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Abstract

Deep learning approaches to optical flow estimation

have seen rapid progress over the recent years. One com-

mon trait of many networks is that they refine an initial

flow estimate either through multiple stages or across the

levels of a coarse-to-fine representation. While leading to

more accurate results, the downside of this is an increased

number of parameters. Taking inspiration from both clas-

sical energy minimization approaches as well as residual

networks, we propose an iterative residual refinement (IRR)

scheme based on weight sharing that can be combined with

several backbone networks. It reduces the number of pa-

rameters, improves the accuracy, or even achieves both.

Moreover, we show that integrating occlusion prediction

and bi-directional flow estimation into our IRR scheme can

further boost the accuracy. Our full network achieves state-

of-the-art results for both optical flow and occlusion esti-

mation across several standard datasets.

1. Introduction

Akin to many areas of computer vision, deep learning

has had a significant impact on optical flow estimation. But

in contrast to, e.g., object detection [19] or human pose

estimation [55], the accuracy of deep learning-based flow

methods on public benchmarks [10, 17, 41] had initially not

surpassed that of classical approaches. Still, the efficient

test-time inference has led to their widespread adoption as

a sub-module in applications requiring to process tempo-

ral information, including video object segmentation [13],

video recognition [15, 43, 64], and video style transfer [11].

FlowNet [14] pioneered the use of convolutional neural

networks (CNNs) for estimating optical flow and relied on a

– by now standard – encoder-decoder architecture with skip

connections, similar to semantic segmentation [36], among

others. Since the flow accuracy remained behind that of

classical methods based on energy minimization, later work

has focused on designing more powerful CNN architectures

for optical flow. FlowNet2 [26] remedied the accuracy lim-

itations of FlowNet and started to outperform classical ap-

proaches. Its main principle is to stack multiple FlowNet-
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Figure 1. Accuracy / network size tradeoff of CNNs for opti-

cal flow: Combining our iterative residual refinement (IRR), as

well as bi-directional (Bi) and occlusion estimation (Occ) with

PWC-Net [52] in comparison to previous work. Our full model

(IRR-PWC), combining all three components, yields significant

accuracy gains over [52] while having many fewer parameters.

family networks [14], such that later stages effectively re-

fine the output from the previous ones. However, one of the

side effects of this stacking is the linearly and strongly in-

creasing number of parameters, being a burden for the adop-

tion in other applications. Also, stacked networks require

training the stages sequentially rather than jointly, resulting

in a complex training procedure in practice.

More recently, SpyNet [45], PWC-Net [52], and Lite-

FlowNet [24] proposed lightweight networks that still

achieve competitive accuracy (cf . Fig. 1). SpyNet adopts

coarse-to-fine estimation in the network design, a well-

known principle in classical approaches. It residually up-

dates the flow across the levels of a spatial pyramid with in-

dividual trainable weights and demonstrates better accuracy

than FlowNet but with far fewer model parameters. Lite-

FlowNet and PWC-Net further combine the coarse-to-fine

strategy with multiple ideas from both classical methods

and recent deep learning approaches. Particularly PWC-Net

outperformed all published methods on the common public

benchmarks [10, 17, 41].

Interestingly, many recent deep learning approaches for

flow [24, 26, 45, 52] have a common structure: From a

rough first flow estimate, later modules or networks re-
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flow maps f
i
fw, backward optical flow f

i
bw, occlusion maps

in the first image o
i
1 and in the second image o

i
2 for each

iteration step, where i = 1, . . . , N . Forward and backward

optical flow are supervised using the L2,1 norm as

liflow = 1
2

∑

(

‖f ifw − ffw,GT‖2 + ‖f ibw − fbw,GT‖2
)

, (4)

whereas for the supervision of the two occlusion maps we

use a weighted binary cross-entropy

liocc = − 1
2

∑

(

wi
1o

i
1 log o1,GT + w̄i

1(1−oi1) log(1−o1,GT)

+wi
2o

i
2 log o2,GT + w̄i

2(1−oi2) log(1−o2,GT)
)

.

(5)

Here, we apply the weights wi
1 = H·W∑

oi
1
+
∑

o1,GT
and w̄i

1 =
H·W∑

(1−oi
1
)+

∑
(1−o1,GT)

to take into account the number of

predictions and true labels.

Our final loss is the weighted sum of the two losses

above, taken over all iteration steps using the same multi-

scale weights αs as in the original papers. In case of

FlowNet [14], the final loss becomes

lFlowNet =
1

N

N
∑

i=1

S
∑

s=s0

αs(l
i,s
flow + λ · li,socc), (6)

where s denotes the scale index given in Fig. 3 of [14]. In

case of PWC-Net [52], the number of scales is equal to the

number of iterations, hence the final loss is

lPWC-Net =
1

N

N
∑

i=1

αi(l
i
flow + λ · liocc). (7)

λ weighs the flow against the occlusion loss. In every itera-

tion, we calculate the λ that makes the loss of the flow and

the occlusion be equal. We empirically found that this strat-

egy yields better accuracy than just using a fixed trade-off.

4. Experiments

4.1. FlyingChairsOcc dataset

Lacking a suitable dataset, we create our own dataset for

the supervision of bi-directional flow and the two occlusion

maps, with ground truth for forward flow, backward flow,

and occlusion maps at the first and second frame. To build

the dataset, we follow the exact protocol of the FlyingChairs

dataset [14]. We refer to this dataset as FlyingChairsOcc.

We crawl 964 background images with a resolution of

1024 × 768 from Flickr and Google using the keywords

cityscape, street, and mountain. As foreground objects,

we use 809 chair images rendered from CAD models with

varying views and angles [3]. Then we follow the exact

protocol of [14] for generating image pairs, including the

number of foreground objects, object size, and random pa-

rameters for generating the motion of each object. As the

motion is parametrized by a 3×3 matrix, it is easy to calcu-

late not only backward ground-truth flow but also occlusion

maps by conducting visibility checks. The number of im-

ages in the training and validation sets are the same as in

FlyingChairs (i.e. 22232 and 640, respectively).

4.2. Implementation details

Training details. We follow the training settings of

FlowNet respective PWC-Net for a fair comparison. We use

the same geometric and photometric augmentations with

additive Gaussian noise as described in [26]. After applying

the geometric augmentation on the occlusion ground truth,

we additionally check for pixels moving outside of the im-

age boundary (i.e. out-of-bound pixels) and set them as oc-

cluded. Note that no multi-stage training is needed.

We first train the proposed model on our FlyingChairs-

Occ dataset with learning rate schedule Sshort (instead of

Slong), described in [26]. Next, we fine-tune on the Flying-

Things3D-subset dataset [39], which contains much larger

displacements; we use half the Sfine learning rate schedule

[26]. We empirically found that using shorter schedules

was enough as our model converged faster. We finally fine-

tune on different public benchmark datasets, including Sin-

tel [10] and KITTI [17], following the fine-tuning protocol

of [53]. We use a smaller minibatch size of 4, as our model

implicitly increases the batch size by performing iterative

bi-directional estimation with a single model.

Lacking other ground truth, we only use the forward flow

and the occlusion map for the first frame for supervision

on Sintel; for KITTI we only use the forward flow. Im-

portantly, our model is still trainable when ground truth is

available only for one direction (e.g., forward flow with oc-

clusion map at the first frame), since both temporal direc-

tions share the same “unidirectional” decoder.

4.3. Ablation study

To see the effectiveness of each proposed component, we

conduct an ablation study by training our model in mul-

tiple settings. All models are trained on the FlyingChair-

sOcc dataset with the Sshort schedule and tested on multiple

datasets to assess generalization across datasets. We use a

minibatch size of 4 when either bi-directional estimation or

iterative residual refinement is on, or the original minibatch

size of 8, otherwise. For a simpler ablation study, we use

two iteration steps when applying IRR on FlowNet [14].

Table 1 assesses the optical flow in terms of the average

end-point error (EPE) and occlusion estimation with the av-

erage F1-score, if applicable for the respective configura-

tion. In contrast to findings in recent work [27], estimating

occlusion together yields a gradual improvement of the flow

of up to 5% on the training domain, and an even bigger im-
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Figure 8. Qualitative examples from the ablation study on PWC-Net: (left to right) overlapped input images, ground-truth flow, the

original PWC-Net [52], our PWC-Net with IRR, our PWC-Net with Bi-Occ-IRR, and our full model (i.e. IRR-PWC).

B
i

O
cc

IR
R Chairs ChairsOcc Sintel Clean Sintel Final Rel.

Full Validation Training Training Param.

F
lo

w
N

et
[1

4
]

2.39 2.27 4.35 5.44 0 %

✓ 2.43 2.30 4.40 5.53 0 %

✓ 2.29 2.18 (0.690) 4.26 (0.521) 5.51 (0.493) +38.5%

✓ 2.36 2.22 3.77 5.00 0 %

✓ ✓ 2.31 2.20 (0.691) 4.21 (0.515) 5.46 (0.488) +38.5%

✓ ✓ 2.14 2.00 3.45 4.96 0 %

✓ ✓ 2.22 2.10 (0.689) 3.56 (0.507) 5.03 (0.486) +38.5%

✓ ✓ ✓ 2.05 1.91 (0.699) 3.40 (0.528) 5.08 (0.502) +38.5%

✓ ✓ ✓+ 1.92 1.77 (0.736) 3.32 (0.596) 4.92 (0.560) +40.7%

P
W

C
-N

et
[5

2
]

2.03 1.89 3.13 4.41 0 %

✓ 2.06 1.87 2.98 4.14 0 %

✓ 1.94 1.79 (0.706) 3.16 (0.616) 4.35 (0.581) +87.4%

✓ 2.01 1.83 2.79 4.10 −61.2%

✓ ✓ 1.99 1.82 (0.696) 3.01 (0.618) 4.39 (0.581) +87.4%

✓ ✓ 2.08 1.90 2.80 4.13 −61.2%

✓ ✓ 1.91 1.73 (0.700) 2.64 (0.630) 4.09 (0.593) −34.7%

✓ ✓ ✓ 1.98 1.81 (0.698) 2.69 (0.633) 4.03 (0.598) −34.7%

✓ ✓ ✓+ 1.67 1.48 (0.757) 2.34 (0.677) 3.95 (0.624) −26.4%

Table 1. Ablation study of our design choices on the two base-

line models. The numbers indicate the average end-point error

(EPE) for optical flow (the lower the better) and the average F1-

score for occlusion in parentheses, where available (the higher the

better). Bi: Bi-directional estimation, Occ: Joint occlusion estima-

tion, IRR: Iterative residual refinement, IRR+: Iterative residual

refinement including bilateral refinement and occlusion upsam-

pling layer. The final column reports the relative changes on the

number of parameters comparing to the vanilla baseline.

provement across different datasets when combined on top

of bi-directional estimation (Bi) or IRR. We believe this to

mainly stem from using a separate occlusion decoder in-

stead of a joint decoder [27]. Bi-directional estimation by

itself yields at most a marginal improvement on flow, but it

is important for the input of the occlusion upsampling layer,

which brings very large benefits on occlusion estimation. It-

erative residual refinement yields consistent improvements

in flow accuracy on the training domain, and perhaps sur-

prisingly a much better generalization across datasets, with

up to 10% improvement in EPE. We presume that this bet-

ter generalization comes from training a single decoder to

handle feature maps from all iteration steps or pyramid lev-

els, which encourages generalization even across datasets.

The benefits of using IRR become even clearer when com-

bined with other components. For example, FlowNet with

Bi, Occ, and IRR demonstrates up to 20% improvement in

EPE on Sintel Clean compared to only using Bi and Occ.

Additionally, the bilateral refinement and the upsampling

Method
Chairs ChairsOcc Sintel Clean Sintel Final Rel.

Full Validation Training Training Param.

No refinement 1.98 1.81 (0.698) 2.69 (0.633) 4.03 (0.598) 0 %

Ours 1.66 1.45 (0.735) 2.32 (0.648) 3.90 (0.602) +12.3%

LiteFlowNet’s [24] 1.74 1.58 (0.688) 2.34 (0.596) 3.86 (0.543) +29.5%

Table 2. Comparison of our bilateral refinement layer against that

of LiteFlowNet [24].

Method
Chairs ChairsOcc Sintel Clean Sintel Final Rel.

Full Validation Training Training Param.

No upsampling 1.66 1.45 (0.735) 2.32 (0.648) 3.90 (0.602) 0 %

Ours 1.67 1.48 (0.757) 2.34 (0.677) 3.95 (0.624) +0.49%

[26, 27] 2.18 2.01 (0.712) 2.90 (0.624) 4.37 (0.577) +9.21%

Table 3. Comparison of our occlusion upsampling layer and the

refinement network from FlowNet2 [26, 27].

layer significantly improve the accuracy of both flow and

occlusion with a small overhead of only 0.83M parame-

ters. For PWC-Net, we obtain a significant accuracy boost

of 17.7% on average over the baseline, while reducing the

number of parameters by 26.4%. We name the full ver-

sions of the models including all modules IRR-FlowNet

and IRR-PWC. Fig. 8 highlights the improvement of the

flow from our proposed components with qualitative exam-

ples. Please note the completeness and sharp boundaries.

Bilateral refinement. We compare our bilateral refinement

layer with the refinement layer of LiteFlowNet [24] based

on a PWC-Net with Bi, Occ, and IRR components enabled.

Table 2 shows that the benefit of our design choice (i.e. shar-

ing weights) holds for bilateral refinement as well, yielding

better accuracy for flow and particularly for occlusion, with

2.5× fewer parameters than that of [24].

Occlusion upsampling layer. Similar to our upsampling

layer, [27] uses a refinement network from FlowNet2 [26]

to upsample the intermediate quarter-resolution outcome

back to the original resolution. We compare our upsam-

pling layer with the refinement network from [26, 27],

adding it to our network based on a PWC-Net backbone

with Bi, Occ, IRR, and the bilateral refinement layer en-

abled. Table 3 shows the clear benefits of using our upsam-

pling layer, yielding significant gains in both tasks while

requiring fewer parameters. The refinement network from

FlowNet2 [26] actually degrades the accuracy of flow es-

timation. We presume this may stem from differences in
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Number of iterations or stacking stages 1 2 3 4 5

IRR on a single FlowNetS 4.358 3.545 3.325 3.303 3.302

Stacking multiple FlowNetS 4.445 3.553 3.377 3.391 3.517

Table 4. n× IRR vs. n× stacking: EPE on Sintel Clean.

Method
Training Test

Parameters

Clean Final Clean Final

ContinualFlow ROB†§ [42] – – 3.34 4.53 14.6 M

MFF§ [46] – – 3.42 4.57 N/A

IRR-PWC (Ours) (1.92) (2.51) 3.84 4.58 6.36M

PWC-Net+† [53] (1.71) (2.34) 3.45 4.60 8.75M

ProFlow§[37] – – 2.82 5.02 –

PWC-Net-ft-final [53] (2.02) (2.08) 4.39 5.04 8.75M

DCFlow [61] – – 3.54 5.12 –

FlowFieldsCNN [6] – – 3.78 5.36 5.00M

MR-Flow [59] 1.83 3.59 2.53 5.38 –

LiteFlowNet [24] (1.35) (1.78) 4.54 5.38 5.37M

S2F-IF [62] – – 3.50 5.42 –

SfM-PM [38] – – 2.91 5.47 –

FlowFields++ [49] – – 2.94 5.49 –

FlowNet2 [26] (2.02) (3.14) 3.96 6.02 162.5 M

Table 5. MPI Sintel Flow: Average end-point error (EPE) and

number of CNN parameters. §using more than 2 frames, †using

additional datasets (KITTI and HD1k) for better accuracy.

training. FlowNet2’s refinement layer may require piece-

wise training, while our model is trained all at once.

Different IRR steps on FlowNet. For FlowNet, we can

freely choose the number of IRR steps as we iteratively re-

fine previous estimates by re-using a single network. We try

different numbers of IRR steps on vanilla FlowNetS [14]

(i.e. without Bi or Occ) and compare with stacking multi-

ple FlowNetS networks. All networks are trained on Fly-

ingChairsOcc with the Sshort schedule, minibatch size of

8, and tested on Sintel Clean. As shown in Table 4, the

accuracy keeps improving with more IRR steps and stably

settles at more than 4 steps. In contrast, stacking multi-

ple FlowNetS networks overfits on the training data after

3 steps, and is consistently outperformed by IRR with the

same number of stages. This clearly demonstrates the ad-

vantage of our IRR scheme over stacking: better accuracy

without linearly increasing the number of parameters.

4.4. Optical flow benchmarks

We test the accuracy of our IRR-PWC on the public Sin-

tel [10] and KITTI [17, 41] benchmarks. When fine-tuning,

we use the robust training loss as in [24, 52, 53] for flow,

and standard binary cross-entropy for occlusion. On Sintel

Final, our IRR-PWC achieves a new state of the art among

2-frame methods. Comparing to the PWC-Net baseline (i.e.

PWC-Net-ft-final) trained in the identical setting, our con-

tributions improve the flow accuracy by 9.18% on Final and

12.36% on Clean, while using 26.4% fewer parameters. On

KITTI 2015, our IRR-PWC again outperforms all published

2-frame methods, improving over the baseline PWC-Net.

When fine-tuning on benchmarks, our important obser-

Method
Training Test

AEPE Fl-all Fl-All

MFF§ [46] – – 7.17%

IRR-PWC (Ours) (1.63) (5.32%) 7.65%

PWC-Net+ [53] (1.45) (7.59%) 7.72%

LiteFlowNet [24] (1.62) (5.58%) 9.38%

PWC-Net [52] (2.16) (9.80%) 9.60%

ContinualFlow ROB†§ [42] – – 10.03%

MirrorFlow [25] – 9.98% 10.29%

FlowNet2 [26] (2.30) (8.61%) 10.41%

Table 6. KITTI Optical Flow 2015: Average end-point error

(EPE) and outlier rates (Fl-Noc and Fl-all).

Method Type
Sintel Training

Clean Final

IRR-PWC (Ours) supervised 0.712 0.669

FlowNet-CSSR [27] supervised 0.703 0.654

OccAwareFlow [58] unsupervised 0.54 0.48

Back2FutureFlow [30] unsupervised 0.49 0.44

MirrorFlow [25] estimated 0.390 –

Table 7. Occlusion estimation results on Sintel Training.

vations are that our model (i) converges much faster than the

baseline and (ii) overfits to the training split less, demon-

strating much better accuracy on the test set despite slightly

higher error on training split. This highlights the benefit of

our IRR scheme: better generalization even on the training

domain as well as across datasets.

4.5. Occlusion estimation

We finally evaluate the accuracy of occlusion estimation

on the Sintel training set as no public benchmarks are avail-

able for the task. Table 7 shows the comparison with state-

of-the-art algorithms. Supervised methods are trained on

FlyingChairs and FlyingThings3D; unsupervised methods

are trained on Sintel without the use of ground truth. We

achieve state-of-the-art accuracy with far fewer parameters

(6.00M instead of 110M) and much simpler training sched-

ules than the previous state of the art [27].

5. Conclusion

We proposed an iterative residual refinement (IRR)

scheme based on weight sharing for generic optical flow

networks, with additional components for bi-directional es-

timation and occlusion estimation. Applying our scheme

on top of two representative flow networks, FlowNet and

PWC-Net, significantly improves flow accuracy with a bet-

ter generalization while even reducing the number of pa-

rameters in case of PWC-Net. We also show that our design

choice of jointly estimating occlusion together with flow

brings accuracy improvements on both domains, setting the

state of the art on public benchmark datasets. We believe

that our powerful IRR scheme can be combined with other

baseline networks and can form the basis of other follow-up

approaches, including multi-frame methods.
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Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In CVPR, pages

4040–4048, 2016. 6

[40] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Un-

supervised learning of optical flow with a bidirectional cen-

sus loss. In AAAI, pages 7251–7259, 2018. 2, 4

[41] Moritz Menze and Andreas Geiger. Object scene flow for

autonomous vehicles. In CVPR, pages 3061–3070, 2015. 1,

8
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