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Abstract

In this thesis, iterative detection and estimation algorithms for digital communications systems in the
presence of parametric uncertainty are explored and further developed. In particular, variational

methods, which have been extensively applied in other research fields such as artificial intelligence
and machine learning, are introduced and systematically used in deriving approximations to the
optimal receivers in various channel conditions. The key idea behind the variational methods is to
transform the problem of interest into an optimization problem via an introduction of extra degrees
of freedom known as variational parameters. This is done so that, for fixed values of the free
parameters, the transformed problem has a simple solution, solving approximately the original
problem.

The thesis contributes to the state of the art of advanced receiver design in a number of ways.
These include the development of new theoretical and conceptual viewpoints of iterative turbo-
processing receivers as well as a new set of practical joint estimation and detection algorithms.
Central to the theoretical studies is to show that many of the known low-complexity turbo receivers,
such as linear minimum mean square error (MMSE) soft-input soft-output (SISO) equalizers and
demodulators that are based on the Bayesian expectation-maximization (BEM) algorithm, can be
formulated as solutions to the variational optimization problem. This new approach not only provides
new insights into the current designs and structural properties of the relevant receivers, but also
suggests some improvements on them.

In addition, SISO detection in multipath fading channels is considered with the aim of obtaining
a new class of low-complexity adaptive SISOs. As a result, a novel, unified method is proposed and
applied in order to derive recursive versions of the classical Baum-Welch algorithm and its Bayesian
counterpart, referred to as the BEM algorithm. These formulations are shown to yield
computationally attractive soft decision-directed (SDD) channel estimators for both deterministic and
Rayleigh fading intersymbol interference (ISI) channels.

Next, by modeling the multipath fading channel as a complex bandpass autoregressive (AR)
process, it is shown that the statistical parameters of radio channels, such as frequency offset, Doppler
spread, and power-delay profile, can be conveniently extracted from the estimated AR parameters
which, in turn, may be conveniently derived via an EM algorithm. Such a joint estimator for all
relevant radio channel parameters has a number of virtues, particularly its capability to perform
equally well in a variety of channel conditions.

Lastly, adaptive iterative detection in the presence of phase uncertainty is investigated. As a result,
novel iterative joint Bayesian estimation and symbol a posteriori probability (APP) computation
algorithms, based on the variational Bayesian method, are proposed for both constant-phase channel
models and dynamic phase models, and their performance is evaluated via computer simulations.

Keywords: Bayesian inference and estimation, EM algorithm, frequency offset estimation,
turbo receivers
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Symbols and abbreviations

A extended (baseband) AR coefficient matrix (p(L + 1) × p(L + 1))

A extended (complex bandpass) AR coefficient matrix (p(L + 1)× p(L +

1))

Āi ith order (baseband) AR coefficient matrix ((L + 1) × (L + 1))

Ai ith order (complex bandpass) AR coefficient matrix ((L+1)× (L+1))

al lth diagonal element of A1

Ãl matrix including the AR coefficients of the lth channel tap (p × p)

al lth column of AT

Ak,l(j) a set used in defining the approximate trellis branch probabilities

APPd(s(k)) a posteriori probability of the symbol sk in the presence of the deter-

ministic channel

APPp(s(k)) a posteriori probability of the symbol sk in the presence of the random

channel

B matrix of the MA model parameters ((L + 1) × (q + 1)(L + 1))

Bi ith submatrix of B ((L + 1) × (L + 1))

bl lth column of BT

Bd Doppler spread of the fading channel

Bk(l) a set used in defining the forward-backward processing SISO (BCJR)

algorithm

Ck(j) a set used in defining the forward-backward processing SISO (BCJR)

algorithm

C set of complex numbers

C, c, ck constant

C set of code words (i.e., code)

Cn code applied to the signal at the transmitter antenna n

Ch covariance matrix of the FS fading channel

Chl
normalized covariance matrix of the lth fading channel tap

Chm,n,l
(i) autocorrelation function of l-th channel tap of the subchannel between

antennas m and n

Cw̄(k)(i) covariance matrix of the AR process noise vector w̄(k) ((L+1)× (L+

1))
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cn,k,CMF filter coefficients of the LCMF SISO detector (M(K + L) × 1)

dn,k degree of the symbol node for sn(k)

D(·‖·) Kullback Leibler divergence

D̃(k) data matrix of the state-space model related to the SDD-KS (JL+1 ×
p(L + 1))

D̃e(k) data matrix of the state-space model related to the SDD-RCKS ((L +

1)JL+1 × p(L + 1))

Dk(j) a set used in defining the forward-backward processing SISO (BCJR)

algorithm

e(k) output of the FED at time k

en,k unit vector (NK × 1)

E(·) posterior log likelihood of the argument

En,k energy of the symbol sn(k) at the receiver

Eb energy of information bit

Es received energy per symbol

F set of CIR snapshots

F̃l set of channel values belonging to the lth channel path

F(Q) variational free energy (defined with respect to trial distribution Q)

FBethe(Q) variational Bethe free energy

FHelmholtz Helmholz free energy

Fk(l) a set used in defining the forward-backward processing SISO (BCJR)

algorithm

f(k) vector obtained by concatenating samples of the frequency shifted chan-

nel impulse response and its delayed versions at time k (in a single an-

tenna system) (p(L + 1) × 1)

f(k) vector of samples of the frequency shifted impulse response at time k

((L + 1) × 1)

f̃l(k) vector of channel values belonging to the lth channel tap at time k (p×1)

fl(k) value of the lth frequency shifted channel tap in a single antenna system

at time instance k

Gk Kalman gain factor

G(·, ·) inverse variational free energy functional

Gk(·, ·, ·) inverse variational free energy functional corresponding to the kth re-

ceived signal sample

G extended matrix of standard deviations of the AR process noise samples

8



(p(L + 1) × (L + 1))

G diagonal matrix of standard deviations of the AR process noise samples

((L + 1) × (L + 1))

gl variance of the l-th element of the process noise vector w̄(k)

g(t) time-continuous impulse response of the receiver front-end filter

H(·) entropy of the argument

HBethe(·) Bethe entropy

h vector of complex time-varying channel gains (MNLch(K +L)×1) or

impulse response of the time-invariant channel (MN(L + 1) × 1)

h̆m,n vector of complex time-varying channel gains for the subchannel be-

tween the mth receiver and the nth transmitter antenna (Lch(K+L)×1)

hm,n,l vector of complex time-varying channel gains for the lth tap of the

subchannel between the mth receiver and the nth transmitter antenna

((K + L) × 1)

hm,n,l(k) value of the lth channel tap of the subchannel between antennas n and

m at time instance k

hl(k) value of the lth channel tap in a single antenna system at time instance

k

h(k) vector of samples of the impulse responses of all subchannels at time k

(MN(L + 1) × 1)

h(k) vector obtained by concatenating samples of the channel impulse re-

sponse and its delayed versions at time k (in a single antenna system)

(p(L + 1) × 1)

hm(k) vector of samples of the impulse responses from all transmitter antennas

to the mth receiver antenna at time k (N(L + 1) × 1)

hm,n(k) vector of samples of the impulse response from the nth transmitter an-

tenna to the mth receiver antenna at time k ((L + 1) × 1)

h̄m,n(k) kth column vector of the subchannel convolution matrix Hm,n ((K +

L) × 1)

H channel convolution matrix including the effects of frequency instabili-

ties (M(K + L) × NK)

Hm,n channel convolution matrix for the subchannel between the mth receiver

and the nth transmitter antenna ((K + L) × K)

i discrete index

I0(·) zeroth order modified Bessel function of the first kind
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I1(·) first order modified Bessel function of the first kind

IM identity matrix (M × M )

IC(·) indicator function for the code C

I(·) information function

Ie(·) empirical information function

I information matrix

Ic complete-data information matrix

Im missing information matrix

j index for the constellation points

J number of symbol constellation points

J0 zero-order Bessel function of the first kind

k discrete time index

K number of symbols in the data block

Kdata number of data symbols in a transmitted block of symbols

Kpre number of symbols in the preamble

Kprefix number of symbols in the cyclic prefix

Kpilot number of pilot symbols in the transmission frame

Ktail number of tail symbols

k(k, j) running gain vector of the SDD-RLS algorithm ((L + 1) × 1)

l channel tap index

L degree of channel memory

Lch length of the channel impulse response in each subchannel

L(·) log likelihood function

Lc(·) complete-data log likelihood function

m receiver antenna index

M number of receiver antennas

n transmitter antenna index

ñl(k) receiver noise of the state-space model corresponding to the lth channel

path

N number of transmitter antennas

N0 receiver noise spectral density

NinnerIter number of inner iterations in the turbo receiver

NouterIter number of outer iterations in the turbo receiver

p order of the autoregressive model describing the fading dynamics

p(·|·) conditional probability distribution
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p(·) probability density function

P (·) probability mass function

pr(·) conditional distribution of the argument given the received signal se-

quence r

P(k, j) running inverse auto-correlation matrix of the SDD-RLS algorithm

((L + 1) × (L + 1))

P(k|K) error covariance of FI Kalman smoother

p(t) time-continuous impulse response of the pulse-shaping filter

q order of the moving averaging model describing the fading dynamics

qn,k trial “factor” distribution corresponding to the symbol sn(k)

qk trial “factor” distribution corresponding to the symbol vector s(k)

qx(x) trial “factor” distribution which is a function of variable x

qx(x) trial “factor” distribution which is a function of variable vector x

Q(·) variational distribution function

Q(n)(·) variational distribution function for the nth substructure of structured

MF approximation

QBMF(·) variational distribution corresponding to Bayesian mean field approxi-

mation

QMF(·) variational distribution corresponding to naive mean field approxima-

tion

Q(·|·) objective function of the EM algorithm

r vector of received signal samples over the processing window (M(K +

L) × 1)

rm vector of received signal samples belonging to the mth receiver antenna

((K + L) × 1)

r(k) vector of received signal samples at time instance k (M × 1)

r̃(k) received signal vector of the state-space model related to the SDD-KS

(JL+1 × 1)

rm(k) received signal sample at the mth receiver antenna at time instance k

r(k) received signal sample at a single receiver antenna at time instance k

R set of real numbers

s vector of transmitted information symbols (in one data block) collected

from all transmitter antennas (NK × 1)

sn vector of transmitted information symbols (in one data block) from the

nth transmitter antenna (K × 1)
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s
e
n cyclically extended vector of transmitted information symbols from the

nth transmitter antenna ((K + Kprefix) × 1)

s
cp
n cyclic prefix for the nth transmitter antenna (Kprefix × 1)

sn(k) information symbol transmitted from the nth transmitter antenna at time

instance k

s vector of soft symbols (soft input to the linear SISO detector) (NK×1)

sn vector of soft symbols (soft input to the linear SISO detector) corre-

sponding to the nth transmitter antenna signal (K × 1)

sn(k) soft symbol value (soft input to the linear SISO detector)

s(k) vector of all symbols that are contributing to the received signal at time

k (N(L + 1) × 1)

s(k) zero-padded symbol vector at time instance k (in a single antenna sys-

tem) (p(L + 1) × 1)

sn(k) vector of symbols transmitted from the nth transmitter antenna that are

contributing to the received signal at time k ((L + 1) × 1)

śn(k) trellis state vector for the nth Markov chain at time k (L × 1)

S discrete symbol space

T temperature

Ts length of a symbol period

T
(n)
k (·, ·, ·) trellis check function at time k for the nth subsystem

U(Q) variational average energy (defined with respect to trial distribution Q)

v vector of receiver noise samples over the processing window (M(K +

L) × 1)

vm vector of receiver noise samples pertaining to the mth receiver antenna

((K + L) × 1)

v(k) vector of receiver noise samples at time instance k (M × 1)

ṽ(k) noise vector of the state-space model related to the SDD-KS (JL+1×1)

ṽe(k) noise vector of the state-space model related to the SDD-RCKS ((L +

1)JL+1 × 1)

vm(k) receiver noise sample at the mth receiver antenna at time instance k

v(k) receiver noise sample at a single receiver antenna at time instance k

v̈l(k) noise component pertaining to the lth multipath at time instance k

w̄(k) vector of AR process noise samples at time instance k ((L + 1) × 1)

w(k) vector of complex bandpass AR process noise samples at time instance

k ((L + 1) × 1)
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w̄l(k) AR process noise sample pertaining to the lth channel tap at time in-

stance

xl(k) lth multipath component of the received signal

x̃(k) received signal vector of the state-space model related to the SDD-

RCKS ((L + 1)JL+1 × 1)

x̃l(k) received signal vector of multipath l of the state-space model related to

the SDD-RCKS (JL+1 × 1)

x̃l,j(k) received signal sample (pertaining to the lth multipath component and

the jth hypothetic value of the data vector) of the state-space model

related to the SDD-RCKS

x̂l,j(k) pseudo-observation pertaining to the lth multipath component and the

jth hypothetic value of the data vector

x̂(k) vector of averaged pseudo-observations ((L + 1) × 1)

Xn matrix for the transmitted symbols from the nth transmitter antenna

((K + L) × Lch(K + L))

Xn,l diagonal matrix of the transmitted symbols from the nth transmitter an-

tenna delayed by l symbol period ((K + L) × (K + L))

X̄ matrix for the transmitted symbols distorted by the frequency instabili-

ties (M(K + L) × MNLch(K + L))

X̄n matrix for the transmitted symbols from the nth transmitter antenna

which are distorted by the frequency instabilities (M(K + L) ×
MLch(K + L))

X complete data set of the EM algorithm

Y incomplete data set of the EM algorithm

yl(k) output of the lth channel path at time k

z(k, j) running cross-correlation vector of the SDD-RLS algorithm ((L+1)×1)

Z normalizing constant

αj discrete (complex) symbol value

α(k, l) forward running product sum variable of the BCJR algorithm

β(k, l) backward running product sum variable of the BCJR algorithm

γ(k, l, m) conditional state probability of the trellis diagram

γn,k normalizing constant of the detector output pdf corresponding to the

symbol sn(k)

δ(i) Dirac delta function

∆(k) random phase increment at time k
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ζ a scaling factor used in the variational Bayesian-based soft symbol map-

per

Θ parameter vector

θi ith parameter set

λ forgetting factor

Λ diagonal matrix of forgetting factors

Λk diagonal matrix of time-varying forgetting factors at time k

λ1,n,k extrinsic information on the symbol sn(k) produced by the SISO detec-

tor

λ2,n,k extrinsic information on the symbol sn(k) produced by the channel de-

coder

µ step size parameter

νl carrier frequency shift pertaining to the l-th channel tap

ν carrier frequency offset equal to all channel taps

ξ attenuation of the AR spectrum relative to the peak value

ξj jth component vector in the vector space spanned by the symbol space

S ((L + 1) × 1)

Ξ(k, j) running auto-correlation matrix of the SDD-RLS algorithm ((L + 1) ×
(L + 1))

ρ signal-to-noise ratio

̺2
l relative power level of the lth channel tap

σ2
∆ variance of the random phase increment

σ2
hm,n,l

variance of the fading gain hm,n,l

σ2
ñl

variance of the noise ñl

σ2
v variance of receiver noise

σ2
v̈l

variance of noise component pertaining to the lth multipath

σ2
sk

variance of the soft symbol estimate at time k

σ2
i,n,k variance of the soft symbol estimate (input to the detector)

σ2
o,n,k variance of the soft symbol estimate (output of the detector)

σ̄i vector of soft symbol variances (input to the detector) (NK × 1)

σ̄o vector of soft symbol variances (output of the detector) (NK × 1)

Σi diagonal covariance matrix of soft symbol estimates (input to the detec-

tor) (NK × NK)

Σo diagonal covariance matrix of soft symbol estimates (output of the de-

tector) (NK × NK)
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Σk diagonal covariance matrix of soft symbol estimates at time k ((L+1)×
(L + 1))

Υ diagonal matrix needed for computation of the CRLB for the CFO (K×
K)

φ carrier phase

φ(k) carrier phase at time k

Φk conditional covariance of the CIR at time k given the received signal up

to time K

Φk|k conditional covariance of the CIR at time k given the received signal up

to time k

Φk−1|k conditional covariance of the CIR at time k−1 given the received signal

up to time k

ϕ(k, j) jth value of the trellis branch APP at time k

ϕ′(k, j) jth value of the approximate trellis branch APP computed by the for-

ward processor of the BCJR algorithm at time k

ϕ̆(k, j) jth value of the symbol APP at time k

Ψk conditional covariance between the CIR at time k − 1 and the CIR at

time k given the received signal up to time K (for the complex bandpass

signal model)

Ψk|k conditional covariance between the CIR at time k − 1 and the CIR at

time k given the received signal up to time k (for the complex bandpass

signal model)

ψl,k lth column of Ψk

ψl,k|k lth column of Ψk|k

Ψ̄k conditional covariance between the CIR at time k − 1 and the CIR at

time k given the received signal up to time K (for the low-pass signal

model)

Ψ̄k|k conditional covariance between the CIR at time k − 1 and the CIR at

time k given the received signal up to time k (for the low-pass signal

model)

ωm,n,l(k) frequency instability function related to the l-th transmission path be-

tween antennas n and m

ωl(k) frequency instability function related to the l-th transmission path in a

single antenna system

ωm,n(k) frequency instability function related to the carrier between antennas n
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and m (equal for all channel taps)

Ωm,n diagonal matrix of complex phasors due to carrier frequency instabili-

ties for the subchannel between the mth receiver antenna and the nth

transmitter antenna ((K + L) × (K + L))

Ω(k) diagonal matrix of complex phasors due to frequency instabilities at

time instance k (MN(L + 1) × MN(L + 1))

Ω̄(k) diagonal matrix of complex phasors padded with a vector of ones at time

instance k (in a single antenna system) (p(L + 1) × p(L + 1))

Ωm(k) diagonal matrix of complex phasors due to frequency instabilities at the

mth receiver antenna at time instance k (N(L + 1) × N(L + 1))

Ωm,n(k) diagonal matrix of complex phasors due to frequency instabilities for the

subchannel between the mth receiver antenna and the nth transmitter

antenna at time instance k ((L + 1) × (L + 1))

ΩD Doppler angular frequency

3GPP Third Generation Partnership Project

A-SISO adaptive soft-input soft-output

ABW adaptive Baum-Welch

APP a posteriori probability

AR autoregressive

ARMA autoregressive moving average

AWGN additive white Gaussian noise

BB burst builder

BCJR Bahl, Cocke, Jelinek, Raviv

BD block deinterleaver

BEM Bayesian expectation maximization

BER bit error rate

BI block interleaver

BMFA Bayesian mean field approximation

BP belief propagation

BPSK binary phase shift keying

BWA Baum-Welch algorithm

CA code-aided

CC convolutional code

CDMA code division multiple access

CE channel encoder
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CFO carrier frequency offset

CIR channel impulse response

CP cyclic prefix

CPM continuous phase modulation

CRLB Cramer-Rao lower bound

CSI channel state information

CT continuous-time

DA data-aided

DPLL digital phase locked loop

EM expectation maximization

EP expectation propagation

EKS extended Kalman smoother

EXIT extrinsic information transfer

FDE frequency domain equalizer

FE front-end

FED frequency error detector

FER frame error rate

FF flat-fading

FFT fast Fourier transform

FG factor graph

FI fixed interval

FL fixed lag

FS frequency selective

FSM finite state machine

HDD hard decision-directed

HMM hidden Markov model

ISI intersymbol interference

KL Kullback Leibler

KF Kalman filter

KS Kalman smoother

LCMF linear channel matched filter

LDPC low-density parity-check

LFG loopy factor graph

LMMSE linear minimum mean square error

LMS least mean square
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LPF low-pass filter

MA moving average

MAP maximum a posteriori

MAPSD maximum a posteriori symbol detector

MCE minimum cross-entropy

MCRLB modified Cramer-Rao lower bound

MF mean field

MFA mean field annealing

MF-EM mean field expectation maximization

MFB matched filter bound

MIMO multiple-input multiple-output

ML maximum likelihood

MLSD maximum likelihood sequence detector

MM-AHE Morelli and Mengali ah-hoc estimator

MMSE minimum mean square error

MMV Morelli, Mengali and Vitetta (estimator)

M-QAM M -level quadrature amplitude modulation

MSE mean square error

NCO numerically controlled oscillator

NDA non-data-aided

OFDM orthogonal frequency-division multiplexing

OSA optimal soft-output algorithm

pdf probability density function

PLL phase-locked loop

PO pilot only

PS product-sum

PSAE pilot symbol aided estimator

PSK phase shift keying

PSP per-survivor processing

QPSK quadrature phase shift keying

RLS recursive least square

RC reduced complexity

RC-AR reduced complexity autoregressive

RCKF reduced complexity Kalman filter

RCKS reduced complexity Kalman smoother
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RM resource management

rms root mean square

SAGE space alternating generalized EM algorithm

SC single carrier

SDD soft decision-directed

SIC soft interference canceller

SISO soft-input soft-output

SNR signal-to-noise ratio

SP sum-product

ST space-time

TFDE frequency domain turbo equalizer

uKF unweighted Kuo and Fitz (estimator)

uMMV unweighted Morelli, Mengali and Vitetta (estimator)

VA Viterbi algorithm

VB variational Bayesian

VBE variational Bayesian E-step

VBM variational Bayesian M-step

VCO voltage controlled oscillator

VD Viterbi detector

VE-LMS Viterbi estimator combined with least mean square channel estimator

VFEM variational free energy minimization

VMP variational message passing

WMF whitened matched filter

WSS wide sense stationary

WSSUS wide sense stationary uncorrelated scattering

ZF zero forcing

0l×k zero matrix or vector (l × k)

0L square zero matrix (L × L)

arg argument

arg(·) phase of the argument after reduced to interval [0 2π[

E[·] expectation operator

E[a|b] expectation of a given b

EQ[·] expectation under the distribution Q

f̂ estimate of the vector f

f̂(k|t) estimate of the time-varying vector process f(k) or time-invariant vector
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f at time k given the received signal up to time t (moreover, f̂(k|k) ≡
f̂(k))

(·)∗ complex conjugate of the argument

(·)T transpose of the argument

(·)H conjugate transpose of the argument

‖ · ‖ Euclidean vector norm

[A]l,k element at the l-th row and kth column of matrix A

[a]l l-th element of vector a

⊗ Kronecker product

∗ convolution for time-continuous signals

diag(· · · ) (with multiple arguments) diagonal or block diagonal matrix with the ar-

guments on the main diagonal or (with single vector argument) diagonal

matrix with the vector elements on the main diagonal

max maximum

ℑ(·) imaginary part of the argument

ℜ(·) real part of the argument

sign(·) sign of the argument

tr(·) trace of the matrix in the argument
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1 Introduction

Over the last decades, we have witnessed an explosive growth in cellular telephony,

portable computing, and, most recently, the mobile Internet. These trends suggest a

convergence of mobility and different data applications and, thus, a strong potential

for broadband wireless data communication. The ever increasing demand for new data

services together with device cost factors, network coverage issues, and a constantly

growing customer base set major challenges for system or network designers. The spec-

trum efficiency of the network can be increased in a number of ways, including designs

for efficient resource management (RM), advanced radio access methods, various in-

terference mitigation methods (e.g., using RM and/or various smart antenna concepts),

joint optimization of transmitter and receiver (e.g., link adaptation), and advanced re-

ceiver technology. The focus of this thesis is on the advanced receiver technology and,

in particular, iterative turbo-processing receivers and their adaptation to varying channel

conditions.

The increased demand for high data rate wireless communications will pose great

challenges for the system design to achieve high-throughput wireless transmission in

radio channels where the signals are corrupted by multipath propagation. The multi-

path dispersion causes intersymbol interference (ISI) where the number of interfering

symbols grows linearly with the data rate. Orthogonal frequency-division multiplexing

(OFDM) has been proposed as an effective anti-multipath technique, primarily because

it offers favorable trade-offs between performance and signal processing complexity in

severe multipath environments [44]. A strong competitor to the OFDM technique is a

cyclic prefix-based single carrier (CP-SC) transmission technique which enables similar

frequency domain equalization as the OFDM. Moreover, it does not possess the prop-

erty of a high peak-to-average power ratio, which is the major drawback of the OFDM

technique when considered for personal radio communications [69]. Multiple transmit-

ter and receiver antennas are also likely to be a viable solution in the future broadband

wireless systems, as the bandwidth efficiency of such a multiple-input multiple-output

(MIMO) channel is expected to increase enormously in a rich-scattering environment

[77].

In this thesis, a single carrier system with or without cyclic prefix is assumed as a

system model. The same system model with slightly varying details is used through-
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out the thesis for the sake of consistence and unity. However, many of the concepts

and algorithms developed in the thesis may be systematically extended to other system

models, including the OFDM and the code-division multiple access (CDMA) methods,

as well.

The main aim of this thesis is to develop likelihood-based joint detection and es-

timation algorithms for generic single carrier digital communications systems. The

likelihood-based methods have a number of favorable features, particularly their uni-

form treatment of uncertainty at all levels of detection and estimation processes. The

formalism also allows ready incorporation of prior knowledge into detection and esti-

mation processes as well as the seamless combination of such knowledge with received

data. The elegance of the likelihood-based processing, however, often comes at a sub-

stantial computational cost. For example, posterior distributions for data symbols re-

sulting from the incorporation of the received samples from the channel and prior infor-

mation from the decoder must be represented and updated, and this generally involves

high-dimensional summations or integrations.

Exact computation of posterior distributions, i.e., exact inference, may not be a vi-

able solution even in relatively simple settings, such as transmission of data symbols

over the additive white Gaussian noise (AWGN) channel in the presence of a single

unknown parameter. Therefore, the deterministic approximation methods, generally

known as variational methods, have widely been applied for inference and estimation

in various applications. For example, they have been extensively used in statistical

physics [198] and statistics [216]. In addition, these methods have also found many

applications in machine learning and artificial intelligence areas, particularly in the con-

text of graphical models [125, 124, 264]. In this thesis, variational methods are applied

to obtain feasible approximations to optimal receivers in digital communications.1 In

particular, many of the existing receiver structures are rigorously justified through the

variational bounding technique, and plenty of new ones are suggested.

The graphical models cited above facilitate understanding of complicated problems

at hand, serving as a representational platforms for exact or approximate probabilistic

calculations in the complex multivariate systems. In a fascinating way, they bring to-

gether graph theory and probability theory in a powerful formalism, providing a natural

1An optimal receiver is, in general, understood as a receiver that minimizes a bit error rate (BER) or a symbol

error rate (SER). However, in the presence of nonstochastic parametric uncertainty, the problem of optimal

detection defined in this strict sense may be ill-posed. Hence, another criterion for receiver optimization is

needed in that case.
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framework for formulating variations on the classical statistical signal processing archi-

tectures, as well as for exploring entirely new families of statistical models. In fact, algo-

rithms for computing basic statistical quantities such as likelihoods and marginal proba-

bilities have long been expressed in terms of recursions operating on associated graphs.

Examples include Markov models, Markov random fields, the forward-backward pro-

cessing algorithms [207, 199], as well as Kalman smoothing and the iterative turbo

decoding algorithms [137, 136, 159].

The basic intuition underlying variational methods is that complex systems can in

fact be probabilistically simple. For example, in systems characterized by densely con-

nected graphs, a central limit theorem may come into play, rendering the nodes rela-

tively insensitive to particular settings of values of their neighbors. Taking advantage

of these averaging phenomena can lead to simple yet accurate approximate inference

algorithms. Particularly the mean field inference algorithms have proven to be useful

in providing practical solutions to many complex statistical inference and estimation

problems [217].

The rest of this chapter is organized in the following way. First, the receiver tech-

niques for known and unknown channels are reviewed. Since excellent reviews on the

topic already exist in the open literature [232, 157], only the major steps in the develop-

ment of the receiver techniques are pointed out here. Then, the main contributions of

the thesis are explicitly stated and the organization for the rest of the thesis is outlined.

1.1 Receivers for known channels

In this section, a short historical survey of optimal receivers in known channels is pro-

vided first, followed by a survey of more recent developments of powerful iterative

turbo-processing receivers for coded signals in known channels. Major development

steps in these areas are pointed out, emphasizing theoretical and conceptual aspects of

receiver techniques more than applications.

1.1.1 Historical perspectives on optimal receivers

The start of the development of the optimal receivers for digital communications can

be traced back to the formulation of optimal detection algorithms for one-shot receivers

in the additive white Gaussian noise (AWGN) channel, based on various optimization

criteria. Perhaps the most celebrated of these receivers is the one which aims to maxi-
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mize the a posteriori probability of the transmitted data symbol, generally referred to

as the MAP receiver. The MAP receiver minimizes a symbol error rate, and that is

why it has been so popular over the years. An essential part of the MAP receiver is a

matched filter, which forms a set of sufficient statistics for symbol detection [204]. In

fact, the MAP receiver in the AWGN channel cross-correlates the received signal with

every possible transmitted signal. Therefore, the receiver is composed of a correlator or,

alternatively, a matched filter bank followed by a decision devise. Moreover, for signals

with unequal energies, bias terms have to be added to the output of each matched filter.

Early developments of these one-shot receivers are summarized in [127].

The optimal one-shot MAP receiver in a known frequency-selective channel is con-

ceptually a trivial modification of the MAP receiver in the AWGN channel. In this

case, the received signal is cross-correlated with every possible transmitted and chan-

nel filtered signal [127]. Importantly, these same detection principles can be directly

applied also to modern sequence detection receivers, including the MAP sequence and

symbol detectors for ISI channels. The MAP sequence detector is equivalent to the

more commonly used maximum likelihood sequence detector (MLSD) for equiproba-

ble data sequences. The MLSD receiver is essentially a one-shot receiver for the whole

transmitted data sequence and, hence, in the known frequency selective channel, it can

be implemented with the matched filter bank, which correlates the received signal with

every possible transmitted and channel distorted symbol sequence [155].

For brevity, the MAP symbol detector is hereafter referred to as the MAPSD. Sim-

ilarly to MLSD receivers, the MAPSD can also be formulated in terms of sequence

metrics which are further processed by exposing them to an exponential nonlinearity

and then to a multidimensional summation prior to making symbol decisions. On the

other hand, by using the causality and finite-memory properties associated with the

ISI channel, both MLSD and MAPSD can alternatively be formulated in terms of the

classical branch metrics [74].

A recursive version of the MLSD receiver, in a known time-invariant frequency-

selective channel, was first described in [76]. The receiver includes a cascade of a

matched filter and a noise-whitening filter prior to a Viterbi algorithm (VA). This kind

of whitened matched filter, when sampled at the symbol rate, was shown to form a set

of sufficient statistics to detect the sequence of data symbols [76]. A new formulation

of the MLSD receiver, avoiding the need for an explicit noise-whitening filter, was

presented in [241]. Comparison and some unification of different versions of the MLSD

receiver was presented in [34].
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Further extension of the MLSD receiver to known time- and frequency-selective

channels has lately been proposed in [101]. Particularly in the fast fading channels,

the Doppler diversity provided by the fading channel was shown to improve the per-

formance of the MLSD receiver. Similarly, a joint multipath-Doppler diversity gain

has been shown to be attainable by the use of spread spectrum signaling over known

frequency-selective time-varying channels [32, 220]. Specifically, using the canonical

channel decomposition technique, optimal and approximate “one-shot” receiver struc-

tures for doubly-spread channels were derived in [32] and in [220], respectively.2

There are in the literature at least three different recursive or sequential algorithms

for the calculation of the MAPSD in a known frequency-selective channel. First, a

fixed-delay MAPSD algorithm which updates the decision metrics of the trellis using

only forward recursions was proposed as early as in 1970 by Abend and Fritchman [2].

The computational complexity of the algorithm, however, grows exponentially with

a decision delay. As a remedy, a reduced complexity version of this algorithm with

parallel structures and some simplifications was proposed in [68]. Second, Chang and

Hancock derived a sequential block-based MAPSD algorithm, which uses both forward

and backward recursions, in the 1960’s [37]. Along with this invention, implementation

for long sequences became more feasible, since the complexity of this algorithm grows

only linearly with the number of the symbols in the block. In fact, an essentially identi-

cal algorithm was independently proposed in [24] and, ever since, has been extensively

used in processing of hidden Markov models (HMM) [206]. Another similar type of

algorithm was applied to the decoding of linear convolutional codes in [16]. Recently,

this forward-backward processing MAPSD algorithm has often been referred to as the

BCJR algorithm, according to authors of [16]. Third, a recursive version of the MAPSD

algorithm, which was called an optimal soft-output algorithm (OSA), was proposed in

[144]. It is a recursive fixed-delay algorithm like the detector by Abend and Fritchman,

but its complexity grows only linearly with the decision delay. The OSA algorithm

in [144] was derived for linearly modulated signals but has later been extended to the

continuous phase modulated (CPM) signals in [18].

Optimal decoding of coded signals is also based on the principle of cross-correlation

[170]. Again, the received signal is correlated with every possible transmitted signal,

which at this time must fulfill the constraints imposed by the channel code. When

multiple component codes, possibly combined into a single coding scheme, are imposed

2One-shot receivers were obtained by assuming ideal autocorrelation properties of pseudorandom codes.
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on the transmitted signal, which is then exposed to a known frequency-selective channel,

the cross-correlation at the receiver has to be performed over the signal set which fulfills

all code and channel constraints simultaneously.

Under the usual assumption of the received signal having finite memory in time, the

channel can be modeled as a finite state machine (FSM) and, hence, be described by a

trellis diagram. Also, if an encoder or a chain of encoders at the transmitter has a FSM

description, the behavior of the demodulator and the decoder can be described jointly

with a single composite trellis. Thus, an optimal sequence detector in such cases is

obtained simply by the VA operating on the composite trellis. Unfortunately, in many

practical cases, the number of states in the composite trellis becomes very large, and,

consequently, the implementation complexity becomes prohibitive. This is particularly

true if interleaving is used in between the encoder and the modulator at the transmit-

ter. Moher and Gulliver [170] proposed an iterative minimum cross-entropy (MCE)

decoding algorithm to reduce the complexity of direct decoding. The iterative MCE de-

coder essentially projects the estimated bit sequence distribution alternatively onto the

subspaces representing those distributions which satisfy one or more of the constraints

imposed by the respective FSM blocks. Unfortunately, the complexity of the MCE

decoder is still too high for many practical applications. Therefore, computationally

more efficient decoders, based on certain independence assumptions, were proposed.

In effect, these suboptimal decoders were shown to be conceptually similar to the turbo-

decoders which were invented and first introduced by Berrou et al. [28] on a more ad

hoc basis.

1.1.2 Iterative turbo-processing receivers

Early experiments with the turbo codes, constructed by arranging two simple convo-

lutional codes in parallel and permutating the input bit sequence to the second one,

provided a performance surprisingly close to the channel capacity in the AWGN chan-

nel [28] when decoded by an iterative decoding algorithm. Ever since, there has been a

huge upsurge of research interest in original turbo and related codes and their decoding

algorithms, in theoretical analysis as well as in the applications domain. To the great

astonishment of many researchers and practitioners, the turbo-principle as applied to de-

coding was shown to render the decoding of complex composite codes feasible while,

at the same time, retaining a good performance. Yet more importantly, the applicabil-

ity of the turbo-principle is not limited to the decoding of composite codes. It can be
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applied and, in fact, has been applied to a multitude of tasks gaining from the iterative

likelihood-based processing in one way or another. Iterative receivers, where different

subblocks like soft-input soft-output (SISO) demodulator/detector, SISO decoder, and

parameter estimators are iteratively interconnected by using turbo-processing, are often

called turbo receivers. Indeed, a typical paradigm for the turbo receivers is the intercon-

nection of special SISO modules which exchange probabilistic information with each

other, most commonly in the form of extrinsic information [50].

In regard to the theoretical aspects of the turbo codes, at the time they were invented

very little was understood about convergence properties and optimality of the associated

iterative decoding algorithm. Since then, however, many approaches have been taken to

shed more light onto these issues. These include analysis based on the nonlinear dynam-

ics of the iterative decoding systems [134, 3, 63, 235], encompassing density evolution

[63, 229], and extrinsic information transfer (EXIT)-chart-based [235] approaches as

special cases. On the other hand, a analysis method that is based on the signal-space

characterization of the iterative decoding algorithm [81] has been shown to be particu-

larly useful for analyzing the decoding of finite-length codes. The properties of turbo

and low-density parity-check (LDPC) codes were examined by using an information

geometrical framework in [116].

Furthermore, various analysis methods that are associated with the graphical mod-

eling techniques have turned out to be useful in exploring the properties of the iterative

decoding algorithms [4, 137, 136, 159, 259]. For instance, the standard turbo decoding

algorithm has been shown to be an instance of the generic belief propagation (BP) al-

gorithm, operating on the graphical model of the code, whereas the BP algorithm has

been linked to the minimization of the statistical physics functional called Bethe free

energy [265, 110]. Further insight into BP and its generalizations has been obtained via

the tree-based reparametrization framework [250].

The graphical modeling of the turbo code, or any turbo-processing receiver for that

matter, is based on the observation that the global objective function associated with

the data symbols or bits can be factorized into the product of conditional probability

density functions. In the graph, the conditional independencies between the symbols

are encoded by the missing edges between the corresponding nodes. Indeed, the turbo-

processing algorithms have been shown to be specific instances of more generic mes-

sage passing algorithms, variants of which are called generalized distributive law [4],

sum-product (SP) algorithms [137] or, BP algorithms. These operate on the “junction

graphs,” the “factor graphs,” and belief networks, respectively, all providing a graphical
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representation of the associated function factorization. In this thesis, the terms SP and

BP are used interchangeably.

As is well known, the message-passing algorithms realize an exact inference only in

the graphs which are cycle-free. However, the graphs representing the turbo-receivers

unfortunately include cycles and, therefore, in contrast to the iterative MCE algorithms

[170], there is no notion of “termination,” since the messages can travel around the

cycles indefinitely. There is, nevertheless, strong experimental evidence suggesting that

the turbo-processing algorithms in many cases attain a very close approximation of the

desired objective function. Moreover, it has been proven recently that any stationary

point of the SP algorithm operating on the loopy factor graph (LFG) can be interpreted

as a solution to the constrained free energy minimization problem [265, 110]—a result

which provides theoretical evidence for the fact that the turbo-processing algorithms

converge into something which makes sense.

In regard to the applications of turbo processing, the turbo receivers tuned up for

combating against the detrimental effects of ISI have widely been applied in differ-

ent forms in recent years. Generally speaking, in all of these schemes the equaliza-

tion/detection and decoding tasks are iteratively combined on the same set of received

data so that feedback information from the decoder is incorporated in one form or an-

other into the equalization/detection process. Since the frequency-selective channel can

be viewed as a rate-1 encoder which maps the discrete input alphabet into continuous-

valued complex numbers, the channel encoder at the transmitter concatenated with such

a channel can, from the receiver point of view, be considered a concatenated coding

system. Consequently, the turbo-processing can readily be applied [65]. In its standard

form, the SISO demodulator and the SISO decoder computes the symbol or bit a pos-

teriori probabilities (APPs) exactly while the information transfer between the blocks

takes place in the form of extrinsic information.

Regarding the SISO demodulator, exact computing of symbol APPs may, however,

in some cases become computationally infeasible. Difficulties due to high complexity

arise particularly in the wideband MIMO channels and in the code division multiple

access (CDMA) channels. Therefore, various approaches to reduce the computational

complexity of SISO demodulation in both single antenna and multiple antenna chan-

nels have appeared in recent years. Without even trying to be exhaustive, we refer to

[140, 238, 211, 51, 139, 79, 23, 221, 1, 226, 64, 98, 112] and references therein. Specif-

ically, the prefiltering of the received signal before APP computation was proposed as

a method for complexity reduction in [23], whereas in [79] the prefilter was tailored
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for the M-BCJR algorithm. In [51], it was shown that the SP algorithm operating on

the LFG, where the data symbols form a set of variable nodes, converges to a solution

which provides a good approximation for the exact APPs as long as the factor graph has

girth of at least 6. In [139], a similar approach was taken. Since the girth of the LFG

of the ISI channel is typically less than 6, a stretching technique was proposed in [51]

as a feasible method to obtain an equivalent girth-6 graph. In principle, the stretching

technique can be used to transform an arbitrary factor graph to an equivalent cycle-free

factor graph for which the SP algorithm produces exact APPs [137]. Of course, the

complexity of the SP algorithm operating on the transformed cycle-free factor graph is

considerably higher than in the original case.

Furthermore, linear SISO equalizers were proposed for single antenna systems in

[140, 255, 238, 211, 253] and for the multiple-input multiple-output (MIMO) channels

in [221, 1].3 They consist of forward and feedback finite impulse response filters which

are jointly optimized by using the minimum mean square error (MMSE) criterion. In

[140], the filter coefficients were computed under the assumption that perfect a priori

information on transmitted symbols is available, whereas in other cases the estimated a

priori information obtained from the decoder is taken into account in the computation

of the filter coefficients. Just recently, an interpretation of these devices as instances of

the SP algorithm operating on the suitably defined factor-graphs was given in [66].

Interestingly, the linear SISO detectors actually trace their history back to the work

of Taylor in the early 1970’s [233]. Specifically, an estimate feedback equalizer, as it

was called in [233], consists of essentially the same structural elements as the modern

block-processing linear SISO detectors. However, judged as being unrealizable, it was

replaced by a recursive MMSE decision feedback equalizer in practical receivers for

decades.

Other techniques to reduce the computational complexity of the turbo receivers

include the list sphere decoding [112], the semi-definite relaxation of the maximum-

likelihood (ML) detection problem [226], or sequential Monte Carlo methodology

[64, 98]. In CDMA systems, the idea of combining the multiuser detection process

iteratively with the channel decoding process has sparked off substantial research work.

3Although terms such as SISO equalization and turbo equalization are commonly used in the literature, it

may, however, be more appropriate to talk about SISO detection. Equalization refers to the techniques used

to cancel or reduce ISI at the receiver in order to allow memoryless or reduced-memory detection. In this

respect, the turbo receivers are rather dealing with SISO detection than equalization. Hence, the following

terminological agreement is made: the wording “linear SISO detection/detector” is used later in this thesis

when referring to the linear SISO devices that were previously known as SISO equalizers or turbo equalizers.
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As a result, a wide range of turbo multiuser receivers have emerged in recent years,

some of which are given in [169, 210, 5, 255, 67, 91, 92] and references therein. A uni-

fying framework, based on the factor graph representation of a multiuser channel and

the SP algorithm, was provided in [35], enabling an asymptotic performance analysis

of many existing receivers via the density evolution technique.

1.2 Receivers for channels with parametric uncertainty

In the presence of parametric uncertainty, detection must be adapted according to either

implicitly or explicitly estimated parameter values. Optimal receivers, as well as most

of their recursive and iterative approximations, apply parameter estimation implicitly,

so that the estimation is optimized for detection [102]. More practical adaptive receivers

can be obtained by carrying out estimation and detection either jointly or separately.

Typically, estimation can be separated from detection when the parameter values change

slowly in time. In that case, the parameter estimation can be done either from the

known data segment using pilot symbols or blindly, i.e., in the non-data-aided fashion.

The estimated parameter values are then exploited in detection as if they were true

parameter values.

In this section, a short overview, also encompassing some historical notes, of the

optimal receivers and receivers which are closely related to the optimal receivers is

given first. Then, adaptive receiver techniques for unknown ISI as well as for phase

uncertain channels are discussed, emphasizing the estimation methods for SISO blocks.

Finally, estimation methods for fading channel statistics and frequency offset are briefly

reviewed.

1.2.1 On optimal receivers and their approximations

An optimal receiver in the presence of parametric uncertainties, where the optimality

of the receiver is defined in the sense of providing exact MAP symbol decisions, exists

only if the unknown parameters are stochastic and the associated probability distribution

functions are known. Otherwise the optimal receiver is not defined because unknown

parameters cannot be averaged out from the decision metrics, i.e., the problem of op-

timal detection is ill-posed in the presence of nonstochastic uncertainty. However, as

will be discussed later, some related detection criterions can be applied in order to derive

practical receivers also in these channels. In most cases, optimality implies high com-
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plexity which is due to an infinite memory effect induced by the unknown parameters

[42].

The optimal MLSD and MAPSD receivers in the presence of random parameters

maximize the conditional likelihood function of data averaged over all random parame-

ters [244]. The optimal MAPSD receiver in the presence of uniformly distributed carrier

phase and timing phase was studied in the late 1970’s [70]. In particular, the MAP sym-

bol detector was formulated as a maximum of the averaged likelihood function, but a

closed-form solution to the maximum was not found. In general, the MAP detection

algorithm in the presence of random parameters can be obtained in closed-form only

in some special cases. Perhaps the most important of these special cases is formed

by linear Gaussian disturbances, which are ubiquitous and which typically emerge as

complex Gaussian distortion, such as Rayleigh or Ricean fading channels.

Thus, in the presence of a Rayleigh fading channel, the optimal MLSD and MAPSD

receivers are obtained by averaging the conditional likelihood function over the com-

plex Gaussian channel impulse response (CIR), assuming that the mean and covariance

matrix of the Gaussian fading process are known. Early developments of these fading

channel receivers trace their history back to the work of Kailath [127], who derived

an optimal one-shot MAP detector in the Rayleigh fast fading channel. The detector,

which is also often called the quadratic receiver, has an estimator-correlator structure,

where a minimum mean-square error (MMSE) estimation of the channel impulse re-

sponse is performed for every possible transmitted signal. In effect, the received signal

is cross-correlated with the estimated received signal for each possible transmitted data

signal. Importantly, Kailath’s estimator-correlator receiver structure can be readily gen-

eralized into the modern data sequence detectors. The optimal sequence detectors on

the Rayleigh fading channel have to calculate an MMSE estimate of the received signal

for every possible transmitted symbol sequence—a fact that was explicitly stated for

the MLSD in [42] and for the MAPSD in [222].

While the optimal ML detection poses no difficulty in known channels, the channel-

induced memory in the received signal samples causes remarkable computational chal-

lenges in the presence of unknown channels. In fact, no fixed complexity receiver is

optimal under these conditions [42]. Nevertheless, there have been many attempts to

fold the optimal quadratic receiver into a fixed-size trellis structure by force. One of

those was presented in [173]. In effect, the general likelihood-ratio formula by Kailath

[128] was combined with the Viterbi algorithm (VA) when assuming that the received

signal has a finite memory. This recursive MLSD receiver in the complex Gaussian
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fading channel was derived by using analog signal processing. Therefore, contrary to

what was claimed, the VA does not apply in this case, as was later shown in [42]. Sim-

ilar type of receivers were later derived for sampled receivers in [150, 266, 246, 247].

Specifically, a force-folded MLSD receiver in the Rayleigh fading channel for nonlin-

early modulated CPM signals was presented in [150]. It was further generalized to

any modulation format and to diversity systems by using the concept of an innovation

process in [266]. Interestingly, almost identical MLSD receivers were also derived in

[246, 247], where the trellis structure of the associated Viterbi algorithm was called a

super-trellis. However, as shown in [105], a forced folding of the MLSD receiver into

the fixed-size trellis may in fast fading channels cause an error floor where the receiver’s

BER levels out at a high signal-to-noise ratio. Also, three other sources of error floors

were identified in [105].

Optimal MLSD receivers and their approximations were considered for the

frequency-flat and frequency-selective Rayleigh fading channels in [130, 99] and in

[55, 117], respectively, by applying Kalman filters to channel estimation. As may be

readily perceived, the per-sequence Kalman filters in the MLSD results from the as-

sumption that the fading statistics can be faithfully described by the autoregressive

(AR) channel model and that the AR parameters are known. As explained in [99],

the Kalman filter replaces the traditional phase-locked loop (PLL) for carrier recovery

in frequency-flat Rayleigh fading channels. Furthermore, the symbol timing was esti-

mated along with the channel impulse response (CIR) in [117] by replacing the bank of

Kalman filters with the bank of extended Kalman filters (EKF) in the computation of

the decision metrics of the MLSD. Due to the nonlinear nature of the joint estimation of

symbol timing and CIR, this receiver is inherently suboptimal but, nevertheless, gives a

fairly good approximation of the optimal receiver when the signal-to-noise ratio (SNR)

is high enough.

An iterative expectation-maximization (EM)-based MLSD receiver in the presence

of random Gaussian parameters was proposed in [87]. In particular, the implementation

of MLSD receivers was studied in the presence of the Gaussian noise channel with

uniformly distributed time-invariant phase-shift and in the presence of the Rayleigh

fading channel. The EM algorithm was shown to provide an efficient methodology for

close to optimal receiver implementation in both channel models. Since convergence

of the EM algorithm into the global maximum of the likelihood surface, a prerequisite

for optimal detection, cannot be guaranteed, the EM-based receivers should in general

be regarded as suboptimal receivers. Moreover, an iterative EM-based MLSD receiver
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in the presence of a random timing offset with uniform distribution was considered in

[88]. While an exact EM-based implementation was found to be infeasible, a high SNR

approximation of the receiver was shown to lead to the use of maximum likelihood

(ML) timing estimators. In fact, a similar approximation was made earlier in [70] for

direct MLSD receivers in the presence of an unknown timing offset.

The optimal MAPSD receiver in a frequency-flat Rayleigh fading channel was

considered in [222], but in order to avoid exponential growth in complexity, a recur-

sive fixed-lag MAPSD, conceptually similar to the receiver by Abend and Fritchman,

was proposed as a suboptimal approach. Equivalent MAPSD receiver structures were

later derived for nonlinearly modulated CPM signals in [17]. Furthermore, a sequen-

tial MAPSD based on a forward-backward processing algorithm was derived for the

frequency-flat Rayleigh fading channels in [89]. Trellis structure for the MAPSD was

again obtained by restricting the dependency of the received signal samples on past ob-

servations into a finite number of observations. These MAPSD receivers were extended

to the frequency-selective Rayleigh channels and analyzed in an unified manner by us-

ing the concept of the innovations process in [103]. Yet another interesting approach

to the formulation of the optimal MAPSD receiver was proposed in [8], where an ex-

act expression for the symbol APPs in the presence of an unknown frequency-selective

Rayleigh fading channel was derived in an elegant way that enabled the decoupling

of the complexity and observation length. Then, based on this decoupling property, a

number of computationally efficient suboptimal SISO modules were also derived.

1.2.2 Adaptive receivers for unknown ISI channels

Most of the CIR estimators can be roughly categorized into ML-based estimators or

MMSE-based estimators. The recursive versions of the ML-based CIR estimators need

to know only the bandwidth of the Doppler spectrum of the fading channel so that the

tracking parameters of the estimators can be selected properly. Instead, the MMSE-

estimators rely on the assumption that the fading process is Gaussian and its statistics

are known. The most common ML-based recursive estimators with built-in channel

tracking capabilities are the least mean square (LMS) estimator and the recursive least

square (RLS) estimator, whereas the Kalman filter is the optimal recursive MMSE esti-

mator for the fading Gaussian channel, assuming that an AR description of the fading

channel is available [106]. Naturally the MMSE-based estimators are expected to per-

form better than the ML-based estimators in time-varying channels since they exploit
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the prior information about the channel dynamics in a more efficient way. Typically, the

statistical parameters of the channel are unknown to the receiver, and, hence, a coupling

of the AR parameter estimator for fading statistics and the Kalman CIR estimator was

proposed in [60].

Although in many cases the initial channel estimate can be obtained with the aid of

pilot symbols, further noise averaging as well as tracking of the time-varying channel

are often needed during the transmission of the information symbols. Then, detection

and estimation has to be done somehow jointly. In addition to optimal detectors that

perform channel estimation implicitly together with detection, a popular approach for

combining detection and estimation is to perform joint ML detection and estimation.

This is done by maximizing the joint likelihood function over the data symbols and the

channel parameters [43]. In frequency-selective time-varying channels, significant com-

plexity reduction can be obtained by folding the tree-search detection algorithm into a

fixed size trellis and applying, e.g., a PSP-technique for channel estimation [42, 209]. A

related receiver structure is given in [269]. Iterative versions of the joint ML detection

and estimation algorithms, obtained via the EM algorithm, are discussed in [86, 87, 71].

Moreover, an excellent review and a novel classification of different channel estimation

methods and of different joint detection and estimation schemes is presented in [157].

Another excellent review of optimal and joint estimation and detection schemes is given

in [232].

The channel parameters can also be estimated in a non-data-aided (NDA) manner.

From many different blind estimation methods reported in the literature [240, 236],

only the probabilistic methods, i.e., the blind methods which use likelihood processing,

are of interest in this thesis, and, therefore, only these methods are further surveyed in

the sequel. A probabilistic approach was used in [129], where an iterative algorithm

for blind ML channel estimation and MAP symbol detection via the Baum-Welch al-

gorithm was proposed. The same receiver structure was also used in [45],where an

approximate Cramer-Rao lower bound (CRLB) was derived for the parameter estima-

tor of the Baum-Welch algorithm and was then used to find an approximate expression

for the probability of symbol error.

The Baum-Welch algorithm is applicable only when the channel is fixed during the

transmission of the information symbols. In order to avoid this shortcoming, a recursive

approximation of the Baum-Welch algorithm with channel tracking capability was pro-

posed in [13]. Furthermore, the NDA MMSE estimate of the frequency-flat Rayleigh

fading channel was obtained jointly with MAP symbol decisions via the Bayesian EM
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(BEM) algorithm in [38]. A conceptually similar scheme was proposed in [262]. Specif-

ically, the BEM algorithm was applied to the dynamic system model, describing the

data transmission over the flat-fading channel, and it was then shown to yield a soft

decision-directed (SDD) Kalman smoother interconnected with the symbol APP com-

putation. On the other hand, an SDD Kalman smoother for the generic vector dynamic

system model was proposed in [152], but the complexity of this scheme is very high. In

[14, 15], the properties of Martingale difference sequences were exploited in order to

derive nonlinear Kalman-like recursive channel estimators which were also able to take

advantage of the probabilistic information about the data symbols.

Common to all these probabilistic algorithms is the fact that the unknown channel

parameters are estimated by using the soft information about the data symbols, instead

of the hard symbol decisions. In essence, these estimators can be said to be blind in the

sense that they aim to maximize either the averaged likelihood function or the averaged

a posteriori density function where the averaging in both cases is performed over the

unknown data symbols. However, in order to avoid phase ambiguity problems caused

by the rotational symmetry of the symbol constellation, the probabilistic estimators

must be operated in a semiblind manner where some of the transmitted symbols, e.g.,

pilot symbols, are known by the receiver. Specifically, the phase ambiguity problem

is related to channel identifiability. In general, the channel can be made identifiable

by imposing some code structure on the transmitted (measurement) signal, while the

insertion of pilot symbols into the signal frame structure can be considered a special

type of coding.

Turbo receivers also have to somehow deal with typically continuous valued un-

known channel parameters. Besides using the standard estimation methods, one would

be tempted to do estimation and inference jointly by somehow exploiting the graph-

ical modeling techniques. In particular, extending the traditional graphical modeling

concept, the unknown channel parameters could be included in the graph as additional

nodes. Then, the generic message passing algorithm could be operated on the result-

ing graph. The main obstacle in pursuing this attractive idea further, however, is that

the descriptions for messages associated with the continuous valued variables require

infinitely many parameters. This is because the channel constraints are defined in a

continuous domain. In practice, only partial descriptions for these messages are feasi-

ble, and, hence, the exploitation of canonical distributions has been suggested in [261]

as a generic tool for handling the continuous valued variables in graphical models (see

also [151]). In fact, many of the adaptive turbo receivers, which treat the parameter
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estimators as separate subblocks in computing the symbol APPs, can be interpreted as

message passing algorithms where the messages outgoing from the continuous valued

variable nodes are approximated with appropriate canonical distributions. Examples of

such adaptive turbo receivers are given in [242, 29, 19].

An alternative method for inference in a hybrid dynamic system with both contin-

uous and discrete variables was obtained via the generalized loopy belief propagation

algorithm, called an expectation propagation (EP) algorithm, in [168]. Instead of prop-

agating the exact “beliefs” about the variables of the graph, the EP algorithm retains

only expectations of the “beliefs” and iterates until these expectations are consistent

throughout the network. As compared to many existing methods, the EP algorithm was

shown to provide a solution with improved accuracy in the selected statistical models.

Moreover, the EP algorithm has been successfully applied to the adaptive detection in

flat-fading channels [205].

Yet another related approach for joint estimation and detection is to embed the pa-

rameter estimators inside the SISO demodulators in a more traditional way. In effect,

this approach has been adopted in [89, 103, 8, 113, 108]. These adaptive SISOs (A-

SISOs) are essentially based on the principle of “parameter-first combining,” where the

sequence conditioned channel estimation is performed along all or a selected number of

transmitted sequences and then the corresponding sequence metrics are combined ap-

propriately to produce the desired soft output. Related A-SISOs using the super-trellis

technique and a “sequence-first combining” method have been reported in [61] and [94],

respectively.

1.2.3 Adaptive receivers for phase uncertain channels

Data detection in the presence of the AWGN channel distorted by phase uncertainties

has been a subject of active research already for decades. Such phase uncertainties

are typically caused by the instabilities at the transmitter and receiver oscillators. The

recent research interest in this topic has been stimulated by the discovery of the efficient

turbo coding schemes as well as the rediscovery of the low-density parity-check (LDPC)

coding schemes [83],4 which both operate at signal-to-noise ratio (SNR) regions close

4Indeed, the LDPC codes were invented by Gallager in 1962 [83], but they were forgotton for decades until

rediscoved recently. This rediscovery was promoted by the popularity of the turbo codes whose iterative

decoding algorithm was noticed to be related to the decoding algorithm of LDPC codes. An interesting

subclass of LDPC codes is formed by irregular repeat accumulate codes which can be encoded with an
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to the capacity of the AWGN channel. The decoding of the turbo and LDPC codes

call for an iterative likelihood-based processing and, thus, an incorporation of the phase

estimation into this iterative processing is an intriguing idea. In fact, it has already

triggered the development of various iterative methods for joint phase estimation and

data detection, with a common aim that both estimation and detection could take full

advantage of the code structure.

Existing methods for joint phase estimation and data detection can be divided into

Bayesian and non-Bayesian (classical) approaches. By modeling the phase as an un-

known deterministic constant, the latter class of receivers computes the symbol APPs

based on the generalized likelihood processing [188, 9, 154, 189]. In [9], the unknown

phase is estimated in a per-survivor fashion on the trellis, whose size is a design param-

eter and is determined by appropriately pruning the sequence tree associated with the

component decoder of the turbo-decoder. The soft output of the component decoder

is then computed by using the standard forward-backward processing techniques. Due

to restrictions caused by the trellis-based processing, this methodology is readily appli-

cable only to the turbo-codes which are based on the interaction between finite state

machines. In contrast, the iterative joint computation of the phase estimate and symbol

APPs via the EM algorithm, as first proposed in [188] and later independently in [189],

is a more general approach and, hence, applicable to the decoding of any turbo-like

codes, including the LDPC codes. An essentially identical algorithm was also derived

in [154], without using the EM formalism. Moreover, many of these classical receivers

can be made adaptive by applying a “sliding window averaging."

The Bayesian receivers are based on the assumption that the unknown phase is a

random variable or a random process with a known a priori probability density func-

tion [49, 192, 227, 48, 47]. In particular, a noncoherent trellis processing was proposed

in [49], where a finite size trellis was obtained by truncating the memory of the channel.

Furthermore, widely applicable joint Bayesian estimation and data decoding via the SP

algorithm operating on the appropriately defined factor graphs (FG) have been proposed

by a number of authors [192, 227, 48, 47, 21, 58, 59]. With the exception of [47], these

algorithms execute message passing between detection and estimation by applying the

generic approach presented in [261]. In particular, the problems associated with the

continuous valued variables in the FG processing are circumvented by enforcing vari-

ous canonical distributions for the continuous valued phase. For example, in [48], a

extremely simple encoder and decoded by a low-complexity iterative decoder, see e.g. [267] for further

details.
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Tikhonov parametrization of the phase distribution was shown to provide a good trade-

off between complexity and performance. In [47], another type of Bayesian approach

was taken to the LDPC decoding in the presence of unknown phase—the approach

which was based on the memory truncation rather than the explicit representation of the

channel parameters in the FG. Moreover, a theoretical framework for iterative synchro-

nizers obtained by combining the SP and EM algorithms has recently been proposed in

[109], and an excellent overview of various iterative detection algorithms is provided in

[73].

1.2.4 Estimation of unknown frequency offset and fading

statistics

An important part of a receiver design is to develop accurate models for the channel,

along with advanced estimation methods to estimate the model parameters. But the

system performance can also be improved by a more optimal signal design. In particular,

various adaptive transmission schemes have received considerable research interest in

recent years. In these schemes, the structure of the transmitted signal is made to vary

as a function of time and/or frequency according to the prevailing channel conditions.

Therefore, accurate channel modeling and advanced estimation methods are of great

importance also from the adaptive transmitter point of view.

Many of the transmitter functionalities and parameters, such as channel coding

schemes, interleaving schemes, and modulation schemes as well as the network con-

trol algorithms like the soft handover algorithm and adaptive power control algorithm,

may be adjusted by using the channel’s second order statistics rather than making ad-

justments purely on the basis of instantaneous signal-to-noise ratio values [135]. Under

the usual assumption of wide-sense stationary uncorrelated scattering (WSSUS) chan-

nel, the second order statistics of the channel can be described by the scattering function

(also called a fading spectrum). From the transceiver adaptation point of view, impor-

tant parameters describing the fading spectrum are the normalized bandwidth of the

spectrum (hereafter referred to as the Doppler spread) and the center frequency of the

spectrum (hereafter referred to as the frequency offset) as well as the relative power

levels of the different multipath components. The frequency offset is the total differ-

ence between the transmitted carrier frequency and the local reference frequency at the

receiver, and it is cumulatively caused by the Doppler scattering of the communication
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channel (especially a Doppler shift) and transmitter and receiver oscillator instabilities.

In general, the frequency offset and other channel parameters can be different for dif-

ferent multipath signal components due to different scattering environments or due to

nonsynchronous transmitters in systems where space-time diversity is exploited.

Some of the earlier contributions to the estimation of fading channel statistics are

reported in [135, 104, 60, 237, 274, 224, 269, 167]. In particular, an iterative joint es-

timator of synchronization parameters and second order statistics of the Rician fading

channel was presented in [104], but the estimator is based on an ad hoc “minimization”

scheme and is very complex. In [60] and [237], a multichannel AR description was

given to the frequency-selective time-varying channel, and the AR model parameters

were estimated by a RLS estimator and by a higher-order statistics-based blind estima-

tor, respectively. In [274], the AR model parameters were estimated along with the

complex Gaussian channel process using an extended Kalman filter. The autoregres-

sive moving average (ARMA) model parameters along with the CIR estimates were

obtained via the sequential EM algorithm in [269]. Furthermore, an iterative EM-based

nonparametric estimation of the scattering function and the auto-covariance matrix of

the WSSUS channel were considered in [224] and [167], respectively.

The most important earlier contributions to the block-based estimation of the fre-

quency offset in the flat-fading or frequency-selective fading channels have been re-

ported in [138, 172, 30, 122, 123, 171, 107, 245]. Many of these estimation methods

rely either on the assumption of known fading statistics or on some specific pilot sig-

nal structure. Moreover, the estimation range is typically either limited or forced to be

traded off for the estimation accuracy. Furthermore, a simple frequency offset tracker

exploiting the differential Kalman filter was presented in [84]. There are also classical

text books [164, 165] which can be used to find more information on the traditional

approaches as well as more advanced approaches for frequency offset estimation.

1.3 Aim and contribution of the thesis

In the research work reported in this thesis, the main focus is on iterative turbo-

processing receiver algorithms that are explored and further developed by using the vari-

ational optimization methods. The variational methods provide a systematic approach

for deriving approximations to optimal receivers. The quality of such approximations

can be quantified with an entropic measure of error, which is inherently available within

this methodology. This research is especially aimed at providing new insights and en-
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hancements into the existing algorithms and at deriving a set of new variants of itera-

tive turbo-processing receivers. The new receiver algorithms are derived under various

assumptions on the available a priori information about the properties of the commu-

nication medium. As a result of these explorations, this thesis contributes to state of

the art of advanced receiver designs in a number of ways. The main contributions are

summarized as follows:

1. It is shown that well-known linear SISO detectors, such as the channel matched

filter-based linear SISO detector [140] and the linear MMSE SISO detector [238,

239], can be formulated as specific instances of the so-called generic variational free

energy minimization (VFEM) algorithm. This novel formulation provides a new set

of insights into the design and performance of these known detectors and allows

several suggestions of enhancing adjustments on them. This new formulation also

shows an interesting link between the linear SISO detectors and the demodulators

that are based on exact symbol APP computations. In addition to elucidating that

connection, it also conveys a sense of when a particular variational approximation

is likely to perform well and when it is bound to fail. These issues are discussed in

detail in Chapter 3 of this thesis.

2. The EM algorithm can be interpreted as an approximate inference algorithm in the

light of variational optimization, as shown in [176]. This finding is further extended

in this thesis by showing that the Bayesian EM algorithm can also be interpreted as

a solution to the variational lower bounding. In particular, when this approach is

applied to inference in the Rayleigh fading channel, it provides an enlightening link

between the Bayesian EM-based adaptive demodulator and the demodulator that

computes exact symbol APPs. Imposing further restrictions on the set of distribu-

tions over which the variational optimization is performed, the linear SISO detectors

combined with SDD channel estimators are shown to ensue. Details of the above

findings are presented in Chapter 4 of this thesis.

3. Recursive SDD-LMS and SDD-RLS estimators for unknown deterministic ISI chan-

nels and the SDD-Kalman estimator for unknown frequency-selective Rayleigh fad-

ing channels are derived. This is based on the recursive version of the EM algorithm

and the Bayesian EM algorithm, respectively. The obtained new formulations are

shown to yield computationally attractive estimators which are then integrated with

the standard forward-backward processing SISO blocks, designed for known chan-

nels. In particular, matrix inversions in these SDD estimators are avoided by apply-
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ing sequential processing over the time and trellis branch indices. Futher details can

be found in Chapter 4 of this thesis.

4. The problem of iterative detection in the presence of phase uncertainty is consid-

ered from the variational Bayesian perspective, bridging the gap between the clas-

sical EM-based receivers and the optimal noncoherent receivers. In particular, effi-

cient and computationally attractive iterative joint estimation and detection/decoding

schemes for both constant phase models and dynamic phase models are obtained as

a result of the variational bounding. Moreover, versions of the proposed adaptive

iterative detection schemes exhibiting accelerated convergence are shown to be ob-

tained by applying incremental scheduling for the free energy minimization. These

issues are discussed in more detail in Chapter 6 of this thesis.

5. Joint estimation of radio channel parameters, such as frequency offset, Doppler

spread and, power delay profile, are considered. By modeling the multipath Rayleigh

fading channel as a complex bandpass autoregressive (AR) process, it is shown how

these important parameters can be conveniently extracted from the estimated com-

plex AR parameters obtained via the EM algorithm. The main advantage of the

proposed new estimation scheme, as opposed to the existing ones, is that it is de-

signed to operate equally well in a wide variety of channel conditions, while there

are no restrictions pertaining to the pilot signal structure. This is valid even in ex-

tremely high-mobility environments. Furthermore, it is shown that by applying the

variational (mean field) bounding technique, the complexity of the AR parameter

estimator in the presence of a multipath channel can be significantly reduced, while

just slightly trading off performance. Chapter 5 of this thesis is referred for furthur

details.

6. A feedforward adaptation scheme, in which estimators for the channel statistical

parameters are recursively updated along with the estimator of the CIR, is derived.

This derivation applies the stochastic gradient approximation to the score statistics

(i.e., gradient of the likelihood function) of the AR parameters. Moreover, based on

the complex bandpass AR modeling and the score statistics of the frequency offset,

a novel frequency error detector, operating in parallel with the fixed-delay Kalman-

smoother for the CIR, is proposed. When incorporated into the feedback frequency

recovery scheme, the proposed frequency error detector is shown to provide excel-

lent performance at a low computational cost, being well suited also for very fast

fading channel conditions. Both of the aforementioned adaptation schemes can op-

erate in the hard-decision or in the soft-decision directed modes, in addition to the
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pilot mode. Detailed derivations of these algorithms are presented in Chapter 5 of

this thesis.

7. The Cramer Rao lower bound (CRLB) is well known as a lower bound for the error

variance of any unbiased estimator. However, the CRLB is often difficult to obtain

analytically when there are nuisance (unwanted) parameters interfering with estima-

tion. The problem of CRLB computation in the presence of nuisance parameters

is revisited in two different contexts. First, the CRLB of the frequency offset and

receiver noise variance in the presence of a multipath time-varying Rayleigh fading

channel is formulated in Chapter 5. The applied analytical method not only allows

for feasible computation but also makes it possible to quantify the effect of the fad-

ing phenomenon itself and the effect of incomplete knowledge of the fading channel

realization on the CRLB separately. Second, computation of the CRLB of the carrier

phase in the presence of unknown data symbols is considered in Chapter 6. In this

computation, the Fisher information of the carrier phase, expressed in terms of the

symbol APPs, is replaced with the empirical Fisher information. Thus, universally

applicable numerical approximation for the exact CRLB can be obtained, rendering

the evaluation of the CRLB feasible also in cases where information symbols are

encoded.

The thesis, in part, is based on 12 original publications of the author [177, 178, 180,

179, 188, 182, 183, 184, 186, 185, 187, 181]. The author of this thesis was the primary

contributor of all these papers; he invented and developed the main ideas, performed all

numerical simulations, and wrote the papers. Professor Subbarayan Pasupathy provided

motivation, criticism, and suggestions related to various technical as well as editorial

issues. In the case of [188], Research Professor Aarne Mämmelä also provided criticism

and editorial suggestions. For clarity, the thesis is presented as a monograph, and the

original publications are not reprinted as such.

1.4 Outline of the thesis

This chapter has so far presented the history and the state of the art of receiver algo-

rithms, especially detection and estimation algorithms and their interactions. The rest

of this thesis is organized as follows. Chapter 2 provides a detailed system model, en-

compassing a parametric description for the frequency-selective fading channel. The

variational bounding technique is introduced via four simple examples to demonstrate
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its potential in producing sensible approximations. In addition, a VFEM framework

is introduced and suggested as an unifying tool for obtaining approximate inference

algorithms. In Chapter 3, linear SISO detectors are formulated as instances of the varia-

tional bounding algorithms. This chapter, in part, is a reprint of paper [180]. In Chapter

4, the standard EM and Bayesian EM algorithms are shown to fit into a generic frame-

work of variational optimization. Their recursive versions are then exploited in deriving

low-complexity SDD channel estimators for frequency-selective fading channels. This

chapter, in part, is a reprint of paper [177]. In Chapter 5, EM-based iterative estimation

schemes for radio channel parameters, including power delay profile, Doppler spread,

and frequency offset, are developed. Also, forward- and backward-processing adapta-

tion schemes for tracking the changes in fading statistics and the frequency offset are

presented. This chapter, in part, is a reprint of paper [178]. In Chapter 6, iterative detec-

tion schemes for the phase-uncertain channels are discussed, resorting to the EM and

variational Bayesian techniques for obtaining approximations for the optimal receiver.

This chapter, in part, is based on paper [179]. Finally, Chapter 7 concludes the thesis by

providing a summary of the main results and contributions of the thesis. Furthermore,

some potential future directions for the research of advanced receiver technology are

provided.
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2 Preliminaries

This chapter starts with a description of the generic system model, followed by detailed

descriptions of the AR and complex bandpass AR-based channel models. Then, a vari-

ational bounding technique is introduced with a few illustrative examples providing a

framework. The chapter also includes an introduction of the generic variational free

energy minimization framework that will be extensively utilized in the upcoming chap-

ters.

2.1 Generic system model

In this thesis, the transmission of linearly modulated information symbols over the ra-

dio channel with parametric uncertainty is considered. Therefore, a generic multiple-

antenna system model, where the radio channel between each transmitter and receiver

antenna pair is assumed to be both frequency- and time-selective, is given next. The

system is assumed to employ N transmitter antennas and M receiver antennas. Each

transmitter antenna is assumed to transmit independent data. System models with other

channel realizations, e.g., the AWGN channel and the block-fading channel, can be

obtained as special cases of this generic system model.

In the presence of an unknown time-varying channel, an optimal receiver front-end

(FE) processor is somewhat difficult to define. This is due to fact that the received

continuous-time (CT) signal is in all practical cases time-limited and, therefore, not

strictly band-limited. This renders the sampling of the received CT signal with any

sampling rate inherently suboptimal.5 However, assuming that the received signal is

strictly band-limited (for all practical purposes), sampling at the proper rate provides a

set of sufficient statistics for data detection and parameter estimation [166] (see also the

Appendix A of [73] for a concise overview on discretization by sampling). On the other

hand, assuming that the channel evolution in time is slow compared to the signaling

interval Ts and that the CT physical channel can be accurately modeled with a tapped

delay line model, the fractional sampling (at the proper rate) of the output of the receiver

FE-filter, which is matched to the transmitter pulse-shaping filter and combined with

5A stationary random CT process may be represented exactly by discrete observables, regardless of the finite

length of the observed CT signal, but the number of required observables can approach infinity [100].

49



the noise-whitening filter, provides a set of sufficient statistics [43]. Such a receiver

filter is generally referred to as the whitened matched filter (WMF). Under the further

assumption of close to perfect timing synchronization,6 a good suboptimal FE processor

is obtained by symbol rate sampling of the output of the WMF [43].

Therefore, based upon the assumptions made above, a discrete-time system model

with only one sample per symbol is employed in this thesis. This will, however, cause

no loss of generality in terms of the developed algorithms since they can be easily

extended to support fractionally sampled system models. The received signal sample at

the mth receiver antenna at the kth time point can be expressed as

rm(k) =

N∑

n=1

L∑

l=0

exp(j2πωm,n,l(k))sn(k − l)hm,n,l(k) + vm(k), (1)

where ωm,n,l(k) incorporates all the phase and frequency instabilities related to l-th

path of the subchannel between the nth transmitter and the mth receiver antenna, sn(k)

is the kth linearly modulated information symbol transmitted from the nth transmitter

antenna, hm,n,l(k) denotes the l-th sample of the channel impulse response (also called

a l-th channel tap) between antennas n and m at time instance k, L is the degree of

channel memory, and vm(k) is a sample of complex circular additive white Gaussian

noise (AWGN) at the mth receiver antenna with the variance σ2
v . Each symbol sn(k)

takes values in the discrete space S = {α1, . . . , αJ}, where J = |S| denotes the

cardinality of the symbol space, i.e., the number of complex constellation points of the

symbol mapper.

The vector of received signal samples at time instant k can be expressed as

r(k) =
(
IM ⊗ s

T (k)
)
Ω(k)h(k) + v(k), (2)

where IM denotes the M ×M identity matrix, operator ⊗ denotes the Kronecker prod-

uct, and

r(k) =
[
r1(k), r2(k), . . . , rM (k)

]T ∈ C
M , (3)

v(k) =
[
v1(k), v2(k), . . . , vM (k)

]T ∈ C
M . (4)

6Sampling at the proper rate always allows one to recover the timing information in the digital domain [166].
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In addition, symbol and channel vectors are defined as

s(k) =
[
s
T
1 (k), sT

2 (k), . . . , sT
N(k)

]T ∈ SN(L+1), (5)

sn(k) =
[
sn(k), sn(k − 1), . . . , sn(k − L)

]T ∈ S(L+1), (6)

h(k) =
[
h

T
1 (k),hT

2 (k), . . . ,hT
M (k)

]T ∈ C
MN(L+1), (7)

hm(k) =
[
h

T
m,1(k),hT

m,2(k), . . . ,hT
m,N (k)

]T ∈ C
N(L+1), (8)

hm,n(k) =
[
hm,n,0(k), hm,n,1(k), . . . , hm,n,L(k)

]T ∈ C
(L+1), (9)

and diagonal phasor matrices are defined as

Ω(k) = diag
(
Ω1(k),Ω2(k), . . . ,ΩM (k)

)
∈ C

MN(L+1)×MN(L+1), (10)

Ωm(k) = diag
(
Ωm,1(k),Ωm,2(k), . . . ,Ωm,N (k)

)
∈ C

N(L+1)×N(L+1), (11)

Ωm,n(k) = diag
(
exp(j2πωm,n,0(k)), . . . , exp(j2πωm,n,L(k))

)
∈ C

(L+1)×(L+1).

(12)

Before transmission, the information symbols at each transmitter antenna branch

are collected into a block of K symbols, and the successive blocks are separated in time

so that the interblock interference can be assumed to be zero. At the receiver, the block

of received signal samples can be expressed as

r = Hs + v, (13)

where

r =
[
r

T
1 , rT

2 , . . . , rT
M

]T ∈ C
M(K+L), (14)

rm =
[
rm(1), rm(2), . . . , rm(K + L)

]T ∈ C
(K+L), (15)

s =
[
s
T
1 , sT

2 , . . . , sT
N

]T ∈ SNK , (16)

sn =
[
sn(1), sn(2), . . . , sn(K)

]T ∈ SK , (17)

v =
[
v

T
1 ,vT

2 , . . . ,vT
M

]T ∈ C
M(K+L), (18)

vm =
[
vm(1), vm(2), . . . , vm(K + L)

]T ∈ C
(K+L). (19)

Moreover, it is assumed that all transmission paths in each subchannel experience the

same frequency instabilities, i.e., ωm,n,l ≡ ωm,n ∀l. Under this assumption, reflecting

the properties of typical transmission environments, the channel convolution matrix H
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is given as

H =

⎡
⎢⎢⎣

Ω1,1H1,1 · · · Ω1,NH1,N

...
. . .

...

ΩM,1HM,1 · · · ΩM,NHM,N

⎤
⎥⎥⎦ ∈ C

M(K+L)×NK . (20)

In (20), subchannel matrices are defined as

Hm,n =
[
h̄m,n(1), . . . , h̄m,n(K)

]
∈ C

(K+L)×K , (21)

h̄m,n(k) =
[
01×(k−1), hm,n,0(k), hm,n,1(k + 1), . . .

, hm,n,L(k + L),01×(K−k)

]T ∈ C
(K+L),

(22)

where the matrix (vector) 0l×k denotes the l × k zero matrix (vector), and the diagonal

phasor matrices Ωm,n are given as

Ωm,n = diag
(
exp(j2πωm,n(1)), . . . , exp(j2πωm,n(K + L))

)
∈ C

(K+L)×(K+L).

(23)

One way to separate successive data blocks in time is to extend each data block

with a cyclic prefix (CP). In particular, an extended data block transmitted from the nth

transmitter antenna is given as

s
e
n =

[(
s

cp
n

)T
, sT

n

]T

∈ S(K+Kprefix), (24)

where the cyclic prefix s
cp
n is defined as

s
cp
n =

[
sn(K − Kprefix + 1), sn(K − Kprefix + 2), . . . , sn(K)

]T ∈ SKprefix . (25)

If the channel is static (time-invariant) over the block and Kprefix > L, the subchannel

convolution matrix Hm,n becomes, after the removal of the cyclic prefix from the re-

ceived signal, a circulant matrix. The K × K circulant subchannel convolution matrix

is obtained from the matrix defined in (21) by removing the last L rows and adding

them to the first L rows. The resulting block-circulant structure of the convolution ma-

trix H facilitates the receiver implementation in wideband channels by allowing the

employment of a similar low-complexity frequency-domain equalizer structure as in

the OFDM systems. Another method to separate the successive data blocks in time is

obtained simply by zero-padding the transmitted data blocks.

An alternative description for the samples of the received signal is given as

r = X̄h + v, (26)
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where the channel vector h is defined as

h =
[
h̆

T
1,1, . . . , h̆T

M,1, h̆
T
1,2, . . . , h̆T

M,2, . . . , h̆T
1,N , . . . , h̆T

M,N

]T ∈ C
MNLch(K+L),

(27)

h̆m,n =
[
h

T
m,n,0,h

T
m,n,1, . . . ,hT

m,n,L

]T ∈ C
Lch(K+L), (28)

hm,n,l =
[
hm,n,l(1), hm,n,l(2), . . . , hm,n,l(K + L)

]T ∈ C
(K+L), (29)

and the system matrix X̄ is given as

X̄ =
[
X̄1, X̄2, . . . , X̄N

]
∈ C

M(K+L)×MNLch(K+L), (30)

X̄n = diag
(
Ω1,n,Ω2,n, . . . ,ΩM,n

)(
IM ⊗ Xn

)
∈ C

M(K+L)×MLch(K+L), (31)

Xn =
[
Xn,0,Xn,1, . . . ,Xn,L

]
∈ C

(K+L)×Lch(K+L), (32)

Xn,l = diag
([

01×l, sn(1), . . . , sn(K),01×(L−l)

])
∈ C

(K+L)×(K+L). (33)

The received signal vector r and the noise vector v are defined in (14)-(15) and in

(18)-(19), respectively. In addition, for notational simplicity, the following general

notational convention is made: indexes for transmitter and receiver antennas are omitted

whenever only single antenna systems are considered, e.g., r(k) ≡ r1(k), v(k) ≡ v1(k),

hl(k) ≡ h1,1,l(k), ωl(k) ≡ ω1,1,l(k), and so on.

The discrete-time channel impulse response hm,n(k) for each subchannel is mod-

eled either as a deterministic time-varying process or as a random time-varying

Rayleigh fading process. The latter modeling of the radio channel implies that the sam-

ples of the l-th channel tap hm,n,l(k) are distributed according to a zero-mean complex

Gaussian distribution. If the channel is additionally assumed to be wide sense station-

ary (WSS), its second order statistics are time-invariant. Furthermore, provided that the

fading process is circular, the distribution of each channel tap is completely character-

ized alternatively by the covariance matrix or the power spectral density [201], both of

which give nonparametric descriptions of the underlying fading statistics. The power

spectral density of the fading process is often modeled using Clarke’s U-shaped func-

tion [46, 121] corresponding to a uniform angular distribution of the received energy at

the receiver antenna (i.e., the isotropic scattering model). In this case, the autocorrela-

tion function of the l-th channel tap is given by

Chm,n,l
(i) = E

[
hm,n,l(k)h∗

m,n,l(k − i)
]

= σ2
hm,n,l

J0(ΩDi), (34)

where σ2
hm,n,l

= Chm,n,l
(0), ΩD = 2πBdTs, Bd is the Doppler spread of the fading

channel, and J0(·) denotes the Bessel function of the first kind and zero-order. Since
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the random fading gain hm,n,l(k) is strictly band-limited to the maximum Doppler fre-

quency Bd, its autocorrelation function has infinite length.

An alternative description of the fading channel dynamics can be obtained by means

of the parametric model. The goal of the parametric modeling is to postulate a stochastic

model, sometimes referred to as a hypermodel [149], to the fading channel so that

an acceptable representation of the underlying fading process is obtained with as few

parameters as possible. Despite an infinitely long correlation in time, the Rayleigh

fading channel gain can, in theory, be approximated with an arbitrary small error by an

autoregressive (AR) model of a sufficiently high order [106]. Consequently, the channel

process hm,n(k) can be approximately modeled as a pth-order Gauss-Markov process.

The resulting dynamic discrete-time state-space model will be described in the next

section.

2.2 Parametric modeling of fading statistics

Purely for notational convenience, the AR description for the fading statistics and the

resulting dynamic state-space system models are given only for the single antenna

(M = 1 and N = 1) case. In addition, it is assumed that the frequency instabili-

ties at each transmission path are exclusively due to the constant frequency shifts νl, i.e,

ωl(k) = νlk, while the constant phase offset and slow phase drifting are lumped with

the complex-valued CIR.

2.2.1 Lowpass AR modeling

When the pth-order autoregressive (AR(p)) hypermodel for a Rayleigh fading

frequency-selective channel is employed, transmission of information symbols over the

radio channel can be described with the following state-space model:

h(k) = A h(k − 1) + Gw̄(k − 1) (35)

r(k) = sT (k)Ω̄(k)h(k) + v(k). (36)

In this model, the zero-padded symbol vector s(k) is given by

s(k) =
[
s
T (k),01×Lch(p−1)

]T
,∈ C

pLch (37)

and the vector channel process h(k) is defined as

h(k) =
[
h

T (k),hT (k − 1), . . . ,hT (k − p + 1)
]T

,∈ C
pLch (38)
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where Lch = L + 1 denotes the length of the CIR. The extended time-varying phasor

matrix Ω̄(k) is defined as

Ω̄(k) =

[
Ω(k) 0Lch×(p−1)Lch

0(p−1)Lch×Lch
I(p−1)Lch

]
∈ C

pLch×pLch . (39)

Moreover, the complex circular Gaussian process noise vector w̄(k) is defined as

w̄(k) =
[
w̄1(k), w̄2(k), . . . , w̄Lch(k)

]T ∈ C
Lch (40)

and is assumed to be independent of the complex circular receiver noise process v(k).

The covariance matrix of w̄(k) is given as Cw̄(k)(i) = E
[
w̄(k)w̄(k− i)H

]
= ILchδ(i),

where δ(i) denotes Kronecker delta function. The deterministic model matrices A and

G are defined as

A =

⎡
⎢⎢⎢⎢⎣

Ā1 Ā2 · · · Āp

ILch 0Lch · · · 0Lch

. . . 0Lch

...

0Lch ILch 0Lch

⎤
⎥⎥⎥⎥⎦
∈ C

pLch×pLch , G =

⎡
⎢⎢⎢⎢⎣

G

0Lch

...

0Lch

⎤
⎥⎥⎥⎥⎦
∈ R

pLch×Lch ,

where Ā1, . . . , Āp are Lch×Lch submatrices with real diagonal elements, G is a Lch×
Lch diagonal matrix with l-th diagonal element being [G]l,l =

√
gl, and 0Lch is a Lch ×

Lch zero matrix. The nonzero complex valued off-diagonal elements of the submatrices

Ā1, . . . , Āp reflect the correlation between the channel taps.

2.2.2 Complex bandpass AR modeling

The carrier frequency offset rotates the received signal samples around the time axis

of the complex domain description of the received signal. Alternatively, the carrier

frequency offset can be incorporated into the CIR so that the resulting modified CIR is

correspondingly rotated around the time axis. Specifically, by doing the replacement

f (k) � Ω̄(k)h(k) (41)

into (36) (correspondingly, f(k) � Ω(k)h(k) and fl(k) � exp(j2πνlk)hl(k)) and

multiplying both sides of (35) by Ω̄(k), a new state-space model is obtained:

f(k) = Af(k − 1) + Gw(k − 1) (42)

r(k) = sT (k)f (k) + v(k). (43)
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Provided that the noise components w̄i(k) ∀i are circular as well as independent and

identically distributed with respect to both indices i and k, the Gaussian process noise

vector w(k) = Ω(k)w̄(k) is statistically equivalent to w̄(k) [201, 202]. Likewise, the

state-space models (42) and (43) are statistically equivalent to (35) and (36).

The deterministic model matrix A can now be expressed as

A =

⎡
⎢⎢⎢⎢⎣

A1 A2 · · · Ap

ILch 0Lch · · · 0Lch

. . . 0Lch

...

0Lch ILch 0Lch

⎤
⎥⎥⎥⎥⎦
∈ C

pLch×pLch ,

where

Ai = Ω(k)ĀiΩ
H(k − i) ∈ C

Lch×Lch , i = 1, · · · , p. (44)

For a static frequency offset, the model matrix A is time-invariant, and, thus, the state

equation (42) is stationary. In particular, the l-th diagonal element of Ai is given as

[Ai]l,l =
[
Āi

]
l,l

exp(j2πiνl), (45)

and, since the diagonal elements of Āi are real numbers, the phase of [Ai]l,l now de-

pends exclusively on the frequency shift νl. Moreover, in typical channel circumstances,

where a frequency shift in different paths of the channel can be regarded as equal, i.e.,

νl ≡ ν ∀l, the model matrix Ai can be written as

Ai = Āi exp(j2πiν), i = 1, · · · , p. (46)

This frequency offset modulated channel model (hypermodel) is hereafter referred to

as the complex bandpass AR channel model, since it represents a frequency shifted

version of the original baseband (lowpass) model. Data transmission over a flat-fading

channel in the presence of a frequency offset is illustrated in Fig. 1, when the channel

is modeled with a first order complex bandpass AR model.
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+

s(k) r(k)

v(k)

w(k − 1)

f(k)

××

×

z−1

√
g ā ej2πν

Fig 1. Signal model for transmission over flat-fading channels in the presence of

a frequency offset.

2.3 Variational bounding: An introduction via simple

examples

Basically, the main objective of the variational methods is to transform the problem of

interest into an optimization problem via the introduction of extra degrees of freedom

known as variational parameters [125]. The optimization problem should be defined

so that, for fixed values of variational parameters, the transformed problem has a sim-

ple closed form solution, solving approximately the original problem. The variational

parameters, in turn, are adjusted so as to yield a sequence of improved approximations.

The variational methodology often yields approximations that provide bounds on

the probabilities of interest [125, 217, 119]. The basics of variational bounding tech-

niques are next introduced with four simple yet illuminating examples so that the great

potential behind these methods could be fully appreciated. Mathematically rigorous

and more general treatment of the variational optimization methods with theory and

applications can be found in many tutorial expositions [124, 118, 80, 252].

Example 1: Consider any continuously differentiable convex function f(x). The
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tangent line of f(x) at the point x = x0 is given by

L(x; x0) = f(x0) +
∂

∂x
f(x)|x=x0(x − x0).

Convexity of f(x) guarantees by definition that any tangent line L(x; x0) always re-

mains below the function f(x) itself, i.e., f(x) ≥ L(x; x0) for all x and x0 and

f(x0) = L(x0; x0).

Thus, a collection of tangent lines of a convex function can be interpreted as a

parameterized family of lower bounds for that function. Naturally, the tangents are

parameterized by their locations in this case. Thus, any one of these tangent lines can

be considered to be a global approximation for the function f(x). In the terminology

of the variational methods, L(x; x0) is termed as a variational lower bound of f(x),

whereas the parameter x0 is called a variational free parameter. Put in another way,

the variational free parameter x0 can now be freely adjusted so as to make L(x; x0)

an as accurate approximation of f(x) as possible, around the point of interest. The

lower bound L(x; x0) coincides with f(x) at a single point x0 and the approximation

degrades as x recedes from x0 at a rate which depends on the curvature of f(x). If the

curvature is low, L(x; x0) can be regarded as a relatively good approximation of the

objective function f(x) at a wide range of values around x0.

For a continuously differentiable concave function f(x), the tangent line L(x; x0)

gives an upper bound of f(x). As a specific example, suppose that f(x) = ln(x). The

variational bounding via parameterized tangent line readily yields

ln(x) ≤ λx − ln(λ) − 1,

where λ = 1/x0 denotes the variational free parameter. The upper bounding of ln(x)

is illustrated in Fig. 2 by using tangent lines with different slopes. As may be noticed

from the figure, for each value of x it is possible to find a value of λ that gives a very

tight upper bound for ln(x) in some neighborhood of x. In consequence, the concave

function ln(x) can be interpreted as a solution to the optimization problem,

ln(x) = min
λ

{
λx − Φ(λ)

}
,

where Φ(λ) = ln(λ) + 1 is called a conjugate or dual function [125]. On the other

hand, it can be easily verified that the conjugate function Φ(λ) can be obtained from

the following dual expression:

Φ(λ) = min
x

{
λx − ln(x)

}
,
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which is also known as a Legendre transformation of ln(x). In general, the relation-

ship between the concave (or convex) function f(x) and its dual Φ(λ) is called convex

duality in convex analysis [214]. �
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Fig 2. Variational bounding of ln(x) by using parametrized tangent lines.

An illustrative geometrical interpretation for variational bounding of a concave func-

tion via the principle of convex duality is provided in [125]. In fact, many of the varia-

tional transformations that can be found in the literature of graphical models are based

on the general principle of convex duality [125].

Example 2: Let the received data be r = s + v, where the symbol s is a random

variable, taking values in the discrete set S ∈ {1,−1} with equal probability, and v is a

zero-mean, Gaussian random variable with unknown variance denoted as σ2
v . Suppose

that we want to estimate the variance σ2
v , given the received data r, via ML estimation.

The log-likelihood function for this simple estimation problem is easily obtained as

L(σ2
v) = −1

2
ln(8π) − 1

2
ln(σ2

v) − 1

2σ2
v

(r2 + 1) + ln
(
e

r

σ2
v + e

− r

σ2
v

)
.

Unfortunately, the maximization of L(σ2
v) over σ2

v , a prerequisite for ML estimation,

does not seem to yield any analytical, closed-form solution. So, let us try to find a

59



variational lower bound for the above log-likelihood function so that a more tractable

estimator could be obtained.

Towards this end, let us consider the function

g(y) = ln
(
e

y
2 + e−

y
2

)
,

which can alternatively be expressed as

g(y) = −y

2
+ ln(1 + ey).

Since ln(1 + ey) is a convex function of y (as can be readily verified by calculating the

second derivative), the principle of convex duality applies, and the function g(y) can be

lower bounded with linear functions. In particular, we obtain that

g(y) ≥ −y

2
+ λy + H(λ),

where H(λ) is a binary entropy function, H(λ) � −λ ln(λ) − (1 − λ) ln(1 − λ). In-

serting y = 2r
σ2

v
, the log-likelihood function of the noise variance can now be expressed

variationally as

L(σ2
v) = max

λ

{
−1

2
ln(8π) − 1

2
ln(σ2

v) − 1

2σ2
v

(r2 + 1) − r

σ2
v

+
2λr

σ2
v

+ H(λ)

}
.

Consequently, the ML estimate of the noise variance can be expressed by using double

maximization as follows:

(
σ̂2

v

)
ML

= arg max
σ2

v

max
λ

{
−1

2
ln(σ2

v) − 1

2σ2
v

(r2 + 1) − r(1 − 2λ)

σ2
v

+ H(λ)

}
.

This double maximization can be carried out by an iterative coordinate ascent algorithm,

maximizing over one parameter at a time, while keeping the other fixed. Thus, an

overall procedure for estimating σ2
v consists of two alternating steps, given at the ith

iteration by

λ(i) =
1

1 + e−2r/σ̂2
v

(i−1)
= P

(
s = 1

∣∣∣r, σ̂2
v

(i−1)
)

∈ ]0, 1[

σ̂2
v

(i)
= r2 + 2r

(
1 − 2λ(i)

)
+ 1.

As may be readily noticed, the likelihood is guaranteed to monotonically increase at

each iteration—a highly favorable property that is shared with the standard EM algo-

rithm. �
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Example 3: Let us consider the same system model and problem setting as in the

previous example. This time the log-likelihood function is, however, lower bounded as

follows:

L(σ2
v) = ln

∑

s

p(r, s|σ2
v) = ln

∑

s

λ(s)
p(r, s|σ2

v)

λ(s)

≥
∑

s

λ(s) ln
p(r, s|σ2

v)

λ(s)
=

∑

s

λ(s) ln p(r, s|σ2
v) −

∑

s

λ(s) ln λ(s),

where p(r, s|σ2
v) = p(r|s, σ2

v)P (s) denotes the joint probability density function of r

and s given the noise variance σ2
v and λ(s) denotes the variational “trial” distribution

of s. The second line in the above equation is obtained by making an appeal to Jensen’s

inequality [52]. In this case, the distribution λ(s) for different values of s forms a vector

of free parameters to be optimized.

Based on this variational formulation, the ML estimate of the noise variance can

alternatively be obtained as the maximizing argument of the following optimization:

(
σ̂2

v

)
ML

= arg max
σ2

v

max
λ(s)

{∑

s

λ(s) ln p(r, s|σ2
v) −

∑

s

λ(s) lnλ(s)

}
.

As can be easily verified, the coordinate ascent on this lower bound yields the standard

EM algorithm, expressed at the ith iteration as

λ(s)(i) = P
(
s
∣∣r, σ̂2

v

(i−1))

σ̂2
v

(i)
= r2 − 2r

∑

s

λ(s)s + 1.

Although the EM algorithm is conventionally presented as an alternation between an

expectation step (E-step) and a maximization step (M-step), both steps can, from a

variational optimization perspective, be viewed as maximization steps. This fact has

formally been proven, e.g., in [54, 176].

Importantly, also this version of the variational transformation can be justified by

appealing to the general principle of convex duality, defined now in terms of vectors

[125]. Specifically, let us view the log probability function ln p(r, s|σ2
v) as a vector

of the real functions of r, defined on the set of values of s, and treat it as a variable

vector. Then, the key question is whether the log-likelihood function L(σ2
v) is a convex

function in ln p(r, s|σ2
v). By writing

L(σ2
v) = ln

(∑

s

eln p(r,s|σ2
v)
)
,
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it is easy to show that L(σ2
v) indeed fulfills the convexity requirement. Moreover, it can

be noticed that the Legendre transformation of L(σ2
v) is the negative of the variational

entropy function: Φ(λ) =
∑

s λ(s) ln λ(s). �

Basically, the variational algorithms presented in Examples 2 and 3 are similar, ex-

cept regarding the number of free parameters to be optimized. Convergence properties

of these two iterative estimators are studied here by numerically evaluating the evolution

of the log-likelihood values in a simple exemplary setting. According to simulations,

both algorithms produce exactly the same chain of values for L(σ2
v) when started from

equivalent initial conditions.7

Table 1. Exemplary convergence table for the iterative bounding algorithms of

Examples 2 and 3. The exact value of the log-likelihood is Ltrue(σ
2
v) = −1.5453.

iteration no. L(σ2
v)

1 -2.6799

2 -1.9399

3 -1.8592

4 -1.8046

5 -1.7299

6 -1.6089

7 -1.5467

8 -1.5453

9 -1.5453

A chain of log-likelihood values obtained from an example simulation exercise, in

which 9 iterations were executed, is presented in Table 1. The tabulated likelihood

values represent those obtained by using algorithms of Examples 2 and 3 in separate

test runs. The true value of the noise variance was σ2
v = 0.6310, while the ML estimate

turned out to be
(
σ̂2

v

)
ML

= 0.3223. The initial value of the free parameter was set at

λ(0) = 0.1 in the first implementation (Example 2), whereas λ(s)(0) = [0.1 0.9]T was

used in the second one (Example 3). In addition, the received signal assumed the value

7In general, however, endowing the variational optimization problem with extra degrees of freedom may

render the formulations more flexible.
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r = 1.5674 in both test cases.

Example 4: Let the received data be r = hs + v, where the symbol s is a random

variable, taking values in the discrete set S ∈ {1,−1} with equal probability, h and

v are zero-mean, independent Gaussian random variables with variances σ2
h and σ2

v ,

respectively. Suppose again that we want to estimate the variance σ2
v , given the received

data r. The log-likelihood function for this problem is given by

L(σ2
v) = −1

2
ln(2π) − 1

2
ln(σ2

h + σ2
v) − 1

2

r2

σ2
h + σ2

v

.

In this case, the ML estimate of the noise variance is readily obtained as

(
σ̂2

v

)
ML

=

⎧
⎨
⎩

r2 − σ2
h if r2 > σ2

h,

0 otherwise,

and, hence, there is no need for estimation via variational bounding. Justifiably, one may

question the meaningfulness of this example as a whole. In any case, let us consider, for

merely illustrative purposes, the following approximation for the log-likelihood func-

tion:

L(σ2
v) = ln

∫

h

∑

s

p(r|s, h, σ2
v)p(s)p(h)dh

≥ −1

2
ln(8πσ2

v) − 1

2σ2
v

∫

h

q(h)(r2 + h2)dh +

∫

h

q(h)
(
e

rh

σ2
v + e

− rh

σ2
v

)
dh

+

∫

h

q(h) ln p(h) −
∫

h

q(h) ln q(h)

≥ −1

2
ln(8πσ2

v) − 1

2σ2
v

(
r2 + 〈h2〉

)
− r(1 − 2λ)〈h〉

σ2
v

+ H(λ)

+

∫

h

q(h) ln p(h) −
∫

h

q(h) ln q(h),

where the following definition is used: 〈h〉 �
∫

h
q(h)h dh. The “trial” distribution q(h)

and λ now form a set of free parameters to be optimized. In the above formulation, the

variational bounding via the principle of convex duality is applied twice in two different

forms introduced in the previous examples. Based on this bounding, the expression for

the ML estimate of σ2
v can alternatively be presented as

(
σ̂2

v

)
ML

= argmax
σ2

v

max
q(h)

max
λ

{
−1

2
ln(σ2

v) − 1

2σ2
v

(
r2 + 〈h2〉

)

− r(1 − 2λ)〈h〉
σ2

v

+ H(λ) +

∫

h

q(h) ln p(h) −
∫

h

q(h) ln q(h)

}
.
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An iterative coordinate ascent at the ith iteration yields

λ(i) =
1

1 + exp
{
− 2r〈h〉(i−1)

σ̂2
v

(i−1)

}

〈h〉(i) =

∫

h

q(i)(h)h dh =
σ2

h

σ2
h + σ̂2

v

(i−1)

(
1 − 2λ(i)

)
r

〈h2〉(i) =

∫

h

q(i)(h)h2 dh =
σ2

h

σ2
h + σ̂2

v

(i−1)

(
σ̂2

v

(i−1)
+

(
1 − 2λ(i)

)2
r2σ2

h

σ2
h + σ̂2

v

(i−1)

)

σ̂2
v

(i)
= r2 + 2r〈h〉(i)

(
1 − 2λ(i)

)
+ 〈h2〉(i).

Again, at each iteration, the likelihood is guaranteed to monotonically increase. A nu-

merical example of the convergence of this iterative optimization algorithm is presented

in Table 2. �

Table 2. Exemplary convergence table for the iterative bounding algorithm of Ex-

ample 4. The exact value of the log-likelihood is Ltrue(σ
2
v) = −1.0355. In addition,

the following parameter values were assumed: r = 0.2, λ(0) = 0.01, σ̂2
v

(0)
= 10.

iteration no. L(σ2
v)

1 -2.0362

2 -1.2027

3 -1.1466

4 -1.1253

5 -1.1163

6 -1.1124

7 -1.1107

8 -1.1099

9 -1.1094

10 -1.1093

11 -1.1093

12 -1.1093

Through these rather simple and somewhat unrealistic examples, the feasibility of

the joint inference and estimation via the variational bounding technique has been illus-
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trated. While aiming for the ML estimate of the noise variance, the symbol APPs were

obtained as a by-product of the iterative bounding algorithm. The variational bounding

can also be applied to approximate inference alone, as will be discussed in the sequel.

Moreover, the variational formula inferred from the convex duality principle may be

modified so that it does not provide a lower bound on the probability of interest any

more, but may, however, produce more accurate approximation. Examples include the

Bethe approximation method [263] and its generalizations [265]. Next, the variational

methods will be looked at from the statistical physics point of view.

2.4 Variational free energy minimization framework

In this section, a generic variational free energy minimization (VFEM) framework will

be introduced, building upon the concept of a “free energy” from statistical physics. At

the same time, the interplay between the principle of convex duality and the concept of

free energy minimization will be emphasized along the way.

In fact, the origin of the variational methods is in statistical physics [263], where

these methods have been applied in order to obtain a computationally feasible approach

for evaluating the quantity known as a Helmholtz free energy. However, concentrat-

ing more on the modern applications of these methods in the areas of statistical signal

processing and digital communications, a principled goal of the VFEM framework, pro-

vided in this section, will be stated so as to give a computationally oriented meaning

to the generic problem of variatioanal inference—a meaning that reposes on basic con-

cepts in the field of convex analysis.

Suppose that a set of K discrete-valued variables is given as
{
X1, . . . , XK

}
, while

xi denotes a realization of Xi. In addition, let x stand for
{
x1, . . . , xK

}
, and let the

joint probability mass function P
(
X1 = x1, . . . , XK = xK

)
be succintly expressed as

p(x). In the physical systems, the vector x can represent an overall state of the system,

whereas each element of x, i.e., xi ∀i, label a state of the ith particle of the system.

Such a particle could represent, for example, an atom in a magnetic crystal, and the

state of the atom in that case describes whether a given electron has an “up” spin or

“down” spin [265]. If the system is in thermal equilibrium with a large reservoir, it can

be shown that, under the fundamental assumptions of thermal physics, the probability

that the system will be in a configuration x is given by the Boltzmann distribution:

p(x) =
e−E(x)/T

Z
, (47)
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where E(x) denotes the energy of the system at the state configuration x, T is the

temperature, and Z is a normalization constant, also known as the partition function

(see, e.g., [133]). The partition function can be expressed as

Z =
∑

x

e−E(x)/T . (48)

Statistical physicists have devoted much of their energy to justifying Boltzmann’s

law [133, 203, 265]. On the other hand, for nonphysical systems where p(x) simply

denotes the joint probability mass function for the discrete-valued elements of a vector

x, Boltzmann’s law (47) can be viewed as a postulate that defines an energy for the

system and where the temperature T can be set arbitrarily since it only sets a scale for

the units in which the energy is measured.

The Helmholtz free energy, defined as

FHelmholtz = − lnZ, (49)

is a fundamentally important quantity in statistical physics since it can be used to char-

acterize the underlying physical system [36, 203]. Physicists have, therefore, developed

a wide range of techniques to calculate the Helmholtz free energy, either exactly or ap-

proximately. The most important approximate methods are Monte Carlo probabilistic

resampling algorithms [156] and deterministic variational inference algorithms [265].

Towards describing the variational inference algorithms in terms of statistical

physics, let us first consider the problem of computing the Helmholtz free energy as

a variational optimization problem. Specifically, using Jensen’s inequality, FHelmholtz

can be bounded as

FHelmholtz = − ln
∑

x

e−E(x)/T = − ln
∑

x

Q(x)
e−E(x)/T

Q(x)

≤ −
∑

x

Q(x) ln
e−E(x)/T

Q(x)
=

1

T

∑

x

Q(x)E(x) +
∑

x

Q(x) ln Q(x),

(50)

where Q(x) is called a variational (trial) distribution.8 Similarly to the variational

bounding in Example 3 of the previous section, the lower bound (50) for the Helmholtz

free energy can be justified by making an appeal to convex duality theory. So, the clas-

sical variational bounding technique in statistical physics and the principle of convex

duality in convex analysis meet each other in the formulation given in (50).

8Since Q(x) is a distribution, it should, of course, be normalized and obey 0 ≤ Q(x) ≤ 1 for all x.
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Let us define the variational average energy as

U(Q) =
1

T

∑

x

Q(x)E(x), (51)

and the variational entropy as

H(Q) = −
∑

x

Q(x) lnQ(x). (52)

In addition, let us define the variational free energy (also sometimes called the Gibbs

free energy [265]) as

F(Q) = U(Q) −H(Q). (53)

Based on these definitions, the variational free energy can be interpreted as an upper

bound for the Helmholtz free energy, i.e., FHelmholtz ≤ F(Q). In fact, it can be further

elaborated as

F(Q) = −
∑

x

Q(x) ln
e−E(x)/T

Q(x)
= −

∑

x

Q(x) ln
p(x)Z

Q(x)

= − ln Z +
∑

x

Q(x) ln
Q(x)

p(x)
= FHelmholtz + D

(
Q(x)‖p(x)

)
,

(54)

where the Kullback-Leibler (KL) divergence D
(
Q(x)‖p(x)

)
(also known as the cross-

entropy or the relative entropy) is defined as

D
(
Q(x)‖p(x)

)
=

∑

x

Q(x) ln
Q(x)

p(x)
. (55)

Since D
(
Q(x)‖p(x)

)
is always nonnegative and is zero if and only if Q(x) = p(x)

[52], it can be readily noticed that the upper bound in (50) achieves an exact value of

FHelmholtz precisely when Q(x) = p(x). Moreover, it follows from (54) that the original

(“target”) distribution p(x) is recovered as a distribution that minimizes the variational

free energy, i.e.,

p(x) = arg min
Q(x)

F(Q(x)). (56)

Thus, minimizing the variational free energy F(Q) over an unconstrained set of Q(x)

distributions is an exact procedure for computing FHelmholtz. But the computational

complexity related to this kind of optimization is, of course, also excessive for large

values of K , rendering this approach totally intractable as such.
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Basically, at least two strategies exist for obtaining practical algorithms for com-

puting the Helmholtz free energy approximately: i) minimizing F(Q) over a restricted

class of variational distributions and ii) modifying the functional F(Q) itself so that the

optimization over the variational distributions becomes computationally less demand-

ing. The practical algorithms can be obtained on the basis of one of these strategies

or by using both of them. Computational algorithms that are obtained on the basis of

the first strategy are generally called mean field (MF) algorithms [217]. In particular, a

minimization of F(Q) over a class of fully factorized trial distributions leads to the solu-

tion that is often referred to as a naive mean field solution [263]. On the other hand, the

Bethe method, whose origins date back to 1935 [31], is obtained by modifying the vari-

ational entropy functional H(Q) and setting constraints on the variational distributions

Q(x) [265]. So, recapping, computationally attractive algorithms for approximating

the Helmholtz free energy are obtained by casting the exact computational procedure

as a solution to the optimization problem and then solving the perturbed version of this

optimization problem.

The utility of a variational free energy minimization (VFEM) framework is not lim-

ited to facilitating the evaluation of the Helmholtz free energy, but it equally applies to

a broad class of computational problems in the context of nonphysical systems that are

frequently encountered in the areas of statistical signal processing and digital commu-

nications. Such problems must often deal with the computation of the probabilities of

some hidden variables given the observations. Typically, these computations consist of

marginalization of some global function of all (or a large number of) variables.

In general, there are K marginal functions pi(xi), associated with the joint pdf p(x),

that are defined as

pi(xi) �
∑

x:xi

p(x). (57)

The notation used above should be interpreted so that the value of pi(Xi) is obtained

by summing the value of p(x) over all configurations of variables that have xi = Xi.

From the computational procedures perspective, there is a direct analogy between

the log-partition function in physics and the marginal function pi(xi) in probability

theory—both are obtained through the process of marginalization. The key idea be-

hind the VFEM algorithm when applied to computation of FHelmholtz is to find the trial

distribution Q(x) which resembles closely the Boltzmann distribution p(x) and, at the

same time, makes the marginalization required for the computation of the relevant up-

per bound (right hand side of (50)) computationally feasible. Similarly, the key insight
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behind the variational inference in probabilistic models is that the exact marginal func-

tions pi(xi) can be approximated by the marginals

qi(xi) =
∑

x:xi

Q(x), (58)

where the trial distribution Q(x) is optimized so that it resembles the target distribution

p(x) as closely as possible. This optimization is achieved by minimizing the variational

free energy F(Q) with respect to Q(x), under the given constraints on Q(x). On the

other hand, the minimization of F(Q) amounts to the minimization of the KL diver-

gence D
(
Q(x)‖p(x)

)
—a “distance” measure that is often used to measure differences

between two distributions.

The VFEM framework presented above can naturally be extended to include the

joint parameter estimation and variational inference, as already demonstrated in the

previous section via some examples. Similarly to the procedures outlined above, the

dual representations of convex/concave functions can be used to transform estimation

algorithms into optimization problems which are then tuned into approximations by

somehow relaxing the optimizations involved. As in the context of the variational for-

mulation of the Helmholtz free energy, this relaxation has two main consequences: i) it

simplifies the computations involved and ii) it yieds a bound, both of which are desir-

able properties. The formal treatment of the joint estimation and inference within the

VFEM framework will be introduced in the following chapters when found relevant.
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3 Statistical physics perspective of turbo

receivers

In this chapter, the problem of joint detection and decoding via turbo-processing in

known channels is addressed by looking at it from the statistical physics perspective.

Based on the VFEM framework, it will be shown that the well-known linear SISO de-

tectors, such as the linear channel matched filter (LCMF)-based SISO detectors [140]

and linear minimum mean square error (LMMSE) SISO detectors [238], can be ob-

tained as solutions to the variational optimization problem.

As already noted, the variational inference algorithms have their origin in statistical

physics [36] but have, in recent years, been a subject for active research and devel-

opment also within neural computation, artificial intelligence, and machine learning

communities [125, 126, 265, 263, 160]. In addition, methods of statistical physics have

been applied the analysis of the performance of CDMA systems in a number of papers,

for example in [97, 228]. An extension of these into the realm of nonlinear soft inter-

ference cancellation (SIC) receivers in the context of CDMA systems was obtained in

[145].

The contribution [145] can essentially be regarded as a parallel work to the one re-

ported in this chapter, while both of these works were pursued independently. Though

conceptually similar approaches were used, details in algorithms and different focuses

in analysis may be used to differentiate these independent contributions from one an-

other. In addition to these, a set of bit-level SISO detectors, dealing directly with the pos-

terior distributions of the information bits, was derived for Gray-coded M-ary quadra-

ture amplitude modulated (M-QAM) symbols via variational optimization in [146].

The variational optimization methods, in the context of turbo receivers, will be

shown to provide an interesting link between the ‘optimal’ APP demodulator and the lin-

ear SISO detectors, characterizing the close relationship between them. Further, the new

formulation of the linear SISO detectors has even more far-reaching implications since

such a formulation essentially supplements the earlier contributions [265, 159, 110],

which have connected the BP algorithm with the variational optimization methodology.

Altogether, these results indicate that the many ideas underlying turbo receivers can be

understood, unified, and generalized within the formalism of variational optimization.

In [137], clustering and stretching techniques were introduced as effective means to
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modify a factor graph with cycles in such a way that some or all the cycles may be elim-

inated (further information can be found in [51]). Such modifications are obtained by

increasing the complexity of local functions and/or the domains of the variable nodes.

The modified factor graph typically entails improved performance, although often at a

great expense in overall complexity. Importantly, the local function factorization via

variational optimization as proposed in this chapter may also be seen as a generic low

complexity method to eliminate some or all cycles in the fraction of the factor graph

describing the channel behavior. This, together with clustering and stretching tech-

niques, can provide further flexibility in designing approximate receiver structures for

the model at hand.

Moreover, the properties of the exact APP demodulator and linear SISO detectors

are examined from the information divergence and the entropy viewpoints. Although

the algorithms themselves are mostly known, this examination may be justified by not-

ing that such fresh viewpoints can offer a new set of insights and opportunities. As an

example, some extensions of the linear SISO detectors, providing an improved perfor-

mance with an acceptable increase in complexity, are proposed in the context of MIMO

systems.

This chapter is structured as follows. In Section 3.1, the turbo-processing principles

are summarized and design criteria for SISO demodulation are addressed. In Section

3.2, the familiar linear SISO detectors are formulated as instances of the VFEM algo-

rithm. In section 3.3, a discussion on the performance of the APP demodulators and

linear SISO detectors in the light of information divergence is given. In Section 3.4,

some examples of advanced receiver structures based on variational optimization are

discussed. Then, complexities of the discussed receiver structures are considered at a

general level in Section 3.5, and numerical simulation results are given in Section 3.6.

Finally, conclusions are drawn in Section 3.7.

3.1 Turbo processing and variational optimization

The turbo-processing principle is first summarized, emphasizing the factors which make

turbo receivers inherently suboptimal. Then, an information theoretic justification for

APP demodulators as effective building blocks of the turbo receivers is provided. Fi-

nally, the VFEM framework as an avenue to low-complexity alternatives is proposed.
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3.1.1 Turbo-processing principle

An optimal decoding for the coded MIMO signal is given as

ŝ = argmax
s

p(s|r), (59)

where p(s|r) represents the a posteriori probability distribution of the codewords, and

it can be expressed as

p(s|r) =
p(r|s)IC(s)∑
s
p(r|s)IC(s)

. (60)

In (60), p(r|s) denotes the conditional probability density function (pdf) of r given s,

and IC(s) denotes the indicator (characteristic) function for the code C. In a case where

a separate channel code (Cn) is applied to different transmitter antenna signals (e.g., a

multiuser MIMO case), the indicator function can be decomposed as

IC(s) = IC1(s1)IC2(s2) · · · ICN
(sN ), (61)

where ICn
(sn) denotes an indicator function for the channel code imposed on the data

to be transmitted from transmitter antenna n. The optimal receiver is in most cases

prohibitively complex since the symbol sequence probabilities have to be computed for

all permissible sequences.

Following the formulation in [170], it may be possible to find an iterative minimum

cross-entropy (MCE) algorithm that applies only a subset of constraints (either chan-

nel or some of the code constraints) at a time, and yet is guaranteed to converge to

the distribution p(s|r). But even if this could be done, the complexity would not be

essentially reduced since the symbol sequence probabilities must be updated at each

iteration for all permissible sequences, taking values in the Cartesian product space

SKN , where K denotes the length of sn. In turbo processing, the complexity issue is

addressed in two different ways: i) by iterative processing where the symbol sequence

distribution is updated iteratively in separate demodulation and decoding blocks that

exchange probabilistic information with each other in the form of extrinsic information,

and ii) by assuming that the symbol probabilities at the output of each block are in-

dependent in distinct symbol intervals. In consequence of the assumed independence

between the symbols, the symbol sequence distribution at the output of the demodulator

and the decoder takes a fully factorized form, where each factor is a function of a sin-

gle symbol only. Since this can be regarded as the most essential assumption made in

turbo-processing [170], its validity may eventually determine how well any particular

paradigm of the turbo receiver performs with respect to the optimal receiver.
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Basically, there are a number of ways to improve the validity of the symbol in-

dependence assumption. The role of an interleaving and deinterleaving between the

demodulation and decoding functions is crucial in this respect. Secondly, the exchange

of only the extrinsic information (information difference between the input and output

of each block) between different blocks improves the independence of the symbols. Fi-

nally, the method used to compute the soft output distribution at each stage of the turbo

processing may have a great impact on the validity of the independence assumption as

well as on the convergence properties of the whole iterative receiver.

3.1.2 SISO demodulation, information divergences, and

variational optimization

The basic problem in SISO demodulation as well as in SISO decoding is finding a fac-

torization which approximates the symbol sequence distribution p(s|r) as closely as

possible. An intuitively appealing choice is to approximate the symbol sequence dis-

tribution with a product of marginal distributions. In fact, this used to be a common

practice in the appearance of turbo receivers [170] and is still an only known feasible

method to implement the SISO decoding. According to this strategy, the SISO demod-

ulator approximates the symbol sequence distribution as follows:

pr(s)
△
=

1

p(r)
p(r|s)P (s) ≈

∏

n

∏

k

pr(sn(k)), (62)

where P (s) denotes the a priori distribution of s.9 The marginals are computed as

pr(sn(k)) =
∑

s\sn(k) pr(s), where the summation is performed over all symbol se-

quences s that are consistent with sn(k) (called “summary for sn(k)” in [137]). In

the literature, computation of marginal distributions is often called exact inference as

opposed to approximate inference, which refers to approximate methods of calculating

the marginals. It is important to note, that the exact inference, performed in different

processing blocks of the turbo receiver, does not imply an optimality of the receiver,

since the optimal receiver must always manipulate the whole symbol sequence distribu-

tions, as already pointed out earlier.

In accordance with the turbo principle, the a priori distribution of the symbol se-

9In general, P (s) is known by the receiver since it can be obtained from the coding rule. However, using exact

values for P (s) entails exponentially growing processing and data storage requirements. Hence, distribution

P (s) is often approximated by means of extrinsic output from the SISO decoder.
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quence P (s) is assumed to be fully factorized uniform distribution at the first iteration,

whereas at the following iterations it is postulated to be

P (s) =
∏

n

∏

k

λ2,n,k(sn(k)), (63)

where λ2,n,k(sn(k)) represents the extrinsic information on the symbol sn(k) delivered

by the channel decoder via the interleaver. Due to these simplifications, the distribu-

tion pr(s) is only an approximation of p(s|r) when the channel encoding is employed.

The focus of this chapter is, however, on the latter approximation in (62), i.e., on the

factorization performed by the SISO demodulator. A theoretical justification for the

factorization in (62) can be obtained by using the concept of information divergence, as

shown in the following lemma.

Lemma 1 The product of marginal distributions can be interpreted as a factorization

that is obtained by minimizing the Kullback-Leibler (KL) divergence between the object

distribution pr(s) and any fully factorized distribution, i.e.,

∏

n

∏

k

pr(sn(k)) = arg min
Q(s)

D
(
pr(s)‖Q(s)

)
, (64)

where the trial distribution Q(s) is constrained to be a product of arbitrary “factor”

probabilities qn,k, i.e.,

Q(s) =
∏

n

∏

k

qn,k. (65)

Proof. See Appendix 1. �

The KL-divergence can be regarded as a distance measure between two distribu-

tions although it is generally asymmetrical, i.e., D(pr‖Q) �= D(Q‖pr). In fact, the

KL-divergence is a special case in a large family of information divergences, called

α-divergences [6].

The turbo receiver based on the factorization (62) can be interpreted as an instance

of the SP algorithm, operating on the factor graph where the demodulator and the

decoders are represented by cycle-free Wiberg-type graphs [137, 159]. The symbol

a posteriori probabilities (APPs) pr(sn(k)) are efficiently computed by the standard

forward-backward processing (BCJR) algorithm [16], with a complexity which scales

exponentially as a function of LN . When the channel memory length or the number

of transmitter antennas or both increase, even this APP demodulator becomes compu-

tationally infeasible, and one is forced to pursue other approximations. A pertinent

75



question at this point is whether the minimization of D
(
Q(s)‖pr(s)

)
, another form of

the information divergence, produces a computationally more feasible solution. The

answer is in the affirmative, as will be shown in the next section.

Meanwhile, considering the situation where the channel convolution matrix H is

known by the receiver, let us rewrite the distribution pr(s) in the form of Boltzmann

distribution as follows:

pr(s) =
1

Z
e−

1
T
E(s), (66)

where the posterior log likelihood E(s), defining the energy of the system at hand, is

given by

E(s) = −r
H
Hs − s

H
H

H
r + s

H
H

H
Hs − T ln P (s). (67)

As usual, Z is a normalizing constant (called the partition function in statistical physics)

and the temperature T corresponds (and is nominally set) to the variance σ2
v of the

thermal noise.10 For Boltzmann distributions, the minimization of the KL divergence

D(Q(s)‖pr(s)) amounts to the minimization of the corresponding variational free en-

ergy. Thus, the minimization of D(Q(s)‖pr(s)), with the trial distribution Q(s) assum-

ing a fully factorized form, falls into the purview of the VFEM framework. It is this

statistical physics perspective of the turbo receivers that will be further explored in the

sequel.

3.2 Formulation of linear SISO detectors as instances of

VFEM algorithm

In this section, two classes of existing linear SISO detectors are formulated as devices

which aim to minimize the variational free energy over the family of fully factorized

distributions. In particular, the first class of receivers handle the information symbols

as discrete valued unknown variables. In this case, the linear SISO detector is recov-

ered by using the conventional mean field approach. Meanwhile, the second class of

linear SISO detectors model the information symbols as random Gaussian variables,

and, hence, the probabilistic calculations within this class fit perfectly into the Bayesian

formalism.

10The noise variance σ2
v is deliberately replaced by the temperature T for future reference.
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3.2.1 Linear channel matched filter-based SISO detectors

A new formulation for the LCMF SISO detectors, proposed earlier by several authors

(see, e.g., [140, 238, 194]), is given by the following proposition.

Proposition 1 Consider the minimization of F(Q) = − lnZ +
∑

s
Q(s) ln Q(s)

pr(s) sub-

ject to constraint that the variational distribution Q(s) is fully factorized. The fixed

point equations for solving this VFEM problem results in the output distribution of the

LCMF SISO detector [140, 238], given as QMF(s) =
∏

n

∏
k qn,k, where

qn,k = λ2,n,k
1

γn,k
exp

[
−En,k

T

∣∣sn(k) − ŝn(k)
∣∣2
]

. (68)

Here, λ2,n,k denotes an extrinsic information delivered by the SISO decoder, γn,k is a

normalizing constant, and ŝn(k) denotes the output of the linear SISO detector given

as

ŝn(k) =
1

En,k
e

H
n,kH

H
(
r− Hs + Hen,ksn(k)

)

= c
H
n,k,CMF

(
r − Hs + Hen,ksn(k)

)
,

(69)

where En,k = e
H
n,kH

H
Hen,k is the energy of the symbol sn(k) at the receiver (when

the transmitted signal power is normalized to one) and

cn,k,CMF � Hen,k (70)

denotes the coefficient vector of the channel matched filter. Furthermore, en,k denotes

a unit vector defined as

en,k =
[
01×((n−1)K+k−1), 1,01×((N−n+1)K−k)

]T
, (71)

and the vector of the soft symbols s is defined as

s =
[
s
T
1 , sT

2 , . . . , sT
N

]T ∈ C
NK , (72)

sn =
[
sn(1), sn(2), . . . , sn(K)

]T ∈ C
K , (73)

where the value of the soft symbol sn(k) is obtained as

sn(k) = Eqn,k

[
sn(k)

]
=

∑

αi∈S

αiqn,k

(
sn(k) = αi

)
. (74)

In (74), Eqn,k
[·] denotes expectation under the distribution qn,k.
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Proof. See Appendix 1. �

According to the turbo principle, the extrinsic output distribution of the LCMF SISO

detector can be defined as

Λ1(s) =
∏

n

∏

k

λ1,n,k(sn(k)), (75)

where λ1,n,k(sn(k)) � qn,k/λ2,n,k. Thus, the soft output of the standard LCMF SISO

detector can be interpreted as a naive MF approximation to the objective function pr(s).

This novel formulation provides new insight into existing algorithms and suggests some

enhancing adjustments for them as well. In particular, the following points are worth

noting.

1. In the presence of perfect soft symbol feedback, i.e., s = s, the ISI is perfectly

removed and the receiver achieves the matched filter bound.

2. The soft symbol estimates, which are used in the soft interference cancellation, are

computed by exploiting the full APP information on the channel symbols. The full

APP information is the sum of the information induced by the coding, the estimate

of which is provided by the channel decoder in the form of extrinsic information

λ2,n.k, and the ISI channel induced information, embodied by the soft output of the

detector, i.e., ln qn,k = lnλ2,n,k + ln λ1,n,k. This contrasts with most of the earlier

contributions dealing with the LCMF SISO detectors, where only the extrinsic out-

put of the decoder is used for the soft interference cancellation. However, a similar

remark concerning the use of full APP information in LCMF detectors was made in

[248] by using ad hoc reasoning.

3. Since the soft interference cancellation exploits the full APP information, an im-

provement may be obtained whenever either the coding-induced information or the

channel-induced information is updated. Consequently, the convergence rate of

turbo receivers based on the linear SISO detectors can, at least in some cases, be

accelerated by making also the SISO detector itself iterative, i.e., by updating the

channel induced information λ1,n,k more often than the coding induced information

λ2,n,k. Another interesting variant of the linear SISO detector is obtained by di-

viding the feedback filter into two parts, one cancelling the precursor and the other

cancelling the postcursor [249, 153]. The soft input to the postcursor cancellation

filter can be updated on-line while the input to the precursor cancellation filter is

computed using information from the previous iteration.
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4. Because the minimization of the KL-divergence in F(Q) takes place over the first

argument instead of the second one, the mean field optimization does not fall into the

purview of standard information geometry [170, 7]. Moreover, the variational free

energy F(Q) is not a convex function of qn,k, entailing the possible existence of

multiple local minima to which the mean field algorithm can converge to. However,

the risk of being occasionally trapped into the bad local minimum can be reduced

by applying the mean field annealing (MFA) technique [33]. A key idea behind

this technique is to vary the value of the temperature T as the iterations evolve,

starting from a high temperature value and then cooling the system down along with

iterations. It has been successfully applied, for example, to the traveling salesman

problem [22]. There the MFA theory was shown to bring out some of the essential

features of the problem.

5. A major drawback of the naive mean field approximation is that it over-estimates the

entropy of the variational distribution. This is due to fact that the actual probabilistic

interactions between the neighboring symbols are approximated with their average

influence (mean field) on any specific symbol, i.e., the symbols are assumed to be

statistically independent under the variational distribution. This is demonstrated with

a simple example model for which factor graph descriptions using exact and mean

field factorizations are presented in Fig. 3. Thus, an improvement on the mean

field solution may be obtained by defining a more sophisticated structure for the

trial distribution Q(s) or by modifying the variational free energy term F(Q) itself

so that the probabilistic interactions between symbols can be taken into account

in a more sophisticated way. Well-known examples of the latter approach are the

Bethe method resulting in the BP algorithm [265] as well as the Kikuchi and other

cluster variational approximation methods resulting in a variety of generalized BP

algorithms [265, 196, 197].
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Fig 3. A factor graph description for an example model using (a) an exact factoriza-

tion and (b) a mean field factorization. Only one transmitter antenna is assumed,

and so the following notational convention is used: λi,1,k(s(k)) ≡ λi,k ∀i, k.

The above MF factorization is obtained under the requirement that the data symbols

take values in a discrete domain, as they actually do in reality. However, let us consider

next the case where this requirement is relaxed, with a hope of achieving more efficient

detection at the receiver.

3.2.2 Linear MMSE SISO detectors

The linear MMSE SISO detectors have been proposed earlier by several authors [238,

239, 211, 221, 1]. In the following proposition, a statistical physics interpretation of

these well-known detectors is provided by applying the VFEM framework. Towards
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this end, the requirement that the data symbols take values only in a discrete space is

relaxed. Instead, they are assumed to take on values in a continuous complex valued

space, i.e., s ∈ C
NK . In addition, the data symbols are regarded as random variables

with independent Gaussian a priori probability density function (pdf).11 Accordingly,

the postulated a priori pdf of s is given as P (s) = CN (s, s,Σi), where s is a mean

vector and Σi = diag(σ̄i) is a diagonal covariance matrix where the vector of diagonal

elements is given by σ̄i = [σ2
i,1,1, · · · , σ2

i,1,K , · · · , σ2
i,N,K ]T (the subscript i stands for

the “input to the SISO detector”).

Proposition 2 Consider the minimization of F(Q) = − lnZ +
∑

s
Q(s) ln Q(s)

pr(s) sub-

ject to constraint that the variational distribution Q(s) = CN (s, ŝ,Σo), where the

mean vector ŝ and the diagonal covariance matrix Σo = diag(σ̄o) are unknown param-

eters subject to minimization, with σ̄o defined as

σ̄o = [σ2
o,1,1, · · · , σ2

o,1,K , · · · , σ2
o,N,K ]T .

This minimization results in the output distribution of the linear MMSE SISO detector

[239], defined as QMMSE(s) = CN (s, ŝ,Σo), where

ŝ = s + ΣiH
H(HΣiH

H + σ2
vI)

−1(r − Hs) (76)

σ2
o,n,k =

σ2
v

eH
n,k

(
HHH + σ2

vΣ
−1
i

)
en,k

. (77)

Proof. See Appendix 1. �

Since turbo processing entails the exchange of extrinsic information between the

detector and decoder blocks, the extrinsic information corresponding to the symbol

sn(k) at the output of the MMSE SISO detector has to be extracted from QMMSE(s) by

using some mapping. As proposed in [239], a viable mapping is obtained simply by

setting sn(k) = 0 and σ2
i,n,k = 1. In doing so and additionally utilizing the knowledge

of the symbol constellation points, the extrinsic information concerning the symbol

sn(k) can be expressed as

λ1,n,k(αi) = CN
(
sn(k) = αi, ŝ

(extr)
n (k),

(
σ2

o,n,k

)(extr)
)
, (78)

11A pdf of a complex Gaussian random variable vector x with K elements is given by CN (x, mx, Σx) =
1

πK det(Σx)
e−(x−mx)H

Σ
−1
x (x−mx), where mx denotes the mean vector and Σx denotes the covariance

matrix.
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where

ŝ(extr)
n (k) = e

H
n,kΣiH

H
(
HΣiH

H + σ2
vI + (1 − σ2

i,n,k)Hen,ke
H
n,kH

)−1

·
(
r − Hs + Hen,ksn(k)

) (79)

(
σ2

o,n,k

)(extr)
=

σ2
v

eH
n,kH

HHen,k + σ2
v

=
σ2

v

En,k + σ2
v

=
1

SNRn,k + 1
, (80)

and SNRn,k denotes the signal-to-noise ratio at the kth symbol interval at the receiver,

i.e., SNRn,k = En,k/σ2
v . Another method for defining the extrinsic information in the

context of linear SISO detectors has been proposed in [148].

As shown above, the linear MMSE SISO detector can be formulated as an instance

of what is here referred to as the Bayesian mean field (BMF) approximation. This novel

interpretation yields new insight into the existing algorithms, as stated by the following

remarks.

1. The Hessians of F(Q) with respect to mean vector, i.e., ∂2F(Q)/
(
∂ŝ∂ŝ

H
)
, and

with respect to variance vector σ̄o, i.e., ∂2F(Q)/
(
∂σ̄o∂σ̄H

o

)
, are positive semidefi-

nite matrices implying that F(Q) is convex in terms of both the mean vector and the

variance vector. Due to convexity, the variational free energy in this case has only

one minimum, which is a global minimum, and it is obtained when ŝ and Σo are

defined as in (76) and (77).

2. It can be easily verified that

arg min
ŝ,Σo

D
(
CN (s, ŝ,Σo)‖pr(s)

)
= argmin

ŝ,Σo

D
(
pr(s)‖CN (s, ŝ,Σo)

)
. (81)

This relation is a direct consequence of the joint Gaussianity of r and s. In fact, the

conditional pdf pr(s) is also Gaussian with the mean vector given by (76) and the

covariance matrix given by Σs|r = σ2
v

(
H

H
H + σ2

vΣ
−1
i

)−1
.

3. The output distribution QMMSE(s) can be expressed in a factorized form as

QMMSE(s) =
∏

n

∏

k

CN
(
sn(k), ŝn(k), σ2

o,n,k

)
, (82)

where, based on (64) and (81), each factor distribution can alternatively be obtained

as CN
(
sn(k), ŝn(k), σ2

o,n,k

)
=

∫
s\sn(k)

pr(s)ds\sn(k) = pr(sn(k)) (the multidi-

mensional integration is computed over all symbols except the symbol sn(k)). Con-

sequently, analogously to the APP demodulator, the output pdf of the MMSE SISO

detector can be expressed as a product of marginal functions of the target distribution

pr(s).
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4. The Bayesian mean field approach postulates the existence of the a priori pdf P (s)

of data vector s. But it is not directly guided by the VFEM framework how this a

priori pdf should be specified in different phases of turbo-processing. At the first

iteration, a reasonable choice is the Gaussian pdf with zero mean and unit-variance,

i.e., P (s) = CN (s,0, I), leading to the standard MMSE equalizer with soft out-

put. Alternatively the a priori pdf could be assumed to be flat over the values

of s where the likelihood function p(r|s) has a nonvanishing support, essentially

leading to the zero-forcing (ZF) equalizer. At the later iterations, an intuitively

appealing and commonly made choice (see, e.g., [238, 239]) for the a priori pdf

is the Gaussian pdf whose mean vector s and covariance matrix Σi are computed

by exploiting the extrinsic information obtained as a feedback from the channel

decoder, i.e., sn(k) = Eλ2,n,k
[sn(k)] and σ2

i,n,k = Eλ2,n,k

[
|sn(k)|2

]
− |sn(k)|2.

Moreover, a computationally more attractive implementation is obtained by setting

Σi = 1
KN

∑
n

∑
k σ2

i,n,k × INK and assuming that the channel matrix is cyclic

(e.g., via the use of the cyclic prefixed transmission) [254, 253]. It may, however, be

advantageous from the performance point of view to calculate the mean and covari-

ance of CN (s, s,Σi) in terms of the full symbol APP information, instead of only

exploiting the extrinsic information. This latter approach could be justified by the

fact that the MMSE SISO detector approaches the LCMF SISO detector when the

reliability of the soft symbol decisions increases.

5. Unlike what has previously been proposed in the literature (see, e.g., [238, 239]),

the optimal variance of the extrinsic output of the MMSE SISO detector (from the

VFEM point of view) is exclusively determined by the instantaneous SNR. Previ-

ously, the variance of the residual interference has also been taken into account

[238, 239] in defining the extrinsic output of the SISO detector. However, the per-

formance of the associated turbo receiver seems to be quite robust, according to

numerical simulations, to the small variations in the output variance.

So far, a theoretical justification for various existing SISO blocks, such as the APP

demodulator, the LCMF SISO detector, and the MMSE SISO detector, has been ob-

tained by minimizing the KL divergence under different conditions and assumptions.

Thus, the KL divergence can be regarded as a unifying element in deriving and char-

acterizing various SISO blocks for turbo processing. Next, a step forward is taken by

exploiting the properties of the KL divergence in order to gain new insights into the

performance of these SISO blocks.
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3.3 Comparison of SISO blocks in the light of information

divergences

As shown in the previous sections, both the APP demodulators and the linear SISO de-

tectors can be interpreted as devices that approximate the symbol sequence distribution

with a fully factorized distribution such that an information loss is minimized in some

sense. In this light, it seems that the basic difference between these devices is not so

much the amount of structure they model, but rather the measure of information loss

they minimize. Since different divergence measures tend to prefer different types of

solutions, it is important to identify the conditions under which each of the approxi-

mations is most favorable. An aim of this section is to discuss, mostly at an intuitive

level, the insight one can gain into the convergence properties of turbo receivers, simply

by examining the properties of the information divergences that their associated SISO

detectors try to minimize.

The MF approximation is characterized by the fact that it finds a single, most mas-

sive mode of the target distribution while excluding the less plausible modes.12 This is

because the KL divergence D(Q(s)‖pr(s)) is forced to zero in the regions where the

target distribution pr(s) has vanishing density. In contrast, minimizing D(pr(s)‖Q(s))

will favor Q(s) distributions which try to cover all modes of pr(s) although this in-

volves assigning high probability to Q(s) in areas of low probability under pr(s) [82].

Because of that, the KL divergence D(pr(s)‖Q(s)) is termed “inclusive” divergence

in [82]. By analogy, the KL divergence D(Q(s)‖pr(s)) could be called an “exclusive”

divergence since it tends to exclude all but the most massive mode of the target distri-

bution. As an example, an arbitrary bimodal function P (x) may be approximated by a

Gaussian trial function Q(x), as shown in Fig. 4(a), when the “exclusive” divergence

D(Q‖P ) is used for optimization, while the result of the optimization may look like

that of Fig. 4(b) when the “inclusive” divergence D(P‖Q) is used as the optimization

criterion.

12Strictly speaking, the mode of a probability distribution is the value of a random variable at which the

probability density function attains its maximum value. When a pdf has multiple local maxima, it is, however,

common to refer to all of such local maxima as modes of the distribution. That is also the case in this thesis.

The massiveness of the (local) mode is defined as a probability mass within a suitable range of values around

the (local) mode.
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Fig 4. Approximating a bimodal function P (x) by the Gaussian trial function Q(x)

with its mean and variance serving as the free parameters to be adjusted. The re-

sult of minimizing D(Q‖P ), as is suggested by the VFEM framework, is illustrated

in part (a), while the result of minimizing D(P‖Q) is illustrated in part (b).

The relevant question now is which one of these two different KL divergences is

more favorable from the turbo processing point of view. Obviously, it is better to try to

cover all modes of the target distribution, at least initially. This is because the LCMF

SISO detectors can easily get trapped by a “wrong” mode of the target distribution,

which is manifested by an error floor in their performance. This danger is naturally

highest at the first iteration of the turbo processing, whereas at later iterations the exis-

tence of reliability information from the decoder typically makes the probability mass

in pr(s) concentrate in one mode, rendering the LCMF SISO detector as a viable choice

in these circumstances. These statements are backed up by EXIT chart analysis and nu-

merical simulation results presented in [238]. Indeed, the convergence problems related

to using the LCMF SISO detector as a building block of turbo receivers were clearly

observed and brought out in [238], while turbo processing based on the APP demod-

ulation was shown to represent a rather stable and fast-converging iterative detection

strategy. Actually, these considerations may partly account for the fact that the APP

demodulators are sometimes regarded as “optimal” SISO demodulators.

While the LCMF SISO detector seems to be in difficulties at early iterations, partic-

ularly in severe ISI channels, the MMSE SISO detector, which is based on the Bayesian
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MF approximation, seems to work properly. This is because the postulated Gaussian a

priori pdf of the data symbols makes the a posteriori pdf pr(s) also Gaussian. Hence,

the target distribution in this Bayesian case is unimodal and convex, which greatly fa-

cilitates the search for the global minimum. In fact, the inclusive and exclusive KL

divergences are equal in this Bayesian case.

Based on the above reasoning, it may be a good strategy to apply the exact APP or

linear MMSE SISO detection at early iterations of the turbo processing and then, after

initial convergence, to switch to the low-complexity LCMF detector. A related turbo re-

ceiver architecture was called a hybrid turbo detection scheme in [238]. In essence, the

above considerations, together with the EXIT chart analysis of [238], provide a theoret-

ical justification for the hybrid turbo detection schemes, for which some experimental

results were presented in [238, 194]. In addition, a conceptually similar hybrid turbo

detection scheme has been proposed for the CDMA system in [230].

3.4 Discussion on advanced variational methods with

applications

As mentioned earlier, an improvement on the naive MF approximation may be obtained

either by defining a more sophisticated structure for the trial distribution Q(s) or by

modifying the variational free energy term F(Q) itself. In this section, both of these

approaches are elaborated to some extent. As an example of the former approach, a vari-

ational approximation technique called the structured mean field approximation [90] is

considered first. It is based on the idea that the original probabilistic model is divided

into substructures and the factorization within each substructure is pursued by using

the inclusive KL divergence minimization as an optimization criterion (entailing exact

marginalization), whereas the probabilistic interactions between substructures are mod-

eled by appealing to the exclusive KL divergence.

As a concrete example, an advanced SISO detector for MIMO systems in the pres-

ence of frequency-selective channel is derived by applying the structured MF approxi-

mation. In effect, this system model fits perfectly into the class of models sometimes

called factorial hidden Markov models (factorial HMMs) [90]. The HMMs are ubiq-

uitous and often encountered also in the field of digital communications. Graphical

modeling of HMMs, such as factor graph modeling, is closely related to modeling of

HMMs by using a trellis diagram—a more commonly used tool in the area of com-
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munications to describe the time-evolution of a finite-memory system. In essence, the

information about the past is in both descriptions conveyed through a single discrete

variable, called either the hidden state or the trellis state depending on the modeling

concept.13 As is well known, an exact algorithm for inferring the posterior probabilities

of the hidden state variables is obtained via the forward-backward processing algorithm,

known generally as the BCJR algorithm by the digital communications community.

The structured MF approximation in the context of factorial HMMs is based on a

generalization where the hidden state of the model is factored into the multiple state vari-

ables and is therefore represented in a distributed manner. In the MIMO systems under

consideration, a natural factorization is such that the dynamics of the independent data

streams from different transmitter antennas are dealt with separately in the graphical

description of the model. Specifically, the variational free energy F(Q) is minimized

over the partially factorized distribution Q(s) =
∏N

n=1 Q(n)(sn), where “per-branch”

distributions Q(n)(sn) are defined in terms of the free parameters qn,k(sn(k)) as fol-

lows:

Q(n)(sn) =

K∏

k=1

T
(n)
k

(
śn(k − 1), sn(k), śn(k)

) K∏

k=1

qn,k(sn(k))

K∏

k=1

λ2,n,k. (83)

In (83), T
(n)
k

(
śn(k − 1), sn(k), śn(k)

)
denotes the local trellis check function of the

nth subsystem (Markov chain) constraining the possible combinations of śn(k − 1),

sn(k), and śn(k) [137], where

śn(k) = [sn(k), · · · , sn(k − L − 1)]T ∈ SL (84)

denotes the trellis state vector at time k. A straightforward computation of the zero-

gradient points of the free energy functional F(Q) with respect to the free parameters

qn,k(sn(k)) ∀n, k yields a set of fixed-point equations given by

qn,k(sn(k)) =
1

γn,k

× exp

[
− 1

T

∑

m

∣∣∣rm(k) −
∑

n′ �=n

ŝ
T
n′(k)hm,n′(k) − s

T
n (k)hm,n(k)

∣∣∣
2
]
, ∀n, k, (85)

where γn,k is a scaling factor, and ŝn(k) = EQ(n)

[
sn(k)

]
. The “per-branch” distribu-

tion Q(n)(sn) can be computed by operating the standard SP algorithm on the factor

13The terms hidden state and trellis state are used interchangeably later on in this thesis.
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graph (trellis diagram) describing the dynamics of the nth transmitter antenna signal. A

factor graph representation of this structured MF approximation is presented in Fig. 5,

assuming that the transmitter employs two antennas.
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š(1) š(2)
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Fig 5. Factor graph representations using (a) a cycle-free graph, (b) a factorial

hidden Markov model and (c) a structured mean-field approximation for an ex-

ample MIMO system with two transmitter antennas. The following notations are

used: x(k) =
∑

m
h

T
m(k)s(k), xn(k) =

∑
m

h
T
m,n(k)sn(k), ś(k) =

[
ś

T
1 (k), śT

2 (k)
]T

,

š(k) =
[
s1(k), s2(k)

]T
, and λ̌2,k =

[
λ2,1,k, λ2,2,k

]T
.

Effectively, the structured MF approximation yields a bank of “per-branch” APP de-

modulators which are preceded by a soft interference canceller (SIC). Moreover, solv-
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ing the fixed point equations (85) entails block-iterative processing where the soft out-

put of each APP demodulator is fed back into the SIC. A block diagram of a related

turbo receiver (assuming three transmitter antennas) is presented in Fig. 6, including

separate SISO decoders for all transmitter antenna signals. Interestingly, a related per-

branch SISO demodulator was proposed on an ad-hoc basis for frequency-selective

MIMO channels in [95]. However, unlike the receiver proposed above, the MIMO re-

ceiver in [95] separates the different transmitter antenna signals prior to the demodulator

bank by using a probabilistic separator, which, in effect, executes the updating rules of

the SP algorithm. Hence, the MIMO receiver algorithm in [95], as an entity, is identical

to the SP algorithm operating on the LFG of Fig. 5(b).

Π−1

Π−1

Π−1

Π

Π

Π

SIC

APP demod

APP demod

APP demod

for TxA1

for TxA2

for TxA3

r

SISO

SISO

SISO

dec.

dec.

dec.

Structured MF demod.

Fig 6. Block diagram of a turbo receiver based on the structured MF approxima-

tion. The blocks labeled as Π and Π−1 denote the pseudorandom interleaver and

the corresponding deinterleaver, respectively.

Another approach to improving the naive mean field approximation is to modify the

free energy F(Q) itself. One option, originally proposed in statistical physics, is to

apply the so-called advanced mean field techniques where a second order self-coupling

reaction term is added into F(Q). This leads to the free energy functional which was

called an Onsager-Gibbs free energy in [258]. Related higher order correction terms

were proposed by using a linear response theory in [131]. Another related technique

known as a Bethe method [265] approximates the entropy term of the variational free
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energy F(Q) with the following Bethe entropy term:

HBethe(Q) = −
∑

k

∑

s(k)

qk(s(k)) ln qk(s(k))

+
∑

n

∑

k

(dn,k − 1)
∑

sn(k)

qn,k(sn(k)) ln qn,k(sn(k)),
(86)

where dn,k denotes the degree of the symbol node of sn(k) (see [265] for details). The

Bethe free energy FBethe(Q) = U(Q) − HBethe(Q) is then minimized subject to the

normalization constraints and the local consistency constraints
∑

s(k)\sn(k) qk(s(k)) =

qn,k(sn(k)).

Interestingly enough, as shown in [265], the set of fixed point equations obtained

by the constrained minimization of FBethe are equal to the update equations of the stan-

dard SP algorithm operating on the associated factor graph. In fact, the fixed points

of the SP algorithm correspond to the local minima (not only the zero-gradient point)

of the Bethe free energy [110]. Importantly, the local consistency requirements do

not, however, automatically imply global consistency in that the beliefs qk(s(k)) and

qn,k(sn(k)) do not necessarily correspond to the marginal distributions of any single

global distribution Q(s), unless the graph is cycle-free. Moreover, in contrast to the

mean field approximation, none of the above cited variational approximation methods

that are based on the modified free energy functional can be interpreted as an upper

bound to the Helmholtz free energy.

Despite the improved entropy, experiments have shown [139, 51] that the Bethe

method is not able to produce satisfactory solutions unless the girth of the factor graph

associated with the detector is at least six. Since the advanced mean field approxima-

tions can generally be regarded as inferior to the Bethe method [258], their use for infer-

ence is beset by similar difficulties. Instead, an entire array of even more sophisticated

approximations, including the Kikuchi and cluster variational methods [265, 197], have

been proposed as potential tools for obtaining the desired balance between complexity

and performance.

Moreover, in [137, 51], clustering and stretching techniques were introduced as

effective means to modify the factor graph with short cycles so that those nodes of

the graph that are causing problems are eliminated. A nice feature of these techniques

is that the resulting modified graph still gives an exact graphical representation of the

underlying system. In fact, any graph with cycles can be transformed, through a process

of clustering its nodes together so as to form aggregated nodes, into a structure known
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as a junction tree [141]. The standard SP algorithm can then be applied to perform

exact inference on this junction tree. Of course, the performance advantages obtained

via clustering are not accrued without increased computational complexity.

Another effective modification to the graphical model of the system may be obtained

by eliminating only trouble-causing edges in the graph via the application of the MF ap-

proximation, instead of using an impoverished assumption of complete factorizability.

The key point here is that a proper mixture of different variational approximations, like

the Bethe or Kikuchi and (structured) MF approximations, could provide a system de-

signer with an effective tool to obtain enhancements of standard turbo receivers in a

more systematic way.

Algorithms minimizing the variational free energy functions directly by using the

double-loop optimization technique are described in [257, 111, 234, 268]. In contrast

to the SP and MF algorithms, they guarantee convergence but are typically an order

of magnitude slower than the algorithms solving the fixed points of the free energy

function. In addition, they are more complex to implement.

3.5 Complexity considerations

Various SISO detectors, assuming perfect CSI, were discussed, reinterpreted, and genar-

alized in the previous sections. In this section, these are further considered by paying

special attention to relative complexities of these detection schemes. While important,

the problem of assessing the complexity pertaining to any detection algorithm is diffi-

cult, and the result of such an assessment may be somewhat ambiguous. A detailed com-

plexity analysis would imply that all the arithmetic operations required by the algorithm

are exactly counted, and, even then, the “true” complexity will depend on the comput-

ing platform and the selected implementation architecture. Therefore, discussion here

concerning the complexities is kept at a very general level, and only approximate time

complexities of the algorithms are considered.14

Let us consider a SISO detection in a MIMO system with N transmitter antennas

and M receiver antennas. As is often cited in the literature, computation of exact sym-

bol APPs, i.e., an exact inference algorithm, is computationally intractable in such sys-

tems,15 and particularly so if the block length K is large. This statement becomes con-

14The time complexity of an algorithm is defined as a number of computational steps that it takes for the

algorithm to solve the problem at hand.
15Problems that are solvable in theory, but cannot be solved in practise, are often called intractable problems.
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crete by considering a naive exact inference algorithm which consists of modeling the

MIMO system as HMM with JNL states and operating a (forward-backward process-

ing) SP algorithm on the corresponding factor graph (see Fig. 5(a)). It has approximate

time complexityO(KJ2NL), where O(·) should be read as “on the order of.” However,

by exploiting the conditional independency structure of factorial HMMs encoded by the

missing edges in the corresponding factor graph (see Fig. 5(b)), the exact inference can

alternatively be implemented with a time complexity of O(KNLJNL+1) (see [90]) by

using the junction tree algorithm by Lauritzen and Spiegelhalter [142]. The junction

tree algorithm is obtained as a result of moralizing and triangulating the factor graph

of Fig. 5(b) so that a new factor graph with no loops is attained and then operating the

standard SP algorithm on this transformed factor graph. Despite a significant reduction

in complexity compared to the naive inference algorithm, the junction tree algorithm is

miserably complex for many practical applications.

On the other hand, the distributed computation of factorized state probabilities, in-

herently done in structured MF-based SISO detectors, enables a substantial reduction

in detector complexity. The SIC front-end decouples the received signal into condition-

ally independent signals which can, therefore, be demodulated separately, as depicted

in Fig. 5(c). Hence, a time complexity of the structured MF receiver is O(KNJ2L).

The same time complexity pertains to the SP algorithm operating on the factor graph of

Fig. 5(b) (i.e., the SISO detector proposed in [95]). However, the probabilistic separator

assumed by the scheme in [95] may be slightly more complex than the SIC front-end

in the structured MF solution. It is important to note that in both of these cases the

complexity reduction is obtained at the cost of decreased performance.

Another class of approximate inference algorithms is obtained by breaking the state

variable of the HMM into separate symbol variables which are, thus, represented as

separate nodes in the corresponding FG. Then, the approximate symbol APPs can be

computed by operating a standard SP algorithm on the resulting LFG, but the approx-

imation may not be acceptable unless the channel is sparse enough (see, e.g., [139]).

Another option is to transform the LFG into one where all the conditional dependen-

cies are removed via the MF approximation (see Fig. 3). This approach results in the

iterative linear SISO detector whose time complexity is O(KN(L+1)J2) per iteration.

The linear MMSE SISO detector is more complex than the LCMF SISO detector

since the inverse of the square matrix of size M(K+L)×M(K+L) has to be computed

per each transmitted data block (see (79) for details). The requirement of inverting a

potentially large matrix is avoided, however, if the frequency-domain processing [254,
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253] (facilitated by the insertion of a CP into the transmission format) is assumed, in

which case the complexity of the linear MMSE detector is dictated by the size of the

fast Fourier transform (FFT). It is important to note that the size of the FFT in the

context of frequency-domain equalizers is, in general, a design parameter and may be

selected independently from the data block size [115]. It is, however, very hard to pin

down precisely when the frequency-domain implementation should be used instead of

the time-domain implementation. The choice is in any case governed by tradeoffs in

computation time and data storage requirements, by the block size parameters, by the

issues related to the channel dynamics, and so on.

3.6 Numerical results

In this section, the performance of various turbo detection schemes in two different

system architectures is evaluated by computer simulations in terms of either the bit

error rate (BER) or frame error rate (FER) versus Eb/N0 (Eb denotes the average signal

energy per information bit and N0 denotes the spectral density of the receiver thermal

noise). It should be noted that Eb/N0 values were defined by taking into account the

loss due to the training symbols (i.e., known preamble and tail symbols). In most cases,

a matched filter bound (MFB), which is obtained via numerical simulation, is provided

as a lower bound to the performance of the investigated receivers. The MFB gives the

performance of an “ideal” receiver, which assumes perfect channel state information

(CSI) and which cancels the effects of ISI perfectly (see also the Remark 1 in Section

3.2.1). In fixed (time invariant) channels, the MFB coincides with the performance

curve obtained in the AWGN channel (in brief, the MFB equals the AWGN bound in

the case of fixed channels).

In the first system architecture considered in this section, each transmitter antenna

transmits independent data which is first encoded with a 64-state convolutional code

with code rate 1/2 (code generators in octal form are (133,171)),16 then interleaved with

a pseudo-random bit-interleaver,17 and, finally, modulated into QPSK or 16-QAM sym-

bols by using a Gray-like mapping of information bits into channel symbols. Before

transmission, the data symbols are collected into frames with the following frame struc-

16There may be more than one transmitter antenna entailing the MIMO feature.
17Interleaving is done by a pseudo-random permutation scheme where the permutation pattern changes from

the coding block to another. This applies, in fact, to all pseudo-random interleaving schemes considered in

this thesis.
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ture: each frame is composed of 6 cyclic-prefixed data blocks with block size K and

two cyclic-prefixed training blocks (one training block at each end of the frame) with

each one having Kpilot symbols. The length of the cyclic prefix is denoted as Kprefix. The

extension of the data and training blocks with the cyclic prefix effectively separates the

blocks in time and, thus, enables the exploitation of the frequency domain equalization.

In Fig. 7 and Fig. 8, the performance of a single (N = 1 and M = 1) antenna

system was simulated in terms of BER and FER versus Eb/N0, respectively. The

main aim of these simulations was to study how the two different ways to form the

soft input of the MMSE SISO detector affect the performance. The frame parameters

in this study were: K = 512, Kpilot = 64, and Kprefix = 40. The channel was a

fixed three-tap channel with the impulse response h = [1/
√

6 2/
√

6 1/
√

6]T (referred

to as Proakis-B channel later in the text), and the receiver assumed perfect channel

state information (CSI). The abbreviation FDE stands for the frequency domain equal-

izer, and TFDE(NouterIter × NinnerIter) refers to the turbo detection scheme where

the frequency domain MMSE SISO detector (with the covariance matrix Σi set at

Σi = 1
KN

∑
n

∑
k σ2

i,n,k × INK) and SISO decoder are iteratively interconnected

in such a way that there are two iteration loops: an outer iteration loop, performing

NouterIter iterations, where the decoder is invoked and an inner iteration loop, per-

forming NinnerIter iterations per each outer iteration, where only the channel-induced

information is updated (see Remarks 2 and 3 of Section 3.2.1 for the theoretical basis

of this scheme). Furthermore, the abbreviation fullAPP refers to the turbo detection

scheme where the a priori distribution P (s) = CN (s, s,Σi) is defined in terms of full

APP information about the symbols, whereas the abbreviation extrINFO refers to the

case where P (s) is solely defined in terms of the extrinsic information supplied by the

decoder (see Remark 2 in Section 3.2.1 and Remark 4 in Section 3.2.2 for further de-

tails). Finally, TurboMAP refers to the turbo detection scheme where the exact APP

demodulator, implemented with the BCJR algorithm, is iteratively interconnected with

the SISO decoder.
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Fig 7. BER versus Eb/N0 for a single antenna QPSK-modulated system in a fixed

Proakis-B channel.
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Fig 8. FER versus Eb/N0 for a single antenna QPSK-modulated system in a fixed

Proakis-B channel.

95



Both of these performance figures back up the theory in that the full APP informa-

tion should be exploited in soft interference cancellation, even when the MMSE SISO

detector is employed (in the case of the LCMF detector, similar results have been sim-

ulated earlier in [248]). It may also be noticed from the figures that the performance

of the linear MMSE turbo detectors can be slightly improved if more than one inner

iteration is carried out per each outer iteration.

In Fig. 9, the performance of a 3 × 2 (N = 3 and M = 2) antenna system in the

frequency-selective Rayleigh block-fading channel was simulated. Each subchannel

(between different transmitter and receiver antenna pairs) was assumed to have three

independently fading taps with an exponentially decaying delay profile, implying that

the averaged powers of the subchannel taps were set at

[
σ2

hm,n,l

]2

l=0
=

[
0.412 0.327 0.260)

]T
.
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Fig 9. FER versus Eb/N0 for a 3 × 2 antenna system in a frequency-selective

Rayleigh fading channel (3 channel taps). The block size was K = 256 symbols.

96



The phrase “block-fading” implies that the channel was assumed to be constant dur-

ing a frame while changing value randomly from frame to frame. Moreover, the receiver

was assumed to have perfect CSI. Provided that each transmitter antenna transmits in-

dependent data and the channels between different transmitter and receiver antenna

pairs are uncorrelated, it doesn’t matter, from the receiver performance point of view,

whether the transmitter antennas belong to one physical terminal or to different termi-

nals transmitting at the same frequency band (sometimes referred to as the multiuser

MIMO system). The frame parameters in this simulation were as follows: K = 256,

Kpilot = 64, and Kprefix = 20.

A main purpose of this simulation case is to demonstrate that the link performance

of the MIMO systems, where the number of transmitter antennas exceeds the num-

ber of receiver antennas, can be improved compared to the performance obtained with

the linear MMSE SISO detector. This happens at the cost of increasing complexity, of

course. In particular, the improvement, which may be noticed from Fig. 9, was achieved

by using a hybrid turbo detection scheme (referred to as the BCJR-bank in the figure)

where the first iteration was carried out by performing the MMSE SISO detection to-

gether with the SISO decoding, and, then, at the subsequent iterations, the MMSE SISO

detector was replaced by the SISO demodulator that was based on the structured MF

approximation. As shown in Fig. 6, the structured MF scheme is composed of the SIC

followed by the bank of APP demodulators where each APP demodulator infers proba-

bilistic values for data symbols of one of transmitted independent data streams (see (83)

and (85) for details). The structured MF approximation was not considered at the first

iteration due to high risk of getting frequently trapped by a wrong mode of the target

distribution. When that occurs, large bursts of detection errors are typically produced,

and they can eventually cause an error floor to suitable performance curves.

In the second simulation exercise, MIMO turbo receivers, which are based either

on the structured MF or BP algorithms, are compared in an experimental setup that is

characterized by the following arrangements. First, a 64 state convolutional encoder

(code generators in octal form are (133,171)) with rate 1/2 was applied as an outer

encoder to encode the information bits. The starting and terminating states of the en-

coder were assumed to be known in order to facilitate the decoding algorithm. After

the QPSK mapper, the information symbols were interleaved by a pseudorandom inter-

leaver. Thereafter, the interleaved symbols were provided as input to the inner space-

time encoder, which in this test case was assumed to be a simple delayed repetition

scheme. Specifically, the input data stream to the space-time encoder is fed directly to
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the first transmitter antenna, whereas its delayed versions are fed to additional trans-

mitter antennas (delay is T for the second antenna, 2T for the third antenna, and so

forth). The resulting serial concatenated coding scheme contributes to the performance

of the communication link by providing both diversity gain and coding gain, though no

attempt was made to optimize the scheme in terms of these gain factors (see, e.g., [231]

for more optimal space-time coding schemes). The parallel output symbol streams of

the space-time encoder were further processed separately. This includes interleaving by

a K × K block interleaver (BI) in conjunction with the assumption of a burst-to-burst

independent channel and organizing the interleaved symbols into fixed size bursts with

K information symbols preceded by Kpre = 2 known preamble symbols and followed

by Ktail = 2 known tail symbols, rendering the starting and terminating states of the

demodulator trellis to be known. A block diagram of the transmitter is presented in

Fig. 10.

burst
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Delay

Delay
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Fig 10. Block diagram of a transmitter for a space-time coded transmission sys-

tem.

The channel between each pair of transmitter and receiver antennas was assumed to

be frequency-selective with three independently fading taps whose standard deviations

were set at (σtap1 = 1/
√

6, σtap2 = 2/
√

6 and σtap3 = 1/
√

6). Each Rayleigh

fading channel tap assumed Clarke’s power spectrum with normalized Doppler spread

BdTs = 0.001. In addition, the channels between different transmitter-receiver antenna

pairs are assumed to be uncorrelated.

At the receiver, “inverse” operations to those at the transmitter are performed. More-

over, the receiver assumes that perfect CSI is available. A block diagram of a structured

MF-based turbo receiver in the case of three transmitter antennas is presented in Fig. 11.

98



The structured MF demodulator is equivalent to the one described in Section 3.4, while

the block labeled as “SISO ST dec.” infers the posterior probability values for data sym-

bols pertaining to the input and output of the (inner) space-time encoder. The BP-based

turbo receiver is similar to the one described in Fig. 11, except that the SIC is replaced

by the SP-based probabilistic separator described in [95].

Π−1

Π

BI

BI

BI

BD

BD

BDSIC

APP demod.

APP demod.

APP demod.
for TxA1

for TxA2

for TxA3

r SISOSISO
dec.

dec.
ST

Structured MF demod.

Fig 11. Block diagram of a MF inference-based turbo receiver structure in a space-

time coded system with three transmitter antennas. Note that BD stands for the

block deinterleaver.

The performance results in terms of the BER as a function of Eb/N0 is presented in

Fig. 12, when K = 30. With the 2×1 and 2×2 antenna configurations, the performance

of the variational inference-based turbo receivers is compared to the performance of

the full-trellis-based “optimal” turbo receivers (referred to as BCJR turbo). It is readily

noticed that, under these system assumptions, the MF- and BP-based turbo receivers are

able to achieve practically the same performance as the full-trellis-based turbo receivers,

despite significant computational savings. Another interesting finding from this figure

is that the addition of a third transmitter antenna does not give any performance gain

in the considered channel. On the contrary, it gives some performance loss if only

one receiver antenna is in use. This is because the loss due to increased cross-talk

interference exceeds the obtained diversity gain.
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Fig 12. BER versus Eb/N0 for space-time coded MIMO systems. The dotted lines

denote the performance after first iteration, whereas the straight lines denotes the

performance when up to 7 iterations have been run.

In Fig. 13, the performance results are presented for the 2×1 antenna configuration

with and without the outer channel coding, using the otherwise same simulation setup as

previously. In the uncoded case, the differences between various inference algorithms

are naturally bigger than in the coded case. In fact, the MF-turbo receiver with a fixed

temperature (T = N0) seems to saturate at quite a high BER value, whereas the mean

field annealing (MFA)-based turbo receiver is able to avoid such an early saturation,

even though no attempt was made to optimize the annealing scheduling.
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Fig 13. BER versus Eb/N0 for a space-time coded 2 × 1 antenna system with and

without outer channel coding (UC refers to an uncoded and C refers to a coded

system).

3.7 Summary and conclusions

In this chapter, the familiar problem of turbo-processing was revisited, looking at the

problem from the statistical physics perspective. First, a unifying framework for ap-

proximate inference, based on the statistical physics concept called the variational free

energy minimization, was introduced. Then, as an example of its utility, it was shown

that the existing linear SISO detectors can be formulated as instances of the VFEM

algorithm. The obtained new formulation not only provides new insights into the struc-

tural properties and performance of those algorithms but may also give an impetus for

totally new designs. A glimpse of this was seen by obtaining a feasible approximation

to the APP demodulator in the presence of the frequency-selective MIMO channel via

the structured MF technique. Finally, a time complexity of various SISO detection al-

gorithms was assessed and their performance was evaluated via computer simulations.
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4 Adaptive SISO detectors in

frequency-selective fading channels

In this chapter, a class of adaptive SISO demodulators with embedded recursive channel

estimators are derived using the VFEM framework. In particular, the classical Baum-

Welch algorithm [206] and its Bayesian counterpart, the BEM algorithm [38], are for-

mulated into recursive forms which are computationally much simpler than the equiv-

alent block-processing algorithms and, above all, allow their integration with the well-

known SISO algorithms [27, 144] originally derived for known channels. A common

feature of the obtained recursive channel estimators is that they exploit the a posteriori

probabilities (APPs) of the trellis branches, inherently obtainable from the forward pro-

cessing part of the trellis-based SISO algorithm. In consequence, they are called soft

decision-directed (SDD) channel estimators.

Also, a design of lower complexity linear SISO detectors, incorporating the SDD

channel estimators, is addressed later in this chapter. This chapter starts, however, with

a discussion on design criteria for SISO demodulators in the presence of an unknown

channel. In particular, building upon the VFEM framework presented in Chapter 2, the

EM and Bayesian EM-based demodulators are formulated as instances of the VFEM

algorithm. For notational simplicity, only single transmitter and single receiver antenna

systems are considered in this chapter. Furthermore, it is assumed that all frequency

instabilities are perfectly corrected.

This chapter is organized so that in Section 4.1, a design of feasible SISO demod-

ulators in the presence of an unknown channel is considered from the optimality point

of view. Then, in Section 4.2, SDD least mean square and SDD recursive least square

estimators are derived and their embedding into a forward-backward processing SISO

algorithm is accomplished. In Section 4.3, an SDD Kalman filter and its reduced com-

plexity version in the presence of the Rayleigh fading multipath channel are derived.

Furthermore, in Section 4.4, joint iterative linear SISO detectors and SDD channel es-

timators are derived by appealing to the VFEM framework. The complexity issues are

considered in Section 4.5, and the numerical performance results for uncoded and coded

turbo-processing systems are presented in Section 4.6. Conclusions are finally provided

in Section 4.7.
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4.1 Design criteria for APP detectors in the presence of

unknown channel

In the design of SISO demodulators in the presence of unknown channels, a distinction

will be made between deterministic channels, which can be either time-varying or con-

stant in time, and random channels. In the latter case, the receiver is assumed to have a

priori knowledge of the statistics of the communication channel. As usual, the statistics

of the radio channel are assumed to be fully characterized by a complex Gaussian distri-

bution whose first and second order statistics are known a priori. In practise, however,

the fading statistics have be estimated.

When dealing with the unknown channel and data, the issue of identifiability de-

serves to be considered. While there may be many definitions of identifiability, here this

term is used to point out the problem of distinguishing between data sequences when

the channel is unknown or only its statistical properties are known. The problem arises

when there are two or more hypothetical data sequences which, due to the unknown

channel, produce identical likelihood values at the receiver or, equivalently, when the

joint likelihood of the channel and data for two or more hypothetical data sequences

has the same value. Hence, there is no means to distinguish between these sequences

at the receiver. Likewise, the channel can be said to be unidentifiable when there are

more than one hypothesis on the channel impulse response which, due to unknown data,

produce the same likelihood or joint likelihood (with the data) at the receiver.

The identifiability problem is particularly severe if the receiver has no knowledge

of or no control over the signaling format, which, therefore, is simply assumed to be a

random stream of modulated digital data by the receiver [41]. In general, the channel

can be made identifiable and the data sequences distinguishable by imposing some code

structure on the transmitted signal. Note that the insertion of pilot symbols into the

signaling format is also a special type of coding method. Next, however, different

design criteria for SISO demodulators are discussed without considering the issue of

identifiability any further.

4.1.1 Deterministic time-invariant channels

A problem of designing a SISO demodulator in an environment where the communica-

tion channel is assumed to be unknown, deterministic, and constant during the period

of data burst is addressed first. In this case, the impulse response of the channel is de-
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noted simply as h. As already pointed out earlier, the optimal detection in the sense of

minimizing the BER is an ill-posed problem in the presence of deterministic channels.

Instead, a reasonable choice for the soft output of the SISO demodulator is obtained via

the soft-output generalized likelihood principle, in which case the symbol APP is given

by

APPd(s(k)) = c
∑

s\s(k)

max
h

p(r, s|h), (87)

where c denotes a normalizing constant and the subscript “d” refers to the deterministic

channel. In particular, the formula (87) implies that the CIR is estimated separately

for each possible data sequence using the ML criterion, and the obtained sequence

metrics are then combined so as to produce the approximate symbol APPs. Although

limited by high computational complexity, this design criterion is a good starting point

for practical receiver designs [8]. For example, practical SISO demodulators for deter-

ministic time-varying channels can be obtained by applying simplified ML-based CIR

estimators with channel tracking capabilities (e.g., the LMS algorithm) and sequence

pruning techniques (e.g., via the PSP-technique). In principle, the order of summation

and maximization in (87) could be reversed, yielding another potential definition for

the soft-output of the SISO demodulator in the deterministic channel. However, it is

not clear (let alone obvious) whether this criterion could be used as a basis for practical

SISO demodulators.

An alternative design criterion is obtained by defining the approximate symbol

APPs as follows

APPd(s(k)) = p(s(k)|r, ĥML), (88)

where the (blind) ML estimate of the CIR is given as

ĥML = arg max
h

p(r|h) = argmax
h

∑

s

p(r, s|h). (89)

While the direct computation of (89) appears unattractive, the EM algorithm [62] pro-

vides a low-complexity iterative procedure for computing (88) and (89) jointly. The

EM algorithm starts with some initial CIR estimate ĥ
(0), and then proceeds to itera-

tively generate successive estimates by repeatedly applying the following two steps,

given at the ith iteration as

E− step : Compute Q(i)(s) = p(s|r,h(i−1)) (90)

M− step : ĥ
(i) = argmax

h

EQ(i)

[
ln p(s, r|h)

]
. (91)
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Thus, in the E-step, the unknown data sequence is effectively represented by the a poste-

riori probability distribution over the values of s, while in the M-step these probabilities

are used to maximize the expected likelihood of the received signal samples over the

unknown CIR. It is important to note that the a posteriori distribution p(s|r,h) has a

natural decomposition due to the Markovian property of the frequency-selective chan-

nel, facilitating the computations pertaining to the M-step. Iterations between the E- and

M-steps are continued until the desired degree of accuracy has been achieved. Although

convergence to the exact ML solution can not be guaranteed, the EM algorithm has an

appealing property of monotonically increasing the log likelihood L(h) = ln p(r|h) as

a function of iterations [62].

Interestingly, the EM algorithm can also be interpreted as the VFEM algorithm, as

demonstrated by the example 3 of Section 2.3. This was also formally proven in [176].

Fitting the EM algorithm into the variational optimization framework is, nevertheless,

summarized here as well. This is done in order to properly emphasize its importance in

providing a natural framework for further approximations.

First, let us define the functional G(Q,h) as

G(Q,h) � −D
(
Q(s)‖p(s, r|h)

)
= EQ

[
ln p(s, r|h)

]
+ H(Q), (92)

where H(Q) denotes the entropy of Q(s). The functional G(Q,h) can be regarded as

the inverse free energy (see (53) for the definition of the free energy) and, by applying

the Bayes rule to (92), it can be written alternatively as

G(Q,h) =
∑

s

Q(s) ln
p(s|r,h)p(r|h)

Q(s)

= L(h) − D
(
Q(s)‖p(s|r,h)).

(93)

Thus, the inverse free energy G(Q,h) defines a lower bound on the likelihood of h with

equality if and only if Q(s) = p(s|r,h). Consequently, based on (92) and (93), the EM

algorithm can be formulated as an alternating maximization algorithm, where the ith

iteration cycle is defined as18

E− step : Q(i)(s) = argmax
Q(s)

G
(
Q(s), ĥ(i−1)

)
(94)

M− step : ĥ
(i) = arg max

h

G
(
Q(i)(s),h

)
. (95)

18A similar interpretation of the EM algorithm has been presented also in [54].
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Now, the approximate EM algorithms, dubbed here the variational EM algorithms,

are obtained from (94) and (95) by performing maximization in the E-step over a re-

stricted class of distributions. In particular, the maximization over the fully factor-

ized distributions results in what is often referred to as the mean-field expectation-

maximization (MF-EM) algorithm. In fact, the MF-EM algorithm has earlier been

applied to solving various estimation problems in a wide variety of applications

[90, 270, 272, 271, 273]. These algorithms are suboptimal in the sense that the like-

lihood is not guaranteed to increase at each iteration any more. However, the lower

bound on the likelihood is guaranteed not to decrease at any iteration, since the inequal-

ity

L(h) ≥ G(Q,h) (96)

always holds (follows directly from (93)). Therefore, the convergence of the variational

EM algorithms can be defined rather in terms of the bound than in terms of the like-

lihood. In Section 4.2, the design criterion (88) and (89) is used as a starting point

in deriving new adaptive SISO demodulators. In Section 4.4, adaptive linear SISO de-

tectors, incorporating the SDD channel estimators, are obtained by making use of the

variational EM algorithms.

4.1.2 Random Gaussian channels

A design criterion for the SISO demodulation in the presence of a Rayleigh fading chan-

nel is considered next. The fading statistics are assumed to be known by the receiver.

The soft output of the SISO demodulator in this case can be defined in terms of exact

symbol APPs as follows

APPp(s(k)) =
∑

s\s(k)

∫

Θ

p(s,Θ|r)dΘ, (97)

where Θ denotes the set of channel snapshots given as Θ =
{
h(1), . . . ,h(K)

}
and

the subscript “p” refers to probabilistic modeling. In general, the complexity of com-

puting exact symbol APPs scales exponentially in the sequence length K , since no

trellis-processing applies. However, as an exception to this rule, in the case of transmis-

sion over frequency-nonselective Rayleigh fading channels with equal-energy signal

constellations, the exact symbol-by-symbol soft-decision metrics implied by the min-

sum algorithm can be evaluated with polynomial worst case complexity in the sequence
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length regardless of the operating SNR [10, 175]. As in deterministic channels, prac-

tical approximate SISO detectors in the presence of a random Gaussian channel can

be obtained by pruning of the sequence tree, e.g., via the PSP principle. In flat-fading

channels, a family of approximate SISO detectors were obtained in [175], by simplify-

ing some key steps in the polynomial-complexity algorithm.

An alternative design criterion for the soft output of the SISO demodulator in the

presence of the unknown Rayleigh fading channel is given by

APPp(s(k)) = p
(
s(k)|r, Θ̂MAP

)
=

∑

s\s(k)

p
(
s|r, Θ̂MAP

)
, (98)

where the (blind) sequence MAP estimate for the channel is defined as

Θ̂MAP = arg max
Θ

p
(
Θ|r

)
. (99)

A low-complexity iterative algorithm for computing jointly (98) and (99) can be ob-

tained via a Bayesian EM algorithm, where the data symbols are regarded as the hidden

data, and the data symbols and received samples jointly form the complete data specifi-

cation [38, 152]. The Bayesian EM algorithm can also be formulated as an instance of

the VFEM algorithm as shown by the following proposition.

Proposition 3 The Bayesian EM algorithm for computing (98) can be interpreted as

an instance of the VFEM algorithm, where F(Q) ∝ D
(
Q(s,Θ)‖p(r, s,Θ)

)
(∝ de-

notes proportionality) and the trial distribution Q(s,Θ) is assumed to take a fac-

torized form Q(s,Θ) = Q(s)Q(Θ). In addition, Q(Θ) is assumed to be of form

Q(Θ) =
∏

k δ
(
h(k) − ĥ(k)

)
, where δ

(
h(k) − ĥ(k)

)
denotes a vector Dirac delta

function with the following properties:
∫
h(k) δ

(
h(k)−ĥ(k)

)
f
(
h(k)

)
dh(k) = f

(
ĥ(k)

)

and δ(0) = 1.

Proof. The variational free energy F(Q) can be expanded as follows:

F(Q) ∝ −
∑

s

∫

Θ

Q(s)
∏

k

δ
(
h(k) − ĥ(k)

)
log p(r, s|Θ)dΘ

−
∫

Θ

∏

k

δ
(
h(k) − ĥ(k)

)
log p(Θ)dΘ

+
∑

s

Q(s) log Q(s) +
∑

k

∫

h(k)

δ
(
h(k) − ĥ(k)

)
log δ

(
h(k) − ĥ(k)

)
dh(k)

= −
∑

s

Q(s)
∑

k

log p
(
r(k), s(k)|ĥ(k)

)
−

∑

k

log p(Θ̂) +
∑

s

Q(s) log Q(s).

(100)
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Minimizing F(Q) alternatively with respect to Q(s) and Q(Θ) while keeping the other

fixed yields the Bayesian EM algorithm given at the ith iteration as

E− step : Compute p
(
s|r, Θ̂(i−1)

)
(101)

M− step : Θ̂
(i) = arg max

Θ

E
[
log p(r, s,Θ)

∣∣r, Θ̂(i−1)
]
, (102)

where E[a|b] denotes a conditional expectation of a given b. �

The VFEM framework provides a nice link between the exact symbol APPs and the

approximate symbol APPs obtained via the Bayesian EM algorithm. On the other hand,

given that p(s,Θ|r) = p(s|r,Θ)p(Θ|r), the BEM algorithm can be interpreted also so

that the full description of our knowledge about Θ, p(Θ|r), is being approximated by

a delta-function, a pdf that is concentrated on Θ̂. From this perspective, any other ap-

proximating distribution Q(Θ), no matter how inaccurate it may be, can be expected to

be an improvement on the train of spikes produced by the standard Bayesian EM algo-

rithm. For example, a simple Gaussian approximation could be a better choice. While

detailed analysis and comparison of different choices for the family of trial distributions

would certainly be worth examining, that issue is only slightly touched later in Chapter

6 of this thesis, in the context of iterative detection in the presence of phase uncertainty.

In addition, some new results along these lines have recently been presented in [40]. In

Section 4.3, it will be shown that the Bayesian EM algorithm (101) and (102), in the

case where the fading statistics are described by an AR description, can be implemented

by iteratively interconnecting the SDD Kalman smoother and the BCJR algorithm.

4.2 EM-based SISO demodulators for deterministic

channels

Two versions of recursive SDD channel estimators for deterministic channels are next

derived by using the well-known block-processing Baum-Welch algorithm as a basis.

The Baum-Welch algorithm (BWA) is a special case of the EM algorithm, and it has

been extensively used in the processing of HMMs [206]. The data symbols are treated

by the BWA as nuisance parameters while it aims to find iteratively the ML estimate

of the CIR. Specifically, assuming first that the channel is constant over the processing

block (i.e., h(k) = h(k − 1) = h), the estimated CIR at the ith iteration of the BWA
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can be formulated as a solution to the following optimization problem:

ĥ
(i) = arg max

h

Ep(s|r,ĥ(i−1))

[
ln p(s, r|h)

]

= arg min
h

Ep(s|r,ĥ(i−1))

[∑

k

∣∣r(k) − s
T (k)h

∣∣2
]
.

(103)

Solving the minimization in (103), the updated estimate for the CIR can be expressed

explicitly as

ĥ
(i) =

(∑

k

E
[
s
∗(k)sT (k)

∣∣r, ĥ(i−1)
])−1 ∑

k

E
[
s
∗(k)

∣∣r, ĥ(i−1)
]
r(k), (104)

where E
[
s
∗(k)sT (k)|r, ĥ(i−1)

]
and E

[
s(k)|r, ĥ(i−1)

]
are obtained by means of the

computationally efficient forward-backward (BCJR) algorithm [129]. In fact, in order

to compute these expectations, the receiver should know the value of receiver noise

variance σ2
v which, therefore, should also be estimated. In this section, however, it is

assumed to be known.

The BWA as such is applicable only to unknown time-invariant channels. In addi-

tion, a computationally demanding matrix inversion has to be calculated at each itera-

tion. These shortcomings providing an impetus, two different approaches will next be

pursued in order to find more widely applicable, practical receiver structures.

First, the unknown CIR can be estimated iteratively by using the steepest descent

method. In particular, the estimated CIR at the ith iteration can be expressed as

ĥ
(i) = ĥ

(i−1) + µ
∂ ln p(r|h)

∂h

∣∣∣∣
h=ĥ(i−1)

= ĥ
(i−1) + µ

∑

k

∂E
[
ln p

(
r(k), s(k)|h

)∣∣r, ĥ(i−1)
]

∂h

∣∣∣∣∣∣
h=ĥ(i−1)

,

(105)

where the derivatives with respect to the complex valued channel impulse response are

obtained by using Wirtinger calculus.19 It should also be noted that the latter equality in

(105) follows from an application of the Fisher’s identity (see [62] and [161]), stating

19Since the real valued function log p(r|h) is not analytic in complex valued h, the ordinary complex deriva-

tive can not be used in this case. Instead, the notation of derivative must be tied in with the concept of

a differential. So, as commonly done in digital commmunications and digital signal processing literature,

Wirtinger calculus (see, e.g., Appendix A of [75] for details) is used here for computing the derivatives of this

kind. This is also done later in all equivalent cases if not noted otherwise.
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that

∂ ln p(r|h)

∂h

∣∣∣∣
h=ĥ(i−1)

=
∂E

[
ln p

(
r, s|h

)∣∣r, ĥ(i−1)
]

∂h

∣∣∣∣∣∣
h=ĥ(i−1)

. (106)

Assuming that the step size parameter µ is small enough to ensure stability and that the

initialization is done properly, the steepest descent algorithm will eventually converge

to the exact ML solution [106]. Assuming additionally that µ is small enough to ensure

an over-damped response, the likelihood function p(r|h) is monotonically increased at

each iteration and, hence, the iterative algorithm specified by (105) can be viewed as a

generalized EM algorithm [161] under these assumptions.

While the generalized Baum-Welch algorithm avoids the computation of the matrix

inversion, it is still applicable only to time-invariant channels. An adaptive version of

the BWA algorithm can be obtained by using the standard tool called stochastic gradient

approximation [106]. Specifically, modeling the channel as a time-variant unknown

deterministic process, the CIR estimate at time instance k and iteration i can be written

as

ĥ
(i)(k) = ĥ

(i)(k − 1) + µ × Ep(s|r,Ĥ(i−1))

[(
r(k) − s

T (k)ĥ(i)(k)
)
s
∗(k)

]
, (107)

where Ĥ
(i−1) denotes the estimate of the channel convolutional matrix obtained at the

(i − 1)th iteration. By exploiting the fact that the symbol vector s(k) takes discrete

values in a finite space, the CIR estimate can be further written as

ĥ
(i)(k) = ĥ

(i)(k − 1) + µ ×
JL+1∑

j=1

(
r(k) − ξT

j ĥ
(i)(k − 1)

)
ξ∗

jϕ
(i−1)(k, j), (108)

where ξj denotes the jth element in the JL+1-dimensional vector space spanned by the

symbol space S and the conditional (branch) APP ϕ(i−1)(k, j) is defined as

ϕ(i−1)(k, j)
△
= P

(
s(k) = ξj

∣∣r, Ĥ(i−1)
)
. (109)

The matrix of the conditional APPs

{
ϕ(i)(k, j)

}k=1,··· ,K

j=1,··· ,JL+1

can be computed efficiently by the forward-backward processing SISO algorithms. Af-

ter the last iteration, the branch APPs can be combined to produce the symbol APPs

which can then be further processed by the iterative turbo detector or can be quantized

111



to produce MAP symbol decisions. The CIR estimator of (108) will be hereafter re-

ferred to as a soft-decision directed LMS (SDD-LMS) estimator.

In [13], an essentially similar SDD-LMS algorithm was proposed using a slightly

different reasoning. However, its relation to the generalized EM algorithm was not

given. Moreover, the embedding of the SDD-LMS estimator to the known SISO algo-

rithms was also missing. Therefore, the rigorous derivation of the SDD-LMS estimator

via the recursive EM algorithm gives new insight into the optimality of this estimator.

Secondly, guided again by the EM formalism, a novel SDD-RLS estimator based

on a double sequential updating technique is derived. Towards this end, the objective

function of the standard EM algorithm is modified in order to afford the tracking of

the time-varying CIR. Specifically, the new objective function Q
(
h(k)|Ĥ(i−1)

)
, to be

minimized at the kth recursion of the ith iteration with respect to h(k), is defined as a

sum of weighted averaged error squares as follows:

Q
(
h(k)

∣∣Ĥ(i−1)
)

�

k∑

l=1

λk−lEp(s|r,Ĥ(i−1))

[∣∣r(l) − s
T (l)h(k)

∣∣2
]
, (110)

where λ is a forgetting factor. Solving the zero-gradient point of Q
(
h(k)

∣∣Ĥ(i−1)
)

with

respect to h(k) yields the following expression:20

( k∑

l=1

λk−l
JL+1∑

j=1

ξ∗
jξ

T
j ϕ(l, j)

)
ĥ(k) =

k∑

l=1

λk−l
JL+1∑

j=1

r(l)ξ∗
jϕ(l, j), (111)

where ϕ(l, j) is defined in (109).

Now, let a running auto-correlation matrix be defined as

Ξ(k, j) �

k∑

l=1

λk−l

j∑

i=1

ξ∗
i ξ

T
i ϕ(l, i) (112)

and a running cross-correlation vector as

z(k, j) �

k∑

l=1

λk−l

j∑

i=1

r(l)ξ∗
i ϕ(l, i). (113)

The matrix Ξ(k, j) can equivalently be written as

Ξ(k, j) = Ξ(k, j − 1) + ξ∗
jξ

T
j ϕ(k, j), (114)

20The iteration indices are suppressed for notational convenience.
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and Ξ(k, 0) = λΞ(k − 1, JL+1). By applying the matrix inversion lemma [106], the

running inverse auto-correlation matrix is obtained as

P(k, j) = Ξ
−1(k, j) = P(k, j − 1) − k(k, j)ξT

j P(k, j − 1), (115)

where

k(k, j) =
P(k, j − 1)ξ∗

jϕ(k, j)

1 + ξT
j P(k, j − 1)ξ∗

jϕ(k, j)
(116)

and P(k, 0) = λ−1
P(k − 1, JL+1). After some manipulation, the branch update for

the CIR estimate is obtained as

ĥ(k, j) = Ξ
−1(k, j)z(k, j)

= ĥ(k, j − 1) + k(k, j)
(
r(k) − ξT

j ĥ(k, j − 1)
)
.

(117)

And finally, the time update for the CIR estimate is obtained simply as ĥ(k + 1, 0) =

ĥ(k, JL+1) ≡ ĥ(k). Putting these together, the soft decision directed RLS (SDD-RLS)

estimator can now be summarized by the following pseudocode: For each instant of

time, k = 1, . . . , K , compute

P(k, 0) = λ−1
P(k − 1, JL+1)

ĥ(k, 0) = ĥ(k − 1)

for j = 1, . . . , JL+1

k =
P(k, j − 1)ξ∗

jϕ(k, j)

1 + ξT
j P(k, j − 1)ξ∗

jϕ(k, j)

ĥ(k, j) = ĥ(k, j − 1) + k

(
r(k) − ξT

j ĥ(k, j − 1)
)

P(k, j) = P(k, j − 1) − k ξT
j P(k, j − 1)

end

ĥ(k) = ĥ(k, JL+1).

It may be readily noticed that the recursions in the SDD-RLS estimator are run-

ning over the time and the branch indices. Hence, each new update of the CIR esti-

mate in time requires an exponentially increasing number (with respect to the channel

memory) of recursions over the branch indices. Despite this drawback, the SDD-RLS

estimator as well as the SDD-LMS estimator can be regarded as a viable solution for

high-performance turbo-like channel tracking in all but extremely frequency dispersive

channels (implying a very large value of L). Importantly, the soft data statistics sup-

plied by the channel decoder are efficiently exploited in the channel estimation. The
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newly estimated channel convolution matrix Ĥ can subsequently be used to update the

matrix of conditional (branch) APPs which, on the other hand, also embody the soft

information about the channel symbols supplied by the SISO decoder. Like all iterative

algorithms, the adaptive BWAs have to be initialized properly. In practice, the initial-

ization is obtained with the aid of pilot symbols and, therefore, the SDD-LMS/RLS

estimators should not be regarded as blind estimators as is sometimes done in the liter-

ature (see, e.g., [13]).

Aside from the iterative formulation, the SDD-LMS and SDD-RLS estimators can

also be easily embedded into the fixed interval (FI) or fixed lag (FL) SISO algorithms

which have been developed for known channels. In effect, only the branch APPs ϕ(k, j)

as defined in (109) have to be replaced by the branch APPs ϕ′(k, j) defined as

ϕ′(k, j)
△
= P

(
s(k) = ξj |rk

1 , ĥk−1
1

)
, (118)

where r
k
1

△
= [r(1), . . . , r(k)]T and ĥ

k−1
1

△
=

{
ĥ(1), . . . , ĥ(k − 1)

}
with the latter

equation denoting the sequence of estimated CIR snapshots. The forward processing

of the adaptive BCJR algorithm (or the A-SISO algorithm) with an embedded SDD-

LMS/RLS estimator (referred to here as APP-SDD-LMS/RLS algorithm) can be carried

out recursively for k = 1, . . . , K as follows :

γ(k, l, m) = P
(
ś(k) = Sl

∣∣r(k), ś(k − 1) = Sm, ĥ(k − 1)
)

(119)

ϕ′(k, j) = α(k − 1, m)γ(k, l, m), {l, m} ∈ Ck(j) (120)

α(k, l) =
∑

m∈Fk(l)

α(k − 1, m)γ(k, l, m), (121)

where the CIR estimate ĥ(k − 1) is updated in the SDD manner using ϕ′(k − 1, j) and,

as shown in Fig. 14, the initial channel estimate ĥinit = ĥ(0) is obtained by using a pilot

symbol aided estimator (PSAE). In addtion, ś(k) denotes the trellis state vector at time

k (see also (84)) and Sl denotes the value of the lth state of the trellis.
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Transition
Probabilities
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ĥ(k)
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γ(k)

β(k)

APPd

(
s(k)

)

Fig 14. Block diagram of the adaptive trellis-based SISO demodulator with an

embedded SDD-LMS channel estimator (cf. Eq. (119)-(123)).

The backward running product sum variables β(k, l) for k = K − 1, . . . , 1 are

computed using the stored values of γ(k, l, m) as

β(k, l) =
∑

m∈Bk(l)

β(k + 1, m)γ(k, m, l) (122)

and, as depicted in Fig. 14, the symbol APPs for k = 1, · · · , K are finally computed as

P
(
s(k) = αj

∣∣r, ĥK
1

)
=

∑

{l,m}∈Dk(j)

α(k − 1, m)γ(k, m, l)β(k, l). (123)

The following definitions are used for the sets:

Fk(l) = {m ∈ Is : (ś(k) = Sl, ś(k − 1) = Sm) is allowable forward transition}
Bk(l) = {m ∈ Is : (ś(k) = Sm, ś(k − 1) = Sl) is allowable backward transition}
Ck(j) = {l, m ∈ Is : (ś(k) = Sl, ś(k − 1) = Sm) is consistent with s(k) = ξj}
Dk(j) = {l, m ∈ Is : (ś(k) = Sl, ś(k − 1) = Sm)) is consistent with s(k) = αj},

where Is = {1, 2, . . . , JL} denotes the index set for the trellis states. The computations

of the APP-SDD-RLS algorithm are summarized in Table 3. Likewise, the FL SISO

algorithms, e.g., the SISO algorithm by Li, Vucetic and Sato [144], can be modified to

allow built-in adaptation to unknown time-varying channels.
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Table 3. Update equations for the APP-SDD-RLS algorithm.

APP-SDD-LMS

Compute ĥ(0) using pilot symbols.

Initialization: α(0, 1) = 1, α(0, j) = 0 for j �= 1

β(K + 1, 1) = 1, β(K + 1, j) = 0 for j �= 1

For k = 1, . . . , K

γ(k, l, m) = P
(
ś(k) = Sl

∣∣r(k), ś(k − 1) = Sm, ĥ(k − 1)
)

∀l, m

ϕ′(k, j) = α(k − 1, m)γ(k, l, m), {l, m} ∈ Ck(j), ∀j

α(k, l) =
∑

m∈Fk(l) α(k − 1, m)γ(k, l, m), ∀l

Forward

processing: P(k, 0) = λ−1
P(k − 1, JL+1)

ĥ(k, 0) = ĥ(k − 1)

For j = 1, . . . , JL+1

k =
P(k,j−1)ξ∗

j ϕ′(k,j)

1+ξT
j
P(k,j−1)ξ∗

j
ϕ′(k,j)

ĥ(k, j) = ĥ(k, j − 1) + k

(
r(k) − ξT

j ĥ(k, j − 1)
)

P(k, j) = P(k, j − 1) − kξT
j P(k, j − 1)

end

ĥ(k) = ĥ(k, JL+1)

end

Backward For k = K, . . . , 1

processing: β(k, l) =
∑

m∈Bk(l) β(k + 1, m)γ(k, m, l), ∀l

end

Combining: P
(
s(k) = αj

∣∣r, Ĥ
)

=
∑

{l,m}∈Dk(j) α(k − 1, m)γ(k, m, l)β(k, l), ∀j
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4.3 BEM-based SISO demodulators for random Gaussian

channels

The SDD channel estimator and its reduced complexity version are next derived for the

frequency-selective Rayleigh fading channel when the dynamics of the fading channel

are described by the state space model given in (42) and (43). While noting that in

the absence of the frequency instabilities f (k) = h(k), the linear Gaussian state space

model is repeated here for easy reference as

h(k) = Ah(k − 1) + Gw(k − 1)

r(k) = sT (k)h(k) + v(k).

The Bayesian EM algorithm, in its exact and approximate forms, is used as a basis for

the estimator formulations below.

4.3.1 Demodulators via exact BEM algorithm

The BEM algorithm aims to find the MAP estimate of the Rayleigh fading channel

in the presence of unknown data symbols. In fact, under the above assumptions on

the dynamics of the channel, it can be realized exactly by iteratively cross-coupling

the BCJR algorithm with the fixed interval Kalman smoother (KS) operating on an

“averaged” state space model where the averaging is performed over the states of the

demodulator trellis [152]. Computing the model parameters of this “averaged” state

space model is, however, very tedious, including forward-backward processing of the

whole set of symbol APPs and received signal samples. In addition, the computation of

matrix inversion is required at every backward processing step. And yet, the embedding

of the SDD channel estimator, obtained by operating the KS on the “averaged” state-

space model, into the existing SISO algorithms does not seem to be feasible since the

computation of the state-space model itself requires the existence of the symbol APPs.

Motivated by these shortcomings of the “averaged” state space model, a novel for-

mulation of the BEM algorithm that avoids these problems is presented next. In par-

ticular, as proved by the following theorem, the BEM algorithm can alternatively be

implemented by iteratively cross-coupling the BCJR algorithm with a vector Kalman

smoother operating on a suitably defined vector state space model.

117



Theorem 1 Consider the following linear Gaussian state-space model (at the ith iter-

ation of the BEM algorithm):

h(k) = Ah(k − 1) + Gw(k − 1) (124)

r̃
(i)(k) = D̃

(i)(k)h(k) + ṽ(k), (125)

where

r̃
(i)(k) =

[
r(k)

√
ϕ(i)(k, 1), . . . , r(k)

√
ϕ(i)(k, JL+1)

]T

∈ C
JL+1

(126)

and

D̃
(i)(k) =

⎡
⎢⎢⎢⎢⎣

ξT
1

√
ϕ(i)(k, 1) 01×(p−1)(L+1)

ξT
2

√
ϕ(i)(k, 2) 01×(p−1)(L+1)

...
...

ξT
JL+1

√
ϕ(i)(k, JL+1) 01×(p−1)(L+1)

⎤
⎥⎥⎥⎥⎦
∈ C

JL+1×p(L+1), (127)

and where the pdf of the noise vector ṽ(k) is given by

ṽ(k) ∼ CN
(
ṽ(k),0JL+1×1, σ

2
vIJL+1

)
(128)

and is assumed to be independent of the noise vector w(k).21 Then, assigning the

complete data set as X = {r, s} and the incomplete data set as Y = {r}, the maximum

a posteriori (MAP) sequence estimator of Θ =
{
h(1), . . . ,h(K)

}
at the ith iteration

of the BEM algorithm, defined as

Θ̂
(i) =

{
ĥ

(i)
(1), . . . , ĥ

(i)
(K)

}
, (129)

where ĥ
(i)

(k) = E
[
h(k)

∣∣{r̃(i)
}K

1
,
{
D̃

(i)
}K

1

]
with the following definitions used for

the vector and matrix sequences:

{
r̃
(i)

}K

1
=

{
r̃
(i)(1), . . . , r̃(i)(K)

}
(130)

and {
D̃

(i)
}K

1
=

{
D̃

(i)(1), . . . , D̃(i)(K)
}
, (131)

is computed by a fixed interval Kalman smoother operating on the state space model

(124) and (125).

21The notation ∼ should be read as “is distributed according to.”
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Proof. See Appendix 2. �

Contrary to the “averaged” state space model, building of the state space model

(124) and (125) does not require any actual processing at all. On the other hand, the

vector Kalman filter operating on this state space model seems to require an inversion

of the JL+1 × JL+1 matrix at each time step. However, by virtue of the diagonal-

ity of the covariance matrix of ṽk, the matrix inversions can be avoided by applying

the sequential processing technique outlined in [11]. As a result, a computationally

efficient CIR estimator, hereafter referred to as the SDD-KS estimator, is obtained.22

The cross-coupling of this sequentially updated SDD-KS estimator iteratively with the

BCJR algorithm realizes exactly the BEM algorithm and, hence, is subject to highly

favorable convergence properties of the BEM algorithm, proved in [152].

Departing from the strict BEM formalism, further complexity reduction can be ob-

tained by replacing the KS with the KF in the above formulation, leading to what is

hereafter referred to as SDD-KF estimator. Computations required by the SDD-KF es-

timator to update the CIR estimate over one time step is summarized by the following

corollary.

Corollary 1 The computations involved in the SDD-KF estimator can be described

with the following pseudocode:23 For each time step, k = 1, . . . , K , compute

ĥ(k, 0) = Aĥ(k − 1)

P(k, 0) = AP(k − 1, JL+1)AH + GGH

for j = 1, · · · , JL+1

k =
P(k, j − 1)ξ∗

jϕ(k, j)

σ2
v + ξT

j P(k, j − 1)ξ∗
jϕ(k, j)

ĥ(k, j) = ĥ(k, j − 1) + k

(
r(k) − ξT

j ĥ(k, j − 1)
)

P(k, j) = P(k, j − 1) − k ξT
j P(k, j − 1)

end

ĥ(k) = ĥ(k, JL+1).

22See [163] for detailed analysis of the complexity pertaining to the sequential Kalman processing, as opposed

to the direct vector Kalman processing.
23The first order (p = 1) AR channel model is assumed here. Generalization to any value of p can be

obtained by replacing ξT
j with [ξT

j , 01×(p−1)(L+1)] and ĥ with ĥ (see (7) and (38) for suitable definitions).

In addition, the iteration indices have been suppressed for notational convenience.
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The matrix P denotes the error covariance matrix of the channel estimate, and k de-

notes the Kalman gain vector.

Proof. This corollary follows directly by applying the sequential processing technique

outlined in [11] to the vector Kalman filter operating on the state space model (124)

and (125). However, for the sake of clarity and easy access, the proof is also briefly

sketched below.

The sequential processing refers to the computational procedure in which the mea-

surement vector (125) is processed one component at a time. Since the covariance

matrix of the noise vector ṽ(k) is diagonal, it makes sense to partition the measurement

equation (125) into components as follows:

r(k)
√

ϕ(k, j) = ξT
j

√
ϕ(k, j)h(k) + ṽj(k) (132)

for j = 1, 2, . . . , JL+1, where ṽj(k) denotes the jth element of ṽ(k) and its variance

is given by E[ṽj(k)ṽ∗j (k)] = σ2
v . Sequential processing simply implies that, instead of

processing r̃(k) as a single observation vector, the elements of r̃(k) are processed one

at a time. Thus, instead of calculating

ĥ(k|k) � E
[
h(k)

∣∣{r̃
}k

1

]
= E

[
h(k)

∣∣{r̃
}k−1

1
, r̃(k)

]
(133)

in terms of ĥ(k|k − 1) and r̃(k) as usually, first the quantity

ĥ(k, 1) = E
[
h(k)

∣∣{r̃
}k−1

1
, r(k)

√
ϕ(k, 1)

]
(134)

is calculated in terms of ĥ(k|k − 1) and r(k)
√

ϕ(k, 1), then

ĥ(k, 2) = E
[
h(k)

∣∣{r̃
}k−1

1
, r(k)

√
ϕ(k, 1), r(k)

√
ϕ(k, 2)

]
(135)

is calculated in terms of ĥ(k, 1) and r(k)
√

ϕ(k, 2), and so on until ĥ(k|k) =

ĥ(k, JL+1)
.
= ĥ(k). The intermediate estimates ĥ(k, j) for j = 1, 2, . . . , JL+1 are

achieved by a direct application of the Kalman filtering equations to the measurement

equation (125), regarding j as a running variable. Hence, the SDD-KF estimator can be

realized by the computational procedure given by the above pseudocode. �

In essence, the SDD-KF is updated sequentially over the time and the branch in-

dices in a similar manner as was done in the case of the SDD-RLS estimator. Thus,

analogous to the data-aided mode in which case the close relationship between the RLS

and KF estimators have been identified earlier [106, 219], the SDD-RLS and SDD-KF
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estimators structurally resemble each other to an amazing extent. However, despite the

structural similarities, the derivations leading to these two estimators required essen-

tially different type of reasoning. On the other hand, these two estimators also differ

in two important aspects. First, unlike the SDD-RLS estimator, the SDD-KF estimator

can exploit the knowledge of the channel second order statistics and, secondly, it can

also take into account the possible correlation between the channel taps. These two

factors potentially give the SDD-KF estimator some performance advantage over the

SDD-RLS estimator, particularly if the channel taps are correlated and correlation is

known to the receiver.

Finally, the SDD-KF estimator can be embedded into the known FI and FL SISO

algorithms as easily as the SDD-LMS/RLS estimators, resulting in what will hereafter

be referred to as an APP-SDD-KF algorithm. Next, however, computationally even

simpler SDD estimators for random Gaussian channels are pursued by making use of

the notion of “per-channel-path-based estimation.”

4.3.2 Demodulators via modified BEM algorithm

A reduced complexity per-survivor processing (PSP) Kalman filter bank for estimating

a fast-fading frequency-selective channel was proposed in [215]. Motivated by the good

performance of that PSP-based estimator, a novel soft decision directed reduced com-

plexity Kalman smoother/filter (SDD-RCKS/KF) will, in this subsection, be derived for

equal-energy signal constellations. The reduced complexity PSP Kalman processing,

in the form proposed in [215], relies on the assumption of a wide sense stationary un-

correlated scattering (WSSUS) channel model, which inherently implies that the cross

correlation terms of the matrices A and G are zero. Consequently, the channel process

h(k) in (35) can be decomposed into L + 1 independently fading channel tap gains.

As will be discussed shortly, this requirement is, however, unnecessarily strict for the

reduced complexity SDD tracker to be derived below. In fact, a significant complexity

reduction can be obtained without resorting to such an assumption.

The complexity reduction in the SDD Kalman processing is based on the idea of de-

composing the received signal samples into independent multipath components whose

estimated values are called pseudo observations, i.e.,

r(k) = sT (k)h(k) + v(k) =

L+1∑

l=1

xl(k), (136)
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where the multipath component xl(k) is defined as

xl(k) � s(k − l + 1)hl−1(k) + v̈l(k). (137)

Guided by the ideas presented in [72], the receiver noise sample v(k) is arbitrarily de-

composed into the L + 1 components v̈l(k) so that
∑L+1

l=1 v̈l(k) = v(k). The noise

components v̈l(k) ∀l are designed to be statistically independent, zero-mean, and Gaus-

sian with the variance σ2
v̈l

= ησ2
v , where η = 1/(L + 1).

Since there is no direct access to the multipath components xl(k) ∀l, k, they can

be regarded as a “missing” data from the BEM algorithm point of view. Based on this,

a foundation for the SDD-RCKS/KF is set up by the following lemma. This actually

provides another implementation for the BEM algorithm by using a more informative

specification for the complete data set than was assumed by the BEM algorithm in

Theorem 1.

Lemma 2 The MAP sequence estimate of Θ, as defined in (129), at the ith it-

eration of the BEM algorithm, when the complete data set is defined as X ={
{xl(k)}k=1,... ,K

l=1,... ,L+1, s
}

and the incomplete data set as Y = {r}, is computed by a

fixed interval vector KS operating on the state space model where the state equation is

given by (124) and the measurement equation is given by24

x̃
(i)(k) = D̃

(i)
e (k)h(k) + ṽe(k). (138)

In (138), x̃(i)(k) is given as

x̃
(i)(k) =

[(
x̃

(i)
1

)T
(k), . . . ,

(
x̃

(i)
L+1

)T
(k)

]T

∈ C
(L+1)JL+1

, (139)

x̃
(i)
l (k) =

[
x̃

(i)
l,1(k), . . . , x̃

(i)

l,JL+1(k)
]T ∈ C

JL+1

, (140)

and

x̃
(i)
l,j (k) = x̂

(i)
l,j (k)

√
ϕ(i)(k, j), (141)

where

x̂
(i)
l,j (k) =

[
ξj

]
l
ĥ

(i−1)
l−1 (k) + η

(
r(k) − ξT

j ĥ
(i−1)(k)

)
(142)

24For notational simplicity, it is assumed that p = 1.
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and
[
ξj

]
l

denotes the lth element of ξj . Moreover,

D̃
(i)
e (k) = diag

([
D̃

(i)(k)
]
1
, . . . ,

[
D̃

(i)(k)
]
L+1

)
∈ C

(L+1)JL+1×(L+1), (143)

where
[
D̃

(i)(k)
]
l

denotes the lth column of D̃(i)(k) and

ṽe(k) ∼ CN
(
ṽe(k),0(L+1)JL+1×1, ησ2

v × I(L+1)JL+1

)
. (144)

Proof. See Appendix 2. �

The convergence rates of the two BEM algorithms, presented by Theorem 1 and

Lemma 2, are not equal in general since the convergence rate of the EM and its Bayesian

counterpart depends on the specification of a complete data set [161]. Specifically, the

BEM algorithm given by Lemma 2 can be expected to have a slower convergence speed

because its complete data set includes an augmented set of the hidden variables, i.e., the

complete data set is more informative. In addition, there is no guarantee that these two

BEM algorithms convergence to the same stationary point of the posterior distribution.

Also, the latter BEM algorithm is notably more complex than the first one, unless a

WSSUS channel model is assumed. Under the WSSUS assumption, a bank of scalar

KS will produce the desired channel estimates.

In the case of a constant envelope PSK modulation, the BEM algorithm given by

Lemma 2 will always reduce to the low-complexity format provided by the following

theorem (for the special case of p = 1), regardless of the WSSUS channel assumption.

Theorem 2 Suppose that the complete and incomplete data sets are defined as X ={
{xl(k)}k=1,... ,K

l=1,... ,L+1, s
}

and Y = {r}, respectively, and that |s(k)|2 = 1, ∀k. Then,

the MAP sequence estimate of Θ is computed, at the ith iteration of the BEM algorithm,

by a fixed interval vector KS operating on the state space model, which consists of the

state equation given by (124) and the measurement equation expressed as

x̂
(i)(k) = h(k) + ṽe(k), (145)

where the vector of pseudo-observations x̂
(i)(k) is defined as

x̂
(i)(k) =

JL+1∑

j=1

diag
(
ξj

)[
x̂

(i)
1,j(k), . . . , x̂

(i)
L+1,j(k)

]T
ϕ(i)(k, j) ∈ C

L+1, (146)

and ṽe(k) ∼ CN
(
ṽe(k),0(L+1)×1, ησ2

v × I(L+1)

)
.
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Proof. See Appendix 2. �

At the E-step, the branch APPs ϕ(i)(k, j) are updated by the standard BCJR al-

gorithm by using the most recent channel estimate. A block diagram of this reduced

complexity BEM algorithm is shown in Fig. 15.

Signal

decomposition Channel
estimators

BCJR 
algorithm

PSAE

r

ĥ1(k)

ĥL+1(k)

ĥinit

{x̂1,j(k)}JL+1

j=1

{x̂L+1,j(k)}JL+1

j=1

{
ϕ(k, j)

}JL+1

j=1

APPd

(
s(k)

)

Fig 15. Block diagram of the reduced complexity BEM algorithm based on decom-

posing the received signal into independent multipath components.

The sequential MAP channel estimates by Theorem 2 can be embedded into the

known FI and FL SISO algorithms if the KS is replaced with the KF and the per-trellis-

branch-based pseudo-observations given by (142) are defined in terms of the predicted

channel estimates, instead of using the smoothed channel estimates from the previous

iteration. Thus, the pseudo-observations x̂
(i)
l,j (k) are replaced by the predicted pseudo-

observations x̂
(i)
l,j (k|k − 1) defined as

x̂
(i)
l,j (k|k − 1) �

[
ξj

]
l
ĥ

(i)
l−1(k|k − 1) + η

(
r(k) − ξT

j ĥ
(i)(k|k − 1)

)
, (147)

where ĥ
(i)(k|k − 1) = E

[
h(k)

∣∣{x̃(i)
}k−1

1
,
{
D̃

(i)
e

}k−1

1

]
. Interestingly, the pseudo-

observations in [215] are obtained from (147) by setting η = 1 and replacing the hy-

pothesized data vector ξj with the tentative data-decisions along with the survivor-path

of the trellis.

By inserting (147) into (146) and applying the sequential Kalman processing onto

the resulting state space model, an A-SISO algorithm referred to as the APP-SDD-

RCKF algorithm is found. It contains an embedded SDD Kalman filter which can be
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described at time k by the following pseudocode (assuming a first order AR channel

model):

ĥ(k, 0) = Aĥ(k − 1)

P(k, 0) = AP(k − 1, L + 1)AH + GGH

for l = 1, · · · , L + 1

k =
[P(k, l − 1)]l

ησ2
v + [P(k, l − 1)]l,l

ĥ(k, l) = ĥ(k, l − 1) + η k

JL+1∑

j=1

(
r(k) − ξT

j ĥ(k, l − 1)
)[

ξ∗
j

]
l
ϕ(k, j)

P(k, l) = P(k, l − 1) − k
[
P

T (k, l − 1)
]T

l

end

ĥ(k) = ĥ(k, L + 1).

In a Rayleigh flat fading channel, the SDD-RCKF estimator essentially coincides

with the SDD-KF algorithm presented in [262]. If the off-diagonal elements of the

matrices A1, . . . ,Ap and G are zero, implying uncorrelated channel tap gains, the

SDD-RCKF estimator is effectively implemented by running only one recursion per

time step. In that case, it closely resembles, both structurally and from the computa-

tional requirements point of view, a normalized SDD-LMS estimator incorporating an

adaptive step size parameter. Computations related to the SDD-KF and SDD-RCKF

estimators at time k are summarized in Table 4.
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Table 4. Update equations for SDD-KF and SDD-RCKF estimators at time k.

SDD-KF

P(k, 0) = AP
(
k − 1, JL+1

)
AH + GGH

ĥ(k, 0) = Aĥ(k − 1)

For j = 1, . . . , JL+1

k =
P(k,j−1)ξ∗

j ϕ′(k,j)

σ2
v+ξT

j
P(k,j−1)ξ∗

j
ϕ′(k,j)

ĥ(k, j) = ĥ(k, j − 1) + k

(
r(k) − ξT

j ĥ(k, j − 1)
)

P(k, j) = P(k, j − 1) − kξT
j P(k, j − 1)

end

ĥ(k) = ĥ(k, JL+1)

SDD-RCKF

P(k, 0) = AP(k − 1, L + 1)AH + GGH

ĥ(k, 0) = Aĥ(k − 1)

For l = 1, . . . , L + 1

k =

[
P(k,l−1)

]
l

ησ2
v+

[
P(k,l−1)

]
l,l

ĥ(k, l) = ĥ(k, l − 1) + η k
∑JL+1

j=1

(
r(k) − ξT

j ĥ(k, l − 1)
)[

ξ∗
j

]
l
ϕ′(k, j)

P(k, l) = P(k, l − 1) − k

([
PT (k, l − 1)

]
l

)T

end

ĥ(k) = ĥ(k, L + 1)

A decoupled channel estimator bank, based on a similar decomposition of the re-

ceived signal into multipath components, has also been proposed in an independent

work reported in [29]. As opposed to the SDD-RCKF estimator described above, the
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estimator in [29], however, has some disadvantages. Specifically, it is applicable only

to deterministic time-invariant channels and, since the channel estimation is based on

a block-processing, the associated demodulator must iterate between estimation and

inference.

4.4 Linear adaptive SISO detectors via MF-EM algorithm

The EM- or BEM-based adaptive demodulators, in their exact forms, may not be com-

putationally feasible for broadband applications, where the CIR typically spans many

symbol intervals. Hence, lower complexity alternatives are of great interest. The com-

plexity of the EM- and BEM-based demodulators can be reduced by performing either

the E-step or the M-step, or both, approximately. Approximate M-step may produce

reduced-complexity channel estimators, as was shwon in the previous section. Indeed,

the SDD-LMS and SDD-RCKF estimators can be regarded as realizations of this strat-

egy.

An approximate E-step can be obtained by performing a maximization of

G
(
Q(s), ĥ

)
(see (94)) or a minimization of F(Q) over a restricted class of trial dis-

tributions Q(s). The resulting algorithm is dubbed a variational EM algorithm.25 The

mean-field EM (or BEM) algorithm is obtained by restricting Q(s) to be fully factor-

ized, in which case the inference is performed by the linear SISO detectors.

Assuming that the channel is deterministic and time-invariant, it follows from (92)

and (95) that the channel estimate can be obtained as (iteration indices are suppressed)

ĥ = argmax
h

EQ {ln p(s, r|h)} , (148)

where the expectation may be taken under the MF distribution Q =
∏

k qk(s(k)) or

under the Bayesian MF distribution Q =
∏

k CN
(
s(k), ŝ(k), σ2

o,k

)
, implying that the

linear SISO detector is applied for detection. A straightforward formulation yields

ĥ =

(∑

k

s
∗(k)sT (k) + Σk

)−1(∑

k

s
∗(k)r(k)

)
, (149)

where s(k) =
[
s(k), . . . , s(k − L)

]T
and Σk = diag(σ2

sk
, . . . , σ2

sk−L
). The soft

symbol value at time k is given as s(k) = E
q
(i)
k

[
s(k)

]
and its variance σ2

sk
is given as

σ2
sk

= E
q
(i)
k

[
|s(k)|2

]
− |s(k)|2.

25With a broader definition, the variational EM algorithms can be regarded as a subclass of approximate EM

algorithms, where the E-step is computed by using any variational inference method.
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Recursive SDD channel estimators derived in the previous section can be easily

modified so as to allow the lower complexity linear SISO detector to execute an approx-

imate E-step. Specifically, the branch APPs are approximated as follows:

ϕ(k, j) ≈
L+1∏

l=1

ϕ̆(k − l + 1, i), i ∈ Ak,l(j), (150)

where Ak,l(j) = {i ∈ {1, . . . , J} : s(k − l + 1) = αi is consistent with s(k) = ξj}.

Furthermore, in the case of the LCMF SISO detector ϕ̆(k, i) = qk(s(k) = αi), whereas

in the case of the MMSE SISO detector ϕ̆(k, i) = CN
(
s(k) = αi, ŝ(k), σ2

o,k

)
. Unfor-

tunately, the approximate E-step via (150) does not automatically entail any complexity

reduction for the SDD channel estimation. An exception is the SDD-LMS estimator,

which under the approximation (150) takes the following low-complexity format:

ĥ
T (k) = ĥ

T (k − 1) + µ

[(
r(k) − ĥ

T (k − 1)s(k)
)
s
H(k) − ĥ

T (k − 1)Σk

]
. (151)

It is readily noticed that if the probabilistic information on the data symbols is perfect,

the estimator (151) reduces to the standard LMS algorithm, whereas if no information

on the channel symbols is available, it follows from (151) that ĥ(k) = (1−µ)ĥ(k−1),

i.e., the channel estimate “dies out” in a time period determined by the parameter µ. On

the other hand, assuming that soft data decisions are reliable enough so that the covari-

ance matrix Σk can be approximated to be a zero matrix, all the SDD channel estimators

proposed in the previous section assume a low-complexity format. Specifically, they are

obtained directly from the corresponding data-aided estimators by simply replacing a

priori known data symbols by their averaged values where the averaging is taken under

the MF distribution. For example, the SDD-LMS estimator assumes a format

ĥ
T (k) = ĥ

T (k − 1) + µ

[(
r(k) − ĥ

T (k − 1)s(k)
)
s
H(k)

]
. (152)

The low-complexity SDD channel estimator similar to (151) as well as some related

estimators, which were based upon the assumption that the variance matrix Σk is zero,

have actually been proposed earlier in [195] by using heuristic reasoning. However, a

new formulation of these known SDD estimators via the MF-EM algorithm provides a

solid theoretical foundation for them. Also, it gives new insight into the optimality of

these estimators, revealing, for example, that their convergence can be characterized in

terms of the lower bound rather than in terms of the likelihood, as discussed in Section

4.1. Other variants of SDD channel estimators in the context of linear SISO detectors

are presented in [225, 143].
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4.5 Complexity considerations

Evaluating the complexity of the adaptive SISO detectors in the presence of an unknown

channel is at least as difficult as it was in the case of perfect CSI. Of course, the added

computational requirements related to the adaptive detectors are due to the unknown

channel, which has to be estimated either implicitely or explicitely. However, the com-

plexities pertaining to detection and channel estimation cannot, in general, be quantified

separately in complexity analysis since the interplay between these operations affects

the overall receiver architecture significantly.

When the CSI is not available at the receiver, the exact APP symbol detector in most

cases has an exponential complexity in the channel coherence time. Thus, for channels

having coherence time on the order of the sequence length, the complexity appears to

be exponential in the sequence length, irrespective of the frequency-selectivity of the

channel [8]. An exception for this general rule is obtained in the case of equal energy

constellations transmitted over flat Rayleigh fading channels. Then, the exact symbol-

by-symbol soft-decision metrics, under the min-sum criterion, can be evaluated with

polynomial worst case complexity, as shown in [175].

The exact APP symbol detector can be formulated so that it consists of likelihood

updates on a forward and backward tree, assisted by per-path channel estimators, and

binding of the correspondig metrics of the past and future [8]. So, in the light of this fact,

suboptimal SISO detectors can be obtained as the result of applying one or more of the

following simplifications: 1) nonexhausive tree search, 2) suboptimal channel estima-

tors, and 3) suboptimal binding of the past and future metrics. Each of these approaches

was explored to some extent in [8]. Regarding the first of the listed simplifications, there

exist many ways to prune the sequence tree, the earliest of which have actually been con-

sidered for hard-decision devices [12, 209]. Especially the PSP-principle [209] has in

recent years gained popularity in research communities and industry.

The fixed complexity APP SISO detector, based on the PSP-principle, can be char-

acterized by the following operations: the sum-product terms are computed for the for-

ward and backward running metrics over the entire sequence of received samples, and

a separate channel estimate is kept for every state of the trellis while the estimates are

updated in a PSP fashion. It is important to notice at this point that the trellis on which

the PSP algorithm operates does not need to be tightly related to the trellis of the known

channel SISO algorithm. In contrast, its size is, in general, a design parameter that de-

termines the amount of pruning in the forward and backward trees, and, eventually, the
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complexity of the PSP detector. On the other hand, for a fixed number of trellis states,

the number of channel estimators updated at every recursion may be a compromise be-

tween the two extremes of tentative decisions, implying only one channel estimator at

one end and the PSP at the other [208]. In addition, the channel estimation, using, e.g.,

PSP, can be performed along with forward recursions only or in both forward and back-

ward directions [108]. So, roughly speaking, the complexity of the PSP-based SISO

detector is determined by the size of the associated trellis and the number of channel

estimators updated at every recursion, together.

The EM- and BEM-based SISO detectors, derived earlier in this chapter, operate on

the fixed-size trellis, which is exactly the same as the one associated with the known

channel SISO detector. Since there is only one channel estimator to be updated at every

recursion, there is essentially no performance advantage to be gained by expanding the

trellis beyond the size determined by the number of channel tap gains, i.e., JL. Effec-

tively, the proposed SDD channel estimators, whether of the LMS, RLS, or KF type,

are updated at every time recursion by averaging the innovation part of the estimator

over the trellis transition probabilities. Thus, from the complexity point of view, the

SDD channel estimators can be considered to be comprised of JL+1 separate channel

estimators, which are to be updated separately at every time step. So, summing up, the

APP-SDD-LMS/RLS/KF detectors operate on the fixed-size trellis, but the SDD chan-

nel estimators have complexity which is on the order of combined complexity of JL+1

traditional channel estimators.

The SDD-RCKF estimator, being based on the fully factorized trellis transition prob-

abilities,26 has a complexity which is comprable with the combined complexity of L+1

traditional channel estimators. For example, in the case of QPSK modulated symbols

transmitted over a three-tap fading channel, a reduction from 64 to 3 recursions over the

trellis branches is achieved when compared to the SDD-KF estimator. Thus, the overall

complexity reduction obtained by the RC Kalman processing can indeed be significant.

For comparison, the PSP-based SISO detector proposed in [215] updates JL Kalman

filters at every time recursion and, therefore, its complexity even for moderate channel

lengths (L > 1) is much higher than the complexity of the APP-SDD-RCKF algorithm.

However, as in the known channel case, the adaptive linear SISO detectors have much

lower complexity than any of the aforementioned trellis-based SISO detectors.

26Note that the channel estimation is here based on the fully factorized distribution, not the inference as in

the case of liner SISO detectors.

130



4.6 Numerical results

The performance of the proposed EM- and BEM-based adaptive SISO algorithms was

evaluated by computer simulations in a single-antenna system. For comparison, the per-

formance of the conventional Viterbi detector with delayed (the delay being 10 symbol

intervals) LMS estimator (VD-LMS) and of various PSP-based detectors as well as the

performance of the APP detectors with perfect CSI were also simulated. It should be

noted that the PSP-based SISO detectors considered in this section assume a forward-

only channel estimation while the number of trellis states is tightly related to the number

of channel tap gains, i.e., the number of states is JL.

Specifically, the performance of uncoded and coded transmission of QPSK sym-

bols over a discrete-time symbol-spaced frequency-selective Rayleigh fading channel

was investigated by using Clarke’s channel model [46] with normalized Doppler spread

BdTs varying between values BdTs = 0.001 and BdTs = 0.05. The channel had three

independently fading tap gains whose standard deviations were set at (σtap1 = 1/
√

6,

σtap2 = 2/
√

6 and σtap3 = 1/
√

6). The fading channel tap gains were realized by us-

ing the method described in [121], while their first order AR descriptions were obtained

by extracting the AR(1) parameters directly from the simulated channel tap gains using

the standard Yule-Walker method.

The transmitted symbols were organized into fixed-size bursts with K information

symbols preceded by Kpre known preamble symbols and followed by Ktail known tail

symbols. Thus, the starting and terminating states of the demodulator trellis were

known. In addition, the known preamble symbols were used in obtaining the initial

CIR estimate.

In adaptive SISO demodulators, the step size parameter of all LMS estimators was

set at µ = 0.1, while the forgetting factor of all RLS estimators were set at λ = 0.9, irre-

spective of the rate of variation of the channel. This is not, of course, an optimal choice

in all channel dynamics. Moreover, the state-space models for Kalman-type channel

estimators were based on the estimated AR(1) parameters. Such modeling also has its

own demerits. First, the estimation of the AR(1) parameters may be very difficult due

to fact the signal bandwidth is typically much larger than the Doppler bandwidth of

the channel, causing serious oversampling of the channel, and, secondly, the symbol

rate AR(1) model itself may not properly represent the time-continuous channel. Re-

gardless of the above distracting arguments, the performance results provided below do,

however, give some general ideas and hints about the relative goodness of the proposed
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adaptive detectors, as compared to some of the existing ones. It is, however, important

to note that, due to inadequacy in modeling, the comparisons made between different

detectors may not be fully conclusive.

The block diagram of the communication system for coded transmission is shown

in Fig. 16. A 64 state convolutional encoder (CE) with rate 1/2 (code generators in octal

form are (133,171)) was used to encode the information bits. The starting and terminat-

ing states of the encoder were assumed to be known in order to facilitate the decoding

algorithms. After the QPSK mapper, the symbols were interleaved using a K × K

block interleaver (BI) in conjunction with the assumption of a burst-to-burst indepen-

dent channel. Specifically, the data symbols were read into the BI row-wise while read

out column-wise so that each data burst in the channel consists of data symbols of one

column of BI, preceded by the known preamble symbols and followed by the known

tail symbols. Each such data burst was then assumed to be subject to uncorrelated fad-

ing in the channel. At the receiver side, the adaptive SISO demodulator and the SISO

decoder were iteratively connected through the block interleaver and the block deinter-

leaver (BD). Finally, the soft output information about the information bits obtained

from the SISO decoder was quantized to obtain the estimated sequence of transmitted

information bits.

Fading
channel

BD

BI

+

Max
SISO

Demodulatordecoder
SISO

BI BBQPSKCE

v(k)

r(k)

b(i) s(i) s(k)

b̂(i)

SO
(
a(k)

)
SI
(
a(i)

)

SO
(
a(i)

)
SI
(
a(k)

)

SO
(
b(i)

)

Fig 16. Block diagram of the coded communication system with the SISO demod-

ulator and the SISO decoder iteratively connected by using the turbo principle. A

burst builder (BB) is used to add the known preamble and tail symbols to each

data burst. The acronyms SI and SO stand for soft input and soft output, respec-

tively.

132



The bit error rate of various uncoded and coded QPSK transmission systems was

evaluated as a function of Eb/N0, where Eb denotes the transmitted signal energy per

information bit. In all simulations, Eb/N0 values were defined by taking into account

the loss due to the training symbols (i.e., known preamble and tail symbols). The BER

results for several uncoded QPSK transmission systems with different LMS-based de-

tectors are presented in Fig. 17. The fading rate was BdTs = 0.001, and the burst

parameters were as follows: Kpre = 5, K = 30 and Ktail = 2. The performance of an

iterative detector, combining the SDD-LMS estimator and the standard BCJR algorithm

together iteratively (cf. Eq. (108) and (109)) with six iterations, is shown along with

the performance of the noniterative APP-SDD-LMS detector. The former detection al-

gorithm is referred to as the LMS-based adaptive Baum-Welch (ABW-LMS) algorithm

in the figure. While the APP-SDD-LMS detector behaves similarly to the conventional

LMS-based Viterbi detector, the performance of the ABW-LMS detector with six itera-

tions approaches the performance of the PSP-LMS detector, where the PSP technique

is applied to the trellis with JL = 16 states in a forward-only manner. A possible ex-

planation for the relatively poor performance of the ABW-LMS and APP-SDD-LMS

detectors is the slow convergence speed due to the averaging over all branches of the

detector trellis [13]. Since the transmitted bursts as well as the preamble were fairly

short, the convergence speed can have a significant impact on the performance. Short

preamble causes large initial uncertainty in the channel estimates, which is also demon-

strated by a relatively large gap in performance between the PSP detector and the Viterbi

detector with perfect CSI.
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Fig 17. BER versus Eb/N0 for an uncoded QPSK system with a fading rate of

BdTs = 0.001.

The performance results for various APP algorithms with different embedded SDD

channel estimators are presented for an uncoded transmission system in Fig. 18. Here,

the same channel conditions and the same burst structure is used as for the results

in Fig. 17, except that the size of the preamble is now extended to ten pilot symbols

(Kpre = 10). The simulated performance is also shown for a demodulator which ac-

quires the CIR estimate by using only the pilot symbols at the beginning of each burst

(referred to as the APP-PSAE algorithm). Although the initial channel uncertainty was

reduced, all the APP-SDD detectors exhibited only a moderate performance gain com-

pared to the performance of the APP-PSAE detector. A conclusion drawn up from

these two performance figures is that the demodulators exploiting the soft statistics of

the data symbols do not pay back the increased computational effort, at least not in

uncoded transmission systems.
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Fig 18. BER versus Eb/N0 for an uncoded QPSK system when noniterative A-SISO

demodulators are used.

In contrast to uncoded systems, the performance of coded transmission systems

seems to be significantly improved when SDD channel estimators are employed instead

of the hard decision-directed CIR estimators. In Fig. 19, the BER as a function of

Eb/N0 is presented for coded systems employing an iterative turbo receiver in which

noniterative adaptive SISO demodulators of various kinds and a SISO decoder are it-

eratively interconnected as shown in Fig. 16. The system parameters were as follows:

BdTs = 0.001, Kpre = 5, K = 30, and Ktail = 2. For comparison, the performance of

the serial concatenation of the PSP-LMS detector and the hard-decision Viterbi decoder

(PSP-VD) is presented. Due to the soft decoding gain, the performance of the iterative

turbo receiver with the APP-SDD-LMS demodulator was better than the performance of

the PSP-VD, even after the first iteration. When the number of iterations is increased,

the superiority of the turbo receivers is clearly seen. It can also be noticed that the

APP-SDD-RLS demodulator exhibits about a 1 dB performance gain with respect to

the APP-SDD-LMS demodulator. Since the initial channel uncertainty was high, the

better performance of the SDD-RLS estimator is mainly due to its faster convergence

speed. The high initial channel uncertainty also caused a large performance loss for all

the studied adaptive SISOs as compared to the SISO algorithm with perfect CSI.
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Fig 19. BER versus Eb/N0 for a coded QPSK system with fading rate BdTs = 0.001

and K = 30.

The performance gap between the adaptive SISO demodulators and the SISO de-

modulators with the perfect CSI can be reduced by increasing the size of the preamble

to 10 symbols, as demonstrated in Fig. 20. Also, the advantage of the faster conver-

gence speed of the SDD-RLS estimator is almost lost when the quality of the initial

CIR estimate is improved. The APP-PSP-KF is a forward-only version of the PSP-

based adaptive SISO detector (assuming 16 states) presented in [8]. Interestingly, the

APP-SDD-RCKF demodulator achieved the same performance as the APP-PSP-KF de-

modulator, while its computational complexity is significantly smaller, as discussed

earlier. Somewhat surprisingly, however, the SDD-RCKF estimator performed slightly

worse than the other SDD estimators, although it is structurally equal to the SDD-LMS

estimator with an adaptive step-size parameter. In any case, even at the relatively small

fading rate BdTs = 0.001, all these adaptive turbo receivers exhibited a remarkable per-

formance gain, as compared with the turbo receiver including the PSAE demodulator.
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Fig 20. Comparison of various A-SISO algorithms in a coded QPSK system with

fading rate BdTs = 0.001 and K = 30.

The performance of the adaptive turbo receivers was also simulated with the follow-

ing system parameters: BdTs = 0.01, Kpre = 10, K = 15, and Ktail = 2. The BER as

a function of Eb/N0 for several turbo receivers with different noniterative APP demod-

ulators is presented in Fig. 21. In this relatively fast fading channel, all turbo receivers

exhibited, after the first iteration, an error floor at an intolerable high BER value. How-

ever, the APP-SDD demodulators were able to efficiently use the a priori information

about the data symbols obtained from the SISO decoder. This was demonstrated by a

remarkable performance gain achieved when the number of iterations was increased. Fi-

nally, the performance results are given for a very fast fading (BdTs = 0.05) frequency

selective channel and for short block length (K = 5) in Fig. 22. The excellent channel

tracking capability of the SDD Kalman filter is particularly exhibited in this fast fading

channel condition.
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Fig 21. Comparison of various A-SISO algorithms in a coded QPSK system with

fading rate BdTs = 0.01 and K = 15.
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Fig 22. Comparison of various A-SISO algorithms in a coded QPSK system with

fading rate BdTs = 0.05 and K = 5.
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4.7 Summary and conclusions

In this chapter, two recursive versions of the Baum-Welch algorithm as well as two

versions of the BEM-based APP demodulation algorithms were introduced and their

performance was simulated in uncoded and coded QPSK transmission systems over a

frequency-selective Rayleigh fading channel. Prior to that, different criteria for SISO

demodulation in the presence of an unknown channel were shortly reviewed, by empha-

sizing the VFEM interpretation of the EM- and BEM-based demodulators in particular.

Importantly, soft decision-directed LMS, RLS, KF, and RCKF channel estimators were

derived in a unified way, and their embedding into the well-known forward-backward

processing SISO algorithms was illustrated. Moreover, linear SISO detectors incorpo-

rating the SDD channel estimators were derived by appealing to the mean-field approx-

imation.

The simulation results showed that an incorporation of the proposed APP demodu-

lators into the iterative turbo-processing receivers can provide significant performance

gain, particularly as compared to the serial concatenation of the PSP-based detector and

the hard-decision Viterbi-decoder. As expected, the proposed APP-SDD algorithms

achieved remarkable iteration gains compared to the APP algorithms where the channel

estimation was solely based on the use of pilot symbols. While desirable, a complete

characterization of the whole array of different adaptive iterative detectors in terms of

performance and complexity is a complicated problem, and the discussions and simula-

tion results presented in this chapter provide only some partial answers, if any.

139



140



5 Joint estimation of carrier frequency offset

and statistical parameters of the multipath

fading channel

Impressive headway has lately been made in many areas of advanced communication

algorithms, including iterative turbo receiver algorithms, space-time signal processing

algorithms, and soft decision aided channel estimation algorithms. At the same time,

the problem of estimating the channel’s statistical properties has been of less interest,

in general. The focus of this chapter is a joint estimation of the statistical properties of

the radio channel, the channel impulse response, and the carrier frequency offset.

From the transceiver adaptation point of view, important parameters describing the

radio channel are the normalized bandwidth of the channel spectrum, referred to as the

Doppler spread or fading rate, and the relative power levels of the different multipath

components. In addition, the center frequency of the spectrum of the received signal,

referred to as the carrier frequency offset (CFO), is an important parameter, which in a

broad sense can be understood as a property of the communication channel.

The frequency offset is defined as a total difference between the transmitted carrier

frequency and the local reference frequency at the receiver, and it is cumulatively caused

by the Doppler shift of the channel, if one exists, and the transmitter and receiver oscilla-

tor instabilities. It should be noted that the oscillator instabilities may cause a frequency

offset only if they are stable with time, otherwise they cause phase noise. The former

case is of interest in this chapter, whereas the latter modeling assumption is considered

in the next chapter. In general, the frequency offset and other channel parameters can be

different for different multipath signal components due to different scattering environ-

ments or due to nonsynchronous transmitters in the systems where multiple transmitter

antennas are employed.

In this chapter, the problem of estimating the CFO and the statistical parameters of

the multipath fading channel jointly and reliably in various channel conditions is ad-

dressed. In particular, based on the complex bandpass channel modeling concept intro-

duced in Chapter 2 and the EM algorithm, provable efficient joint estimation algorithms

are derived. Moreover, building upon the previously established variational optimiza-

tion framework, an approximate algorithm that is especially conducive to learning the
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statistical parameters of the wideband radio channel is proposed. Also, new schemes for

low-complexity recursive joint synchronization and channel estimation are provided.

Compared to numerous earlier contributions on estimation of the CFO, a fundamen-

tal advantage of the frequency offset estimator derived in this chapter is its generality.

While the estimation range of the existing estimators is either strictly limited or forced

to be traded off for accuracy, the estimator presented here has a large estimation range

and still works equally well in a wide variety of scattering environments, encompassing

those where the scattering environment is different for different multipath signal com-

ponents. Also, a novel Kalman smoother-based frequency error detector (FED) which

can be used as a building block in feedback frequency recovery schemes and which pos-

sesses the same favorable properties as the corresponding block-based estimator will be

derived.

The outline of the chapter is as follows. In Section 5.1, a block-based estimation

scheme for the CFO and for the statistical parameters of the channel is introduced. In

Section 5.2, recursive feedforward and feedback estimation schemes are discussed, and

it is shown that they can be easily integrated into various receiver structures. In Sec-

tion 5.3, the CRLB analysis in the presence of time-varying fading channel is revisited.

In Section 5.4, numerical results are presented, and Section 5.5 finally concludes the

chapter.

5.1 Estimation of channel statistical parameters

In this section, the problem of estimating the statistical parameters of mobile radio

channels, encompassing, thereby, the CFO also, is addressed. Actually, in the presence

of CFO, only the complex AR parameters and receiver noise variance must be estimated

in order to estimate the (frequecy-modulated) CIR and to perform coherent detection.

It is, however, useful and sometimes even necessary to estimate the CFO explicitly. For

example, large initial CFO has to be compensated at the receiver front-end so that the

received signal is not distorted by the FE filters.
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5.1.1 Block-based estimation of state-space model

parameters

Let us consider the state-space signal model given by (42) and (43). The channel model

given by (42) was earlier called the complex bandpass AR channel model. Such a

notion was empowered by the incorporation of the CFO into CIR, effectively shifting

the frequency response of the channel in frequency by the amount dictated by the CFO.

A set of unknown parameters of the state-space model is given as Θ = {θ1, θ2}, where

θ1 = {σ2
v} and θ2 = {G,A} include the parameters of the measurement equation and

the parameters of the state equation, respectively. As is well-known, a direct data-aided

ML estimator for the parameters Θ is given by

Θ̂ = arg max
Θ

p(r|s,Θ) = arg max
Θ

∫

F

p(r,F|s,Θ)dF, (153)

where F denotes a set of instantaneous CIR values, i.e., F =
{
f1, . . . , fK

}
. The condi-

tional distribution p(r,F|s,Θ) can be expressed as

p(r,F|s,Θ) = p(r|F, s, θ1)p(F|θ2)

∝ 1

(σ2
v)K

exp

[
− 1

σ2
v

K∑

k=1

∣∣r(k) − sT (k)f (k)
∣∣2
]

·
L+1∏

l=1

1

gK
l

exp

[
− 1

gl

K∑

k=1

∣∣fl(k) − a
T
l f(k − 1)

∣∣2
]
,

(154)

where al denotes the lth column of A
T . Unfortunately, direct ML estimation of the

state-space model parameters is not computationally feasible, forcing us to pursue other,

computationally more attractive approaches. Thus, the EM approach is here adopted as

a basis for deriving an iterative pilot-symbol-aided estimator for the state-space model

parameters. In fact, the EM-based estimator for the generic state-space model has ear-

lier been presented in [223], and, hence, the derivation given here may be regarded

merely as an application of a similar approach to the specific system model at hand.

But, on top of that, it will be shown that in the cases where the channel tap gains are

virtually uncorrelated, the complexity of the EM-based parameter estimator can be sig-

nificantly reduced by making use of the structured MF technique.

By assigning the set of the CIR snapshots F as a missing data, the objective function
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of the EM algorithm at the ith iteration can be written as

Q
(
Θ
∣∣Θ̂(i−1)

)
= E

[
ln p(r|s, θ1,F)

∣∣r, s, Θ̂(i−1)
]

+ E
[
ln p(F|θ2)

∣∣r, s, Θ̂(i−1)
]
.

(155)

As is readily noticed, the maximization of the Q-function (the M-step) over the param-

eters of the measurement equation is decoupled from the maximization over the param-

eters of the state equation. The estimators θ̂1 and θ̂2 are, however, coupled through

computation of the conditional expectations. The Q-function (155) can be further ex-

panded as27

Q
(
Θ
∣∣Θ̂(i−1)

)
=

L+1∑

l=1

Ql

(
Θ
∣∣Θ̂(i−1)

)
, (156)

where Ql for l = 1, . . . , L is given as

Ql

(
Θ
∣∣Θ̂(i−1)

)
= −K ln gl −

1

gm

K∑

k=1

(
E
[
|fm(k)|2

∣∣r, s, Θ̂(i−1)
]

− 2ℜ
{
a

T
l E

[
f(k − 1)f∗

l (k)
∣∣r, s, Θ̂(i−1)

]}

+ a
T
l E

[
f(k − 1)fH(k − 1)

∣∣r, s, Θ̂(i−1)
]
a
∗
l

)
,

(157)

and

QL+1

(
Θ
∣∣Θ̂(i−1)

)
= −K ln σ2

v

− 1

σ2
v

K∑

k=1

(
|r(k)|2 − 2ℜ

{
r∗(k)sT (k)E

[
f(k)

∣∣r, s, Θ̂(i−1)
]}

+ s
T (k)E

[
f(k)fH(k)

∣∣r, s, Θ̂(i−1)
]
s
∗(k)

)
.

(158)

Above, ℜ{·} denotes the real part of the argument. At the ith iteration, the EM algo-

rithm can be written as

27For notational simplicity, it is assumed hereafter that p = 1 if not otherwise noted.

144



E− step : For k = 0, 1, . . . , K compute

E
[
f(k)

∣∣r, s, Θ̂(i−1)
]

= f̂
(i)(k|K)

E
[
f(k)fH(k)

∣∣r, s, Θ̂(i−1)
]

= f̂
(i)(k|K)

(
f̂
(i)(k|K)

)H
+ P

(i)(k|K)
△
= Φ

(i)
k

E
[
f(k − 1)fH(k)

∣∣r, s, Θ̂(i−1)]
= f̂

(i)(k − 1|K)
(
f̂
(i)(k|K)

)H
+ P

(i)(k − 1, k|K)

△
= Ψ

(i)
k

M− step : Compute

Â
(i) =

K∑

k=1

(
Ψ

(i)
k

)H
( K∑

k=1

Φ
(i)
k−1

)−1

(159)

ĝ
(i)
l =

1

K

K∑

k=1

([
Φ

(i)
k

]
l,l

−
(
â

(i)
l

)T
ψ

(i)
l,k

)
(160)

σ̂2
v

(i)
=

1

K

K∑

k=1

(
|r(k)|2 − 2ℜ

{
r∗(k)sT (k)f̂ (i)(k|K)

}
+ s

T (k)Φ
(i)
k s

∗(k)
)
,

(161)

where ψ
(i)
l,k denotes the lth column of the matrix Ψ

(i)
k . The smoothed channel estimates

f̂
(i)(k|K) and the error covariance matrices P

(i)(k|N) and P
(i)(k, k − 1|N) are di-

rectly obtained from the Kalman smoothing equations (see, e.g., [223]). It is noticed

that (159) essentially gives a Yule-Walker solution for the AR parameters where the

true autocorrelation matrix of the fading channel is replaced by its current estimate. A

modification of the state-space model (42) and (43) in order to support an autoregres-

sive moving average (ARMA) channel hypermodel, as well as an EM-based iterative

algorithm for estimating the corresponding model parameters, is presented in Appendix

3.

The above EM-based AR parameter estimator turns out to be computationally

unattractive if the number of the channel taps is high. In particular, the numerical sta-

bility problems and high computational demand of the Kalman smoother can make the

practical implementation prohibitive in this case. A significant reduction in complexity

and an improvement in stability can, however, be obtained under the assumption that

the off-diagonal elements of the submatrices Ai are zero, reflecting the situation where
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the channel tap gains are uncorrelated. Fortunately, also in practice the correlation be-

tween the channel taps can often be assumed to be very low, particularly if the rate of

decay of the impulse response of the pulse-shaping filter is large [215].

If the correlation between the channel tap gains can be ignored, the model of the

channel dynamics described by the state equation (42) naturally reduces to the L + 1

parallel dynamic models, each one corresponding to one channel tap. In this case, the

distribution p(F|θ2) can be decomposed as

p(F|θ2) =

L+1∏

l=1

p
(
F̃l|Ãl, gl

)
, (162)

where F̃l =
{
f̃l(1), . . . , f̃l(K)

}
, f̃l(k) = [fl(k), . . . , fl(k − p + 1)]T , and the model

matrix Ãl contains the AR coefficients of the lth channel tap. In addition, if a direct

access to the output of each sub-channel, denoted as yl(k) = s(k − l + 1)fl−1(k),

would be available, a parallel filtering structure could be used to estimate the parameters

of each sub-channel independently. Since this is not available, the subchannel output

signals yl(k) have to be estimated somehow. The following derivation makes use of the

mean field approximation technique.

As pointed out in Chapter 2, the core of the MF approximation technique is to

define a factorized trial distribution, called variational distribution, which in this case

is postulated to be

Q(F) =

L+1∏

l=1

ql

(
F̃l

) L+1∏

l=1

p
(
F̃l|Ãl, gl), (163)

where ql

(
F̃l

)
for l = 1, . . . , L + 1 form a set of variational free parameters to be

optimized. This is achieved by minimizing the KL divergence between the variational

distribution and the target distribution p(r,F|s,Θ), given by

D
(
Q(F)

∥∥p(r,F|s,Θ)
)

=

∫

F

Q(F) ln
Q(F)

p
(
r,F|s,Θ

)dF, (164)

with respect to the free parameters ql

(
F̃l

)
∀l. Inserting (163) into (164) and solving the

zero-gradient points of (164) with respect to the free parameters yields, after straight-

forward computation, a set of fixed-point equations given by

qMF
l

(
F̃l

)
= C · exp

[
− 1

σ2
v

K∑

k=1

∣∣ŷl(k) − s(k − l + 1)fl−1(k)
∣∣2
]

(165)
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for l = 1, . . . , L + 1, where C is a constant, and

ŷl(k) � r(k) −
L+1∑

j=1
j �=l

s(k − j + 1)f̂j−1(k|K) (166)

defines the estimated output signal of the lth sub-channel. Furthermore, f̂j−1(k|K)

denotes the MMSE estimate of the jth channel tap gain at time k given that the whole

received signal sequence r is received. Notably, the MF solution (165) and (166) can

be interpreted as a parallel interference cancellation scheme for the multipath signal

components.

The sequential update for qMF
l

(
F̃l

)
∀l according to (165) and (166) essentially im-

plies an iterative processing where the “pseudo-observations” ŷl(k) at each iteration are

obtained with the aid of the channel estimates computed at the previous iteration. The

MMSE channel estimates f̂l−1(k|K) for all channel taps can be computed in parallel

by the per-branch Kalman smoothers operating on the per-branch state-space models. A

state-space model for the lth channel tap, when assuming the first order AR(1) channel

model (in this case Ãl is a scalar denoted as al), is given by

fl−1(k) = al fl−1(k − 1) +
√

gl wl(k − 1) (167)

ŷl(k) = s(k − l + 1)fl−1(k) + ñl(k). (168)

From (165) follows that the variance σ2
ñl

of the noise ñl(k) should be nominally set at

σ2
ñl

= σ2
v but, in general, it is preferable, from the convergence point of view, to keep it

as a design parameter that can change value from iteration to iteration.

A reduced complexity AR (RC-AR) parameter estimator can now be obtained by

using the factorized MF distribution QMF(F) =
∏

l q
MF
l

(
F̃l

)
and the associated bank

of state-space models ((167)-(168)) as a basis for the EM algorithm. In fact, the itera-

tive RC-AR parameter estimator is realized by operating the scalar Kalman smoothers,

one corresponding to each channel tap, on the per-branch state-space models and esti-

mating the statistical parameters of each channel tap separately. In the first iteration,

when the smoothed channel estimates are not yet available, the pseudo-observations

ŷl(k) can be defined in terms of the KF channel predictions f̂l(k|k − 1). This kind

of prediction-feedback mechanism has earlier been applied successfully to noniterative

vector Kalman estimation [215]. Moreover, the convergence properties of the MF-EM

algorithm can be improved by applying the mean field annealing technique [33], i.e.,

the variance σ2
ñl

is initially set at some high value and then gradually decreased along
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with the iterations. This corresponds to the hypothetical situation where the receiver is

first heated up and then gradually cooled down.

5.1.2 Estimates for frequency offset, Doppler spread, and

delay-power profile

The AR parameters of the state equation (42) pertaining to any particular channel tap

gain carry information about the carrier frequency offset, Doppler spread, and the aver-

aged power, characterizing this channel tap. For the lth channel tap, they are denoted by

νl, Ω
(l)
D , and ̺2

l , respectively. Typically, all channel taps experience the same frequency

offset and Doppler spread, but the averaged power level varies from tap gain to tap gain.

Under this assumption, νl ≡ ν ∀l and Ω
(l)
D ≡ ΩD ∀l.

Assuming the first order AR modeling, estimates for the frequency offset νl,

Doppler spread Ω
(l)
D , and averaged power level ̺2

l of the lth channel tap gain can be

simply obtained by

ν̂l =
1

2π
arg(âl) (169)

Ω̂
(l)
D = arccos

(
1 + |âl|2 − 1

ξ (1 − |âl|)2
2|âl|

)
(170)

ˆ̺2
l =

gl

1 − |âl|2
, (171)

where the function arg(·) returns the phase of its argument, al
△
= [A]l,l, and ξ is an at-

tenuation of the AR-spectrum at the estimated frequency with respect to zero frequency

(e.g., ξ = 0.5 corresponds to the -3dB bandwidth). The frequency offset estimator (169)

is based on the fact that the diagonal elements of the model matrix Ā are positive real

numbers, and, therefore, the nonzero phase angle of any diagonal element of the matrix

A must be solely due to the frequency offset. Typically, all the channel tap gains ex-

perience the same frequency offset, in which case an improved estimate for the carrier

frequency offset can be obtained as

ν̂ =

L+1∑

l=1

ˆ̺l ν̂l. (172)

The estimator (172) is hereafter called the weighted frequency offset estimator, while

an unweighted estimator is obtained simply by ν̂ = 1/(L + 1)
∑L+1

l=1 ν̂l. The Doppler
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rate estimate (170) and the average power estimate (171) follow directly from the AR

modeling assumptions (see (42)) and from the standard AR spectral estimation methods

[158]. Similarly to (172), improved estimate for the Doppler spread can be obtained,

by averaging, in the cases where all channel tap gains experience the same scattering

environment.

For the pth order AR model, the estimate for the frequency offset of the lth chan-

nel tap, under the restriction that the normalized frequency offset νl < 1/4, can be

expressed as

ν̂l =
1

p

1

2π

p∑

i=1

1

i
arg

(
sign

(
ℜ{âi,l}

)
âi,l

)
, (173)

where ai,l
△
=

[
Ai

]
l,l

and the function sign(·) returns the sign of its argument. The

estimate (173) is based on the finding that the diagonal elements of the sub-matrix Āi

are (positive or negative) real numbers, and, therefore, a nonzero angle of the element

ai,l, when reduced to the interval [0 π/2], must be directly related to the frequency

offset, as long as the range of the frequency offset is limited as νl < 1/4. Meanwhile,

the explicit values for the Doppler spread and for the delay-power profile are somewhat

difficult to obtain from the estimated state-space model parameters if higher order AR

modeling is used.

5.2 Fully adaptive receiver structures

Fully adaptive receiver structures in the presence of the multipath Rayleigh fading chan-

nel and unknown CFO are considered in this section. The notion of full adaptivity

should be understood in this context so that, along with the CIR, the channel statistical

parameters, specifically the channel AR parameters, are estimated recursively as well.

Hence, the bandwidth of the CIR estimator, realized by the Kalman filter, can be ef-

fectively adjusted in accordance with the Doppler spread of the channel, and, thereby,

an enhanced estimation accuracy may be obtained in different channel conditions. The

rotation of the signal constellation due to the CFO can be compensated either implicitly

by a feed-forward AR parameter estimator or explicitly by a feedback loop.
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5.2.1 Feedforward adaptation

An alternative implementation of the AR parameter estimator is obtained via the steep-

est descent method. Specifically, at the ith iteration, the parameter estimator is given

by

Θ̂
(i)

= Θ̂
(i−1)

+ Λ
∂ ln p(r|s,Θ)

∂Θ

∣∣∣∣
Θ=Θ

(i−1)
, (174)

where Λ is a diagonal matrix with step size parameters as diagonal elements. The score

of the likelihood function can be computed with the aid of the Fisher’s identity [161] as

follows:
∂

∂Θ
ln p(r|s,Θ) =

[
∂

∂Θ0
Q (Θ0|Θ)

]

Θ0=Θ

. (175)

A recursive estimator for the parameter vector Θ is now obtained by applying the

stochastic gradient approximation technique to (174). Specifically,

Â(k) = Â(k − 1)

+ λA

∂E

[
ln p

(
f(k)|f(k − 1), θ2

)∣∣∣{r(i)}k
i=1, {θ̂2(i)}k−1

i=1

]

∂A

∣∣∣∣∣∣∣∣
θ2=θ̂2(k−1)

= Â(k − 1) + ΛA,k

(
Ψk|k − Â(k − 1)Φk−1|k

)
,

(176)

where the diagonal matrix containing time-varying step-size parameters is given as

ΛA,k = diag
(
λA/ĝ1(k − 1), . . . , λA/ĝL+1(k − 1)

)
, and, similarly to the formulation

in (176), the recursive estimate for gl is obtained as

ĝl(k) = (1 − λg)ĝl(k − 1) + λg

([
Φk|k

]
l,l

− 2ℜ
{
â

T
l (k)ψl,k|k

}

+â
T
l (k)Φk−1|kâ

∗
l (k)

)
, (177)

where ψl,k|k denotes the lth column of Ψk|k.

The error covariance matrices Φk|k, Φk−1|k and Ψk|k are updated recursively, e.g.,

Ψk|k = E
[
f(k − 1)fH(k)

∣∣{r(i)}k
i=1, {s(i)}k

i=1, {θ̂2(i)}k−1
i=1

]
∈ C

(L+1)×(L+1),

(178)

and they are computed by the one-step Kalman smoother. Thus, the recursive param-

eter estimators (176)-(177) are effectively cross-coupled with the recursive one-step

150



Kalman smoother. Importantly, as opposed to the AR parameter estimator proposed in

[60], the error covariances of the CIR estimates, obtained from the Kalman smoother,

are also exploited in the AR parameter estimation, in addition to the CIR estimates

themselves. Based on the use of this extra information about the channel, the AR pa-

rameter estimators proposed here are expected to enjoy some performance advantage

over the estimators presented in [60].

SISO
Demodulator

Channel estimator

AR parameter
estimator

SISO Decoder

SDD-KS-1

r

F̂

Â(k),

Ĝ(k)
Ψk|k, Φk−1|k, Φk|k

p
(
s(k)|r, F̂, Θ̂(k)

)

Fig 23. Block diagram of a fully adaptive turbo receiver in the presence of fre-

quency offset.
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A block diagram of the fully adaptive turbo receiver, including the cross-coupled

SDD channel estimator and AR parameter estimator, is presented in Fig. 23. It is

noted that the parameter updating itself does not need information on the data sym-

bols, whereas the Kalman smoother can be operated either in the hard decision-directed

(HDD) or the soft decision-directed (SDD) modes, in addition to the pilot mode. The

HDD Kalman smoothers can exploit either final hard decisions or tentative hard de-

cisions (e.g., via per-survivor processing) [215]. The SDD Kalman smoothers were

derived in Chapter 4.

The complexity of the recursive adaptation in the frequency-selective channel is

dominated by the vector Kalman smoothing since the parameter updating itself is com-

putationally very simple. On the other hand, the complexity of the vector Kalman

smoothing can be reduced by applying the MF approximation technique as stated in

the previous section. Furthermore, the convergence rate of the gradient-based recursive

estimator is solely determined by the step-size parameters. This is in contrast to the

block-based EM algorithm whose convergence rate depends on the amount of informa-

tion loss due to the missing information.

5.2.2 Feedback frequency recovery

Often the statistical characteristics of the fading channel change much slower than the

CFO with respect to time. In that case, it is reasonable to perform the carrier frequency

recovery explicitly while keeping the parameters of the state-space model itself fixed.

So, in this section, the problem of CFO estimation and frequency recovery will be

tackled in the case where the state-space model parameters are fixed and known. In par-

ticular, a novel frequency error detector, to be used as a building block of the feedback

frequency recovery scheme, will be derived.

The Q-function for the frequency offset is obtained by inserting (44) into (154) and

solving for Q
(
ν|ν̂(i−1)

)
, using (155) as a basis. Specifically in the case of the first order

AR model, the Q-function can be expressed in the form

Q
(
ν|ν̂(i−1)

)
= 2ℜ

{
ej2πν

K∑

k=1

tr
((

G
H
G
)−1

ĀΨ
(i)
k

)}
, (179)

where tr(·) denotes the trace of the argument matrix. Maximizing (179) with respect to
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ν yields

ν̂(i) =
1

2π
arg

( K∑

k=1

tr
((

G
H
G
)−1

ĀΨ
(i)
k

))
. (180)

The effects of the CFO can now be compensated explicitly with the aid of the estimate

ν̂, for example, at the receiver FE. It is, however, more practical to employ a closed-

loop frequency recovery system where the frequency error signal is generated for every

received signal sample. This error signal is then filtered by a low-pass filter (LPF), and

the filtered error signal is used to control the numerically-controlled oscillator (NCO)

or the voltage-controlled oscillator (VCO) if the frequency offset is compensated in the

analog domain.

The maximum-likelihood-based frequency error detector (FED) is defined in such

a way that the error signal it produces can be used to recursively maximize the likeli-

hood function L(ν) = ln p(r|s, ν). Using Fisher’s identity (175), the derivative of the

likelihood function L(ν) is given by

∂

∂ν
ln p(r|s, ν) = −2

K∑

k=1

ℑ
{

ej2πν tr
((

G
H
G
)−1

ĀΨ
(i)
k

)}

= −2
K∑

k=1

ℑ
{

tr
((

G
H
G
)−1

ĀΨ̄
(i)
k

)}
,

(181)

where ℑ{·} denotes the imaginary part of the argument and the correlation matrix Ψ̄
(i)
k

is defined as Ψ̄
(i)
k = E

[
h(k − 1)hH(k)

∣∣r, s, ν̂(i−1)
]
. The second row of (181) is ob-

tained by using (41). The zero-gradient point of the likelihood-function can be found re-

cursively by applying the stochastic gradient approximation technique to (181). Specif-

ically, the error signal at the output of the FED at time k is given by

e(k) = ℑ
{

tr
((

G
H
G
)−1

ĀΨ̄k|k

)}
, (182)

where the correlation matrix Ψ̄k|k is defined as

Ψ̄k|k = E
[
h(k − 1)hH(k)

∣∣{r(i)}k
i=1, {s(i)}k

i=1, {ν̂(i)}k−1
i=1

]
, ∈ C

(L+1)×(L+1)

(183)

and it can be obtained from the one-step Kalman smoother (KS-1) operating on the

state-space model

h(k) = Āh(k − 1) + Gw̄(k − 1) (184)

r(k) e−j2πν̂(k) k = s
T (k)h(k) + v(k). (185)
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The frequency offset estimate may be updated by employing the first order loop

filter as follows:

ν̂(k + 1) = ν̂(k) + µ e(k), (186)

where µ is a step-size parameter. Like previously, the Kalman smoother can be operated

either in the HDD mode or in the SDD mode, and the reduced complexity version of

KS can be derived by applying the mean field approximation method. As a result, a

computationally attractive closed-loop frequency recovery scheme, being able to fully

exploit the available statistical information about the fading channel, is obtained.

In Fig. 24, a block diagram of the closed-loop frequency recovery circuit is illus-

trated in the case where the channel is assumed to be flat-fading and the channel esti-

mation is performed in the HDD mode. As is well known, the acquisition properties

of the feedback frequency recovery loop is determined by the so-called S-curve of the

FED [164]. An example of the S-curve of the proposed FED obtained by simulations is

given in Fig. 25.

FEDLPF

HDD-KS-1

r(k) r′(k)

ŝ(k)

ĥ(k|k)

Ψ̄k|k

ejφ(k)

NCO
e(k)ν̂(k)

Fig 24. Block diagram of a fully adaptive receiver incorporating a frequency recov-

ery loop. The channel is assumed to be flat-fading, and the Kalman smoother is

operated in the hard decision-directed mode.
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Fig 25. S-curve of the frequency error detector in a flat-fading channel with nor-

malized fading rate BdTs = 0.05, Eb/N0 = 10 dB, and first-order AR parameter

a = 0.978.

5.3 CRLB analysis

The Cramer-Rao lower bound (CRLB) is a fundamental lower bound on the variance

of any unbiased estimate [244], and it is known to be asymptotically achievable, under

mild regularity conditions, for a large enough number of observations [191]. In this

section, the problem of determining the CRLB for pilot-symbol-aided estimation of the

CFO and the receiver noise variance in the presence of an unknown multipath Rayleigh

fading channel is addressed, assuming that the second order statistics of the fading

channel are known. A novel formulation of the CRLB adopted here does not only

facilitate the involved computations but also allows to gain further understanding of the

effects of the fading channel on the accuracy of the estimates. In particular, it will be

shown that the impact of the fading phenomenon itself and the impact of incomplete

knowledge of the fading process on the CRLB can be quantified separately.

For the sake of easier notation, the system model given by (26) is adopted here. In
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the single antenna case considered here it reduces to

r = ΩXh + v, (187)

where the matrix Ω is a diagonal matrix containing the complex phasors as diagonal

elements (see (23)), X denotes the data matrix (see (32) and (33)) consisting of known

pilot symbols, and h denotes the channel vector given as h =
[
h

T
1 , . . . ,hT

L+1

]T
where

the component vector hl contains the time-varying values of the lth channel tap gain.

The covariance matrix of the fading channel is denoted as Ch and, under the WSSUS

channel assumption, it is a block-diagonal matrix given by

Ch = E
[
hh

H
]

= diag
(
σ2

h1
Ch1 , . . . , σ2

hL+1
ChL+1

)
, (188)

where σ2
hl

and Chl
represent the variance and normalized covariance of the lth channel

tap gain, respectively. The unknown parameter vector in this case includes only real

parameters and is given by θ =
[
ν, σ2

v

]T
. The extension of the CRLB analysis theory

to include the estimation of complex parameters and constrained complex parameters

are considered in [243] and [120], respectively.

The variance of the estimated parameter θ̂i is lower bounded by the CRLB as fol-

lows:

E
[
|θ̂i − θi|2

]
≥ CRLB(θi) =

[
I

−1
]
i,i

, (189)

where the (Fisher) information matrix I is given by

I = −E

[
∂2 ln p(r|θ)

∂θ∂θT

]
. (190)

As shown in [193], the information matrix can be decomposed as follows:

I = −E

[
∂2Q(θ́|θ)

∂θ́∂θ́
T

]

θ́=θ

− E

[
∂2Q(θ́|θ)

∂θ́∂θT

]

θ́=θ

= Ic + Im, (191)

where the matrix Ic is here referred to as the complete-data information matrix, and

the matrix Im is referred to as the missing information matrix. The Q-function in (191)

is the same as the Q-function of the EM algorithm when applied to the system model

(187), i.e.,

Q(θ́|θ) = E
[
ln p(r|h, θ́) + ln p(h)

∣∣r, θ
]
. (192)

Since the distribution p(r|h, θ) belongs to the family of regular exponential distribu-

tions [161], the order of differentiation and expectation in (191) can be reversed. Hence,
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the matrix Ic can be written as

Ic = −E

[
∂2Q(θ́|θ)

∂θ́∂θ́
T

]

θ́=θ

= −E

[
E

[
∂2 ln p(r|h, θ́)

∂θ́∂θ́
T

∣∣∣r, θ
]]

θ́=θ

= −E

[
∂2Lc(θ)

∂θ∂θT

]
,

(193)

where Lc(θ) = ln p(r|h, θ) is often called a complete-data log-likelihood function

in the EM literature. Interestingly, the modified Cramer-Rao lower bound (MCRLB)

for the parameter θi as defined in [56] is given as MCRLB(θi) =
[
I

−1
c

]
i,i

. Thus,

the matrix Ic (and, hence, the MCRLB also) accounts for the amount of information

available for the estimation of the parameter vector θ under the assumption that the

fading channel is perfectly known. On the contrary, the missing information matrix Im

quantifies the loss in the amount of information available for the parameter estimation,

given that the CIR is not known but is instead estimated by an optimal MMSE estimator.

This fact follows directly from the statements provided by the following lemma, where

some interesting properties of the missing information matrix Im are proved.

Lemma 3 In the presence of the Rayleigh fading channel, the missing information per-

taining to the estimation of the frequency offset ν, given by
[
Im

]
1,1

, depends on the

sensitivity of the MMSE estimate of h, given by ĥ = E[h|r, θ], to the changes in the

value of θ, i.e.,

[
Im

]
1,1

= f

(
∂

∂θ
E
[
h|r, θ

])
, (194)

where f(·) should be read as “is a function of.” Likewise, the missing information per-

taining to the estimation of the noise variance σ2
v , given by

[
Im

]
2,2

, depends on the

sensitivity of the MMSE estimate of h and on the sensitivity of the conditional covari-

ance of h, given by E
[
hh

H |r, θ
]
, to the changes in the value of θ, i.e.,

[
Im

]
2,2

= f

(
∂

∂θ
E
[
h|r, θ

]
,

∂

∂θ
E
[
hh

H |r, θ
])

. (195)
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Proof. The missing informatin matrix Im can be expanded as follows:

Im = −E

[
∂2Q(θ|θ́)

∂θ∂θ́
T

]

θ́=θ

= −E

[
∂2E

[
ln p(r|h, θ) + ln p(h)

∣∣r, θ́
]

∂θ∂θ́
T

]

θ́=θ

= −E

[
∂2E

[
− 1

σ2
v
(r − ΩXh)H(r − ΩXh) | r, θ́

]

∂θ∂θ́
T

]

θ́=θ

= − 1

σ2
v

E

[
∂2

(
2ℜ

{
r

H
ΩXE

[
h|r, θ́

]}
− tr

(
XE

[
hh

H |r, θ́
]
X

H
))

∂θ∂θ́
T

]

θ́=θ

.

(196)

From (196), a straightforward computation yields

[
Im

]
1,1

= − j2π

σ2
v

E

[
ℜ
{
r

H
ΥΩX

∂E
[
h|r, θ́

]

∂θ́

}]

θ́=θ

, (197)

where the diagonal matrix Υ is defined as

Υ � diag
(
1, 2, . . . , k, . . . , K

)
∈ C

K×K . (198)

Likewise, the missing information for the receiver noise can be expressed as

[
Im

]
2,2

= − 1

(σ2
v)2

E

[
ℜ
{
r

H
ΩX

∂E
[
h|r, θ́

]

∂θ́

}

− tr

(
X

∂E
[
hh

H |r, θ́
]

∂θ́
X

H

)]

θ́=θ

. (199)

�

When the channel tap gains are uncorrelated and the data symbols have constant

energy, straightforward computation yields

Ic =

[
8π2ρK(K+1)(2K+1)

6 0

0 K
(σ2

v)2

]
, (200)

where ρ =
∑

i σ2
hi

/σ2
v denotes the signal-to-noise ratio (SNR) at the receiver. The

missing information matrix Im also turns out to be a diagonal matrix whose diagonal
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elements are obtained from (197) and (199) after some elaboration as follows:28

[
Im

]
1,1

= −8π2

σ2
v

tr
(
XChX

H
(
XChX

H + σ2
vIK

)−1

Υ
(
XChX

H + σ2
vIK

)
Υ

) (201)

[
Im

]
2,2

= − 1

(σ2
v)2

tr
(
2XChX

H
(
XChX

H + σ2
vIK

)−1

−XChX
H
(
XChX

H + σ2
vIK

)−2
XChX

H
)
.

(202)

In the case of a flat fading channel and an equal energy signal constellation, the

complete information matrix is given by (200), and the missing information is directly

obtained from (201) and (202) by noting that the data matrix X becomes a diagonal

unitary matrix and, therefore, can be cancelled out from the expression of Im. In fact,

the information matrix
[
I
]
2,2

, pertaining to the noise variance, can be expressed under

the above assumptions as

[
I
]
2,2

=
1

(σ2
v)2

tr
((

IK − M
−1

)2
)
, (203)

where

M � IK + σ2
vC

−1
h . (204)

As expected, this is exactly the same formula for
[
I
]
2,2

as given previously in [93]

under the same assumptions. Recently, a related problem of determining the CRLB for

CFO in a digital burst-mode transmission system affected by phase noise, where the

time-varying phase noise is modeled with a random-walk (Wiener) process, has been

treated in [20].

5.4 Numerical results

The performance of the proposed estimators was studied by using Monte Carlo simula-

tions. In the simulations, QPSK-modulated training symbols were transmitted over the

fading channel which was modeled by using a tapped-delay-line channel model with

Rayleigh fading channel tap gains. In addition, an isotropic scattering environment

was assumed, implying that the fading channel tap gains had Clarke’s power spectrum

[46]. The time-varying channel taps were implemented by using Jakes’ method for

28Analytical expressions for the conditional mean and covariance of h, required for the evaluation of Im,

are easily obtained for linear Gaussian channels, see, e.g., [132] for details.
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generating a realization of the fading process [121]. Both one-tap flat-fading and three-

tap frequency-selective channels, where the frequency-selective channels assumed the

power-delay profile σ2
h

= [1/6 1/3 1/6]T , were considered in the simulations. The

true normalized frequency offset was taken randomly, assuming a uniform distribution,

from the interval [−0.05 0.05]. At the receiver, symbol-rate sampling was used.

In general, estimation of the statistical properties of the communication channel can

be quite challenging, unless the channel is really changing quickly with respect to the

signaling rate. This is because the Doppler bandwidth of the channel is significantly

smaller than the overall signal bandwidth, and so the symbol rate sampling results in

serious oversampling of the channel. The oversampling renders the estimation of the

channel AR parameters very difficult since typically only a limited amount of training

can be used for estimation. Particularly the higher order AR channel modeling seems

to have limited applicability in communication systems due to problems in estimating

the model parameters. In spite of these limitations, the frequency offset estimation via

the first order AR modeling works suprisingly well, as demonstrated by the following

simulation exercises where the performance of the proposed CFO estimators is studied

in various channel conditions, using fairly short training sequences.

The mean square error (MSE) (MSE � E
[
(ν̂ − ν)2

]
for the frequency offset) was

used as a performance criterion in all simulations. In addition, the MCRLB and CRLB

curves, acting as effective lower bounds on the error variances of the examined estima-

tors, are given as references in both the flat-fading and frequency-selective fading chan-

nel cases. While commonly used, the MSE criterion may not always represent a proper

quality measure in communication systems where the primary goal is to transmit the in-

formation bits reliably over a communication link. In particular, a large MSE difference

may in some cases be invisible in terms of the BER, whereas a small MSE difference

may in some other cases considerably affect the BER. Therefore, the characterization

of the proposed estimators in terms of their impact on the BER of the associated com-

munication link would deserve a proper treatment, although it is considered to be out

of scope of this thesis.

The MSE of the AR(1)-based frequency offset estimator in the presence of flat fad-

ing is presented as a function of SNR in Fig. 26. For comparison, the performance of

two earlier published block-based frequency offset estimators is also presented. Specifi-

cally, the acronym uKF refers to the unweighted Kuo and Fitz frequency offset estimator

[138], and the acronym uMMV refers to the unweighted Morelli, Mengali and Vitetta

frequency offset estimator [172]. In [138] and [172], the frequency offset estimators are
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based on weighted linear regressions for the phases or phase differences of the sample

correlation sequences of the received signal. However, according to [30], the weighting

gives only a slight performance advantage over the unweighted estimators, and, there-

fore, only the performance of the unweighted estimators (uKF and uMMV) is given

as a benchmark here. The estimators make use of a pilot sequence with Kpilot = 30

symbols, and the normalized fading rate was assumed to be BdTs = 0.005. It can be

noticed from the figure that the performance of the AR(1)-based frequency offset esti-

mator is comparable with the performance of the benchmark estimators at high SNR

while it gives some performance advantage over the others in the low SNR cases.
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Fig 26. MSE performance of various frequency offset estimators as a function of

SNR in a flat-fading channel with the normalized fading rate BdTs = 0.005.

The MSE performance curves for the weighted AR(1)-based frequency offset esti-

mators in the presence of a three-tap Rayleigh fading channel are presented as a function

of the normalized fading rate and as a function of SNR in Fig. 27 and Fig. 28, respec-

tively. The proposed estimators are benchmarked against the ad hoc frequency offset

estimator proposed by Morelli and Mengali (referred to as the MM-AHE estimator in

the figure) in [171]. The frequency offset estimation was based on the use of a pilot
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sequence with Kpilot = 24. The SNR in the former simulation setup was SNR = 10 dB,

whereas the normalized fading rate in the latter case was assumed to be BdTs = 0.005.

It may be noticed from the figures that the performance of both the weighted AR(1)

and RC-AR(1) (cf. Section 5.1.1) estimators is comparable with the performance of

the benchmark estimator, and that the RC-AR-based estimator essentially suffers only

a minor performance penalty at high SNR values, as compared to the AR-based estima-

tor. Moreover, in contrast to the MM-AHE estimator that requires a periodic training

sequence, the proposed AR-based frequency offset estimators set no restrictions on the

training signal structure.
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Fig 27. MSE performance of various frequency offset estimators as a function of

the normalized fading rate BdTs in a three-tap frequency-selective fading channel

for SNR = 10 dB.
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Fig 28. MSE performance of various frequency offset estimators as a function of

SNR in a three-tap frequency-selective fading channel. The normalized fading rate

was BdTs = 0.005.
163



In Fig. 29, the MSE performance of the receiver noise variance estimator in a flat-

fading channel is presented as a function of SNR, along with the corresponding MCRLB

and CRLB curves. The normalized fading rate was assumed to be BdTs = 0.005, and

the estimator made use of the pilot sequence with Kpilot = 30 symbols. As seen from the

figure, the performance of the noise variance estimator is close to CRLB at low/medium

SNR-values, whereas at high SNR, the MSE of the noise variance estimator seems to

saturate.
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Fig 29. MSE performance of the AR1-based noise variance estimator as a function

of SNR in a flat fading channel for a normalized fading rate BdTs = 0.005.
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Furthermore, in Fig. 30, the averaged estimated fading rate value, where the estima-

tor is based on the AR(1) modeling, is presented as a function of the true fading rate

value for a flat-fading channel and SNR = 10 dB. For comparison, the performance

of the fading rate estimator presented in [172] (referred to as the uMMV estimator) is

also given. Despite a very long pilot sequence (Kpilot = 5000), both the estimators give

highly biased estimates in low fading rate values. In these conditions, the problems due

to serious oversampling of the Doppler bandwidth appear, indicating that the applicabil-

ity of the AR modeling and estimation for the purpose of Doppler spread measurement

may be quite limited. On the other hand, the overestimation of the fading rate should

be acceptable in most systems, whereas the underestimation may be more disruptive.

In this respect, the uMMV estimator can be regarded as a better choice of these two

alternatives.
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Fig 30. Estimated fading rate as a function of the true fading rate in a flat-fading

channel for SNR = 10 dB.

The performance of the proposed recursive feed-forward frequency offset estimator

is illustrated in Fig. 31 for a flat-fading channel with BdTs = 0.005. For a reference, the

performance of the recursive AR parameter estimator described in [60] is also presented.

This reference estimator is based on the cross-coupling of the Kalman-filter-based es-
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timator for the CIR and the RLS estimator for the AR parameters (hence referred to

as KF-AR estimator in the figure), whereas the recursive estimator proposed in Sec-

tion 5.2 cross-couples the one-step Kalman-smoother and the AR parameter estimator

(hence referred to as KS-AR estimator in the figure) in such a way that the error co-

variances along with the smoothed channel estimates are effectively exploited in the

parameter estimation. As seen from the figure, the performance advantage of the latter

approach is remarkable, particularly at the low SNR values.
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Fig 31. MSE performance of a feed-forward recursive frequency offset estimator

in a flat-fading channel with the normalized fading rate BdTs = 0.005.

Finally, in Fig. 32, the MSE performance of the frequency offset estimators (referred

to as KS-AR-FED estimators) that make use of the feedback frequency recovery loop

in the presence of a flat-fading (FF) or a frequency-selective (FS) fading channel is

presented as a function of SNR, along with the corresponding MCRLB and CRLB

curves. The fading rate value was BdTs = 0.005. While it is noted that the accuracy

of the feedback frequency recovery can be partly controlled by the loop filtering, the

accuracy enhancement by tightening the loop filter bandwidth will always trade off the

tracking capability of the loop. In these simulations, the loop bandwidth is adjusted so
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that it effectively corresponds to the block length Kequiv. = 100 of an equivalent block

estimator (the definition of the equivalent block-length of feedback recovery circuits is

given in [164]). As can be noticed from the figure, the MSE of the estimator, as well as

the corresponding CRLB, is lower in the FS channel case than in the FF channel case.

This is obviously due to the diversity gain provided by multiple independently fading

tap gains in the FS channel.
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Fig 32. MSE performance of the frequency offset estimators as a function of SNR

when a feedback frequency recovery is used. The channel is either flat-fading (FF)

or frequency-selective (FS) fading while the normalized fading rate in both cases

is BdTs = 0.005 and the equivalent block length of the estimator is Kequiv. = 100.

5.5 Summary and conclusions

The focus in this chapter was on the difficult but important problem of estimating the

statistical properties of the multipath communication channel. Based on the complex

autoregressive modeling of the received signal in the presence of a multipath Rayleigh

fading channel, a block-based joint estimator for the CFO and all relevant statistical

parameters of the channel was derived via the EM algorithm. A reduced-complexity
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variant of the joint estimator was obtained via the mean field approximation. Moreover,

computationally attractive fully adaptive recursive joint synchronization and channel

estimation structures, based either on feed-forward adaption or on feedback frequency

recovery, were derived as well.

The computer simulations showed that the proposed CFO estimators have good

performance in various channel conditions. At the same time, they possess a number of

highly desirable properties, such as a high estimation range and high flexibility in terms

of channel configuration and the training signal structure. Although a single transmitter

antenna system was adopted in this chapter, the derived estimators are also applicable

to the multiple transmitter antenna systems, even in cases where the different multiple

antenna signals may not be synchronized with each other.
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6 Adaptive iterative detection for

phase-uncertain channels via variational

bounding

So far in this thesis, adaptive iterative detection has been considered mainly for fading

multipath channels. In this chapter, the focus is on iterative detection/decoding of data

symbols transmitted over the AWGN channel in the presence of phase uncertainty. As

summarized in the introduction, a number of receiver algorithms with various amounts

of suboptimality have been proposed in the literature to deal with the phase uncertain-

ties. They are based on the modeling of the phase uncertainty either as an unknown

deterministic variable/process or random variable/process with a known a priori proba-

bility density function.

Despite the wealth of literature on the topic, there has been no published treatment

of the problem using the VFEM algorithm before. Therefore, based upon the VFEM

framework presented in Chapter 2, a set of new adaptive iterative detection algorithms

will be obtained in this chapter by applying the variational bounding techniques. In

particular, efficient iterative joint estimation and detection/decoding schemes will be

derived for a constant phase model as well as for a dynamic phase model by using the

variational Bayesian (VB) variant of the VFEM framework.

Optimization via the variational Bayesian formulation has been widely used in the

machine-learning community, for example for learning and scoring of graphical model

structures [25, 26], but may be less familiar to people working with digital communi-

cations. Therefore, the basic principles of the variational bounding specifically tailored

for joint iterative phase estimation and data inference are introduced first, followed by

detailed derivation of the actual receiver algorithms. Importantly, the close connection

of the VB-based receivers to the classical EM-based receiver structures as well as to the

optimal noncoherent receivers will be pointed out at various points along the way.

Performance of the proposed VB-based receivers in the presence of strong dy-

namic phase noise is compared by simulations to the performance of some existing

FG-processing-based receivers. Moreover, it is demonstrated by numerical simulations

that the convergence of the iterative receivers may be greatly accelerated in many cases

by applying the incremental scheduling of the VB or EM algorithm [176], instead of
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using their exact implementations.

The rest of this chapter is structured as follows. In Section 6.1, for the sake of

clarity, a system model in the presence of either constant phase uncertainty or dynamic

phase noise is presented, adhering closely to the generic system model presented in

Chapter 2. In addition, modeling issues related to the oscillator phase noise processes

will also be discussed. A generic VB framework for iterative estimation and detection

is presented in Section 6.2. Then, practical receiver structures based on the generic

VB framework are derived. These are obtained for coded data transmission over the

constant-phase channels in Section 6.3 and over dynamic-phase AWGN channels in

Section 6.4. Section 6.5 is devoted to the discussion on complexities of the proposed

detectors versus the ones proposed in the literature. In Section 6.6, numerical results

for the performance of the proposed receiver structures are provided. Finally, in Section

6.7, the concluding remarks are presented.

6.1 On system modeling for phase-uncertain channels

Modeling issues relating to the transmission of a sequence of linearly modulated com-

plex data symbols s(k), taking values in the discrete space S, over the AWGN channel

affected by a priori unknown carrier phase noise is discussed in this section. In general,

the phase noise in such a transmission system is caused by oscillators at the transmit-

ter and the receiver, together. However, considering, e.g., a downlink of a wireless

system,29 the oscillator used at the base station is, in practise, sufficiently stable to dis-

regard its phase noise. This is also the case to be considered more closely in the chapter.

Departing momentarily from the generic system model presented in Chapter 2, let

us consider a continuous-time transmission system depicted in Fig. 33. Under the above

system assumptions, the received continuous-time signal prior to receiver filtering can

be expressed as

r′(t) =

( K∑

k=1

s(k)p(kT − t) + v′(t)

)
θ(t), (205)

where p(t) denotes the impulse response of a pulse-shaping filter, v′(t) is a zero-mean

complex circular white Gaussian noise, and θ(t) denotes the multiplicative phasor pro-

cess due to the receiver phase noise. The phasor process can be defined as

θ(t) � ejφ(t), (206)

29The downlink in this context means the transmission link from a base station to a portable terminal.
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where φ(t) denotes the receiver phase noise, i.e., the instantaneous difference between

the phase of the carrier and the phase of the local oscillator at the receiver. It is assumed

to be a zero-mean random process with Gaussian statistics. Moreover, the system is

assumed to be perfectly frequency-locked, and so there is no deterministic frequency

offset at the received signal.

+
s(k)

p(t) ×

v′(t) θ(t) = ejφ(t)

r′(t)

g(t)
r(t) r(k) ŝ(k)

Detector

Fig 33. System model for transmission over phase-uncertain channels.

There are basically two types of phase noise processes: finite-power and infinite-

power processes. The former type of phase noise is caused by an oscillator controlled by

a phase-locked loop (PLL), and it can be approximated as a zero-mean colored Gaussian

process that is wide sense stationary (WSS) [200]. Its power spectrum Pφ(f) depends

on the oscillator and on the PLL, but typically it is a low-pass shaped spectrum whose

bandwidth is denoted as Bφ. Since the PLL tries to keep φ(t) small, it may be assumed

that |φ(t)| ≪ 1, and, hence, the following approximation holds: θ(t) = ejφ(t) ≈
1 + jφ(t). In [147], this approximation was used as a basis for deriving variational

inference-based receiver algorithms for the OFDM system in the presence of phase

noise. A direct consequence of the above approximation is that Pθ(f) ≈ Pφ(f), where

Pθ(f) denotes the power spectrum of the phasor process θ(t).

The infinite-power phase noise is a concomitant of a free-running oscillator [200,

275]. In this case, the phase noise φ(t) is usually modeled as a Wiener-Lévy process

(also called continuous-path Brownian motion) that is nonstationary, with its power

growing with time. Specifically,

φ(t) =

∫ t

0

ϑ(τ)dτ, (207)

where ϑ(t) is a zero-mean white Gaussian noise process. Its power is E
[
φ2(t)

]
=

2πBθ|t|, where Bθ denotes the two-sided 3-dB bandwidth of the power spectrum of the
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phasor process θ(t) [275]. The power spectrum of φ(t) is given by

Pφ(f) =
Bθ

2πf2
, (208)

whereas the spectrum of the phasor process, Pθ(f), is Lorentzian [200]. In fact, the

shape of the spectrum Pθ(f) matches that of RC-filtered white noise [78], where the

acronym RC refers to resistor-capacitor.

At the receiver FE, the signal r′(t) is filtered as

r(t) = r′(t) ∗ g(t), (209)

where ∗ denotes the convolution operation and g(t) denotes the impulse response of the

combined pulse-shaping filter and noise whitening filter, referred to later as the receiver

FE filter (sometimes also called the whitened matched filter). Assuming symbol-rate

sampling with proper timing and phase variations slow enough for no intersymbol in-

terference to be caused, the sampled output of the receiver FE filter at time k can be

expressed as

r(k) = s(k)ejφ(k) + v(k). (210)

The sequence s of K data symbols may be a codeword of some channel code C, con-

structed by using an arbitrary coding rule.

In this chapter, two specific discrete-time random phase models are considered. In

the first one, the phase is assumed to be constant during the transmission of a data block,

i.e., φ(k) = φ ∀k, but changes randomly from block to block. The phase samples at

different data blocks are modeled as i.i.d. random variables uniformly distributed in the

interval [0, 2π). In the second one, a discrete-time equivalent of Wiener-Lévy phase

noise, called the discrete-time random-walk process, is assumed. Specifically, the phase

noise φ(k) is expressed as

φ(k) = φ(k − 1) + ∆(k), (211)

where ∆(k) is a sample of the real-valued zero mean white Gaussian process with vari-

ance σ2
∆, implying that ∆(k) for k = 1, 2, . . . , K forms a sequence of independently

and identically distributed random noise samples. While the values for the noise vari-

ances σ2
v and σ2

∆ are here assumed to be known a priori, they can also be estimated

efficiently using the methods discussed in the previous chapter. The phase noise model

(211) may be considered as a worst case approximation of a real phase noise at the
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receiver, since the phasor process θ(t) was assumed to pass unchanged through the re-

ceiver FE filter. On the other hand, if Bθ ≪ Bs, where Bs denotes the bandwidth of

the transmitted signal, the error due to omitting the effects of receiver FE filtering on

the phase noise modeling is probably very small.

6.2 Framework for joint inference and estimation via

variational Bayesian algorithm

An optimal MAP symbol detection receiver computes

ŝ(k)MAP = argmax
s(k)

p(s(k)|r) = arg max
s(k)

∑

s\s(k)
s∈C

∫

φ

p(s|r, φ)p(φ)dφ, (212)

where φ = {φ(1), . . . , φ(K)} denotes the sequence of phase samples. This receiver is

hereafter referred to as the optimal noncoherent receiver due to the fact that the phase

uncertainties are averaged out from the decision statistics. In general, the noncoher-

ent receiver is not immune to the exponential time complexity that is known to plague

most of the exact inference algorithms in the presence of either channel or paramet-

ric uncertainty induced memory. However, for a class of block-constant phase models,

symbol-by-symbol soft-decisions under the min-sum criterion can be exactly evaluated

with only polynomial complexity with respect to the sequence length [174, 114]. Never-

theless, optimal receivers, even with polynomial complexity in K , are rather prohibitive

for practical receiver design. In fact, they are computationally unattractive even in the

coherent system if powerful turbo-like codes are involved. Therefore, practical joint

data detection and phase estimation algorithms will next be pursued by appealing to the

variational bounding technique.

The VFEM algorithm which is specifically tailored for joint inference and estima-

tion in the presence of random parameters is generally referred to as the variational

Bayesian (VB) algorithm. In the following, the generic VB algorithm is first introduced

by emphasizing its character as being a lower bound for the log-likelihood of r. It is

then later used as a basis for detailed derivations of adaptive iterative receiver structures

for the two different phase models specified in the previous section.

An essential feature of (212) is a marginalization of the objective function p(s, φ|r).
Let us now look at a related computational problem—a problem of computing the

log-likelihood of r, defined as ln p(r). Appealing to Jensen’s inequality [52], the log-
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likelihood of r can be lower bounded as follows:

ln p(r) = ln
∑

s

∫

φ

p(r, s, φ)dφ

= ln
∑

s

∫

φ

Q(s, φ)
p(r, s, φ)

Q(s, φ)
dφ

≥
∑

s

∫

φ

Q(s, φ) ln
p(r, s, φ)

Q(s, φ)
dφ.

(213)

The lower bound is achieved when the trial distribution Q(s, φ) is defined as Q(s, φ) =

p(s, φ|r). However, formulating the lower bound in terms of an unrestricted set of vari-

ational distributions provides little guidance in the design of computationally efficient

receiver architectures. Therefore, the VB algorithm considered here searches for the

maximum of the lower bound over the family of factorized (mean field) distributions:

Q(s, φ) = qs(s)qφ(φ). With this restriction,

ln p(r) ≥
∑

s

∫

φ

qs(s)qφ(φ) ln
p(r, s, φ)

qs(s)qφ(φ)
dφ = G

(
qs(s), qφ(φ), r

)
, (214)

where the difference between the log-likelihood ln p(r) and its lower bound can be

expressed in terms of the KL divergence as

ln p(r) − G
(
qs(s), qφ(φ), r

)
= D

(
qs(s)qφ(φ)‖p(s, φ|r)

)
. (215)

Thus, finding the maximum of the inverse free energy functional G amounts to mini-

mizing the KL divergence between the factorized trial distribution qs(s)qφ(φ) and the

original objective function p(s, φ|r). Since the KL divergence is often used as a dis-

tance measure between distributions, this result may be interpreted so that the VB algo-

rithm provides the best approximation to the optimal noncoherent receiver amongst the

solutions that are based on the factorized posteriors. The rationale behind using the VB

approach is that the marginalization of qs(s), a prerequisite for computing approximate

symbol APPs, is computationally much simpler than the marginalization in (212).

Starting from some initial values, the VB algorithm proceeds by iteratively maxi-

mizing the functional G alternatively over each of the free distributions qs(s) and qφ(φ)

while holding the other fixed, which is essentially a coordinate ascent in the function

space of the factorized distributions. Taking functional derivatives of G with respect to

qs(s) and qφ(φ), a straightforward computation yields the following update equations
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for the free distributions at the ith iteration:

VBE− step : q
(i)
φ (φ) ∝ p(φ) · e

∑
s

q(i−1)
s

(s) ln p(r|s,φ) (216)

VBM− step : q(i)
s

(s) ∝ p(s) · e
∫

φ
q
(i)
φ

(φ) ln p(r|s,φ)dφ, (217)

where p(φ) and p(s) denote a priori distributions of the sequence of phase noise sam-

ples and the sequence of data symbols, respectively. As reflected by the naming of

the update steps above, a close connection of the VB algorithm to the standard EM

algorithm can be easily found. In fact, the exponent in (216) can be recognized as

an objective function of the EM algorithm which is specified for estimating φ in the

presence of unknown data. On the other hand, the exponent in (217) can similarly be

recognized as an objective function of the EM algorithm which is at this time speci-

fied for estimating (or rather detecting) data symbols in the presence of random phase

disturbances. Due to this close connection, the VB algorithm is sometimes called the

generalized EM algorithm or the variational Bayesian EM (VBEM) algorithm in the

literature [25, 26].

Based upon the factorized Bayesian variational approximation, a general purpose

variational message passing (VMP) algorithm, applicable to the Bayesian networks

containing conjugate-exponential distributions, were proposed in [260]. Like BP, VMP

proceeds by sending messages between nodes in the graph and updating posterior be-

liefs using local computations at each node. On the basis of (214), each such update

increases the lower bound on the log-likelihood. Next, however, the generic VB frame-

work described above is used in deriving practical receiver structures for two phase

models specified in Section 6.1.

6.3 Adaptive turbo receivers for constant-phase

channels

In this section, the emphasis is put on the detailed derivation of the VB-based iterative

receiver structures for the constant-phase channels, where the value of the phase may

change from block to block. A close connection of the obtained receiver to the clas-

sical EM-based receiver is explicitly pointed out. Also, some words are reserved for

discussing the computation of the CRLB in the presence of unknown data symbols—

a problem which may be formidable to solve analytically. This is particularly so if

channel coding is involved.
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6.3.1 VB-based turbo receivers

Consider the constant phase model, where φ is a random variable with uniform distri-

bution in [0, 2π). Inserting this a priori information about φ into (216), the update

equation for the phase posterior distribution (VBE-step) at the ith iteration can be ex-

pressed as

q
(i)
φ (φ) = C · p(φ) · e−

1
σ2

v

∑
s

q(i−1)
s

(s)‖r−sejφ‖2

= C · p(φ) · e−
1

σ2
v

(
‖r−s̄

(i−1)ejφ‖2+
∑

s
q(i−1)
s

(s)‖s−s̄
(i−1)‖2

)

= C · p(φ) · e−
1

σ2
v
‖r−s̄

(i−1)ejφ‖2

= C · p
(
r, φ|s̄(i−1)

)
,

(218)

where the soft data decisions at the (i − 1)th iteration are defined as

s̄(k)(i−1) =
∑

s(k)∈S

s(k) q
(i−1)
s(k)

(
s(k)

)
, (219)

and the marginal distribution q
(i−1)
s(k)

(
s(k)

)
is computed as follows:

q
(i−1)
s(k)

(
s(k)

)
=

∑

s\s(k)
s∈C

q(i−1)
s

(s). (220)

It should be noted that the constant C, incorporating factors independent of φ, may take

a different value in each line of (218). In particular, defining the constant C so that the

distribution q
(i)
φ (φ) integrates to one yields

q
(i)
φ (φ) = p

(
φ|r, s̄(i−1)

)
. (221)

Considering now the VBM-step, the following lemma provides an intermediate re-

sult needed for obtaining the data posterior distribution qs(s). Specifically, the outcome

of the integration in (217) for the constant phase model is given as follows.

Lemma 4∫

φ

q
(i)
φ (φ) ln p(r|s, φ)dφ = − 1

σ2
v

(
r

H
r− 2 ζ(i) · ℜ

{
r

H
s e−j arg(rH

s̄
(i−1))

}
+ s

H
s

)
,

(222)

where arg(·) denotes the phase of the (complex) argument, and

ζ(i) =
I1

(
2

σ2
v

∣∣rH
s̄
(i−1)

∣∣2
)

I0

(
2

σ2
v

∣∣rH s̄(i−1)
∣∣2
) , (223)
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where I0(·) is the zeroth order modified Bessel function of the first kind, given by

I0(x) =
1

2π

∫ 2π

0

e±x cos(φ)dφ, (224)

and I1(·) is the first-order modified Bessel function of the first kind, expressed as

I1(x) =
1

2π

∫ 2π

0

ex cos(φ) cos(φ) dφ. (225)

Proof. See Appendix 4. �

Using Lemma 4, the symbol sequence probability at ith iteration can now be ex-

pressed in the product form as

q(i)
s

(s) =
K∏

k=1

p
(
s(k)

)
· ck · e−

ζ(i)

σ2
v

(∣∣r(k)−s(k)e−jφ̂(i−1)
∣∣2+

(
1

ζ(i)
−1

)∣∣s(k)
∣∣2
)
, (226)

where φ̂(i−1) � arg
(
r

H
s̄
(i−1)

)
. It has additionally been assumed that the a priori

symbol sequence probability fully factorizes.30 Moreover, ck denotes the normalizing

constant at time k. Based on the above formulation, the VB algorithm at the ith iteration

can simply be expressed by the equations (223) and (226). A block diagram of the

turbo receiver consisting of a VB-based SISO detector and a SISO decoder, which are

iteratively interconnected, is shown in Fig. 34. The fact that the APP detector and the

SISO decoder exchange extrinsic information with each other is depicted explicitly in

the figure.

30This is a reasonable assumption in turbo processing where pseudorandom interleavers are typically em-

ployed.
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÷
r

qs(s)φ̂, ζ

Fig 34. Block diagram of a VB-based iterative turbo receiver in the presence of

block-constant phase offset.

Interestingly, by approximating ζ(i) ≈ 1 ∀i, it can be easily verified that the VB

algorithm reduces to the non-Bayesian EM algorithm (see, e.g., [188] for iterative de-

tection via the classical EM algorithm). It is also easy to see that the EM algorithm as

such could also be obtained as a result of variational Bayesian optimization if the free

distribution qφ(φ) is restricted to be a point density, i.e., qφ(φ) = δ(φ − φ̂), where δ(·)
denotes a Dirac delta function and φ̂ is a free parameter to be optimized.

Since 0 < ζ(i) < 1, the VB solution can be interpreted so that, as compared to

the EM algorithm, it effectively increases the noise power by the factor 1/ζ(i) at the

ith iteration in order to take into account the estimation error in the phase estimation.

In the case of M-QAM signaling, it additionally biases the detection slightly towards

those constellation points which have small energy. In other words, regarding the com-

putation of the soft data decisions, the constellation points which have large energy are

penalized in favor of those constellation points which have small energy. While this can

be regarded as a nonobvious and interesting feature coming out of the VB framework, it

should at the same time be noted that, in practical systems with moderate to large data

block sizes (K >> 1), the phase posterior (221) is typically sharply peaked around

the most probable (mean) value and, hence, the VB and EM algorithms in these cases

perform equally also for M-QAM constellations. This is especially true in the context

of iterative turbo receivers.

Since the free distribution qs(s) according to (226) factorizes into symbol APPs, the
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inverse free energy functional G
(
qs(s), qφ(φ), r

)
can alternatively be written as

G
(
qs(s), qφ(φ), r

)
=

K∑

k=1

Gk

(
qs(k), qφ, r(k)

)
+

∫

φ

qφ(φ) ln
p(φ)

qφ(φ)
, (227)

where

Gk

(
qs(k), qφ, r(k)

)
=

∑

s(k)∈S

∫

φ

qs(k)

(
s(k)

)
qφ(φ) · ln p

(
r(k), s(k)|φ

)

qs(k)

(
s(k)

) dφ. (228)

In practical implementations, different scheduling algorithms can be used to update the

free distributions in (227), each defining a specific coordinate ascent on the functional

G. For example, the ith iteration of the VB algorithm could be defined as

q
(i)
φ (φ) = arg max

qφ

G
(
qs(s), qθ(φ), r

)
, s.t. qs(s) = q(i−1)

s (s)

q
(i)
s(l)

(
s(l)

)
= q

(i−1)
s(l)

(
s(l)

)
for l �= k

q
(i)
s(k)

(
s(k)

)
= arg max

qs(k)

Gk

(
qs(k), qφ, r(k)

)
, s.t. qφ(φ) = q

(i)
φ (φ).

(229)

In this scheduling, the phase posterior at the VBE-step is updated using the data poste-

riors from the previous iteration and, at the VBM-step, only one of the data posteriors

is updated while retaining the previously computed values for the rest. Thus, the phase

posterior qφ(φ) is updated for each (incremental) symbol APP update. From now on,

all the scheduling algorithms, where only a part of the symbol APPs are updated at any

particular iteration, are collectively referred to as incremental VB algorithms. Specifi-

cally, by defining k = i in (229) and initializing q
(0)
s (s) = 0, the symbol APPs can be

computed by the following recursive VB algorithm:

For k = 1, . . . , K

φ̂(k) = − arg

(k−1∑

l=1

r∗(l)s̄(l)

)

ζ(k) =
I1

(
2

σ2
v

∣∣∑k−1
l=1 r∗(l)s̄(l)

∣∣2
)

I0

(
2

σ2
v

∣∣∑k−1
l=1 r∗(l)s̄(l)

∣∣2
)

qs(k)

(
s(k)

)
= ck · p

(
s(k)

)
· e−

ζ(k)

σ2
v

(∣∣r(k)−s(k)ejφ̂(k)
∣∣2+

(
1

ζ(k)
−1

)∣∣s(k)
∣∣2
)

end.

Again, assuming that ζ(k) ≈ 1 ∀k, the incremental VB algorithm reduces to the in-

cremental EM algorithm [176] for which interesting convergence results are available:
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the algorithm converges, under mild assumptions on the model, to stationary points

in likelihood, but the favorable property of monotonically increasing the likelihood at

each iteration is lost [96]. However, since the soft data decisions are used immediately

in phase estimation, instead of being held until all soft decisions are found, the incre-

mental VB/EM algorithm can be expected to converge much faster than the standard

EM algorithm. As will be later demonstrated by numerical examples, the convergence

rate of the iterative turbo receiver may indeed be significantly improved by replacing the

exact VB/EM algorithm with the incremental VB/EM algorithm at the first iteration of

the turbo processing. In practice, this means that the number of decoding iterations can

be reduced in order to reach the target performance, potentially entailing a considerable

decrease in overall receiver complexity.

6.3.2 On CRLB in the presence of unknown data symbols

The CRLB, being a lower bound on the error variance of any unbiased estimate, serves

as a useful benchmark for practical phase estimators. For an unknown carrier phase, it

is computed as

CRLBφ = Ep(r|φ)

[( ∂

∂φ
ln p(r|φ)

)2
]−1

= I(φ)−1, (230)

where I(φ) is called Fisher information on φ. In particular, for pilot-only (PO) estima-

tion, assuming that only Kpilot pilot symbols are used for estimation, the CRLB is given

by

CRLBφ,PO =
1

2Kpilot

σ2
v

Es
, (231)

where Es denotes the averaged energy per symbol [213]. Similarly, in the case of data-

aided (DA) estimation, where Kdata data symbols together with Kpilot pilot symbols

(K = Kpilot + Kdata) are exploited in estimation,31 the CRLB is given by

CRLBφ,DA =
1

2K

σ2
v

Es
. (232)

The DA (or equivalently genie-aided) CRLB (232) is often employed as a lower bound

for non-data-aided phase estimators, i.e., phase estimators which exploit the received

31It would probably be more appropriate to talk about the genie-aided estimation in this case, since the

information symbols are unrealistically assumed to be known by the receiver.
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samples affected by unknown data symbols. While important, DA-CRLB may be quite

a loose bound at low SNR values.

Unfortunately, for the NDA estimation case, an analytical evaluation of an exact

CRLB is in most cases not feasible. This is especially so for coded systems. However,

a closed form expression for the NDA CRLB is provided in [53] in the case of BPSK

and QPSK signaling and has later been extended to M-QAM modulated symbols in

[212]. Further extensions of these CRLB formulas to support the pilot-symbol assisted

transmission are provided in [191]. A drawback of these formulas is that their evalua-

tion requires numerical integration, limiting their usefulness in general. Moreover, they

do not apply to transmission systems which employ coded symbols.

On the other hand, using the identity [161]

∂

∂φ
ln p(r|φ) =

[
∂

∂φ0
E
[
ln p(r|s, φ0) | r, φ

]]

φ0=φ

, (233)

the Fisher information on φ can alternatively be expressed as

I(φ) =
4K

(σ2
v)2

Ep(r|φ)

[( K∑

k=1

ℑ
{
r(k)s̄∗(k)e−jφ

})2
]
, (234)

where the soft symbol decisions are determined in terms of the symbol APPs, i.e.,

s̄(k) =
∑

s(k)∈S s(k) p
(
s(k)|r, φ

)
. These, on the other hand, are computed under

the restrictions imposed by coding on the signal structure.32 Consequently, the formula

(234) may be considered as a basis for the numerical evaluation of the CRLB in general

settings, including the case of encoded symbols. Specifically, approximating (234) by

using empirical observed information yields

CRLBφ,NDA ≈
(
Ie(φ, r)

)−1
, (235)

where the empirical observed information Ie(φ, r), so termed by Meilijson [162], is

obtained simply by omitting the statistical expectation in (234) as

Ie(φ) =
4K

(σ2
v)2

( K∑

k=1

ℑ
{
r(k)s̄∗(k)e−jφ

})2

. (236)

Of course, a better approximation for the exact Fisher information may be obtained by

approximating the statistical expectation in (234) by an arithmetical averaging. While

this approach was first proposed by the author of this thesis in [188], a similar analysis

was later carried out in an independent work reported in [190].

32An insertion of pilot symbols into the frame structure can also be considered a specific form of coding.
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6.4 Adaptive turbo receivers in the presence of Wiener

phase noise

In an AWGN channel distorted by a dynamic phase noise, an adaptive receiver must

track the evolving phase trajectory, either implicitly or explicitly. Derivation of itera-

tive turbo receivers for this type of channel is a topic of this section. First, the classical

EM-based phase estimators are tailored for a changing phase environment via the “slid-

ing window averaging,” resulting in two types of soft decision-directed (SDD) digital

phase locked loops (DPLL) for phase tracking. Secondly, the VB framework is directly

applied to the locally linearized system model, resulting in an SDD extended Kalman

smoother for phase tracking.

6.4.1 Recursive EM-based feedback phase recovery

schemes

Soft decision-directed phase trackers for the time-varying phase can be built without ex-

plicitly taking into account the phase dynamics as such. For example, based on Fisher’s

identity (233), a stochastic gradient based maximum likelihood phase tracker, referred

to as the SDD first-order digital phase locked loop of type 1 (DPLL-T1), can be formu-

lated as

φ̂(k + 1) = φ̂(k) + µ′ ℑ
{
r(k)s̄∗(k)e−jφ̂(k)

}
, (237)

where µ′ is a step-size parameter. This is a well-known phase tracker, proposed also

independently in [191], which due to exploitation of the identity (233) could be called

a recursive EM-based phase tracker.

In the case of BPSK modulation, the phase tracker in (237) can alternatively be

written as

φ̂(k + 1) = φ̂(k) + µ′ tanh

(
2

σ2
v

ℜ
{
r(k)e−jφ̂(k)

})
ℑ
{

r(k)e−jφ̂(k)
}
. (238)

Furthermore, exploiting the fact that for the uncoded PSK signaling with J ≥ 4 the

symbol APPs can be expressed as

s̄(k) =
1

∑J/2
j=1 cosh

(
2

σ2
v
ℜ
{
r(k)α∗

j e−jφ̂(k)
})

J/2∑

j=1

αj sinh
( 2

σ2
v

ℜ
{
r(k)α∗

j e−jφ̂(k)
})

,

(239)

182



where αj ∈ S and J denotes the cardinality of the symbol space, an SDD phase tracker

in the case of uniform a priori symbol distribution may be written as

φ̂(k + 1) = φ̂(k) +
µ′

∑J/2
j=1 cosh

(
2

σ2
v
ℜ
{
r(k)α∗

j e−jφ̂(k)
})

×
J/2∑

j=1

ℑ
{
r(k)α∗

j e−jφ̂(k)
}

sinh
( 2

σ2
v

ℜ
{
r(k)α∗

j e−jφ̂(k)
})

. (240)

At low SNR values, using approximations sinh(x) ≈ x + x3/3! and cosh(x) ≈ 1, the

phase tracker in (240) for J ≥ 4 may be further simplified as

φ̂(k + 1) = φ̂(k) + µ

J/2∑

j=1

ℑ
{
r(k)α∗

j e−jφ̂(k)
}[

ℜ
{
r(k)α∗

j e−jφ̂(k)
}]3

, (241)

where the step size parameter µ is dependent on the receiver noise variance σ2
v . In

fact, (241) provides a mathematical description of the blind Costas loop, presented

earlier in [164]. Hence, based upon the above formulation, the blind Costas loop can be

interpreted as a low SNR approximation of the SDD-DPLL algorithm.

Another possibility is to introduce a forgetting factor into the recursive version of

the incremental EM algorithm. Thus, we obtain an SDD phase tracker given as

φ̂(k) = arg

{ k∑

i=1

λk−i r∗(i)s̄(i)

}
, (242)

where λ is a forgetting factor. This phase tracker is henceforth referred to as the SDD

digital phase locked loop of type 2 (DPLL-T2) in order to separate it from the gradient-

based phase tracker. In fact, the argument of the right hand side of (242) can be recog-

nized as an SDD version of the vector tracker proposed in [57].

6.4.2 VB-based turbo receivers

The sliding window averaging techniques were used above to make the classical EM-

based phase estimators able to track changes in the value of the carrier phase. Next,

a novel iterative receiver algorithm will be derived through an employment of the VB

algorithm, with the main objective being a better adaptivity to the phase dynamics mod-

eled by the Wiener process (211). Unfortunately, the nonlinearity of the system model

makes a direct application of the VB algorithm very difficult, if not impossible. In order
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to circumvent the difficulties due to nonlinearity, the model is first locally linearized by

approximating ejφ(k) with its first-order Taylor-series expansion around the previously

estimated value of the phase φ̂(k − 1|k − 1),33 i.e.,

ejφ(k) ≈ ejφ̂(k−1|k−1) + jejφ̂(k−1|k−1)
(
φ(k) − φ̂(k − 1|k − 1)

)
. (243)

By inserting (243) into (210), the following linearized system model is obtained:

r(k) = j s(k)ejφ̂(k−1|k−1)φ(k)+s(k)ejφ̂(k−1|k−1)
(
1−jφ̂(k−1|k−1)

)
+v(k). (244)

Before defining the VB algorithm for this linearized system model, a lemma, proving

an equivalence which greatly facilitates the formulation of the VB solution for a system

employing constant amplitude signaling, is provided.

Lemma 5 Considering the constant amplitude signaling and linearized system model

given by (244), the following equivalence holds true:
∑

s

qs(s) ln p(r|s, φ) = ln p(r̃|φ), (245)

where the kth element of r̃ is given as

r̃(k) = r(k)s̄∗(k) − ejφ̂(k−1|k−1)
(
1 − j φ̂(k − 1|k − 1)

)
. (246)

Proof. For the linearized system model (244),

Eqs

[
ln p(r|s, φ)

]
= − 1

σ2
v

∑

k

Eqs

[
|r(k)|2

− 2ℜ
{
r∗(k)s(k)ejφ̂(k−1|k−1)

(
1 + jφ(k) − jφ̂(k − 1|k − 1))

}

+ |s(k)|2
(
1 − 2φ(k)φ̂(k − 1|k − 1) + |φ̂(k − 1|k − 1)|2 + |φ(k)|2

)]
+ C, (247)

where C is a constant independent of φ. If |s(k)|2 = 1, (247) can be further written as

(see [262] for similar formulation)

Eqs

[
ln p(r|s, φ)

]
= − 1

σ2
v

∑

k

(
|r(k)|2 − 2ℜ

{
r∗(k)s̄(k)ejφ̂(k−1|k−1)

×
(
1 + jφ(k) − jφ̂(k − 1|k − 1)

)}

+
(
1 − 2φ(k)φ̂(k − 1|k − 1) + |φ̂(k − 1|k − 1)|2 + |φ(k)|2

))

+ C

= ln p(r̃|φ). (248)

33The notation φ̂(k − 1|k − 1) denotes the estimated value of the phase at time k − 1 using the received

signal samples up to time k − 1.
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�

On the other hand, for M-QAM signaling, the following approximation can be jus-

tified

∑

s

qs(s) ln p(r|s, φ) ≈ ln p(r|s̄, φ). (249)

The approximation is tight if Varqs(k)

(
s(k)

)
� Eqs(k)

[
|s(k) − s̄(k)|2

]
is small. Based

on Lemma 5 and (249), the free distribution qφ(φ) at the ith iteration is given by

q
(i)
φ (φ) = p

(
φ|r̃(i−1)

)
in the case of M-PSK signaling and q

(i)
φ (φ) ≈ p

(
φ|r, s̄(i−1)

)

in the case of M-QAM signaling. Due to joint Gaussianity of r̃ (or r) and φ, qφ(φ) is

in both cases also Gaussian. It should be noted that the phase posterior qφ(φ) could

be computed exactly also for the M-QAM modulated signals by applying the double-

looping technique used in Chapter 4 for the SISO demodulation in the presence of a

frequency-selective fading channel. This, however, would increase the computational

complexity significantly.

Given that the estimated phase posterior q
(i)
φ (φ) is Gaussian, a straightforward for-

mulation yields the following update equation for the product of symbol APPs:

q(i)
s

(s) =
K∏

k=1

p
(
s(k)

)
· ck · e−

1
σ2

v

(∣∣r(k)−s(k)ejφ̂(i)(k|K)
∣∣2+|s(k)|2P (i)(k|K)

)
, (250)

where

φ̂(i)(k|K) = E
q
(i)
φ

[
φ(k)

]
(251)

P (i)(k|K) = E
q
(i)
φ

[∣∣φ(k) − φ̂(i)(k|K)
∣∣2
]

(252)

denotes the posterior mean and variance of the phase sample φ(k) under qφ(φ), respec-

tively. They are computed by the Kalman smoother operating on the locally linearized

state space model given for the M-PSK modulated signals as (the iteration index i is

omitted for notational convenience)

φ(k) = φ(k − 1) + ∆(k) (253)

r̃(k) = jejφ̂(k−1|k−1)φ(k) + v(k). (254)
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The forward recursion of the Kalman smoother operating on the above state-space

model has the following update equations:

P (k|k − 1) = P (k − 1|k − 1) + σ2
∆ (255)

Gk =
P (k|k − 1)

P (k|k − 1) + σ2
v

(256)

φ̂(k|k) = φ̂(k − 1|k − 1) + Gk ℑ
{
r(k)s̄∗(k)e−jφ̂(k−1|k−1)

}
(257)

P (k|k) = Gk σ2
v . (258)

The update equations for the backward processing are given as

S(k − 1) =
P (k − 1|k − 1)

P (k − 1|k − 1) + σ2
∆

(259)

φ̂(k − 1|K) = φ̂(k − 1|k − 1) + S(k − 1)
(
φ̂(k|K) − φ̂(k − 1|k − 1)

)
(260)

P (k − 1|K) = P (k − 1|k − 1) + S(k − 1)
(
P (k|K) − P (k|k − 1)

)
S(k − 1).

(261)

Using the approximation Varqs(k)

(
s(k)

)
≈ 0 and proceeding along similar lines as

above, the same KS update equations can be shown to be valid for M-QAM modulated

signals as well, with the exception of the Kalman gain factor Gk that is computed as

Gk = P (k|k − 1)/(P (k|k − 1)|s̄(k)|2 + σ2
v) for nonconstant amplitude symbols.

Just as the VB algorithm for the constant phase model was shown be closely re-

lated to the EM algorithm, the VB inference and estimation algorithm when applied

to the linearized system model (244) is closely related to the Bayesian EM algorithm.

In fact, as shown in Chapter 4, the Bayesian EM algorithm results from the VFEM

framework by forcing the free distribution qφ(φ) to be composed of a train of spikes,

i.e., qφ(φ) =
∏K

k=1 δ
(
φ(k) − φ̂(k)

)
. The two algorithms are exactly the same if M-

PSK signaling is assumed. This is an interesting result since it essentially shows that,

whenever the original objective function is factorized into two independent factors, one

being a function of the phase process while the other one is a function of data symbols,

it is enough that the full description of our knowledge of φ, p(φ|r), is being approxi-

mated by a delta function. The shape of the estimated phase posterior, no matter how

sophisticated an approximation it may be, is not exploited anyhow by the VB-based

receiver.

In contrast, the symbol decisions produced by the VB algorithm for the M-QAM

constellations are biased towards small constellation points by the amount determined
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by the error variance P (k|K). Although the constellation points with large energy are

penalized in a way analogous to the constant phase model, it should be noted that in

many practical cases the phase posterior at any particular time instant is sharply peaked

around the mean value (i.e., P (k|K) is very small), and, hence, the VB algorithm in

these circumstances performs equally to the Bayesian EM algorithm.

6.5 Complexity considerations

A short survey of complexity of SISO detectors in the presence of phase noise is pre-

sented in this section, partly building on the considerations made earlier in the context

of adaptive SISO detectors in the unknown fading channels. As already pointed out ear-

lier, the complexity of the exact APP detector is, in general, exponential in the sequence

length. However, under certain circumstances, the worst case complexity of the APP

detector in block-constant phase channels is only polynomial in the sequence length

[174, 114]. On the other hand, in the case where the dynamic phase noise process can

be assumed, for all practical purposes, to have a limited-length coherence time, the ex-

act APP detector has complexity which is exponential in the channel coherence time

[8, 266].

A suboptimal SISO detectors for all kinds of phase uncertain channels can be ob-

tained via the PSP technique, with complexity which is scalable and can be easily

adjusted by design so that a desired tradeoff between complexity and performance is

reached [9]. The complexity issues related to the PSP receivers were earlier discussed

in Section 4.5 to some extent. In cases where the transmitted signal is encoded by a

code, which can be described with an FSM or a network of FSMs, such as a turbo-code,

the PSP processing can be applied to the trellis that is associated with the code structure

[9]. Thus, the complexity related to detection is closely connected to the complexity of

the decoder, if such is needed.

The iterative EM- and BEM-based SISO detectors, encompassing thereby the incre-

mental version of the EM algorithm, have complexity that is linear, per iteration, in the

sequence length. Only one phase tracker is needed, and it is operated in an SDD man-

ner. When iterative decoding is assumed, the SDD phase trackers can be conveniently

embedded into the decoding algorithm, and, thus, the increased complexity, compared

to the coherent receiver, is mainly due to channel tracking. On the other hand, the

iterative decoder may require some extra decoding iterations because of the phase un-

certainty. Similar remarks concerning complexity are valid also for the factor-graph
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processing-based SISO detectors/decoders, such as the detector based on the Tikhonov

parametrization of the phase distribution [48]. Differences between EM/BEM detec-

tors and FG-processing-based detectors appear mainly in details of the phase estima-

tor/tracker which in both approaches is operated in the SDD manner.

6.6 Numerical results

Studying the performance of the proposed adaptive turbo receivers, a constant phase

model is considered first. The performance of the VB-based and incremental VB-based

receivers is evaluated via numerical simulations for an uncoded and a coded QPSK

signaling over the noncoherent AWGN channel. In fact, the VB algorithm performed

equally with the EM algorithm in the selected simulation setups, and so the less complex

EM algorithm was actually selected for final simulations. The phase is assumed to be

constant during the block but changes randomly from block to block, where each block

consists of 8 pilot symbols followed by 200 data symbols.

The MSE results for various phase estimators as a function of SNR are presented

for an uncoded system in Fig. 35. The DA estimation in this context implies that both

the pilot and data symbols are ‘magically’ known to the receiver, whereas the NDA

phase estimator knows only the pilot symbols but additionally exploits the statistical in-

formation about the phase carried by the data symbols. The EM algorithm assumes five

iterations, whereas the incremental EM algorithm updates phase estimates recursively,

resulting in a noniterative receiver. In addition, the Cramer-Rao lower bound (CRLB)

is plotted for the pilot-only, data-aided, and non-data-aided phase estimators using the

empirical averaging technique outlined earlier in this chapter.
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Fig 35. MSE performance of the phase estimators as a function of SNR for an

uncoded QPSK-modulated system.

Examining Fig. 35, it may be noticed that, despite much smaller complexity, the

performance of the incremental phase estimator in the MSE sense is very close to that

of the EM-based estimator with five iterations. Actually, the performance of both esti-

mators coincide with the CRLBφ,NDA at high SNR values while some deviation takes

place at low SNR values. Similar results, when channel coding is employed, are pre-

sented in Fig. 36. In this case, a convolutional code (CC) with 64 states and code rate

1/2 (code generators in octal form are (133,171)) is used for channel coding and a SISO

decoder is assumed at the receiver. It is noticed that the exploitation of the coding-

induced information in estimation via soft symbol decisions improves the performance

of the iterative EM-based phase estimator at moderate SNR values. A similar trend can

be noticed in the CRLBφ,NDA curve for the code-aided (CA) estimation. The perfor-

mance of the incremental EM-based estimator, which remains unchanged compared to

the uncoded case (since feedback from the decoder is not used), is given as a reference.
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Fig 36. MSE performance of the phase estimators as a function of SNR for a coded

QPSK-modulated system.

Despite considerable difference in MSE performance between the iterative EM-

based and recursive (incremental) phase estimators, e.g., at SNR = 2 dB the difference is

almost an order of magnitude, the performance of the corresponding detectors in terms

of bit error rate (BER) differs just slightly at the same SNR point as shown in Fig. 37.

On the basis of this single numerical example, it seems that the relationship between

the BER of an adaptive detector and the MSE of the associated parameter estimator is

highly nonlinear in nature and definitely an interesting issue to look at further.
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Fig 37. BER versus SNR for a coded QPSK modulated system in the presence of

constant phase noise. The acronym PO-est stands for pilot only estimation.

In the second numerical example, the performance of the proposed iterative receiver

schemes was assessed in a dynamic phase environment by computer simulations. In

particular, there was a system under examination where turbo-coded bits were first in-

terleaved with a random interleaver, then mapped into channel symbols using various

modulation schemes, and finally transmitted over the AWGN channel distorted by the

Wiener phase noise with σ∆ = 3◦. The turbo code was constructed according to the

3GPP specifications, and the code rate was 1/3. The coding block consisted of 12 sub-

blocks, where each sub-block was comprised of 4 pilot symbols followed by 50 data

symbols. At the beginning of each coding block, the number of pilot symbols was 20.

The turbo decoder assumed 29 iterations, and, during the decoding process, the phase

estimates were updated 5 times by utilizing the preliminary soft data estimates from the

decoder. The numbers of decoding iterations for different decoding occasions were set

at [2, 3, 4, 5, 7, 8], summing up into 29 iterations in total.

For the purpose of comparison with the existing algorithms, the performance of

the iterative receiver scheme based on the Tikhonov canonical distribution and SPA

[48] as well as the performance of the receiver based on the SDD Kalman smoother
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(KS) described in [73] are also simulated along with the proposed receiver schemes.

Particularly the receiver based on the Tikhonov parameterization (hereafter referred to

as the Tikhonov receiver) can be regarded as a state-of-the art solution for iterative

detection in the presence of strong phase noise.

The BER results as a function of Eb/N0 for BPSK, 16-QAM, and 64-QAM mod-

ulation schemes are presented in Fig. 38, Fig. 39, and Fig. 40, respectively. The label

‘EKS’ refers to the SDD extended Kalman smoother (obtained via the VB algorithm),

whereas the label ‘DPPL-T1’ refers to the stochastic gradient-based SDD DPLL phase

tracker (see (237)), and the label ‘DPPL-T2’ refers to the incremental EM-based SDD

DPLL (see (242)). The step-size parameter for the DPPL-T1 estimator and the forget-

ting factor for the DPLL-T2 estimator were optimized separately at every simulated

Eb/N0 value. The basic difference between the EKS and KS estimators is that the

KS estimator estimates the time-varying phasor as such, whereas the EKS estimator

is based on the locally linearized system model enabling the tracking of the dynamic

phase itself. Both of these are operated in the SDD manner.

As expected, the BPSK modulated system is less sensitive to phase estimation er-

rors. In fact, the performance of the Tikhonov receiver is the same as the performance

of the Kalman smoother (both EKS and KS)-based receivers, while the DPLL-based

receivers experience a small performance loss compared to those. In the cases of higher

order modulation, the Tikhonov- and EKS-based receivers still seem to have similar

performance, while the KS- and DPLL-based receivers are not performing as well. Of

the two DPLL estimators, the one based on the incremental EM algorithm seems to per-

form slightly better, particularly at high SNR values. Importantly, it can be noticed that

both the Tikhonov- and EKS-based receivers have excellent performance even in the 64-

QAM signaling system when compared to the performance of the coherent receiver.34

It may also be noticed that the performance loss of the KS receiver as compared to

the EKS receiver gets bigger as the size of the constellation alphabet increases, being

roughly 1.5 dB for 64-QAM signaling.

It should, however, be noted that various system parameters, like the number of pi-

lot symbols, pilot spacing, etc., may affect the performance of different receivers in a

different way, and, thus, the comparisons made here may not be fully conclusive. Nev-

ertheless, the presented simulation results strongly suggest that the Tikhonov receiver

and the EKS-based receiver represent two efficient though distinct detection schemes

34It should be noted here that the coherent receiver assumes the same pilot overhead as the other receivers,

and, thus, the performance gaps between different curves are solely due to the phase estimation.
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with roughly the same performance and complexity. This may even be regarded as a

main result of the numerical simulations reported in this section.
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Fig 38. BER versus Eb/N0 for a turbo-coded BPSK modulated system in the pres-

ence of Wiener phase noise.
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Fig 39. BER versus Eb/N0 for a turbo-coded 16-QAM modulated system in the

presence of Wiener phase noise.
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Fig 40. BER versus Eb/N0 for a turbo-coded 64-QAM modulated system in the

presence of Wiener phase noise.
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6.7 Summary and conclusions

In this chapter, the problem of iterative detection in the presence of phase uncertainty

was looked at from the variational Bayesian perspective. The variational Bayesian ap-

proach was shown to bridge the gap between the optimal noncoherent receivers and

the classical EM-based receivers. In particular, the generic VB algorithm was applied

for deriving novel receiver structures for the constant-phase channels as well as for the

dynamic phase models. Moreover, it was demonstrated by numerical simulations that

the incremental versions of the VB or EM algorithms may allow the reduction of the

computational cost of the iterative receivers for the constant-phase channels. Further-

more, in the presence of high phase dynamics, the VB approach was shown to produce

low-complexity yet powerful iterative receiver algorithms that can be regarded as a real

alternative to the FG-processing-based receivers.

In parallel work reported in [147], the variational approximation technique has been

used in deriving joint detection and phase estimation algorithms for OFDM systems.

Although some conceptual similarities can be found in the work reported in [147] and

in the one reported in this chapter, the assumed phase models and details in algorithmic

development, in addition to assumed transmission formats of the signals, are essentially

different in the respective contributions of these works, thus resulting in totally distinct

sets of algorithms.
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7 Summary and future work

So far, existing receiver algorithms have been reviewed and variational bounding

methodology has been introduced and exploited in characterizing the existing turbo

processing algorithms as well as in developing new ones. In addition, new algorithms

for jointly estimating the radio channel parameters have been derived. In the following,

the main results and findings of the thesis are shortly summarized and some prospects

for future work are discussed.

7.1 Summary

In recent years, graphical models have gained popularity in the design and analysis of

iterative turbo-processing receivers. They greatly enhance the representational power

of the underlying probability models through qualitative characterization of their prop-

erties. Typically, this also leads to greater efficiency in terms of the computational

algorithms that empower such representations. However, in many cases, for example in

coded communications over the wideband channel, the exact probabilistic inference and

estimation may become infeasible. With this in mind, variational approximations were

introduced in Chapter 2 via four simple yet illuminating examples. The main aim was

to point out the principle of convex duality as a solid foundation for obtaining lower

bounds for the probabilities of interest. The emphasis was not on full generality but

on demonstrating the utility of dual representations in transforming the log-likelihood

function into a computationally feasible form.

Subsequently, in Chapter 3, the variational methodology was used in transform-

ing the exact graphical models, representing the SISO demodulators in single antenna

or MIMO systems, into approximate graphical models which render the probabilistic

calculations in the context of turbo receivers more tractable. Specifically, the new for-

mulation of existing linear SISO detectors through the mean field bounding method

was shown to provide not only unified and rigorous justification for them but also sug-

gestions on how to enhance their performance. Moreover, by exploiting the properties

of the information divergence, more light was shed onto the domain characteristics in

which one turbo receiver is preferable to others.

In Chapter 4, the problem of SISO demodulation in unknown frequency-selective
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channels was addressed by relying again on the variational methodology in seeking

computationally efficient yet close to optimal turbo receivers. First, the EM- and

Bayesian EM-based SISO demodulators were obtained as appropriately defined mean

field approximations to the exact APP demodulators in the constant deterministic and

time-varying Rayleigh fading channels, respectively. Secondly, several recursive ver-

sions of the classical Baum-Welch algorithm and Bayesian EM algorithm were derived

in an unified manner. Unlike the earlier attempts to cast these algorithms into recursive

forms, the new formulations provided in Chapter 4 were shown to lead to computation-

ally attractive soft decision-directed channel estimators which avoid matrix inversions

by applying sequential processing over the time and branch indices of the associated

trellis diagram. Moreover, they were shown to be readily integrable with the standard

forward-backward processing SISO algorithms designed for known channels. Numeri-

cal results via computer simulations showed that the resulting approximate APP demod-

ulators, when iteratively interconnected with the SISO decoder via turbo-processing,

can achieve better performance than existing reference receivers, although their com-

plexity is either comparable or significantly smaller.

The Bayesian channel estimator, whether taking a block or a recursive form, re-

quires that the channel statistical properties are either known or appropriately estimated.

In addition, frequency offset is typically present in the system, and, hence, the spectrum

of the received signal is not exactly at the baseband but is instead shifted in frequency

by the amount dictated by the frequency offset. In the generic system model presented

in Chapter 2, the frequency offset was incorporated into the Rayleigh fading ISI chan-

nel via the complex bandpass AR modeling. Such a modeling concept was shown to

be empowered by the assumption of circularity of the process noise. Later in Chapter

5, the complex bandpass modeling was shown to greatly facilitate the derivation of a

joint estimator for the frequency offset and the channel AR parameters which, together,

provide the parametric description of the fading statistics. The main advantage of the

proposed joint estimator as compared to “competing” schemes is that it can perform

equally well in a wide variety of scattering environments. This was shown to be valid

also for extremely high-mobility environments. Furthermore, it was proved that the

complexity of the EM-based estimators can be significantly reduced by applying the

mean field approximation technique, while causing only minor penalty in performance.

Moreover, a fully adaptive recursive joint synchronization and channel estimation

algorithm as well as a novel one-step Kalman smoother-based frequency error detec-

tor were proposed. Both the forward-processing adaptation scheme and the feedback-
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processing frequency recovery scheme, incorporating the proposed error detector, were

shown to be able to operate in either the hard decision-directed or soft decision-directed

manner, which is a virtue in the presence of a limited amount of training. The simulation

results showed that both the block-processing as well as the recursive frequency offset

and AR estimators not only have excellent performance but also possess a number of

highly favorable properties, such as a large estimation range and great flexibility with

regard to the system and channel configurations and training signal structure. While the

algorithms and numerical results were obtained for a single antenna system, they could

be readily extended to systems employing multiple antennas at the transmitter. This is

valid even in situations where the signals arriving from different transmitter antennas

are not synchronized in frequency.

Iterative detection or decoding in the presence of phase uncertainty was addressed

in Chapter 6. The problem was considered from the Bayesian modeling point of view.

The optimal receivers obtained via the exact Bayesian formalism are generally known

to be costly and often infeasible. This is due to the fact that the phase uncertainty has

to be integrated out from the decision metric. In Chapter 6, a variational Bayesian

approximation was used in deriving efficient iterative joint estimation and inference

algorithms for constant-phase models as well as for dynamic phase models. In fact, the

VB approach provides a lower bound on the likelihood function. Such a bound yields

much more information than mere approximations and provides an inherent error metric

for assessing the quality of the approximation. These desirable properties, concomitant

of the variational methods, are unlikely to arise as a result of any other deterministic

or stochastic approximation to the optimal noncoherent receiver. In addition, a close

relationship between the VB-based receivers and the classical EM-based receivers was

established, showing that the latter ones can be interpreted as special cases of the former

ones.

In the class of non-Bayesian parameter estimators, the Cramer-Rao lower bound is

known to provide a lower bound for the MSE of any unbiased parameter estimator. The

computation of the CRLB can, however, become difficult, if not totally infeasible, in

the presence of nuisance parameters that are interfering wih the estimation of the pa-

rameter of interest. In Chapter 5, the CRLB of the carrier frequency offset and receiver

noise variance in the presence of the frequency-selective Rayleigh fading channel was

formulated in an elegant way. This new formulation did not only facilitate the compu-

tation of the bound itself but also allowed to gain new insight into the factors affecting

the accuracy of the estimate. Later in Chapter 6, the computation of the CRLB of the
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carrier phase, when unknown data symbols were playing the role of nuisance parame-

ters, was considered. In particular, exact Fisher information of the carrier phase was

approximated with the corresponding empirical Fisher information. This was shown to

make the numerical evaluation of the CRLB feasible also in cases where the information

symbols are encoded.

7.2 Future work

There are still many open questions, pertaining to advanced receiver technology in gen-

eral and to iterative detection and estimation in particular, that are not thoroughly ex-

amined in this thesis nor properly addressed in the open literature, although admittedly

warrant detailed investigation. In fact, research carried out for the thesis has in some

areas raised many more questions than it has definitely answered. Some of those open

issues are shortly discussed in this section.

First, there are several issues relating to the characterization of the variational meth-

ods which are still, at least partially, unresolved. For example, a pertinent question

is which dependencies will be lost and which are imposed by the variational approxi-

mation. The question as such is somewhat ambiguous since the answer, while being

naturally contingent on the particular approximation method in use, depends also on

the optimization schedule adopted for the variational free parameters. Then, there are

still not many systematic answers to the question why a certain variational approxima-

tion may work fine in some circumstances while badly failing in others. This problem

has so far been tackled mainly by examining example cases. For example, in some sta-

tistical mechanics systems, characterized by densely connected graphical models with

uniformly weak couplings between the nodes, the mean field approximation does not

only provide a good solution, but in fact an exact solution [198]. On the other hand,

the same methodology in the context of turbo receivers is known to give often a very

bad approximation as compared to the optimal receiver. It typically converges to some

locally optimum solution, which is manifested by an error floor in the performance of

the turbo receiver. Such a behavior could also be anticipated simply by viewing the

graphical model associated with the SISO detector. It is typically densely connected,

and dependencies between the nodes are relatively strong. That indicates that the ob-

jective function to be approximated may be multimodal. However, it would be nice if

we would have a more principled way to evaluate the accuracy of certain variational

approximation in the model of interest.
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A big step forward in characterization of the variational approximations in gen-

eral exponential-family graphical models has recently been taken in [251], however.

Specifically, it was shown that a variety of approximate inference algorithms — in-

cluding loopy belief propagation, general cluster variational methods, and mean field

approximations — can be interpreted as methods for solving particular relaxations of

the general variational principle that in turn was built on the solid foundation of convex

optimization. Although not answering directly the above questions, the fresh viewpoint

obtained via marginal polytopes does, however, provide a unified theoretical framework

for comparing different approximations in the class of exponential graphical models.

While important, the full theoretical characterization of variational methods in the con-

text of an arbitrary statistical model seems, however, to be overly difficult. Instead,

extensive experimental evaluation and comparison of different variational approxima-

tions, e.g., when applied to inference in communication systems, could be beneficial

in the sense of increasing our understanding of the practical utility of these methods.

Moreover, it would also be interesting to compare, by using numerical simulations, the

variational methods to the various pruning-based methods as well as to the stochastic

sampling-based methods [85].

In order to offer a healthy balance between performance and complexity, it could

be advantageous to combine different variational methods in approximating a certain

graphical model. This is an extension of the idea presented in [218], where the original

graph was proposed to be divided into subgraphs, and the interfaces between different

subgraphs were simplified by using variational methodology. At the same time, the

exact inference was supposed to take place within each subgraph. In fact, the turbo

receiver (equalizer) in its original form [65] is a realization of this principle. Along

with these lines, extending the work presented in Chapter 3 could involve answering

questions such as:

1. Can we find some systematic methodology to detect those edges in the graph whose

removal variationally affects least the accuracy of the resulting approximation?

2. Could the mixing of the methods be done, for example, so that some edges in the

graph are eliminated by applying the mean field approximation, while operating the

belief propagation algorithm along the remaining edges?

3. How could we cope with the time-varying dependency structure of the model?

4. Can the variational optimization setting be reconfigured from block to block in some

convenient way?
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Such explorations should most obviously be carried out by bearing some practical ap-

plication, such as turbo receivers, in mind. Yet another extension of the work in this

thesis is to combine the variational methods with the stochastic sampling-based meth-

ods [85, 256]. However, it is less apparent how this can be done efficiently.

The problem of iterative detection in the presence of random continuous-valued pa-

rameters was dealt with in Chapters 4 and 6. Specifically, the variational methodology

was applied for SISO demodulation in an unknown ISI channel and for iterative decod-

ing in the presence of phase uncertainty. Another intuitively appealing solution for this

type of problem is to model the continuous valued parameters as nodes in the graph and

then operate the standard BP algorithm on it [261]. The computational inconvenience

resulting from the requirement of computing high dimensional integrations has been

tackled by parameterizing the messages originating from the parameter nodes. Thus,

only a limited number of parameters, instead of full descriptions of the parameter dis-

tributions, need to be updated each time the node is visited. On the other hand, the EP

algorithm has been shown to be better, at least in the tested statistical models, than the

parameterizing approach in terms of performance [168]. One further option for extend-

ing the work of this thesis is to compare these three mainstream solutions at both the

conceptual and the experimental levels.

Finally, it would be interesting and obviously useful to develop practical iterative

receiver structures which would possess an improved capability to combat against the

intra and intercell interference in a multiuser cellular environment [39]. This is par-

ticularly important in challenging cellular network topologies which are targeting for

a reuse factor one. An interesting approach would be to test the applicability of the

variational methodology in this area as well.
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Appendix 1 Proofs of lemmas and propositions of

Chapter 3

Purely for notational simplicity and without any loss of generality, the proofs of lem-

mas and propositions of Chapter 3 are given here only in the special case of a single

transmitter antenna system. The extension to the more general MIMO system case is

straightforward and, therefore, a routine exercise.

Proof of Lemma 1:

Proof. A solution to the minimization in (64) simply follows from the following

inequality

D
(
pr(s)

∥∥∥
∏

k

qk

)
− D

(
pr(s)

∥∥∥
∏

k

pr

(
s(k)

))

=
∑

s

pr(s) ln
pr(s)∏

k qk
−

∑

s

pr(s) ln
pr(s)∏

k pr

(
s(k)

)

=
∑

s

pr(s)
∑

k

ln
pr

(
s(k)

)

qk
=

∑

k

D
(
pr

(
s(k)

)∥∥qk

)
≥ 0.

�

Proof of Proposition 1:

Proof. Using (63) and (67), the variational free energy F(Q) under the constraint

of the fully factorized trial function, i.e., Q(s) =
∏

k qk(s(k)), can be expressed as

F(Q) =
1

T

∑

s

Q(s)E(s) +
∑

s

Q(s) lnQ(s)

=
1

T

∑

s

∏

l

ql‖r− Hs‖2 −
∑

s

∑

l

ql ln λ2,l

+
∑

s

∑

l

ql ln ql + C,

(262)

where C denotes a constant. The fixed point equations for solving the minimum of

F(Q) are obtained by finding the zero-gradient point of F(Q) with respect to each

factor of Q(s). The gradient with respect to qk yields

∂

∂qk
F(Q) =

1

T

∑

s

∏

l �=k

ql‖r − Hs‖2 − ln λ2,k + ln qk + 1. (263)

217



By setting (263) to zero, the distribution qk(sk) is obtained as

qk(s(k)) = λ2,k
1

γk
e−

1
T

∑
s

∏
l �=k

ql(s(l))‖r−Hs‖2

= λ2,k
1

γk
e−

1
T
Ek(s(k)). (264)

By exploiting the decoupling property of the fully factorized variational trial distribu-

tion Q(s), the mean field symbol energy term Ek(s(k)) can be expressed as

Ek(sk) =
∑

s

∏

l �=k

ql(s(l))
∥∥r − Hs

∥∥2

= r
H

r− EQ\k

[
s
H
]
H

H
r − r

H
HEQ\k

[
s
]
+tr

(
EQ\k

[
ss

H
]
H

H
H

)

=
∥∥∥r − Hs + Hek

(
s(k) − s(k)

)∥∥∥
2

+ C,

(265)

where EQ\k

[
·
]

denotes the expectation under the distribution
∏

l�=k ql(s(l)), tr denotes

the trace of the matrix, C is a constant which is independent of s(k), and s(k) denotes

the soft symbol value defined in (74). By expanding (265) and incorporating the terms

which are independent of s(k) into the normalizing constant γk, equations (68)–(74)

are found after straightforward elaboration. �

Proof of Proposition 2:

Proof. The variational free energy in this case can be formulated as

F(Q) = F(ŝ,Σo)

= − ln detΣo +
1

σ2
v

∫

s

Q(s)
(
r

H
r − r

H
Hs − s

H
H

H
r + s

H
H

H
Hs

)
ds

+

∫

s

Q(s)
(
(s− s)H

Σ
−1
i (s− s)

)
ds + C

= − ln detΣo −
1

σ2
v

((
H

H
r + σ2

vΣ
−1
i s

)H
ŝ + ŝ

H
(
H

H
r + σ2

vΣ
−1
i s

)

−ŝ
H
(
H

H
H + σ2

vΣ
−1
i

)
ŝ− tr

(
Σo(H

H
H + σ2

vΣ
−1
i )

))
+ C.

(266)

Looking for the zero gradient point of F(ŝ,Σo) with respect to ŝ, standard matrix

manipulation yields

ŝ =
(
H

H
H + σ2

vΣ
−1
i

)−1(
H

H
r + σ2

vΣ
−1
i s

)

= s + ΣiH
H
(
HΣiH

H + σ2
vI
)−1(

r− Hs
)
.

(267)

Similarly, by finding the zero gradient point of F(ŝ,Σo) with respect to σ2
o,k, Eq. (77)

is readily obtained. �
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Appendix 2 Proofs of lemmas and theorems of

Chapter 4

In this appendix, proofs of two theorems and one lemma of Chapter 4 of this thesis are

provided. In particular, three different forms of the BEM algorithm for estimating the

Gaussian frequency selective fading channel in the presence of unknown data symbols

are given by these theorems and lemma. In general, instead of trying to calculate the

MAP sequence estimate of random CIR vectors Θ = {h(1), . . . ,h(K)} directly, the

BEM algorithm pursues the maximum of the posterior density function p(Θ|r) by alter-

nately estimating the posterior pdf of the complete data set X , given the incomplete data

set Y and the current set of CIR estimates, and maximizing the estimated complete data

pdf with respect to Θ. Specifically, the E-step and the M-step of the BEM algorithm at

ith iteration can be expressed as

E− step : Q
(
Θ|Θ̂(i−1)

)
= E

[
ln p(X ,Θ)

∣∣∣Y, Θ̂(i−1)
]

(268)

M− step : Θ̂
(i) = arg max

Θ

Q
(
Θ|Θ̂(i−1)

)
. (269)

For notational convenience and without losing any generality, the following proofs are

given for the first order AR channel model (p = 1) and, in addition, the iteration indices

are suppressed.

Proof of Theorem 1:

Proof. By defining the complete data set as X = {r, s} and the incomplete data set

as Y = {r}, the objective function Q(Θ|Θ̂) can be expanded as follows:

Q(Θ|Θ̂) = E
[
ln p(X|Θ)

∣∣r, Θ̂
]

+ ln p(Θ)

= C − 1

σ2
v

∑

k

∑

j

(
r(k)r∗(k) − 2ℜ

{
r(k)hH(k)ξ∗

jϕ(k, j)
}

+h
H(k)ξ∗

jξ
T
j h(k)ϕ(k, j)

)
+ ln p(Θ)

= C − 1

σ2
v

∑

k

∑

j

(
r̃j(k)r̃∗j (k) − 2ℜ

{
r̃j(k)hH(k)d̃∗

j (k)
}

+h
H(k)d̃∗

j (k)d̃T
j (k)h(k)

)
+ ln p(Θ) + [terms independent of Θ]

= ln p
(
{r̃(k)}K

k=1, {D̃(k)}K
k=1,Θ

)
+ [terms independent of Θ],

(270)

where r̃j(k) = r(k)
√

ϕ(k, j) and d̃j(k) = ξj

√
ϕ(k, j). Furthermore, the vector
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r̃(k) and the matrix D̃(k) are defined in (126) and (127), respectively. Due to the joint

Gaussianity of sequences Θ and {r̃}K
1 , the M-step of the BEM algorithm can be written

as (see, e.g., [132])

ĥ(k) = E
[
h(k)

∣∣{r̃
}K

1
,
{
D̃
}K

1

]
, k = 1, . . . , K, (271)

and, hence, the sequence estimate Θ̂ is computed by the fixed-interval Kalman

smoother operating on the state-space model given in (124) and (125). This vec-

tor Kalman smoother is iteratively cross-coupled with the BCJR algorithm, since the

branch APPs ϕ(k, j) are obtained from the BCJR algorithm. �

Proof of Lemma 2:

Proof. Given that complete data set is defined as X =
{
{xl(k)}k=1,... ,K

l=1,... ,L+1, s
}

and

the incomplete data set as Y = {r}, the objective function of the BEM algorithm can

be written as

Q(Θ|Θ̂) = E

[∑

l

∑

k

ln p(xl(k)|Θ)
∣∣∣r, Θ̂

]
+ ln p(Θ)

= − 1

ησ2
v

∑

l

∑

k

E

[∣∣xl(k) − s(k − l + 1)hl−1(k)
∣∣2
∣∣∣r, Θ̂

]
+ ln p(Θ) + C

=
1

ησ2
v

∑

l

∑

k

(
2ℜ

{
E
[
x∗

l (k)s(k − l + 1)|r, Θ̂
]
hl−1(k)

}

− |hl−1(k)|2E
[
|s(k − l + 1)|2

∣∣r, Θ̂
])

+ ln p(Θ) + [terms independent of Θ]

=
1

ησ2
v

∑

l

∑

k

(
2ℜ

{JL+1∑

j=1

x̂∗
l,j(k)

[
ξj

]
l
ϕ(k, j)hl−1(k)

}

− |hl−1(k)|2
JL+1∑

j=1

∣∣∣
[
ξj

]
l

∣∣∣
2

ϕ(k, j)

)
+ ln p(Θ) + [terms independent of Θ],

(272)

where x̂l,j(k)
△
= E

[
xl(k)

∣∣r, s(k) = ξj , Θ̂
]

denotes the per-trellis-branch-based esti-

mate of the pseudo-observation xl(k). Using the joint Gaussianity of the received signal

sample r(k) and pseudo-observations {xl(k)}l=1...(L+1) as well as their linear depen-

dence as per (136), a straightforward manipulation yields (see, e.g., [72]) that x̂l,j(k) =[
ξj

]
l
ĥ

(i)
l−1(k) + η

(
r(k) − ξT

j ĥ
(i)(k)

)
. Using the definitions d̃j(k) = ξj

√
ϕ(k, j) and

x̃l,j(k) = x̂l,j(k)
√

ϕ(i)(k, j), the objective function of the BEM algorithm can further
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be written as

Q(Θ|Θ̂) =
1

ησ2
v

∑

l

∑

k

(
2ℜ

{JL+1∑

j=1

x̃∗
l,j(k)

[
d̃j(k)

]
l
hl−1(k)

}

− |hl−1(k)|2
JL+1∑

j=1

∣∣∣
[
d̃j(k)

]
l

∣∣∣
2
)

+ ln p(Θ) + [terms independent of Θ]

= ln p
(
{x̃l(k)}K

k=1,
{[

D̃(k)
]
l

}K

k=1
,Θ

)
+ [terms independent of Θ].

(273)

Due to the joint Gaussianity of the sequences Θ and {x̃l}K
1 , the M-step of the BEM

algorithm can be written as

ĥ(k) = E
[
h(k)

∣∣{x̃
}K

1
,
{
D̃
}K

1

]
, k = 1, . . . , K, (274)

and the sequence estimate Θ̂ is computed by the fixed-interval Kalman smoother oper-

ating on the state-space model given in (124) and (138). The branch APPs ϕ(k, j) are

obtained at the E-step by using the BCJR algorithm. �

Proof of Theorem 2:

Proof. The constant envelope modulation (with the symbol amplitudes being nor-

malized to one) entails that
∣∣∣
[
ξj

]
l

∣∣∣
2

= 1. In this case, the objective function of the

BEM algorithm can be written as

Q(Θ|Θ̂) =
1

ησ2
v

∑

l

∑

k

(
2ℜ

{JL+1∑

j=1

x̂∗
l,j(k)

[
ξj

]
l
ϕ(k, j)hl−1(k)

}
− |hl−1(k)|2

)

+ ln p(Θ) + [terms independent of Θ]

=
1

ησ2
v

∑

k

(
2ℜ

{
x̂

H(k)h(k)
}
− h

H(k)h(k)
)

+ ln p(Θ) + [terms independent of Θ]

= ln p
(
{x̂(k)}K

k=1,Θ
)

+ [terms independent of Θ],

(275)

where x̂(k) is defined as in (146). Due to the joint Gaussianity of the sequences Θ and

{x̂}K
1 , the sequence estimate Θ̂ is computed by the fixed-interval Kalman smoother

operating on the state-space model given in (124) and (145). �
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Appendix 3 On ARMA channel modeling and

estimation

The statistics of the Rayleigh fading channel can efficiently be described by the means

of the parametric model. The channel estimation in the context of the parametric model-

ing is essentially a three-step procedure where the first step is to select a suitable model.

The second step is then to estimate the parameters of the assumed model, and the final

step is to obtain the estimate of the channel impulse response (for coherent detection)

or the power spectral density (for the configuration of the transmitter adaptivity) with

the aid of the estimated parameters. In this appendix, the signal modeling and esti-

mation issues are discussed in the case where the ARMA(p, q) channel hypermodel is

employed.

When ARMA channel modeling (q ≥ p) is used,35 the dynamics of the received

signal may be described with the following state-space model

f(k) = Af(k − 1) + Gw(k − 1) (276)

r(k) = sT (k)Bf(k) + v(k), (277)

where the vector channel process f(k) is now defined as f(k) =
[
f
T (k), fT (k −

1), . . . , fT (k − q)
]T

, the deterministic model matrix A is given as

A =

⎡
⎢⎢⎢⎢⎣

A1 A2 · · · Ap 0Lch×(q−p+1)Lch

ILch 0Lch · · · 0Lch 0Lch×(q−p+1)Lch

. . . 0Lch

...

0Lch ILch 0Lch 0Lch×(q−p+1)Lch

⎤
⎥⎥⎥⎥⎦

,

and the model matrix B includes the MA parameters and is defined as B =

[B0, . . . ,Bq], where B0, . . . ,Bq are Lch × Lch submatrices. The rest of the variables

in (276) and (277) are as defined in Chapter 2.

In this case, the vector of unknown parameters of the above state-space model is

given as Θ = {θ1, θ2}, where θ1 = {σ2
v, B} and θ2 = {G, A} include the parameters

of the measurement equation and the state equation, respectively. Direct estimation of

model parameters is not feasible. Instead, an iterative processing via the EM algorithm

35The case q < p requires only a trivial modification of the case q ≥ p from the modeling and estimation

points of view and, hence, it is not discussed here.
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makes the estimation problem much easier to tackle. As in the AR modeling case, the

objective function of the EM algorithm at the ith iteration can be decomposed as

Q
(
Θ
∣∣Θ̂(i−1)

)
= Q1

(
θ1

∣∣Θ̂(i−1)
)

+ Q2

(
θ2

∣∣Θ̂(i−1)
)

= E
[
ln p(r|s, θ1,F)

∣∣r, s, Θ̂(i−1)
]

+ E
[
ln p(F|θ2)

∣∣r, s, Θ̂(i−1)
]
.

(278)

Although the maximization of (278) over the AR and MA parameters is now decoupled,

the parameter estimators themselves are coupled through the conditional expectations

(through the E-step).

The parameter estimator for θ2 is the same as in the AR modeling case (see (159)

and (160)). Thus, only the estimation of θ1 need to be considered here. But the max-

imization of Q1 directly over B becomes computationally unattractive. Instead, the

space-alternating generalized EM (SAGE) algorithm [161] may provide a more feasible

solution. The essence of the SAGE algorithm is that the specification of the complete

data space, and, therefore, also the objective function, can be different for different

parameters of the vector θ1.

While the objective function Q1 defined in (278) can be used for estimating σ2
v and

the resulting estimator is a trivial modification of (161), given as

σ̂2
v

(i)
=

1

K

K∑

k=1

(
|r(k)|2 − 2ℜ

{
r∗(k)sT (k)B̂

(i)
f̂

(i)
(k|K)

}

+ s
T (k)B̂

(i)
Φ

(i)
k

(
B̂

(i))H
s
∗(k)

)
, (279)

the implementation of the M-step for the matrix B can be made easier by augmenting

the observed data vector more than was done in (278) (by increasing the dimensional-

ity of the missing data space). Specifically, similarly to (136), the received signal is

decomposed into independent multipath components as follows:

r(k) =

L+1∑

l=1

s(k − l + 1)bT
l f(k) + v̈l(k) =

L+1∑

l=1

xl(k), (280)

where bl denotes the lth column of BT and v̈l(k) denotes the zero-mean white Gaus-

sian noise component whose correlation properties are given as

1

2
E[v̈i(k)v̈j(k)] =

{
1

L+1σ2
v , i = j

0, i �= j.
(281)
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The objective function Q1 will now be redefined for the purpose of estimating B as

Q1

(
θ1

∣∣Θ̂(i−1)
)

= E
[
ln p(X|s, θ1,F)

∣∣r, s, Θ̂(i−1)
]
, (282)

where the complete data set is given as X =
{
{xl(k)}k=1,... ,K

l=1,... ,L+1

}
. The incomplete

data set is in this case given as Y = {r}, and there exists a many-to-one mapping from

X to Y given by (280). Expanding (282) and maximizing it over B yields

B̂
(i)

= B̂
(i−1)

+
1

L + 1

K∑

k=1

(
r(k)s∗(k)

(
f̂

(i)
(k|K)

)H

− s
∗(k)sT (k)B̂

(i−1)
Φ

(i)
k

)( K∑

k=1

Φ
(i)
k

)−1

. (283)

A common feature, however, is that by further augmenting the data vector, the conver-

gence speed of the resulting EM algorithm will become slower [161].

The operation of the above ARMA parameter estimator is illustrated with a simple

example, where a frequency selective channel with three independently fading, equal

power channel taps is employed. In Fig. 41, the estimated scattering function is overlaid

with the true scattering function when the ARMA(2,2) parametric channel model was

assumed and the length of the known data record was K = 400. The estimated ARMA

parameters were obtained via the SAGE algorithm (159),(160),(279),(283), and the es-

timates were averaged over 100 independent realizations. In the simulations, a correct

initialization for the SAGE algorithm was assumed.
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Fig 41. Scattering function estimates via the SAGE algorithm. The true power

spectral density is given by the dotted lines.

A recursive estimator for the AR parameters is given in (176). Similarly, a recursive

estimator for the MA parameters can be obtained from (174) by applying the stochas-

tic gradient approximation technique. Specifically, when using the objective function

(282), a recursive estimator with the tracking capability for the matrix B can be ex-

pressed as

B̂(k) = B̂(k − 1) + λB

(
r(k)s∗(k)f̂

H
(k|k) − s

∗(k)sT (k)B̂(k − 1)Φk|k

)
, (284)

where λB is a step-size parameter. When p > q, matrices Φk−1|k and Ψk|k (needed for

the recursive AR estimator) are obtained from the one-step Kalman smoother, whereas

the matrix Φk|k is obtained from the Kalman filtering equations. When p ≤ q, it

can be easily shown that the specific structure of the model matrices A and B allows

to compute the matrices Φk−1|k and Ψk|k by the standard Kalman filtering as well.

Therefore, in this specific case, the recursive estimators for the AR and MA parameters

are effectively cross-coupled with the standard Kalman filter and no matrix inversions

are needed at any phase of the estimation process.
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Appendix 4 A proof of Lemma 4 of Chapter 6

Proof of Lemma 4:

Proof. Using (221) and suppressing the iteration indices, we obtain that
∫ 2π

0

qφ(φ) ln p(r|s, φ)dφ

= − 1

σ2
v

∫ 2π

0

p(φ|r, s̄)
(∥∥r − sejφ

∥∥2
)
dφ + C

= − 1

σ2
v

(
r

H
r + s

H
s
)

+ A
2

σ2
v

1

2π

∫ 2π

0

e
2

σ2
v
ℜ
{
r

H
s̄ejφ

}
ℜ
{
r

H
sejφ

}
dφ + C

= − 1

σ2
v

(
r

H
r + s

H
s
)

+ A
2

σ2
v

1

2π

×
∫ 2π

0

e
2

σ2
v
|rH

s̄| cos(arg(rH
s̄)+φ)∣∣rH

s
∣∣ cos

(
arg(rH

s) + φ
)
dφ + C

= − 1

σ2
v

(
r

H
r + s

H
s
)

+ A
2

σ2
v

1

2π

×
∫ 2π

0

e
2

σ2
v
|rH

s̄| cos(φ)∣∣rH
s
∣∣ cos

(
arg(rH

s) − arg(rH
s̄) + φ

)
dφ + C

= − 1

σ2
v

(
r

H
r + s

H
s
)

+ A
2

σ2
v

∣∣rH
s
∣∣ cos

(
arg(rH

s) − arg(rH
s̄)
)

× 1

2π

∫ 2π

0

e
2

σ2
v
|rH

s̄| cos(φ)
cos(φ)dφ − A

2

σ2
v

∣∣rH
s
∣∣ sin

(
arg(rH

s) − arg(rH
s̄)
)

× 1

2π

∫ 2π

0

e
2

σ2
v
|rH

s̄| cos(φ)
sin(φ)dφ + C,

(285)

where C is a constant independent of φ and s, and

A =
1

p(r|s̄)
1

(πσ2
v)K

e
− 1

σ2
v

(rH
r+s̄

H
s̄) ≡ 1

I0

(
2

σ2
v
|rH s̄|

) . (286)

Inserting (286) into (285) and using the fact that
∫ 2π

0

e
2

σ2
v
|rH

s̄| cos(φ)
sin(φ)dφ = 0 (287)

yields
∫ 2π

0

qφ(φ) ln p(r|s, φ)dφ = − 1

σ2
v

(
r

H
r − 2ζ ℜ

{
r

H
s e−j arg(rH

s̄)
}

+ s
H
s

)
,
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where ζ =
I1

(
2

σ2
v
|rH

s̄|
)

I0

(
2

σ2
v
|rH s̄|

) . �
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