have the complexity estimation for
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Figure 6.4: Number of multiplications per Markov chain in pre-processor, Gibbs
sampler, and extrinsic LLR computation against the number of antennas with
QPSK and 16QAM modulation

the MCMC methods as:

C ≈ κ(NT log2 M(14NT log2 M + 8NNT NR + 8NNR + 11N − 7) + 6)Nitr. (6.42)

Fig. 6.5 shows the total number of multiplications against the number of samplers

per Markov chain for various number of antennas with QPSK and 16QAM mod-

ulation. Similarly, the number of receiving antennas is the same as the number

of transmitting antennas. There are four parallel Markov chains, and four turbo

iterations in the receiver, i.e.κ = 4 and Nitr = 4. It can be seen that the total com-

plexity of the MCMC methods is approximately linear to the number of samples

in the Markov chain, the order of the modulations, and the number of antennas.

Hence, the exponential growth of the complexity that is commonly encountered in

the conventional MIMO detectors can be avoided by using the MCMC methods

developed in this thesis.

Some remarks are worth noting. Firstly, the above complexity analysis is gen-

eralized for both RSS-MCMC and FST-MCMC methods. In the RSS-MCMC

method, the interference canceler module reduces the complexity of the Gibbs

sampler because the reliable coded bits are removed, and only the unreliable bits

are taken into the Gibbs sampler module. Compared to the Gibbs sampler, the
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Figure 6.5: Total number of multiplications against the number of samplers per
Markov chain for various transmitting antennas with QPSK and 16QAM modula-
tion

complexity of the interference canceler is much less. Hence, we do expect the RSS-

MCMC method will have significant complexity reduction. Secondly, the FST-

MCMC method has the Gibbs sampler with bit flipping module rather than the

interference canceler. We expect the Gibbs sampler with bit flipping to have the

same complexity as the conventional Gibbs sampler because the complexity of the

bit flipping is very low. Hence, unlike the RSS-MCMC method, there is no com-

plexity reduction from the FST-MCMC method.

6.6 Numerical Results

6.6.1 Simulation Setup

We consider a 4× 4 MIMO spatial multiplexing system and compare the BER for

the iterative receivers with the conventional MCMC detector [79] and the iterative

receiver with the RSS-MCMC detector and FST-MCMC detector. We also present

the complexity reduction that the iterative receiver with RSS-MCMC detector can

obtain over the iterative receiver with conventional MCMC detector.

For all MCMC methods, we run 20 samples in multiple Markov chains. In the

conventional MCMC detector and the RSS-MCMC detector, we run four parallel
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Markov chains, and within a Markov chain, there are five samples for each coded

bit. Unless otherwise stated, the threshold ρ is selected to achieve 10−4 coded

bit error rate. The complexity reduction is measured by the number of the drawn

samples in the RSS-MCMC detector over the total number of samples drawn in the

conventional MCMC detector. In the FST-MCMC detector, we run two parallel

Markov chains, and within each Markov chain, there are 10 samples for each coded

bit. This is because if we run four Markov chain with five samples each for FST-

MCMC, the number of consecutive samples to determine whether to flip the coded

bit should be less than five, which is useless for FST-MCMC because the Markov

chain would not be in the “ill conditioned” state. Hence, we employ less parallel

Markov chains but with more samples per Markov chain.

The channel model for each transmit and receive antenna are independent flat

Rayleigh fading channel. A rate-1/2 (171, 133)8 convolutional code is used for

channel coding. The modulation includes QPSK and 16QAM. We refer to the

conventional MCMC detector in [79] as “Conventional MCMC”, and the RSS-

MCMC method and the FST-MCMC method developed in this chapter as “RSS-

MCMC” and “FST-MCMC” respectively. “itr 2”, “itr 3”, and “itr 4” denote the

2nd, 3rd and 4th iteration.

6.6.2 Performance of Iterative Receivers with MCMC Meth-

ods

In this section, we present the BER performance of the iterative receivers with

MCMC methods. As similar to Chapter 5, the modified MCMC methods in this

Chapter focus on the detection method itself, hence, we think that bit error rate

is the most suitable performance metric. Fig. 6.6 shows the BER performance for

the iterative receivers with the conventional MCMC detector and with the RSS-

MCMC detector over 4 iterations. It can be seen that in the QPSK modulation,

the RSS-MCMC detector has slightly better performance than the conventional

MCMC detector, although it is not noticeable in the 4th iteration. In the case of

16QAM, the RSS-MCMC detector improves the performance over the conventional

MCMC detector. This is because the RSS-MCMC detector performs detection on

the undetermined bits in a MIMO system with less interference after canceling

the interference from the reliable bits. At high SNR, the conventional MCMC

detector shows degraded performance in the 3rd and 4th iteration, such undesired

phenomenon has been observed in [79,81]. Nevertheless, the RSS-MCMC detector

does not show the error floor.
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Figure 6.6: BER performance for the iterative receivers with the conventional
MCMC detector, and with the RSS-MCMC detector in a 4 × 4 MIMO spatial
multiplexing system with QPSK and 16QAM modulation
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Fig. 6.7 shows the BER performance for the iterative receivers with the con-

ventional MCMC detector and with the FST-MCMC detector over 4 iterations

for the 16QAM modulation. It can be seen that in the high SNR region, in the

2nd iteration, there is no performance difference between the conventional MCMC

detector and the FST-MCMC detector. However, in the 3rd iteration, the conven-

tional MCMC detector starts to show an error floor. And such degradation is even

worse in the 4th iteration. On the other hand, the FST-MCMC detector does not

show any error floor in the 3rd and 4th iterations, which indicates that FST-MCMC

detector is also robust in the high SNR region by forcing the Markov chain to visit

more states when it is trapped in the “ill conditioned” states.

We also include the performance of the iterative receiver with the RSS-MCMC

detector in Fig. 6.7. The FST-MCMC detector has the same performance compared

with the RSS-MCMC detector. This observation shows that both methods solve

the problem encountered by the conventional MCMC detector at high SNRs.

6.6.3 Computational Complexity for the RSS-MCMC De-

tector

In this section, we present the complexity for the RSS-MCMC detector, which

is significantly reduced when compared to the conventional MCMC detector and

FST-MCMC detector. Fig. 6.8 shows the complexity reduction when compared

to the conventional MCMC detector over Eb/N0 for the RSS-MCMC detector. In

both QPSK and 16QAM modulation, there is no complexity reduction in the first

iteration as the interference cancelation has not been employed because there is no

a priori information available. In the 2nd iteration, the complexity reduction from

the reduced-state-space Gibbs sampler after interference cancelation reaches 30%

for QPSK and 8% for 16QAM at 6dB. As the iterations proceed, more bits satisfy

the reliability constraints. This can be observed in the 4th iteration that more that

50% and 30% bits in QPSK and 16QAM respectively are considered as reliable.

Furthermore, more complexity reduction can be achieved as the Eb/N0 increases

because more bits can be canceled as they are considered as reliable when Eb/N0

improves.

Fig. 6.9 and Fig. 6.10 show the complexity reduction when compared to the con-

ventional MCMC detector for the RSS-MCMC detector over iterations for QPSK

and 16QAM modulation respectively. In both modulation schemes, there is a sig-

nificant increase of the complexity reduction from the reduced-state-space Gibbs

sampler after interference cancelation in the 2nd and the 3th iteration, while the
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Figure 6.8: Complexity reduction from the reduced-state-space Gibbs sampler for
the RSS-MCMC detector when compared to the conventional MCMC detector over
Eb/N0 with QPSK and 16QAM modulation

complexity reduction saturates in the 4th iteration. This observation indicates that

after four iterations, the LLRs converges to equilibrium and the further complexity

reduction is marginal.

Table 6.1: Total complexity reductions in RSS-MCMC Detector

SNR Reduction in QPSK SNR Reduction in 16QAM

0dB 12.5% 6dB 18%

2dB 22% 8dB 21.5%

4dB 31.5% 10dB 24.5%

6dB 35% 12dB 26%

Table 6.1 summarize the total complexity reductions. The total complexity

reduction is the summation of complexity in each iteration including the first iter-

ation. Generally, the complexity reduction in the QPSK modulation is more than

that in the 16QAM modulation. It can be seen that 35% computation power can

be saved in QPSK at 6dB, while 26% computation power can be saved in 16QAM

at 12dB.
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Figure 6.9: Complexity reduction from the reduced-state-space Gibbs sampler for
the RSS-MCMC detector when compared to the conventional MCMC detector over
iterations with QPSK modulation
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Figure 6.10: Complexity reduction from the reduced-state-space Gibbs sampler for
the RSS-MCMC detector when compared to the conventional MCMC detector over
iterations with 16QAM modulation

6.6.4 Performance and Complexity Tradeoff for RSS-MCMC

Detector

As discussed in Section 6.5, the complexity reduction achieved by the RSS-MCMC

method is due to the use of the reliable signal set, where the more reliable bits
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are removed from the Gibbs sampler, thus saving significant computational com-

plexity(ie. more computational effort is directed at less reliable bits, while reliable

bits have less computational processing applied to them.). The larger the reliable

signal set, the more the complexity reduction, thus the change in computational

complexity with a changing Eb/N0. And the criteria to partition the signal set is

presented in Section 6.4.1. Also, at different Eb/N0, as we move the threshold, we

will achieve different levels of complexity reduction. If the threshold is high, the

RSS-MCMC detector becomes the conventional MCMC detector. If the threshold

is low, the RSS-MCMC detector tends towards the interference canceler. Conse-

quently, the performance is varying with the level of complexity reduction. Hence,

there is the performance and complexity tradeoff. In other words, optimal ρ val-

ues exist at different Eb/N0 to provide the best BER performance with maximum

complexity reduction.
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Figure 6.11: Complexity and performance tradeoff for the RSS-MCMC detector
over iterations with 16QAM modulation at 8dB and 10dB

Fig. 6.11 shows the complexity and performance tradeoff for the RSS-MCMC

detector over iterations with 16QAM modulation at 8dB and 10dB. It can be seen

that this tradeoff is highly related to the SNR, and the optimal tradeoff point for

different iterations is consistent. For example, at 8dB, the best BER performance

occurs at 20% complexity reduction, while at 10dB, the best BER performance

occurs at 65% complexity reduction. And the BER performances are getting worse

when we are going far away from the optimal operating point.
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Furthermore, we can also observe the trend of movement of the optimal point

for different SNR regions, that is, the optimal point moves towards the right lower

corner of the figure. This trend indicates that in the low SNR region, the extrinsic

LLRs are less reliable, hence it’s better for the Gibbs sampler to draw more samples

rather than less because the MCMC method is good at detection at low SNR.

On the other hand, in the high SNR region, the extrinsic LLRs are so reliable

that the interference canceler can provide a system with less interference, the RSS-

MCMC detector can have better performance compared to the conventional MCMC

detector. In practical realization, we can either select the optimal ρ at different

SNRs, or we can select suboptimal ρ for all SNRs so that the good BER performance

and reasonable complexity reduction can be obtained.

6.7 Summary and Contributions

This chapter has investigated the iterative receivers with Markov Chain Monte

Carlo methods for the MIMO system with spatial multiplexing. The MCMC detec-

tor with Gibbs sampler has shown the near capacity performance in the literature.

However, the conventional MCMC detector suffers from error floor in the high SNR

region. Two novel MCMC methods are developed to solve this problem. The reli-

ability probelm of the LLRs is analyzed first followed by developing two reliability

constraints to partition the full signal set into a reliable signal set and a unreliable

signal set. Then the RSS-MCMC and FST-MCMC methods are presented. The

RSS-MCMC method is to perform the reduced-state-space Gibbs sampler in a new

system with less interference. And the FST-MCMC method forces the Markov

chain to visit more states by manually flipping the “ill conditioned” bits.

Some specific contributions made in this chapter are as follows. First of all, the

state-of-art iterative receiver with MCMC methods are reviewed. The conventional

MCMC detector has degraded performance as SNR increases and suffers from er-

ror floor at high SNR. The system model for the iterative receiver with MCMC

method in the MIMO spatial multiplexing system is investigated. A modified lin-

ear MIMO model for the MCMC detection is presented. The conventional system

model in the complex domain is modified to be in the real domain. The ML and

MAP detection criteria are modified to suit the MCMC detection. In addition,

the fundamental of the MCMC integral and its approximation through importance

sampling is introduced followed by the procedures that the Gibbs sampler draws

samples.
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Secondly, the theoretical analysis on the reliability of the extrinsic information

exchanged between the detector and decoder in the turbo reception architecture is

presented. The Gaussian Consistent assumption is employed to derive the condi-

tional distribution of the LLRs. Based on this theoretical analysis, two reliability

constraints are developed to separate the reliable signal from unreliable ones. The

first constraint is to set up a threshold based on the statistical distribution of the

extrinsic LLRs. The LLRs above the threshold will be passed to the second con-

straint. The second constraint is to test whether its ML metric and the a priori

metric is consistent. Once these two constraints are satisfied, the coded bit associ-

ated with the extrinsic LLR is considered as reliable. This reliability test is done

in a module called pre-processor.

Thirdly, the novel RSS-MCMC detector is presented, which consists of an in-

terference canceler, a Gibbs sampler and an extrinsic LLR computation module.

The approach is to remove the interference from the bits with reliable LLR values.

Then the random samples are drawn only for unreliable bits in the new system

with less interference. Furthermore, the FST-MCMC detector is presented, which

consists of an a Gibbs sampler with bit flipping and an extrinsic LLR computation

module. The approach is to flip the bits that did not change for a long time to force

the Markov chain to cover more states. A rough estimation on complexity of the

iterative receivers with MCMC methods is presented. This complexity estimation

is measured on the floating point operations in all modules.

Finally, simulation results show that both RSS-MCMC and FST-MCMC meth-

ods outperform the conventional MCMC method, especially in the undesired error

floor region at high SNR. Furthermore, the conventional MCMC method needs to

draw random samples for all coded bits in the entire signal state space, while the

RSS-MCMC method achieves further complexity reduction through interference

cancelation and reduced-state-space Gibbs sampler. A performance and complex-

ity tradeoff is also obtained for the RSS-MCMC method and provide a guidelines

for the practical implementation.





Chapter 7

Conclusions and Future Research

Directions

In this chapter we state the general conclusions drawn from this thesis. The sum-

mary of contributions can be found at the end of each chapter and are not repeated

here. We also outline some future research directions arising from this work.

7.1 Conclusions

Modern wireless communications promise to support users with higher data rates

in a dynamic mobile environment, where realistic mobile radio channel shows rapid

dispersive nature in both time and frequency. Large amount of reference bits(pilot

bits) are required in order to track such high mobility environment, however, the

spectrum resource are occupied by the reference bits, which compromises the sys-

tem throughput. Multiple antennas are employed to enhance the system capacity

to achieve high data rates, however, the MIMO detector is far more complex than

the SISO detector and imposes challenges in the receiver design in the sense of

interference mitigation and detector complexity.

This thesis has utilized the Turbo principle in terms of iterative detection and

decoding to the fundamental receiver design problems. From the signal processing

point of view, the ultimate goal for the receiver design is to make the correct

decision on the information data bits. The conventional receiver design paradigm

considers the data as a passive parameter to be estimated, and completely rely

on the the reference bits to estimate the channel parameters. Hence, the system

performance is restricted by the availability of the reference signal, which becomes

the limiting factor in the severe channel environment.

169



170 Conclusions and Future Research Directions

On the other hand, under the iterative receiver design paradigm, the evolution

of the reliability of the data information over iterations enables the data-assisted

channel estimation. Technically, the data information is represented as a priori

probability, also known as the soft information, which is obtained from the channel

decoder. This soft information is fed back to the respective receiver modules, for

example, the channel estimator or the MIMO detector, as a semi-reference signal

in parallel with the true reference signal, i.e. the preamble and pilot symbols, to

operate simultaneously to achieve performance gain or complexity reductions in

the overall system.

In this thesis, we addressed the important issues of efficient design of iterative

receiver structures and algorithms for wireless communications. We developed low

complexity iterative receivers with data-driven channel estimation and interference

mitigation, which not only improve the receiver sensitivity, but also achieve signifi-

cant complexity reduction compared to the conventional receivers. More precisely,

we apply the iterative techniques to three areas of the receiver design. The first

area is the mobility management with enhanced channel estimation in the SISO

system. The second area is the interference mitigation with linear methods and

channel estimation in the MIMO system. And the third area is the MIMO detection

with performance enhancement and complexity reduction for nonlinear methods.

In the mobility management, we developed a novel three-stage iterative data-

driven channel estimator. The frequency-domain combining and time-domain com-

bining strategies utilizing the energy evolution and weighting between the soft data

and reference signals. for SISO system. We first investigated the ICI caused by

the mobility of the mobile radio channel at high speed, which could be a potential

problem for the channel estimation. We analyzed the influence of the ICI and em-

ployed an approximation method to absorb the ICI into the effective noise. Then

we illustrate the superior performance of the data-driven channel estimation in the

practical OFDM system. The MSE analysis and complexity analysis show that the

iterative receiver with channel estimation achieves ML and MMSE lower bounds

with close to linear complexity after the second stage estimation. We compared

the iterative data-driven channel estimator with the conventional pilot-aided MLE,

MMSEE, and decision feedback channel estimators in both downlink and uplink of

a practical system with fast mobility. The iterative data-driven channel estimator

out performs the decision direct channel estimator by 2.5dB. It also out performs

the conventional pilot-aided channel estimator by 1dB. It is worth mentioning that

such performance gains are achieved by employing less reference signals, which
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means that the macro cell coverage is maintained without losing system capacity

in a highly dynamic channel environment. We also show the robustness of the

iterative data-driven channel estimator if a maximum 4% carrier frequency offset

is present in the system, where the degradation is only a fraction of decibel.

In the interference mitigation for the multiple antenna system, we developed

a joint interference mitigation and channel estimation framework for interference

limited system under highly dynamic channel environment. The novel iterative

data-driven channel estimator performs time-domain combining and frequency-

domain combining in MIMO configuration and cooperates with various linear de-

tection methods so that both interference mitigation and channel estimation can

be handled robustly in practical indoor and outdoor environment. In the Alamouti

STC-OFDM system, we utilized the channel estimates combined from soft decoded

data and reference signal to the iterative MRC receiver. The conventional MRC

receiver has degraded performance as the mobility increases, and eventually fails

because the assumption of the constant channel response between two consecutive

data symbols no longer holds. Nevertheless, since the channel variations at high

mobilities are tracked by the iterative data-driven channel estimation, the conven-

tional Alamouti STC-OFDM system can be operated at high mobility environment

with the iterative data-driven MRC receiver, where more than 8dB performance

gains are obtained compared to the conventional MRC receiver. This is a great

indication that the channel variation should be tracked in the realistic mobile radio

environment.

Furthermore, in the SM-OFDM system, we developed a few iterative receivers

with linear interference cancelation and data-driven channel estimation. We show

that at low mobility, the iterative receiver can achieve a gain of 2dB compared to

the conventional MMSE receiver at operating point of 10−2 frame error rate. On

the other hand, at high mobility, the conventional MMSE receiver with one-shot

channel estimation failed to operate, while the iterative receiver performed close to

the optimal where the perfect CSI is known. In addition, post-processing provides a

further 2dB gain over the pure interference cancelation at 10−3 frame error rate (in

higher SNR region). This interesting finding indicates that it is necessary to have

additional signal processing after interference cancelation if the system operates at

higher SNR. We also showed the 16QAM modulated Alamouti STC-OFDM system

and the QPSK modulated SM-OFDM system under the same spectral efficiency

in a realistic mobile radio channel environment. We showed that the SM-OFDM

system with lower modulation scheme is more robust than the Alamouti STC-
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OFDM system with higher modulation. This is because the Alamouti STC based

system assumes a stationary channel between data symbols, which is not realistic

in channels with mobility.

In the second part of the thesis, we investigated the interference mitigation with

nonlinear methods. The first nonlinear method we studied is the sphere decoder.

Among the sphere decoder algorithms, FP and SE are two popular enumeration

strategies, however, they are optimized for the ML solution, which does not take

advantage of the MAP solution by using a-priori information. We introduced the

accumulated a priori information metric and modified the FP and SE algorithms

accordingly to make them suitable for an iterative receiver with MAP detection.

2dB gains for QPSK and 4dB gains for 16QAM are obtained from the iterative

detection and decoding approach, and the complexity can be reduced by 10% over

iterations in SE algorithm.

We also investigated the SE algorithm and found one drawback that the poor

ZF-DFE estimates usually degrade the system performance. We developed two

novel schemes to improve the ZF-DFE estimates by utilizing the a priori infor-

mation. The first scheme is to obtain the update ZF-DFE estimates under MAP

detection criteria. We first approximated the a priori information as a quadratic

polynomial and included it in the ML cost function. Then we obtained the up-

dated ZF-DFE estimates by solving this new cost function. The second scheme is

to perform the a priori zig-zag method on the neighboring nodes of the original

ZF-DFE estimates and select the nodes with the best a priori probability, where

we perform the tree search from the new starting node. We show that another 2dB

gain can be obtained, and the complexity can be further reduced by another 10%

over iterations. Hence, the performance and complexity benefits from employing

these two novel schemes indicate that more accurate estimate of the tree node at

each level has significant impact on the tree search outcome and convergence. It is

therefore valuable to employ the developed schemes in the sphere decoder receiver.

Finally, we studied another nonlinear method, known as the MCMC method.

The conventional MCMC method suffers from an error floor at high SNR. The

reason for this problem is the bits with high a priori probability dominate the

Markov chain such that the Markov chain is trapped in the “ill conditioned” states

and therefore cannot improve performance. This phenomenon challenged the fun-

damental idea behind the MCMC’s statistical approach, that is that the Markov

chain should cover as many states as possible in order to converge to the equilibrium

distribution. We developed two novel MCMC methods, namely the RSS-MCMC
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method and FST-MCMC method. The idea of the RSS-MCMC method is to get

rid of the interference from reliable bits, then run the Markov chain only for the

unreliable bits in the new system with less interference. On the other hand, the

idea of the FST-MCMC method is to force the Markov chain to move by manu-

ally changing the “ill conditioned” bits. Before performing these two methods, we

analyzed the reliability of the extrinsic information exchanged between the detec-

tor and decoder in the turbo reception architecture, and developed two reliability

constraints to separate the reliable bits from the entire data vector. The first con-

straint is developed based on the distribution of the LLRs. The second constraint

is developed based on the consistency of the ML and the a priori metric. We

also define the “ill conditioned” bits in the FST-MCMC method as the bits in the

unreliable signal set that do not change for a set period of time in the sample draw-

ing process. We show that both methods can remove the error floor in the high

SNR region. At low SNR marginal performance improvement can also be observed.

In addition to the performance enhancement, we also show that the RSS-MCMC

method can achieve further complexity reduction of 35% for QPSK at Eb

N0
= 6dB

and 25% at Eb

N0
= 12dB for 16QAM. Such complexity reduction is due to the Gibbs

sampler which only needs to draw samples for the unreliable bits. These bits are

partially from the entire signal space after interference cancelation. Last but not

least, we investigated the performance and complexity trade-off by selecting various

thresholds. Our preliminary performance and complexity trade-off chart provides

a practical guideline on how to select optimal threshold for different SNRs.

7.2 Future Research Directions

In this section we outline a number of future research directions to arise from the

work presented in this thesis.

In Chapter 3, we present the simulation of the iterative turbo receiver with

channel estimation for SISO-OFDM system under the present of the residue CFO.

And the results show that the iterative turbo channel estimation is robust to the

residual CFO of up to 4% of the sub-carrier spacing. In practical OFDM system,

synchronization with CFO compensation could be a challenging task. When the

residual CFO becomes larger, the influence of the ICI caused by CFO becomes

significant and cannot be simply absorbed by the central limited theorem into the

effective noise. The best way to remove the effect of the ICI is to estimate the

off-diagonal terms of the channel matrix and cancel them all. The estimation of all
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off-diagonal items of channel matrix, however, results in a prohibitive complexity,

especially when the number of subcarriers becomes larger. Although handling the

problem of large CFO is out of the scope of this thesis, our primary investiga-

tion shows that the influence of the ICI has certain structure rather than being

completely random. For example, the closer the neighboring subcarrier is to the

subcarrier of interest, the higher the power of the ICI from that neighboring subcar-

rier. This phenomenon suggests that it is not necessary to estimate all off-diagonal

terms of the channel matrix. It is sufficient to cancel the ICI from several neigh-

boring subcarriers. Hence, the potential approach could be to develop a method

to focus on the iterative channel estimation with the presence of the CFO.

In Chapter 4, we developed iterative receivers with channel estimation for a

single user MIMO-OFDM system. A natural extension of this work is to investigate

the multiuser MIMO-OFDM system, also known as MIMO-orthogonal frequency

division multiple access (OFDMA) system. In the OFDMA system, users are

allocated to different subcarriers, which can be either disjoint or overlapped. If

the subcarrier allocation is disjoint, the iterative receiver developed in this thesis

can be applied without any modification. However, if the subcarrier allocation

is overlapped, massive interference is generated from different users in addition

to that from multiple antennas, which makes the channel estimation even more

complicated. Furthermore, if residual CFOs are presented, especially in the uplink,

all users have different CFOs, no matter how the users are allocated, interference

will be always there. Hence, the potential work can be on the iterative multiuser

detection with channel estimation with or without the presence of CFO in the

MIMO-OFDMA system.

Furthermore, for the Alamouti STC system, we have show that under high mo-

bility environment, the realistic channel shows significant variation particularly in

the time-domain. The assumption that the channel response between two consec-

utive data symbols is stationary does no longer hold. Therefore, the orthogonal

property of the channel matrix is destroyed. In this case, the Alamouti STC system

can be considered a SM system with time diversity (same symbols are transmit-

ted twice in consecutive time interval). In Chapter 4, the performance gain we

obtained from the iterative receiver is mainly from the channel re-estimation. The

potential work can be on the employment of the interference cancelation approach

rather than the MRC approach for the space-time coded system in high mobility

environment.

In both Chapter 3 and 4, we illustrated the iterative receiver in the OFDM
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system. The most important advantage of OFDM system over the single carrier

system is the utilization of the frequency domain signal processing techniques.

For example, the ISI problem caused by the multipath fading in the single carrier

system is mitigated in the OFDM system because the multipath fading in the time-

domain has been transferred into flat fading in the frequency-domain. However, the

OFDM system still cannot solve the deep fading problem even with perfect channel

estimation. Recently, a technique called channel shortening [123–127] has become

popular in the literature. The idea is to pre-equalize the channel in the time-domain

so that the channel frequency response looks flat in the frequency-domain. The

time-domain equalization could be computationally expensive, the potential work

could be on the rake-receiver approach with iterative frequency channel estimation

and detection followed by multipath cancelation and rake combining in the time-

domain.

In Chapter 5, we studied the sphere decoder algorithms which focus on the

depth-first approach. Breadth-first sphere decoder algorithms, such as K-best

sphere decoder [69, 128, 129], are also popular in the literature. Breadth-first

sphere decoders are known to have fixed complexity with no-guaranteed perfor-

mance. Juntti et al. [59] modified the conventional K-best sphere decoder [69] by

initializing the K-best sphere decoder by LMMSE estimate. However, the LMMSE

generally has higher complexity as discussed in the Chapter 3 and 4 of this thesis.

It could be interesting to know how much performance gain and complexity reduc-

tion can be obtained if a priori information as developed in this thesis is employed

in the breadth-first sphere decoder algorithm. It could be also interesting to see

whether the depth-first and breadth-first algorithms can be combined into a hy-

brid sphere decoder for iterative receiver. Furthermore, in Chapter 6, the a priori

information is utilized to qualify the reliable bits from the entire signal space. We

can also apply the interference cancelation to the sphere decoder to form a RSS-

SD method. Our preliminary results show that with the same performance, the

complexity of RSS-SD method can be reduced significantly because the complex

signal enumeration process is performed only on the unreliable bits.

In Chapter 6, for different SNR, there is a performance and complexity trade-

off for the RSS-MCMC method. The optimal operating points for various SNR

on the performance versus complexity curve are corresponding to different LLR

reliability. In practical systems, in order to operate at the optimal performance and

complexity, the threshold for the conditional LLR distribution has to be changed for

different SNRs. Although simulations can be carried out to show the performance
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and complexity curves for different system configurations, this is unrealistic for real

systems. A more feasible solution is to pick a threshold and obtain the trade-off

point with reasonable complexity with minor performance loss compared to the

optimal solution. Hence, the last but not the least, other potential work could on

the theoretical formulation of this optimization problem.

Finally, the development of the cost effect data-driven interference mitigation

methods in Chapter 5 and 6 is based on a generic MIMO spatial multiplexed system

and perfect channel estimation. This allows the developed methods to be applied

to any system that needs interference mitigation. Future work can be focused on

applying the advanced iterative non-linear detection methods developed in this

thesis to a practical interference limited system. Furthermore, the iterative data-

driven channel estimation developed in Chapter 3 and 4 could be integrated into

a system where it could operate jointly with the advanced detection methods.



Appendix A

A.1 The Calculation of Eb/N0

The Eb/N0 calculation is defined as information bit energy Eb over the noise

power spectral density N0, as seen at the receiver. Considering the generalized

SISO/MIMO system in Fig. A.1, given that (Eb/N0)dB in dB scale, denoting the

transmitted symbol energy as Es, data modulation order as M , channel encoder

rate as Rc, the number of transmitting antennas as NT , and the number of receiving

antennas as NR, the noise variance is calculated in following steps:
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Figure A.1: Generalized SISO/MIMO system

Step 1 Assuming channel energy of each transmitting and receiving antenna link is

normalized to one, and the data symbol stream at each transmitting antenna

has the rate R, the average symbol energy at the receiver after combining all

177
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the receiving antennas are given by:

Es =
Es · R · NT · NR

R · NT

= Es · NR, (A.1)

where the numerator is the total symbol energy collected at the receiver, and

the denominator is the total number of symbols collected at the receiver.

Step 2 As the transmitted symbol is formed by log2 M coded bits, hence, the

average coded bit energy is given by:

Ed =
Es

log2 M
=

Es · NR

log2 M
. (A.2)

Step 3 As the convolution encoder does not introduce additional energy for the

information bit, the input and output energy of convolutional encoder should

be conserved as:

Eb · R =
Es · NR

log2 M
. (A.3)

Hence, the information bit energy can be expressed as:

Eb =
Es · NR

R · log2 M
. (A.4)

Step 4 Known that the noise variance is defined as the double-sided noise power

spectral density as:

σ2 =
N0

2
=

Eb

2
· 10−

(
Eb
N0

)dB

10 , (A.5)

substitute Eb in equation (A.4) into equation (A.5), the noise variance is

obtained by:

σ2 =
Es · NR

2 · R · log2 M
· 10−

(
Eb
N0

)dB

10 . (A.6)

Therefore, in the computer simulation, given the SNR Eb

N0
in dB scale, symbol

energy Es, the number of receiving antennas NR, channel coder rate R, and

data modulation order M , the noise variance can be calculated by equation

(A.6).

Step 5 SNR can also be defined the transmitted symbol energy Es over the noise

power spectral density N0, i.e. Es

N0
, which is also known as intermediate SNR.

Sometimes it is worth finding the SNR relationship between the information

bit and transmitted symbol. From equation (A.4), such relationship can be
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easily derived as:

(
Eb

N0

)dB = (
Es

N0

)dB + 10 log10

NR

R · log2 M
. (A.7)
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A.2 Estimation of Soft Symbol

As discussed in 2.5, the soft symbol is computed from the LLR values given by the

a priori information. Here we derive the Bayesian estimate of the soft symbol for

BPSK, QPSK and 16QAM modulation schemes. Let λ be the LLR value fed back

from the channel decoder for the coded bit d, the probability of the coded bit d to

be 1 and 0 can be expressed as:

P (d = 1) =
eλ

1 + eλ
=

eλ/2

eλ/2 + e−λ/2

=
1

2
(1 +

eλ/2 − e−λ/2

eλ/2 + e−λ/2
)

=
1

2
(1 + tanh(λ/2)), (A.8)

P (d = 0) = 1 − P (d = 1) =
1

2
(1 − tanh(λ/2)). (A.9)

In the case of BPSK, d0 = 1 is mapping to s = +1, and d0 = 0 is mapping to

s = −1, hence, the soft symbol is given by:

ŝ = 1 · P (d0 = 1) + (−1) · P (d0 = 0) = tanh(λ0/2). (A.10)

In the case of Gray-coded QPSK, the complex QPSK symbol is formed by

{d0, d1}, d0 is mapped to real part and d1 is mapped to imaginary part. As the

QPSK symbol is Gray-coded, either the real part or the imaginary part is similar

to individual BPSK case. Hence,

ℜ{ŝ} = tanh(λ0/2), (A.11)

ℑ{ŝ} = tanh(λ1/2), (A.12)

where ℜ{·} and ℑ{·} are the real and imaginary part of the complex number,

respectively.

In the case of the 16-QAM, the complex 16-QAM symbol is formed by {d0, d1, d2, d3},
{d0, d1} is mapped to real part and {d2, d3} is mapped to imaginary part. The

mapping is as follows: {1, 1} → +3, {0, 1} → +1, {0, 0} → −1, and {1, 0} → −3.

Hence,

ℜ{ŝ} = 3 · P (d0 = 1, d1 = 1) + 1 · P (d0 = 0, d1 = 1)

+(−1) · P (d0 = 1, d1 = 0) + (−3) · P (d0 = 1, d1 = 0)
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=
3

4
(1 + tanh(λ1/2))(1 + tanh(λ0/2)) +

1

4
(1 + tanh(λ1/2))(1 − tanh(λ0/2))

−1

4
(1 − tanh(λ1/2))(1 − tanh(λ0/2)) − 3

4
(1 − tanh(λ1/2))(1 + tanh(λ0/2))

=
1

4
[8 tanh(λ1/2) + 4 tanh(λ1/2) tanh(λ0/2)]

= tanh(λ1/2)[2 + tanh(λ0/2)]. (A.13)

Similarly,

ℑ{ŝ} = 3 · P (d2 = 1, d3 = 1) + 1 · P (d2 = 0, d3 = 1)

+(−1) · P (d2 = 1, d3 = 0) + (−3) · P (d2 = 1, d3 = 0)

=
3

4
(1 + tanh(λ3/2))(1 + tanh(λ2/2)) +

1

4
(1 + tanh(λ3/2))(1 − tanh(λ2/2))

−1

4
(1 − tanh(λ3/2))(1 − tanh(λ2/2)) − 3

4
(1 − tanh(λ3/2))(1 + tanh(λ2/2))

=
1

4
[8 tanh(λ3/2) + 4 tanh(λ3/2) tanh(λ2/2)]

= tanh(λ3/2)[2 + tanh(λ2/2)]. (A.14)
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Appendix B

B.1 Proof of Effective Noise Statistics in Pilot

Symbol Channel Estimation for SISO-OFDM

System

In Chapter 3 section 3.3.2, the effective noise in the pilot symbol channel estimation

for SISO-OFDM System is given by:

W
′

P (p) =
∑

q 6=p

Hp,qXP (q)X∗
P (p)

+
∑

n6=p,q

Hp,n

√
Ed

Ep

Xd(n)X∗
P (p) +

W (p)X∗
P (p)√

Ep

, (B.1)

where the symbol index superscription (i) is dropped for brevity. Assuming that

the pilot symbols XP (p), XP (q) the data symbol Xd(n), and the noise sample W (p)

are independent, the expectation of W
′

P (p) is given by:

E{W ′

P (p)} =
∑

q 6=p

Hp,q E{XP (q)}︸ ︷︷ ︸
= 0

E{X∗
P (p)}︸ ︷︷ ︸

= 0

+
∑

n6=p,q

Hp,n

√
Ed

Ep

E{Xd(n)}︸ ︷︷ ︸
= 0

E{X∗
P (p)}︸ ︷︷ ︸

= 0

+
E{W (p)}√

Ep

E{X∗
P (p)}︸ ︷︷ ︸

= 0
= 0, (B.2)

where the expectation of the pilot symbols and data symbols E{XP (q)} = E{(XP (p)) =

E{Xd(n)} = 0 as the symbols in the signal constellation set are equal probable.

Denote α =
∑
q 6=p

Hp,qXP (q)X∗
P (p), β =

∑
n6=p,q

Hp,n

√
Ed

Ep
Xd(n)X∗

P (p), and γ =
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W (p)X∗
P (p)√

Ep

, the variance of W
′

P (p) can be obtained by:

E{W ′∗
P (p)W

′

P (p)} = E{(α + β + γ)∗(α + β + γ)}
= E{α∗α + α∗β + α∗γ + β∗α + β∗β + β∗γ

+γ∗α + γ∗β + γ∗γ}, (B.3)

where

E{α∗α} = E{
∑

q 6=p

∑

q
′ 6=p

XP (p)X∗
P (q)H∗

p,qHp′ ,qXP (q
′

)X∗
P (p)}

=
∑

q 6=p

E{H∗
p,qHp,q}E{XP (q)X∗

P (q)}︸ ︷︷ ︸
= 1

E{XP (p)X∗
P (p)}︸ ︷︷ ︸

= 1

=
∑

q 6=p

E{|Hp,q|2}, (B.4)

E{α∗β} = E{
√

Ed

Ep

∑

q 6=p

∑

n6=p,q

XP (p)X∗
P (q)H∗

p,qHp,nXd(n)X∗
P (p)}

=

√
Ed

Ep

∑

q 6=p

∑

n6=p,q

E{H∗
p,qHp,n}E{XP (p)X∗

P (p)}︸ ︷︷ ︸
= 1

E{X∗
P (q)}︸ ︷︷ ︸

= 0

E{Xd(n)}︸ ︷︷ ︸
= 0

= 0, (B.5)

E{α∗γ} = E{
∑

q 6=p

XP (p)X∗
P (q)H∗

p,q

W (p)X∗
P (p)√

Ep

}

=
1√
Ep

∑

q 6=p

E{H∗
p,q}E{XP (p)X∗

P (p)}︸ ︷︷ ︸
= 1

E{X∗
P (q)}︸ ︷︷ ︸

= 0

E{W (p)}︸ ︷︷ ︸
= 0

= 0, (B.6)

E{β∗α} =
∑

q 6=p

∑

n6=p,q

√
Ed

Ep

XP (p)X∗
d(n)H∗

p,nHp,qXP (q)X∗
P (p)

=

√
Ed

Ep

∑

q 6=p

∑

n6=p,q

E{Hp,qH
∗
p,n}E{X∗

P (p)XP (p)}︸ ︷︷ ︸
= 1

E{XP (q)}︸ ︷︷ ︸
= 0

E{X∗
d(n)}︸ ︷︷ ︸

= 0
= 0, (B.7)
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E{β∗β} =
∑

n6=p,q

∑

n′ 6=p,q

Ed

Ep

XP (p)X∗
d(n)H∗

p,nHp,n
′Xd(n

′

)X∗
P (p)

=
Ed

Ep

∑

n6=p,q

E{H∗
p,nHp,n}E{XP (p)X∗

P (p)}︸ ︷︷ ︸
= 1

E{X∗
d(n)Xd(n)}︸ ︷︷ ︸
= 1

=
Ed

Ep

∑

n6=p,q

E{|Hp,n|2}, (B.8)

E{β∗γ} = E{
∑

n6=p,q

√
Ed

Ep

XP (p)X∗
d(n)H∗

p,nW (p)X∗
P (p)}

=

√
Ed

Ep

∑

n6=p,q

E{H∗
p,n}E{XP (p)X∗

P (p)}︸ ︷︷ ︸
= 1

E{X∗
d(n)}︸ ︷︷ ︸

= 0

E{W (p)}︸ ︷︷ ︸
= 0

= 0, (B.9)

E{γ∗α} = E{
∑

q 6=p

1√
Ep

XP (p)W ∗(p)Hp,qXP (q)X∗
P (p)}

=
1√
Ep

∑

q 6=p

E{Hp,q}E{XP (p)X∗
P (p)}︸ ︷︷ ︸

= 1

E{W ∗(p)}︸ ︷︷ ︸
= 0

= 0, (B.10)

E{γ∗β} = E{
∑

n6=p,q

√
Ed

Ep

XP (p)W ∗(p)Hp,nXd(n)X∗
P (p)}

=

√
Ed

Ep

∑

n6=p,q

E{Hp,n}E{XP (p)X∗
P (p)}︸ ︷︷ ︸

= 1

E{X∗
d(n)}︸ ︷︷ ︸

= 0

E{W ∗(p)}︸ ︷︷ ︸
= 0

= 0, (B.11)

and

E{γ∗γ} = E{ 1

Ep

XP (p)W ∗(p)W (p)X∗
P (p)}

=
1

Ep

E{XP (p)X∗
P (p)}︸ ︷︷ ︸

= 1

E{W ∗(p)W (p)}︸ ︷︷ ︸
= σ2

w

=
σ2

w

Ep

. (B.12)
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Hence,equation (B.3) can be expressed by:

E{W ′∗
P (p)W

′

P (p)} =
∑

q 6=p

E{|Hp,q|2} +
Ed

Ep

∑

n6=p,q

E{|Hp,n|2} +
σ2

w

Ep

=
σ2

ICI + σ2
w

Ep

, (B.13)

where

σ2
ICI = Ep

∑

q 6=p

E{|Hp,q|2} + Ed

∑

n6=p,q

E{|Hp,n|2} (B.14)

is the power of ICI from other subcarriers rather than the pth subcarrier of interest.

B.2 Proof of Effective Noise Statistics in Data

Symbol Channel Estimation for SISO-OFDM

System

In Chapter 3 Section 3.3.3, the effective noise in the data symbol channel estimation

for SISO-OFDM System is given by:

W
′

d(m) =
∑

n6=m

Hm,n
Xd(n)X̂∗

d(m)√
|X̂d∈Θ|2

+
∑

p6=m

Hm,p

√
EpXP (p)X̂∗

d(m)√
Ed|X̂d∈Θ|2

+
W (m)X̂∗

d(m)√
Ed|X̂d∈Θ|2

, (B.15)

where the symbol index superscript (i) is dropped for brevity. Assuming that the

pilot symbols XP (p), the data symbol Xd(n) and Xd(m), and the noise sample

W (m) are independent, the expectation of W
′

d(m) is given by:

E{W ′

d(m)} =
∑

n6=m

Hm,n

= 0︷ ︸︸ ︷
E{Xd(n)} X̂∗

d(m)}√
|X̂d∈Θ|2

+
∑

p6=m

Hm,p

√
Ep

= 0︷ ︸︸ ︷
E{XP (p)} X̂∗

d(m)√
Ed|X̂d∈Θ|2

+

= 0︷ ︸︸ ︷
E{W (m)} X̂∗

d(m)√
Ed|X̂d∈Θ|2

= 0. (B.16)
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Denote α =
∑

n6=m

Hm,n
Xd(n)X̂∗

d
(m)√

|X̂d∈Θ|2
, β =

∑
p6=m

Hm,p

√
EpXP (p)X̂∗

d
(m)√

Ed|X̂d∈Θ|2
and γ =

W (m)X̂∗
d
(m)√

Ed|X̂d∈Θ|2
,

the variance of W
′

d(m) can be obtained by:

E{W ′∗
d (m)W

′

d(m)} = E{(α + β + γ)∗(α + β + γ)}
= E{α∗α + α∗β + α∗γ + β∗α + β∗β + β∗γ

+γ∗α + γ∗β + γ∗γ}, (B.17)

where

E{α∗α} = E{
∑

n6=m

∑

n′ 6=m

1

|X̂d∈Θ|2
X̂d(m)X∗

d(n)H∗
m,nHm,n

′Xd(n
′

)X̂∗
d(m)}

=
1

|X̂d∈Θ|2
∑

n6=m

E{H∗
m,nHm,n}E{X∗

dXd(n)}︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)︸ ︷︷ ︸

≈ |X̂d∈Θ|2

≈
∑

n6=m

E{|Hm,n|2}, (B.18)

E{α∗β} = E{
∑

n6=m

∑

p6=m

√
Ep√

Ed|X̂d∈Θ|2
X̂d(m)X∗

d(n)H∗
m,nHm,pXP (p)X̂∗

d(m)}

=

√
Ep√

Ed|X̂d∈Θ|2
∑

n6=m

∑

p 6=m

E{H∗
m,nHm,p}E{X∗

d(n)}︸ ︷︷ ︸
= 0

·E{XP (p)}︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)

= 0, (B.19)

E{α∗γ} = E{
∑

n6=m

1√
Ed|X̂d∈Θ|2

X̂d(m)X∗
d(n)Hm,nW (m)X̂∗

d(m)}

=
1√

Ed|X̂d∈Θ|2
∑

n6=m

E{Hm,n}E{X∗
d(n)}︸ ︷︷ ︸

= 0

E{W (m)}︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)

= 0, (B.20)

E{β∗α} = E{
∑

p 6=m

∑

n6=m

√
Ep√

Ed|X̂d∈Θ|2
X̂d(m)X∗

P (p)H∗
m,pHm,nXd(n)X̂∗

d(m)}
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=

√
Ep√

Ed|X̂d∈Θ|2
∑

p6=m

∑

n6=m

E{H∗
m,pHm,n}E{X∗

P (p)}︸ ︷︷ ︸
= 0

·E{Xd(n)}︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)

= 0, (B.21)

E{β∗β} = E{
∑

p6=m

∑

q 6=m

Ep

Ed|X̂d∈Θ|2
(p)X̂d(m)X∗

P (p)H∗
m,pHm,qXP (q)X̂∗

d(m)}

=
Ep

Ed|X̂d∈Θ|2
∑

p6=m

E{H∗
m,pHm,p}E{X∗

P (p)XP (p)}︸ ︷︷ ︸
= 1

X̂d(m)X̂∗
d(m)︸ ︷︷ ︸

≈ |X̂d∈Θ|2

≈ Ep

Ed

∑

p6=m

E{|Hm,p|2}, (B.22)

E{β∗γ} = E{
∑

p6=m

√
Ep

Ed|X̂d∈Θ|2
X̂d(m)X∗

P (p)H∗
m,pW (m)X̂∗

d(m)}

=

√
Ep

Ed|X̂d∈Θ|2
∑

p6=m

E{H∗
m,p}E{W (m)}︸ ︷︷ ︸

= 0

X∗
P (p)︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)

= 0, (B.23)

E{γ∗α} = E{
∑

n6=m

1√
Ed|X̂d∈Θ|2

X̂d(m)W ∗(m)Hm,nXd(n)X̂∗
d(m)}

=
1√

Ed|X̂d∈Θ|2
∑

n6=m

E{Hm,n}E{W ∗}︸ ︷︷ ︸
= 0

E{Xd(n)}︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)

= 0, (B.24)

E{γ∗β} = E{
∑

p6=m

√
Ep

Ed|X̂d∈Θ|2
X̂d(m)W ∗(m)Hm,pXP (p)X̂∗

d(m)}

=

√
Ep

Ed|X̂d∈Θ|2
∑

p6=m

E{Hm,p}E{W ∗}︸ ︷︷ ︸
= 0

E{XP (p)}︸ ︷︷ ︸
= 0

X̂d(m)X̂∗
d(m)

= 0, (B.25)
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and

E{γ∗γ} = E{ 1

Ed|X̂d∈Θ|2
X̂d(m)W ∗(m)W (m)X̂∗

d(m)}

=
1

Ed|X̂d∈Θ|2
E{W ∗(m)W (m)}︸ ︷︷ ︸

= σ2
w

X̂d(m)X̂∗
d(m)︸ ︷︷ ︸

≈ |X̂d∈Θ|2

≈ σ2
w

Ed

. (B.26)

Hence,equation (B.17) can be expressed by:

E{W ′∗
d (m)W

′

d(m)} ≈
∑

n6=m

E{|Hm,n|2} +
Ep

Ed

∑

p 6=m

E{|Hm,p|2} +
σ2

w

Ed

=
σ2

ICI + σ2
w

Ed

, (B.27)

where

σ2
ICI = Ed

∑

n6=m

E{|Hm,n|2} + Ep

∑

p 6=m

E{|Hm,p|2} (B.28)

is the power of ICI from other subcarriers rather than the mth subcarrier of interest.
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Appendix C

C.1 Proof of Cramér-Rao Lower Bound for Iter-

ative Channel Estimation

In this Appendix, we first introduce the Minimum Variance Unbiased (MVU) esti-

mator, then we calculate the Cramér-Rao Lower Bound (CRLB) of OFDM channel

estimator and show that it equals the MSE of an iterative MLE and hence iterative

MLE is the MVU. Defining a mathematical model (i.e. PDF) p(x; θ), where x is

the observation data set with N samples and θ is the parameter of interest, accord-

ing to estimation theory [97], an estimator being MVU estimator should satisfy

following two conditions. Firstly, the estimator has to be unbiased, that is:

E{θ̂} = θ. (C.1)

Secondly, the estimator has to have a minimum variance, i.e.

θ̂MV U = arg min
θ̂

E{|θ̂ − E{θ̂}|2}. (C.2)

The variance of any unbiased estimator θ̂ must be lower bounded by the CRLB,

with the variance of the MVU estimator attaining the CRLB. The CRLB is defined

as:

E{|θ̂ − E{θ̂}|2} ≥ 1

−E[∂2 ln p(x;θ)
∂θ2 ]

, (C.3)

and

E{|θ̂MV U − E{θ̂MV U}|2} =
1

−E[∂2 ln p(x;θ)
∂θ2 ]

. (C.4)

In some cases the MVU estimator may not exist. The MLE approach is an

alternative method in cases where the PDF is known. With MLE the unknown
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parameter is estimated by maximizing the PDF, i.e.

θ̂MLE = arg max
θ

= p(x; θ). (C.5)

It can be shown that θ̂MLE is asymptotically unbiased:

lim
N→∞

E{θ̂MLE} = θ, (C.6)

and asymptotically efficient(it can achieve the CRLB):

lim
N→∞

E{|θ̂MLE − E{θ̂MLE}|2} = CRLB. (C.7)

In this Appendix, dropping the symbol time index i for brevity, equation (3.55)

can be rewritten as:

ĤMLE = Gh
′

+ G(GHG)−1GH(X̂′)−1W
′

= H
′

+ W
′′

, (C.8)

and it can be observed that H
′
is equivalent to a linear transform of h

′
, W

′′
is the

effective noise with Gaussian distribution N (0, σ
′

w

2
). Hence, the asymptotically

unbiased property is satisfied as:

E{ĤMLE} = Gh
′

= H
′

. (C.9)

To show the asymptotically efficient property of the MLE, we first compute the

CRLB and compare it with the MSE of ĤMLE. Defining H
′

R and H′
I as the real

and imaginary components of H
′
, and defining Ξ = (H

′T
R ,H

′T
I )T , the (i, j)th element

of Fisher information matrix for Ξ is given by:

[F]i,j = −E[
∂2 ln p(ĤMLE; Ξ)

∂Ξi∂Ξj

], (C.10)

where p(ĤMLE; Ξ) is the probability density function of ĤMLE given Ξ [97], which

is computed as:

p(ĤMLE; Ξ) =
1

(πσ′

w
2)N

exp{− 1

σ′

w
2 (ĤMLE − Gh

′

)H(ĤMLE − Gh
′

)}.(C.11)

Hence, by substituting (C.11) into (C.10), the Fisher information matrix is obtained
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as [98]:

F =
2

σ′

w
2

[
ℜ{GHG} −ℑ{GHG}
ℑ{GHG} ℜ{GHG}

]
. (C.12)

Then the inverse of Fisher information matrix is given by:

F−1 =
2

σ′

w
2

[
ℜ{(GHG)−1} −ℑ{(GHG)−1}
ℑ{(GHG)−1} ℜ{(GHG)−1}

]
. (C.13)

Therefore, the CRLB is given by:

CRLB(ĤMLE) = Tr(GF−1GH)

= σ
′

w

2
Tr(G(GHG)−1GH)

=
σ

′

w

2

N
Tr(GGH). (C.14)

which equals to the MSE of MLE in equation (3.59).
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