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Abstract

A family of iterative receivers is evaluated in terms of complexity and performance for the case of an uplink multi-
user (MU) multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system. The
transmission over block fading channels is considered. The analyzed class of receivers is performing channel
estimation inside the iterative detection loop, which has been shown to improve estimation performance. As part
of our results we illustrate the ability of this type of receiver to reduce the required amount of pilot symbols. A
remaining question to ask is which combinations of estimation and detection algorithms that provide the best
trade-off between performance and complexity. We address this issue by considering MU detectors and channel
estimators, with varying algorithm complexity. For MU detection, two algorithms based on parallel interference
cancellation (PIC) are considered and compared with the optimal symbol-wise maximum a-posteriori probability
(MAP) detector. For channel estimation, an algorithm performing joint minimum-mean-square-error (MMSE)
estimation is considered along with a low complexity replica making use of a Krylov subspace method. An
estimator based on the space alternating generalized expectation-maximization (SAGE) algorithm is also
considered. Our results show that low-complexity algorithms provide the best tradeoff, even though more receiver
iterations are needed to reach a desired performance.
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1 Introduction
In future wireless systems high data rate transmissions
need to be supported, requiring larger bandwidths to be
used. At the same time, spectral efficiency is becoming
increasingly important. A technology that has become
popular in later years, and also found its way into many
wireless standards such as, e.g., LTE [1], is the use of mul-
tiple-input multiple-output (MIMO) antenna systems in
combination with orthogonal frequency division multi-
plexing (OFDM). OFDM is used to efficiently combat
inter-symbol interference (ISI), inherent in broadband
transmissions, while MIMO is used for improving the
channel spectral efficiency and/or suppress interference.
Introducing multiple users (MU) into such systems, a

MU-MIMO-OFDM system is created. In the uplink,
accurate multi-user (MU) receivers are needed to harvest

the available gains. A significant number of algorithms,
with varying complexity, have been proposed for this
task; ranging from the simple zero-forcing detector to
the high complexity maximum-likelihood (ML) detector.
Please refer [2] for an overview.
The degree of channel state information (CSI) available

at the receiver plays an important role in the design of the
receiver structure. While it is convenient for theoretical
investigations to assume that perfect CSI is available, prac-
tical receivers need to obtain CSI via, e.g., noisy pilot sym-
bol observations. In the case of a large coherence time, the
accuracy of the channel estimate can be made high since
many symbols can be dedicated for pilot information with-
out any significant effect on the spectral efficiency. In fast
fading environments, or packet-based systems, the number
of pilot symbols must, however, be kept small to maintain
a reasonable spectral efficiency. To this end, other more
sophisticated transceiver structures have been developed
[3-5]. These receivers jointly detect the data symbols and
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estimate the transmission channel, which allows for a
lower number of inserted pilot symbols as compared to
traditional pilot based transceiver systems. While the pro-
spect of reducing the number of pilot symbols is impor-
tant, these receivers are of limited utility since they have
grossly larger computational complexity than traditional
pilot based receivers. This complexity amplifies dramati-
cally if the data is coded.
The discovery of the turbo principle [6] brought radical

changes to the entire communication field. It is today
understood that highly complex problems, such as jointly
detecting coded data and estimating the underlying trans-
mission channel, can be efficiently handled by iteratively
solving much simpler sub-problems. In particular, during
the last decade there has been a growing interest in itera-
tively solving the joint coded data detection and channel
estimation problem [7-10]. The receiver is alternating
between decoding of the outer error correcting code, per-
forming multi-user detection (MUD), and estimation the
transmission channel, in an iterative manner. In [10], a the-
oretical framework is presented for this, elsewhere ad-hoc,
choice of receiver design; strengthening the motive for this
choice.
Even though iterative algorithms can reduce the com-

plexity of the digital receiver, they may still be of prohibi-
tive complexity in many practical scenarios; representing
itself in a large chip area and high power consumption. It
is therefore important to find low-complexity algorithms
that are both power efficient and can deliver performance
required to reach high spectral efficiencies.
In the current literature, an impressive number of low-

complexity algorithms have been proposed for the differ-
ent components of an iterative receiver, see e.g., [11].
However, few have studied the trade-off between complex-
ity and performance for the entire receiver, including
MUD, channel estimation and channel decoder. In [12],
we have performed a trade-off analysis for an interleave
division multiple access (IDMA) system, where a number
of channel estimation algorithms are evaluated. One other
exception is [13], where the complexity and performance
of a set of receiver algorithms for MIMO multi-carrier
code division multiple access (MC-CDMA) systems are
investigated. In contrast to [13], this article evaluates a
family of iterative receivers for an uplink MU MIMO-
OFDM system, operating over block fading channels.
Furthermore, we have tried to place a greater focus on the
convergence properties of the different receiver configura-
tions. The convergence speed is important since more
iterations require a larger computational effort. Also
worth mentioning is the work in [14], where a perfor-
mance-complexity comparison of receivers for down-link
MIMO-OFDM systems is performed. Unlike in our com-
parison, the investigated receivers does not contain any
channel estimator.

In our evaluation, the complexity of all the building
blocks of the iterative receiver is derived, and related to
the system performance. Our results show that low-
complexity algorithms are generally sufficient, but more
complex schemes may be needed if convergence speed,
measured in iterations, is at focus. The main contribu-
tions are summarized as follows

- A tradeoff analysis between complexity and perfor-
mance is performed for a MU MIMO-OFDM system
incorporating iterative channel estimation and MUD.
Two popular channel estimation algorithms, one
based on expectation maximization (EM) [15], and
one performing a joint minimum-mean-square-error
(MMSE) estimation of all user channels [8,9], are
evaluated. A low-complexity approximation of the
latter based on a Krylov subspace projection method,
as presented in [13], is also evaluated. Three popular
MUDs are considered; two parallel interference can-
cellation (PIC) based detectors and one full maxi-
mum a-posteriori probability (MAP) detector. The
latter being a natural performance benchmark.
- In the tradeoff analysis, the total complexity, in
terms of complex multiplications, required to reach
a given bit error rate (BER) is derived for all algo-
rithm combinations at different signal-to-noise ratios
and number of users. The results show that low-
complexity schemes are generally providing the best
tradeoff.
- The convergence properties of the different recei-
ver combinations are presented, both in terms of
BER, mean square estimation error, and through the
use of extrinsic information transfer (EXIT) charts
[16]. The EXIT charts visualize the exchange of
extrinsic information between the outer code and
the rest of the receiver incorporating channel esti-
mation and MUD.

The rest of this article is organized as follows. In Sec-
tion 2, a description of the considered MU-MIMO-
OFDM system is given. The algorithms for obtaining
the channel estimate are presented in Section 3, and the
MUD algorithms in Section 4. In Section 5 the com-
plexity of the algorithms is discussed, and in Section 6
the performance of different algorithm combinations is
investigated. A complexity versus performance analysis
is performed in Section 7, before the paper is summar-
ized in Section 8.

2 System description
2.1 MU-MIMO-OFDM system overview
The MU-MIMO-OFDM system under consideration is
shown in Figure 1. It consists of K single-antenna users,
transmitting to a receiver (the base-station) equipped
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with N antennas. The users transmit blocks of S OFDM
symbols, each containing M sub-carriers. The first Sp
OFDM symbols are reserved for pilot symbols, which
are known to the receiver. The following Sd = S – Sp
OFDM symbols contain coded data. The total number
of information bearing signal constellation points per
block, transmitted from each user, then becomes L =
SdM. A forward error correcting code (FEC) with rate R
is used to generate codewords, which after interleaving,
are mapped onto the L signal constellation points. We
restrict our investigations to the case of QPSK. An
extension to other constellations is conceptually
straightforward, but in general non-trivial [17]. After
OFDM modulation and pilot insertion, the users trans-
mit their signals over a frequency selective block fading
channel, where the different multi-antenna links are
independent and identically distributed (IID). The block
fading assumption holds if the transmitted data blocks
are much shorter than the channel coherence time.
Thus, a system with short data blocks transmitted over
a channel with moderate Doppler spread is considered.
Furthermore, to allow for correct OFDM demodulation
at the receiver, the users are assumed to be synchro-
nized both in time and frequency. In frequency, the syn-
chronization requirement is strict, but due to the use of
a cyclic prefix (CP), the time requirement is somewhat
relaxed to the case where the difference in arrival times
is less than the duration of the CP minus the channel
delay spread.
At the receiver, the signal is demodulated into the com-

plex baseband, where an iterative receiver is implemented.
The complexity-performance trade-off of this receiver is
the focal point of this article. The receiver consists of
three blocks; a channel estimator, a MUD, and a bank of
soft-input-soft-output (SISO) channel decoders. First, an
initial channel estimation is performed, based on the

transmitted pilot symbols. This estimate is then used in
the MUD to separate the different user streams, which are
then fed to the SISO decoders after de-interleaving (Π-1).
The output of the decoders are then used in the next itera-
tion to update the channel estimate, and to further
improve the user separation in the MUD. Multiple itera-
tions are then performed in the same way. The different
components are described in detail in later sections.

2.2 Input-output relationship of the channel
Next we turn the attention to a description of the input-
output relationship of the channel used in this article.
The notation introduced here will also be used for the
description of the various algorithms. Furthermore, a
low-rank description of the channel, being used by the
channel estimation algorithms, is also introduced in
section.
Under the assumption of block-fading channels, the

discrete-time model for the received signal at the mth
subcarrier, during the transmission of OFDM symbol s,
can be written as

r[m, s] = H[m]x[m, s] + w[m, s]. (1)

where H [m] denotes the composite N × K channel
matrix

H[m] =

⎛
⎜⎝

h1,1[m] · · · h1,K[m]
...

. . .
...

hN,1[m] · · · hN,K[m]

⎞
⎟⎠ ,

from the K autonomous users to the N-antenna base-
station at subcarrier m. For later use, we define h:,k [m] =
[h1,k [m], ..., hN,k [m]]T and similarily for hn,:[m] and hn,k
[:].a Note that due to the block-fading assumption, the
matrix H [m] does not depend on s. Furthermore, r[m, s],
x[m, s], and w[m, s] are column vectors which contain
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Figure 1 A baseband model of a MIMO-OFDM system with K users. The receiver implements an iterative MU receiver with CE, MUD and a
bank of SISO decoders.
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the received signal, the composite transmitted vector
from the K users, and the noise vector (∼ CN (

0, σ 2
wI

)
distributed) respectively, at subcarrier m and OFDM
symbol s.
Let rn[m, s] denote the nth element of the vector r[m,

s]. For later use, we define the vector

rn[s] =
[
rn[1, s], rn[2, s], ..., rn[M, s]

]T,

which collects the received signals at antenna n and
OFDM symbol s, across all sub-carriers. Further, this
vector equals

rn[s] =
K∑

k=1

Xk[s]hk,n[:] + wn[s] 1 ≤ n ≤ N, (2)

where Xk[s] ∈ CM×M is a diagonal matrix which con-
tains user k’s transmitted data in OFDM symbol s along
its diagonal, and wn[s] ∈ CM×1 is a vector collecting the
noise at receive antenna n across subcarriers.
All channel estimation algorithms to be evaluated in

this article are based on low rank approximations of the
wireless channel. The assumption made is that the
channel is limited in the delay domain, and can there-
fore be accurately represented by a relatively small num-
ber of base functions. The optimal set of base functions
are presented in [18], and are known under the name
discrete prolate spheroidal (DPS) sequences. Their use
for low-complexity channel estimation were proposed in
[19], and estimators using the same type of base func-
tions have also been proposed in, e.g., [20].
Forming a base with I base functions, the frequency

response between user k and antenna n of the block fad-
ing channel may be expressed as

hk,n[:] = Uψk,n, (3)

in a notation similar to the one used in [20], where
U ∈ CM×I is a matrix collecting I orthonormal base
functions in its columns and ψk,n ∈ CI×1 is a vector con-
taining the corresponding channel DPS coefficients.
Note that ψk ,n can be interpreted as the impulse
response of the channel, though not mathematically cor-
rect unless U is the Fourier base. Using this model of
the channel, the received signal in (2) may be expressed
as

rn[s] =
k∑

k=1

Xk[s]Uψk,n + wn[s]. (4)

Now, by collecting the received signal for all S OFDM
symbols, and all receive antennas, in a vector, and in a
similar way collecting the channel coefficients, ψk,n, for
all users and antennas, the received signal may be
expressed using the classical linear model [8,21]. That is,

r = X̄NŪNψ + w (5)

= Ξψ + w, (6)

where r ∈ CSMN×1 is collecting the received signal in
all time-frequency positions and at all receive antennas,

Ξ ∈ CSMN×KNI is an observation matrix collecting the
transmitted symbols and channel base functions,
ψ ∈ CKNI×1 is collecting the channel coefficients for all
users, and w ∈ CSMN×1 is collecting noise. More expli-
citly, the data structures are given by: r = (rT[1],..., rT

[S])T, r[s] = (rT[1, s],..., rT[M, s])T, Ξ = X̄NŪN,

ψ =
(
ψT

1 , ..., ψT
N

)T
, ψn

(
ψT

n,1, ..., ψT
n,K

)T
.,

ψ =
(
ψT

1 , ..., ψT
N

)T
, ψn

(
ψT

n,1, ..., ψT
n,K

)T
..

The DPS base functions are obtained from solving the
eigenvalue equation [8,18,20], Cui = liui, where
C ∈ CM×M is a channel correlation matrix. For later use,
the eigenvalues li are collected in a vector, l = [l1,...,
lI]

T. For I ≥ ⌈τmaxM ⌉ + 1, where ⌈·⌉ denotes the ceil
operation, the energy of the eigenvalues are small and
can in general be neglected [18]. This value sets a
bound on the number of DPS sequences that are needed
to represent the channel in an accurate way.

3 Channel estimation algorithms
In order to achieve satisfactory detection performance,
high-accuracy channel estimates need to be made avail-
able at the receiver. A large number of appropriate algo-
rithms has been proposed in the literature. Amongst
these, two popular families of algorithms have received
a great deal of attention; algorithms performing joint
estimation for all users [8,22,23], and algorithms based
on interference cancellation [15,24]. In this article, two
algorithm from the first, and one from the second family
is considered. The algorithms make use of the trans-
mitted pilot symbols, as well as decoded data symbols.
Thus, they are all using the turbo principle to iteratively
improve the channel estimate as the reliability of the
decoded data symbols increases. Furthermore, the algo-
rithms have in common that they all use the same
underlying low-rank channel model, the one given in
Section 2.2.
The first algorithm, previously presented for MC-

CDMA systems in [8,25] and later for MIMO-OFDM in
[22], performs a joint MMSE estimate of the composite
channel matrices H [m] based on the model in (3). The
second algorithm, presented in [13] for MC-CDMA, uses
a Krylov subspace method to approximate a costly matrix
inverse in the joint MMSE estimator. The third algorithm,
based on [15], is using the EM framework, and iteratively
performs per-user channel estimation, i.e., estimates of the
columns of H [m]. We slightly modify the second algo-
rithm by using the improved space alternating generalized
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expectation-maximization (SAGE) [26] algorithm. The
three algorithms are described below.

3.1 Joint MMSE estimator using soft decisions (joint
MMSE)
The optimal channel estimation approach is to estimate
all user channels jointly, making use of both pilots and
soft estimates of the transmitted symbols, along with the
channel correlation properties. Based on the model for
the received signal given in (6), the optimal estimate of
the channel coefficients ψ (in the MMSE sense) can be
derived as [9]

ψ̂ =
(
Ξ̂

H
Δ−1Ξ̂ + C−1

ψ

)−1
Ξ̂

H
Δ−1r, (7)

where Ξ̂ has the same structure as Ξ, but contains both
known pilot symbols and soft estimates of the trans-
mitted data carrying symbols; Δ = diag(ϑ) + σ 2

wINMS,
with ϑ = (ϑT[1],..., ϑT[S])T, ϑ[s] = (ϑ[1, s],..., ϑ[M, s])T,

ϑ[m, s] =
(∑K

k=1

(
1 − ∣∣x̃k[m, s]

∣∣2
))

1N, and x̃k[m, s] are

either pilots or soft symbol outputs from the decoder,
and 1N is the all-ones column vector of length N. Further,

note that diag(ϑ) = E
{
ΞψψHΞH} − Ξ̂Cψ Ξ̂

H, and Cψ is

the covariance matrix of the DPS sequences.
Due to the sizes of the matrices involved in (7), the

computational complexity can be expected to be signifi-
cant. The computational burden is significantly
decreased, but still large, if the sparsity and regularity of

Ξ̂ is taken into account. We will elaborate more on this
in Section 5.

3.2 Krylov subspace reduced joint MMSE estimator using
soft decisions (Krylov MMSE)
As mentioned above, the implementation of the joint
MMSE estimator embeds a significant computational
cost. Multiplication of matrices of large dimensions,
along with a costly matrix inversion, adds greatly to the
receiver complexity. In [13] an approach to reduce these
costs was proposed. The algorithm is making use of a
Krylov subspace method, more precisely the uncondi-
tional conjugate gradient method [27], to iteratively
solve (7). The method iteratively finds the solution to
the linear equation system x = Ab, based on an initial

guess x0, using that A−1 =
∑R

r=1
arA

r ≈
∑SK

r=1
arA

r. The

number of terms Sk gives the dimensionality of the Kry-
lov subspace, and equals the number of iterations in the
algorithm.
Looking at (7), it can be rewritten as b = Aψ̂, where

b = Ξ̂
H
Δ−1r and A = Ξ̂

H
Δ−1Ξ̂ + C−1

ψ
. Without going

into any further details, the algorithm for obtaining the
approximate solution ψ̂s, based on an initial guess ψ̂0

and the subspace order Sk, is outlined in Table 1 as pre-
sented in [27]. In the first receiver iteration, ψ̂0 is set to
be the all one vector, while in the following iterations,
the estimate from the previous receiver iteration is used.
Note that the subspace order can either be fixed, or an
error threshold � could be used as a stopping criteria.
The former is chosen here in order to get a fixed algo-
rithm runtime and complexity.

3.3 SAGE based estimator (SAGE ML)
Even though the Krylov subspace method can signifi-
cantly reduce the complexity of the joint MMSE estima-
tor, the complexity is still high, since large matrix-vector
multiplications are required in each Krylov iteration. A
low-complexity alternative, which has shown good per-
formance, is to use an algorithm based on EM/SAGE. In
SAGE, given a received signal, the ML solution is itera-
tively generated based on an underlying subspace model
of the data. In [15] one such algorithm was presented,
producing an optimal low-rank MMSE estimate of the
channel. The details of that algorithm are outlined
below, where a conversion from EM to SAGE has been
performed.
The algorithm is processing one receive antenna chan-

nel at the time, based on the following underlying model
for the channel between user k and receive antenna n,

rk,n[s] = Xk[s]Uψk,n + wk[s], k = 1, 2, ..., K, (8)

where w[s] = Σk wk[s] is the complete noise vector. As
can be seen, rk,n[s] is the signal contribution from user
k, and summing over all users gives (2). For the problem

Table 1 Outline of the Krylov subspace projection
method

Steps

Input: A, b and ψ̂0

r = b − Aψ̂0
r1 = rHr

p = r

q = Ap

a = r1/pHq

ψ̂1 = ψ̂0 + αp
r = r - aq
for s = 2,..., Sk (or while rs > �)

rs = rHr

b = rs/rs-1
p = r + bp
q = Ap

a = rs/pHq

ψ̂s = ψ̂s−1 + αp
r = r - aq
end

Output: ψ̂Sk
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at hand, the SAGE algorithm is formulated as [15,26]

- Initialization: For all k and s

ŝ(0)
k,n [s] = X̃k[s]Uψ̂

(0)
k,n . (9)

- For each iteration i:
for k = 1 + [i modulo K], and for all s, compute

E − step : r̂(i)
k,n[s] = ŝ(i)

k,n[s] +

⎛
⎝rn[s] −

K∑
j=1

ŝ(i)
j,n[s]

⎞
⎠ (10)

M − step : ψ̂
(i+1)
k,n [s] = arg min

ψk,n[s]

(∥∥∥r̂(i)
k,n[s] − Xk[s]Uψk,n[s]

∥∥∥2
)
(11)

= ΔmUHX̂
H
k [s]r̂(i)

k,n[s], (12)

ψ̂
(i+1)
k,n =

1
S

S−1∑
s=0

ψ̂
(i+1)
k,n [s] =

1
S

ΔmUH
S−1∑
s=0

X̂
H
k [s]r̂(i)

k,n[s], (13)

ŝ(i+1)
k,n [s] = X̃k[s]Uψ̂

(i+1)
k,n . (14)

for all j, j ≠ k,

ŝ(i+1)
j,n [s] = ŝ(i)

j,n[s]. (15)

In (12), the matrix Δm = diag
(

λ1

λ1 + σ 2
w

, ...,
λI

λI + σ 2
w

)
stems from the low-rank MMSE estimator, and in (13)
averaging is performed to make use of the assumption
that the channel is static within a block.
The value of Xk [s] is only perfectly known at time

instances where pilots are transmitted. On all other
positions, symbol estimates must be used. The estimates
are updated by the SISO decoders in every iteration,
using the most recent channel estimate. Here, hard deci-
sions X̂k[s] = sign

(
X̃k[s]

)
of the decoded soft symbols

are used for channel estimation, and soft for interfer-
ence cancellation.
At the very first receiver iteration, no channel estimate

is available. Therefore, the algorithm is initialized with

ŝ(0)
k,n [s] = Xk[s]1M. Furthermore, to improve the accuracy

of the initial estimate, several internal iterations can be
performed within the estimator itself. This can be seen
as the algorithm being reinitialized with its own updated
channel estimate, without waiting for updates on the
symbol estimates. In this article, this is only performed

at the initial pilot based stage, where the gain is
observed to be the largest. In later stages, multiple inter-
nal iterations are not producing any significant gain,
thus mainly adding to the computational complexity.

4 Soft-input soft-output MU detectors
With estimates of the transmission channel having been
made available by the channel estimator, the next stage
of the iterative receiver structure is to produce likeli-
hood-ratios of the coded data symbols. This operation is
performed by the MUD, which apart from the received
signal and channel estimate, uses a-priori information of
the transmitted symbols. This information is provided,
from the previous iteration, by the channel decoder.
The optimal SISO detector is the symbol-wise MAP
detector, implemented through the BCJR algorithm [28].
Unfortunately, the complexity of the MAP detector in
the MIMO case is prohibitive in most situations, except
for the cases when the number of users K is small.
Therefore, reduced complexity techniques have to be
considered for most practical applications. Furthermore,
although optimal detection is not generally feasible in
practice, it remains important as a benchmark reference,
and will therefore be considered in this article. The
principles behind the MAP algorithm are outlined in
Section 4.1.
Many reduced complexity detection algorithms have

been proposed in the literature [2]. To restrict the inves-
tigations, two such algorithms have been selected and
are presented in Section 4.2. Both algorithms are based
on PIC. The first algorithm applies a matched filter
(MF) after the cancellation, while the other applies an
MMSE filter, in an attempt to further suppress the
inter-user interference. While the latter approach yields
better performance it is also more complex. In later sec-
tions we shall investigate whether the performance gain
motivates the increased complexity.

4.1 Maximum a-posteriori probability
As stated previously, the optimal MUD is the symbol-
wise MAP detector. While the PIC-based algorithms,
being introduced in Section 4.2, only make use of the
mean values x̃k[m, s], the symbol-wise MAP detector
works with the probability mass function of x[m,s],
denoted Pa(x[m, s]).
In the case of QPSK transmission, the data vector x

[m, s] contains 2K code bits, c1,..., c2K. The MAP detec-
tor computes the marginal mass functions, represented
by log-likelihood ratio (LLR) values, for these 2K bits:

Λ(cq) = log

⎛
⎜⎜⎜⎜⎝

∑
x:cq=1 exp

(
−

∥∥r[m, s] − H[m]x
∥∥2

σ 2
w

)
Pa(x)

∑
x:cq=0 exp

(
−

∥∥r[m, s] − H[m]x
∥∥2

σ 2
w

)
Pa(x)

⎞
⎟⎟⎟⎟⎠ , q = 1...2K. (16)
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As was discussed above, the complexity of the symbol-
wise MAP detector (16) may in many cases be prohibi-
tively large, showing the demand for low complexity
schemes.

4.2 PIC based detectors
A popular low-complexity approach is to make use of
interference cancellation. Though simple in their imple-
mentation, PIC based detectors have shown good per-
formance [8,10,29]. The interference cancellation is
operating separately on each subcarrier and OFDM
symbol, and makes use of the most recent channel esti-
mate Ĥ[m], and soft symbol estimates x̃[m, s] from the
SISO decoders. Following the notation in (1), the inter-
ference cancelled output for user k is given by

r̃k[m, s] = r[m, s] − Ĥ[m]x̃ �=k[m, s], (17)

where x̃ �=k[m, s] is equal to x̃[m, s], except for element k,
which is set to zero. A filtering of the signal r̃k[m, s] is then
applied to produce an estimate of the transmitted symbol
xk[m, s]. A mapping to LLR values then follows.
The first algorithm, which will be referred to as PIC-MF,

applies a MF to the interference cancelled output, i.e.,

x̃k[m, s] =
ĥ

H
k,:[m]∥∥∥ĥk,:[m]

∥∥∥2 r̃k[m, s], (18)

where ĥk,:[m] is an estimate of the channel between
user k and the base-station. In case of QPSK, the com-
plex valued LLRs (with one symbol per complex dimen-
sion) are produced as

Λk[m, s] =
2
∥∥∥ĥk,:[m]

∥∥∥2

σ 2
k

x̂k[m, s]. (19)

where

σ 2
k = σ 2

w +
∑
j�=k

∣∣∣ĥH
k,:[m]ĥj,:[m]

∣∣∣2 (
1 − ∣∣x̃j[m, s]

∣∣2
)

. (20)

is the variance of the residual interference plus noise
for user k.
The drawback of PIC-MF is that the noise and resi-

dual interference is not taken into account when per-
forming user separation. To alleviate this problem, an
MMSE filter can be applied instead of the MF. The
resulting algorithm will be referred to as PIC-MMSE.
An appropriate MMSE filter can be shown to yield [8]

x̂k[m, s] =
i(k)
K

T(
Ĥ

H
[m]Ĥ[m] + σ 2

wV−1
(k)[m, s]

)−1
Ĥ

H
[m]

i(k)
K

T(
Ĥ

H
[m]Ĥ[m] + σ 2

wV−1
(k)[m, s]

)−1
Ĥ

H
[m]ĥk,:[m]

r̃k[m, s],

where i(k)
K

is the kth column of Ik, and V(k)[m, s] = diag

(dk,1[m, s],..., dk,K[m, s]) is a diagonal matrix with ele-
ments

dk,k′ [m, s] =
{

1 − ∣∣x̃k′[m, s]
∣∣2, k′ �= k

1, k′ = k.

The output of the MMSE filter can be modeled as
x̂k[m, s] = xk[m, s] + vk[m, s], with vk[m, x] ∼ CN (

0, η2
k

)
,

where

η2
k [m, s] =

(
i(k)T
K

(
HH[m]H[m] + σ 2

wV−1
(k)[m, s]

)−1
HH[m]hk,:[m]

)−1

− 1. (21)

The complex LLR output is then produced as

Λk[m, s] =
2

η2
k [m, s]

x̂k[m, s]. (22)

5 Complexity analysis
When it comes to practical implementations of iterative
MU receivers, complexity considerations are of great
importance. Since several receiver iterations are generally
needed to reach a desired performance, the total computa-
tional effort can grow very large. To get an estimate of this
cost, we have chosen to present and compare the complex-
ity of the addressed algorithms in terms of the required
number of complex-valued multiplications. This measure
is chosen since it provides a reasonable estimate of the
complexity, while being analytically tractable. Obviously,
the final computational and hardware complexity depends
on a large number of parameters, such as memory require-
ments, parallelization, hardware reuse, word lengths, etc.
In the following sections, the complexities of the algo-

rithms for both MUD and channel estimation are pre-
sented. The expressions for the complexity of the SISO
decoder, not being treated in a separate section, is given
as derived in [30]. The expressions for the complexity per
user of the various algorithms are given in Table 2, where
the required number of complex multiplications per user
is shown. Also given in the table is an example of the
required number of multiplications per information bit,
given QPSK modulation and rate 1/2 convolutional code,
for the following system settings; N = 4 receive antennas,
K = 4 users, S = 20 OFDM symbols, Sp = 1 OFDM pilot
symbol, M = 256 subcarriers and I = 36 DPS sequences.
Note that the DPS sequences, which are used for channel
estimation, are assumed to be precalculated and read
from memory, thus their construction does not contri-
bute to the computational complexity.

5.1 Channel estimator complexity
Three different channel estimation algorithms were pre-
sented in Section 3, joint MMSE, Krylov MMSE and
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SAGE ML. As seen in Table 2, the difference in com-
plexity is significant. For the discussions below, we will
assume that the number of OFDM symbols in each
block is smaller than the number of subcarriers, i.e.,
S <M.
Looking at the first algorithm, the optimal joint MMSE

algorithm, the complexity is large, as previously dis-
cussed. Since all user channels are estimated jointly,
using all available frequency and time samples, the
dimensionality of the problem to solve becomes very
large. Looking at (7), a straightforward implementation
would be very costly due to the dimensionality of the
involved data structures. Fortunately, considerable reduc-
tions can be achieved. Firstly, under the assumption of
independent receive antenna channels, the same estima-
tor can be used independently on each antenna. Sec-
ondly, under the block fading assumption, the matrix
Ξ = X̄NŪN is the product of a block diagonal matrix and
a block matrix with diagonal sub-matrices. Thus, the
operations involving this structure can be computed effi-
ciently. It should be noted that under the assumption of
independent receive antennas, Ξ is block diagonal with
identical sub-matrices. The estimator only involve one of
these SM × KI submatrices. In the end, the main part of
the complexity is related to two operations; the product
of Ξ̂

H
Δ−1Ξ̂ and the inverse operation of a KI × KI

matrix. The computational complexity of the former is
approximately M(IK)2, while approximately (KI)3 for the
latter. For the system settings considered in this article
the two are of comparable size. Also note that the hermi-
tian properties of the data structures can be exploited to
further reduce complexity.
The second algorithm make use of a Krylov subspace

method to avoid the explicit matrix inversion in (7). At
the same time the explicit computation of Ξ̂

H
Δ−1Ξ̂ can

be avoided. This will be beneficial as long as S <M.
Referring back to Section 3.2 and Table 1, the main part
of the complexity lies in calculating Avs, which is per-
formed once for every subspace dimension SK. From a
complexity point of view, its preferable to keep SK low.
On the other hand, a too small value will provide a
poor approximation of the matrix inverse, and thus
poor performance. The value thus needs to be chosen
with care, trading complexity for performance. An
upper limit on the number of dimensions may be set by
timing constraints in the receiver.
The last algorithm, based on SAGE, has the lowest

complexity and performs a separate channel estimate for
each user channel. SAGE ML has less then half the com-
plexity of Krylov MMSE with SK = 1. This suboptimal
approach has an attractively low complexity and, as will
be seen in Section 6, also delivers good performance. The
complexity is linear in the number of user, i.e., the com-
plexity per user is constant. The main part of the com-
plexity is shared between the per symbol estimate, the
interference cancellation, and the subspace filtering, i.e.,
the utilization of the frequency correlation.
The former two is proportional to the number of

OFDM symbols S, while the latter to the subspace order
I, all with the same proportionality constant. The com-
plexity can thus be reduced by lowering the number of
OFDM symbols taken into account when performing the
estimation, or by reducing I. Both actions would come at
the price of a performance loss.

5.2 MUD complexity
As for the different channel estimation algorithms, the
complexity of the considered MUDs differ significantly,
as seen from Table 2. The one with the lowest complex-
ity is the PIC-MF, which due to its simplicity requires

Table 2 Expresions for the complexity per user for the different receiver components, as well as the required number
of complex multiplications per information bit

Algorithm Total no. of complex mult.* Mult. per bit

Channel estimators

SAGE ML 2MNS +2MNL +IN 24

Joint MMSE MS(3 + K) + KMI(1 + I) + K2I3 + N(MS + 2MI + KI2) 465

Krylov MMSE 3MS + MSN + 2IMN + CAx(Sk + 1) + IN(5Sk + 2) + 3NSk/K 145

with CAx = 3MSN+ IN(M +1)

Multi-user detection

PIC-MF 2MSN+4MS+MNK 13

PIC-MMSE 4SM + 3SMN + SMNK + SMK3 + MNK 97

MAP SMN22K/K 256

SISO decoder

MAP** (42M(S - Sp))/3 56

The latter is given for the case of N = 4 receive antennas, K = 4 users, M = 256 subcarriers, S = 20 and Sp = 1 OFDM symbol, and I = 36 DPS sequences. Further,
QPSK and a code rate of 1/2 is assumed. The subspace order in Krylov MMSE is set to SK = 5.

*The expressions are given per user and per transmitted data block.

**Expression valid for QPSK and a code rate of R = 1/2, and a factor of 3 is included for conversion between real and complex multiplications.
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relatively few arithmetic operations. The complexity is
shared between the interference cancellation plus MF,
and generating the LLRs. The former requiring a bit
more computational effort. Despite its low complexity,
as will be seen in Section 6, the performance is still
competitive at low user loads.
Using a soft information based MMSE filter instead of

the MF, the performance will be shown to improve. This
comes at a cost of an increased complexity due to the
MMSE filter in (21) which needs to be calculated for each
user and for each data symbol. The filter includes an
inverse of a K × K matrix. At high user loads, computing
the inverse will dominate the complexity. If the number of
users grow very large, subspace methods as the one used
in the Krylov MMSE estimator could be used to reduce
the complexity.
If the optimal MAP receiver is considered, the complex-

ity is significantly increased. The complexity, as derived in
[31], grows exponentially in the number of users. For few
users, the complexity is manageable, but as the number of
users grows, it rapidly becomes prohibitive. It should be
noted that there exist a number of reduced complexity
MAP-like detectors which are based upon searching trees
[32,33], which are not included in our comparison.

6 Simulation results
In order to investigate the receiver performance under
the use of the different algorithms, computer simulations
were performed. In the simulations, each user transmits
S = 20 OFDM symbols, each with M = 256 subcarriers. If
nothing else is stated, a single OFDM symbol is dedicated
for training information, i.e., Sp = 1, which is generated
randomly for each user. Non-orthogonal transmission of
the pilot symbols are assumed, i.e., all users transmit
their pilot symbols simultaneously in time and frequency.
This may incur a loss in performance, but is motivated
by the flexibility it brings to the system configuration if
varying number of users is to be supported. A rate 1/2
convo-lutional code with generator polynomial (7, 5)8 is
used to generate the code bits, which after random inter-
leaving are mapped to QPSK symbols. For the receiver,
we are restricting the investigation to N = 4 antennas,
while different number of transmitting users are
considered.
A fading multi-path IID channel is assumed, mimick-

ing a rich scattering environment. The channel impulse
response between user k and receive antenna n is given
by [34]

gk,n(τ ) =
P−1∑
p=0

αp,k,nδ
(
τ − τp,k,n

)
,

where ap,k,n are zero-mean complex Gaussian random
variables with an exponential power delay profile,

θ
(
τp,k,n

)
= Ce−τp,k,n/τrms, where C is a constant, and the

delays τp,k,n are uniformly distributed within the CP. In
this article, the length of the channel, normalized to the
symbol duration, is τmax = 0.1, the root mean square
delay spread set to τrms = 0.03, and the number of
multi-path components P = 100. The channel delay is
assumed to be no longer than the CP, and the block
fading channel is generated independently for each user
and receive antenna link. The number of DPS sequences
used in the channel estimation process is chosen as I =
36, guided by the discussion in Section 2.2, and adding
a few for improved performance at high SNR. The sub-
space order in Krylov MMSE estimator is set to Sk = 5,
if nothing else is stated.
In the following, the motive behind performing the

complex operation of channel estimation in the loop of
an iterative receiver is first illustrated with an example. In
the example, the average BER performance at different
Eb/N0 is compared for receivers using the channel esti-
mator inside or outside of the iterative loop. It will be
seen that the gains by performing the estimation inside
the loop can provide significant performance gains. Here,
Eb is the average bit energy at the receiver. Furthermore,
the impact of the array gain has been removed by scaling
the noise variance by N.
We then study the evolution of the BER and MSE of the

channel estimate, over the receiver iterations. This is done
for different user loads. The results illustrate the difference
in convergence speed of the different receiver configura-
tions, which is important when assessing the total compu-
tational complexity needed to reach a certain level of
performance. Finally, the convergence analysis is extended
with the use of EXIT charts; providing additional insight
on the receiver.

6.1 Illustration of the gains of using channel estimation
inside the detection loop
As was seen in Section 5, performing channel estima-
tion adds significantly to the total receiver complexity.
Furthermore, having the estimation inside the loop of
an iterative receiver, this costly operation needs to be
performed multiple times. It would therefore, from a
complexity point of view, be attractive to move the
estimation outside the loop, only performing it once
for each code block based on the transmitted pilot
symbols.
To illustrate the motive behind using the channel esti-

mation inside the iterative receiver, simulations are per-
formed for a system with N = 4 receive antennas and K =
4 users. Two different receiver configurations are consid-
ered. The first is performing pilot based channel estima-
tion only, while the other is performing channel
estimation inside the iterative loop. For both receivers,
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the MAP MUD is used in combination with the joint
MMSE channel estimator. In Figure 2, the BER perfor-
mance is shown for different number of pilot symbols
transmitted. For the purely iterative receiver, only one
pilot OFDM symbol is used, while for the other receiver
Sp = 1,2 and ten pilot symbols are transmitted. For com-
parison, single user performance when perfect channel
state information (PCSI) is available at the receiver is also
shown. Also, an example with orthogonal pilots is pro-
vided, where the users consecutively transmit one pilot
symbol each during the first four symbol intervals. Each
pilot have been boosted, containing the equivalent energy
of four regular symbols.
As seen from the figure, if only pilot based estimates

are used, there is a significant performance loss, as com-
pared to when using channel estimation in the iterative
loop. For few pilot symbols, a loss in performance of 1-3
dB is observed, while if the number of pilot symbols is
increased to Sp = 10, the loss is small. Remember that the

total number of OFDM symbols in a block is S = 20, thus
transmitting ten symbols yields a 50% pilot overhead,
which is unacceptable for most applications. Transmit-
ting orthogonal boosted pilots also result in a loss of up
to 1 dB. The performance achieved with orthogonal
pilots is only slightly better than when transmitting Sp =
4 non-orthogonal pilots, since joint channel estimation is
performed. Furthermore, if iteratively updating the chan-
nel estimates, close to single user performance with PCSI
is achieved. It can therefore be concluded that the use of
channel estimation inside an iterative receiver can give
significant performance gains, as compared to pure pilot
based approaches. This means that pilot density can be
kept low, without sacrificing performance, thus improv-
ing the system throughput.

6.2 Convergence performance: BER and MSE
In the previous section we illustrated how iterative chan-
nel estimation can provide a significant performance
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Figure 2 The BER at different Eb/N0 for N = 4 receive antennas and K = 4 users. Different number of pilot OFDM symbols are used, Sp =
1,2 and 10, where the total number of symbols is S = 20. Also shown is the performance obtained when using the channel estimator in the
loop of the iterative receiver, as well as single user performance with PCSI, and the case of orthogonal boosted pilots. The MAP MUD and joint
MMSE estimator is used.
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gain. At the same time, the complexity can be significant,
as seen in Section 5. Since the computational cost
increases linearly with the number of iterations, the con-
vergence properties of the different receiver configura-
tions are of importance. To illustrate their properties, the
BER as well as the MSE is shown, as a function of the
number of iterations, in Figures 3 and 4, respectively.
The results are shown for the cases of K = 4 and 7 users,
at an Eb/N0 = 10dB.
Starting with the BER in Figure 3, it is clear that con-

vergence properties differ between algorithm combina-
tions. At the smaller user load, i.e., K = 4, the difference
in convergence is relatively small, with all algorithms
reaching roughly the same BER within 3-8 iterations. The
fastest convergence is achieved using the MAP based
MUD with joint MMSE channel estimation, while the
slowest is obtained if using the PIC-MF detector with
SAGE ML estimation. By using the MMSE Krylov esti-
mator with SK = 5, a small performance loss as compared
to joint MMSE is observed. Increasing this value to SK =
10, close to joint MMSE performance has been observed.
Looking at a system load of K = 7 users, a similar

behavior as with K = 4 is seen. Comparing the perfor-
mance achieved when using the different MUDs, the best
performance is given by the MAP. A gain of 1-5 itera-
tions over the PIC-MMSE detector is observed. There is
a large difference in convergence depending on which
estimator is used, and additional insight on this will be
given when looking at the EXIT charts in the next sec-
tion. Furthermore, at this high user load, the PIC-MF can
not provide sufficient detection performance for receiver
convergence. It is also interesting to note that perfor-
mance close to that of a single user with PCSI at the
receiver is achieved for all receiver configurations, except
for PIC-MF at K = 7 users. This illustrate the good per-
formance obtained by the iterative receiver.
Looking at the average MSE, as shown in Figure 4,

similar trends as for the BER are seen. The convergence
speed of the joint MMSE estimator is better than that of
SAGE ML, and the difference increases with the user
load. Furthermore, in the first iteration, only pilot sym-
bols are used for channel estimation, and a large MSE is
obtained due to the relatively small number of available
pilots. In the iterative process, as the reliability of the

iterations
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Figure 3 The BER convergence for the different algorithms for N = 4 receive antennas, K = 4 and 7 users, at an Eb/N0 = 10dB.
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symbol estimates increases with iterations, so does the
accuracy of the channel estimate.

6.3 Convergence performance: EXIT charts
Even though the BER and MSE convergence provide
some insight on the behavior of the different algorithms,
they have some limitations. One significant drawback is
that the performance of the channel estimation and
detection algorithms cannot be separated from that of
the code. Other means are therefore of interest for the
receiver evaluation.
One popular technique for visualizing the convergence

behavior of iterative decoders is the EXIT charts [16]. The
charts are used to visualize the exchange of extrinsic infor-
mation between the SISO units making up an iterative
decoder. In [35], it was shown that the MUD could be
seen as SISO unit being serially concatenated with the
outer channel decoder. In our case, we have three units,
the MUD, the channel estimator and the decoder. Even
though it is possible to visualize the exchange between all
three SISO units [36,37], it is more convenient to combine

the estimator and the MUD into a single SISO unit [38],
referred to as MUD/CE.
In order to produce an EXIT chart, information trans-

fer functions of the SISO units have to be produced.
Each unit can be seen an LLR transformer (Λa ® Λext),
where the transfer function measures the improvement
of the LLR-transformation in terms of mutual informa-
tion between the LLRs and the underlying variables x.
The transfer function is given as [39]

Iext = T(Ia), (23)

where Ia = I (x; Λa) is the a priori input mutual infor-
mation and Iext = I (x; Λext) is the output extrinsic
information.
When producing the transfer functions, all elements of

Λext (becoming Λa for the next component decoder) are
assumed independent and to follow a Gaussian distribu-
tion, N (

xμext, σ 2
ext

)
, with consistency condition

μext = σ 2
ext/2 and where x = ±1. With this distribution of

the LLRs, there is a one-to-one mapping between the
mutual information Iext and the variance σ 2

ext given by

iterations
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Figure 4 The MSE convergence for the different algorithms for N = 4 receive antennas, K = 4 and 7 users, at an Eb/N0 = 10 dB.
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Iext = J(σext), (24)

where the J-function is defined in [16]. When generat-
ing the transfer functions, the J-function is used for gen-
erating input sequences with different a priori
information content. More specifically, given an input
symbol x, and a value for the a priori information Ia, the
input LLRs are given by

Λext (Ia) =
σ 2

ext

2
x + wσext, (25)

where w ∼ N (0, 1), and σ 2
ext = J−1(Ia).

For the MUD/CE, as shown in Figure 1, the transfer
function is now derived for a number of Iext Î [0,1]. We
first generate the soft input symbols x̃k = tanh

(
Λext(Ia)/2

)
and the known pilot symbols for all users. After QPSK
mapping, channel estimation and MUD is performed. The
LLR output generated by the MUD is then feed to a sink,
where the mutual information is computed through [39]

Iext =
1
2

∑
x=±1

∞∫
−∞

p(x̂|x)log2

(
2p(x̂|x)

p(x̂| − 1) + p(x̂|1)

)
dx̂,(26)

where the probability density function, p
(

d̂|d
)
, is

approximated using histogram calculations. The transfer
functions are then averaged over 20 channel realizations.
The transfer function for the SISO decoder is obtained
in a similar way.
When generating the transfer function for the MUD/

CE, the initial guess for the Krylov MMSE and SAGE
ML has to be provided. In the receiver this value is
given by the estimate obtained in the previous iteration.
Since this value is unknown, we solve it by running the
channel estimator twice, first initialized with the all one
channel then reinitialized with the new output. This
potentially leads to an over estimated performance at
high Iext. For SAGE ML this also leads to an under esti-
mated performance at low values.
In Figure 5 the EXIT chart is shown for the different

receiver combinations for the case of N = 4 receive
antennas and K = 4 users at Eb/N0 = 10 dB. The trans-
fer functions in the case of PCSI is also shown. Further-
more, the convergence path for PIC-MF with SAGE ML
estimation is shown as a dashed line, and the receiver is
estimated to converge in five iterations. This coincides
with the observation for the BER in Figure 3. For the
receivers where SAGE ML is used, a dip is seen in the
transfer function at low Ia. This occurs since the algo-
rithm is not taking the quality of the soft symbols into
account, thus producing estimates based on very unreli-
able hard estimates of the transmitted symbols. This dip
could be partly removed if only pilots are considered (Ia

= 0) in the estimator if the reliability of the produced
soft symbols are low.
Comparing the channel estimation algorithms, Krylov

MMSE, used with SK = 5, delivers performance identical
to Joint MMSE. For SAGE ML, the performance is
much worse, but the performance at low Ia is somewhat
underestimated as discussed above. From Figure 5, we
also see the impact of inaccurate CSI, illustrating itself
by a gap between the transfer functions obtained when
using the channel estimation and when having PCSI. As
the reliability of the a priori information increases, this
gap is decreased since the produced estimates become
increasingly accurate. Looking at the MUDs, the MAP
obviously has the best performance, followed by PIC-
MMSE and PIC-MF. Furthermore, when the SNR is
reduced (essentially leading to downward shift of the
transfer functions of the MUD/CE), or when increasing
the user load (essentially changing the slope of the
transfer functions), the PIC-MF will be the first MUD
closing the gap to the SISO decoder transfer function,
and thus failing to converge.
Overall, we see that the insight given by the EXIT

chart matches fairly well with what was observed for the
BER. Furthermore, observing the MAP detector for K =
7 users in Figure 3, large difference in convergence per-
formance between using the MMSE estimators or SAGE
ML was observed. This could be explained by the fact
that the gap in the EXIT chart is smaller for the latter
estimator. From a algorithm design point of view, it is
also interesting to observe that for the case presented in
Figure 5 there is still room for further simplifications of
the receiver structure. Additionally, the performance
obtained when using an alternative channel code can be
estimated by replacing the transfer function for the cho-
sen convolutional code in Figure 5.

7 Complexity versus performance trade-off
From a receiver design point of view, the trade-off
between performance and complexity is an important
aspect. In an attempt to shed some light on this aspect,
the total receiver complexity, in terms of the number of
complex multiplications, needed to reach a specific tar-
get BER is investigated. The total complexity depends
both on the choice of channel estimator and MUD, as
well as on the number of iterations needed to reach the
target. For the evaluation, a target BER of 10-3 is chosen.
The system settings are the same as described in Section
6, i.e., N = 4 receive antennas, Sp = 1 and S = 20 OFDM
symbols, M = 256 subcarriers and I = 36 DPS
sequences. The subspace order in Krylov MMSE is set
to SK = 5.
To start with, the case of K = 4 users, signaling at an

Eb/N0 = 10dB, is considered. In Figure 6, the BER is

Hammarberg et al. EURASIP Journal on Wireless Communications and
Networking 2012, 2012:75
http://jwcn.eurasipjournals.com/content/2012/1/75

Page 13 of 17



plotted versus the number of complex multiplications,
for the different combinations of the MUD and channel
estimation algorithms.
As was previously seen in Figure 3, under these sys-

tem settings, all receivers reach the same BER perfor-
mance of ~10-4. On the other hand, looking at the
number of multiplications needed to reach this value,
there is more than an order of magnitude difference
between the receiver configurations. The receiver con-
figurations using the MAP detector is found on the
right, requiring the largest number of multiplications to
reach convergence. To the left, we find the PIC based
MUDs using SAGE ML, providing the cheapest alterna-
tive. Looking at the target BER of 10-3, the algorithms
with the lowest total complexity is PIC-MF followed by
PIC-MMSE. Reaching the target in about 70 and 100
complex multiplications per information bit, respec-
tively. When using the MMSE Krylov estimator, we see
that PIC-MF and PIC-MMSE reach the target using
approximately the same number of multiplications,
though PIC-MF require one more iteration.

Finally, an overview of which algorithm combinations
to choose in different scenarios is given. In Figure 7, the
receiver configuration with the lowest total complexity,
at different user loads and Eb/N0, is shown for a target
BER of 10-3. The shape indicates which MUD that is
used, while the color indicates the choice of channel esti-
mation algorithm. Due to their large complexity, neither
the MAP detector, nor the joint MMSE estimator are
competitive in any of the evaluated scenarios - not even
at high system loads. Note that eight users is at the bor-
der of what the system can handle, still, even with sub-
optimal algorithms, low BER can be achieved. Overall,
the most favorable receiver configuration to use, from a
complexity point of view, is the PIC-MF MUD combined
with the SAGE ML estimator. At higher user loads
though, the PIC-MMSE detector gives the best trade-off
between complexity and performance. For channel esti-
mation, using anything but SAGE ML is in general not
required for the considered system.
The results shown in Figure 7 take the overall compu-

tational complexity into account and may therefore fail to
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Figure 5 EXIT chart for the case of N = 4 receive antennas, K = 4 users, Sp = 1 and S = 20 OFDM symbols, M = 256 subcarriers and I =
36 DPS sequences.
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show other interesting trade-offs. An example of this is
seen in Figure 3, where the difference in convergence
speed between the algorithms is large. Depending on the
hardware architecture used, this may affect the latency of
the system, and for time critical systems, the choice of
algorithm combinations may therefore be another. We
believe, however, that our evaluation shows that combi-
nations of algorithms with low computational complexity,
when used in an in an iterative receiver, can deliver very
competitive performance for a large range of scenarios.

8 Conclusion
In this article, we have studied the trade-off between
complexity and performance for uplink receivers in a
packet based MU MIMO-OFDM system. The considered
iterative receivers contained three main components; a
MUD, a channel estimator and a con-volutional decoder.
Three different MUD algorithms were considered, two
suboptimal approaches based on PIC and one optimal
based on MAP. For channel estimation, three algorithms
were evaluated, one optimal joint MMSE based

estimator, a low complexity Krylov subspace based ver-
sion of the same, and one sub-optimal based on SAGE.
The difference in complexity between the algorithms
were shown to be large.
When only considering performance, the high com-

plexity algorithms naturally showed the fastest conver-
gence. The low-complexity algorithms showed similar
BER performance as the more complex ones, when con-
verging, but at a generally slower convergence speed.
More insight on the convergence was also provided
through EXIT charts. When taking complexity into
account, we demonstrate that the sub-optimal low-com-
plexity algorithms are often the most attractive choice.
Even though a larger number of receiver iterations were
needed, the total number of complex multiplications was
still lower, due to a significantly lower computational
cost per-iteration. At the same time, it should be noted
that the most simple receiver failed earlier than the
others at high user loads, which indicates that an appro-
priate balance between complexity reduction and perfor-
mance needs to be achieved. Furthermore, for time
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critical systems where convergence speed is at focus, high
complexity algorithms may be a better choice.

Endnote
aIn general the notation will be that sub-indices state
which user and receive antenna is considered, while the
time and frequency position will be given in brackets.
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