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Abstract

In this paper, we focus on the `1 − `p minimization problem with 0 < p < 1, which
is challenging due to the `p norm being non-Lipschizian. In theory, we derive computable
lower bounds for nonzero entries of the generalized first-order stationary points of `1 −
`p minimization, and hence of its local minimizers. In algorithms, based on three locally
Lipschitz continuous ε-approximation to `p norm, we design several iterative reweighted `1
and `2 methods to solve those approximation problems. Furthermore, we show that any
accumulation point of the sequence generated by these methods is a generalized first-order
stationary point of `1 − `p minimization. This result, in particular, applies to the iterative
reweighted `1 methods based on the new Lipschitz continuous ε-approximation introduced by
Lu [20], provided that the approximation parameter ε is below a threshold value. Numerical
results are also reported to demonstrate the efficiency of the proposed methods.

Keywords: `1 − `p minimization, generalized first-order stationary point, lower bound,
iterative reweighted `1 method, iterative reweighted `2 method

1 Introduction

Compressed Sensing (CS) has been used in the fields of finance, econometrics, signal processing,
machine learning, and so on. The mathematical model of CS can be described as the following
`0 minimization

min ‖x‖0 s.t. Ax = b, (1)

where ‖x‖0 is `0 function which counts the number of nonzero entries of decision variable x,
and A ∈ Rm×n and b ∈ Rm are given measurement matrix and vector, respectively. However,
the problem is provably NP-hard due to the combinatorial nature of `0 function. Fortunately,
Candès and Tao [7], and Donoho [13] creatively recommended to surrogate `0 function with `1
norm, which leads to `1 minimization

min ‖x‖1 s.t. Ax = b, (2)

where ‖x‖1 is the `1 norm defined to be the sum of absolute values of all entries. Many researchers
have made lots of contributions related to the theory, algorithms as well as applications to
problem (1) or (2). See, e.g., [5, 6, 7, 8, 13, 14, 24, 25].
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In fact, `1 norm is a loose approximation of `0 function and often leads to an over-regularized
problem. Consequently, some further improvements are required. Among such efforts, a very
natural improvement is the suggestion of the use of `p (0 < p < 1) norm, which yields `p
minimization

min ‖x‖pp s.t. Ax = b,

where ‖x‖p = (
∑n

i=1 |xi|p)1/p. As we know, `p is not a true norm, and it is generally nonconvex,
nonsmooth, non-Lipschitz, and NP-hard (see [9, 17]). It is `0 function when p→ 0, and `1 norm
when p→ 1.

Based on the idea of regularization, the above optimization problem can be modified as the
unconstrained `2 − `p minimization

min
1

2
‖Ax− b‖22 + λ‖x‖pp (3)

for some λ > 0. Over the past few years various researchers have made systematic attempts
for `2 − `p minimization (3), including the sparse recovery conditions and the algorithms for
approximate sparse solution (see, e.g., [9, 10, 11, 12, 16, 17, 18, 19, 20]). In particular, Chen et
al. [10] derived lower bounds for nonzero entries of local minimizers and also proposed a hybrid
orthogonal matching pursuit-smoothing gradient method. Since ‖x‖pp is non-Lipschitz continu-
ous, Chen and Zhou [11], Lai and Wang [18], Lai et al. [19] considered different approximations of
‖x‖pp, and proposed iterative reweighted `1 and `2 methods to solve this approximation problem.
Recently, Lu [20] provided a unified convergence analysis for the generalized `2−`p minimization

min f(x) + λ‖x‖pp, (4)

where f(x) is convex, smooth, and has Lf -Lipschitz-continuous gradient. It is obvious that
(3) is a special case of (4) when f(x) = 1

2‖Ax − b‖
2
2. He proposed new variants, where each

subproblem has a closed form solution. Moreover, Lu [20] developed new iterative reweighted
methods for (4) and showed that any accumulation point of the sequence generated by these
methods is a first-order stationary point, provided that the approximation parameter is below a
threshold value. It is worth mentioning that ε is not necessarily approaching zero. The natural
question is whether we can generalize the results in Lu [20] when f(x) is a nonsmooth function,
especially f(x) = ‖Ax− b‖1?

This question is meaningful because f(x) = ‖Ax − b‖1 is the least absolute deviation in
statistics and it has been widely used in dealing with the situation where noises are heavy-tailed
or heterogeneous. That is to say, compared with `2 minimization, `1 minimization is more
robust where the noises are not normal distribution. For details, see, e.g. [2, 3, 15, 21, 22] and
references therein. Note that ‖Ax− b‖1 is convex but not smooth, and it is a special case of the
quantile function. Zhang et al. [26] studied the quantile function by introducing its smoothing
functions, and established a smoothing iterative method for quantile regression with nonconvex
`p penalty.

In this paper, we mainly concentrate on the following `1 − `p minimization

min ‖Ax− b‖1 + λ‖x‖pp. (5)

In order to generalize the results in Lu [20], we first characterize the definition of the generalized
first-order stationary point of (5). We then derive its lower bounds and local minimizers. We
consider three locally Lipschitz continuous ε-approximation to `p norm. According to these
approximation functions, we design their corresponding iterative reweighted `1 and `2 methods to
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solve these problems, and variants of them with closed form subproblem solutions. We establish
that any accumulation point of the sequence generated by these methods is a generalized first-
order stationary point. In particular, for the iterative reweighted `1 methods based on the new
Lipschitz continuous ε-approximation introduced by Lu [20], we prove that any accumulation
point of the sequence generated by these methods is a generalized first-order stationary point
provided that the approximation parameter ε is below a threshold value.

The rest of this paper is organized as follows. We discuss the ε-approximation problems in
Section 2. Several iterative reweighted `1 and `2 minimization methods are proposed in Section
3 and Section 4 including their convergence results. Section 5 is devoted to the numerical results
to demonstrate the efficiency of our methods. Section 6 concludes the paper.

2 Preliminary

This section studies the generalized first-order stationary point of `1 − `p minimization (5)
and establishes its lower bound for nonzero entries. We then introduce its Locally Lipschtiz
continuous ε-approximation by a nonconvex `(p,ε)-regularized function of ‖x‖pp.

2.1 Notation

Given x∗ ∈ Rn, T = {i : x∗i 6= 0} denotes the support set of x∗, and T denotes its complement
in {1, . . . , n}. Let ε and εi be positive scalars in R, while εk is a sequence of positive vectors in
Rn. Suppose h(x) is convex, then the subdifferential of h(x) at x is defined as

∂h(x) = {ξ ∈ Rn | h(y) ≥ h(x) + ξT (y − x)}.

In addition, we denote A = [A1, A2, · · · , An] ∈ Rm×n, where Ai ∈ Rm for i = 1, 2, · · · , n. Let
sgn(x) = (sgn(x1), sgn(x2), · · · , sgn(xn)), where the sgn operator is given by

sgn(xi) =


1 if xi > 0,
[-1, 1] if xi = 0,
−1 if xi < 0.

From the chain rule of subdifferential (e.g., [4, Theorem 3.3.5]), we can derive that

∂(‖Ax− b‖1) = AT sgn(Ax− b).

In particular, we will often use the notation (AT sgn(Ax∗ − b))i, which is the set of consisting of
all the ith elements in the set AT sgn(Ax∗ − b). It is worth to point out that this set in general
can not be characterized by ATi sgn(Ax∗ − b). That is,

(AT sgn(Ax∗ − b))i 6= ATi sgn(Ax∗ − b).

2.2 Lower bound for nonzero entries of stationary point of (5)

We below consider the lower bound for nonzero entries of the generalized first-order stationary
point of `1 − `p minimization (5), which is motivated by Chen et al. [10] and Lu [20] for `2 − `p
minimization. Different from the smooth function ‖Ax− b‖2, ‖Ax− b‖1 is nonsmooth. Hence,
we begin with defining the generalized first-order stationary point of problem (5).

3



Definition 2.1 Suppose that x∗ is a vector in Rn. We say that x∗ is a generalized first-order
stationary point of (5) if

0 ∈ (AT sgn(Ax∗ − b))ix∗i + λp|x∗i |p, i = 1, 2, · · · , n. (6)

We are able to show that any local minimizer of (5) is also a generalized first-order stationary
point as defined above.

Proposition 2.2 Suppose that x∗ is a local minimizer of (5). Then x∗ is a generalized first-
order stationary point, that is, (6) holds at x∗.

Proof Suppose that x∗ is a local minimizer of (5). It is easy to see that x∗ is also a local
minimizer of

min
x∈Rn
{‖Ax− b‖1 + λ‖x‖pp | xi = 0, i /∈ T}. (7)

Note that the objective function of (7) is locally Lipschitz continuous at x∗ in the subspace T .
Applying the first-order optimality condition of (7), we obtain that

0 ∈ (AT sgn(Ax∗ − b))i + λp|x∗i |p−1sgn(x∗i ), ∀i ∈ T.

Then, multiplying x∗i on both sides of the above relation gives

0 ∈ (AT sgn(Ax∗ − b))ix∗i + λp|x∗i |p, ∀i ∈ T.

From the fact x∗i = 0 for i /∈ T , we clarify that the above relation also holds for i /∈ T . Hence,
(6) holds and the proof is completed. �

We next establish a lower bound for the nonzero entries of the generalized first-order sta-
tionary points, and hence of local minimizers of problem (5). For problems (3) and (4), Chen
et al. [10] and Lu [20] derived some interesting lower bounds for the nonzero entries of local
minimizers, respectively.

Theorem 2.3 Suppose that x∗ is a generalized first-order stationary point of problem (5). Then
the following statement holds:

|x∗i | ≥ (
λp

‖Ai‖1
)

1
1−p , ∀i ∈ T. (8)

Proof From the definition of the generalized first-order stationary point, we obtain that

0 ∈ (AT sgn(Ax∗ − b))i + λp|x∗i |p−1sgn(x∗i ), ∀i ∈ T.

For i ∈ T , we have sgn(x∗i ) 6= 0 and |sgn(x∗i )| = 1. This together with the above relation derives

−λp|x∗i |p−1 ∈ sgn(x∗i )(A
T sgn(Ax∗ − b))i, ∀i ∈ T,

and
|sgn(x∗i )(A

T sgn(Ax∗ − b))i| = |(AT sgn(Ax∗ − b))i| ≤ ‖Ai‖1, ∀i ∈ T.
Hence it holds that

λp|x∗i |p−1 ≤ ‖Ai‖1, ∀i ∈ T,
which implies

|x∗i | ≥
(

λp

‖Ai‖1

) 1
1−p

,∀i ∈ T.

Thus we have completed the proof. �
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2.3 Locally Lipschitz continuous ε-approximation to (5)

Since ‖x‖pp is non-Lipschitz continuous at some points which contain zero entries, we know that
its Clarke subdifferential does not exist at theses points and this poses difficulties to design al-
gorithms for solving (5). In this subsection we introduce the smoothing `(p,ε)-regularized version
based on an ε-approximation function of ‖x‖pp. We consider the following ε-approximations to
‖x‖pp:

∑n
i=1(|xi|+ εi)

p, λ
∑n

i=1(|xi|2 + εi)
p/2 and λ

∑n
i=1 huε(xi) where

huε(xi) := min
0≤s≤uε

p

(
|xi|s−

p− 1

p
s

p
p−1

)
, uε :=

( ε

λn

) p−1
p
. (9)

As a consequence, by replacing ‖x‖pp with its ε-approximations, we obtain the `1−`(p,ε) problems

min
x∈Rn

‖Ax− b‖1 + λ
n∑
i=1

(|xi|+ εi)
p,

min
x∈Rn

‖Ax− b‖1 + λ
n∑
i=1

(|xi|2 + εi)
p/2,

and

min
x∈Rn

‖Ax− b‖1 + λ
n∑
i=1

huε(xi).

For (3), Chen and Zhou [11], Lai and Wang [18], Lai et al. [19] considered the corresponding
ε-approximation problems. They also proposed iterative reweighted `1 minimization methods
to solve them. It is worth noting that Lu [20] extended those methods to (4) by introducing the
new ε-approximation function huε(xi) of |xi|p, which has the following interesting proposition.

Proposition 2.4 (Lemma 2.4 (3) in [20]) The Clarke subdifferential of huε, denoted by ∂huε,
exists everywhere, and it is given by

∂huε(xi) =

 p|x|p−1sgn(xi), if |xi| > u
1
p−1
ε ,

puεsgn(xi), if |xi| ≤ u
1
p−1
ε .

The next theorem shows that when ε is below a threshold value, the generalized stationary
point of the corresponding ε-approximation problems is also that of the original problem (5).

Theorem 2.5 Let ε be a constant such that

0 < ε < λn

(
‖Ai‖1
λp

) p
p−1

. (10)

Suppose that x∗ is a generalized first-order stationary point of

min
x∈Rn

‖Ax− b‖1 + λ

n∑
i=1

huε(xi).

Then, x∗ is also a generalized first-order stationary point of (5), i.e., (6) holds at x∗. Moreover,
the nonzero entries of x∗ satisfy the lower bound property (8).
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Proof From the assumption, we know

0 ∈ ∂[‖Ax∗ − b‖1 + λ
n∑
i=1

huε(x
∗
i )],

that is

0 ∈ (AT sgn(Ax∗ − b))i + λ∂huε(x
∗
i ), ∀i ∈ T (11)

which implies

|∂huε(x∗i )| ≤
‖Ai‖1
λ

, ∀i ∈ T. (12)

Next, we will prove that |x∗i | > uε
1
p−1 for all i ∈ T . Suppose 0 < |x∗i | ≤ uε

1
p−1 for some i ∈ T ,

then following from Proposition 2.4, we have |∂huε(x∗i )| = puε. This together with (10) and the
definition of uε derives

|∂huε(x∗i )| = puε = p
( ε

λn

) p−1
p

>
‖Ai‖1
λ

.

This is in contraction to (12), hence |x∗i | > uε
1
p−1 for all i ∈ T . So we conclude that ∂huε(x

∗
i ) =

p|x∗i |p−1sgn(x∗i ) for every i ∈ T . It follows from (11) that

0 ∈ (AT sgn(Ax∗ − b))i + λp|x∗i |p−1sgn(x∗i ), ∀i ∈ T.

Multiplying x∗i on both sides of the above relation, we get

0 ∈ (AT sgn(Ax∗ − b))ix∗i + λp|x∗i |p, ∀i ∈ T.

From the fact x∗i = 0 for i /∈ T , we clarify that the above relation also holds for i /∈ T . Hence,
(6) holds. Moreover, applying this relation and Theorem 2.3, we immediately obtain the second
part of this theorem. �

We end this section with the following corollary.

Corollary 2.6 Suppose that x∗ is a local minimizer of

min
x∈Rn

‖Ax− b‖1 + λ

p∑
i=1

huε(xi).

Then x∗ is a generalized first-order stationary point of (5), i.e., (6) holds at x∗. Moreover, the
nonzero entries of x∗ satisfy the lower bound (8).

Proof Since x∗ is a local minimizer of

min
x∈Rn

‖Ax− b‖1 + λ

p∑
i=1

huε(xi),

we know that x∗ is one of its stationary points. Then the desired conclusion immediately follows
from Theorem 2.5. �
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3 Iterative reweighted methods based on Fα,ε

In order to solve the nonsmooth, nonconvex, and non-Lipschitz `1 − `p minimization (5), we
employ its ε-approximation minimization problems as mentioned in the previous section. We will
give three iterative reweighted methods. We now begin with introducing the related nonconvex
`1 − `(p,ε) problems as follows

min
x∈Rn

Fα,ε(x) := ‖Ax− b‖1 + λ
n∑
i=1

(|xi|α + εi)
p
α , (13)

min
x∈Rn

Fε(x) := ‖Ax− b‖1 + λ

n∑
i=1

huε(xi), (14)

where α = 1 or 2. For solving the `2 − `p minimization (3), two types of iterative reweighted
methods have been proposed in the literature [11, 12, 16, 18]. Recently, Lu [20] provided a
unified convergence analysis for the generalized version (4).

This section will focus on the iterative reweighted methods based on the problem (13) and
we will consider the problem (14) in the next section. Here, we give two types of iterative
reweighted `α methods, as well as the corresponding convergence analysis. In what follows, we
denote f(x) := ‖Ax − b‖1 for easy of description, and its subdifferential ∂f(x) at x = x∗ with
(∂f(x∗))i = (AT sgn(Ax∗ − b))i.

3.1 The first type IRLα method

The main idea is that problem (5) can be solved by applying the iterative reweighted `α methods
to a sequence of problems (13) with ε = εk → 0 as k → ∞, where {εk} is a sequence of
positive vectors. These extend the iterative reweighted methods for `2 − `p minimization (3)
proposed in [11, 18], which apply an iterative reweighted `1 or `2 method to solve a sequence of
ε-approximation minimization problems, to `1 − `p minimization (5).

Before giving the first type iterative reweighted `α method for (5), we need to introduce an
iterative reweighted `α method for solving problem (13).

Algorithm 1: An iterative reweighted `α method for (13)

Choose an arbitrary x0. Set k = 0.

1) Solve the weighted `α minimization problem

xk+1 ∈ argmin
{
f(x) + λp

α

∑n
i=1 s

k
i |xi|α

}
,

where ski = (|xki |α + εi)
p
α
−1 for all i.

2) Set k ← k + 1 and go to step 1).

End

Since f(x) := ‖Ax− b‖1 is nonsmooth, we define the generalized first-order stationary point
for the problem (13) by making use if the subdifferential of f .

Definition 3.1 We say that a vector x∗ ∈ <n is a generalized first-order stationary point of
(13) if

0 ∈ x∗i (∂f(x∗))i + λp(|x∗i |α + εi)
p
α
−1|x∗i |α, i = 1, 2, · · · , n.
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We will show that any accumulation point of {xk} generated by Algorithm 1 is a generalized
first-order stationary point of (13).

Theorem 3.2 Let the sequence {xk} be generated by Algorithm 1. Suppose that x∗ is an accu-
mulation point of {xk}. Then x∗ is a generalized first-order stationary point of (13).

Proof The proof is inspired by that of Theorem 3.1 in Lu [20], but we adopt the technique
of nonsmooth analysis. Let q be such that

α

p
+

1

q
= 1. (15)

For any δ > 0, it is easy to find that

(|x|α + δ)
p
α =

p

α
min
s≥0

{
(|x|α + δ)s− sq

q

}
, ∀x ∈ R.

Indeed, the minimum is achieved at s = (|x|α + δ)
1
q−1 . Together with the definition of sk and

(15), we have

sk = argmins≥0 Gα,ε(x
k, s), xk+1 ∈ argminx Gα,ε(x, s

k),

where

Gα,ε(x, s) = f(x) +
λp

α

n∑
i=1

[
(|xi|α + εi)si −

sqi
q

]
.

We can obtain that Fα,ε(x
k) = Gα,ε(x

k, sk). Thus,

Fα,ε(x
k+1) = Gα,ε(x

k+1, sk+1) ≤ Gα,ε(x
k+1, sk) ≤ Gα,ε(x

k, sk) = Fα,ε(x
k). (16)

Thus, {Fα,ε(xk)} is non-increasing. Since x∗ is an accumulation point of {xk}, there is a sub-
sequence {xk}K such that {xk}K → x∗. Moreover, Fα,ε is continuous and monotonic, hence

Fα,ε(x
k) → Fα,ε(x

∗). By the definition of sk, we have {sk}K → s∗, where s∗i = (|x∗i |α + εi)
p
α
−1.

Also, it is not hard to see that Fα,ε(x
∗) = Gα,ε(x

∗, s∗). From (16) and Fα,ε(x
k) → Fα,ε(x

∗), we
obtain that Gα,ε(x

k+1, sk)→ Fα,ε(x
∗) = Gα,ε(x

∗, s∗). Moreover, it holds by (16) that

Gα,ε(x, s
k) ≥ Gα,ε(x

k+1, sk) ∀x ∈ Rn.

Taking limits on both sides of this inequality as k ∈ K →∞, we have

Gα,ε(x, s
∗) ≥ Gα,ε(x

∗, s∗) ∀x ∈ Rn.

That is to say, x∗ ∈ argminx∈Rn Gα,ε(x, s
∗). Using the first-order optimality condition and the

definition of x∗, we can derive

0 ∈ (∂f(x∗))i + λp(|x∗i |α + εi)
p
α
−1|x∗i |α−1sgn(x∗i ), ∀i. (17)

Therefore, we complete the proof by multiplying x∗. �
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Proposition 3.3 Let δ > 0 be arbitrarily given, and let the sequence {xk} be generated by
Algorithm 1 for (13). Suppose that {xk} has at least one accumulation point. Then, there exist
some xk and gk ∈ ∂f(xk) such that

|xki (gk)i + λp|xki |α(|xki |α + εi)
p
α
−1| ≤ δ, ∀i.

Proof Without loss of generality, let limk→∞{xk} = x∗. From Theorem 3.2, we know that for
the sequence {xk}

0 ∈ (∂f(xk))i + λp(|xki |α + εi)
p
α
−1|xki |α−1sgn(xki ), ∀i.

Then there exists gk ∈ ∂f(xk) such that

(gk)i + λp(|xki |α + εi)
p
α
−1|xki |α−1sgn(xki ) = 0, ∀i.

For i ∈ T , since limk→∞ x
k
i = x∗i and x∗i 6= 0, we know that limk→∞(gk)i exists and

lim
k→∞

(gk)i + λp(|x∗i |α + εi)
p
α
−1|x∗i |α−1sgn(x∗i ) = 0, ∀i ∈ T.

Multiplying x∗i on both sides of the above relation, we obtain

lim
k→∞

(gk)ix
∗
i + λp(|x∗i |α + εi)

p
α
−1|x∗i |α = 0, ∀i ∈ T.

That is, there exist some xk and gk ∈ ∂f(xk) such that

|xki (gk)i + λp|xki |α(|xki |α + εi)
p
α
−1| ≤ δ, ∀i ∈ T.

Clearly, the above relation also holds for i /∈ T since limk→∞ x
k
i = x∗i and x∗i = 0 for i /∈ T . �

Applying the above proposition, we are ready to establish the first type of iterative reweighted
`α method for problem (5) with each subproblem being in the form of (13) and being solved by
the iterative reweighted `α method. Combining Algorithm 1 and Proposition 3.3, we have the
following Algorithm 2.

Algorithm 2: The first type iterative reweighted `α method for (5)

Let {δk} be a sequence of positive scalars and let {εk} be a sequence of positive vectors.

Set k = 0.

1) Apply the Algorithm 1 to problem (13) with ε = εk for finding xk

satisfying

|xki (gk)i + λp|xki |α(|xki |α + εi)
p
α
−1| ≤ δk, ∀i,

where gk ∈ ∂f(xk).

2) Set k ← k + 1 and go to step 1).

End

For Algorithm 2, we establish its convergence result as follows.
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Theorem 3.4 Let {δk} and {εk} be sequences of positive scalars and vectors such that {δk} → 0
and {εk} → 0, respectively. Let {xk} be a sequence of points generated by Algorithm 2. Suppose
that x∗ is an accumulation point of {xk}. Then x∗ is a generalized first-order stationary point
of (5), i.e., (6) holds at x∗.

Proof From Algorithm 2, we have∣∣∣xki (gk)i + λp|xki |α(|xki |α + εki )
p
α
−1
∣∣∣ ≤ δk, ∀i ∈ T, (18)

where gk ∈ ∂f(xk). Because x∗ is an accumulation point of {xk}, there exists a subsequence
{xk}K such that {xk}K → x∗. Taking limits on both sides of (18) as k ∈ K → ∞, we obtain
that

0 ∈ x∗i (∂f(x∗))i + λp|x∗i |p, ∀i ∈ T.

From the fact x∗i = 0 for i /∈ T , we clarify that the above relation also holds for i /∈ T . Hence,
x∗ satisfies (6) and it is also a generalized first-order stationary point of (5). �

3.2 The second type iterative reweighted `α method for (5)

We continue with stating the second type iterative reweighted `α methods for `1−`p minimization
(5). Indeed, problem (5) can also be solved by a sequence εk-approximation problems, which
is motivated by the idea employed in the iterative reweighted `1 and `2 methods for `2 − `p
minimization (3) in [12, 16], and the generalized version (4) in [20].

Algorithm 3: The second type iterative reweighted `α method for (5)

Let {εk} be a sequence of positive vectors in Rn. Choose an arbitrary x0. Set k = 0.

1 Solve the weighted `α minimization problem

xk+1 ∈ argmin
{
f(x) + λp

α

∑n
i=1 s

k
i |xi|α

}
,

where ski = (|xki |α + εki )
p
α
−1 for all i.

2) Set k ← k + 1 and go to step 1).

End

We below show that any accumulation point of {xk} generated by Algorithm 3 is a generalized
stationary point of (5).

Theorem 3.5 Suppose that {εk} is a sequence of non-increasing positive vectors in Rn and
εk → 0 as k → ∞. Let {xk} be the sequence generated by Algorithm 3. Suppose that x∗ is an
accumulation point of {xk}. Then, x∗ is a stationary point of (5).

Proof From the definition of Gα,ε(·, ·), one can observe that Gα,εk(xk+1, sk) ≤ Gα,εk(xk, sk)

and Gα,εk+1(xk+1, sk+1) = inf
s≥0

Gα,εk+1(xk+1, s). Hence,

Gα,εk+1(xk+1, sk+1) ≤ Gα,εk+1(xk+1, sk).
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In addition, since sk > 0 and {εk} is component-wise non-increasing, it is easy to see that
Gα,εk+1(xk+1, sk) ≤ Gα,εk(xk+1, sk). Using these relations, we have

Gα,εk+1(xk+1, sk+1) ≤ Gα,εk+1(xk+1, sk) ≤ Gα,εk(xk+1, sk) ≤ Gα,εk(xk, sk), ∀k ≥ 0. (19)

Therefore, {Gα,εk(xk, sk)} is non-increasing. Because x∗ is an accumulation point of {xk}, there

exists a subsequence {xk}K such that {xk}K → x∗. From the definition of sk, it holds that

Gα,εk(xk, sk) = f(xk) + λ
n∑
i=1

(|xki |α + εki )
p
α .

It then follows from {xk}K → x∗ and εk → 0 that {Gα,εk(xk, sk)}K → f(x∗) +λ‖x∗‖pp. Together

with the monotonicity of {Gα,εk(xk, sk)}, we obtain Gα,εk(xk, sk)→ f(x∗) +λ‖x∗‖pp. Combining
this relation and (19), we derive

Gα,εk(xk+1, sk)→ f(x∗) + λ‖x∗‖pp. (20)

We claim that

x∗ ∈ argminxT=0

{
f(x) +

λp

α

∑
i∈T
|xi|α|x∗i |p−α

}
. (21)

Thus, {ski }K → |x∗i |p−α, ∀i ∈ T . Furthermore, we observe that

0 ≤ p

α

∑
i∈T

[
εki s

k
i −

(ski )
q

q

]
≤ p

α

∑
i∈T

[
(|xki |α + εki )s

k
i −

(ski )
q

q

]
=
∑
i∈T

(|xki |α + εki )
p
α ,

which, together with εk → 0 and {xki }K → 0 for i ∈ T , means that

lim
k∈K,k→∞

∑
i∈T

[
εki s

k
i −

(ski )
q

q

]
= 0. (22)

In addition, we know that Gα,εk(x, sk) ≥ Gα,εk(xk+1, sk). Then for every x ∈ Rn such that
xT = 0, we have

f(x)+
λp

α

∑
i∈T

[
(|xi|α + εki )s

k
i −

(ski )
q

q

]
+
λp

α

∑
i∈T

[
εki s

k
i −

(ski )
q

q

]
= Gα,εk(x, sk) ≥ Gα,εk(xk+1, sk).

Taking limits on both sides of this inequality as k ∈ K →∞, and using (20), (22) and the fact
that {ski }K → |x∗i |p−α, ∀i ∈ T , we obtain that

f(x) +
λp

α

∑
i∈T

[
|xi|α|x∗i |p−α −

|x∗i |q(p−α)

q

]
≥ f(x∗) + λ‖x∗‖pp

for all x ∈ Rn such that xT = 0. From inequality and (15), we immediately have (21). The
first-order optimality condition of (21) and (15) lead to

0 ∈ x∗i (∂f(x∗))i + λp|x∗i |p ∀i ∈ T.

Since x∗i = 0 for i ∈ T , we observe that the above relation also holds for i ∈ T . Hence, x∗

satisfies (6) and the desired conclusion follows. �
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4 Iterative reweighted methods based on Fε

This section will establish our iterative reweighted methods based on problem (14). As shown
in Section 3, problem (14) has a locally Lipschitz continuous objective function and it is an
ε-approximation to (2). Moreover, when ε is below a computable threshold value, a certain
stationary point of (14) is also that of (5). According to this property, we propose an iterative
reweighted `1 methods for solving (5), which can be viewed as the iterative reweighted `1 methods
directly applied to problem (14). The novelty of these methods is in that the parameter ε
is chosen only once and then fixed throughout all iterations, while the iterative reweighted
`α methods based on Fα,ε studied in the preceding section require that the parameter ε be
dynamically adjusted and approach zero. However, it still can be verified that any accumulation
point of the sequence generated by these methods is a generalized first-order stationary point
of (5). This shows that the interesting properties of iterative reweighted `1 methods by Lu [20]
still hold for the corresponding methods of `1 − `p minimization (5).

We now state the iterative reweighted `1 methods based on Fε as follows. Here, we set q as

1

p
+

1

q
= 1. (23)

Algorithm 4: The iterative reweighted `1 method for (5)

Let q be defined in (23). Choose an arbitrary x0 ∈ Rn and ε such that (10) holds.

Set k = 0.

1) Solve the weighted `1 minimization problem

xk+1 ∈ argminx
{
f(x) + λp

∑n
i=1 s

k
i |xi|

}
,

where ski = min
{

( ε
λn)

1
q , |xki |

1
q−1

}
for all i.

2) Set k ← k + 1 and go to step 1).

End

The following theorem claims that any accumulation point of {xk} generated by Algorithm
4 is a generalized first-order stationary point of (5).

Theorem 4.1 Let {xk} be the sequence generated by Algorithm 4. Assume that ε satisfies (10).
Suppose that x∗ is an accumulation point of {xk}. Then x∗ is a generalized first-order stationary
point of (5), i.e., (6) holds at x∗. Moreover, the nonzero entries of x∗ satisfy the lower bound
(8).

Proof Let uε = ( ε
λn)1/q and

G(x, s) = f(x) + λp
n∑
i=1

[
|xi|si −

sqi
q

]
. (24)

It is not hard to see that

sk = argmin0≤s≤uεG(xk, s), xk+1 ∈ argminxG(x, sk). (25)

12



Furthermore, Fε(x) = min
0≤s≤uε

G(x, s) and Fε(x
k) = G(xk, sk). It then follows that

Fε(x
k+1) = G(xk+1, sk+1) ≤ G(xk+1, sk) ≤ G(xk, sk) = Fε(x

k). (26)

Hence, {Fε(xk)} is non-increasing. Because x∗ is an accumulation point of {xk}, there exists a
subsequence {xk}K such that {xk}K → x∗. Moreover, Fε is continuous and monotonic, hence

Fε(x
k) → Fε(x

∗). Let s∗i = min{uε, |x∗i |
1
q−1 } for all i. We then observe that {sk}K → s∗ and

Fε(x
∗) = G(x∗, s∗). Using (26) and Fε(x

k) → Fε(x
∗), we see that G(xk+1, sk) → Fε(x

∗) =
G(x∗, s∗). In addition, it follows from (25) that

G(x, sk) ≥ G(xk+1, sk) ∀x ∈ Rn.

Taking limits on both sides of this inequality as k ∈ K →∞, we obtain

G(x, s∗) ≥ G(x∗, s∗) ∀x ∈ Rn,

which yields

x∗ ∈ argmin

{
f(x) + λp

n∑
i=1

s∗i |xi|

}
. (27)

The first-order optimality condition of (27) is

0 ∈ (∂f(x∗))i + λps∗i sgn(x∗i ), ∀i. (28)

Recall that s∗i = min{uε, |x∗i |
1
q−1 }, which together with (23) implies that for all i,

s∗i =

{
|x∗i |p−1, if |x∗i | > uq−1ε ,

uε, if |x∗i | ≤ u
q−1
ε .

Replacing it into (28), gives

0 ∈ (∂f(x∗))i + λ∂huε(x
∗
i ), ∀i.

It then follows that x∗ is a generalized first-order stationary point of Fε. Using these results and
Theorem 2.5, we conclude that x∗ is a generalized first-order stationary point of (5). The rest
of conclusion immediately follows from Theorem 2.3. �

5 Numerical Study

In this section, we conduct numerical experiments to compare the performance of the iterative
reweighted `1 methods (Algorithm 2, Algorithm 3, Algorithm 4) studied in Subsections 3.1 and
3.2 and Section 4. For the sake of fairness, we all run 100 times to illustrate the efficiency of the
above algorithms. Meanwhile, we use Alg. to denote Algorithm for convenience of presentation.
All experiments are implemented in MATLAB on a desktop computer with Intel Core I5 2.60GHz
CPU and 8GB of RAM.

We now address the initialization and the termination criteria for our proposed iterative
reweighted `1 methods applied to the `1−`p minimization (5). In particular, we use the following
MATLAB code to generate the decision variable x, the measurement matrix A, the log-normal
noise w, and the measurement vector b:
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x = zeros(n, 1); v = randperm(n); x(v(1 : k)) = 2 ∗ randn(k, 1);

A = randn(m,n); A = orth(A); w = 10−3 ∗ lognrnd(0, 1,m, 1);

b = A ∗ x+ w.

The same initial point x0 is used for all methods. Notice that, we choose x0 as a solution of

min
1

2
‖Ax− b‖22 + λ‖x‖1,

which can be computed by a variety of methods. In this paper, we adopt FISTA proposed
in Beck and Teboulle [1]. To validate these methods, all methods terminate according to the
following criterion

‖AT sgn(Ax− b)x+ λp|x|p‖∞ ≤ 10−4.

We set εk = 0.1ke and δk = 0.1k for Alg. 2, and εk = 0.5ke for Alg. 3, respectively, where e
is the all-ones vector. As remarked in Section 2, for Alg. 4, ε is chosen as the one satisfying
(10). The regularization parameter λ is chosen to be 10−3. In addition, each subproblem of the
algorithms is solved by the spectral projected gradient (SPG) method [23] with α = 1.

We next conduct numerical experiments to test the performance of Alg. 2 – Alg. 4 for solving
(5). We compare the objective value and CPU time obtained by these methods. The compu-
tational results of the three iterative reweighted `1 methods and their variants are presented
in Table 1 for p = 0.1 and Table 2 for p = 0.5, respectively. In detail, the dimensions of each
data set are given in the first two columns. The middle four columns list the objective value
which is defined above. In addition, the CPU time is reported in the last four columns. From
the above numerical experiments, we can observe that: the new iterative reweighted `1 method
(i.e, Alg. 4) has smaller objective value than FISTA and the other two iterative reweighted `1
methods, namely, Alg. 2 and Alg. 3. Furthermore, the new iterative reweighted `1 method (i.e,
Alg. 4) is usually faster than FISTA, Alg. 2 and Alg. 3.

Table 1: Comparison of FISTA and three iterative reweighted `1 methods with p = 0.1

Scale Objective Value CPU Time

m n FISTA Alg. 2 Alg. 3 Alg. 4 FISTA Alg. 2 Alg. 3 Alg. 4

100 500 1.7657 1.5666 1.3445 0.8233 0.0149 0.0171 0.0140 0.0119

200 1000 2.8363 2.5920 1.7763 1.3731 0.0224 0.0238 0.0198 0.0188

300 1500 3.2738 3.2067 2.9865 2.0257 0.0398 0.0449 0.0395 0.0387

400 2000 4.4914 5.1432 3.6068 2.6324 0.0572 0.0650 0.0582 0.0530

500 2500 6.3543 6.5100 4.5689 3.4269 0.0845 0.0872 0.0841 0.0825

600 3000 7.6703 7.8139 6.5679 4.0010 0.1074 0.1102 0.0924 0.0898

700 3500 8.9000 9.0091 7.6402 4.7255 0.1220 0.1269 0.1207 0.1140

800 4000 10.3874 10.4071 8.7117 5.0410 0.1598 0.1706 0.1468 0.1413

900 4500 11.0344 11.6670 9.7155 5.9991 0.1843 0.1947 0.1763 0.1707

1000 5000 12.7837 13.2954 11.7446 6.7973 0.2192 0.2637 0.2020 0.1937
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Table 2: Comparison of FISTA and three iterative reweighted `1 methods with p = 0.5

Scale Objective Value CPU Time

m n FISTA Alg. 2 Alg. 3 Alg. 4 FISTA Alg. 2 Alg. 3 Alg. 4

100 500 0.5836 0.6080 0.5762 0.5221 0.0149 0.0152 0.0089 0.0030

200 1000 0.8514 1.1474 1.1770 0.7563 0.0224 0.0215 0.0171 0.0121

300 1500 1.7702 1.8072 1.6325 1.1288 0.0398 0.0364 0.0252 0.0215

400 2000 2.3643 2.5384 2.1090 1.5618 0.0572 0.0569 0.0388 0.0362

500 2500 3.0050 3.0225 2.8328 1.8968 0.0845 0.0705 0.0570 0.0521

600 3000 3.4831 3.5585 3.1589 2.2723 0.1074 0.0914 0.0754 0.0715

700 3500 4.0306 4.0773 3.6546 2.6107 0.1220 0.1224 0.1123 0.0825

800 4000 4.4564 4.7423 4.2087 3.0702 0.1598 0.1413 0.1140 0.1088

900 4500 5.2710 5.7123 5.5077 3.5192 0.1843 0.1864 0.1610 0.1459

1000 5000 6.0417 6.2578 6.0745 4.2749 0.2192 0.2365 0.1758 0.1651

6 Concluding remarks

In this paper we have dealt with `1 − `p minimization (5). By introducing the definition of
generalized first-order stationary points, we have derived lower bounds of their nonzero entries
and local minimizers of (5). We then proposed the iterative reweighted `1 and `2 methods
and their variants for `1 − `p minimization (5), and established their convergent results. In
particular, for the proposed iterative reweighted `1 methods based on ε-approximation function
huε introduced by Lu [20], we have proved that any accumulation point of the sequence generated
by these methods is a generalized first-order stationary point, provided that the approximation
parameter ε is below a threshold value. We demonstrated the efficiency of our proposed methods
through numerical experiments and comparison
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