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Iterative Refinement Implies Numerical Stability
for Gaussian Elimination

By Robert D. Skeel*

Abstract.   Because of scaling problems, Gaussian elimination with pivoting is not always

as accurate as one might reasonably expect.   It is shown that even a single iteration of

iterative refinement in single precision is enough to make Gaussian elimination stable in

a very strong sense.   Also, it is shown that without iterative refinement row pivoting is

inferior to column pivoting in situations where the norm of the residual is important.

1.  Introduction.  It is well known that Gaussian elimination with pivoting is a
stable algorithm for solving linear systems of equations in the sense that the computed
solution exactly satisfies a linear system whose coefficient matrix differs slightly in
norm from the given matrix.  For this reason it is often thought that iterative refine-
ment is not worthwhile unless either the data are known with great accuracy or one
wishes to detect ill-conditioning.  However, it has been pointed out (Hamming (1971),
Gear (1975)) that Gaussian elimination is not as accurate as one might reasonably ex-
pect in that the computed solution may not exactly satisfy a linear system with each
coefficient slightly different from that given.  It is shown in Skeel (1979) that stability
in this strong sense is possible if an appropriate implicit scaling of the rows and/or
columns is used with the pivoting.  Unfortunately the proper scaling requires estimates
of the solution components.  It is the purpose of this paper to show that the effects
of improper scaling can be eliminated by performing iterative refinement even if the
residuals are not accumulated in double precision.  Therefore, iterative refinement
would be worthwhile for problems that may not be scaled properly for Gaussian elimi-
nation.  The computational cost is often small, but this is not always true due to the
necessity of storing the original matrix.

The title of this paper is adapted from a related paper of Jankowski and
Wozniakowski (1977).  The principal result of their paper is that almost any linear
equation solver can be made stable in the usual sense by performing iterative refinement
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818 ROBERT D. SKEEL

even if single precision is used throughout.  In contrast, our paper shows that a particu-
lar algorithm which is already stable in the usual sense becomes stable in the strong
sense when iterative refinement is performed.  These latter results are obtained primar-
ily through the use of componentwise absolute values instead of norms for the round-
off error analysis.

In Section 2 three stability concepts are defined which are motivated by the de-
sire to compare the solution computed by the algorithm with solutions obtained by in-
troducing small errors in each of the entries of the coefficient matrix.

In Section 3 a good error bound is given and numerical stability is discussed for
Gaussian elimination with column pivoting, which is the usual variant of partial pivot-
ing in which the largest element of the next column is used for a pivot.

In Section 4 bounds on the residual and the error are obtained for column pivot-
ing with iterative refinement. Both s.p.r.a. (single precision residual accumulation) and
d.p.r.a. (double precision residual accumulation) are considered.

In Section 5 the numerical stability of iterative refinement is examined, and it is
shown that a single iteration in single precision is enough for stability. Still better be-
havior is possible with further iterations or with double precision residuals.

In Section 6 an error bound is given for Gaussian elimination with row pivoting,
which means that columns are interchanged so that each pivot is the largest in its row.
The interesting result here is that without iterative refinement the norm of the residual
can be much larger than for column pivoting; otherwise, little can be said about the rel-
ative merits of the two types of partial pivoting.

2. Numerical Stability.  Three stability concepts are discussed for algorithms
that solve a system Ax = b of n equations in n unknowns.

A floating-point number system consists of a subset of the reals for which floating-
point operations +, -, x, and / are defined.  It is assumed that the relative roundoff er-
ror of floating-point arithmetic is bounded by a minuscule positive number u satisfying
the restriction nu < .01 of Forsythe and Moler (1967).  Every reference to a floating-
point result xôy carries with it the assumption that x, b, and y are such that the result
is well defined.

For a roundoff error analysis it is helpful to have some reasonable standard for
comparison.  As our standard, we would like to consider the slightly perturbed solution
of a slightly perturbed problem; more specifically, errors of relative size < e are intro-
duced into the problem data, and then errors of relative size < e are introduced into
the exact solution of the perturbed problem.  For the particular problem of solving a
linear system Ax = b there are indications (see Skeel (1979)) that it makes little differ-
ence if only the matrix A is perturbed, and so we consider solutions x + Sx =
(A + 8A)~1b for 8A smaller than A by a factor of e.  It is usual to consider 8A such
that \\8A\\ < elL4ll, but it may be preferable (see Skeel (1979)) to be more restrictive
by requiring that \8A I < e\A I, where the inequality and the absolute value are to be
understood in a componentwise sense.

There are various ways of relating the computed solution x to the solutions x +
6x of perturbed problems.  One way is the backward error tj,.which is defined to be the
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NUMERICAL STABILITY FOR GAUSSIAN ELIMINATION 819

least amount by which A must be perturbed to get a solution x + 5x which is exactly
equal to x.  The requirement that x + 8x = x can be quite demanding, and so we also
wish to consider less stringent conditions. We can ask instead only that x + Sx be in
some sense as bad a solution as x. We consider two measures of the badness of the
solution:   the norm of the residual and the norm of the error.

Definition.   Let AeiA, b) = {5x: (A + 8A)(x + 5x) = b where 15,4 I < e\A I }.
The backward errors are defined by

i? = inf{e: x = x + 8x for some 5x G A£(,4, b)},
17* = inf{e: lUx - b\\ = lUSxl for some 5x G Ae(A, b)},
if = inf{e: llx - xll = 115x11 for some Sx G Ae04, b)}.

Only absolute norms will be considered, namely those for which

Il lui II = Hull

for any vector v. Bauer, Stoer, and Witzgall (1961) show that this property is equiv-
alent to monotonicity, which means that

Hull < llwll    whenever lui < Iwl.

In addition, it is convenient to assume that the problem has been scaled so that the
norm can be chosen so that II eJ = 1, 1 < / < n.  (Extension of the results to weighted
norms would be straightforward.)  Under these assumptions it is easily shown that
IIuII„ < Hull < llullj for any vector v. The norm is to be extended to row vectors and
matrices in the usual way.

By stability of an algorithm it is meant that there exists a stability constant k(ri)
and a stability threshold u(ri) such that the backward error tj < k(n)u whenever « <
u(n).  However, this definition is difficult to apply, and so we relax it by allowing
u(n) to depend on the data (A, b) (cf. Jankowski and Wozniakowski (1977) and the
asymptotic backward stability of Miller (1972)).  An algorithm will be called Ä-stable
if there exists a constant k(n) such that rf < k(n)u for sufficiently small u and in-
stable if V   < k(ri)u.   Since both 17* and rf are < 77, it is clear that stability implies
both R- and ¿"-stability.

The following theorem gives in terms of x an expression for t? which is useful
both theoretically and computationally.

Theorem 2.1 (Oettli and Prager, (1964)).   77ie backward error 77 of the com-
puted solution x satisfies

\Ax-b\
T? = maxT4mr

if \A\\x\ > 0, where division of two vectors is defined componentwise.

Proof.   This is similar to Eq. (4.2) of Oettli and Prager (1964).  A slightly stronger
result without the hypothesis \A I Ixl > 0 is proved in Skeel (1979).  D

It does not seem possible to obtain similar expressions for t^ and rf; however,
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820 ROBERT D. SKEEL

the next two theorems give excellent upper and lower bounds which are useful theo-
retically.  These bounds contain the quantities

KiA~i)= lUIU-Ml    and    k(A)= II U'11 Ulli.

It is important to note that k is being used in a nonstandard way, for it does not de-
note a condition number defined in terms of norms.

Theorem 2.2.   The backward error rf of the computed solution x satisfies

lUx-ill _ \\Ax-b\\
Il UI Ix III + k(A~1)IAx - b\\ \\\A\\x\\\ - k(A~1)\\Ax - b\

provided that the denominator is positive; alternatively,

WAx-bW
nR< IIUIIxllL- WAx-bW

provided that the denominator is positive.

Proof of Lower Bound.   Let e be any real such that \\Ax - b\\ = \\A8x\\ for
some 5x which satisfies (A + 8A)(x + 8x) = b where lô^4 I < eU I. Then

IUSxII = II - 8Ax - 8AA~xA8x\\ < e{ II \A\\x\ II + k^-^IUSxII },

which provides a lower bound on e and hence on 77  .  D
Proof of First Upper Bound.   For e > 0 define

8A = eUldiag(sgn(x))

and define Sx = (A + 8A)~1b - x so that 8x is a rational function of e where remov-
able singularities are assumed to be removed.  Hence, 11.45x11 is a continuous function
of e except at poles of 5x where 11,45x11 = + <*>.  For values of e not equal to poles of
5x it can be shown that (A + 8A)(x + 5x) = b (although it may not be true that
A + 8A is nonsingular).  Equivalently

8Ax =-a + 8AA~l)A8x,

whence

115.4x11 < H/ + eUIU_1IIIIU5xll

and

ellUllxlll
(2.1) lUôxll > —-j^zr

1 + eKiA'1)

Hence for e>0, 11,45x11 assumes all nonnegative values less than II \A\ Ixl \\¡k(A~1).  By
assumption the norm of the residual is less than this value and, therefore, choose e so
that 11.45x11 = Ili4x - b\\.  Since e cannot be a pole of 5x, we have (A + 8A)(x + 5x)
= b; and since 15.41 < e\A\, it follows that 77^ < e.  Solving (2.1) for e and substitut-
ing ll.4ic - ¿>ll for II.45x11 establishes the bound.  D
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NUMERICAL STABILITY FOR GAUSSIAN ELIMINATION 821

Proof of the Second Upper Bound.   For e > 0 define

8A = e(l + 2eT1A(eI + (1 + e)E),

where

E = diag(sgn(ef.4)) diag(sgn(x));

and / is such that eJ\A I Ixl = II UI Ixl II«,. Hence,

(A + 8A)~l = (/ - e(l + ey1Eyrl   and  8x = (A + 8A)~lb - x = -e(l + e)-1^,

whence the residual ,4Sx = -e(l + e)_1,4£x.   Thus,

\efA8x\<e(l + e)-1 II \A\ Ixl IL

with equality for i = /, and so

(2.2) lUôxll > IUSxL = e(l + e)-1 II Ul Ixl L.

Therefore, 11,46x11 assumes all nonnegative values less than II \A I Ixl II,,,; and so we may
choose e so that lUSxll = lUx - ell.  Since (A + 8A^x + 5x) = b and 15.4 I < eU I,
it follows that t?* < e.  Solving (2.2) for e and substituting I Ax - ¿>ll for 11,45x11 es-
tablishes the bound.  □

Theorem 2.3.   The backward error rf of the computed solution x satisfies

_llx-xll_      E     _llx-xll_
IIU-HUIIxlll + x(,4)llx-xll     n    * IIU-1IUIIxIIL-kU)IIx-xII

provided that the denominator is positive.

Proof of Lower Bound.  Let e be any real such that llx-xll = 115x11 for some
5x which satisfies (A + 8Ä)(x + 5x) = b where 15,41 < e\A I.  Then

116x11 = II -A-l&Ax-A-lMbtKe{MA-l\\A\\x\l + «(,4)115x11 },

which provides a lower bound on e and hence on rf.  D
Proof of Upper Bound.   For e > 0 define

6,4 = e à\a.g(s&\(efA~l))\A\ diag(sgn(x)),

where / is such that

eJ\A-l\\A\\x\ = IIU-MUIIxllL;
and define 5x = (A + 8A)"lb - x so that 5x is a rational function of e where remov-
able singularities are assumed to be removed. If e is not a pole of 6x, it can be shown
that (A + 8A)(x + 5x) = b.   Equivalent^

A-l8Ax = -(I + A-l8A)bx,
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822 ROBERT D. SKEEL

whence

ell U-11 Ul Ixl IL
\eTA-1ôAx\<U + e\A-l\\A\ÎUxt   and    115x11 >- -.

' 1 + e«(,4)

The remainder of the proof is similar to the proof of the first upper bound of Theo-
rem 2.2.  D

Remark.   The norm II ° II „ in the upper bound cannot be replaced by II ° II ; how-
ever, the two norms differ by at most a factor of n, which is not too important for
our purposes.

From these theorems it is clear that R -stability is equivalent to

lUx -b\\< k(ri)uII UI Ixl II + 0(u2)

and ¿-stability is equivalent to

llx-xll <£(«)« II L4-11 L41 Ixl II +0(u2).

If absolute values were replaced by norms, then R- and ¿'-stability would be equivalent
to the good behavior and the stability, respectively, of Jankowski and Wozniakowski

(1977).
In Skeel (1979) it is shown that II U_11 UI Ixl IL/llxll» is the condition num-

ber for the maximum norm of the error with respect to small relative changes in the
elements of A.  Similarly, it can be shown that II \A I Ixl 11/11,4x11 is the condition num-
ber for the norm of the residual (which is just the error measured with the norm
ll,4(°)ll) if the relative residual is defined to be lUx - bWjWbW (cf. Bauer (1963)).
Moreover, k(A) and k(A~1) are upper bounds on the condition numbers for the error
and the residual, respectively.

3.  Gaussian Elimination With Column Pivoting.  Error bounds are given and nu-
merical stability is discussed for Gaussian elimination with column pivoting.

The remainder of this paper is limited to the consideration of fully a priori error
bounds in terms of the problem data A and b.   Thus, for example, the factor for the
growth of elements in the elimination is undesirable because it depends in a very com-
plicated way on the data and inappropriate because it depends on the details of the
floating-point arithmetic.  The bounds we seek are generally not computationally use-
ful because they are realistic only for the worst case errors which may be many orders
of magnitude greater than the typical errors. Nevertheless, such bounds seem to pro-
vide useful theoretical information, particularly for the purpose of comparing the stabil-
ity of different algorithms.

Expressions for roundoff error bounds tend to be quite complicated, and the
amount of detail can be overwhelming. Moreover, such bounds are often extremely pes-
simistic, and so it would seem appropriate to suppress some of the less relevant detail. We
choose to conceal somewhat the specific functional dependence of various quantities
on n.   To accomplish this, we introduce symbols Cx, cv C2, c3, c4> cs, C6, . . . , to
represent positive quantities which are bounded above by functions of n only.  The
lower and upper case symbols represent scalars and matrices, respectively. These sym-
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NUMERICAL STABILITY FOR GAUSSIAN ELIMINATION 823

bols are all defined in paragraphs with the heading "Note," which the reader is encour-
aged to skip over. The reasons for providing these definitions are to establish the cor-
rectness of the results and to enable the interested reader to construct more detailed
error bounds.  There are two justifications for suppressing the functional dependence
on n.   The practical reason is that the function-of-n part of the error bound is the fac-
tor which is most unrealistic for typical cases.  For example, the error bound for
Gaussian elimination with partial pivoting contains the factor 2", and this bound is
attained by examples like that of Wilkinson (1963).  Nevertheless, it is observed (For-
sythe, Malcolm, and Moler (1977, p. 46)) that in practice the error is bounded inde-
pendently of n with rare exceptions; and for this reason most authors avoid stating
explicit a priori bounds for partial pivoting.  The theoretical reason is that the stability
concepts of roundoff analysis require the existence of bounds which do not depend on
A and b but may depend on n. (Each value of« corresponds to a different function
fiA, b) = A~lb.) Thus, knowledge of the dependence on A and b is crucial to estab-
lishing stability results, but dependence on n is irrelevant.

The basic result, shown in Skeel (1979), upon which our error analysis depends,
is that Gaussian elimination with column pivoting determines an approximation x to
x = A~lb which satisfies

\Ax-b\ < «qUI Ixl
for some nonnegative matrix C1 depending only on n.   In fact, Cx is a lower triangu-
lar matrix with its rows permuted, and \\Cl IL < [19 -2"-2 - n - S]e2nu under cer-
tain assumptions on the minor details of the computation.  This bound also holds for
complete pivoting with a much smaller value for Cx. The same would be true for a
column pivoting algorithm which monitors the element growth and switches to com-
plete pivoting if the growth factor exceeds some predetermined threshold value.

The error bound is not quite an a priori bound because it contains the computed
quantity x.  This can be eliminated by writing

Ux-fcKuCjUllx +A~l(Ax-b)\

<«C1Ullxl +«C1UIU~IIUx-fel
and solving for Ux - b I to get

(3.1) Ux-ftl<«C2Ullxl,

assuming that cyuk(A~1) < Vi.
Note.   The quantities

c, = le, il, c2 = (/-ne, ui \a~1 \ylc1
are bounded above by functions of n only.

Backward error bounds for Gaussian elimination follow from Theorems 2.1,
2.2, and 2.3.  For example, the following stability bounds for Gaussian elimination
can be obtained:

ell Ul Ixl II ,
7? < c,« max + 0(u¿),

Ul Ixl
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824 ROBERT D. SKEEL

where e = (1, 1, . . . , l)r,

R ,     F        u-1 il nui bcii
n* <c,u + 0(u2),   nE<c.u-;-+ 0(u2).1        l   '•   '       i    IIU-MUIIxlll       v   }

Hence partial pivoting is R -stable, which is consistent with the observation of Forsythe,
Malcolm, and Moler (1977) that "It is probably the single most important fact which
people concerned with matrix computations have learned in the past 15 or 20 years:
Gaussian elimination with partial pivoting is guaranteed to produce small residuals."
However, examples exist (Hamming (1971), p. 120)) showing that partial pivoting is
not ¿-stable (and, therefore, not stable), although Skeel (1979) shows that the quanti-
ties

ell Ul Ixl II lU"1 II II UI Ixl II
a(A, x) = max —■————   and    t(A, x) =-:-
V      } Ullxl V       '      IIU-HUIIxlll

can be reduced to unity by the use of an appropriate scaling of the rows in conjunc-
tion with partial pivoting.  Thus, o(A, x) and t(A, x) are measures of ill-scaling for
the system of equations.  The proper scaling, however, cannot be determined efficient-
ly, and it is the purpose of this paper to show that iterative refinement eliminates the
effects of poor scaling, thus making Gaussian elimination numerically stable.

4.  Error Bounds. We obtain bounds on the residual and the error for each ite-
ration of iterative refinement in terms of A, b, u and anonymous quantities bounded
above by functions of« only.  (Very detailed bounds are given in Skeel (1977-).)
Both single and double precision accumulation of the residuals are considered.

Iterative refinement is defined as follows, where subscripts denote iterates rather
than components of vectors:

x, = value of A~lb computed by column pivoting,

for m = 1, 2,
rm = computed value of ,4xm - b,

dm = value of A"1rm computed by column pivoting,

d„m
It is also convenient to define

*o = °>   ro=~b>   do=~xi-

The residual rm is to be computed with the subtraction performed last.  For s.p.r.a.
the computation is done in single precision and for d.p.r.a. the computation is done
in double precision followed by a conversion of the result to single precision. It is
assumed that the relative roundoff error of double precision arithmetic is bounded
by u2 and that the relative error of conversion is bounded by u.

It is quite easy to show that Gaussian elimination followed by one refinement
in single precision is a stable algorithm according to our definition of stability.  First,
the computed solution Xj satisfies Axl = b + g0, where g0 = 0(u). Second, the
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NUMERICAL STABILITY FOR GAUSSIAN ELIMINATION 825

computed residual

rl=Axl-b+fl=g0+fl,

where

l/jl <nu\A\\xx\ + u\Axx -b\ + 0(u2) = ««Ullxl + 0(u2).

Third, the computed error dx satisfies

\Adx -rx\ <«C1Ulli/1l = 0(u2),

and hence,

Ad i =g0+fi +0(u2).

Fourth, the refined solution
x2 = Xj - dx + h2,

where \h2\ <u\xx - dx\ = u\x\ + 0(u2). Thus,

Ax2 -b = -fx +Ah2 +0(u2)   and    Ux2 - b\ < (n + l)uUI Ixl + 0(u2),

which together with UI lx2 I = UI Ixl + 0(u) implies stability according to Theorem
2.1.  Miller and Wrathall (1979) note that this result is true even without pivoting, but
Miller (1977) suggests that it tells us much more about asymptotic notions of stability
than about Gaussian elimination.  Therefore, we perform a more detailed analysis that
indicates the size of the stability threshold u(n).

The error analysis that follows is quite laborious, and there are three reasons for
this:

(i) generality.   Results are obtained for any number of iterations with either
s.p.r.a. or d.p.r.a., and they are applicable to any of the three stability measures with
any absolute norm.

(ii)  sharpness.   The lemmas and Theorem 4.4 seem to give the best possible
bounds of the type we seek.

(iii) adaptability.   The analysis is easily modified so that it applies to row pivot-
ing instead of column pivoting.

The reader may wish to skip to the discussion following Theorem 4.4.
Error bounds for an iterative process are usually obtained by bounding the

(m + l)th iterate of some quantity in terms of the wth iterate of this quantity.  The
quantity which is selected for this purpose affects the sharpness of the results; a good
choice seems to be the exact residual of xm - dm, which we denote by qm + x.

Lemma 4.1.  Define qm + 1 = A(xm - dm) - b.   Then for m = 0, 1,2, ... ,

\qm + l\ <uC6\A\\xm -xl +(««+c3«2)Ullxl +üuC7UIU-1IUIIxl,

assuming CjMkU-1) < Vi, where

Su     for s.p.r.a.,
u2    for d.p.r.a.
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826 ROBERT D. SKEEL

Note.   The quantities

!(1 + «)[(1 + u)n - l]/«2 - n/u for s.p.r.a.,

(1 + «XI + "2)[(1 + "*)" - l]/w2 - «    for d.p.r.a.

!0 for s.p.r.a.,

1 + u    for d.p.r.a.,

c5 = n + (c3 + c4)u2/u,

C6 = C2 + (1 + c5«7«X/ + uC2 \A I U_11),

C1 = (n + c3u2fu)C2,

are bounded above by functions of n only.
Proof.   The computed residual

(4.1) rm =Axm -b+fm,

where

l/J <(«« + c3«2)Ullxml +(u + c4«2)Uxm -il

:3«2)Ullxl +cs< («« + c3«2)UI Ixl + cs«UI lxm -xl + "U(xm -x)l.

From (3.1) the computed error dm satisfies

Adm ~rm =Sm,   where \gm I < uC2 \AI \A~Xrm I if c,uk(A~*) < Vt.

Using (4.1) to eliminate rm gives

Mxm-dm)-b=fm-gm,   where \gm I < «C2UI(lxm -xl + \A~l\\fm\\

whence

lim + 1l<MC2UII*m -xl +(/ + «C2UIU_Il)l/ml,

from which the theorem follows.  D
In the next lemma we obtain bounds on the residual and error for xm , , inm+ 1

terms of qm + 1.

Lemma 4.2.  For m = 0, 1, 2, ... ,

U(xm + 1 -x)l <(/ + «UIU-1l)l<7OT + 1l +«Ullxl

and

'*« + ! -xl<(l+u)\A-1\\qm + l\+u\x\.

Proof.   The new iterate xm + 1 = xm - dm + hm + 1, where \hm+11<
u^xm-dm\.  Equivalents xm + 1 =A~1qm + 1 + x + hm + l, where l«m + 1l<
«U  1<7m + i I + «Ixl, from which the lemma follows.  D
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NUMERICAL STABILITY FOR GAUSSIAN ELIMINATION 827

Lemma 43.   For m = 0, 1, 2, . . . ,

l<?m + 1l <(«C8UIU_1iy"«C10Ullxl +n«Ullxl +«2CnUllxl

+ M«C12UIU_1IUIIxl,

assuming c^uk(A~1) < Vi.

Note.   The quantities
C% = (1 + u)C6,
c8 = IIC8II,
C9 = C6 + c3I,

Cl 0  = C6  + (""/" + C3"X + "^7 ^ I U-1 I,
Cn =(/-«C8UIU_1l)-1C9,
c, 2 = (/ - «c8 u i u_l i r1 («c8 + c7> >

are bounded above by functions of n only.
Proof.   Substituting the second inequality of Lemma 4.2 into that of Lemma

4.1 yields

\qm + 1\<uCs\A\\A-1\\qm\ + «üUllxl +«2C9Ullxl + ««C7U I U_11 Ul Ixl,

assuming Cj«k(,4_1) < Vi.  The proof is completed by induction on m.   The lemma
is true for m = 0 because of Lemma 4.1.  Assume it is true for m.   Then it is also
true for m + 1 because of the above bound on \qm . , I in terms of \q„ I.  D^m Ti ^m

Theorem 4.4.   For m = 0, 1, 2, ... ,

U(xm + 1 -x)l< ^(«CgUIU-HfMC^UIIxl
+ (« + n«)Ullxl +«2C14Ullxl
+ ««C15UIU~IIUIIxl

and

lxm+i ~xl < u-1i(nc8ui u-Myuc^ uibci + «ixi
+ fittU-11 UI Ixl + «2 U"1 ICj 7 UI Ixl
+ ««U_1IC18UIU_1IUIIxl,

assuming c8mk(,4_1) < xh.

Note.   The quantities

C13 =/ + «UIU_1l,
^14  = ^13^11'

C15 = ni + C13Cl5,

C16=(l +«)C10,

c17=(««/«y + (i+«)c11>
C18 = (l +«)C12,

are bounded above by functions of n only.
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828 ROBERT D. SKEEL

Proof.   Follows from substituting the inequality of Lemma 4.3 into those of
Lemma 4.2.  D

We note that iterating until convergence yields a qualitatively better error bound
than performing a fixed number of iterations because for any fixed value of m the
"iteration error" (or "convergence error") term cannot be absorbed into any of the
other terms.  This is true for both s.p.r.a. and d.p.r.a.  Also, the error bounds indicate
that convergence comes more quickly for s.p.r.a. than for d.p.r.a., which is not surpris-
ing.

From Section 3 and Theorem 4.4 we get the following bounds for the norm of
the residual:

IUxj -6ll<c2«IIUIIxlll,

Urn IUxm -&!<(« + l)«IIUIIxlll +c19«2IIUIU-1IUIIxlll    for s.p.r.a.,
m->°»

and

iim IUxm - b\\ < (« + c20«2)ll Ul Ixl II    for d.p.r.a.,
m-*°°

provided that c8«k(,4_1) < Vt.  For the norm of the error we get the bounds

lx, -xlKc-jwIU-MlllUllxlll,

inn" llxm -xll <««IIU-1IUIIxlll + «llxll
m-<-°°

+ c2lM2IU~1 IIII Ul U-11 Ul Ixl II    for s.p.r.a.,

and

ÜTñ llxm -xll <«llxll +c22«2IU-1IIIIUIIxlll    ford.p.r.a.,

provided that c8uk(A~1) < V£.
Note.   The quantities

c2 = IIC2II,
c19 = IIC^UIIxlll/IIUIU-'lUllxlll + IC15I,
c20 = Wnl + Cl4 +«C1SUIU_1III,
c21 = llC^UIIxlll/IIUIU-MUIIxlll + IIC18II,
c22 = n«/ + c17 +«c18uiu-1iii,

are bounded above by functions of n only.
Remark.   From Theorems 4.1 and 3.1 of Jankowski and Wozniakowski (1977)

one obtains the following results:  Consider a linear equation solver which determines
a solution x satisfying

llx -xll <*c23u cond(,4)llxll,

assuming that the c23u condU) < % where cond(4) = IU_1 IIIUII.  The use of iter-
ative refinement with this linear equation solver yields iterates xm + 1,m = l,2,...,
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for which the residual norm

!(c2Au + c25u2 cond2(/4))IUII llxll    for s.p.r.a.

c26«IU II llxll    for d.p.r.a.

and the error norm

llxm + 1 -xl < «llxll + c27« cond(,4)llxll + c2S(c29u cond(A))m + 1 llxll

provided that c29« condU) < Vi. The principal way in which these bounds differ
from the ones following Theorem 4.4 is the use of norms in place of absolute values.
Another significant difference is the term c2s«2cond2(,4) instead of cigu2n(A~l) in
the bound on the residual norm, which is due to different assumptions on the accura-
cy of the linear equation solver.

5.  Backward Error Bounds.  We establish the numerical stability of Gaussian
elimination with iterative refinement by suitably bounding the backward error tj.
Similar bounds on 77^ and 77^ can be obtained by substituting the bounds of Theorem
4.4 into those of Theorems 2.2 and 2.3.  The best possible bounds of the type we are
seeking lead to monstrous expressions that are difficult to interpret.  Thus, we com-
promise by using only the quantity k(/4_1) and the quantity

el Ullxll
a(A'x) = max ~UÜxT'

which was introduced at the end of Section 3 as a measure of bad scaling for column
pivoting.   For example, the quantity

UlU-HUIIxl
max-;—rr~,-Ullxl

is replaced by k(A~1)o(A, x) even though this may be a severe overestimate.

Theorem 5.1.  For m = 0, 1, 2, ... ,

^m + l   <   C32«(C8M(/1-I))m0(^, X) + « + M«

+ c33u2a(A, x) + c34uuk(A~1)o(A, x),

assuming that

c16«(c8«(c(>l_1))mK04_1)a(yl, x) + CsUk(A~x) + c3xm(A-l)aiA, x) < U.

Note.   The quantities

c30 = IIC13IIIIC10ll,
c14 = HC14II,
c 15 IC15I,
ci6 = HC16II,
c31 =« + (u/«)IIC17ll +kIIC18IIk(,4-1),

c32 = 2IC30 + (« + nü)c16K(A~1)],
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c33 = 2[c14 +|(« + nu)/(uo(A, x))],

C34 = 2[C1S  + (« + "")/«],

are bounded above by functions of n only.
Proof.   It follows from Theorem 2.2 that

<m + l <   max-:——-  / 11 - max
Ullxl       // \ UHxl

Theorem 4.4 yields the bound

\¿rx -x)\
max        m\) ,-< c^CçU^A-^ToiA, x) + u + nu

\A\ Ixl
+ ci4u2o(A, x) + Cj su~uk(A~1)oíA, x)

and the bound
Ullx        -xl

max-Í77T1-< cx6u(czUK(A-l)TK(A~l)a(A, x)
1,41 Ixl

+ u + c31uk(A~1)o(A, x),

from which the theorem follows.  D
Without any iterations of iterative refinement we have

77t < c3suo(A, x)   if c3(¡k(A~1)o(A, x) < %

but for one iteration with s.p.r.a.

T72 < (n + 1)« + c37«2K(,4_1)a(,4, x)    if c36m(A~1)a(A, x) < Vi.

Hence, just one iteration of iterative refinement with just single precision accumula-
tion of the residuals is enough to make Gaussian elimination stable.  This may seem
to contradict the usual advice [Forsythe and Moler (1967), p. 49] that "It is absolute-
ly essential that this residual rk be computed with a higher precision than that of the
rest of the computation."  Actually, there is little conflict because it has been shown
that poorly scaled systems may be solved with an effective precision of much less
than single precision.  However, the restriction cuk(A~1)o(A, x) < Vi indicates that a
big reduction in the backward error may not be realized for badly scaled problems
which are very ill-conditioned unless the precision is high enough.

Afore.   The quantities
C35  = C32  + 1  + nulu + c33u + C34UK(^_1))

C3 6  = c16  + Cs/°(A> *) + c3l"/">

C37 " C32C8 + C33/K(^_1) + c34«/"'

are bounded above by functions of n only.
For iteration until convergence with d.p.r.a.

lim 7jm < u + c3Su2o(A, x)    if c&uk(A  1 ) + c39uy/n(A  1)a(A, x) < Yl.
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This is a significant improvement over the single precision case due to the relaxation
of the restriction on the size of n(A~l ) and a(,4, x). This is an important advantage
for problems which are both poorly scaled and ill-conditioned.

Afore.   The quantities
c38 = n/ajA, x) + c33 + c34uk(A~1),

c39 =Vc31/2,

are bounded above by functions of n only.

6.  Gaussian Elimination with Row Pivoting.  Sections 3, 4, and 5 consider the
use of column pivoting; this section considers instead row pivoting and complete pivot-
ing.

Here the basic result, shown in Skeel (1979), upon which our error analysis de-
pends, is that the solution x computed by row pivoting satisfies

Ux-Z>l <«UICsllxl.

Straightforward modifications of the results for column pivoting yield corresponding
results for row pivoting.  For example, Theorem 4.4 holds for row pivoting if
UICS0+ • is substituted for every occurrence of CAAI and k(A) for k(A~1). Without
iterative refinement we obtain the following stability bounds:

Ulellxll
7? < c51« max + 0(u2),

IUII llxll
II UIrr* < cslu tttttTT + °("2)>

77e <cs1« II U"11 Ulli llxll
-;-+ 0(u2).IIU-MUIIxlll        v   '

What is most interesting about these bounds is that it seems that row pivoting
is not Ä-stable.  To see that this is actually true, consider

[3 x 10*    oj |_0_j

Using rounded f-digit decimal arithmetic, the computed solution is

r.33 • ■ ■ 3 x io~H

L      .33 ■ ■ ■ 3      J"
For the maximum norm the backward error

i" - !f*iî ni" + °^°~^= 10" x 10_i + °(10"2i>>II Ul Ixl IL
which is an arbitrarily large multiple of the unit roundoff error u = M x 101_f.

Concerning stability or ¿-stability, either column or row pivoting could be arbi-
trarily better than the other.  Nevertheless, it is interesting that the error bounds for
row pivoting contain the quantity k(A), which also arises in the bounds for 77   given
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in Theorem 2.3; whereas, the error bounds for column pivoting contain k(A  x),
which can be arbitrarily different from k(A).  For example, for

ri     M
A=\ Ll    M+ 1

K^iA'1) = 4M + 3 while «„(4) = 2M2 +4M+1.
Row pivoting (like column pivoting) can be made stable by an appropriate

scaling of the columns; but because the proper scaling cannot be determined efficient-
ly, iterative refinement could be useful for eliminating the effects of the poor scaling.

Complete pivoting is both column and row pivoting, and it satisfies the error
bounds of both.  Hence, the convergence of iterative refinement for complete pivot-
ing requires only that either csun(A~l) < Vz or cs6uk(A) < ]á.  The example just
given shows that this requirement is much less restrictive than the convergence condi-
tion for either type of partial pivoting.
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