
Iterative Schedule Optimization for
Parallelization in the Polyhedron Model

Stefan Ganser

April 29, 2019

Dissertation zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

eingereicht an der Fakultät für Informatik und Mathematik
der Universität Passau

Dissertation Submitted to
the Faculty of Computer Science and Mathematics

of the University of Passau
in Partial Fulfillment of Obtaining

the Degree of a Doctor of Natural Sciences

Betreuer / Supervisor: Prof. Christian Lengauer (PhD)
Externer Gutachter / External Examiner: Dr. Albert Cohen

Abstract

In high-performance computing, one primary objective is to exploit the performance that
the given target hardware can deliver to the fullest. Compilers that have the ability to
automatically optimize programs for a specific target hardware can be highly useful in this
context. Iterative (or search-based) compilation requires little or no prior knowledge and can
adapt more easily to concrete programs and target hardware than static cost models and
heuristics. Thereby, iterative compilation helps in situations in which static heuristics do
not reflect the combination of input program and target hardware well. Moreover, iterative
compilation may enable the derivation of more accurate cost models and heuristics for
optimizing compilers. In this context, the polyhedron model is of help as it provides not only
a mathematical representation of programs but, more importantly, a uniform representation
of complex sequences of program transformations by schedule functions. The latter facilitates
the systematic exploration of the set of legal transformations of a given program.
Early approaches to purely iterative schedule optimization in the polyhedron model do

not limit their search to schedules that preserve program semantics and, thereby, suffer from
the need to explore numbers of illegal schedules. More recent research ensures the legality
of program transformations but presumes a sequential rather than a parallel execution of
the transformed program. Other approaches do not perform a purely iterative optimization.
We propose an approach to iterative schedule optimization for parallelization and tiling

in the polyhedron model. Our approach targets loop programs that profit from data locality
optimization and coarse-grained loop parallelization. The schedule search space can be
explored either randomly or by means of a genetic algorithm.
To determine a schedule’s profitability, we rely primarily on measuring the transformed

code’s execution time. While benchmarking is accurate, it increases the time and resource
consumption of program optimization tremendously and can even make it impractical. We
address this limitation by proposing to learn surrogate models from schedules generated and
evaluated in previous runs of the iterative optimization and to replace benchmarking by
performance prediction to the extent possible.
Our evaluation on the PolyBench 4.1 benchmark set reveals that, in a given setting,

iterative schedule optimization yields significantly higher speedups in the execution of the
program to be optimized. Surrogate performance models learned from training data that
was generated during previous iterative optimizations can reduce the benchmarking effort
without strongly impairing the optimization result. A prerequisite for this approach is a
sufficient similarity between the training programs and the program to be optimized.

i

Contents

Contents iii

List of Symbols, Abbreviations, and Names vii

List of Tables xi

List of Figures xiii

List of Algorithms xv

1 Introduction and Problem Statement 1

2 Background 5

2.1 Parallel Computing . 5

2.1.1 The Evolution towards Modern Multicore Processors 5

2.1.2 Multicore Processors . 7

2.2 Polyhedron Model . 8

2.2.1 Mathematical Foundation . 9

2.2.2 Polyhedral Optimization Framework 17

2.3 Machine Learning and Iterative Optimization Techniques 23

2.3.1 Genetic Algorithms . 24

2.3.2 Supervised Machine Learning . 24

3 Related Work 27

3.1 Iterative Polyhedral Scheduling Algorithms 27

3.2 Model-Based Polyhedral Scheduling Algorithms 29

3.3 Hybrid Polyhedral Scheduling Algorithms 30

3.4 Other Use Cases of Polyhedral Features of Schedules and Programs 30

3.5 Other Approaches to Machine Learning and Iterative Optimization in Com-
pilation . 31

3.5.1 Iterative Approaches . 31

3.5.2 Combined Machine-Learning and Iterative Approaches 31

3.5.3 Machine-Learning Approaches . 32

4 Sampling the Search Space of Legal Schedules 35

4.1 Objectives of a Sampling Algorithm . 36

4.2 The Optimal Schedule Representation for Sampling 37

4.3 Restriction to Legal Schedules . 39

4.4 The Size and Structure of the Search Space 40

4.5 Sampling Search Space Regions . 41

4.5.1 Search Space Construction by Louis-Noël Pouchet 41

4.5.2 Our Generalization . 42

4.5.3 Termination . 44

4.5.4 Summary . 45

4.5.5 Discussion . 45

iii

iv CONTENTS

4.6 Sampling Schedules from Search Space Regions 46

4.6.1 Enumeration of Schedules . 46

4.6.2 Acceptance-Rejection Sampling . 47

4.6.3 Pattern Hit-and-Run Sampling . 47

4.6.4 Geometric Divide-and-Conquer Sampling 48

4.6.5 Geometric Approach Based on the Decomposition Theorem for Poly-
hedra (“Chernikova Sampling”) . 48

4.6.6 Sampling by Projection . 50

4.6.7 Discussion . 51

4.7 Schedule Completion . 54

4.8 Adapting Pouchet’s Approach in Polyite 55

5 Schedule Simplification and Analysis 57

5.1 Motivation . 57

5.2 Schedule Trees . 58

5.3 Schedule Tree Transformation . 59

5.4 Schedule Tree Simplification . 61

5.4.1 Remove Statements’ Common Offset 63

5.4.2 Overly Large Schedule Coefficients 64

5.4.3 Elimination of Superfluous Subtrees 67

5.4.4 Elimination of Degenerate Loops . 68

5.4.5 Further Normalization of Band Nodes 69

5.4.6 Collapsing Cascades of Sequence Nodes 69

5.5 Schedule Tree Analysis . 70

5.5.1 Detection of Loop-Generating Schedule Dimensions 70

5.5.2 Detection of Permutable Schedule Bands 70

5.5.3 Detection of Parallelism . 71

5.5.4 Detecting Equivalence Classes . 71

5.6 Discussion . 72

6 Validity-Preserving Genetic Operators 77

6.1 A Genetic Algorithm for Polyhedral Schedule Optimization 78

6.2 Schedule Mutation and Crossover . 79

6.2.1 Mutation Operators . 79

6.2.2 Crossover Operators . 83

6.2.3 Summary . 88

6.3 Equivalence of Schedules . 88

6.4 Felix Bernasch’s Bachelor Thesis: A Distributed Genetic Algorithm for Polyite 89

7 Classification of Schedules 91

7.1 Schedule Features . 93

7.1.1 Requirements for a Set of Schedule Features 94

7.1.2 Structural Features of Schedule Trees 95

7.1.3 Performance-Related Features of Schedule Trees 100

7.1.4 Discussion . 106

7.2 Learning a Schedule Classifier and Integrating it with the Genetic Algorithm 108

7.2.1 Classification as a Guard for Benchmarking 109

7.2.2 Two-Staged Approach . 110

8 Implementation 111

8.1 Overview . 111

8.2 Usage . 113

CONTENTS v

8.3 Existing Basic Building Blocks . 113
8.3.1 The Integer Set Library (isl) . 114
8.3.2 libbarvinok . 114
8.3.3 Größlinger’s Implementation of Chernikova’s Algorithm 114
8.3.4 LLVM . 114
8.3.5 Polly . 115
8.3.6 SLURM Workload Manager 116
8.3.7 scikit-learn . 116
8.3.8 MPI . 117
8.3.9 The ExaStencils Code Generator 117

8.4 Software Architecture . 117
8.4.1 Class Diagram . 117
8.4.2 Schedule Evaluation . 119
8.4.3 Parallelization . 120

8.5 Complying with the (Super-)Exponential Asymptotic Run-Time Complexity
of Algorithms in Polyite . 120

9 Evaluation 123
9.1 Experimental Setup . 123

9.1.1 Implementation . 124
9.1.2 Tool Chain . 124
9.1.3 Benchmarking . 124
9.1.4 Configuration . 125

9.2 Benchmark Set . 126
9.3 Search Space Exploration . 128

9.3.1 Research Questions . 128
9.3.2 Experiments . 129
9.3.3 Discussion . 139

9.4 Genetic Algorithm with Schedule Classification 142
9.4.1 Research Questions . 142
9.4.2 Training Sets . 142
9.4.3 Experiments . 143
9.4.4 Discussion . 155

9.5 Threats to Validity . 159

10 Conclusion and Future Work 161
10.1 Sampling of Schedules . 161
10.2 Schedule Simplification and Analysis . 162
10.3 Genetic Algorithm . 163
10.4 Schedule Classification . 163
10.5 Open Questions and Research Directions 163

Bibliography 165

List of Symbols, Abbreviations, and Names

Symbol/Abbr./
Name

Description . Page

char.cone(P) . The characteristic cone of polyhedron P 12

cols(A) The number of columns of matrix A. 9

cone(S) The convex cone generated by the set S of vectors. 11

conv.hull(S) . . The convex hull of the set S of vectors. 11

dim(f) The dimensionality of a linearly affine function f : Rn → Rm is m. 10

dim(S) Let S ⊆ Rn. We define dim(S) = n. 10

FDepth A feature that expresses the depth of a schedule tree. 98

FDataLoc A schedule feature that expresses data locality. 105

FLeaves A feature that expresses the number of leaves in a schedule tree. . 95

FMemAcc A schedule feature that characterizes statements’ memory access pattern
after the schedule transformation. 106

FPar A schedule feature that expresses coarse-grained parallelism. . . . 102

FSeq A feature that expresses the number of sequence nodes in a schedule
tree. 96

FSpIter A feature that expresses the sparsity of the iteration variable coefficients
in a schedule. 99

FSpP A feature that expresses the sparsity of the structure parameter
coefficients in a schedule. 100

FTile A schedule feature that expresses the applicability of rectangular
tiling. 103

lin.hull(S) . . . The linear hull of the set S of vectors. 11

lin.indep(S) . . The set of vectors that are linearly independent of the vectors in S. 54

lin.space(P) . . The lineality space of polyhedron P 12

Γ The depth that a schedule tree for the current SCoP can have.
Uncounted are domain nodes and filter nodes. 97

∆Si
. The number of loops surrounding statement Si or 1 in the absence of

loops. As a simplification we use the value of ISi
. 93

νS Coefficient of 1 that is related to statement S in a schedule coefficient
vector. 38

vii

viii List of Symbols, Abbreviations, and Names

Rm×n Space of all real matrices with m rows and n columns. 9

rows(A) The number of rows of matrix A. 9

L The number of leaves of a given schedule tree. 93

S The number of sequence nodes in a given schedule tree. 93

A The total number of memory access relations in the SCoP. We
distinguish between read and write accesses. 93

Λ(S) Let S = {~x | ~x ∈ Rn ∧ m,n ∈ N ∧ (p1(~x) ∨ p2(~x) ∨ ... ∨ pm(~x)} be
some set of n-dimensional vectors.
We define Λ(S) = {{~x | ~x ∈ Rn ∧ pi(~x)} | i ∈ {1, 2, ...,m}}. 11

IsCstDim : N →
B

Tests whether a given natural number is the index of a coefficient for the

constant 1 in a schedule’s coefficient space. 65

ΘS The schedule function of statement S. 20

Θ
(d..e)
S Addresses the partial schedule that consists of dimensions

d, d+ 1, ..., e. 20

εx(P (x)) Selects a value x for which P (x) is true. 65

~λS Coefficients for ~iS in a schedule coefficient vector. 38

~µS Coefficients for ~p that are associated to statement S in a schedule
coefficient vector. 38

~iS The vector of the iteration variables of the loops encasing statement
S. 21

~p Vector of a SCoP’s structure parameters. 21

~u ≺ ~v Vector ~u is lexicographically smaller than ~v. 16

A · ~β Matrix-vector product of matrix A and ~β. 9

A~β Horizontal coupling of vector ~β and matrix A. 9

A(•,j) Column j of matrix A. 9

A(i,•) Row i of matrix A. 9

A(i,j) Element in column j of row i of matrix A. 9

C1..d
Θ Set of dependence polyhedra that are carried by dimensions 1, ..., d,

d ∈ N of schedule Θ. 79

DO,T Dependence polyhedron that models a set of dependences between
statements O (origin) and T (target). 20

I Given a SCoP, I is the set of its statements’ iteration domains. . 93

IS Iteration domain of statement S. 19

readAS :Zn→Zm Function that models a read access from statement S surrounded
by n loops to m-dimensional array A. 20

List of Symbols, Abbreviations, and Names ix

SO,T Set of all coefficient vectors that represent one-dimensional schedules
that satisfy DO,T strongly. 40

U1..d
Θ Set of dependence polyhedra that are not carried by dimensions

1, ..., d, d ∈ N of schedule Θ. 79

WO,T Set of all coefficient vectors that represent one-dimensional schedules
that satisfy DO,T at least weakly. 40

writeAS :Zn→Zm Function that models a write access from statement S surrounded
by n loops to m-dimensional array A. 20

x :: xs Prepends element x to list xs. 41

GAB Genetic algorithm with benchmarking. 91

GAC Genetic algorithm with classification. 110

clang LLVM’s front end for languages in the C language family (C, C++,
Objective C, etc. 92

ALU Arithmetic-logic unit. 6

AST Abstract syntax tree. 30

CART Classification and regression tree. 24

GCC GNU Compiler Collection: a C-compiler. 23

Graphite . . . An extension of GCC for polyhedral loop optimization. 23

ILP Integer linear program. 16

isl Integer Set Library: a library to represent and manipulate integer
sets. 23

JNI Java Native Interface. 114

JSCOP A notation for a SCoP’s mathematical representation that is based on
JSON. 111

JSON Java Script Object Notation. 111

JiT Just-in-time. 29

LCD Lowest common denominator. 49

LeTSeE An iterative polyhedral schedule optimizer. 35

libbarvinok . A program library by Verdoolaege et al. [157] that can count the number
of points in a Z-polytope. 52

LLVM IR . . . Intermediate language of LLVM. 114

LLVM originally “Low-Level Virtual Machine”: A compiler framework . . 2

MPI The Message Passing Interface is a standard for inter-process com-
munication in the context of distributed-memory parallelization. 117

NUMA Non-uniform memory access. 149

x List of Symbols, Abbreviations, and Names

OpenMP . . . Open Multi-Processing . 1

PHR sampling Pattern hit-and-run sampling: a technique to sample points from a
discrete polytope according to a probability distribution. 47

PIP Parametric integer program. 16

PLUTO+ . . . An extension of the PLuTo scheduling algorithm. 23

PLuTo An algorithm for polyhedral schedule optimization and a polyhedral
source-to-source compiler . 4

PoCC A polyhedral loop optimizer. 23

Polly A set of LLVM passes for polyhedral program optimization. 2

PolyBench . . A set of benchmark programs that can be represented in the polyhedron
model. 4

PPCG Polyhedral Parallel Code Generation: a source-to-source compiler
that can transform regions of C-programs to CUDA. 23

scikit-learn . A Python library for machine-learning. 113

SCoP Static control part. A code region that is representable in the polyhedron
model . 18

SLURM Simple Linux Utility Resource Manager: a workload management
system. 116

SMT Simultaneous Multi-Threading. 7

SVM Support vector machine: a machine learning technique. 33

UTF Unified Transformation Framework. 27

GetCoeff . . . Given a one-dimensional linearly affine function f and an index d,
GetCoeff returns the dth coefficient in f 65

rand Function that selects randomly an element from a given set 41

reverse Function that reverses a list. 41

SetCoeff . . . Given a one-dimensional linearly affine function f , an index d, and α ∈ Z

SetCoeff returns a copy of f with its dth coefficient set to α. . . 65

IsParamDim :N→B
Tests whether a given natural number is the index of a structure

parameter’s coefficient in a schedule’s coefficient space. 65

List of Tables

4.1 Schedule matrix of the schedule in Example 2.2.15. 39
4.2 Characteristics of the PolyBench 4.1 benchmarks’ SCoPs. 49

6.1 Overview of the mutation and crossover operators. 88

7.1 The symbols that we use in the features’ definitions. 93

9.1 Characteristics of the programs in the PolyBench 4.1 benchmark set. . . 127
9.2 Characteristics of the PolyBench 4.1 programs’ search space regions geo-

metric representations. 132
9.3 Percentage of schedules that cannot be benchmarked successfully for different

reasons. 133
9.4 Speedups over plain -O3 reached by different configurations. 135
9.5 p-values obtained from a pairwise Wilcoxon signed rank test quantifying

the significance of differences between different configurations of schedule
optimization. 136

9.6 Comparison of single-thread and 8-thread parallel execution of the optimal
schedules found by GAB. 136

9.7 The estimated number of search space regions per program that were visited
by GAB and random sparse. 136

9.8 Per program, the number of equivalence classes in the final generation of the
GAB run that we performed in E 9.3.2. 138

9.9 Characteristics of the training sets. 143
9.10 Average results per combination of program and p for the optimal configura-

tion of random forest that we determined in E 9.4.2. 146
9.11 Our schedule features ordered by their importance across the set of benchmark

programs. 147
9.12 GINI importances of our features for the union of all program’s training sets. 147
9.13 Results of E 9.4.3 . 150
9.14 Speedups yielded by the configurations that we evaluated in E 9.4.4 152
9.15 p-values that resulted from a pairwise Wilcoxon signed rank test that compares

GAC to GAB and random exploration. 153
9.16 Comparison of GAB, GAC , and random exploration with respect to the

duration of the optimization. 156
9.17 Comparison of three configurations of GAC with respect to the share of

profitable schedules found and the number of generations computed. 158

xi

List of Figures

2.1 Basic operating schema of a von-Neumann processor. 5

2.2 Illustration of a cache hierarchy with two levels. 6

2.3 Pipelining increases instruction throughput. 7

2.4 Vectorization allows to execute multiple additions c = a+ b simultaneously. 7

2.5 Diagram of a dual-core processor. 8

2.6 Example of static control. 8

2.7 Examples of a non-convex set and a convex set in R2. 10

2.8 An illustration of the cone generated by the vectors {(−1, 2)T , (1, 1)T }. . . 11

2.9 A polyhedron. 11

2.10 A Z-polyhedron. 13

2.11 A simple polyhedron to illustrate Chernikova’s algorithm. 15

2.12 ILP solution space. 16

2.13 Iteration domains of the running example syrk. 19

2.14 An example of a classification tree. 25

4.1 SCoP for which no legal one-dimensional linearly affine schedule exists. . . . 38

4.2 Iteration domain and dependences of the SCoP in Example 4.3.1. 40

4.3 Iteration domain and dependences of the SCoP in Example 4.5.2. 45

4.4 Illustration of acceptance-rejection sampling for Z-polytopes. 47

4.5 Measured run-time complexity of Chernikova sampling. 53

4.6 Measured run-time complexity of geometric divide-and-conquer sampling. . 53

4.7 Measured run-time complexity of projection sampling. 53

5.1 The schedule tree of our running example syrk. 59

5.2 Result of applying Algorithm 5.1 in Example 5.3.1. 62

5.3 Example in which skewing does not change the execution order. 63

5.4 Illustration of Common Offset Removal. 64

5.5 Interference of loop strides and tile sizes. 66

5.6 Cascades of sequence nodes that can be collapsed. 70

5.7 A schedule tree before and after simplification. 72

6.1 Illustrations of our schedule mutation operators. 80

6.2 Partial Schedule Replacement. 83

6.3 Illustrations of our schedule crossover operators. 84

6.4 Illustration of the basic principle of geometric crossover. 86

6.5 Illustrations of Polyite’s distributed evolutionary algorithms. 90

7.1 Workflow of our genetic algorithm that relies on benchmarking. 91

7.2 Distribution of speedups yielded by the schedules in the GA’s generations for
3mm and adi. 92

7.3 Two schedule tree representations of the same schedule. 94

7.4 Comparison of loop fusion and loop distribution. 96

7.5 Two schedules that differ according to FSeq, but not according to FLeaves. . 97

7.6 Example of a schedule tree that has the maximum depth possible. 99

7.7 A schedule tree that has exactly depth Γ′. 99

xiii

xiv LIST OF FIGURES

7.8 The empirical run-time complexity of feature extraction. 108
7.9 Labeling of schedules for classifiers’ training data. 109
7.10 A classifier can be used as a guard for the benchmarking of schedules. . . . 110
7.11 Workflow of our genetic algorithm that solely relies on classification. 110

8.1 Tool chain of Polyite. 113
8.2 Macroscopic view of the architecture of compilers that are based on LLVM. 115
8.3 High-level steps taken by Polly to detect and optimize SCoPs in a program. 115
8.4 Architecture of the SLURM Workload Manager. 116
8.5 UML class diagram that shows the main components of Polyite. 118
8.6 Illustration of Polyite’s distributed genetic algorithm running on a compute

cluster. 121

9.1 Median convergence speed of different configurations of iterative optimization.131
9.2 Distribution of the speedups yielded by the schedules generated by different

configurations of iterative optimization. 131
9.3 Speedups over plain -O3 reached by different configurations. 134
9.4 Box plots showing the distribution of performance within the generations of

GAB. 137
9.5 Per configuration tested in E 9.3.4, the median speedup of the optimal

schedule known after visiting n schedules. 139
9.6 Per configuration tested in E 9.3.5, the median speedup of the optimal

schedule known after visiting n schedules. 139
9.7 Box plots showing the distribution of performance within the generations of

GAB. 141
9.8 Comparison of different configurations of the learning algorithm for the

schedule classifiers. 144
9.9 A heat map that shows the GINI importance per feature and program. . . . 145
9.10 Comparison of the value distribution of FTile between 3mm and adi. 147
9.11 A decision tree that is learned from all programs’ training sets. 148
9.12 Comparison of the speedups yielded by the schedules in the final generations

of GAC and the speedups yielded by schedules generated randomly. 154
9.13 Box plots that show the distribution of the standard errors of measured

execution times per schedule that resulted during the evaluation of set of
schedules generated randomly. 160

List of Algorithms

2.1 Chernikova’s Original Algorithm . 14

4.1 Partition a set of dependent pairs of statement instances into polyhedra . . 40
4.2 Sampling of Search Space Regions . 41
4.3 Sampling of Schedules from Search Space Regions 46
4.4 Combined Divide-and-Conquer and Enumeration Sampling 48
4.5 Projection Sampling . 51

5.1 Basic Schedule Tree Construction . 60
5.2 Remove Statement’s Common Offset from Band Nodes’ Schedules 65
5.3 Divide Schedule Coefficients by Their GCD 66
5.4 Remove Superfluous Subtrees . 67
5.5 Eliminate Superfluous Band Nodes . 68
5.6 An Improved Procedure Partition for Algorithm 5.1 73

6.1 Schema of Polyite’s Genetic Algorithm for Schedule Optimization 78
6.2 Row-Based Crossover . 85

xv

Listings

2.1 Computation of a symmetric rank-k update: C = α ·A ·AT + β · C. 18

4.1 The program in Listing 2.1 (page 18) transformed by the schedule in Exam-
ple 4.5.1. 44

4.2 Program with an extraordinarily low acceptance rate of acceptance-rejection
sampling. 52

5.1 Program with partially fused loop nests. 72
5.2 The program from Example 5.6.2 before tiling. 75
5.3 The program from Example 5.6.2 after tiling. 75
5.4 The program from Example 5.6.3 before tiling. 75
5.5 The program from Example 5.6.3 after tiling. 75
5.6 The program from Example 5.6.4 before tiling. 76
5.7 The program from Example 5.6.4 after tiling. 76

7.1 One loop with a guard for X. The loop cannot be parallelized. 101
7.2 Two loops without guards. The second loop can be parallelized. 101
7.3 The code of our running example syrk after transformation by the schedule

in Equation 7.1. 106

8.1 JSCOP representation of syrk, as exported by Polly. 112

xvii

1 Introduction and Problem Statement

In 1975, Moore [102] predicted that the complexity, i.e., the number of components, of
integrated circuits would double approximately every two years. In addition, the continuous
miniaturization of processors let their power consumption recede and allowed a steady rise
of the speed at which computations were carried out by accelerating processors’ clocks.
Meanwhile, this scaling schema, which is known as Dennard Scaling [35], has lost its validity
due to physical limitations. All main processor manufacturers resort to multicore processors
to be able to increase the speed of computations despite the inability to raise the clock
speed [67]. To make software profit from the available performance, developers must write
parallelized code or compilers must have the ability to automatically parallelize relevant
parts of programs. Typically, parts of programs whose execution makes up a significant
share of an application’s total execution time and whose control flow is repetitive, such as in
the case of a loop, are candidates for parallelization.

Additionally, other techniques have emerged to increase processors’ performance. Let us
mention two important ones. Multiple cache levels between main memory and the processor
cores have been added to mitigate the effect of the von-Neumann bottleneck, that is, the
limitation of performance by the main memory’s access latency and the bandwidth of the
memory bus. Another noteworthy technological innovation are vector instructions, which
introduce an additional level of finely grained parallelism in modern processors.

Many innovations in processor technology are characterized by the fact that, to be able to
profit from them, applications must be adapted accordingly. Naturally, to exploit coarse-
grained parallelism, the application must be parallelized, for instance, by OpenMP (Open
Multi Processing) parallelization of loops. Also, to profit from vector instructions, the
application code must be vectorized. Consequently, to fully exploit the performance of which
a given processor is capable, applications must be adapted accordingly. While software
developers may do this by hand, they will likely find that different hardware requires different
optimizations, not least because the processors’ capabilities may differ, and will therefore
end up creating multiple variants of their application. Moreover, some optimization goals
may have conflicting demands [171], which may complicate the accomplishment of maximum
performance. These aspects make optimizing compilers appealing that have the ability to
restructure code such that, among other optimizations, it can be parallelized and vectorized
and that it exploits the processor caches optimally. At best, these compilers have the ability
to automatically adapt their optimizations to different applications and target hardware.
Automatic program optimization may either optimize code written in a general-purposes
programming language such as C, it may operate on a compiler’s intermediate program
representation, or it may start from a representation in a domain-specific high-level language.
The advantage of starting from a domain-specific language is that domain knowledge can be
taken into account and that the optimizer has the ability to generate code that optimally
suits its requirements and the requirements of the target hardware. In the context of
high-performance computing, such high-level domain-specific languages exist for several
domains, for instance, partial differential equation solving [137], digital signal processing
[57, 130], machine learning [151], and digital image processing [132].

Regardless of the optimizing compiler’s input representation, powerful and adaptable
performance and cost models are required to successfully optimize programs so as to
exploit the performance that is available on the given target hardware. Moreover, a
powerful program optimization requires a suitable representation of programs and program

1

2

transformations. This representation should enable the systematic exploration of the set of
legal, i.e., semantics-preserving transformation sequences for a given program. This enables
an iterative optimization and search for an optimal program transformation sequence. The
advantage of iterative optimization is that it requires little or no prior knowledge. This
enables it to adapt easily to different programs to be optimized and different target hardware.
The downside of iterative optimization is its time and resource consumption that results
from the sampling of a potentially high number of candidate transformation sequences and
from the effort that must be spent to evaluate these transformations. Frequently, this makes
iterative optimization impractical.

We are convinced that spending the high effort of iterative program optimization is a
useful approach to the search for effective cost models for optimizing compilers.

In the context of loop optimization, a useful abstraction for programs and program
transformations is the polyhedron model [54]. The polyhedron model encodes programs and
program transformations in a uniform mathematical representation. To a good extent, it
is possible to abstract from the elements in the sequence of classical syntactical program
transformations that corresponds to a single polyhedral transformation function, which is,
for most kinds of loop transformations, a multi-dimensional linearly affine function. The
set of classical syntactic transformations that can be represented in the polyhedron model
comprises loop distribution/fusion [79], skewing [166], tiling [73], interchange [5], and index
set splitting [64], among others. With its uniform representation of complex sequences of
program transformations, the polyhedron model facilitates the systematic exploration of the
set of legal transformations for a given program [122, 124]. The model’s downside is that it
imposes restrictions on the programs and program transformations that can be represented.
Yet, particularly in the domain of numeric computations, many algorithms are expressible.
Polyhedral optimization at run time can mitigate some of the model’s limitations and widens
its applicability [140].

We propose the iterative polyhedral loop optimizer Polyite [p@"l̄It]. Polyite relies on
the LLVM (originally low-level virtual machine) compiler infrastructure [89] and LLVM’s
polyhedral optimizer Polly. With Polyite, we target primarily programs that profit from
coarse-grained parallelism, general data locality optimization, and tiling. Tiling [73] is a
loop nest transformation that can increase data locality and improve the effectiveness of loop
parallelization. Polyite’s theoretical foundation is the approach to iterative optimization
in the polyhedron model by Pouchet et al. [122, 124] and the domain-specific polyhedral
schedule search space exploration for the optimization of stencil codes by Kronawitter [86].
From Kronawitter, we borrow a technique for data dependence analysis and a construction
of constraints to bound the set of legal program transformations for a given program.

Pouchet et al. optimize the sequential execution time of programs that can be represented
in the polyhedron model. They do not tile loop nests. The particularity of their approach
is that it considers only legal transformations. Based on the observation that the size of
the complete set of legal transformations for a given program is infinite and that even a
reasonable subset of this set is too large for a complete exploration, their search space is
narrowed to a specific subset. Pouchet et al. employ a decoupling traversal heuristics that
enumerates the transformations in their multi-dimensional search space in a projection on
some dimensions that are known to be strongly sensitive to performance and that avoids
exploring less relevant search space dimensions and subsets of their search space. The
decoupling heuristics and the structure of the search space are based on experience and
statistical knowledge [123] and exploit the fact that they optimize for sequential execution
and that no tiling will be added to the program transformations. Pouchet et al. rely on the
measured execution time of the transformed code to determine a program transformation’s
profitability.

In addition to their decoupling heuristics, Pouchet et al. propose a genetic algorithm that
permits the non-uniform traversal of the transformation search space as opposed to the

1 Introduction and Problem Statement 3

partial enumeration by the decoupling heuristics, which traverses the search space with a
uniform pattern.

A genetic algorithm is a technique for search-based optimization that is inspired by natural
evolution. It starts from an initial population of candidate solutions that is often generated
randomly. Subsequently, the genetic algorithm determines the fitness of each solution in the
population. Pouchet et al. use execution time measurement as their fitness function. To
build an offspring population from the current one, a genetic algorithm derives new solutions
to the optimization problem from the ones that already exist. In many genetic algorithm
designs, some solutions can survive from one population to the next. A solution’s probability
to survive or to produce an offspring by mutation or crossover depends on its fitness.

The genetic algorithm by Pouchet et al. uses tailored genetic mutation and crossover
operators under which their search space of legal program transformations is closed.

Pouchet’s approach is promising but has a limited ability to enable lucrative tiling and
parallelization. The reason for narrowing the search space to a specific subset is its enormous
size. Even if one bounds the coefficients of the multi-dimensional linearly affine function that
represents a program transformation in the polyhedron model to reasonably small values
and avoids the insertion of surplus dimensions into the transformation function, the search
space’s is exponential in the number of data dependences that occur in the program to be
optimized [124]. Without bounding the maximum dimensionality of the schedule functions,
the search space’s size is non-convex and cannot be represented in its entirety. If one bounds
the maximum dimensionality of the schedules, it is theoretically possible to express the set
of all legal schedules for a given program as one convex set, but the dimensionality of the
resulting search space likely poses the computational infeasibility of handling it [127].

Unfortunately, to optimize for tiling and parallelization, it is likely necessary to remove the
restrictions that narrow the search space. We overcome the dilemma of high dimensionality
not being able to represent the true entire search space at once by sampling subsets of it
that are expressible in the same way as Pouchet et al. represent their search space. We refer
to these subsets as search space regions. With our adaptation of the algorithm for search
space construction by Pouchet et al. [124], we can sample search space regions. While, in
principle, the selection of the regions is driven by chance, we have the ability to make some
regions, such as regions that enable outer parallel loops, occur more likely than others.

Pouchet’s decoupling heuristics for sampling builds on statistical knowledge that has only
been validated for a sequential execution. We propose to use non-uniform random sampling
as the basic sampling strategy. To this end, we describe and evaluate a number of potential
sampling techniques. We find two of the techniques evaluated to be practical: one is a novel
strategy proposed by us, which relies on Chernikova’s algorithm (refer to Section 2.2.1.2).
The other one relies on projection of polyhedra, for instance by the use of Fourier-Motzkin
variable elimination [138], and is an adaptation for non-uniform random sampling of the
sampling technique proposed by Pouchet et al. [124].

We adapt the genetic algorithm proposed by Pouchet et al. and propose a set of novel
genetic operators because the operators presented by Pouchet et al. [124] would not be able
to traverse our wider program transformation search space.

To remove unnecessary information and unwanted noise from our randomly generated pro-
gram transformations and to facilitate their analysis and treatment by further optimization,
such as tiling, we propose the transformation of their representation to polyhedral schedule
trees [66] and a subsequent simplification.

As mentioned above, a major drawback of iterative program optimization is the effort
that must be spent to evaluate candidate program transformations. Following Pouchet
et al., we rely on benchmarking as our primary strategy to assess the fitness of program
transformations. To increase the practicality of iterative optimization with Polyite, we
propose a set of program transformation features based on which we can learn surrogate

4

performance models that help to reduce the benchmarking effort. The surrogate performance
models are learned from the results of previous iterative optimizations.
We evaluated our approach to iterative program optimization in the polyhedron model

on the popular PolyBench 4.1 benchmark set [121]. PolyBench is a set of numeric
computation kernels. All can be represented in the polyhedron model. In our evaluation,
we compare Polyite to the widely used static polyhedral program optimization algorithm
PLuTo [25, 28] as it is implemented in the Integer Set Library [152, 153, 156] and,
thus, in Polly. PLuTo optimizes for data locality and the applicability of tiling. In
PLuTo, parallelism is either a byproduct of optimizing data locality, or it can be targeted
explicitly [156]. Recent advances by Zinenko et al. [171] extend a variant of PLuTo to
account for spatial proximity of memory accesses and the tradeoff between data locality
and parallelism explicitly. Further, we evaluate against an adaptation of the search space
construction by Pouchet et al. [124] in Polyite. Note that Polyite cannot be used in
combination with polyhedral loop vectorization. Despite this limitation, we found that, for
several PolyBench programs, Polyite is competitive with a version of Polly that was
contemporary at the time of writing and which used the PLuTo algorithm for optimization
and had polyhedral vectorization enabled. This affects mainly programs which Polly cannot
accelerate by vectorization. Besides the comparison to existing approaches of polyhedral
program optimization, we evaluate a number of important parameters of our exploration
technique with respect to their influence on the optimization result.
Our evaluation, which took coarse-grained loop parallelization with OpenMP and loop

nest tiling into account, showed that Polyite has the ability to yield significantly higher
speedups than the PLuTo scheduling algorithm. This finding applies to programs with
long-running loops that operate on larger data sets since we used PolyBench with its extra
large data set configuration. Random sampling of schedules from our larger search space
outperforms random sampling from the search space that results from our adaptation of
the search space construction by Pouchet et al. [124]. We found that the latter profits from
amendments that facilitate tiling of loop nest’s inner dimensions. Finally, we evaluated our
surrogate performance models for program transformations. We used a leave-one-program-
out schema to train models from transformations of n− 1 programs and applied the model
to reduce the benchmarking effort spent by our genetic algorithm in an optimization of
the remaining programs. We observed that, to a good extent, it is possible to reduce
the benchmarking effort without reducing the maximum speedup in execution time of the
transformed program reached seriously.

The rest of this thesis is organized as follows. Chapter 2 provides a short introduction
to parallel computing and recalls the theoretical background of Polyite. Subsequently,
Chapter 3 discusses work that is related to ours. Besides polyhedral program optimization
techniques, we cover work that is in the context of iterative and compilation that uses
machine learning. Chapter 4 recalls the search space construction by Pouchet et al. [124] and
presents our amendment of the algorithm to sample regions of the space of legal program
transformations. We continue by presenting and discussing a number of techniques for
sampling program transformations from search space regions. Chapter 5 elaborates on our
proposed transformation and simplification a of program transformation’s representation.
The presentation of our novel genetic operators for polyhedral program optimization (Chap-
ter 6) and a set features of program transformations, together with an approach to integrate
a performance predictor in our genetic algorithm (Chapter 7), follow. Chapter 8 provides an
overview of our implementation Polyite. Chapter 9 describes our empirical evaluation of
Polyite. Concluding remarks are made in Chapter 10, together with a short enumeration
of open questions and directions.

2 Background

In this chapter, we present an overview of the fundamental aspects of parallel computing,
with a focus on central processing units (CPUs), and the theoretical foundation of our work.

Section 2.1 introduces to parallel computing. We discuss briefly the main performance-
related aspects of modern processor architectures and motivate the need for shared-memory
(and distributed-memory) parallelism. In Section 2.2, we introduce the polyhedron model
and its mathematical building blocks to the required extent. In Section 2.3, we introduce
techniques of iterative (or search-based) optimization and machine learning on which our
approach relies.

Readers who are familiar with any of these topics are invited to skip the respective
sections.

2.1 Parallel Computing

In 1975, Moore [102] observed that the complexity of integrated circuits, which includes
CPUs of general purpose computers, doubled approximately every two years. That is, the
number of components on an integrated circuit (or number of transistors) doubles every two
years. Dennard Scaling [49] permitted a steady rise of the clock speed. The clock speed is the
frequency at which a processor executes machine instructions. While the size of transistors
shrank, their power consumption receded, which permitted them to switch faster. In the
following, we recall briefly the most important techniques that processor architects developed
in order to increase the operation speed of CPUs besides simply increasing the clock speed.
It is the combination of these techniques that complicates program optimization: different
architectural effects may require opposing transformations [171].

Only in the early 2000s, Dennard Scaling lost its validity, which was due to physical
limitations [35]. In particular, the power dissipation of contemporary processing units started
to become difficult to handle. The main problem here is the large amount of energy that
is turned into heat by processors that contain hundreds of millions of transistors. This
makes their cooling difficult to handle. All main processor manufacturers chose multicore
processors as their way to overcome this dilemma [67].

We start with a brief overview of techniques that exist besides multicore processing to
increase the computing power of existing CPUs. We borrow from Hager and Wellein [67].

2.1.1 The Evolution towards Modern Multicore Processors

Contemporary processors use the von-Neumann architecture, which is named after John von
Neumann, a Hungarian-American mathematician and computer scientist. In his document
“First Draft of a Report on the EDVAC” [159], von Neumann originally described the idea
of a stored-program computer architecture. Figure 2.1 illustrates this concept.

Figure 2.1: Basic operating schema of a von-Neumann pro-
cessor: The CPU, which consists of a control unit and a
processing unit, fetches commands and data from memory
and stores computed results to memory. Input and output
interfaces exist for communication with devices.

5

6 2.1 Parallel Computing

Figure 2.2: Illustration of a cache hierarchy with two levels:
The upper level (L1) is split into two caches, one for
instructions and one for data. The lower level (L2) is
unified, that is, it contains both, instructions and data.

A stored-program processor fetches instructions and data from a (random access) memory.
Instructions are processed and the results are stored back to memory. The actual computa-
tions are carried out by an arithmetic-logic unit (ALU). Input and output interfaces exist
for communication with devices.

Processor Caches The von-Neumann architecture’s major disadvantage is the fact that
fetching data and instructions from memory can take much longer than the actual processing.
Thus, the memory interface often limits the speed of computations. It is known as the von-
Neumann bottleneck. At this point, the Roofline-Model by Williams et al. [164] is noteworthy
since it permits to estimate whether the performance of an algorithm is ultimately bounded by
the memory interface or by its amount of computation. The model relies on the operational
intensity of a computation, that is, on the number of operations per byte transferred between
the memory and the processor. We will not expand further on this model.

To reduce the von-Neumann bottleneck’s impact, a hierarchy of caches resides between
processor and memory. The caches are memories with a short latency and comparatively
small capacity. They store instructions and data that are to be reused soon intermediately.
Figure 2.2 illustrates a typical cache hierarchy with two levels. The upper L1 level of very
small capacity caches data and instructions separately. The lower L2 level does not separate
these. The registers serve the CPU as an intermediate storage for single values. Typically,
the lower levels are inclusive: any data that resides in the L1 cache also resides in the L2
cache. Since the size of caches is limited, a replacement strategy must be applied to evict
old data from the cache to make space for new data. When data is loaded into the cache,
not a single memory address is loaded from memory, but an entire row of data, a cache line.
Applications can profit from this behavior if they do not access memory randomly, but in a
linear forward pattern.

In general, to profit from caching, programs must exhibit good data locality. There are
two kinds of data locality. The first is the aforementioned spatial data locality, which permits
applications to profit from chunking data into cache lines. The second is temporal data
locality : if two operations operate on the same memory address, they should be executed
with few other operations in between. Thereby, when the second operation is executed, no
data must be loaded from memory because a copy of the data is still cached.

Pipelining Processors apply several techniques to achieve instruction-level parallelism. One
of these is pipelining. If complex instructions are split into several simple steps that are to
be executed consecutively by different components of the processor, then it is possible to
start executing the next command before the previous has terminated. Figure 2.3 illustrates
this property: with pipelining, the execution time of three commands that each have four
steps can be reduced to 1.5 times the execution time of a single command. If the pipeline is

2 Background 7

(a) without pipelining (b) with pipelining

Figure 2.3: Pipelining increases instruction throughput.

Figure 2.4: Vectorization allows to execute multiple additions c = a+ b simultaneously.

filled optimally pipelined execution leads to a throughput of one instruction per clock cycle.

Superscalarity Superscalar processors have another way of instruction-level parallelism.
They can execute more than one instruction in parallel. Therefore, they are able to fetch
and decode multiple instructions in parallel and provide more than one pipeline for integer
and floating-point arithmetic. Also, caches must be fast enough to allow several reads and
writes per clock cycle.

Vectorization SIMD instructions (Single Instruction Multiple Data) operate on an array
of values of fixed length simultaneously. For instance, this allows to execute multiple integer
additions simultaneously, as illustrated by Figure 2.4. This requires special registers and
instructions to load or store values simultaneously. To enable compilers to generate vector
instructions automatically and, thereby, speed up the execution of loops, programs must be
shaped accordingly. Memory accesses in a loop nest’s innermost loop must have a stride of 0
or 1. Furthermore, it must be possible to execute the innermost loop’s iterations in parallel.

Simultaneous Multi-Threading (SMT) Duplicating registers permits to execute multiple
instruction sequences (threads) in parallel on one processor. While execution units become
idle if they are not needed in single-thread execution, multi-thread execution permits them
to be used by other threads in the meantime. An important thing to be aware of is that the
threads share the caches and, thus, may end up in a race, evicting each others’ data from the
cache memory. From the outside, a multi-threaded CPU appears as multiple logical CPUs.

2.1.2 Multicore Processors

To overcome the power dissipation dilemma mentioned, processor manufacturers switched
from singlecore to multicore processors that combine multiple CPUs on a single processor
socket.
Each CPU core has its own upper-level caches. Lower-level caches are typically shared

among CPU cores. Figure 2.5 illustrates the schematic structure of a dual-core processor
with separate L1 and L2 caches per core and a shared larger L3 cache. A sequential program

8 2.2 Polyhedron Model

Figure 2.5: Diagram of a dual-core processor. Each core has its own L1 caches and unified
L2 cache. Further, the cores share a larger L3 cache.

can make use of only one core and does not profit from the presence of multiple cores.

To exploit a multicore processor optimally, programs must be parallelized and execution
threads should operate locally on a limited data set that fits, at best, into a core’s local
caches. Further, the workload should be distributed such that cores must not synchronize,
i.e., wait for each other to exchange data, too often and the partition of the workload should
be balanced. Otherwise, some cores may predominantly wait for other cores to perform
most of the computation.

2.2 Polyhedron Model

The polyhedron model [54] is a mathematical abstraction of loop programs. It models
programs as the union of polyhedra and relations between polyhedra. Figure 2.6 illustrates
this representation.

✞
1 for (int i = 0; i < 4; ++i) {
2 for (int j = 0; j <= i; ++j)
3 A[i + 1][j + 1] = A[i][j];
4 }

✝ ✆

(a) A two-dimensional loop nest

0

1

2

3

1 2 3

j

i

(b) The model of the loop nest

Figure 2.6: A two-dimensional loop nest and its representation in the polyhedron model.
The vector space’s dimensionality corresponds to the loop nest’s depth. The reader can
verify that the polyhedron’s bounds directly correspond to the loop bounds. The arrows
denote reuse of data among loop iterations.

Multi-dimensional (linearly affine) functions represent program transformations. The
particular advantage of the polyhedron model is its ability to encode an arbitrary sequence of
many classical loop transformations, which allows to abstract from the atomic transformations

2 Background 9

steps in the sequence and to directly choose a complex transformation. Thereby, the model
overcomes the difficult task of selecting the optimal sequence of compiler transformations for
a given program and the optimal ordering of these transformations. Among the expressible
loop transformations are loop distribution/fusion1 [79], skewing2 [166], tiling3 [73], and index
set splitting [64]. Transformations operate on the source model. New code can be generated
from the result of the transformation, the target model.
Finally, the polyhedron model permits to model and sample systematically the search

space of legal transformations of a program. Here, legality refers to the preservation of the
program’s semantics. Legally transformed code will compute the same as the original code,
but the operations may be executed in a different order and, potentially, in parallel.
Typically, the polyhedron model serves to optimize promising program regions. Linear

algebra kernels, dynamic programming, and stencil computations are frequent candidates
for polyhedral optimization. The optimizations aim at the improvement of data locality and
the parallelization of loops [1, 25, 52, 53].

In this section, we first introduce the polyhedron model’s mathematical foundations to
the extent at which they are relevant for our iterative polyhedral schedule optimization
(Subsection 2.2.1). Subsequently, we introduce the model itself in Subsection 2.2.2.

2.2.1 Mathematical Foundation

Here, we present the mathematical foundation of the polyhedron model. For the work at
hand, this theory is of particular importance. To be able to sample legal transformations for
a given program, we must exploit many of the theory’s properties. This subsection borrows
mainly from Schrijver [138] and also from Pan [112].

2.2.1.1 Integer Sets and Polyhedra

The most basic structures within the polyhedron model are linearly affine functions and
Z-polyhedra. We start by defining them step by step. We assume that the reader is familiar
with basic terms from linear algebra, such as vector spaces, vectors, matrices, and basic
operations such as matrix-vector products.

Matrices Rm×n,m, n ∈ N denotes the set of all matrices with real elements contained in
m rows and n columns. Let A ∈ Rm×n be some matrix. By A(i,j), we denote cell j in row i
of A. A(i,•) addresses row i and A(•,j) denotes column j. To select rows i, i+ 1, ..., j, we
write A(i..j,•). We address a submatrix by A(i..j,k..l).

Given a vector ~β ∈ Rn, we can address its ith component by writing ~β(i). A · ~β denotes
the matrix-vector product. By A~β we denote the horizontal coupling of ~β ∈ Rn and A. The
operation produces matrix B ∈ Rm×(n+1) with B(•,1..n) = A and B(•,n+1) = ~β.

Example 2.2.1. (
1 2
3 4

) (
5
6

)
=

(
1 2 5
3 4 6

)

⊳

To simplify the notation of algorithms, we introduce the functions

rows : Rm×n → N, n,m ∈ N

cols : Rm×n → N, n,m ∈ N,

1Computing iterations of different statements in one loop (fusion) fuses these statements. Computing each
statement’s iterations in a different loop distributes two statements.

2Skewing shifts the iterations of a loop by a multiple of the iteration variable of a loop that encases the
skewed loop. This transformation can expose parallelism and enable tiling.

3Tiling changes the execution order of a loop nest by blocking the nest’s loops and permuting the loops that
enumerate the blocks to the outside of the nest. This can improve data locality and efficient parallelization.

10 2.2 Polyhedron Model

A

B

C

D

(a) A non-convex set

A

B

C

D

(b) A convex set

Figure 2.7: Examples of a non-convex set and a convex set in R2.

which return the number of rows and the number of columns of a given matrix.

Analogously to Rn and Rm×n, we define Zn and Qn to be the set of all n-dimensional
vectors with integer components and rational components, respectively. Zm×n is the set of
all m× n matrices with integer elements and Qm×n is the set of all m× n matrices with
rational elements.

Given S ⊆ Rn, we define dim(S) = n to be the dimensionality of S.

Linearly Affine Functions are very important within the polyhedron model since, as we will
see later, they can be used to express many loop transformations and sequences of such
transformations. Before defining linearly affine functions, let us recall linear functions.

Definition 2.2.1. Let m,n ∈ N and f : Rn → Rm be a function. f is a linear function if
matrix A ∈ Rm×n exists with

(∀~x ∈ Rn : f(~x) = A · ~x) .

Based on the definition of linearity, we can define affinity:

Definition 2.2.2. Let m,n ∈ N and f : Rn → Rm be a function. f is a linearly affine
function if a linear function g : Rn → Rm defined by a matrix A ∈ Rm×n and a vector
β ∈ Rm exist with

(
∀~x ∈ Rn : f(~x) = g(~x) + ~β =

(
A~β
)
·

(
~x
1

))
.

We define dim(f) = m.

Convex Set An important property of polyhedra that we rely on is their convexity.

Definition 2.2.3. Let C ⊆ Rn, n ∈ N be a set of n-dimensional vectors. C is a convex set
if

(∀~x, ~y ∈ C : (∀α ∈ [0, 1] : α · ~x+ (1− α) · ~y ∈ C)) .

Intuitively, and as can be seen from Example 2.2.2, a set is convex iff, for any two points
that are elements of the set, each point on the line segment between the two points is also
an element of the set. This allows us to remain inside a set while we interpolate between any
of its elements. The intersection of two convex sets of n-dimensional vectors is a convex set.

Example 2.2.2 (Convexity). To demonstrate convexity, we illustrate a convex set and a
non-convex set in R2 graphically. The set in Figure 2.7(a) is not a convex set since there are
points on the line segment between A and C that are not elements of the set. On the other
hand, Figure 2.7(b) illustrates a convex set since no points in the set can be connected by a
line segment that crosses the boundaries of the set. ⊳

2 Background 11

3-2 -1 0 1 2

1

4

3

2

(-1,2)T

(1,1)T

Figure 2.8: An illustration of the cone gen-
erated by the vectors {(−1, 2)T , (1, 1)T }.

0

1

2

3

1 2 3 4

4

j

i

Figure 2.9: Illustration of a two-dimensional
polyhedron. The polyhedron’s vertices
and their convex hull (dashed line) are
marked.

Let S = {~i |~i ∈ Rn ∧ (p1(~i)∨ p2(~i)∨ ... ∨ pm(~i)},m, n ∈ N be some set of n-dimensional
vectors. We define Λ(S) = {{~i | ~x ∈ Rn ∧ pi(~x)} | i ∈ {1, 2, ...,m}}. We will use Λ in the
definition of algorithms that require an according decomposition of sets of vectors.

Convex Hull From the definition of a convex set, we can go on to the definition of the
convex hull of a set of vectors S ⊆ Rn, n ∈ N. Before we introduce its convex hull, we look
at the simpler definition of the linear hull of S:

Definition 2.2.4. The linear hull of S is defined as

lin.hull(S) =

{
t∑

i=1

γi · ~xi | t ∈ N ∧ ~x1, ..., ~xt ∈ S ∧ γ1, ..., γt ∈ R

}
.

The combinations generating lin.hull(S) are called linear combinations.

The convex hull of S is the smallest convex set that contains all elements of S. Formally:

Definition 2.2.5. Given set S as defined above, its convex hull is

conv.hull(S)

=

{
t∑

i=1

αi · ~xi | t ∈ N ∧ ~x1, ..., ~xt ∈ S ∧ α1, ..., αt ≥ 0 ∧
t∑

i=1

αi = 1

}
⊆ lin.hull(S).

The linear combinations that generate conv.hull(S) are named convex combinations.

Example 2.2.3 (Convex Hull). The set pictured in Figure 2.7(b) is the convex hull of the
set pictured in Figure 2.7(a). The set in Figure 2.7(b) is its own convex hull. ⊳

Convex Cone Similar to the definition of the convex hull of a set of vectors is the definition
of their convex cone:

Definition 2.2.6. Let S ⊆ Rn, n ∈ N be a set of n-dimensional vectors. The convex cone
generated by S is defined as follows:

cone(S) =

{
t∑

i=1

βi · ~xi | t ∈ N ∧ ~x1, ..., ~xt ∈ S ∧ β1, ..., βn ∈ R+
0

}
.

We call the linear combinations generating cone(S) conical combinations.

Example 2.2.4. Figure 2.8 illustrates the two-dimensional cone generated by the vectors
{(−1, 2)T , (1, 1)T }. ⊳

12 2.2 Polyhedron Model

Polyhedron We can now recall the definition of a polyhedron.

Definition 2.2.7. Given a matrix A ∈ Rm×n,m, n ∈ N and a vector ~β ∈ Rm, a polyhedron
is a convex set of n-dimensional vectors that is defined as follows:

{~x | ~x ∈ Rn ∧ A · ~x ≤ ~β}.

We call this definition constraint representation of the polyhedron. Each constraint that
is encoded by A and ~β corresponds to a hyperplane that separates Rn into two half-spaces.
Being the intersection of the remaining half-spaces, a polyhedron is a convex set bounded
by hyperplanes.

Example 2.2.5. Figure 2.9 shows the polyhedron that is represented by the following
constraints:

− 2 · i− j ≤ − 4

∧ − i− 2 · j ≤ − 5

∧ 2 · i− j ≤ 5.

⊳

Decomposition Theorem for Polyhedra The constraint representation of polyhedra pre-
sented above is a representation that expresses polyhedra by enumerating their bounding
hyperplanes. Now, we introduce a geometric and more tangible representation of polyhedra.
We start by making several auxiliary definitions before recalling how polyhedra can be
decomposed into their geometric base components.

Let m,n ∈ N, A ∈ Rm×n, and ~β ∈ Rm define polyhedron P = {~x | ~x ∈ Rn ∧ A · ~x ≤ ~β}.

Definition 2.2.8. Let ~c ∈ Rn \ ~0 and δ = max{~c · ~x | ~x ∈ Rn ∧ A · ~x ≤ ~β}. The affine
hyperplane H = {~x | ~x ∈ Rn ∧ ~c · ~x = δ} is a supporting hyperplane of P . The set H ∩P is
a face of P .

Example 2.2.6. The faces of the polyhedron in Figure 2.9 are its vertices at (1, 2) and
(3, 1), the line segment connecting the two vertices, the ray pointing away from (1, 2) with
direction vector (−1, 2), and the ray pointing away from (3, 1) with direction vector (1, 2). ⊳

Based on the definition of a polyhedron’s faces, we can define minimal faces.

Definition 2.2.9. A minimal face of a polyhedron is a face that does not contain any other
of the polyhedron’s faces.

Example 2.2.7. The minimal faces in Example 2.2.6 are the two vertices. ⊳

Definition 2.2.10. The characteristic cone of P is defined as

char.cone(P) = {~y | ~y ∈ Rn ∧ (∀~x ∈ P : ~x+ ~y ∈ P)} .

char.cone(P) contains the vectors pointing into directions in which P is unbounded.
From the definition of a characteristic cone it is easy to derive the notion of the lineality

space of a polyhedron. If a polyhedron is unbounded in two opposing directions, the
respective vectors are elements of its lineality space.

Definition 2.2.11. Formally, the lineality space of P can be defined as

lin.space(P) = char.cone(P) ∩ {−~y | ~y ∈ char.cone(P)}.

Definition 2.2.12. Given the characteristic cone of a polyhedron, the cone’s one-dimensional
faces are called its extremal rays.

Theorem 2.2.1 (Decomposition Theorem of Polyhedra). P can be generated as follows:

P = {~v + ~r +~l | ~v ∈ conv.hull(V) ∧ ~r ∈ cone(R) ∧ ~l ∈ lin.hull(L)}.

V is a set of points, each chosen arbitrarily from a different minimal face of P . R is the set
of extremal rays (or rays for short) of char.cone(P). Finally, L is an arbitrary set of vectors
generating lin.space(P).

2 Background 13

0

1

2

3

1 2 3 4

4

j

i

Figure 2.10: Illustration of the Z-polyhedron encased by the poly-
hedron in Example 2.2.5.

We call the representation of a polyhedron that results from Theorem 2.2.1 the polyhedron’s
geometric representation. If P is pointed, that is, if lin.space(P) is zero-dimensional, V is
the set of the polyhedron’s vertices. It is possible to choose V , R, and L uniquely, apart
from stretching of vectors. We will see later that, for our use case, it is advisable to choose
the elements of R and L such that the vectors’ components are integers that have small
absolute values if that is possible.

Proof. The proof of Theorem 2.2.1 is due to Schrijver [138].

In case of R = L = ∅, P is a polytope, i.e., a polyhedron of finite volume.

Example 2.2.8. The polyhedron in Examples 2.2.5 has the following geometric representa-
tion:

V = {(1, 2), (3, 1)}; R = {(−1, 2), (1, 2)}; L = ∅.

⊳

Integer Sets and Z-Polyhedra In the polyhedron model, sets of iterations of statements
are represented by points with integer coordinates within polyhedra. Such sets are called
Z-polyhedra:

Definition 2.2.13. An integer set S of dimensionality n ∈ N is a subset of Zn.

Definition 2.2.14. A Z-polyhedron of dimensionality n ∈ N is the intersection of a polyhe-
dron P ⊆ Rn and Zn. The definition of a Z-polytope is analogous.

Example 2.2.9. Figure 2.10 shows the Z-polyhedron encased by the polyhedron in Example
2.2.5.

⊳

2.2.1.2 Chernikova’s Algorithm

N.V. Chernikova [107, 108, 109] proposed an algorithm to compute the geometric representa-
tion of a polyhedron P from its constraint representation {~x | ~x ∈ (R+

0)
n

∧ A · ~x ≤ ~β}, A ∈
Rm×n, m, n ∈ N, β ∈ Rm. This algorithm is known as “Chernikova’s algorithm”. By
repeatedly applying a set of matrix transformations, the algorithm calculates the extremal
rays of the polyhedral cone C = {(~x, ξ)T | ~x ∈ (R+

0)
n
∧ ξ ∈ R+

0 ∧ −A ·~x+ ~β ·ξ ≥ ~0}. From
this solution, the extremal rays and vertices of P can be derived [97]. Following Fernández
and Quinton [55], the same algorithm can be used to solve the reverse problem.

Being able to calculate the geometric representation of polyhedra allows us to sample
vectors from inside polyhedra as their generators’ linear combination in an easily controllable
way. Of course, we must always adhere to the decomposition theorem of polyhedra. We
use this technique to sample legal transformations for programs, which are represented as
coefficient matrices of linearly affine functions.

Fernandéz and Quinton extended Chernikova’s algorithm to be able to calculate the
geometric representation of arbitrary polyhedra {~x | ~x ∈ Rn ∧ A ·~x ≤ ~β}. Le Verge [90] was

14 2.2 Polyhedron Model

able to further improve the extended algorithm and, thereby, reduce its average execution
time.

Algorithm 2.1 performs the steps given by Matheiss and Rubin [97] to compute the
geometric representation of a polyhedron {~x | ~x ∈ (R+

0)
n

∧ A · ~x ≤ ~β}.

Algorithm 2.1: Chernikova’s Original Algorithm
Input: A ∈ Rm×n,m, n ∈ N, β ∈ Rm representing polyhedron P
Output: Set of vertices V and set of rays R with P = {~v + ~r | ~v ∈ conv.hull(V) ∧ ~r ∈ cone(R)}

1 U ←
(

−A~β
)

; ⊲ Adjoin −A and ~β

2 L← In+1 ; ⊲ Identity matrix of dimensionality n+ 1

3 Y ←

(

U
L

)

4 while (∃(i, j) ∈ {1, ...,m} × {1, ..., cols(U)} : U(i,j) < 0) do

5 if (∃i ∈ {1, ...,m} : U(i,•) ∈ (R−)
cols(U)

) then

6 return V = ∅, R = {~0}

7 r ← min{i | i ∈ {1, ...,m} ∧ (∃j ∈ {1, ..., cols(U)} : U(i,j) < 0)}

8 R← {j | j ∈ {1, ..., cols(U)} ∧ Y (r,j) ≥ 0}

9 Y ← 0
Rrows(Y)×0 ; ⊲ Zero-matrix with 0 columns and rows(Y) rows

10 for j ∈ R do

11 Y ← Y Y (•,j) ; ⊲ Adjoin Y and column j of Y

12 if ((rows(Y) = 2) ∧ (Y (r,1) · Y (r,2) < 0)) then

13 ~v ←
∣

∣Y (r,2)
∣

∣ · Y (•,1) +
∣

∣Y (r,1)
∣

∣ · Y (•,2); Y ← Y ~v

14 else

15 S ← {(s, t) | Y (r,s) · Y (r,t) < 0 ∧ s < t}

16 I0 ← {i | (i ∈ {1, ..., rows(Y)} ∧ ∀j ∈ {1, ..., cols(Y)} : Y (i,j) ≥ 0)}
17 for (s, t) ∈ S do

18 I1 ← {i | i ∈ I0 ∧ Y (i,s) = Y (i,t) = 0}

19 if ¬(∃u ∈ {1, ..., cols(Y)} : u 6= s ∧ u 6= t ∧ (∀i ∈ I1 : Y (i,u) = 0)) then

20 α1 ←
∣

∣Y (r,t)
∣

∣ ; α2 ←
∣

∣Y (r,s)
∣

∣

21 ~v ← Y (•,s) · α1 + Y (•,t) · α2; Y ← Y ~v

22 Y ← Y ; U ← Y
(1..m,•)

; L← Y
(m+1..m+n+1,•)

23 V ← {L(1..n,i) | i ∈ {1, ..., cols(L)} ∧ L(n+1,i) > 0}; R← {L(1..n,i) | i ∈ {1, ..., cols(L)} ∧ L(n+1,i) = 0}
24 return V,R

The algorithm operates on a matrix Y that is initiated as follows:

Y =

(
U

In+1

)
, U = −A~β.

It processes one row of U at a time. Depending on the elements of the current row, the
algorithm adds columns to Y and replaces columns. The algorithm continues until the
columns of matrix L match the extremal rays of the cone C.

As to the time and space complexity of Chernikova’s algorithm, one may recall an example
given by Feautrier [52]: a hypercube in a d-dimensional vector space (d ∈ N) may be
represented either by 2 · d inequalities that correspond to its bounding hyperplanes or by
enumerating its 2d many vertices. Chernikova’s algorithm has exponential execution time.

We give an example to illustrate Chernikova’s algorithm:

Example 2.2.10. Consider polyhedron P = {~x | ~x ∈ R2 ∧ A·~x ≤ ~β} with A =

1 −1
−1 0
0 −1

and ~β = (0, 0,−2)T . Figure 2.11 shows P .

2 Background 15

Figure 2.11: A simple polyhedron to illustrate Chernikova’s algo-
rithm. 0

1

2

3

1 2 3 4

4

j

i

We construct matrix Y as

Y =

(
−Aβ
I3

)
=

−1 1 0
1 0 0
0 1 −2

1 0 0
0 1 0
0 0 1

.

First Round

r = 1, R = {2, 3}, Y =

1 0
0 0
1 −2
0 0
1 0
0 1

.

S = {(1, 2)}.

Inspection of (s, t) = (1, 2):

I1 = {6}, α1 = α2 = 1.

Adjoin Y (•,s) · α1 + Y (•,t) · α2 =
(0, 1, 1, 1, 1, 0)T to Y

Y = Y =

1 0 0
0 0 1
1 −2 1
0 0 1
1 0 1
0 1 0

.

Second Round

r = 3, R = {1, 3}, Y =

1 0
0 1
1 1
0 1
1 1
0 0

.

S = {(1, 2), (2, 3)}.

• Inspection of (s, t) = (1, 2):

I1 = {2, 4}, α1 = 2, α2 = 1.

Adjoin Y(•,s) · α1 + Y (•,t) · α2 =

(2, 0, 0, 0, 2, 1)T to Y

• Inspection of (s, t) = (2, 3):

I1 = {1}, α1 = 1, α2 = 2.

Adjoin Y (•,s) · α1 + Y (•,t) · α2 =
(0, 2, 0, 2, 2, 1)T to Y

Y = Y =

1 0 2 0
0 1 0 2
1 1 0 0
0 1 0 2
1 1 2 2
0 0 1 1

.

The algorithm terminates after the second round because all elements in the upper half of
Y are non-negative. Consequently, P = conv.hull({(0, 2), (2, 2)}) + cone({(0, 1), (1, 1)}). ⊳

2.2.1.3 Parametric Integer Programming

The Simplex Algorithm by George B. Dantzig in 1947 [47] solves linear programs

min{~c · ~x | ~x ∈ Rn ∧ A · ~x ≤ ~β}

with n,m ∈ N, A ∈ Rm×n, β ∈ Rm,~c ∈ Rn. The maximal solution can be determined as
well. From Section 2.2.1.1, we know that the set of valid solutions to the inequality system
A · ~x ≤ ~β is a polyhedron P ⊆ Rn. At least one of the vertices of P is among the solutions
for which the value of ~c · ~x is minimal. The Simplex Algorithm makes use of this property
by greedily passing from one vertex of the polyhedral set of valid solutions to one of its
adjacent vertices until it finds an optimal solution.

16 2.2 Polyhedron Model

0

1

2

3

1 2 3 4

4

j

i

Figure 2.12: Corresponding polyhedron of the linear program in
Example 2.2.11. While the optimal real solution is a vertex
(white dot), the optimal integer solution (black dot) is an
interior point.

Linear programs exist for which the Simplex Algorithm has exponential execution time [81].
Integer linear programs (ILPs, for short) search for integer solutions

min{~c · ~x | A · ~x ≤ ~β ∧ ~x ∈ Zn}, A ∈ Rm×n, n,m ∈ N, ~β ∈ Rm,~c ∈ Rn (2.1)

and are more difficult to solve: as illustrated by Example 2.2.11, the optimal solution is not
located necessarily at a vertex of the corresponding polyhedron.

Example 2.2.11. Consider the system of inequalities

−2 · i− 2 · j ≤ −5

2 · i− 2 · j ≤ 5

2 · i+ 4 · j ≤ 17

−2 · i ≤ 1

and the following objective function:

−2 · j − 3 · i.

Figure 2.12 shows the corresponding polyhedron of this linear program. Both, the optimal
real solution (white dot) and the optimal integer solution (black dot) are marked. While
the optimal real solution is a vertex of the polyhedron, the optimal integer solution is the
interior point (1, 3). The objective function’s optimal value is -9. ⊳

Parametric integer programming is a method that was introduced by Feautrier [50]. It can
solve ILPs that contain parametric lower and upper bounds for variables. The possibility to
have parametric bounds for variables is handy in the context of polyhedral code optimization
since parametric loop bounds lead to inequalities such as 0 ≤ i < n. Parametric integer
programming does not search for the optimal solution vector according to an objective
function. Instead, it finds the lexicographically minimal integer solution vector from the set
of legal solutions. Definition 2.2.15 recalls the definition of lexicographic ordering:

Definition 2.2.15. Let ~u,~v ∈ Rn, n ∈ N. ~u is lexicographically smaller than ~v, which we
denote by ~u ≺ ~v if, and only if:

(
∃i ∈ {1, ..., n} : (∀j ∈ {1, ..., i− 1} : ~u(j) = ~v(j)) ∧ ~u(i) < ~v(i)

)
.

An ILP, as defined in Equation 2.1, can be denoted as a parametric integer program (PIP)

lex.min
{(x′

~x

)
|

(
1 −~c T

~0 A

)
·

(
x′

~x

)
=
≤

(
0
~β

)
∧ ~x ∈ Zn ∧ x′ ∈ Z

}
.

Examples can be found in work by Bondhugula et al. [25, 28].
Parametric integer programming makes use of Gomory Cuts to find integer solutions.

The idea is to compute a real solution to a linear program and then add constraints to
exclude one of the solution vector’s non-integer components. The procedure continues until
an integer solution has been found. The extra constraints that are introduced by the cuts
make it necessary to use the dual simplex method [138].

The run-time complexity of Parametric integer programming is exponential [50]. In fact,
integer linear programming is an NP-complete problem [63, 75].

2 Background 17

2.2.1.4 Affine Form of Farkas’ Lemma

The affine form of Farkas’ Lemma has an important role in the polyhedral optimization
framework. Given the model of a program it helps to mathematically express the set of legal
transformations for that program.
Particularly, we refer to the variant of the affine form of Farkas’ Lemma given by

Feautrier [52], Darte et al. [48], and Pouchet et al. [122]:

Theorem 2.2.2 (The Affine Form of Farkas’ Lemma (variant)).
Let polyhedron P = {~x | A · ~x ≤ ~β ∧ ~x ∈ Rn} with n,m ∈ N, A ∈ Rm×n, ~β ∈ Rm and let
f : Rn → R be a one-dimensional linearly affine function over Rn. If P is non-empty and
(∀~x ∈ P : f(~x) ≥ 0) then f is a linearly affine combination of the linear inequalities bounding
P :

(
∃γ0, γ1, ..., γm ∈ R+

0 :

(
∀~x ∈ P : f(~x) = γ0 +

m∑

i=1

γi · (−A(i,•) · ~x+ ~β(i))

))
.

2.2.1.5 Volume of Z-polytopes

In the polyhedron model, being able to calculate the volume of Z-polytopes, i.e., the number
card(P) of points contained in a Z-polytope P , is useful for many purposes. These include
calculating the memory traffic of a statement as the number of different accesses to memory
cells at different execution steps (compare Bastoul and Feautrier [18] although they did not
calculate the precise volumes) or calculating the number of iterations of a loop nest as part
of an estimate of the loop nests amount of computation. Verdoolaege et al. [157] mention
further use cases.
Barvinok’s original counting algorithm [15] permits to determine the cardinality of a

d-dimensional Z-polytope with constant bounds. The execution time is exponential in O(d).
Based on Barvinok’s work, Verdoolaege et al. [157] proposed a method to express the

cardinality of a d-dimensional Z-polytope with parametric bounds. The outcome of their
function is a piece-wise quasi-polynomial or step-polynomial [157] in the parameters of the
Z-polytope’s bounds. The execution time remains exponential.

2.2.1.6 Relations of Integer Set

Let n,m ∈ N and let S ⊆ Zn and T ⊆ Zm. Relations between S (the domain) and T (the
range) are subsets of S × T . The cross-product can be viewed as an integer set of dimension
m+ n, which we denote as follows:

S × T =

{(
~x
~y

)
| ~x ∈ S ∧ ~y ∈ T

}
.

Relations of integer sets may be constrained by linearly affine (in-)equalities.
Further, we need the definition of the lexicographic maximum of a relation R ⊆ S×T [153]:

lex.max(R) =

{(
~x
~y

)
|

(
~x
~y

)
∈ R ∧ ¬

(
∃~z :

(
~x
~z

)
∈ R ∧ ~y ≺ ~z

)}
.

The lexicographic minimum of a relation is defined analogously.

2.2.2 Polyhedral Optimization Framework

At the start of Section 2.2, we briefly illustrated how loop nests can be represented by
Z-polyhedra. We believe that this way of abstracting loops can well be considered as the
core idea of the polyhedron model. The previous subsection expounds the mathematical
foundation of the polyhedron model.

18 2.2 Polyhedron Model

Listing 2.1: Computation of a symmetric rank-k update: C = α ·A ·AT + β · C.
✞

1 for (int i = 0; i < n; i++) {
2 for (int j = 0; j <= i; j++)
3 C[i][j] ∗= beta; // statement R
4 for (int j = 0; j < m; j++)
5 for (int k = 0; k <= i; k++)
6 C[i][k] += alpha ∗ A[i][j] ∗ A[k][j]; // statement S
7 }

✝ ✆

Based on that, we recall the model itself. We start by discussing its expressiveness and
the limits of its applicability (Section 2.2.2.1). We continue by laying out the details of the
representation of programs in the polyhedron model (Section 2.2.2.2) and the determination
of legal program transformations within the model (Section 2.2.2.3). Subsequently, we
cover the representation of parallelism and tiling in the polyhedron model (Section 2.2.2.4).
Finally, we provide an overview of the widely known and used PLuTo scheduling algorithm
by Bondhugula et al. [25] and its derivatives (Section 2.2.2.5). We use this algorithm as a
baseline for our proposed iterative optimization technique. We do not discuss the detection
of code regions that are relevant for polyhedral optimization and polyhedral code generation
(i.e., the reverse transformation of the model to code) [16, 66, 131] since they are not relevant
for this thesis.

All concepts presented in this subsection are commonly known and applied building blocks
of the polyhedral optimization framework.

2.2.2.1 Expressiveness and Limitations

Code regions must be static control parts (SCoPs) to be representable in the polyhedron
model.

All loops in a SCoP must be for-loops with a constant stride. The code must operate
on linear data structures that must not alias (overlap) in memory. Any functions called
in a SCoP must be free of side-effects. In many cases, it may be beneficial to inline called
functions. This is particularly useful if the called function’s body contains loops. The code
region may contain conditional constructs (ifs). Loop bounds and branch conditions must
be linearly affine expressions in structure parameters and iteration variables of encasing
loops. A structure parameter is an integer variable that exists in the context of the SCoP
and whose value remains unchanged throughout the SCoP’s execution. A[n] + i <= m

is non-affine, irrespectively of whether A[n] changes during the execution of the SCoP. A
SCoP must have a single entry point and a single exit point. This prohibits many use cases
of return and goto, and continue and break.

The validity conditions must hold recursively in that each subregion of a SCoP must again
be a SCoP.

Early definitions of static control require the stride of any loop to be 1 [51].

Wider definitions of static control and transformations to enable these exist: Benabderrah-
mane et al. [21] expand static control to while-loops with arbitrary bounds. They rely on
overapproximations in SCoPs’ models. Also, they are able to handle non-affine conditionals.
This includes data-dependent conditionals. The Polyhedral Extraction Tool [155]
supports data-dependent accesses, assignments, and conditionals up to certain restrictions.

Example 2.2.12. To illustrate static control, we show a slightly modified version of the
benchmark program syrk of PolyBench 4.1 [121] in Listing 2.1. The example is a
symmetric rank-k update: given two matrices A ∈ Rn×m, n,m ∈ N and C ∈ Rn×n and
values α, β ∈ R, the code computes C = α ·A ·AT + β · C. In this example, the structure
parameters of the SCoP are the variables n and m. This SCoP serves as a running example
throughout the thesis. ⊳

2 Background 19

j

i

k

3

2

1

0 321

1
2

3

j

i

3

2

1

0 321

Figure 2.13: Iteration domains of the SCoP in Listing 2.1. The crosses on the left are the
instances of statement R; the bullets on the right are the instances of S. The arrows
represent data dependences. They connect source to target. For perceptibility, we show
only exemplary instances of the dependences. The dependence arrows shown replicate
throughout the iteration domain according to the patterns hinted.

2.2.2.2 Modeling Programs

A SCoP’s model consists of three components: the statements’ iteration domains, the
schedule and the statements’ memory access relations. The iteration domains define “what”
will be computed. The schedule captures the execution order. A transformation of a SCoP
will be, in effect, a replacement of its schedule. Finally, the memory access relations link
iteration domains to areas of memory that will be accessed during program execution.
Analysis of these relations reveals data dependences. The way of representing SCoPs in the
polyhedron model that we present here has been proposed by Cohen et al. [43].

Iteration Domain A statement instance is a single execution of a statement within a
single run of a SCoP. Consequently, statements that are encased by loops have multiple
instances. The polyhedron model represents programs at the statement instance level. In
this representation, a statement instance is represented by its iteration vector, that is, the
corresponding values of the encasing loops’ iterators. The order of the vector’s components
resembles the nesting order of the loops, from outer to inner. The single instance of a
statement that is not surrounded by loops has a zero-dimensional iteration vector, i.e., an
iteration scalar.

Given a statement S, the set of all of its instances’ iteration vectors is called the statement’s
iteration domain, which we denote by IS . Since loop iterators are integer variables, iteration
domains are integer sets. Thanks to static control, these sets are expressible as unions of
polyhedra. The linearly affine constraints that bound the polyhedra correspond to the loop
bounds and to conditionals that guard a statement. If the concrete number of iterations of
a loop is unknown statically, these constraints are parameterized. The dimensionality of the
polyhedra that represent a statement’s iteration domain corresponds to the number of loops
that encase the statement.

Example 2.2.13. The iteration domains of the SCoP in Example 2.2.12 are represented by
the following integer sets, which are both polyhedral:

IR = {(i, j)T | i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j ≤ i}

IS = {(i, j, k)T | i, j, k ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < m ∧ 0 ≤ k ≤ i}.

n,m ∈ Z are parameters that correspond to the SCoP’s structure parameters.

Figure 2.13 illustrates the two polyhedra for n = m = 4. ⊳

Memory Access Functions Besides statements’ iteration domains, the model must capture
statements’ memory accesses. Arrays and other linear data structures are represented as

20 2.2 Polyhedron Model

integer sets, which are called memory locations. Memory accesses are represented as relations
between iteration domains and memory locations. One must distinguish between read and
write accesses.

Example 2.2.14. Statement R of our running example has the following read access
functions (the subscript denotes the accessed memory location):

readRC(i, j)
T = (i, j)T , readRβ (i, j)

T = (), writeRC(i, j)
T = (i, j)T .

The access functions of statement S are

readSC(i, j, k)
T = (i, k)T , writeSC(i, j, k)

T = (i, k)T ,

readSα(i, j, k)
T = (),

readSA(i, j, k)
T = (i, j)T , readSA(i, j, k)

T = (k, j)T .

⊳

Schedules Iteration domains describe the instances of a SCoP’s statements, but they do
not describe the statement instances’ execution order. Execution order is represented by a
multi-dimensional linearly affine function with integer coefficients. This function is called a
schedule. A schedule can be represented by one function per statement. Each statement
schedule is a linearly affine expression in the SCoP’s structure parameters and the loop
iterators of the statement’s surrounding loops. The coefficients should be integers. Without
loss of generality, we may assume that the ranges of all statement schedules of a SCoP have
the same dimensionality. Execution order is given by the transformed iteration vectors’
lexicographic order.
Given a statement S, we denote its schedule by ΘS . In case of a multi-dimensional

schedule, we call its one-dimensional components schedule dimensions. We enumerate them

from outermost to innermost. To address dimension d of ΘS , we write Θ
(d)
S . Similarly, we

address the schedule dimensions d to e (d < e) by Θ
(d..e)
S .

Program transformation works by replacing the schedule in a SCoP’s model.

Example 2.2.15. The running example has the following schedule:

ΘR(i, j)
T = (i, 0, j, 0)T , ΘS(i, j, k)

T = (i, 1, j, k)T .

⊳

2.2.2.3 Dependence Analysis and Legality of Schedules

Dependences From memory accesses result data dependences. A data dependence from
one statement instance, the source, to another, the target, exists if both instances access
the same memory cell and the schedule prescribes that the former statement instance is
executed before the latter. In the polyhedron model, one encodes data dependences by
dependence polyhedra. A dependence polyhedron is a relation between the iteration domains
of a source statement and a target statement. It captures a set of pairs of dependent
statement instances that can be expressed using linearly affine inequalities. In some cases,
these polyhedra overapproximate the true set of dependent statement instances. For a
dependence polyhedron that involves source statement O (origin) and target statement T
(target), we write DO,T .

Depending on the type of each of the memory accesses, one distinguishes the following
kinds of data dependences:

Flow Dependence The source access is a write and the target access is a read.

Anti Dependence The source access is a read and the target access is a write.

2 Background 21

Output Dependence Both accesses are write accesses.

Input Dependence Both accesses are read accesses.

Legality of Schedules The first three kinds of dependences affect the legality of schedules.
These are the dependences that involve at least one write access. Any schedule that
would assign an execution step to the target statement instance of a legality-affecting data
dependence that is prior to the dependence’s source statement instance must be considered
illegal since it may yield a different computation result of the transformed program. In the
case of flow and anti dependences, one is only interested in those dependences, for which no
other write to the same memory cell occurs in between. In the case of output dependences,
one can omit those for which an intermediate write or read to the same memory cell exists.
The original exact data flow analysis algorithm, which omits transitive dependences as just
described, has been proposed by Feautrier [51]. We use the approximative method described
by Verdoolaege [153].

Example 2.2.16. Our running example syrk has the following dependence polyhedra
(excluding input dependences):

DR,S = {(i, j, i, 0, j)T | i < n ∧ 0 ≤ j ≤ i ∧ (i, j)T ∈ IR ∧ (i, 0, j)T ∈ IS}

DS,S = {(i, j, k, i, j + 1, k)T | 0 ≤ i < n ∧ 0 ≤ j ≤ m− 2 ∧ 0 ≤ k ≤ i

∧ (i, j, k)T ∈ IS ∧ (i, j + 1, k)T ∈ IS}.

⊳

A schedule Θ is legal iff
(
∀(~i ~j)T ∈ DO,T : ΘO(~i) ≺ ΘT (~j)

)
holds for all dependence

polyhedra DO,T [53] that affect legality. A dependence that affects legality and for which this
condition does not hold with respect to Θ is violated by Θ. With respect to one-dimensional
schedules, the terms weak and strong satisfaction are common. Dimension d of a schedule

Θ satisfies dependence polyhedron DO,T weakly if
(
∀(~i ~j)T ∈ DO,T : Θ

(d)
O (~i) ≤ ΘT (~j)

)

holds. The dependence polyhedron is satisfied strongly under the following condition:(
∀(~i ~j)T ∈ DO,T : Θ

(d)
O (~i) < ΘT (~j)

)
. The first dimension of a schedule that satisfies a

dependence polyhedron strongly, carries the dependence polyhedron. Analogously, a multi-

dimensional schedule carries DO,T if
(
∀(~i ~j)T ∈ DO,T : Θ

(d)
O (~i) ≺ ΘT (~j)

)
. Replacing ≺ by �

yields the definition of weak satisfaction.
A concept that is related to weak and strong satisfaction of dependence polyhedra is a

dependence polyhedron’s direction with respect to a schedule dimension d. The direction of

a dependence polyhedron with respect to d is defined if the value of sgn(Θ
(d)
T (~j)−Θ

(d)
T (~i)) is

the same for all (~i ~j)T ∈ DO,T : If the value is always 1, the dependence goes forward. If the
value is 0, the dependence is orthogonal to d. -1 is backward. The direction of a dependence
polyhedron may not always be defined: for instance, some elements of the polyhedron may
point forward, while others point backward.

These concepts also apply to dependences between single pairs of statement instances.

Computing Legal Schedules Using Farkas’ Lemma, it is possible to compute the set of
all one-dimensional schedules that satisfy a dependence polyhedron DO,T weakly or strongly
[53, 122, 124]. Let ~p be the vector of the SCoP’s structure parameters, ~iO the vector of
the iteration variables of the loops encasing statement O, and ~iT the respective vector for
statement T . Thus, one can write:

DO,T =

(
~iO
~iT

)
| MO,T ·

~iO
~iT
~p
1

 ≤ ~βO,T

.

22 2.2 Polyhedron Model

One-dimensional statement schedules can be written as follows:

ΘS(~iS) =

(
~λS

~µS

)
·

(
~iS
~p

)
+ νS .

~λS is the coefficient vector for ~iS , and ~µS is the coefficient vector for ~p.
For DO,T to be satisfied weakly, ΘT (~iT)−ΘO(~iO) ≥ 0 must hold for any (~iO,~iT)

T ∈ DO,T .
Thus, Farkas’ Lemma is applicable:

ΘT (~iT)−ΘO(~iO) =

(
~λT

~µT

)
·

(
~iT
~p

)
+ νT −

(
~λO

~µO

)
·

(
~iO
~p

)
− νO

︸ ︷︷ ︸
(1)

= γ0 +

rows(MO,T)∑

i=1

γi ·

(
−MO,T

(i,•)
)
·

~iO
~iT
~p
1

+ ~βO,T

(i)

︸ ︷︷ ︸
(2)

;

γ0, ..., γrows(MO,T) ∈ R+
0 .

After factoring out each iteration variable and structure parameter in (2), the counterpart
of each iteration variable’s coefficient and each structure parameter’s coefficients in (1) can
be identified in (2). The same holds for νO and νT . Together with the positiveness of each γi
the resulting equation system represents the set of coefficient vectors of all schedule functions
that satisfy DO,T weakly. This set is a polyhedral cone.

2.2.2.4 Tiling and Parallelization

Tiling [73, 74] is a non-affine loop transformation that can optimize data locality. The
transformation is beneficial if statement instances that are close together in a spatial sense
operate on the same memory addresses or nearby memory addresses. In such a case, the CPU
caches can be exploited by executing these statement instances closely together, both, in a
temporal and spatial sense (i.e., on the same CPU core, or the same compute unit of a GPU).
In addition, tiling can help to improve the effectiveness of coarse-grained loop parallelization
by controlling the workload per thread and, thereby, steering the synchronization and
communication overhead [73].

To tile a loop nest, one blocks each loop and then permutes the loops that enumerate the
blocks (the tile loops) to the outside and the loops that iterate inside the blocks (the point
loops) to the inside.

Per schedule dimension that corresponds to the loop nest to be tiled, tiling adds an
additional schedule dimension. A sufficient criterion for the legality of tiling an (imperfect)
loop nest’s schedule Θ(d,e), d < e, is the criterion given by Bondhugula et al. [28]: for any
data dependence from an instance with iteration vector ~i of a statement O to an instance
with iteration vector ~j of statement T that is uncarried by schedule dimensions 1, ...d− 1
we must have (

∀k ∈ {d, ..., e} : Θ
(k)
T (~j)−Θ

(k)
O (~i) ≥ 0

)
.

This criterion guarantees that dependences are orthogonal or point forward with respect to
all dimensions of Θ. A sequence of schedule dimensions to which tiling is applicable is a
tilable band.

There are two ways to encode parallelism in a schedule. The first way is assigning the same
execution step to multiple statements. The second way are schedule dimensions Θ(d) that
encode loops and to which all dependences that are uncarried by Θ(1..d−1) are orthogonal.

2 Background 23

2.2.2.5 The PLuTo Scheduling Algorithm and its Derivatives

The PLuTo algorithm [25] is a model-based approach to polyhedral schedule optimization
based on Farkas’ Lemma and parametric integer programming. Employed by many polyhedral
optimizers, among them LLVM’s Polly[65], GCC’s4 Graphite [147], PLuTo [26], PoCC
[126] and PPCG [158], it is probably the most widely used contemporary polyhedral
scheduling algorithm. PLuTo optimizes for tiling and data locality. Using an objective
function, the algorithm minimizes the reuse distance of data dependences. The PLuTo
algorithm starts from a dependence graph (V,E) of a SCoP. V contains the SCoP’s statement
instances and E contains all data dependences between these instances, except input
dependences. The algorithm computes a sequence of schedule dimensions that satisfy all
dependences in E weakly. Per statement, each schedule dimension is linearly independent in
the coefficients of the statement’s iteration variables to all previous schedule dimensions.
Also, the trivial solution in which all schedule coefficients are zero is avoided. The linear
independence of the produced schedule dimensions ensures that each of the dimensions
yields a loop in the transformed program. Thus, the algorithm computes a tilable band.

If no additional schedule dimension can be appended to the current band, the algorithm
removes the dependences from E that are carried by the current band. Then, the algorithm
analyzes the dependence graph associated to E and determines its strongly connected
components. It determines a legal execution order for the strongly connected components
and appends a schedule dimension that encodes the determined order. The algorithm
continues recursively per strongly connected component of the dependence graph until all
dependences are carried and each statement schedule encodes a number of loops that equals
the dimensionality of the statement’s iteration domain.

The original PLuTo algorithm makes a tradeoff to avoid a combinatorial explosion during
the determination of program transformations. It requires that, per statement and schedule
dimension, the sum of the iteration variables’ coefficients must be positive. This excludes
some loop transformations that require negative iterator coefficients [28]. For instance, a
loop reversal that is not combined with another loop transformation will be impossible,
while a loop reversal combined with positive skewing (e.g., −j + 2 · i) will be allowed.

The scheduling algorithm implemented in the Integer Set Library (isl) by Verdoolaege
[152, 153] (the “isl scheduler” [156]) and PLUTO+ [28] are extensions of the PLuTo
algorithm that remedy this limitation.
In the schedules constructed by the original PLuTo algorithm, parallelism occurs by

coincidence as a side-effect of optimizing temporal data locality. The isl scheduler differs in
this aspect since it can optionally try to force each band to have an outer parallel dimension.
If the algorithm fails to force such a dimension, it uses the scheduling algorithm by Feautrier
[52, 53] to compute the dimension. In this case, the resulting dimension carries as many of
the remaining dependences as possible and, thus, they can be removed from E.
Zinenko et al. [171] identified a conflict in the optimization for parallelization on the

one hand and the maximization of temporal and spatial locality on the other hand. They
propose an extension of the isl scheduler with the required tradeoff in mind. The extended
algorithm is suitable for scheduling for both CPU and GPU targets.
In our work, we use performance yielded by the schedules found by the original isl

scheduler as a baseline for the schedules found by our iterative optimization technique.

2.3 Machine Learning and Iterative Optimization Techniques

We move the focus to techniques of iterative (or search-based) optimization and machine
learning that we rely on. We start by introducing genetic algorithms which are a way of
searching for a good solution in a search space of candidate solutions to a given optimization

4https://gcc.gnu.org/

https://gcc.gnu.org/

24 2.3 Machine Learning and Iterative Optimization Techniques

problem (refer to Section 2.3.1). In the absence of the ability to construct the optimal
solution directly, genetic algorithms can improve over random search by traversing the search
space with some guidance.

Section 2.3.2 introduces decision trees and random forests, which are techniques of super-
vised machine learning. We use them to learn performance models of program transformations
from training sets of transformations whose profitability is known.

2.3.1 Genetic Algorithms

In the absence of an efficient algorithm to construct the optimal solution to a given opti-
mization problem, genetic algorithms [42, 68, 71, 100] may be able to find solutions that are
acceptably profitable. For a genetic algorithm to be successfully applicable, two precondi-
tions must hold [42]: candidate solutions should be cheap to generate and the profitability
or fitness of a solution should be computationally cheap to determine. Further, genetic
algorithms will have difficulties to improve the quality of a solution if profitable solutions
are only located in sharply defined, small regions of the search space.

The principle of genetic algorithms [71] is inspired by natural reproduction and selection.
Starting from an initial population of solutions, or chromosomes, a genetic algorithm
determines each solution’s profitability. Solutions will then be crossed to produce a new
population as an offspring of the old population. To introduce new genetic material into the
population, the offspring will further be mutated. The likeliness of a solution to reproduce
increases with its profitability. Instead of population we also use the term generation. The
procedure terminates as soon as some termination criterion holds.

We use two extensions to the general schema of genetic algorithms: Elitism [12] lets the
most profitable solutions in a generation survive to the next generation unmodified. Thereby,
the maximum fitness in a population cannot be smaller than in the previous population.
Pouchet et al. [124] combine genetic algorithms with the idea of simulated annealing [68]:
the higher the number of already produced generations, the closer one is to the discoverable
optimum, and the more local the search has to become. This can be achieved by scaling the
intensity of mutations by a factor that is inverse to the number of produced generations.

Pouchet et al. [124] proved that genetic algorithms can be used successfully for schedule
optimization in the polyhedron model.

2.3.2 Supervised Machine Learning

Supervised machine learning subsumes techniques that serve to learn a predictor function
f : A → B. A is a set of vectors of values for independent variables or features. B is the
value range of a dependent variable. f is supposed to predict the dependent variable’s value
for vectors in A. To derive f , a machine-learning algorithm analyzes a subset of A×B, the
training set. For this to work, the independent variables and the dependent variable must
correlate, but the correlation need not be known. The training set must be representative
for A×B to allow for an accurate predictor.

2.3.2.1 Decision Trees

A classification and regression tree (CART) [32] is one technique of supervised machine
learning. A CART is the result of recursively splitting the training set into two subsets
until each subset is homogeneous in terms of the dependent variables’ values or a maximum
splitting criterion, such as the minimum size of the set, is reached. Each split yields a node
in a binary decision tree that stores the predicate on the independent variable according
to which the split was made. Subsets of the training set that do not get split further
during training are represented by the leaf nodes of the decision tree. Each leaf stores the
majority values of the dependent variable for the corresponding subset of the training set.

2 Background 25

Figure 2.14: A decision tree that can distinguish good and bad weather conditions. Per node,
we show the number of corresponding training samples grouped by weather condition.

To determine optimal splitting criteria, one uses measures of impurity such as the Gini5

index of diversity [32].
To make a prediction for an element a ∈ A, one evaluates the decision tree’s root node’s

predicate for a and recursively continues with the subtree indicated by the evaluation of
the predicate. Having reached a leaf node, the prediction is the value stored by the leaf.
Example 2.3.1 illustrates the technique.

Example 2.3.1. Figure 2.14 shows a decision tree classifier to assess the weather condition
based on temperature (◦C), wind speed (km/h), humidity (%), and rain fall (mm).

From Figure 2.14 one can verify that a temperature of 20 ◦C, 10 km/h of wind speed, an
air humidity of 50% and rain fall of 0mm means that the weather is good. ⊳

Decision trees are susceptible to overfitting. An overfitted classifier is one that resembles
its training set closely, but, in contrast, has a poor predictive power with respect to the
correlation between A and B that ought to be detected. Among the techniques to reduce
overfitting are pruning of subtrees and not splitting the training into subsets with a size
below a given limit. Especially pruning is known to be effective.

2.3.2.2 Random Forests

Random forests [31] are another approach to reduce the overfitting effect of CART. Instead
of one CART, one learns several. Each tree is learned from a subset of the training set and
its nodes’ predicates cover only a subset of the independent variables. A random forest’s
prediction is the average (or majority) prediction of its individual trees.

5named after the Italian statistician Corrado Gini

3 Related Work

We propose an iterative (or search-based) technique to schedule optimization in the polyhe-
dron model. Furthermore, we propose to reduce the benchmarking effort that must be spent
to optimize programs iteratively by using surrogate performance models. The models are
learned from schedules that result from previous iterative optimizations and the schedules’
respective measured execution times. Our models characterize schedules using a set of
structural features and features that are related to particular performance aspects. We do
not use program features and, therefore, do not distinguish between programs of different
structure, which would allow to classify programs and would allow to apply a different
schedule performance model for each program class. The use of program features would also
require a comprehensive training set of programs, though. Our models are classifiers that
can distinguish likely profitable from likely unprofitable schedules.

This chapter presents work that is related to ours. Primarily, we cover polyhedral schedule
optimization techniques that are either iterative, model-based, or hybrid. Hybrid techniques
combine iterative search and model-based optimization. Model-based techniques may either
use a static heuristics, which, in the case of polyhedral schedule optimization, is frequently
encoded in a linear program or a series of linear programs, or can rely on machine-learned
performance models. We describe work from the three categories named in the respective
Sections 3.1, 3.2, and 3.3.

Polyhedral features of schedules and programs can serve other purposes than machine
learning and iterative optimization. We describe work that uses polyhedral features or,
more generally, characterizations of schedules or programs for other purposes than machine
learning in Section 3.4.

In Section 3.5, we present approaches to iterative compilation and uses of machine learning
in compilation that do not rely on the polyhedron model.

Ashouri et al. [9] present an extensive survey of compiler autotuning using machine
learning. The survey also covers iterative approaches that do not rely on machine learning.
It comprises approaches that are in the context of the polyhedron model.

3.1 Iterative Polyhedral Scheduling Algorithms

Iterative polyhedral optimizers do not rely (entirely) on static or learned performance
models. Instead, to optimize a program, they test multiple samples from a search space of
potential schedules and assess each schedule’s profitability, for instance, in terms of speedup
in execution time. The search space traversal can be at random, it may be directed by a
traversal strategy, which can rely on a performance model, it can be an enumeration that
optionally employs a pruning strategy to avoid the exploration of likely futile subsets of the
search space, or it may be feedback-driven such as a genetic algorithm.

Some early approaches to iterative polyhedral schedule optimization differ strongly from
ours because they put legality constraints aside and consequently suffer from many illegal
schedules. All are based on the Unified Transformation Framework (UTF) [78]. GAPS [104]
uses a genetic algorithm to find polyhedral schedule transformations. GAPS starts from
a random population of potentially illegal transformations that is seeded by one legal
transformation. The fitness function either measures execution time of transformed programs
or predicts loop and synchronization overhead. In the experiments of Nisbet et al., at most
5.5% of 20,000 schedules generated were legal. ICE [105] is built on top of GAPS. It enables

27

28 3.1 Iterative Polyhedral Scheduling Algorithms

the genetic algorithm to apply more transformations, including tiling. ICE has new mutation
operators in addition to the ones that exist in GAPS. The genetic operators can account
for profiling data. The fitness function measures execution time. Long and O’Boyle [93]
optimize Java programs adaptively. They machine-learn the performance impact of loop
transformations that are expressible in UTF. To match unknown programs with learned
strategies, program similarity is expressed by a set of features. The feedback from the
execution of each program optimized refines the model learned. While not evaluating
multiple schedules during the compilation of a single program, this approach is similar
to ours because it learns models from information gathered during the optimization and
subsequent execution of programs optimized and uses these models to optimize unseen
programs. Long and Fursin [91, 92] also optimize Java code. They separate the search of
mappings of the iteration variables (tiling, skewing) and the exploration of the constant part
of schedules (loop distribution, fusion). Run-time feedback directs the search. We do not
make this distinction of loop schedule and constant part of the schedule in Polyite.

We build on the approach to iterative polyhedral schedule optimization by Pouchet
et al. [122, 124], which was designed to optimize the sequential execution time of programs
in the absence of tiling iteratively. The approach’s particularity is that it restricts its
search to schedules that retain program semantics. Thereby, no illegal schedules need to
be identified and purged after their construction as is necessary in the early approaches
mentioned. The primary exploration strategy by Pouchet et al. relies on the enumeration of
the schedules in a subspace of the search space and a completion strategy for the remaining
search space dimensions. To overcome the search space’s size, Pouchet et al. propose a
decoupling heuristics that prohibits the exploration of subsets of the search space that are
likely unprofitable and a genetic algorithm with tailored genetic operators under which their
search space of legal schedules is closed. Notable is their thorough search space sensitivity
analysis [123]. To optimize for tiling and parallelization in a purely iterative manner, we go
beyond the approach of Pouchet et al. We avoid search space restrictions that are viable
only for sequential execution and propose new sampling strategies for schedules. Instead
of their decoupling heuristics, we use non-uniform random sampling as our basic sampling
technique for schedules. Also, we propose new genetic operators that are more suitable for
the traversal of our much less constrained search space.

Trifunovic et al. [146] propose a static cost model for loop vectorization and propose a
search-based scheduling approach that finds the schedule with the least vectorization cost in
a search space that comprises all combinations of loop interchanges for a SCoP.

Park et al. [114, 116] compose schedules from sequences of high-level polyhedral transfor-
mations such as loop fusion, tiling, or prevectorization. Each high-level transformation needs
an enabling transformation that permits its semantics-preserving encoding into a schedule.
They characterize programs using performance counters and use several models to predict
the speedup that can be expected from the application of a certain sequence of high-level
optimizations to a given program. Their approach may either output a single optimization
sequence that the trained performance model considers to be optimal for the program to be
optimized, or it may output a set of optimization sequences. In the latter case, the most
profitable sequence must be identified by benchmarking. It is never necessary to evaluate
more than six program versions. The search space explored by Park et al. is less finely
grained than ours. However, in contrast to us, they have the ability to learn models that
are applicable to a wider range of programs as they can characterize and classify programs.

Ruvinskiy and van Beek [134] build on the approach by Park et al. [114, 116]. Other than
Park et al., who rely on regression, Ruvinskiy and van Beek learn a classifier to predict
which of two sequences of primitive high-level transformations is better for a given program.
They are able to choose a single optimal schedule directly instead of having to benchmark
several schedules.

3 Related Work 29

Kronawitter and Lengauer [87] use polyhedral schedule features to prune schedules in a
schedule search space exploration for the data locality optimization, parallelization, and
vectorization of stencil codes. They describe the schedule search space that they explore as
practically equal to the search space constructed by PLUTO+ [28]. Therein lies a major
difference to our approach. Some of their filters are applicable early in the exploration process
and, thereby, not only avoid the schedules’ evaluation by benchmarking but also reduce
the time needed for the exploration of the search space in general. Like us, Kronawitter
and Lengauer rely on Chernikova’s algorithm (refer to Section 2.2.1.2) to sample their
schedule search space. Instead of performing a non-uniform random exploration like us, they
enumerate deterministically by combining the generators of the polyhedra that represent
their search space.

Vasilache et al. [151] propose Tensor Comprehensions (TC), which is a domain-specific
language in the context of deep neural networks. They propose a polyhedral just-in-time
(JiT) compiler for TC that leverages the isl scheduler [156]. The JiT compiler uses a
compilation cache that is populated with CUDA kernels generated by an autotuning of the
polyhedral program optimization’s configuration. The autotuner uses a genetic algorithm.
Among the options tuned are tile, block, and grid sizes, loop unrolling bounds, choices
for loop fusion and distribution, and several lower-level GPU specific options. In contrast
to us, Vasilache et al. use the static PLuTo scheduling algorithm and autotune only the
optimization’s configuration but not the schedule itself.

Sato et al. [136] autotune tile sizes and rely on LLVM [89] and Polly [65]. This work
is orthogonal to ours. It autotunes tile sizes but relies on the static PLuTo scheduling
algorithm. Conversely, we use fixed tile sizes but search for an optimal program schedule.

3.2 Model-Based Polyhedral Scheduling Algorithms

Frequently used scheduling algorithms in contemporary polyhedral compilers are model-
driven. A parametric integer programming algorithm [50] (refer to Section 2.2.1.3) is used
to select lexicographically minimal solution vectors from a polyhedron. Most notable are
the algorithm by Feautrier [52, 53] and PLuTo [25]. Feautrier’s algorithm reduces latency.
Feautrier [52] states the generator representation of a polyhedron together with Chernikova’s
algorithm as an alternative way of solving the constraint system of his algorithm. PLuTo
(refer to Section 2.2.2.5) optimizes for tiling and data locality. The Integer Set Library (isl)
by Verdoolaege [152] comprises a generalization of PLuTo, the isl scheduler [156]. Another
generalization is PLUTO+ [28]. Both generalizations have fewer practical limitations than
the original PLuTo algorithm. Particularly, they allow for arbitrary transformations that
require negative coefficients for iteration variables. The isl scheduler has the ability to
force each band to have an outer parallel dimension. If the algorithm fails to force such a
dimension, it uses the scheduling algorithm by Feautrier [52, 53] to compute the dimension
and, thereby, obtain a schedule dimension that carries as many data dependences as possible.

Advances over the original PLuTo algorithm exist. They target the balance between loop
fusion and distribution and the conflicting demands of parallelism and data locality. Loop
distribution enables parallelism, but it reduces data locality. Loop fusion does the opposite.
Bondhugula et al. [27] proposed a loop fusion model that is expressible as an ILP. Zinenko
et al. [171] improve the isl scheduler [156] to take spatial proximity of memory accesses into
account explicitly. Live-range reordering [11] improves the applicability of tiling.

Pradelle et al. [128] generate multiple parallelized versions of loop nests using the polyhe-
dron model. At run time, they select the best version of each loop nest, per invocation. The
selection is based on an execution time prediction that relies on a loop iteration count and
offline benchmarking of training programs with different numbers of threads. To count loop
iterations efficiently at run time, Pradelle et al. rely on Ehrhart polynomials [157].

30 3.3 Hybrid Polyhedral Scheduling Algorithms

In an approach to implement deep neural networks on FPGAs, Zhang et al. [169] leverage
the PLuTo algorithm and an analytical performance model that allows them to tune
variable design aspects. They use ILP for an efficient design space exploration.

3.3 Hybrid Polyhedral Scheduling Algorithms

Pouchet et al. [126, 127] combine iterative and model-driven optimization in the polyhedron
model. The result is an automatic parallelization framework in which tiling, parallelization,
and vectorization can be applied. They iteratively find a fusion structure (statement
interleaving) and use the PLuTo scheduling algorithm to complete the schedule and achieve
the applicability of tiling, parallelism, and data locality. They show that it is theoretically
possible to express the set of all m-dimensional schedules for a program as one convex set.
Thereby, if we limited our search to at most m-dimensional schedules, we could abolish
the division of the search space into search space regions. On the other hand, Pouchet et
al. state that this unified search space’s high dimensionality makes its handling infeasible.
Specifically, algorithms such as parametric integer programming, Chernikova’s algorithm,
and Fourier-Motzkin variable elimination [138] have exponential run-time complexity, which
likely makes their application on the resulting schedule search space representation infeasible.
The approach’s iterative part is limited to finding the optimal multi-dimensional statement
interleaving, whereas the schedules are completed by the static PLuTo scheduling algorithm.
We see this approach as orthogonal to ours: both approaches target data locality and,
consequently, may enable tiling. Also, both approaches enable parallelism. The primary
difference lies in the fact that Pouchet et al. optimize only partly by search space exploration,
whereas our technique is purely search-based.

3.4 Other Use Cases of Polyhedral Features of Schedules and

Programs

Polyhedral features and, more generally, characterizations of programs or schedules can
serve purposes other than machine learning.

Bao et al. [13] build on the observation that careful reductions in processor frequency
do not reduce execution time significantly but can save energy. They employ polyhedral
features that predict speedup from parallelization and operational intensity to statically
categorize program regions and then select a frequency.

Zinenko et al. [170] propose a technique to transform schedule trees [66], which are a
polyhedral hybrid representation of schedules that borrows from linearly affine schedule
functions on the one hand and abstract syntax trees (ASTs) on the other hand. We use
schedule trees in Polyite and recall their fundamental concept in Section 5.2. Zinenko et
al. enable the specification of patterns (“matchers”) to characterize declaratively parts of a
schedule tree that are to be selected for modification. Further, a transformer can be specified
that will be applied to all of the tree’s parts that match the pattern. Their approach can be
expected to ease the implementation of schedule transformations and analyses, such as our
feature extraction, in polyhedral compilers.

3 Related Work 31

3.5 Other Approaches to Machine Learning and Iterative
Optimization in Compilation

This section describes work on search-based compilation (Section 3.5.1), compilation that
combines iterative search and machine learning (Section 3.5.2), and compilation that uses
machine-learned models without exploring a search space (Section 3.5.3) that is outside the
context of the polyhedron model.

3.5.1 Iterative Approaches

Knijnenburg et al. [83] use several variants of iterative optimization to select loop unrolling
factors and tile sizes. The techniques used include a genetic algorithm and simulated
annealing. Furthermore, Knijnenburg et al. [84] propose to reduce the number of program
versions that need to be tested in the iterative compilation with an approximative static
cache model.

Cooper et al. [44] use virtual execution to generate feedback for an adaptive optimization
process to find an optimal compiler phase sequence. To initialize the virtual execution, one
initial profiling run of the program to optimize is required.
Chen et al. [39, 40] analyze in which circumstances iterative optimization for compiler

option tuning works. Their research question is “[...] if one selects a combination of
optimizations based on runs over one or a few data sets, will that combination still be the
best for other data sets?” [39]. Chen et al. observe that across a set of 32 programs for each
of which they generate 1000 data sets it was possible to find at least one combination of
compiler optimizations that yields, per data set, at least 83% percent [39] (or 86% [40]) of
the maximum speedup that was reachable for the data set. Furthermore, they research the
question about why iterative optimization works [40].
Kelefouras [77] optimizes loop nests iteratively. The considered set of possible loop

transformations comprises two levels of loop nest tiling with different tile sizes in each case,
scalar replacement, register allocation, loop unrolling with different unroll factors, different
data array layouts, and loop interchange. The approach is limited to loop nests that operate
on arrays. All array accesses must use linear subscript functions. By taking characteristics
of hardware and code into account, the size of the search space can be reduced drastically.

Beaugnon et al. [19] propose Telamon, which optimizes CUDA kernels with static control
in an iterative manner for an execution on GPUs. Within its search space for a kernel,
Telamon has the ability to efficiently find the kernel’s version that has the globally minimal
execution time. Telamon’s search space is represented by an internal representation (IR)
of the kernel that can encode unspecified implementation choices. Thus, one instance of the
IR can represent multiple programs. Conceptually, the search space is a decision tree that
Telamon explores with a branch-and-bound algorithm. When the exploration visits a leaf,
i.e., a fully specified version of the kernel, Beaugnon et al. execute the kernel and measure
its execution time. If necessary, they update the minimum execution time tmin known so far
subsequently. Their analytical performance model can predict a lower bound for all kernel
versions in a subtree of the decision tree. If, for a subtree, the predicted bound is greater
than tmin, the subtree will be pruned. Like Polyite, Telamon is designed to optimize
programs without (fully) relying on static cost models. In contrast to us, Beaugnon et al.
do not represent programs and program transformations in the polyhedron model. They do
not machine-learn performance models but rely on an analytical performance model. Still,
the optimization is directed by feedback from the execution of program versions.

3.5.2 Combined Machine-Learning and Iterative Approaches

Park et al. [113] evaluate different modeling techniques for an iterative search for a good
compiler phase sequence. They rely on performance counters to characterize programs.

32 3.5 Other Approaches to Machine Learning and Iterative Optimization in Compilation

Ashouri et al. [8] also rely on dynamic features to optimize the order of compiler phases.
That is, from profiling during a single program execution and a set of hand-crafted rules,
they deduce the impact on execution time by a specific sequence.

Other approaches rely on static program features. Stock et al. [144] use machine learning
to improve the automatic vectorization of tensor contraction codes and rely on features of
assembly code. Their models rank different program variants according to their relative
performance. The best can then be chosen. Agakov et al. [2] use predictive modeling to
focus iterative compiler compilation on areas of the search space that are likely to give the
best performance. The search space consists of sequences of several program transformations.
They use program features to find correlations with training programs evaluated iteratively
offline and select the model for the program class that fits the new program best. Agakov et
al. evaluate two techniques to representing the profitable areas of the search space and use
both random exploration and a genetic algorithm for the actual search space exploration.
Ashouri et al. [7] use Bayesian networks to prune their exploration space in the compiler
autotuning framework COBAYN and rely on static and dynamic program features and
features that characterize the control flow.

Given a new program to be compiled, Thomson et al. [145] can decide whether the
already present training data is suitable to optimize the program or additional search space
exploration, i.e., retraining would be beneficial.

Chen et al. [38] optimize tensor programs using learned domain-specific statistical cost
models and an exploration of a search space that consists of possible transformations from
tensor operators to low-level code. During the search space exploration, they update the cost
model continuously. The cost models are transferable between different tensor operators.

3.5.3 Machine-Learning Approaches

Monsifrot et al. [101] learn a decision tree for estimating how beneficial loop unrolling is
for a given loop. They use static loop features to characterize loops. To obtain training
data for a decision tree, each loop in a training set of loops is executed twice: once unrolled
and once as the original loop. A loop can be in one of four classes that characterize the
impact of loop unrolling on the loop’s execution time. Before they learn the decision tree,
Monsifrot et al. aggregate the training data by clustering loops with equal feature vectors
and representing each cluster basically by its majority class.

Cavazos et al. [34] optimize a compiler optimization sequence. They sample optimization
sequences randomly offline and apply them to a training set of programs. They characterize
the program versions using the values of performance counters. Thereby, they obtain training
data from which they learn a model using logistic regression [24]. For a program to be
optimized, the model learned can predict for each compiler optimization the probability
that its application will be useful. The optimizations’ relative order of application is fixed
and, thus, Cavazos et al. do not tackle the compiler phase ordering problem.

Using the “reverse k-nearest neighbor” model, Long and Zhu [94, 95] decide whether
learned performance models are applicable to a given program.

Fursin et al. [59] propose Milepost GCC, which is a compiler that uses machine learning.
Milepost GCC adapts its internal optimization heuristics to optimize previously unseen
programs on a given architecture. Fursin et al. classify programs using static program
features and predict a combination of optimizations for the given program based on similar
programs in the training set. They also propose a model that extends the vector of program
features by the selected optimizations and allows to estimate whether a given combination
of optimizations is profitable for a given program. Milepost GCC relies on GCC.

Park et al. [115] rely on features that they extract from programs’ intermediate graph-
based program representation to predict a compiler optimization sequence that is likely
beneficial for a given program. Alternatively, a small number of optimization sequences

3 Related Work 33

can be predicted. Thus, the approach can also be used in an iterative manner. In addition
to the graph-based features, Park et al. rely on performance counters, the impact of each
optimization sequence from a particular set of sequences on the program, and source code
features. The optimizations considered are loop unrolling with different unrolling factors,
different loop fusion strategies, tiling, parallelization, and vectorization. The compiler used
is the polyhedral source-to-source compiler PoCC [126]. We classify the approach as not
polyhedral because, although it uses a polyhedral compiler, the technique is not inherently
connected to the polyhedron model.

For the purpose of predictive modeling, Park et al. [117] propose to extract static features of
loops and loop nests using the pattern-driven code transformation system HERCULES [76]
that allows to analyze and transform programs by specifying patterns. HERCULES relies
on the declarative language PROLOG [133] for deductive inference.

Wang et al. [160] use a combination of static analysis and profiling to detect parallelizable
loops and employ a machine-learned support vector machine (SVM) classifier that relies on
static and dynamic program features to decide which loops to parallelize.

Ashouri et al. [6] train linear regression models from variants of training programs offline
to be able to predict a good sequence of program optimizations for a given program. They
use LLVM as their compiler. Ashouri et al. use dynamic architecture-independent program
features. An optimization sequence is grown step by step. In each step, the application
speedup, which results from applying a certain optimization subsequent to the ones selected
already, is predicted.

Cosenza et al. [45] use SVMs to learn models that allow them to speed up the autotuning
of program transformation parameters for stencils. They rely on the PATUS DSL source-
to-source stencil compiler [41].

4 Sampling the Search Space of Legal
Schedules

In this chapter, we describe the random sampling of the search space of legal linearly affine
schedules for a given SCoP.

Our sampling technique is partly derived from the technique that Pouchet et al. [124]
proposed for their iterative schedule optimizer LeTSeE [120]. This technique, in turn,
builds on the fundamental scheduling algorithm by Feautrier [52, 53].

Pouchet et al. optimized only for sequential execution and did not take additional schedule
optimization, such as tiling, into account. They narrowed the search space of legal schedules
to a specific subset in a way that is reasonable for their optimization goal. This choice’s
advantage is that it avoids the extremely large number of schedules that would have had
to be taken into account otherwise. Since they did not post-process (for instance by tiling
or strip mining) their schedules, it was unnecessary for Pouchet et al. to produce injective
schedules. In fact, entire loops of the transformed program may not be encoded in their
schedules. Pouchet et al. continue to generate schedule dimensions only until all dependence
polyhedra are carried. In contrast, polyhedral code generators such as isl [66] complete
schedules to injective functions implicitly.

Pouchet’s sampling technique for multi-dimensional schedules comprises an algorithm
for search space construction and both a decoupling technique and a genetic algorithm to
traverse the constructed search space. The traversal techniques use statistical knowledge
that has resulted from a performance-sensitivity analysis of schedule coefficients [123, 124].

The restrictions imposed on the search space by Pouchet et al. likely prohibit tiling and
parallelization. To meet our goals, we had to eliminate these restrictions. Further, to be
able to apply tiling to schedules, we must encode all loops of the transformed program in
the schedule explicitly. In the following, we propose a generalization of their technique that
allows us to explore, theoretically, a SCoP’s entire search space of legal schedules. Our
sampling technique will, for reasons of practicality, reach some schedules with a much higher
probability than others. It does not rely on statistical knowledge, but solely on the search
space’s structure and the static configuration of Polyite.

The proposed technique is highly configurable: the exploration can be biased to explore
primarily schedules that satisfy certain criteria, such as sparseness of a schedule function’s
coefficient matrix or coarse-grained parallelism.

Taking the complete search space of legal schedules for a given program into account
causes a dilemma: on the one hand, we must remove the restrictions that prohibit tiling and
parallelization; on the other hand, we cannot model the entire search space in a tractable
way that permits sampling. To overcome this dilemma, we divide the search space into
subsets, which we call search space regions, and sample the set of search space regions. Each
search space region is represented by a list of polyhedra. For this purpose, we propose a
modification to Pouchet’s algorithm for the construction of the search space. Note that
if one bounds the maximum dimensionality of the schedules to m ∈ N, it is theoretically
possible to express the set of all legal at most m-dimensional schedules for a given program
as one convex set, but the dimensionality of the resulting search space likely poses the
computational infeasibility of handling it [127].

In order to achieve a good coverage of the search space or, in other words, a strong
diversity of the schedules sampled, we sample the search space by choosing repeatedly a

35

36 4.1 Objectives of a Sampling Algorithm

random region, selecting randomly one or two schedules from this region and continuing
with another region.

In this section, we begin by stating the objectives of a schedule sampling algorithm. We
continue by motivating our decision to use the same schedule representation for the sampling
of schedules as Pouchet [124] (Section 4.2). We recall Pouchet’s motivation to limit the search
to legal schedules (Section 4.3). Next, we discuss the size and structure of the generalized
search space that we would like to explore (Section 4.4). Then, we recall Pouchet’s algorithm
for search space construction (Section 4.5.1) and introduce our extensions that allow to
sample different subsets of the schedule search space (Section 4.5.2). In Section 4.6, potential
techniques to sample schedules from subsets of the schedule search space are presented and
discussed. In the remainder of the chapter, necessary steps to prepare schedules for the
application of tiling and strip mining (Section 4.7) and a way to adapt the characteristics of
Pouchet’s approach in Polyite (Section 4.8) are described.

Sections 4.2 to 4.5.1 primarily recall Pouchet’s search space construction for the purpose
of presenting the complete schedule sampling technique proposed.

4.1 Objectives of a Sampling Algorithm

We have identified the following to be the main objectives of an effective sampling algorithm
for polyhedral schedules.

Observed Computational Complexity Depending on the size and complexity of the SCoP
to be optimized, iterative optimization may require a large number of schedules to be
generated and evaluated. Thus, an acceptably low observed computational complexity of
the sampling algorithm for schedules is crucial for efficiency.

Coverage of the Schedule Search Space As mentioned already, the schedule search space
is divided into a, theoretically infinite, number of subsets. The subsets are not necessarily
pairwise disjoint. Each of the subsets contains a, theoretically infinite, number of schedules.
Most of the subsets and most of the schedules in each subset are redundant as they correspond
to the same execution order as other schedules, or are equivalent to other subsets. The
redundancy has four main causes, which we illustrate in Example 4.1.1:

1. Statements’ and statement instances’ textual order can be encoded in various ways.

2. Multiplying a row of a schedule matrix yields a schedule that is equivalent to the
original schedule.

3. The absolute value of some schedule coefficients may be too large, or can even be
reduced to 0 without altering the schedule.Vasilache addresses the second cause and
also the shift of an iteration domain by a constant or multiples of structure parameters,
which is subsumed by the third cause.

4. Schedule functions can contain redundant dimensions: these do not contribute to the
lexicographic ordering of statement instances.

Many other schedules are not redundant, but still useless because they contain unreasonably
large coefficients. A discussion of the equivalence of schedules can also be found in Nicholas
Vasilache’s PhD thesis [149]. Vasilache addresses the second cause and also the shift of an
iteration domain by a constant or multiples of structure parameters, which is subsumed by
the third cause.

An effective schedule sampling algorithm need not be able to reach every schedule in the
search space, but it must cover a reasonable subset.

4 Sampling the Search Space of Legal Schedules 37

Example 4.1.1. We recall iteration domains and schedules of our example syrk:

IR = {(i, j)T | i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j ≤ i}

IS = {(i, j, k)T | i, j, k ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < m ∧ 0 ≤ k ≤ i}, n,m ∈ Z

ΘR(i, j)
T = (i, 0, j, 0)T , ΘS(i, j, k)

T = (i, 1, j, k)T .

The following two statement schedules are equivalent to the original schedule:

Θ′R(i, j)
T = (42 · i, j, 0, 0, 1)T , Θ′S(i, j, k)

T = (42 · i+ 21, j, k, k, 0)T .

Schedule dimensions four and five are dispensable, which leads to

Θ′R(i, j)
T = (42 · i, j, 0)T , Θ′S(i, j, k)

T = (42 · i+ 21, j, k)T .

We can then divide the first schedule dimension by its coefficients’ greatest common divisor,
which yields

Θ′R(i, j)
T = (2 · i, j, 0)T , Θ′S(i, j, k)

T = (2 · i+ 1, j, k)T

We notice that the first schedule dimension corresponds to a loop with stride two. In each
iteration, we first execute an instance of statement R and then an instance of statement S.
This execution order matches the first two dimensions of schedule Θ. The larger iteration
variable coefficients would have an effect if one encoded tiling in the original and the
simplified schedule with the same tile sizes in both cases. They influence the number of
statement instances that are executed per tile. Yet, this number should be determined
primarily by the chosen tile sizes and not the values of iteration variable coefficients. ⊳

Biasing the Exploration An iterative optimization for parallelization with OpenMP re-
quires schedules that enable coarse-grained parallelism. To avoid evaluating an unnecessarily
large number of schedules, it is likely beneficial to encounter primarily schedules with this
property. Yet, one may wish not to exclude other schedules entirely from the search space. A
widely held conjecture is that schedules with a dense coefficient matrix are likely unprofitable
as they yield unnecessarily complex index computations in the transformed program.

As discussed above, schedules with large coefficients are likely equivalent to schedules with
smaller coefficients. Further, too large coefficients of iteration variables require the adaptation
of tile sizes and may yield integer overflows during the execution of the transformed program.
Consequently, it must be possible to bound the absolute value of schedule coefficients.

In summary, we envision a sampling algorithm that can be configured to explore primarily
schedules that exhibit certain characteristics.

4.2 The Optimal Schedule Representation for Sampling

We need a schedule representation that permits us to uniformly represent and sample the
schedule search space that results from a SCoP’s legality-affecting data dependencies (refer
to Section 2.2.2.3). Section 2.2.2.3 recalls how legality constraints on linearly affine schedule
functions are derived from dependence polyhedra. While the use of one-dimensional schedule
functions suffices in some situations, supporting multi-dimensional schedule functions is
inevitable for two reasons. The first has been pointed out by Feautrier [53]: some static
control parts have data dependences that prevent the representation of a legal execution
order by a one-dimensional linearly affine schedule. Figure 4.1(a) reproduces an example of
such a SCoP given by Feautrier. From the model (refer to Figure 4.1(b)) that corresponds to
the example’s code, readers may convince themselves that any linearly affine one-dimensional
schedule either does not carry or violates one of two sets of data dependences. One set are

38 4.2 The Optimal Schedule Representation for Sampling

✞
1 for (int i = 0; i <= n; i++)
2 for (int j = 0; j <= i; ++j)
3 s = s + A[i][j]

✝ ✆

(a) code

0

1

2

3

1 2 3

j

i
(b) model

Figure 4.1: An example of a SCoP for which no legal one-dimensional linearly affine schedule
exists. The example is due to Feautrier [53].

the dependences that correspond to the arrows that point forward in the direction of the
i-dimension in Figure 4.1(b). The other set are the dependences that correspond to the
arrows pointing upward in Figure 4.1(b).
In other cases, like in Figure 2.6, a legal one-dimensional linearly affine schedule does

exist. While the loop nest in the figure is two-dimensional, one schedule dimension suffices
to carry the data dependences. The missing inner loop need not be encoded explicitly
since polyhedral code generators, such as isl [66], can choose a possible execution order
and generate the remaining code accordingly. Yet, for analysis and transformation of
schedules, such as the application of tiling, it may be necessary to have an explicit encoding
of all of the transformed program’s loops in the schedule. Again, this requires the use of
multi-dimensional schedules, in the case of a loop nesting-level that is larger than 1.
We follow Pouchet et al. [124] and use schedule coefficient matrices (schedule matrix for

short) to represent schedules. This choice is natural: schedules are linearly affine functions,
which are fully characterized by their coefficient matrix (refer to Definitions 2.2.1 and 2.2.2).
Applying Farkas’ Lemma to a dependence polyhedron DO,T and the prototype of a one-

dimensional schedule function yields the set of all schedule coefficient vectors (~λO~µO, νO)
T ,

(~λT ~µT , νT)
T such that DO,T is weakly or strongly satisfied; ~λT contains one coefficient per

variable in ~iT , ~µT contains one coefficient per structure parameter of the SCoP, and νT is
the constant part of the one-dimensional schedule. Refer to Section 2.2.2.3 for details. Thus,
an n-dimensional (n ∈ N) schedule ΘS of statement S is represented by a matrix

MΘS
=

~λ1
S ~µ1

S , ν1S
~λ2
S ~µ2

S , ν2S
...

...
...

~λn
S ~µn

S , νnS

 .

Since data dependences may exist between statements that are different from each other,
it is impossible to choose statement schedules independently and at the same time ensure
the legality of the schedule. Thus, Pouchet et al. unify all schedule matrices in one matrix.
Say, we have an n-dimensional schedule Θ for a SCoP with m statements (m,n ∈ N). Θ
can be encoded as follows:

MΘ =

~λ1
S1

~λ1
S2

... ~λ1
Sm

~µ1
S1

~µ1
S2

... ~µ1
Sm

, ν1S1
, ν1S2

, ..., ν1Sm

~λ2
S1

~λ2
S2

... ~λ2
Sm

~µ2
S1

~µ2
S2

... ~µ2
Sm

, ν2S1
, ν2S2

, ..., ν2Sm

...
... · · ·

...
...

... · · ·
...

...
... · · ·

...
~λn
S1

~λn
S2

... ~λn
Sm

~µn
S1

~µn
S2

... ~µn
Sm

, νnS1
, νnS2

, ..., νnSm

.

Other than Pouchet et al., who use schedule matrices with integer coefficients, we must
use rational schedule coefficients due to the nature of our primary sampling strategy (refer

4 Sampling the Search Space of Legal Schedules 39

Table 4.1: Schedule matrix of the schedule in Example 2.2.15.

ΘR ΘS

i j n m 1 i j k n m 1

1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

to Section 4.6.5) and some of our genetic operators (refer to Chapter 6). Rational schedule
matrices are unsuitable for standard polyhedral code generation algorithms, but can be
transformed to integer schedule matrices as described in Section 4.6.5. We call the rows of a
schedule matrix schedule coefficient vectors.

Example 4.2.1. The schedule in Example 2.2.15 is represented by the schedule matrix
shown in Table 4.1. ⊳

4.3 Restriction to Legal Schedules

Pouchet et al. constrain the schedule search space to legal schedules, i.e., schedules that do
not violate any legality-affecting dependences. While this choice complicates the sampling
of schedules, it is strongly motivated by the fact that the number of illegal and redundant
schedules grows exponentially faster with the program size than the number of legal schedules
[122]. Nisbet [104] et al. did not restrict the search space of their genetic algorithm to
legal schedules. They observed a share of at most 5.5% legal schedules among 20,000
schedules generated. This underlines the necessity to restrict the schedule search space to
legal schedules. Therefore, we have followed the choice made by Pouchet et al.

To represent the legality-affecting data dependences of a SCoP by a set of dependence
polyhedra we use an approach by Kronawitter [86]. We describe this technique in the
following.

Kronawitter starts with the approximate data flow analysis algorithm described by

Verdoolaege [153] to calculate the set T of all pairs

(
~x
~y

)
of statement instances in the SCoP

such that ~y depends on ~x. Next, a set of dependence polyhedra whose union equals or
overapproximates T must be calculated. In a first step, T is split by the pair of source
statement O and target statement T . This yields per pair of statements O and T with
iteration domains IO and IT the following relation:

DSO,T =

{(
~x
~y

)
| ~x ∈ IO ∧ ~y ∈ IT ∧ ~y depends on ~x

}
.

To be able to construct a large portion of the set of legal schedules in the sampling process,
the sets DSO,T must be split at a finer grain level. Algorithm 4.1 serves this purpose. It
repeatedly calculates the lexicographic minimum DSO,Tmin (refer to Section 2.2.1.6) of
DSO,T and then splits DSO,Tmin along any disjunctions in its definition. Finally, DSO,Tmin
is subtracted from DSO,T . The iteration continues until DSO,T is empty. Example 4.3.1
illustrates a case in which DSO,T can be split into an infinite number of sets DSO,Tmin.
Endless cycling is prevented by applying an upper bound on the number of splits. If the limit
is reached, DSO,T is split along any disjunction in its definition. This approach to splitting
the sets DSO,T is coarser grained than the default strategy and it is non-deterministic.

Finally, since the resulting sets of dependence instances may not be polyhedral, we
calculate their convex hulls.

40 4.4 The Size and Structure of the Search Space

Algorithm 4.1: Partition a set of dependent pairs of statement instances into
polyhedra

Input: Set DSO,T ⊆

{(

~x
~y

)

| ~x ∈ IO ∧ ~y ∈ IT

}

Output: Set DPO,T of polyhedra such that DSO,T ⊆
⋃

P∈DPO,T

P

Parameters: split max is the maximum number of polyhedra into which DSO,T ought to be split.
1 n split← 0
2 DPO,T ← ∅
3 while n split < split max ∧ DSO,T 6= ∅ do
4 DSO,Tmin

← lex.min(DSO,T)

5 for P ∈ Λ(DSO,Tmin
) do

6 DPO,T ← DPO,T ∪ {P}
7 n split← n split+ 1
8 if n split > split max then
9 break

10 if n split > split max then
11 DPO,T ← Λ(DSO,T)

12 DPO,T ← map(conv.hull, DPO,T)

13 return DPO,T

0

1

2

3

1 2 3

j

i

Figure 4.2: Iteration domain and dependences of the SCoP in Exam-
ple 4.3.1. All dependences originate at the statement instance at
(0, 0).

Example 4.3.1.
Let S be a statement with IS = {(i, j)T | i, j ∈ Z ∧ 0 ≤ i ≤ n ∧ 0 ≤ j ≤ n}, n ∈ Z. Let
the statement’s schedule be ΘS(i, j)

T = (i, j)T and let there be the following dependence
polyhedron:

DS,S = {(0, 0, i, j)T | (0, 0)T ∈ IS ∧ (i, j)T ∈ IS}.

We illustrate DS,S in Figure 4.2 for n = 3. All dependences in DS,S originate at the statement
instance at (0, 0). Attempting to split the relation by slicing off repeatedly its lexicographic
minimum yields a set per element of DS,S . The algorithm does not split DS,S further. ⊳

Per dependence polyhedron DO,T , Pouchet et al. define two polyhedral sets of schedule
coefficient vectors. Set WO,T represents all one-dimensional schedules that satisfy DO,T at
least weakly. Set SO,T represents all one-dimensional schedules that satisfy DO,T strongly.
To satisfy multiple dependence polyhedra, one must intersect the respective polyhedra WO,T

and SO,T .

4.4 The Size and Structure of the Search Space

A dependence polyhedron can be carried by any schedule dimension, assuming that all
preceding dimensions satisfy it weakly. Depending on the choices made, the number of
schedule dimensions and the legality constraints of the dimensions vary. Restrictions originate
only from the interplay of dependences, as illustrated by Figure 4.1(b). In the illustrated
case, there are two dependence polyhedra and it is impossible to carry both in the first
schedule dimension.

The full search space is a set of lists of polyhedra of diverse lengths. Each list represents
one search space region. Per list, the vectors contained in the dth polyhedron are the possible
schedule coefficient vectors for schedule dimension d of the schedules contained in the

4 Sampling the Search Space of Legal Schedules 41

respective search space region. Given a dependence polyhedron DO,T and a legal schedule
for the respective SCoP, the number of schedule dimensions that precede the dimension that
carries DO,T may be infinitely large. Thus, the maximum length of the lists of polyhedra
that represent the search space regions is unbounded and the number of search space regions
is infinite.

Pouchet et al. considered neither arbitrary schedules with outer parallelism nor injective
schedules. Consequently, in their case, the maximum number of schedule dimensions is equal
to the number of dependence polyhedra and the total number of search space regions is at
most exponential in the number of dependence polyhedra.
To reduce the size of the search space, Pouchet et al. limited their search to one specific

search space region. This region is determined by processing dependence polyhedra in a
specific order: they are sorted by the memory traffic of the dependent statements and the
degree at which they interfere with other dependence polyhedra. Two dependence polyhedra
DO,T and DO′,T ′ interfere if SO,T ∩ SO′,T ′ = ∅.

4.5 Sampling Search Space Regions

Our algorithm to sample the set of search space regions for a given SCoP is a generalization
of the algorithm for search space construction by Pouchet et al. [124]. We start by laying out
their algorithm and present our amendments subsequently. Algorithm 4.2 is the amended
procedure. The parts that we have modified or added are highlighted.

Algorithm 4.2: Sampling of Search Space Regions
Input: G: Set of dependence polyhedra for dependences between pairs of statements O and T

U : (Universe) A polyhedron that represents the set of schedule coefficients that will be consid-
ered despite restrictions by legality constraints that originate from data dependences

Output: A search space region’s model. The model is a list of polyhedra. The dth polyhedron contains
the allowed coefficient vectors for dimension d of the schedules in the modeled search space
region.

Parameters: p At schedule dimension d, all schedules contained in the constructed search space region
will satisfy strongly at least one of the dependence polyhedra that are not carried by all
schedule in one of the dimensions 1, ..., d− 1 with probability p.

1 d← 0; P ← 〈〉
2 while G 6= ∅ do
3 d← d+ 1; Pd ← U ;
4 foreach DO,T ∈ G do
5 WO,T ← {~mΘ | ~mΘ ∈ U ∧ ~mΘ weakly satisfies DO,T };
6 Pd ← Pd ∩WO,T ;

7 Gd ← ∅; q ←rand([0, 1])

8 if q ≤ p then

9 Gd ← rand(2G \ {∅});

10 foreach DO,T ∈ Gd do
11 SO,T ← {~mΘ | ~mΘ ∈ U ∧ ~mΘ strongly satisfies DO,T };
12 if Pd ∩ SO,T 6= ∅ then
13 Pd ← Pd ∩ SO,T ;

14 G← G \ {DO,T | DO,T ∈ G ∧ ∀~md
Θ ∈ Pd : ~md

Θ strongly satisfies DO,T };
15 P ← Pd :: P

16 return reverse(P)

Function rand selects randomly an element from a given set. Elements are chosen with uniform probability.
Operator :: prepends an element to a list. Function reverse reverses a list.
The parts of the algorithm that differ from Pouchet’s original search space construction are highlighted.

4.5.1 Search Space Construction by Louis-Noël Pouchet

The algorithm starts from a list G of all data dependence polyhedra in the SCoP. G is
sorted in ascending order according to the criterion described in Section 4.4. Pouchet’s
algorithm constructs a model of a specific set of schedules. In our terminology, this set

42 4.5 Sampling Search Space Regions

corresponds to one search space region. It is represented by a list of polyhedra P1, ..., Pn,
with Pd containing all possible schedule coefficient vectors for schedule dimension d. As
long as G is not empty, another schedule dimension, i.e., a polyhedron, will be appended
to the list. Pd is initially a hypercube such that each schedule coefficient is constrained to
the interval [−1, 1]. In Algorithm 4.2, these constraints would already have to be present in
U . Subsequently, Pd is being intersected with the sets WO,T of all DO,T in G. After this
point, all one-dimensional schedules encoded by the vectors in Pd satisfy the dependences in
G weakly. In an additional iteration across G, the algorithm tests, per DO,T ∈ G, whether
Pd ∩SO,T is non-empty. If so, Pd is updated to the intersection’s result and DO,T is removed
from G. The order of the remaining dependences in G must now be updated with respect
to their mutual interference.

From the algorithm described, it is apparent that, in the search space considered by
Pouchet et al. [124], each dimension of each schedule carries at least one data dependence
polyhedron. This yields, primarily, inner parallelism.

4.5.2 Our Generalization

As mentioned, we cannot model the complete search space of legal schedules for a program.
Its size is infinite and its constraint representation in disjunctive normal form would contain
an infinite number of conjunctions. Bounding the schedules’ maximum dimensionality by
a fixed number m ∈ N would allow to represent the set of all m-dimensional schedules as
one polyhedron. Yet, applying algorithms with exponential run-time complexity to this
polyhedron is most likely infeasible [127]. Therefore, we divide the search space along the
disjunctions into search space regions and modify Pouchet’s algorithm for search space
construction such that we can use it to sample these search space regions. In order to allow
for arbitrary outer parallelism, we must permit outer schedule dimensions that do not carry
dependences. Further, with parallelization and tiling in mind, skewing is an important
enabling loop transformation. Skewing shifts the iterations of a loop by the value of an
encasing loop’s iteration variable. It does not change the execution order of statement
instances, but it modifies the direction of dependences with respect to the shifted schedule
dimension. This can enable tiling (refer to Section 2.2.2.4). The restriction of schedule
coefficients to [−1, 1] prohibits non-unit skewing. In consequence, we do not bound schedule
coefficients beyond legality constraints.

In particular, we make the following amendments: G is no longer an ordered list of
dependence polyhedra, but a set. U is not a hypercube such that each dimension of the
schedule coefficient space is bounded to [−1, 1], but a set that covers the entire schedule
coefficient space. When we constrain Pd to schedules that carry dependence polyhedra, we
consider only dependences from a randomly chosen subset Gd ⊆ G. Subsequently, we remove
all dependence polyhedra from G that are carried by all one-dimensional schedules encoded
in Pd. Only with a configurable probability p ∈]0, 1], Gd is not empty. It is important to
chose p neither too large, as that would prevent outer parallelism, nor too low because that
would increase the dimensionality of schedules unreasonably. Leaving Gd empty allows Pd

to contain fully parallel one-dimensional schedules.

The non-determinism in Algorithm 4.2 causes it to model different search space regions
on different invocations. Example 4.5.1 demonstrates Algorithm 4.2.

4 Sampling the Search Space of Legal Schedules 43

Example 4.5.1. Recall the running example syrk. Let p = 0.4. We have two statements
S and R with ~iS = (i, j)T and ~iR = (i, j, k)T and ~p = (n,m)T . The set of dependence
polyhedra is:

G = {

DR,S = {(i, j, i, 0, j)T | i < n ∧ 0 ≤ j ≤ i ∧ (i, j)T ∈ IR ∧ (i, 0, j)T ∈ IS},

DS,S = {(i, j, k, i, j + 1, k)T | 0 ≤ i < n ∧ 0 ≤ j ≤ m− 2 ∧ 0 ≤ k ≤ i

∧ (i, j, k)T ∈ IS ∧ (i, j + 1, k)T ∈ IS}

}.

From these dependence polyhedra result the following sets of schedule coefficient vectors:

WR,S = {(~λS
~λR ~µS ~µR, νS , νR)

T | ~µ
(2)
S ≥ ~µ

(2)
R ∧ ~µ

(1)
S ≥ ~µ

(1)
R

∧ ~λ
(1)
S + ~λ

(3)
S + ~µ

(1)
S ≥ ~λ

(1)
R + ~λ

(2)
R + ~µ

(1)
R

∧ ~µ
(1)
S + ~µ

(2)
R + νS ≥ ~µ

(1)
R + ~µ

(2)
R + νR}

SR,S = {(~λS
~λR ~µS ~µR, νS , νR)

T | ~µ
(2)
S ≥ ~µ

(2)
R ∧ ~µ

(1)
S ≥ ~µ

(1)
R

∧ ~λ
(1)
S + ~λ

(3)
S + ~µ

(1)
S ≥ ~λ

(1)
R + ~λ

(2)
R + ~µ

(1)
R

∧ ~µS (1) + ~µ
(2)
R + νS ≥ ~µ

(1)
R + ~µ

(2)
R + νR + 1}

WS,S = {(~λS
~λR ~µS ~µR, νS , νR)

T | ~λ
(2)
S ≥ 0}

SS,S = {(~λS
~λR ~µS ~µR, νS , νR)

T | ~λ
(2)
S ≥ 1}.

Round 1 d = 1.

Let q > p = 0.4. Consequently, G1 = ∅ and therefore

P1 = WR,S ∩WS,S = {(~λS
~λR ~µS ~µR, νS , νR)

T | ~λ
(2)
S ≥ 0}

∩ {(~λS
~λR ~µS ~µR, νS , νR)

T | ~µ
(2)
S ≥ ~µ

(2)
R ∧ ~µ

(1)
S ≥ ~µ

(1)
R

∧ ~λ
(1)
S + ~λ

(3)
S + ~µ

(1)
S ≥ ~λ

(1)
R + ~λ

(2)
R + ~µ

(1)
R

∧ ~µ
(1)
S + ~µ

(2)
R + νS ≥ ~µ

(1)
R + ~µ

(2)
R + νR}

= {(~λS
~λR ~µS ~µR, νS , νR)

T | ~µ
(2)
S ≥ ~µ

(2)
R ∧ ~µ

(1)
S ≥ ~µ

(1)
R

∧ ~λ
(1)
S + ~λ

(3)
S + ~µ

(1)
S ≥ ~λ

(1)
R + ~λ

(2)
R + ~µ

(1)
R

∧ ~µ
(1)
S + ~µ

(2)
R + νS ≥ ~µ

(1)
R + ~µ

(2)
R + νR

∧ ~λ
(2)
S ≥ 0}.

It remains that G = {DR,S , DS,S}.

Round 2 d = 2.

Again, let q > p. Consequently, P2 = P1 and G = {DR,S , DS,S}.

44 4.5 Sampling Search Space Regions

Listing 4.1: The program in Listing 2.1 (page 18) transformed by the schedule in Exam-
ple 4.5.1.

✞
1 #pragma omp parallel for
2 for (int c0 = 0; c0 < n; c0++)
3 for (int c1 = 0; c1 <= c0; c1++) {
4 C[c0][c1] ∗= beta; // statement R
5 for (int c2 = 0; c2 < m; c2++)
6 C[c0][c1] += alpha ∗ A[c0][c2] ∗ A[c1][c2]; // statement S
7 }

✝ ✆

Round 3 d = 3.

Let q < p and G3 = {DR,S}. We obtain

P3 = WR,S ∩WS,S ∩ SR,S =
{SR,S ⊂ WR,S}

WS,S ∩ SR,S

= {(~λS
~λR ~µS ~µR, νS , νR)

T | ~λ
(2)
S ≥ 0}

∩ {(~λS
~λR ~µS ~µR, νS , νR)

T | ~µ
(2)
S ≥ ~µ

(2)
R ∧ ~µ

(1)
S ≥ ~µ

(1)
R

∧ ~λ
(1)
S + ~λ

(3)
S + ~µ

(1)
S ≥ ~λ

(1)
R + ~λ

(2)
R + ~µ

(1)
R

∧ ~µ
(1)
S + ~µ

(2)
R + νS ≥ ~µ

(1)
R + ~µ

(2)
R + νR + 1}

= {(~λS
~λR ~µS ~µR, νS , νR)

T | ~µ
(2)
S ≥ ~µ

(2)
R ∧ ~µ

(1)
S ≥ ~µ

(1)
R

∧ ~λ
(1)
S + ~λ

(3)
S + ~µ

(1)
S ≥ ~λ

(1)
R + ~λ

(2)
R + ~µ

(1)
R

∧ ~µ
(1)
S + ~µ

(2)
R + νS ≥ ~µ

(1)
R + ~µ

(2)
R + νR + 1

∧
~

λ
(2)
S ≥ 0}

and G = {DS,S}.

Round 4 d = 4.

Let q < p and G4 = {DS,S}. We obtain P4 = WS,S ∩ SS,S =
{SS,S⊂WS,S}

SS,S .

One schedule contained in the search space region that is represented by 〈P1, P2, P3, P4〉 is

ΘR(i, j)
T = (i, j, 0, 0)T , ΘS(i, j, k)

T = (i, k, 0, j)T .

It corresponds to the parallelized code in Listing 4.1. ⊳

4.5.3 Termination

Pouchet et al. [124] split the set of a SCoP’s legality-affecting data dependences into
dependence polyhedra such that all dependences in a polyhedron are carried by the same
dimension of the SCoP’s original schedule. Thus, it is always possible to construct the search
space such that it contains the original schedule and the algorithm terminates for the same
reason as the scheduling algorithm by Feautrier [53].

We use a coarser-grained splitting of the set of data dependences into dependence polyhedra
(refer to Section 4.3). While this reduces the size of the already large search space, it can
exclude the SCoP’s original schedule matrix from the search space, such as in Example 4.3.1
or in Example 4.5.2. In Example 4.5.2, the dependences modeled in one dependence
polyhedron are not only carried by different dimensions of the original schedule, but some
of the dependences carried by an outer dimension have a negative direction with respect to
an inner dimension that carries some of the remaining dependences. For both examples,
Algorithm 4.1 models all dependences in one dependence polyhedron. Therefore, the SCoPs’

4 Sampling the Search Space of Legal Schedules 45

Figure 4.3: Iteration domain and dependences of the SCoP in Exam-
ple 4.5.2. 0

1

2

3

1 2 3

j

i

original schedule matrices are not contained in the respective search spaces. Cases such as
Example 4.3.1, in which the elements of the dependence polyhedron that are carried by outer
dimensions do not point backwards in the direction of the inner dimensions that carry the
remaining dependences, can obviously be resolved by skewing with a positive skewing factor.
The remaining cases, such as Example 4.5.2, result from a dependence’s target statement
instance’s coordinate in an inner dimension of the iteration domain being determined by the
source statement instance’s coordinate in an outer dimension of the iteration domain. Again,
these cases can be resolved by skewing with a positive skewing factor. Recall that such
skewing is always legal [149]. In the case of Example 4.3.1 and in similar cases, we do allow
for the construction of the original schedule with additional schedule dimensions appended.
These additional dimensions must be skewed to carry otherwise uncarryable dependence
polyhedra. Since the preceding schedule dimensions already carry all data dependences, the
additional schedule dimensions are artificial and can be eliminated in a subsequent schedule
simplification procedure.

Example 4.5.2.
Consider a statement S with IS = {(i, j)T | i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < n }, n ∈ Z and
ΘS(i, j)

T = (i, j)T . The set of data dependences

DS,S = {(i, j, i+j, i+1)T | i, j ∈ Z ∧ (i, j)T ∈ IS ∧ i+j < n ∧ i+1 < n} ⊆ IS×IS , n ∈ Z

is a polyhedral set that would not be split by Algorithm 4.1. Therefore, Algorithm 4.2 would
have to construct a schedule dimension that carries DS,S . Figure 4.3 shows that neither
dimension of ΘS carries DS,S . ΘS is not part of the search space that we consider. ⊳

4.5.4 Summary

In this section, we have explained why we cannot model the entire set of legal schedules
for a given program as one in a way that facilitates sampling. Subsequently, we have
presented a way of sampling subsets of the set of all legal schedules for a given SCoP. Each
subset corresponds to a set of schedules of equal dimensionality and a specific mapping of
dependence polyhedra to schedule dimensions that are guaranteed to satisfy them strongly.
To sample schedules from the set of legal schedules and achieve a good coverage of the search
space, one must apply Algorithm 4.2 repeatedly and choose randomly a small number of
schedules from each of the obtained search space regions.

4.5.5 Discussion

Pouchet’s sampling algorithm, and ours, treat data dependences at the granularity level of
dependence polyhedra. If a schedule dimension carries some, but not all of a dependence
polyhedron’s elements, the carried dependences need not be taken into account during the
remaining schedule dimensions’ construction and, therefore, could be removed from the
dependence polyhedron. Instead, we keep satisfying them weakly, until we have constructed
a schedule dimension that satisfies the entire dependence polyhedron strongly. In other
words: the granularity at which we partition the set of pairs of instances of two statements

46 4.6 Sampling Schedules from Search Space Regions

that are in dependence into dependence polyhedra influences the completeness of the search.
The avoided computational effort justifies the choice to use dependence polyhedra. By
splitting the set of dependences into dependence polyhedra only once, we can precompute
the sets WO,T and SO,T and only have to apply Farkas’ Lemma twice per dependence
polyhedron. Otherwise, after scraping away already carried dependences, we may end up,
first, having to split the remaining set into convex subsets, and then having to reapply Farkas’
Lemma. Moreover, as described in Section 4.5.3, in situation such as the ones described, the
search space contains schedules that are equivalent to the ones excluded. The difference
lies in additional inner schedule dimensions that can later be eliminated by a simplification
procedure.

4.6 Sampling Schedules from Search Space Regions

Regions of the search space of legal schedules for a SCoP are represented by lists of polyhedra.
Consequently, in order to sample schedules from search space regions, one must sample
points from polyhedra. Algorithm 4.3 illustrates the general procedure to sample schedules
from search space regions.

Algorithm 4.3: Sampling of Schedules from Search Space Regions
Input: n-dimensional search space region represented by the list 〈P1, P2, ..., Pn〉 of polyhedra
Output: schedule matrix MΘ with n rows

1 MΘ ← 0
Qn×dim(P1)

2 for d← 0 to n do

3 M
(d,•)
Θ ← sample(Pd)

4 return MΘ

The choice of the schedule coefficient vector ~m is independent for each dimension.
In the following, we describe and discuss six ways to realize the function sample in

Algorithm 4.3. The first four techniques were selected and assessed for their suitability for
random sampling with uniform distribution from single search space regions by Danner [46].

4.6.1 Enumeration of Schedules

A simple way to sample points from a Z-polytope in Zn with uniform distribution, is to
enumerate all elements of the Z-polytope first, and then select randomly a point from the
obtained sequence. Danner [46] did not describe a concrete algorithm for enumeration.

One technique that is based on projecting out dimensions of the schedule coefficient vector
space using an adaptation of Fourier-Motzkin variable elimination is due to Pouchet [119].
Fourier-Motzkin variable elimination can project variables out of a system of inequalities.
Generally, the polyhedra that model search space regions are of infinite volume. Therefore,
it is necessary to bound them before using enumeration sampling. A possible way to bound
the polyhedra in a search space region’s model is to intersect them with a hypercube such
that each schedule coefficient is bound to small integers. A reasonable hypercube could be
[−3, 3]n to allow for non-unit skewing, but to also avoid overly large schedule coefficients. If
the polytope that results from the intersection is empty, the bounds must be widened.

Fourier-Motzkin variable elimination [138] can yield a solution set that may be bounded
by a super-exponential number of constraints [119, 161]. Weispfenning [161] names

(n+ 1) ·

(
|S|

2

)2n

as a bound for the number of constraints in the case that |S| ≥ 2. n ∈ N is the number
of variables in the input constraint system and S is the index set of the input constraint

4 Sampling the Search Space of Legal Schedules 47

0

1

2

3

1 2 3 4

4

j

i

Figure 4.4: Illustration of acceptance-rejection sampling for Z-
polytopes.

system (consequently, |S| is the number of input constraints.). Yet, redundancy elimination
such as the one proposed by Pouchet [119] improves the practical scalability.

4.6.2 Acceptance-Rejection Sampling

Acceptance-rejection sampling [96] is a method to sample random values according to a
(discrete) probability distribution D that is difficult to simulate directly (e.g., by the use
of the inversion method). Acceptance-rejection sampling will generate samples according
to a suitable probability distribution D′ that is easier to simulate than D and then decide
whether to accept the generated sample according to D. The method’s effectiveness depends
on the rejection rate, i.e., the number of unaccepted samples.
In our case, D is the uniform distribution on a Z-polytope P ⊆ Zn and D′ is the

uniform distribution on the unrotated Z-hypercube H with minimal volume that contains P .
Sampling elements of H with uniform distribution is simple: per dimension d ∈ {1, ..., n}, H
has a lower bound lbd and an upper bound ubd. To sample a point ~x = (x1, x2, ..., xn)

T ∈ H,
one can choose randomly xd ∈ [lbd, ubd] ∩Z independent of x1, ..., xd−1, xd+1, ..., xn. Then
one must check whether P ∩ {x} is empty. Only in the case of non-emptiness, we accept p.

Similarly to enumeration sampling (refer to Section 4.6.1), acceptance-rejection sampling
needs a polytope to operate on. Thus, we must intersect the polyhedra that represent a
search space region with a bounding hypercube.
Figure 4.4 illustrates acceptance-rejection sampling. The original Z-polyhedron is the

one bounded by the dashed lines. Intersecting it with [−3, 3]2 yields the Z-polytope P that
corresponds to the filled area. D is the uniform distribution on P and D′ is the uniform
distribution on the hypercube that is bounded by the dotted line. Any of the filled circles
will be rejected and any of the white circles will be accepted. This technique is also described
by Mete and Zabinsky [99]. They find that, while it allows exact uniform sampling of P , it
can be very inefficient if n is large.

4.6.3 Pattern Hit-and-Run Sampling

Pattern hit-and-run sampling (PHR sampling) [99] is a Markov chain Monte Carlo tech-
nique [33] to sample points from a discrete polytope according to a given probability
distribution P ∗. Z-polytopes are a kind of discrete polytopes. A Markov chain [33] is a
sequence of states such that a transition from one state to another occurs with a fixed
probability. The sum of the transition probabilities from one state to all other states is 1.
Starting at state Si, the choice for its successor Si+1 depends only on Si: given a sequence
of previous states S1, S2, ..., Si we have P (Si+1 | S1, S2, ..., Si) = P (Si+1 | Si).
While Danner [46] provides a wider overview of hit-and-run sampling of polytopes, we

focus on one specific algorithm that was also referenced and described by Danner.
In our case, PHR starts from a random valid point ~x in a discrete polytope Q ∈ Zn. It

performs a random walk that originates at ~x and points surrounding ~x. The latter are
chosen according to a random pattern. The random walk visits a finite number of points
that are reachable via positive and negative multiples of a randomly chosen directional

48 4.6 Sampling Schedules from Search Space Regions

vector ~v ∈ Zn. A random point ~z of the points on the generated random walk that are
elements of Q is chosen. Next, PHR tests whether ~z should be accepted as the next sample.
This test involves P ∗.

Being a variant of the Metropolis-Hastings algorithm [69], PHR generates a sequence of
samples that converges to P ∗. The more samples, the better the approximation of P ∗.

4.6.4 Geometric Divide-and-Conquer Sampling

Danner [46] proposed a sampling algorithm for Z-polytopes P ⊆ Zn that is based on an
approach by Pak [111]. Pak’s algorithm finds a hyperplane H that splits P in two halves of
approximatively equal cardinality. It continues recursively with either one of the halves or
P ∩H. The recursion stops as soon as the remaining Z-polytope contains a single point.
This point is the next sample.

Pak uses Barvinok’s algorithm (refer to Section 2.2.1.5) to determine a Z-polytope’s
cardinality.
Pak’s algorithm has a time complexity in O(n2 · log(L) · LO(n)). L is the bit-size of the

input constraint system that describes P . The first two factors are the number of calls
to Barvinok’s counting algorithm and LO(n) the time complexity of Barvinok’s algorithm
itself. The authors point out that the number of invocations of Barvinok’s algorithm can be
reduced to n · log(L).
Danner modified the algorithm by switching to enumeration sampling (refer to Sec-

tion 4.6.1) if the remaining Z-polytope’s cardinality is below a constant threshold. Algo-
rithm 4.4 is Danner’s adapted procedure. The probability of recursing into H+ ∩P , H− ∩P ,
or H ∩ P depends on the respective polyhedron’s volume. Thus, the sampling is uniform.

Algorithm 4.4: Combined Divide-and-Conquer and Enumeration Sampling
Input: Z-Polytope P ⊆ Zn

Output: Uniformly sampled point ~p ∈ P
Parameters: t Threshold for switching to enumeration sampling

1 Procedure divideAndConquerSample(P)

2 if |P| ≤ t then
3 return rand(P)

4 Find hyperplane H such that |H+ ∩ P | / |P | < 0.5 ∧ |H− ∩ P | / |P | < 0.5 with H+ and H− being
the half-spaces of Rn \H

5 α← |H+ ∩ P | / |P | ;β ← |H− ∩ P | / |P |
6 p← rand([0, 1])
7 if p ≤ α then
8 return divideAndConquerSample(H+ ∩ P)

9 if p ≤ α+ β then
10 return divideAndConquerSample(H− ∩ P)

11 return divideAndConquerSample(H ∩ P)

4.6.5 Geometric Approach Based on the Decomposition Theorem for
Polyhedra (“Chernikova Sampling”)

According to the Decomposition Theorem for Polyhedra (Theorem 2.2.1), any polyhedron
P ∈ Rn, can be represented geometrically by a set V of points, one from each of P ’s minimal
faces, a set R of unidirectional rays, and a set L of bidirectional lines. Per point ~p ∈ P , sets

of coefficients α1, ..., α|V | ∈ R+
0 ,
∑|V |

i=1 αi = 1, β1, ..., β|R| ∈ R+
0 , γ1, ..., γ|L| ∈ R exist such

that

~p =
∑

~vi∈V

αi · ~vi +
∑

~ri∈R

βi · ~ri +
∑

~li∈L

γi ·~li.

Chernikova’s algorithm (refer to Section 2.2.1.2) allows us to compute the geometric
representation from the constraint representation. Thus, we can sample a polyhedron by

4 Sampling the Search Space of Legal Schedules 49

Table 4.2: Characteristics of the PolyBench 4.1 benchmarks’ SCoPs. The SCoPs have
been modeled by the version of Polly that we used for the empirical evaluation6.

benchmark # statements # deps
max. loop

depth

structure

parameters

% unit

generators
avg. |L| avg. |R| avg. |V |

% rational

points

2mm 4 6 3 7 99.83% 9 19 1 0.00%
3mm 6 10 3 9 99.89% 10 31 1 0.00%
adi 9 64 3 3 83.79% 4 27 4 1.10%
atax 3 4 2 3 99.88% 4 11 1 0.00%
bicg 2 4 2 3 100.00 % 4 6 1 0.00%
cholesky 4 8 3 2 88.76% 3 27 4 0.00%
correlation 13 19 3 3 97.18% 17 37 1 0.00%
covariance 7 12 3 3 99.49% 4 26 1 0.00%
deriche 11 25 2 3 91.54% 4 70 26 0.00%
doitgen 3 8 4 5 99.08% 6 1 1 0.00%
durbin 10 43 2 1 79.12% 2 28 4 0.76%
fdtd-2d 4 24 3 4 91.58% 5 32 3 0.00%
floyd-warshall 1 18 3 2 100.00 % 3 1 1 0.00%
gemm 2 2 3 5 100.00 % 8 7 1 0.00%
gemver 4 6 2 2 99.73% 3 15 1 0.00%
gesummv 3 3 2 2 100.00 % 4 7 1 0.00%
gramschmidt 9 23 3 3 85.47% 4 45 4 0.17%
heat-3d 2 171 4 2 25.80% 3 19 2 43.40%
jacobi-1d 2 16 2 2 76.94% 3 4 1 10.79%
jacobi-2d 2 56 3 3 69.57% 4 6 1 7.77%
lu 3 8 3 2 90.25% 3 23 3 1.82%
ludcmp 20 89 3 2 77.57% 3 66 10 0.68%
mvt 2 2 2 2 100.00 % 8 2 1 0.00%
nussinov 8 24 3 3 97.79% 13 3 1 0.43%
seidel-2d 1 59 3 3 85.56% 4 3 1 0.47%
symm 5 21 3 4 92.22% 5 1 1 0.01%
syr2k 2 2 3 4 100.00 % 7 7 1 0.00%
syrk 2 2 3 4 100.00 % 7 6 1 0.00%
trisolv 3 5 2 2 97.63% 3 8 1 0.00%
trmm 2 4 3 4 84.12% 6 9 1 0.00%

6We used Polly in the version after commit 2b618e01 (Jan. 27, 2016) of http://llvm.org/git/polly.git.
This was the most recent version when we started carrying out experiments for this thesis. Note that
newer versions of Polly model SCoPs using fewer structure parameters.

choosing coefficients for its generators (i.e., the elements of the sets V , R, and L) that adhere
to the constraints imposed by the Decomposition Theorem for Polyhedra.

The number of vertices of a polytope in Rn can be as much as 2n [52], which makes
their enumeration computationally infeasible. On the other hand, for Chernikova sampling,
we do not need to bound the value range of the schedule coefficients besides legality
constraints. This reduces the number of generators. For the evaluation of Polyite, we used
the PolyBench 4.1[121] benchmark set. Table 4.2 is a statistics regarding the average
number and characterization of the generators of 1000 search space regions chosen randomly
and independently per benchmark program in the set. For the average number of rays,
lines, and points, we analyzed P1 of each search space regions’s representation since this
polyhedron is among the most constrained polyhedra in each region’s representation. Across
PolyBench 4.1 the number of generators is acceptably low if one does not bound schedule
coefficients further than necessary for the preservation of legality. Further, we analyzed the
share of points with rational coordinates in search space regions’ geometric representation
and the share of generators with components from {−1, 0, 1}.

By the design of Chernikova sampling, we allow for rational schedule coefficients. Mathe-
matically, this is not problematic since a schedule coefficient vector in Qn can be transformed
into a schedule coefficient vector in Zn by multiplying it with its lowest common denominator
(LCD). Both schedule coefficient vectors encode schedules that impose the same relative
execution on all statement instances. Yet, a large LCD can lead to an integer vector with
very large components. This may trigger integer overflows in the generated code. Therefore,
such vectors are to be avoided and we use integer coefficients for the generators.

The points in V remain as a source for rational components in schedule coefficient vectors.
Their coefficients must be from [0, 1] and the coefficients’ sum must be 1. Even for points
with integer coordinates, this makes schedule coefficient vectors with integer components

http://llvm.org/git/polly.git

50 4.6 Sampling Schedules from Search Space Regions

unlikely if more than one point has a non-zero coefficient. Therefore, we use single randomly
chosen points as the basis for schedule coefficient vectors. Table 4.2 shows that points
with rational coordinates are rare. We allow an arbitrary number of rays and lines to have
non-zero coefficients.

As we start the construction of a schedule coefficient vector from a single point in V
and because we use only integer coefficients for the generators some schedules may be
unreachable. Example 4.6.1 demonstrates such a case.

Example 4.6.1. The polyhedron P = {(i, j)T | −i + j + 1 ≥ 0 ∧ 2 · i + j − 5 ≥ 0} is
spanned by point (2, 1)T and rays (−1, 2)T , (1, 1)T . Point (2, 2)T corresponds to the linear
combination (2, 1)T + 1

3 · (−1, 2)T + 1
3 · (1, 1)T . By construction of P as an element of a

schedule search space region’s representation, (∀α ∈ R : α · (2, 2)T ∈ P) holds. Yet, one
can verify that the equation α · (2, 2)T = β · (−1, 2)T + γ · (1, 1)T is unsolvable as an ILP.
Therefore, in the context of scheduling, neither (2, 2)T nor any vector that is obviously
equivalent to it can be constructed from P ′s generators and integer coefficients. ⊳

Some of the genetic operators that Chapter 6 describes are still able to introduce rational
generator coefficients to reach otherwise unreachable schedules.

Chernikova sampling permits to bias the exploration towards schedules with certain
properties easily. The number of rays and lines with non-zero coefficients can be bounded
in order to avoid a too high density of schedule matrices. Per invocation of the sampling
strategy on a polyhedron P , we select a random subset of P ’s rays and lines that has
non-zero coefficients. The coefficients for the chosen rays are sampled randomly from
{1, ..., rRange}, rRange ∈ N. The coefficients for the chosen lines are sampled randomly from
{−lRange, ..., lRange} \ {0}, lRange ∈ N. If we allowed arbitrarily large schedule coefficients,
we would, as already mentioned, obtain erroneous programs. On the other hand, too small
coefficients would prohibit opportunities for loop distribution and non-unit skewing. From
the statistics in Table 4.2, we know that most of the polyhedra’s generators’ components
are from {−1, 0, 1}. This allows us to mostly control the schedule coefficients’ value range
by adjusting rRange and lRange. We set rRange = lRange = 3.

4.6.5.1 Corner Cases

Rarely, we observe points in V with rational coordinates that have large denominators. It is
then necessary to replace these by the closest point with integer coordinates that is inside
the polyhedron. Also, rays with extremely large components must be purged from R.

4.6.5.2 Bounding Schedule Coefficients

Chernikova sampling cannot sample points from the interior of polytopes. It is therefore not
advisable to start the search space construction (Algorithm 4.2) from a hypercube U that is
bounded to the coefficients’ value range desired and then use Chernikova sampling to sample
the resulting polyhedra Pd. Instead, one must drop the constraints that bound the schedule
coefficients’ value range to {−1, 0, 1} but are not required for the schedules’ legality from Pd

before the application of Chernikova’s algorithm. Subsequently, one combines Chernikova
sampling with acceptance-rejection sampling: any schedule coefficient vector produced that
is not in U will be rejected.

4.6.6 Sampling by Projection

Projection sampling from a Z-polyhedron P ∈ Zn constructs a sample point by iterating
over the dimensions of Zn and choosing a coordinate per dimension d such that the resulting
point belongs to P . To obtain the set of allowed values for the coordinate in dimension d,
the algorithm projects P onto d. A polyhedron’s projection onto a dimension of its encasing

4 Sampling the Search Space of Legal Schedules 51

vector space is not necessarily a convex set (i.e., an interval) [123]. The projection’s “holes”
must be beard in mind.

Pouchet [119] samples by projection to enumerate the points contained by an n-dimensional
Z-polytope P . It is possible to explore only the projection of P onto a subspace of Zn. We
adapt this technique to sample points from arbitrary Z-polyhedra without having to use
enumeration. Also, we add the ability to choose coefficient values according to other discrete
probability distributions than uniform distribution. Algorithm 4.5 is the complete procedure.
We define −∞ to be the minimum and ∞ to be the maximum of a set that covers Z.

Algorithm 4.5: Projection Sampling
Input: Polyhedron P ∈ Zn

Output: Point ~p ∈ P
Parameters: coeffsMin ∈ Z: Preferred minimum value for schedule coefficients

coeffsMax ∈ Z: Preferred maximum value for schedule coefficients
f : Z→ [0, 1] Probability function of the discrete prob. distribution for schedule coefficients.

1 ~p← ~0
2 Dims← [1, dim(P)] ∩N

3 while Dims 6= ∅ do
4 d← rand(Dims); Dims← Dims \ {d}
5 P ′ ← project(P, d)

⊲ Determine the minimum and maximum value for the corrdinate of ~p in dimension d. ⊳

6 dmin = min
{

(max{coeffsMin,minP ′}), (maxP ′)
}

7 dmax = max
{

(min{coeffsMax,maxP ′}), (minP ′)
}

8 P ′ ← P ′ ∩ [dmin, dmax]; c← 0
9 do

10 c← rand(P’)
11 while ¬accept(c, f);

12 ~p(d) ← c

13 return ~p

Function project projects a given polyhedron P onto the given dimension d of P ’s surrounding vector space.
Function accept tests whether a given uniformly sampled value c should be accepted according to a given
probability function in the context of acceptance-rejection sampling.

Unless forced to do so by constraints or choices made for other coefficients, the algorithm
does not choose coordinate values that lie outside a configurable set [coeffsMin, coeffsMax]∩Z.
Thereby, we ensure schedule coefficients with reasonably small absolute values.

4.6.7 Discussion

We have presented six techniques to sample schedule coefficient vectors from polyhedra. In
the following, we assess each of them for their compliance with the objectives named in
Section 4.1.

Observed Computational Complexity To sample a single point from a Z-polytope P ,
enumeration sampling (refer to Section 4.6.1) must enumerate the elements of P and
select one randomly. This makes enumeration sampling computationally infeasible for
Z-polytopes with a large volume [46]. The schedule coefficient space can have hundreds of
dimensions. In the absence of data dependences, the polytope to sample from is a hypercube
H = [lb, ub]n ∩Zn, lb, ub ∈ Z, n ∈ N. Since |H| = (ub − lb+ 1)n, enumeration sampling is
computationally infeasible.

Acceptance-rejection sampling (refer to Section 4.6.2) samples points from a polytope’s
surrounding minimal bounding box uniformly. It keeps (“accepts”) those points that belong
to the polytope. Acceptance-rejection sampling is efficient if the acceptance rate is high [46].
In the context of scheduling, it is possible to construct search space regions such that the
acceptance rate after bounding the schedule coefficients is below 2% (refer to Example 4.6.2)
if we only consider schedule matrices with integer coefficients. This makes the technique
inefficient.

52 4.6 Sampling Schedules from Search Space Regions

Example 4.6.2. Sampling the set of all weakly satisfying one-dimensional schedules with
schedule coefficients from [−3, 3] ∩ Z for the program shown in Listing 4.2 with acceptance-
rejection sampling results in an acceptance rate of ≈ 1.30%. The schedule coefficient space
has eight dimensions.

⊳

Listing 4.2: A small program
with an extraordinarily
low acceptance rate of
acceptance-rejection sam-
pling if the schedule co-
efficients are bounded to
[−3, 3] ∩Z.

✞
1 for (i = 0; i < 4; ++i) {
2 A[i] = 42;
3 A[i + 1] = A[i];
4 }
5
6 for (i = 0; i < 4; ++i) {
7 A[i] = 41;
8 A[i + 1] = A[i];
9 }

✝ ✆

Pattern hit-and-run sampling (refer to Section 4.6.3) must
generate a high number of points to achieve a uniform distribu-
tion on a Z-polytope. For a particular class of n-dimensional
Z-polytopes, Mete and Zabinsky [99] show that this number
is n5.5. Generally, the polytopes that result from bounding
the polyhedra in search space regions’ models are not in this
class [46]. Recall that, in order to obtain a good coverage of
a SCoP’s schedule search space, we must first sample the set
of search space regions by invoking Algorithm 4.2 repeatedly
and then sample a small number of schedules from each region.
Having to generate a very large number of schedules from each
search space regions to keep just a few of them is inefficient.
PHR-sampling could be useful to obtain an approximately
uniform distribution from the sampling of one specific search

space region.

Seeking a technique to sample schedule from a single search space region with uniform
distribution, Danner [46] resorted to geometric divide-and-conquer sampling. We determined
the empirical run-time complexity of geometric divide-and-conquer sampling (refer to
Section 4.6.4), Chernikova sampling (refer to Section 4.6.5), and projection sampling (refer
to Section 4.6.6). For this purpose, we had to scale the number of statements, schedule
coefficient space dimensions, and data dependence polyhedra of a SCoP. This can be done in
a semantics-preserving way by partially unrolling the SCoP’s loops [148]. We experimented
with the stencil programs seidel-2d and jacobi-2d of PolyBench 4.1. The algorithms
have been implemented in Scala 2.11 [110] and were executed on OpenJDK 8 on an
Intel®Xeon® E5-2650 v2 @ 2.60GHz CPU. The operating system was Debian 9
with Linux 4.9. We used isl (commit cfebc0c6 (Dec. 11, 2015) of https://repo.or.
cz/isl.git) [152] and libbarvinok (commit 91ba8f18 (May 26, 2018) of http://repo.
or.cz/barvinok.git)[157], which implements Barvinok’s counting algorithm (refer to
Section 2.2.1.5) to represent polyhedra. We used Polly in the version of commit 2b618e01
(Jan. 27, 2016) of http://llvm.org/git/polly.git to model the unrolled loop nests as
SCoPs.

The duration of converting search space regions’ constraint representation to their geo-
metric representation dominates the run time of Chernikova sampling. Thus, we measured
the duration of sampling a search space region with Algorithm 4.2 (sampling of search space
regions) and converting its representation. Here, we do not take the additional schedule
dimensions and respective polyhedra into account that result from schedule completion
(refer to Section 4.7). Figure 4.5 shows per SCoP-size the minimum, maximum and average
duration in seconds for five invocations of Algorithm 4.2 and the conversion of the respective
result. Besides the total duration, we show the duration of all invocations of Chernikova’s
algorithm separately. The time complexity of Chernikova’s algorithm dominates the time
complexity of Algorithm 4.2.

In the case of geometric divide-and-conquer sampling and projection sampling, the main
cost lies within the sampling of schedules from search space regions. Thus, we measured the
minimum, average and maximum duration in seconds of five invocations of Algorithm 4.2 and
the subsequent sampling of one schedule from each resulting search space region. Figure 4.7
shows the results for geometric divide-and-conquer sampling. We can show results for
seidel-2d only, as in the case of jacobi-2d the duration of sampling one schedule was

https://repo.or.cz/isl.git
https://repo.or.cz/isl.git
http://repo.or.cz/barvinok.git
http://repo.or.cz/barvinok.git
http://llvm.org/git/polly.git

4 Sampling the Search Space of Legal Schedules 53

10-1

100

101

102

103

104

 100 150 200 250 300 350

s
e
c
o
n

d
s

dependences

min total
median total

max total

min Chernikova
median Chernikova

max Chernikova

(a) seidel-2d

100

101

102

103

104

60 70 80 90 100 110 120 130

s
e
c
o
n
d
s

dependences

(b) jacobi-2d

Figure 4.5: Mininum, median, and maximum duration in seconds of constructing a search
space region and converting it to its geometric representation relative to the number
of data dependence polyhedra. We show the total duration and the duration of the
conversion with Chernikova’s algorithm only.7

100

101

102

103

104

 60 80 100 120 140 160 180

s
e
c
o
n
d
s

dependences

min total
median total

max total

Figure 4.6: Minimum, median, and maximum du-
ration in seconds of constructing a search space
region and sampling a schedule from it with
geometric divide-and-conquer sampling. The
duration is relative to the number of data
dependence polyhedra. The benchmark is
seidel-2d.7

100

101

102

103

104

105

 100 150 200 250 300 350 400 450 500

s
e
c
o
n
d
s

dependences

min total
median total

max total

(a) seidel-2d

100

101

102

103

104

105

 60 80 100 120 140 160 180 200 220 240

s
e
c
o
n
d
s

dependences

min total
median total

max total

(b) jacobi-2d

Figure 4.7: Minimum, median, and maximum duration in seconds of constructing a search
space region and sampling a schedule from it with projection sampling. The duration is
relative to the number of data dependence polyhedra.7

7 Only the points represent measured samples. The lines were drawn to improve perceivability.

54 4.7 Schedule Completion

longer than one day with a single unrolled iteration per loop at the second loop level.
Figure 4.6 shows the results for projection sampling.

From the experiment described, geometric divide-and-conquer sampling is impractical for
the sampling of large numbers of schedules. The current implementation by Danner [46]
is the unoptimized algorithm that runs in O(n2 · log(L) · LO(n)). An optimized version
of the algorithm has a reduced run-time complexity in O(n · log(L) · LO(n)). Instead of
performing n2 · log(L) many invocations of Barvinok’s algorithm, their number can be
reduced to n · log(L). Yet, the exponential run-time complexity of Barvinok’s algorithm
remains. At median projection sampling is very efficient. Yet, cases exist in which the
duration of projection sampling exceeds its median observed duration by far.

Based on these observations, we exclude all sampling strategies except Chernikova sampling
and projection sampling from the discussion.

Coverage of the Schedule Search Space Projection sampling can reach any schedule in
the search space. Chernikova sampling will not reach some schedules for practical reasons,
but some of the genetic operators proposed in Chapter 6 mitigate this limitation. A particular
advantage of Chernikova sampling is that, if one stores together with each row of a schedule
matrix the linear combination of generators that formed the row, one obtains an opportunity
for fine grained schedule mutation in a genetic algorithm.

Biasing the Exploration Both Chernikova sampling and projection sampling have param-
eters that permit to bias the exploration of search space regions towards schedules with
particular properties.

4.7 Schedule Completion

The combination of Algorithms 4.2 (Sampling of Search Space Regions) and 4.3 (Sampling
of Schedules from Search Space Regions) does not yield schedules in which every loop of the
transformed program is encoded explicitly. As mentioned, polyhedral code generators will
choose one possible execution order and generate code accordingly. Yet, without encoding
the inner loop levels explicitly, the iterative optimization does not have full control over
them and further transformation of schedules by applying tiling or strip mining would be
impossible. Consequently, each randomly generated schedule matrix undergoes a process
that we call schedule completion. Schedule completion appends rows to a schedule matrix
until we cannot find, for any statement, another row that is linearly independent in the
iteration variable coefficients.

Given a set S ⊆ Zn, we construct its set of linearly independent vectors as the complement
of the linearly dependent vectors [86]:

lin.indep(S) = Zn \

∑

~vi∈S

αi · ~vi | α1, ..., α|S| ∈ R

 .

Due to the exclusion of ~0, lin.indep(S) is not necessarily convex but a union of several
polyhedra. To sample a vector from lin.indep(S), we choose one of the polyhedra randomly
and apply the selected sampling technique for polyhedra.

Be aware that this procedure deviates from the schedule completion described by Pouchet
et al. [124]. Their schedule completion initializes previously undefined coefficients of a
schedule matrix and corrects coefficients in the schedule matrix to place it inside their
schedule search space.

4 Sampling the Search Space of Legal Schedules 55

4.8 Adapting Pouchet’s Approach in Polyite

To be able to endorse the assumption that parallelization requires (a) the consideration of a
less restricted search space than the one proposed by Pouchet et al. [124] and (b) schedule
completion as described in Section 4.7, we devised an algorithm for search space construction
following Pouchet et al. [124] and combined it with our approach to splitting the set of data
dependences into dependence polyhedra and the variant of Chernikova sampling that can
bound the values of schedule coefficients (refer to Section 4.6.5.2).
A direct use of their implementation LeTSeE [120] was not possible, due to the incom-

patibility of its file format with Polly. Also, LeTSeE does not output schedule trees,
which Polly requires as input to its schedule transformations, such as tiling and strip
mining. Moreover, and to the best of our knowledge, statement iteration domains that can
be expressed only as the union of multiple polyhedra cannot be represented with LeTSeE’s
input format. Polly and Polyite support these. Finally, we do not rely on the original
sampling strategy, since it is based on assumptions that may not hold in the context of
tiling and parallel execution.

Pouchet et al. only estimated the order of magnitude of statements’ memory traffic using a
simplification of an estimating formula by Bastoul and Feautrier [18]. Let S be a statement
and A be an n-dimensional array that S accesses. Let md be the size of dimension d of A.
Pouchet et al. propose to approximate the traffic from S to dimension d of A as m

rA,d

d . rA,d

is the rank of the concatenation of all subscript matrices of all accesses from S to dimension
d of A. In our adaptation, we aggregate these values by summation. Thus, we approximate
the traffic TS,A from S to A as

TS,A =
n∑

d=1

m
rA,d

d .

Thanks to the availability of libbarvinok, we can compute a more precise estimate of
a statement’s traffic. This estimate is also inspired by Bastoul and Feautrier [18]. In this
estimation, we do not account for the presence of the cache hierarchy between the main
memory and the processor. Let S be a statement, M be a memory location, and AS,M bet
the set of all memory access functions from S to M . We can estimate the memory traffic
from S to M as ∣∣∣∣∣∣

⋃

f∈AS,M

{
(
ΘS(~i), f(~i)

)
|~i ∈ IS}

∣∣∣∣∣∣
.

The difference to the estimate by Bastoul and Feautrier [18] is, that in their case ΘS is
not an injective schedule, but a chunking function, which partitions the iteration domain of
S into chunks such that the data on which a chunk operates fits into the cache.
Bastoul and Feautrier [18] and Pouchet were interested only in the order of magnitude

of statements’ memory traffic. Thus, in the adapted algorithm. we calculate the memory
traffic in the number of accessed array cells. A more precise implementation should multiply
the calculated data volume per statement and array by the bit width of the array’s data
type for better accuracy. Yet, for the PolyBench 4.1 benchmark set, which we use in
our empirical evaluation, this improvement has almost no effect. With the exception of
the program nussinov, which operates on a char array of size n ∈ N and an array of int
values of size n2, all programs in PolyBench 4.1 use only one data type for the arrays on
which they operate.

Optionally, we can combine this algorithm with schedule completion (refer to Section 4.7)
to study the impact of the latter.

5 Schedule Simplification and Analysis

We propose a transformation of schedule matrices, as they result from the sampling technique
described in Chapter 4, to a representation that is more amenable to an analysis and further
transformation of schedules than the matrix representation itself. Whenever we need to
analyze a schedule’s structure, or pass it to Polly, which is the polyhedral program optimizer
that we use to model SCoPs and apply schedules to SCoPs, we transform the schedule in
the way that we describe in the following.

Schedule matrices (refer to Section 4.2) are a convenient representation for the sampling
of schedules. They have been used by Pouchet et al. [124] for their approach to iterative
schedule optimization and we have followed their choice. The particular advantage of
schedule matrices for sampling is their uniformity in the representation of all linearly affine
schedule functions for a given SCoP: they can all be represented by matrices with the same
number m ∈ N of columns and differing numbers of rows. Given a schedule matrix MΘ that
is incomplete in that not all data dependence polyhedra of the SCoP are carried by schedule
Θ, or not all loops in the transformed program are encoded explicitly in Θ, to build row

M
rows(MΘ)+1
Θ , one must choose a vector from Zm.

In Section 5.1, we motivate why schedule matrices are less suitable for a further transfor-
mation, for instance by tiling, or an analysis of schedules. Such an analysis could be the
extraction of structural schedule features for the purpose of classification (refer to Chapter 7).

A schedule representation that serves transformation and analysis of schedules much
better is the schedule tree [66]. A schedule tree is a data structure that is related closely to
the structure of the PLuTo-algorithm’s recursion tree (refer to Section 2.2.2.5). We recall
schedules trees to the extent necessary for this thesis in Section 5.2.

The result of a schedule optimization with isl’s variant of the PLuTo algorithm is a
schedule tree. While isl can transform schedule trees to schedule matrices, it does not
provide a sophisticated reverse transformation. With isl, the only option is to wrap the
coefficient matrix in a schedule tree that essentially consists of a single node [154]. Since the
expressiveness of the schedule representation does not profit from this, we propose a more
meaningful transformation of schedule matrices to schedule trees (refer to Sections 5.3) and
a subsequent simplification of the resulting schedule trees (refer to Section 5.4). Particularly
in the case of feature extraction from schedules, it is desirable that schedules that yield the
same transformed program also yield the same feature values. A simplification of schedules
trees eases the achievement of this goal. The simplification preserves the semantics of the
schedule before the application of tiling. Further, it preserves and enlarges tilable bands.

In Section 5.5, we recall how we can determine the equivalence of two schedules. Further,
we describe the detection of parts of schedule trees that correspond to loops and the detection
of tilable bands and parallelism. In Section 5.6, we discuss the presented transformation of
schedule matrices to schedule trees.

5.1 Motivation

To apply tiling to a schedule Θ or to identify parallelism, one must identify the loop nests
of the program after transformation by Θ. In the polyhedron model, this requires the
identification of the textual order induced by each schedule dimension.The textual order is
the ordering of statement instances that is independent of loops, but is induced merely by

57

58 5.2 Schedule Trees

the statements’ arrangement in the program code. Schedule matrices offer no explicit and
easily traceable way of encoding the textual order.

Further, since our schedule matrices are randomly generated, they contain non-zero
schedule coefficients that neither influence the execution order of statement instances nor
skew loops, which could enable tiling. Even entire rows of schedule matrices may be spare.
Despite being uninfluential, such coefficients complicate the identification of schedules’
structural properties such as tilable bands and should therefore be set to 0. Spare rows
should be removed. The identification of spare schedule coefficients would also profit from a
schedule representation in which textual execution order is encoded in a unique and directly
traceable way. Finally, schedule coefficients’ absolute values can be needlessly large. Too
large coefficients can trigger errors in transformed programs. Particularly, they may cause
integer overflows.

Example 5.1.1 illustrates the degrees of freedom in schedule matrices described.

Example 5.1.1. A schedule that encodes the execution order of statement instances in our
running example syrk (Listing 2.1 on page 18) and that matches the code’s execution order
in a natural way is:

ΘR(i, j)
T = (i, 0, j, 0)T , ΘS(i, j, k)

T = (i, 1, j, k)T .

Another schedule that encodes the same execution order is

ΘR(i, j)
T = (2 · i, 42 · j +m, i, 0)T , ΘS(i, j, k)

T = (2 · i+ 1, 0, 21 · j −m, k)T .

Let us use the latter schedule as a running example to illustrate the schedule tree transfor-
mation and the steps of the schedule tree simplification. ⊳

5.2 Schedule Trees

We find that schedule trees [66] can be described as a polyhedral hybrid representation that
borrows from linearly affine schedule functions on the one hand and abstract syntax trees
(ASTs) on the other hand. As mentioned, a schedule function can essentially be represented
as a schedule tree by merely encapsulating it in a single schedule tree node. The result is a
valid schedule tree. That is, a schedule tree can serve as a simple wrapper for an arbitrary
schedule function. Yet, it appears that the intended use of schedule trees is to rely on
schedule functions to express loops and to utilize the tree’s topology to express textual order.

We recall the concept, to the extent necessary, on the basis of our running example syrk.

Example 5.2.1. Figure 5.2.1 shows the schedule tree that encodes the execution order of
the statement instances in the source code of our running example syrk (Example 2.2.12
on page 18). The tree’s root node is its domain node. A domain node specifies the SCoP’s
iteration domain. Underneath the domain node follows a one-dimensional band node. Band
nodes contain partial schedule functions and typically serve the purpose of encoding loops.
In our case, the band node underneath the root node encodes the SCoP’s outermost loop,
which encases both of its statements. The dimensions of a band node’s partial schedule
function can be marked coincident (parallel). The band node’s child is a sequence node.
A Sequence node specifies that its children must be executed in the order given. It serves
the particular purpose of encoding textual ordering. Each of a sequence node’s subtrees
has a filter node at its root. A filter node has a similar purpose as the domain node at the
root of a complete schedule tree: it specifies the iteration domain of the subtree. Therefore,
a filter node contains an integer set that must be a subset of its parent sequence node’s
iteration domain. Together, the sets contained in the filter nodes underneath a sequence node
must form a partition of the sequence node’s iteration domain. Otherwise, some statement
instances would be computed twice, and statement instances that are undeclared by the

5 Schedule Simplification and Analysis 59

domain: IR ∪ IS

schedule: Θ
(1)
R (i, j)T = i; Θ

(1)
S (i, j, k)T = i,

coincident : [1]

sequence

filter: IR

schedule: Θ
(3)
R (i, j)T = j

coincident: [1]

•

filter: IS

schedule:
Θ

(3..4)
S (i, j, k)T = (j, k)T

coincident: [0, 1],
permutable: 1

•

Figure 5.1: The schedule tree of our running example syrk (Example 2.2.12).

domain node would be scheduled, or statement instances would not be scheduled at all. In
the example, all statement instances of statement R are scheduled in the first subtree and all
statement instances of statement S are scheduled in the second subtree. The sequence node
carries the dependence polyhedron DR,S of our running example. The schedule function
of the band node in the right subtree is two-dimensional. It encodes the j- and the k-loop
that encase statement S. The band node is marked permutable, which enables it for tiling.
Branches of schedule trees are terminated by leaf nodes. The construction of a schedule
tree starts from the bottom up. That is, one starts with the leaf nodes. Per branch, its leaf
node specifies the iteration domain. Filter nodes and the domain node result implicitly from
unifying the iteration domains of the leaf nodes in their subtrees. ⊳

Note that we imply in graphical representations of schedule trees and in our algorithms
that the instances of different statements are distinguishable by their statement affiliation.

5.3 Schedule Tree Transformation

This section describes the transformation of a schedule matrix to an unsimplified schedule
tree. The algorithm presented in the following starts from a set of statements S1, ..., Sm with
respective iteration domains IS1 , ..., ISm and an n-dimensional schedule matrix MΘ. MΘ can
be decomposed into the statement schedules ΘS1 , ...,ΘSm . The algorithm detects schedule
dimensions that encode the textual ordering of statements and partitions recursively the
set of statement instances according to textual order. The detected splits are recorded in a
schedule tree.

Schedule dimension k textually orders two statements X and Y if it prescribes that all
instances of X are executed before all instances of Y . Formally, we obtain the following
partial order <k of the statements’ iteration domain:

IX <k IY ⇔
(
∀(~iX ,~iY) ∈ IX × IY : Θ

(1..k−1)
X (~iX) = Θ

(1..k−1)
Y (~iY) ⇒ Θ

(k)
X (~iX) < Θ

(k)
Y (~iY)

)
.

The isl code generator [66] also determines the textual ordering of statements. All
polyhedral code generators must determine textual ordering, but they must operate at
a finer grain level and split statements’ iteration domains [16, 66, 150]. Schedule trees
would allow us to do the same and, thereby, we could obtain a stronger simplification of
schedules. We would also be able to obtain a schedule tree that resembles even more closely

60 5.3 Schedule Tree Transformation

the code that results from the application of a schedule. In Section 5.6, we elaborate on the
advantages, but also the disadvantages that would result from this extension.

Another way of encoding the textual ordering of statements in schedule dimension k
has been described by Bastoul [17], Grosser et al. [65], and Danner [46]. Let schedule
dimension k encode a loop with stride αk ∈ N that encases the statements S1, ...Sm. Let
each statement schedule Θx, x ∈ {1, ...,m} be of the form αk · i+ βkx in dimension k with
βk1 , ..., βkm ∈ ([0, ..., αk[∩ N). i is an iteration variable in the original program. We
can represent schedule dimension k by a band node that is followed by a sequence node.
The band stores, per statement, the one-dimensional schedule α · i. The sequence node
enumerates the statements according to the values βk1 , ..., βkm . If, for two statements Sx and
Sy, βkx = βky , they must be placed into the same subtree of the sequence node. Following
Bastoul and Grosser et al., we could replace α by 1 in the band node constructed, but one
of the simplification steps that we describe in Section 5.4 will take care of this. We denote

the partial order on statement iteration domains induced be the schema described by <̃
k
.

Grosser et al. refer to the technique of detecting statements’ textual order encoded in the
way described as “shifted stride detection”.

Algorithm 5.1 illustrates the recursive construction of a schedule tree starting from a set
I of statement iteration domains and, per statement, an n-dimensional schedule matrix.

Algorithm 5.1: Basic Schedule Tree Construction (constructTree)

Input: I = {IS1 , ..., ISm}: Set of statement iteration domains
ΘS1 , ...,ΘSm : n-dimensional statement schedules
k: current dimension, n: total number of schedule dimensions

Output: The constructed schedule tree.
1 Procedure Partition(J , ⊗) ⊲ Set of iteration domains, order predicate
2 return

〈
P1, ..., Pl ⊆ J |

(
∀i, j ∈ {1, ..., l} : (i < j) ⇒

(
Pi ∩ Pj = ∅ ∧

(
∀(IX , IY) ∈ Pi × Pj :

IX ⊗ IY
)))
∧

(
∀i ∈ {1, ..., l} : ¬

(
∃Q ⊂ Pi : Q 6= ∅ ∧

(
∀IX ∈ Q :

(
∀IY ∈ (Pi \Q) :

(∃(~iX ,~iY) ∈ IX × IY : Θ
(1..k−1)
X (~iX) = Θ

(1..k−1)
Y (~iY)) ∧ IX ⊗ IY

))))〉

3 if k > n then return LeafNode(I);
4 if ΘS1 , ...,ΘSm == 0 then return constructTree(I, ΘS1 , ...,ΘSm , k + 1, n) ;

5 children← 〈〉; 〈P1, ..., Pl〉 ← Partition(I,<k)
6 if l > 1 then
7 for i ∈ [1, l] do
8 S ← {ΘX |IX ∈ Pi}; children.append(FilterNode(Pi, constructTree(Pi, S, k, n)))

9 return SeqNode(children)

10 〈P ′
1, ..., P

′
l′〉 ← Partition(I, <̃

k
)

11 if l′ > 1 then
12 for i ∈ [1, l′] do
13 S ← {ΘX |IX ∈ P ′

i}; children.append(FilterNode(P
′
i , constructTree(P

′
i , S, k, n)))

14 return BandNode(Θk
S1
− βk1 , ...,Θ

k
Sm
− βkm , SeqNode(children))

15 return BandNode(Θk
S1
, ...,Θk

Sm
, constructTree(I, ΘS1 , ...,ΘSm , k + 1, n))

The algorithm iterates over the schedule dimensions from the outermost to the innermost.

At schedule dimension k, we topologically partition I according to either <k or <̃
k
. In

both cases, the result is a partitioning with a total order of its elements according to <k or

<̃
k
, respectively. The preference is always for <k. If the resulting partitioning according

to <k has more than one element, we construct a sequence node with one subtree per

element of the partitioning. Otherwise, if the partitioning according to <̃
k
has more than

one element, we construct a band node followed by a sequence node. In both cases, the
sequence node’s subtrees result from processing recursively schedule dimension k and the

respective partition of I. If both the inspection with >k and with <̃
k
yield a singleton

partitioning we construct a band node that contains schedule dimension k and proceed
recursively for schedule dimension k + 1 and I. If k > n, the algorithm constructs a leaf

5 Schedule Simplification and Analysis 61

node and terminates. Due to the condition on line 2, the algorithm is heuristic and, in
particular, procedure Partition does not split the given set of statements into an ordered
partition of maximum size necessarily. We present an improved algorithm in Section 5.6.
Example 5.3.1 demonstrates Algorithm 5.1.

Example 5.3.1. We start from the second of the schedules for syrk in Example 5.1.1:

ΘR(i, j)
T = (2 · i, 42 · j +m, i, 0)T , ΘS(i, j, k)

T = (2 · i+ 1, 0, 21 · j −m, k)T .

Initial invocation: constructTree(I = {IR, IS}, S = {ΘR,ΘS}, k = 1, n = 4)

We need to inspect the first schedule dimension:

Θ
(1)
R (i, j)T = 2 · i, Θ

(1)
S (i, j, k)T = 2 · i+ 1.

From the first schedule dimension and the statements’ iteration domains

IR = {(i, j)T | i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j ≤ i}

IS = {(i, j, k)T | i, j, k ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < m ∧ 0 ≤ k ≤ i}

schedule dimension 1 prescribes an interleaved execution of R and S. Thus, the statements
are not textually ordered according to <k. The topological partitioning according to <k is
the singleton list 〈{IR, IS}〉. Looking at the first schedule dimension, we can see that the

schedule allows a partitioning according to <̃
k
: we have α1 = 2, β1R = 0, β1S = 1. This

leads to the topological partitioning 〈{IR}, {IS}〉 and we construct the following prefix of a
schedule tree:

domain: IR ∪ IS

schedule: Θ
(1)
R (i, j)T = 2 ·

i; Θ
(1)
S (i, j, k)T = 2 · i

sequence

filter: IR

constructTree(

I = {IR},
S = {ΘR},
k = 1, n = 4)

filter: IS

constructTree(

I = {IS},
S = {ΘS},
k = 1, n = 4)

The recursive calls appended at the schedule tree’s bottom both operate on a single state-
ment’s iteration domain. Thus, neither of both will produce another sequence node. Both
calls yield a sequence of one-dimensional band nodes that contain the dimensions of ΘS and,
respectively, ΘR in their given order. Figure 5.2 shows the resulting schedule tree. ⊳

5.4 Schedule Tree Simplification

The transformation of a schedule matrix to a schedule tree is followed by a sequence of
schedule tree simplification steps. A simplification step is a recursive function on schedule
trees that transforms a schedule tree’s subtrees from the bottom up.

Using these definitions, we define two criteria that a simplifying transformation that
transforms an original schedule Θ to a simplified schedule Θ′ must comply with to be
semantics-preserving in the context of polyhedral schedules. Both schedules are composed

62 5.4 Schedule Tree Simplification

Figure 5.2: A schedule tree as it results from the application of Algorithm 5.1 in Exam-
ple 5.3.1.

domain: IR ∪ IS

schedule:
Θ1

R(i, j)
T = 2 · i; Θ

(1)
S (i, j, k)T = 2 · i

sequence

filter: IR

schedule : Θ
(1)
R (i, j)T = 2 · i

schedule : Θ
(2)
R (i, j)T = 42 · j +m

schedule : Θ
(3)
R (i, j)T = i

schedule : Θ
(4)
R (i, j)T = 0

•

filter: IS

schedule : Θ
(1)
S (i, j, k)T = 2 · i+ 1

schedule : Θ
(2)
S (i, j, k)T = 0

schedule : Θ
(3)
S (i, j, k)T = 21 · j −m

schedule : Θ
(4)
S (i, j, k)T = k

•

of a set of statement schedule functions. For a statement S, we address the old statement
schedule by ΘS and the new statement schedule by Θ′S , respectively. Let I be a set of
statement iteration domains, whose union is the iteration domain of the node that we are
processing currently. In proofing the correctness of a schedule tree simplification step, we
need not take statement instances into account that are not in I. Since the execution order
is a lexicographic order, a change of the current schedule node or its subtrees cannot affect
statement instances that are not contained in I.

Execution Order A simplification step must not change the execution order of any pair of
statement instances according to Θ. Formally, Θ and Θ′ must be equivalent in the following
sense:

(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY : ΘX(~iX) ≺ ΘY (~iY) ⇔ Θ′X(~iX) ≺ Θ′Y (~iY)

))
. (5.1)

We simplify schedules before the application of tiling. Skewing is a code transformation
that can enable rectangular tiling. Example 5.4.1 shows that a transformation on schedules
that preserves execution order in the sense above may transform a schedule that skews a
loop nest to a schedule that does not skew.

Example 5.4.1.
Let S be a statement with iteration domain IS = {(i, j)T | 0 ≤ i, j < n ∧ i, j ∈ N}, n ∈ N.
Let DS,S = {(i, j, i + 1, j − 1)T | (i, j)T ∈ IS ∧ (i + 1, j − 1)T ∈ IS} be a dependence
polyhedron that affects schedules’ legality. Let Θ(i, j) = (i, j) and Θ′(i, j) = (i, j + i) be two
schedules. Figure 5.3 illustrates the iteration domain’s images {Θ(~i) |~i ∈ IS} (Figure 5.3(a))
and {Θ′(~i) |~i ∈ IS} (Figure 5.3(b)) for n = 4. Other than Θ, Θ′ enables tiling by skewing
the iteration domain. Yet, as can be verified easily from Figure 5.3, both schedules impose
the same execution order on the statement instances. ⊳

Thus, a second criterion to limit the set of semantics-preserving schedule simplification
steps is required. This criterion must be sensitive to skewing.

5 Schedule Simplification and Analysis 63

1 2 3 40

1

2

3

4

j

i

1 5 9

2 6 10

3 7

4 8

11

12

13

14

15

16

(a) No rectangular tiling
without skewing.

1 2 3 40

1

2

3

4

i1 2 3 40

1

2

3

4

j

i

5

6

1

5

9

2

6

10

3

74

8 11

12

13

14

15

16

(b) Skewing enables rect-
angular tiling.

Figure 5.3: The schedule illustrated in Figure 5.3(a) does not skew the iteration domain,
while the schedule illustrated in Figure 5.3(b) skews and, thereby, enables rectangular
tiling. The statement instances are numbered in execution order. Both schedules prescribe
the same order.

Direction of Data Dependences Let us assume that, after schedule simplification, Θ(k)

has become Θ′(k
′). In the case that a simplification has deleted dimension k of Θ entirely from

the schedule, we do not need to consider it further. The direction of any legality-affecting
data dependence from an instance of a statement X with iteration vector ~iX to an instance
of a statement Y with iteration vector ~iY with respect to Θ′(k

′) must equal its direction with
respect to Θ(k):

sgn(Θ
(k)
Y (~iY)−Θ

(k)
X (~iX)) = sgn(Θ

(k′)
Y (~iY)−Θ

(k′)
X (~iX)). (5.2)

In other words, if we project the SCoP’s transformed iteration domains onto vector space
dimensions k and k′, the corresponding dependence arrow’s direction must persist.

By this second criterion, we do not require the preservation of skewing in general, but in
all cases in which skewing may enable tiling.

Since we simplify the schedule trees before the encoding of tiling in the schedule, we
preserve the semantics of the schedule before tiling. In addition, we preserve and enlarge
sequences of schedule dimensions that correspond to loop nests that are tilable in the
transformation proposed. The simplification does eliminate information that may affect
the execution order of a SCoP’s statement instances after tiling. In some cases, the effect
depends on the tile sizes chosen. In Section 5.6, we show exemplary cases in which the
execution order after tiling differs before and after the schedule’s simplification.

Danner [46] also contributed proofs of correctness for the schedule tree simplification steps
that we propose, but used an insufficient condition in place of Condition 5.2. In particular,
Danner’s condition does not guarantee the preservation of skewing.

In the remainder of this section, we present the steps that we apply in their given order
to simplify schedule trees. We prove each step’s compliance with Conditions 5.1 and 5.2.

5.4.1 Remove Statements’ Common Offset

Translating all of a SCoP’s statement instances by the same vector does not change their
execution order and, therefore, does not change the SCoP’s schedule [149]. Figure 5.4
illustrates this fact. Algorithm 5.2 derives a vector ~v that is parametric in that it contains
multiples of the SCoP’s structure parameters. We construct ~v such that, for any statement

64 5.4 Schedule Tree Simplification

0

1

2

3

1 2 3

j

i

Figure 5.4: Moving all three points by the same directional vector and
distance preserves their lexicographic order.

iteration domain IX ∈ I, the points in {Θ(~i) + ~v |~i ∈ IX} are located closer to ~0 than the
points in ΘX(IX):

(
∀IX ∈ I :

(
∀~i ∈ IX :

(
∀d ∈ {1, ..., dim(~i)} :

∣∣∣∣
(
ΘX(~i) + ~v

)(d)∣∣∣∣ ≤
∣∣∣ΘX(~i)(d)

∣∣∣
)))

.

The algorithm operates on each band node’s partial schedule and determines, per band node,
suitable coefficients for the structure parameters. The resulting linear combination is the
offset by which all statement instances in the band node’s iteration domain will be shifted.
If, after the transformation, all schedule coefficients of the schedule are zero, we can remove
the band node from the schedule tree by pulling up its child node.

Correctness Let ~p be the vector of the SCoP’s structure parameters andM ∈ Zdim(Θ)×(dim(~p)+1).

Let ~v = M ·

(
~p
1

)
. From the simplification step’s definition the following holds for each

IX ∈ I: (
∀~i ∈ IX : Θ′X(~i) = ΘX(~i) + ~v

)
. (5.3)

Adherence to Condition 5.1.
(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

ΘX(~iX) ≺ ΘY (~iY) ⇔ ⊲ add ~v on either side

ΘX(~iX)− ~v ≺ ΘY (~iY) + ~v ⇔ ⊲ Equation 5.3

Θ′
X(~iX) ≺ Θ′

Y (~iY)
)

Adherence to Condition 5.2.
(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY : (∀k ∈ {1, ..., dim(Θ)} :

(
~iY depends on ~iX)⇒

(

sgn(Θ
(k)
Y (~iY)−Θ

(k)
X (~iX)) = ⊲ arithmetic

sgn(Θ
(k)
Y (~iY)−Θ

(k)
X (~iX) + 0) = ⊲ arithmetic

sgn(Θ
(k)
Y (~iY)−Θ

(k)
X (~iX) + (~v(k) − ~v(k))) = ⊲

associativity and
distributivity

sgn(Θ
(k)
Y (~iY) + ~v(k) −Θ

(k)
X (~iX)− ~v(k)) = ⊲ associativity

sgn((Θ
(k)
Y (~iY) + ~v(k))− (Θ

(k)
X (~iX) + ~v(k))) = ⊲ Equation 5.3

sgn(Θ′(k)
Y (~iY)−Θ′(k)

X (~iX))
)))

5.4.2 Overly Large Schedule Coefficients

This simplification step reduces schedule coefficients’ absolute values. Coefficients with
overly large absolute values are impractical mainly for three reasons: they correlate with
numerical overflows in index computations, extreme skewing, and the difficulty to choose a
proper tile size. Figure 5.5 illustrates the interplay of loop strides and tile sizes. The larger
the loop strides, the fewer statement instances are computed per tile for the same tile size.

5 Schedule Simplification and Analysis 65

Algorithm 5.2: Remove Statement’s Common Offset from Band Nodes’ Schedules
(RemoveCommonOffset)

Input: A schedule (sub)-tree represented by its root node
Output: A simplified schedule (sub)-tree represented by its root node

1 Procedure ReduceOffsets(schedules)

2 for d = 1 to dim(εΘX(ΘX ∈ schedules)) do
3 if IsCstDim(d) ∨ IsParamDim(d) then
4 coeffs← ∅
5 foreach ΘX ∈ schedules do
6 coeffs← coeffs ∪ {getCoeff(ΘX , d)}

7 δ ← 0
8 if min(coeffs) < 0 ∧ max(coeffs) < 0 then
9 δ ← −(max coeffs)

10 else if min(coeffs) > 0 ∧ max(coeffs) > 0 then
11 δ ← −(min coeffs)

12 foreach ΘX ∈ schedules do
13 schedules← (schedules \ {ΘX}) ∪ {setCoeff(ΘX , d, getCoeff(ΘX , d) + δ)}

14 return schedules

15 Procedure RemoveCommonOffset(n)
16 switch n.type do
17 case BandNode do
18 return BandNode(ReduceOffsets(n.schedules), RemoveCommonOffset(n.child))

19 case SeqNode do
20 return SeqNode (n.children.map(RemoveCommonOffset))

21 case FilterNode do
22 return FilterNode(n.domain, RemoveCommonOffset(n.child))

23 case LeafNode do
24 return n

εx(P (x)) Selects a value x for which P (x) is true [10].

IsParamDim : N→ B Tests whether a given natural number is the index of a structure parameter’s coefficient
in a schedule’s coefficient space.

IsCstDim : N→ B Tests whether a given natural number is the index of a coefficient for the constant 1 in a
schedule’s coefficient space.

getCoeff Given a one-dimensional linearly affine function f and an index d, getCoeff returns the dth
coefficient in f .

setCoeff Given a one-dimensional linearly affine function f , an index d, and α ∈ Z setCoeff returns a
copy of f with its dth coefficient set to α.

Multiplying rows of a schedule matrix by a strictly positive rational is legal [149]. For the
reasons listed above, we seek coefficients in band nodes’ partial schedules as close to zero as
possible. To find a suitable factor for the simplification of a band node, Algorithm 5.3 deter-
mines the greatest common divisor (GCD) of the schedule coefficients per one-dimensional
partial schedule. Dividing by the GCD guarantees that the resulting schedule coefficients
are integers.

Similarly, polyhedral code generators modify loop strides to avoid conditional statements
in loop bodies. For instance, Bastoul [17] determines the optimal loop stride as the GCD
of the strides required by each of the statements in a loop’s body and expressions that
correspond to the required lower loop bound.

Correctness Given a schedule Θ, let us assume that we have rescaled Θ(k) by the factor
1/αk, k ∈ {1, ..., dim(Θ)}, αk ∈ Z. Thus, we obtain

(
∀IX ∈ I :

(
∀k ∈ {1, ..., dim(Θ)} : (∀~i ∈ IX : Θ′

(k)
(~i) =

1

αk
·Θ(k)(~i))

))
. (5.4)

66 5.4 Schedule Tree Simplification

Figure 5.5: Both figures show a section of a tiled two-dimensional iteration domain. While
the tile size is the same in both cases, the loop stride is bigger on the left side. This
reduces the maximum number of statement instances computed per tile.

Algorithm 5.3: Divide Schedule Coefficients by Their GCD
(ReduceSchedCoeffs)

Input: A schedule (sub)-tree represented by its root node
Output: A simplified schedule (sub)-tree represented by its root node

1 Procedure DivideByGCD(schedules)

2 foreach ΘX ∈ schedules do
3 for d = 1 to dim(ΘX) do
4 coeffs← coeffs ∪ {getCoeff(ΘX , d)}

5 foreach s ∈ schedules do
6 for d = 1 to dim(ΘX) do
7 schedules← (schedules \ {ΘX}) ∪ {setCoeff(ΘX , d, getCoeff(ΘX , d) / gcd(coeffs))}

8 return schedules

9 Procedure ReduceSchedCoeffs(n)
10 switch n.type do
11 case BandNode do
12 return BandNode(DivideByGCD(n.schedules), ReduceSchedCoeffs(n.child))

13 case SeqNode do
14 return SeqNode (n.children.map(ReduceSchedCoeffs))

15 case FilterNode do
16 return FilterNode(n.domain, ReduceSchedCoeffs(n.child))

17 case LeafNode do
18 return n

Adherence to Condition 5.1.

(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

ΘX(~iX) ≺ ΘY (~iY)

⇔ ⊲ definition of lexicographic ordering

(∃d ∈ {1, ..., dim(Θ)} : (∀d′ ∈ 1, ..., d− 1 : Θ
(d′)
X (~iX) = Θ

(d′)
Y (~iY)) ∧Θ

(d′)
X (~iX) < Θ

(d′)
Y (~iY))

⇔ ⊲ linearity

(∃d ∈ {1, ..., dim(Θ)} : (∀d′ ∈ 1, ..., d− 1 :
1

αd′
·Θ

(d′)
X (~iX) =

1

αd′
·Θ

(d′)
Y (~iY)) ∧

1

αd

·Θ
(d)
X (~iX) <

1

αd

·Θ
(d)
Y (~iY))

⇔ ⊲ Equation 5.4

(∃d ∈ {1, ..., dim(Θ)} : (∀d′ ∈ 1, ..., d− 1 : Θ′(d
′)

X (~iX) = Θ′(d
′)

Y (~iY)) ∧Θ′(d
′)

X (~iX) < Θ′(d
′)

Y (~iY))

⇔ ⊲ definition of lexicographic ordering

Θ′
X(~iX) ≺ Θ′

Y (~iY)
))

5 Schedule Simplification and Analysis 67

Adherence to Condition 5.2.(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY : (∀k ∈ {1, ..., dim(Θ)} : (~iY depends on ~iX)⇒

(

sgn(Θ
(k)
Y (~iY)−Θ

(k)
X (~iX)) = ⊲ 1

αk
> 0

sgn
(

1
αk
· (Θ

(k)
Y (~iY)−Θ

(k)
X (~iX))

)
= ⊲ distributivity

sgn
(

1
αk
·Θ

(k)
Y (~iY)− 1

αk
·Θ

(k)
X (~iX)

)
= ⊲ Equation 5.4

sgn
(
Θ′(k)

Y (~iY)−Θ′(k)
X (~iX)

))))

5.4.3 Elimination of Superfluous Subtrees

Adding dimensions to an injective schedule does not change the schedule. Thus, given an
n-dimensional schedule Θ, if we can determine d < n such that Θ(1..d) is injective, we may
safely delete schedule dimensions d+1, ..., n. Analogously, Algorithm 5.4 replaces a schedule
node and its children by a leaf node if the restriction of the schedule represented by the
node’s ancestors to the node’s iteration domain is an injective function.

Algorithm 5.4: Remove Superfluous Subtrees (RemoveSuperfluousSubtrees)
Input: A schedule (sub)-tree represented by its root node
Output: A simplified schedule (sub)-tree represented by its root node

1 Procedure RemoveSuperfluousSubtrees(n)
2 if (n.parentSchedule|n.domain is injective) ∧ n.type 6= FilterNode then

3 return LeafNode(n.domain)

4 switch n.type do
5 case BandNode do
6 return BandNode(n.schedules, RemoveSuperfluousSubtrees(n.child))

7 case SeqNode do
8 return SeqNode (n.children.map(RemoveSuperfluousSubtrees))

9 case FilterNode do
10 return FilterNode(n.domain, RemoveSuperfluousSubtrees(n.child))

11 case LeafNode do
12 return n

Correctness Let us assume(
∀IX ∈ I :

(
∀~i ∈ IX : Θ′X(~i) = Θ

(1..d)
X (~i)

))
. (5.5)

Consequently, the following must be true:
(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY : (X 6= Y ∨ ~iX 6=~iY) ⇒ Θ

(1..d)
X (~iX) 6= Θ

(1..d)
Y (~iY)

))
.

(5.6)
Adherence to Condition 5.1.(

∀IX , IY ∈ I :
(
∀(~iX ,~iY) ∈ IX × IY :

ΘX(~iX) ≺ ΘY (~iY) ⇔ ⊲ Equation 5.6

Θ
(1..d)
X (~iX) ≺ Θ

(1..d)
Y (~iY) ⇔ ⊲ Equation 5.5

Θ′
X(~iX) ≺ Θ′

Y (~iY)
))

Adherence to Condition 5.2. We do not need to consider schedule dimensions d+1, ..., dim(Θ)
because they have been removed.

(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

(
∀k ∈ {1, ..., d} : (~iY depends on ~iX)⇒

(

sgn(Θ
(k)
Y (~iY)−Θ

(k)
X (~iX)) = ⊲ Equation 5.5

sgn(Θ′(k)
Y (~iY)−Θ′(k)

X (~iX))
))))

68 5.4 Schedule Tree Simplification

5.4.4 Elimination of Degenerate Loops

We call a loop degenerate if it performs only a single iteration. Obviously, such loops are
unnecessary and should be eliminated. Their loop bodies must be left in place. Given a
schedule Θ, we can test whether schedule dimension d, 1 < d < dim(Θ), yields no other code
than a degenerate loop by testing the following condition:

(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

(
Θ

(1..d−1)
X (~iX) = Θ

(1..d−1)
Y (~iY)

)
⇒
(
Θ

(d)
X (~iX) = Θ

(d)
Y (~iY)

)))
.

(5.7)

Any band node whose partial schedule adheres to Condition 5.7 can be deleted from a
schedule tree by pulling up its child node. Algorithm 5.5 describes the procedure.

Algorithm 5.5: Eliminate Superfluous Band Nodes
(RemoveSuperfluousBandNodes)

Input: A schedule (sub)-tree represented by its root node
Output: A simplified schedule (sub)-tree represented by its root node

1 Procedure RemoveSuperfluousBandNodes(n)

2 if
(

n.type = BandNode
)

∧
(

∀IX , IY ∈ n.domain :
(

∀(~iX ,~iY) ∈ IX × IY :
(

n.parentSchedule|IX (~iX) =

n.parentSchedule|IY (~iY)
)

⇒
(

n.schedule|IX (~iX) = n.schedule|IY (~iY)
))

)

then

3 return RemoveSuperfluousBandNodes(n.child)

4 switch n.type do
5 case BandNode do
6 return BandNode(n.schedules, RemoveSuperfluousBandNodes(n.child))

7 case SeqNode do
8 return SeqNode (n.children.map(RemoveSuperfluousBandNodes))

9 case FilterNode do
10 return FilterNode(n.domain, RemoveSuperfluousBandNodes(n.child))

11 case LeafNode do
12 return n

Correctness Let us assume that, after the transformation of schedule Θ by Algorithm 5.5,
schedule dimension k has become dimension k′ of Θ′. Then, we know the following about

Θ′(k
′+1) for the statement instances in I:
(
∀IX ∈ I :

(
∀~i ∈ IX :

Θ′(k
′+1)

X =

Θ
(k+2)
X (~i) if

(
(k + 2) ≤ dim(ΘX)

)

∧
(
∀IX , IY ∈ I : (∀(~iX ,~iY) ∈ IX × IY :

(
Θ

(1..k)
X (~iX) = Θ

(1..k)
Y (~iY)

)

⇒
(
Θ

(k+1)
X (~iX) = Θ

(k+1)
Y (~iY)

))

Θ
(k+1)
X (~i) if

(
∃IX , IY ∈ I :

(
∃(~iX ,~iY) ∈ IX × IY :

Θ
(1..k)
X (~iX) = Θ

(1..k)
Y (~iY) ∧ Θk+1

X (~iX) 6= Θk+1
Y (~iY

))

⊥ if Θ(k+1) has been eliminated and Θ(k+2) does not exist.
))

(5.8)

The first case of Equation 5.8 corresponds to the case that Θk+1 has been eliminated by
Algorithm 5.5. In the second case, Θk+1 has not been eliminated and we set Θ′k

′+1 = Θk+1.
In the third case, we eliminated the innermost dimension of Θ and Θ′(k

′) equals the last
dimension of Θ that has not been eliminated. Thus, dimension k′ + 1 of Θ′ does not exist.

5 Schedule Simplification and Analysis 69

Adherence to Condition 5.1.
(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

ΘX(~iX) ≺ ΘY (~iY)

⇔ ⊲ definition of lexicographic ordering

(∃d ∈ {1, ..., dim(Θ)} : (∀d′ ∈ 1, ..., d− 1 : Θ
(d′)
X (~iX) = Θ

(d′)
Y (~iY)) ∧Θ

(d′)
X (~iX) < Θ

(d′)
Y (~iY))

⇔ ⊲

From Equation 5.8 schedule dimension d
cannot have been eliminated and the schedule
dimensions are not shuffled.

(∃d ∈ {1, ..., dim(Θ′)} : (∀d′ ∈ 1, ..., d− 1 : Θ′(d
′)

X (~iX) = Θ
′(d′)
Y (~iY)) ∧Θ′(d

′)
X (~iX) < Θ′(d

′)
Y (~iY))

⇔ ⊲ definition of lexicographic ordering

Θ′
X(~iX) ≺ Θ′

Y (~iY)
))

Adherence to Condition 5.2.
(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY : (~iY depends on ~iX)

⇒
(
∀k ∈ {1, ..., dim(Θ)} :

(
∃k′ ∈ {1, ..., dim(Θ′)} : Θ(k)has become Θ′(k

′)

⇒ ⊲ we can ignore eliminated schedule dimensions
(
sgn(Θ

(k)
Y (~iY)−Θ

(k)
X (~iX))

= ⊲ From Equation 5.8, Θ(k) and Θ′(k
′) are equal

sgn(Θ′(k
′)

Y (~iY)−Θ′(k
′)

X (~iX))
)))))

5.4.5 Further Normalization of Band Nodes

The band nodes’ one-dimensional partial schedules can be simplified beyond the removal of
statements’ common constant offset in the schedule’s codomain (refer to Section 5.4.1) and
the division of the schedule coefficients by their GCD (refer to Section 5.4.2). Given a band
nodes one-dimensional partial schedule Θ(k), k ∈ {1, ..., dim(Θ)}, we can compute the set of
all schedules that are equivalent in the sense of Conditions 5.1 and 5.2:

{
Θ∗ |

(
∀IX , IY ∈ I : Θ∗X : IX → Z ∧ Θ∗Y : IY → Z

∧
(
∀(~iX ,~iY) ∈ IX × IY :

(
(Θ

(k)
X (~iX) = Θ

(k)
Y (~iY)) ⇒ (Θ∗X(~iX) = Θ∗Y (~iY))

)

∧
(
(Θ

(k)
X (~iX) > Θ

(k)
Y (~iY)) ⇒ (Θ∗X(~iX) > Θ∗Y (~iY))

)))}

We use a technique proposed by Bondhugula et al. [28] to select the vector with minimal
absolute values of its components from a Z-polyhedron and Farka’s Lemma. Thereby, we
can map all equivalent one-dimensional schedules to a canonical representation.

By empirical evaluation, we found that this simplification is computationally too expensive
for practical use.

5.4.6 Collapsing Cascades of Sequence Nodes

A simplification that is not implemented in Polyite, which internally uses its own rep-
resentation of schedule trees, is the collapsing of cascades of sequence nodes. This is a
transformation that isl [152] performs during the construction of an isl schedule tree.
Figure 5.6(a) shows a schedule tree that consists essentially of a cascade of sequence nodes.
The schedule tree’s inner nodes can be combined to a single sequence node whose children
are filter nodes to which the original leaf nodes are attached. Figure 5.6(b) shows the
simplification’s result.

70 5.5 Schedule Tree Analysis

domain: IR ∪ IS ∪ IT

sequence

filter: IR

•

filter : IS ∪ IT

sequence

filter: IS

•

filter: IT

•

(a) the original schedule tree

domain: IR ∪ IS ∪ IT

sequence

filter: IR

•

filter: IS

•

filter: IT

•

(b) the simplified schedule tree

Figure 5.6: Cascades of sequence nodes that can be collapsed. Figure 5.6(a) shows a schedule
tree consists of a cascade of sequence nodes. Figure 5.6(b) shows an equivalent simplified
schedule tree.

5.5 Schedule Tree Analysis

Based on the transformation of schedule matrices to schedule trees, we present techniques
to expose fundamental structural properties of schedules. We adjust schedule trees to
persist the information gathered. The structures that we identify are parts of band nodes’
partial schedules that correspond to loops in the generated code, permutable bands, which
allow for tiling, and band nodes whose partial schedules do not carry legality-affecting
data dependences and therefore are parallel. We demonstrate that our detection of tilable
bands is heuristic. This kind of information is relevant for the preparation of schedule trees
for further transformation, such as tiling or strip mining, and for the characterization of
schedules without the need to generate an AST by polyhedral code generation.

We conclude the section by recalling the identification of equivalent schedules.

5.5.1 Detection of Loop-Generating Schedule Dimensions

Danner [46] enabled Polyite to identify dimensions of a statement’s schedule that correspond
to a loop that encases the statement in the transformed program. Given a statement S
and its n-dimensional schedule ΘS , recall that ΘS : IS → Zn, n ∈ N, can be represented as
follows:

ΘS(~i) =

~λ1
S ~µ1

S ν1S
~λ2
S ~µ2

S ν2S
...

...
...

~λn
S ~µn

S νnS

 ·

~i
~p
1

 .

Θ
(d)
S , d ∈ {1, ..., n} corresponds to a loop iff ~λd

S 6= ~0 ∧ ~λd
S ∈ lin.indep({~λ1

S ,
~λ2
S , ...,

~λd−1
S }).

By definition, only band nodes can contain partial schedules that correspond to loops.
Danner extended the schedule tree data type to express, per dimension of a band node’s
partial schedule and statement S, whether the schedule dimension corresponds to a loop
that encases S.

5.5.2 Detection of Permutable Schedule Bands

To be able to tile loop nests of the transformed program, we must identify contiguous
sequences of band nodes in schedule trees whose partial schedules’ are permutable. We must
then replace any such sequence by a single band node whose partial schedule represents

5 Schedule Simplification and Analysis 71

the schedule encoded by the former sequence of band nodes. We must further mark the
new band node as permutable. Thereby, the information that the band node’s schedule
can be tiled becomes persistent. A contiguous sequence of band nodes n1, n2, ..., nm storing
the one-dimensional partial schedules Θ(d),Θ(d+1), ...,Θ(d+m−1) for the statement iteration
domains in a set I can be merged into a single permutable band node if the following
condition holds:

(
∀DO,T ∈ G :

(
(IO, IT ∈ I) ∧

(
∀e ∈ {1, ..., d− 1} : Θ(e) does not carry DO,T

))

⇒
(
∀e ∈ {d, ..., d+m− 1} : Θ(e) weakly satisfies DO,T

))
.

G is the set of a SCoP’s legality-affecting dependence polyhedra as defined in Chapter 4.
Starting from any band node that is a child of a schedule tree’s domain node or a child
of a filter node, we grow sequences of band nodes of maximal length for which the above
condition holds.

This identification of tilable bands is heuristic for two reasons. First, we treat dependences
at the granularity level of dependence polyhedra. It may not be necessary to consider the
dependences in D ⊆ DO,T , DO,T ∈ G if ∃d′ ∈ N : (1 ≤ d′ < d) ∧ Θd′ carries D. Second,
with this technique, we may detect a sequence of band nodes n1, n2, ..., nm that can be
grouped, whereas we could have detected n2, ..., nm+o with o > 1. This situation arises if
a dependence polyhedron DO,T exists that is weakly satisfied by the partial schedules of
n1, ..., nm, but not all of the partial schedules of nm+1, ..., nm+o and the partial schedules
of nm+1, ..., nm+o weakly satisfy all dependence polyhedra that are weakly satisfied by n2.

While the suggested improvements increase the applicability of tiling and thereby increase
data locality, they also increase the computational cost of identifying tilable bands.

5.5.3 Detection of Parallelism

For the detection of parallelism, we must process dependences at the statement instance
level. From Section 2.2.2.4, we know that dimension Θ(d) of a band node’s partial schedule
is parallel if all legality-affecting dependences that are uncarried by Θ(1..d−1) are orthogonal
to Θ(d). Θ refers to the schedule of the band node’s iteration domain. Together with the
identification of parts of schedules that correspond to loops, this detection of parallelism
allows for the identification of parallel loops without the necessity to generate an AST.

Example 5.5.1. Figure 5.7 shows the schedule tree that results from Example 5.3.1 before
and after the tree’s simplification and the identification of tilable bands and parallelism. ⊳

5.5.4 Detecting Equivalence Classes

For the analysis of a schedule space exploration technique or to prune schedules from a set
of schedules that are redundant in that they yield the same transformed code as another
schedule, it may be relevant to identify equivalence classes of schedules. Following Vasilache
[149], two schedules Θ,Θ′ for a SCoP S with a set of statement iteration domains I are
equivalent if they execute any pair of statement instances of S in the same order:

(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

(
Θ(~iX) ≺ Θ(~iY)

)
⇔
(
Θ′(~iX) ≺ Θ′(~iY)

)))
. (5.9)

From Example 5.4.1, we know that two schedules that are equivalent according to Equa-
tion 5.9 may no longer be equivalent after the detection of tilable bands in these schedules
and the application of tiling to the schedules. To decide whether two schedules yield the
same execution order of the statement instances in the transformed program, we must apply
all schedule (tree) transformations (such as simplification, tiling, and strip mining) and then
test the equivalence of their outcomes according to the condition in Equation 5.9.

72 5.6 Discussion

(1) Removal of statements’ common offset
(2) Reduction of overly large schedule coefficients
(3) Elimination of superfluous subtrees
(4) Elimination of degenerate loops

domain: IR ∪ IS

schedule:
Θ1

R(i, j)
T = 2 · i; Θ

(1)
S (i, j, k)T = 2 · i

sequence

filter: IR

schedule :

Θ
(1)
R (i, j)T = 2 · i

schedule :

Θ
(2)
R (i, j)T = 42 · j +m

schedule :

Θ
(3)
R (i, j)T = i

schedule :

Θ
(4)
R (i, j)T = 0

•

filter: IS

schedule :

Θ
(1)
S (i, j, k)T = 2 · i+ 1

schedule :

Θ
(2)
S (i, j, k)T = 0

schedule :

Θ
(3)
S (i, j, k)T = 21 · j −m

schedule :

Θ
(4)
S (i, j, k)T = k

•

(2)

(2), (4)

(1), (2)

(3)

(3)

(1), (2), (4)

(4)

(1), (2)

(a) The unsimplified schedule tree. Its nodes are
annotated by references to the simplification steps
by which they are modified during the tree’s simpli-
fication.

domain: IR ∪ IS

schedule: Θ1
R(i, j)

T = i; Θ
(1)
S (i, j, k)T = i

coincident : [1]

sequence

filter: IR

schedule :
Θ

(2)
R (i, j)T = j

coincident : [1]

•

filter: IS

schedule :
Θ

(3..4)
S (i, j, k)T =

(j, k)T

coincident : [0, 1]
permutable : 1

•

(b) The simplified schedule tree after the identification
of permutable bands and parallel schedule dimensions.

Figure 5.7: The schedule tree that results from Example 5.3.1 before and after its simplifica-
tion and the identification of tilable bands and parallel (coincident) dimensions of partial
schedules.

5.6 Discussion

Listing 5.1: Program with partially fused loop nests.
✞

1 for (int i = 0; i < n; i += 1) {
2 for (int j = 0; j < m; j += 1)
3 #pragma omp parallel for
4 for (int k = 0; k < n; k += 1) {
5 if (n >= j + 1)
6 S(i, j, k);
7 T(i, j, k);
8 }
9 #pragma omp parallel for

10 for (int j = max(0, m); j < n; j += 1)
11 for (int k = 0; k < n; k += 1)
12 S(i, j, k);
13 }

✝ ✆

In this section, we presented a transformation of a schedule matrix to a schedule tree,
and a subsequent schedule tree simplification. We can modify the simplified schedule
trees and attribute their nodes in order to expose information regarding tilable bands and
parallelism. Extraction and particularly persistence of this information would have been

5 Schedule Simplification and Analysis 73

less straightforward on the original schedule matrix. Further, we can identify the parts of a
schedule that encode the loops in the transformed program.
The transformation of a schedule matrix to a schedule tree is heuristic as it recognizes

the textual order only of entire statement iteration domains, but not of subsets of iteration
domains. Example 5.1 illustrates that this can affect the outcome of a schedule tree’s
analysis.

Example 5.6.1. Let S, T be two statements with iteration domains

IS = {(i, j, k)T | i, j, k ∈ N ∧ 0 ≤ i, j, k < n}

IT = {(i, j, k)T | i, j, k ∈ N ∧ 0 ≤ i, k < n ∧ 0 ≤ j < m}

and schedules

ΘS(i, j, k)
T = (i, j, k)T , ΘT (i, j, k)

T = (i, j, k)T .

Let n,m ∈ N. Consider the following two dependence polyhedra

DT,T = {(i, j, k, i, j + 1, k)T | (i, j, k)T ∈ IT ∧ (i, j + 1, k)T ∈ IT }

D′T,T = {(i, j, k, i+ 1, j, k)T | (i, j, k)T ∈ IT ∧ (i+ 1, j, k)T ∈ IT }

that we consider to be legality-affecting. Listing 5.1 shows the corresponding program. The
i-loop, which encases S and T , cannot be parallelized because it carries D′T,T . The j-loop
is only fused partially since it iterates from 0 to m − 1 for T and from 0 to n − 1 for S.
The second of the two loop nests encased by the i-loop performs the remaining iterations of
S in the case that n > m. In the first of the two loop nests, the j-loop must be executed
sequentially because it carries DT,T . In the second loop nest, the j-loop can be executed in
parallel. With the technique described in this chapter, we cannot recognize this parallelism
because, if we modeled the textual order of the two loop nests with a sequence node, S
would occur in both of the sequence node’s subtrees. While a more sophisticated schedule
tree construction would allow us to identify the parallelism in the second loop nest, using
this information would be difficult as its relevance depends on the, generally unavailable,
information that n > m. Moreover, a more finely grained representation of textual order in
schedule trees would reduce the applicability of tiling in the present case: without inserting
a sequence node underneath the band node that encodes the i-loop, we can fully tile this
imperfect loop nest. In the presence of the sequence node, the outermost i-loop could not
be part of a tilable band. Note that polyhedral compilers, such as Polly, will still be able
to detect all potential parallelism. ⊳

If SCoP extraction could provide useful information regarding structure parameters, such
as strict positiveness, we could use this information to improve the recall of the identification
of textual ordering of statements according to <k (refer to Equation 5.3). Let two statement
instances be given. If one instance’s execution step depends on a structure parameter’s value
and we cannot tell whether the parameter is strictly positive or negative, we may fail to
decide which of the two instances will be executed first.
Unfortunately, the version of Polly that we used for the evaluation does not provide

such information to Polyite.
Moreover, the heuristic nature of Algorithm 5.1 can prevent the recognition of two

statement’s textual order. The algorithm can be improved by replacing Procedure Partition
on line 2 by the procedure shown in Algorithm 5.6.

Algorithm 5.6: An Improved Procedure Partition for Algorithm 5.1

1 Procedure Partition(J , ⊗) ⊲ Set of iteration domains, order predicate
2 return

〈
P1, ..., Pl ⊆ J |

(
∀i, j ∈ {1, ..., l} : (i < j) ⇒

(
Pi ∩ Pj = ∅ ∧

(
∀(IX , IY) ∈ Pi × Pj :

IX⊗IY
)))
∧

(
∀i ∈ {1, ..., l} : ¬

(
∃Q ⊂ Pi : Q 6= ∅ ∧

(
∀IX ∈ Q :

(
∀IY ∈ (Pi\Q) : IX⊗IY

))))〉

74 5.6 Discussion

We proposed this improved algorithm for schedule tree construction earlier [62], but it
deviated from the implementation.
To this end, we have recalled that a more sophisticated identification of textual order is

possible and that such a representation would enhance the analysis of schedules. Beyond the
improvement that results from the use of Algorithm 5.6, a realization would be analogous to
the identification of textual ordering by polyhedral code generators. Also, more information
regarding structure parameters would have to be taken into account. Unfortunately, we
must assume that such information is unavailable in general. We have decided to trade
the possibility of improved schedule analysis for the better optimization of schedule trees
constructed heuristically in situations like Example 5.1.
When preparing schedules for code generation, one of the conditions for textual order

should be disabled. Otherwise, the possibility to find schedules that enable tiling of imperfect

loop nests would be reduced. We decided to disable the detection of shifted strides (<̃
k
).

A preparation of schedule trees that determines the applicability of tiling must reflect
this choice. For other analyses, like the detection of parallelism, the more finely grained
identification of textual order is preferable. Alternatively, we could detect textual whenever
this is possible, and re-convert parts of a schedule tree underneath a sequence node that

has been yielded by <̃
k
to a band node after simplification. This would allow for a stronger

simplification of the schedule trees and we would potentially allow for an even more frequent
applicability of tiling to imperfect loop nests.
As we pointed out in the introduction of Section 5.4, the schedule tree simplification

presented preserves the semantics of a schedule before the application of tiling. Moreover, it
preserves, or even enlarges sequences of schedule dimensions that encode loop nests that are
tilable. If one encodes tiling into a schedule tree before and after the tree’s simplification,
the outcome may differ, even if the simplification did not result in an enlarged tilable band.
Schedule dimensions that have no effect on the corresponding transformed code without
tiling can become influential after tiling. In some cases, this effect depends on the tile sizes
chosen. Moreover, an analysis of a schedule before tiling may yield different results than the
analysis of the same schedule after tiling. Again, the specific effect may dependent on the
choice of the tile sizes. We present three exemplary cases in Examples 5.6.2, 5.6.3, and 5.6.4.
In all three examples, we assume that the entire schedule is stored in one permutable band.

In Example 5.6.2 we illustrates a case in which two statements change their textual order
after the application of tiling. We do not account for such a situation in the analysis of the
schedule tree that represents the transformed program before the application of tiling.

Example 5.6.3 shows a case in which two statements are distributed before the application
of tiling but, after tiling, the execution of the tiles is interleaved.

Finally, we illustrate in Example 5.6.4, how tiling can change the schedule dimension that
corresponds to a loop and how it can reverse the direction of a loop.

For the following examples, the computation of the sample programs is irrelevant. There-
fore, we only sketch statements using a notation similar to a function call in our code
snippets.

Example 5.6.2. Let us assume two statements X,Y with iteration domains

IX = {(i, j)T : i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < n}, IY = {i : i ∈ Z ∧ 0 ≤ i < n}, n ∈ N

and schedules
ΘX(i, j)T = (i, 0, j, 0)T , ΘY (i) = (i, 1, 0,−1)T .

The corresponding code is shown in Listing 5.2. In an iteration of the outermost loop, Y
will be executed after X.

If we tile the schedule using tile size 32, we obtain the code shown in Listing 5.3. The
iterations of Y are restricted to the first iteration of the inner tile loop by a guard and
they are being computed before the iterations of X. The reason is that in the new second

5 Schedule Simplification and Analysis 75

Listing 5.2: The program from
Example 5.6.2 before tiling.

✞
1 for (int c0 = 0; c0 < n; c0 += 1) {
2 for (int c2 = 0; c2 < n; c2 += 1)
3 X(c0, c2);
4 Y(c0);
5 }

✝ ✆

Listing 5.3: The program from Example 5.6.2 af-
ter tiling. The statements’ textual order has
changed.

✞
1 for (int c0 = 0; c0 < n; c0 += 32)
2 for (int c2 = 0; c2 < n; c2 += 32) {
3 if (c2 == 0)
4 for (int c4 = 0; c4 <= min(31, n − c0 − 1); c4 += 1)
5 Y(c0 + c4);
6 for (int c4 = 0; c4 <= min(31, n − c0 − 1); c4 += 1)
7 for (int c6 = 0; c6 <= min(31, n − c2 − 1); c6 += 1)
8 X(c0 + c4, c2 + c6);
9 }

✝ ✆

Listing 5.4: The program from
Example 5.6.3 before tiling.

✞
1 for (int c1 = 0; c1 < n; c1 += 1)
2 for (int c2 = 0; c2 < n; c2 += 1)
3 X(c1, c2);
4 for (int c1 = 0; c1 < n; c1 += 1)
5 for (int c2 = 0; c2 < n; c2 += 1)
6 Y(c1, c2);

✝ ✆

Listing 5.5: The program from Example 5.6.3 af-
ter tiling. While the statements were fully dis-
tributed before tiling, the statements’ tiles are
executed in an alternating and, thus, fused pat-
tern after tiling.

✞
1 for (int c1 = 0; c1 < n; c1 += 32)
2 for (int c2 = 0; c2 < n; c2 += 32) {
3 for (int c4 = 0; c4 <= min(31, n − c1 − 1); c4 += 1)
4 for (int c5 = 0; c5 <= min(31, n − c2 − 1); c5 += 1)
5 X(c1 + c4, c2 + c5);
6 for (int c4 = 0; c4 <= min(31, n − c1 − 1); c4 += 1)
7 for (int c5 = 0; c5 <= min(31, n − c2 − 1); c5 += 1)
8 Y(c1 + c4, c2 + c5);
9 }

✝ ✆

dimension of the tiled schedule, which corresponds to Θ(2) both statements are assigned to
execution step 0. Schedule dimension 4 has no effect on the execution order before tiling
and, in consequence, it would be eliminated by schedule simplification. ⊳

Example 5.6.3. Consider the statements X,Y with iteration domains

IX = {(i, j)T : i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < n}

IY = {(i, j)T : i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < n}, n ∈ N

and schedules
ΘX(i, j)T = (0, i, j)T , ΘY (i, j)

T = (1, i, j)T .

Listing 5.4 shows the corresponding code before the application of tiling. The statements
are fully distributed. After tiling (refer to Listing 5.5) the execution of the tiles is fused and
the statements are distributed only inside each tile. ⊳

Example 5.6.4. Consider statements X,Y with iteration domains

IX = {(i, j)T : i, j ∈ Z ∧ 0 ≤ i < n ∧ 0 ≤ j < n}, IY = {i : i ∈ Z ∧ 0 ≤ i < n}, n ∈ N

and schedules
ΘX(i, j)T = (0, i, j)T , ΘY (i) = (4, i,−4 · i)T .

⊳

Listing 5.6 shows the code of the example before tiling and Listing 5.7 shows the code after
tiling with tile size 4. The innermost loop that encases statement Y is reversed after tiling.

The reason is that, while Θ
(4)
Y , which contains a negative coefficient for iteration variable i,

had no influence on the execution order before tiling, it corresponds to the innermost loop
that encases Y after tiling.

76 5.6 Discussion

Listing 5.6: The program from
Example 5.6.4 before tiling.

✞
1 for (int c1 = 0; c1 < n; c1 += 1)
2 for (int c2 = 0; c2 < n; c2 += 1)
3 X(c1, c2);
4 for (int c1 = 0; c1 < n; c1 += 1)
5 Y(c1);

✝ ✆

Listing 5.7: The program from Example 5.6.4 af-
ter tiling. After tiling, the innermost loop that
encases statement Y is reversed.

✞
1 for (int c1 = 0; c1 < n; c1 += 4)
2 for (int c2 = 0; c2 < n; c2 += 4)
3 for (int c4 = 0; c4 <= min(3, n − c1 − 1); c4 += 1)
4 for (int c5 = 0; c5 <= min(3, n − c2 − 1); c5 += 1)
5 X(c1 + c4, c2 + c5);
6 for (int c1 = 0; c1 < n; c1 += 4)
7 for (int c2 = max(−n + 1, −c1 − 3); c2 <= −c1; c2 += 1)
8 Y(−c2);

✝ ✆

Despite these differences, it may be preferable to analyze schedules before tiling because
the analyses’ computational cost and algorithmic complexity are reduced. One must weigh
up (run-time) complexity and analytical precision.

6 Validity-Preserving Genetic Operators

In Chapter 4, we proposed a technique to sample randomly schedules from the set of legal
schedules for a given SCoP. It is possible to bias the search such that some subsets of the
search space are explored more thoroughly than others. Still, random sampling produces
schedules independent of each other and does not take knowledge that it could have gathered
from previously evaluated schedules into account. A genetic algorithm (refer to Section 2.3.1)
improves the search with respect to this aspect: it evaluates its current population of
candidate solutions and derives new solutions from the existing ones. The chance for a
schedule to replicate by being mutated or being crossed with another schedule depends on
its fitness, which, in our case, is the yielded speedup in execution time. Thereby, a genetic
algorithm performs a directed random walk and, for the same number of evaluated schedules,
a genetic algorithm may find a better schedule in terms of yielded speedup in execution
time than random exploration.

Pouchet et al. [124] proposed a genetic algorithm with custom genetic operators under
which their search space is closed. Their results show that their genetic algorithm converges
to a higher speedup in execution time of the transformed program than their random
exploration. Pouchet’s random exploration can be described as lexicographic enumeration
of a subset of the schedule coefficient vector space’s dimensions combined with pruning and
completion of the missing coefficients and schedule matrix rows while preserving legality.
They describe their random exploration as a uniform traversal of the search space, while the
genetic algorithm is designed to perform a non-uniform traversal.

Pouchet et al. [124] demonstrated that their schedule search space has little locality in a
sense that a very small change, like replacing a single coefficient of an already profitable
schedule, is unlikely to produce a better schedule. It is more likely that the resulting schedule
yields a similar or even worse speedup. They point out that this makes the non-uniformity
of an efficient search space traversal particularly important.

While the random exploration that we propose performs a non-uniform exploration of
the search space itself, it is still relevant to investigate whether a genetic algorithm can
outperform random exploration in terms of speedup of the transformed program and also
duration of the exploration. The supposed advantage of a genetic algorithm over a non-
uniform random exploration lies in its ability to switch to a more finely grained search in
later generations after a start from a diverse set of schedules as its initial population and
strong mutations of the schedules during early generations.

This chapter describes the schema of our a genetic algorithm for polyhedral schedule
optimization, which is similar to that of Pouchet et al. (refer to Section 6.1). We continue
by presenting novel genetic operators that have the capability to traverse our wider schedule
search space while preserving legality (refer to Section 6.2). To retain the diversity of
the genetic algorithm’s population, one must avoid introducing duplicate schedules into
the population. The equivalence of schedules can be defined in many ways. We discuss
some alternatives in Section 6.3. In Section 6.4, we give an outlook at a distributed
genetic algorithm for polyhedral schedule optimization, which Felix Bernasch proposed in
his Bachelor thesis [23].

77

78 6.1 A Genetic Algorithm for Polyhedral Schedule Optimization

6.1 A Genetic Algorithm for Polyhedral Schedule Optimization

The schema of our genetic algorithm reflects mostly that of Pouchet et al. [124]. We start
from a set of schedules generated randomly. To ensure strong diversity in that set, we
call Algorithm 4.2 (sampling of search space regions) repeatedly and, thereby, obtain the
representations of search space regions chosen randomly. Using Algorithm 4.3 (sampling
of schedules from search space regions) and one of the sampling techniques presented in
Section 4.6, we sample a small number of schedule matrices from each of the search space
regions (at most two per region). We add a schedule matrix to the population if it is not
equivalent to any of the already present schedule matrices according to the chosen schedule
equivalence relation (refer to Section 6.3).
We determine the fitness of the schedules in the current population by applying each

schedule to the SCoP, generating code, and measuring the generated code’s execution time.
Next, we select the population’s fitter half and use it as a basis for the next population. The
retention of the best schedules known is commonly referred to as elitism [12]. To reach full
population size, we create mutations and crossings of the schedules in the basis. In each
iteration of this reproduction loop, a mutation and a crossover can occur with the same
probability. After making this choice, we must choose a particular mutation operator or
crossover operator, respectively. Again, the choice of the particular mutation or crossover
operator is uniform. We extend the schema by adding a very small number of schedules
generated randomly. This decreases the probability to become trapped at local optima.
We also adapt Pouchet’s idea to combine the genetic algorithm with simulated anneal-

ing [42, 68]. At the start of the optimization process, one mutates the schedules strongly and
gradually reduces the size of the changes as the maximum reachable speedup is approached.
Thereby, in our case, we cover many different search space regions at the beginning and
localize the search when the maximum speedup yielded by the schedules evaluated starts to
converge. Algorithm 6.1 illustrates the procedure.

Algorithm 6.1: Schema of Polyite’s Genetic Algorithm for Schedule Optimiza-
tion

Input: S: The SCoP to be optimized
n ∈ N: The regular population size
r ∈ [0, 1]: The share of randomly generated schedules to be added to each generation

of the population
Output: The final population: A set of schedules together with the results of their fitness

evaluation.
1 g ← 0 ; ⊲ Index of the current generation
2 P ← sampleRandomly(n, S) ; ⊲ Sample randomly n schedules using Algorithms 4.2 and 4.3
3 P ← evaluate(P)

4 while ¬terminate(g, P) do
5 B ← select(P)

6 P ← B

7 P ← P ∪ sampleRandomly(⌊r · n⌋, S)
8 P ← P ∪ reproduce(B, |P |, n)
9 P ← evaluate(P)

10 g ← g + 1

11 return P

Function evaluate labels schedules with their fitness.
Function select elects schedules that form the next generation’s basis.
Function reproduce grows P to full population size by mutating and crossing.

Our genetic algorithm may use one of two termination criteria. It can be configured
to terminate either after a fixed number of generations or after an analysis of a window
that contains the most recent k ∈ N generations has revealed that the maximum achieved
speedup has not changed significantly over these generations. For the latter, we analyze all
pairs of subsequent generations inside the window. For both generations, we determine the

6 Validity-Preserving Genetic Operators 79

minimum execution time of the program to be optimized that is yielded by any schedule in
the population. If the two minima do not differ by more than a configurable maximum ratio
for all pair of subsequent generations, we terminate. The number of generations can still be
bounded by a configurable maximum.

Finally, we follow the idea of not constructing genetic operators that aim for specific loop
transformations. This would be against the philosophy of polyhedral optimization to map
each statement instance individually to an execution step, rather than applying a complex
sequence of individual loop transformations. Our genetic operators are designed to allow a
move from one search space region to another, which permits us to reach schedules that
are not contained in search space regions visited before. The set of legal schedules remains
closed under the genetic operators.

Many aspects of the genetic algorithm schema reflect the finding by Pouchet et al. [124]
that the polyhedral schedule search space contains mostly schedules that are no improvement.
The schedules that perform well are reported to be scarce. In particular, we refer to the
strong diversity in the initial population, the strong mutations at the start of the exploration,
and the elitism.

6.2 Schedule Mutation and Crossover

We continue by describing our novel mutation and crossover operators. The design of suitable
genetic operators is an essential part of constructing an effective genetic algorithm [42]. In
our case, it is particularly relevant to be able to traverse our schedule search space that
consists of the union of different search space regions. Further, an offspring schedule that is
generated from one or two previous schedules should retain some properties of its ancestors
but, at the same time, it should differ in other properties. In the case of the mutation
operators, an annealing factor controls the amount of similarity. Not all of the sampling
techniques described in Chapter 4 are capable of reaching every schedule in the search space
considered. In particular, Chernikova sampling (refer to Section 4.6.5) is not. Consequently,
two genetic operators are designed specifically to compensate for this drawback.

Like random sampling, the genetic algorithm operates on schedule matrices with rational
schedule coefficients. The motivation is the same as for random sampling, which Section 4.2
describes. Also, this choice enables us to reuse the algorithms described in Sections 4.5
and 4.6 to replace rows of given schedule matrices. Similarly to random sampling, every
schedule that results from mutation and crossing is refined further by schedule completion
(refer to Section 4.7). Thereby, we retain the schedule’s completeness in that every loop of a
transformed program is encoded explicitly in the respective schedule.

Let us look at each genetic operator in detail. In the operators’ descriptions, we write
G for the set of legality-affecting dependence polyhedra. C1..d

Θ is the set of dependence
polyhedra carried by schedule dimensions 1, ..., d, d ∈ N, of schedule Θ. Analogously, we
write U1..d

Θ for the set of dependence polyhedra not carried by dimensions 1, ..., d. Finally,
we refer to the set of dependence polyhedra satisfied strongly by Θ(d) as Sd

Θ.

Section 6.2.3 provides a brief overview of the genetic operators presented.

6.2.1 Mutation Operators

Figure 6.1 illustrates our schedule mutation operators. Each operator takes a schedule
matrix MΘ as its input and returns a new schedule matrix MΨ. The mutation of a schedule
is a non-deterministic procedure. As we apply schedule completion subsequently to all
mutation operators, the modifications of the schedules go beyond the mutations themselves.

80 6.2 Schedule Mutation and Crossover

(a) Dimension Replace-
ment

(b) Prefix Replacement (c) Suffix Replacement (d) Generator Coeffi-
cient Replacement

Figure 6.1: Illustrations of our schedule mutation operators. Each box symbolizes a row of
a schedule matrix. The rows represented by the narrow blank boxes at the bottom of the
offspring matrices result from schedule completion.

6.2.1.1 Dimension Replacement

The idea of dimension replacement is to remove ineffective rows from a schedule matrix.
The operator constructs MΨ by replacing randomly chosen rows in a copy of MΘ.

The algorithm for the construction of MΨ iterates over the rows of MΘ starting from

the top-most row. At row M
(d,•)
Θ , we either set M

(d,•)
Ψ = M

(d,•)
Θ , or we construct M

(d,•)
Ψ

to represent a one-dimensional partial schedule that satisfies all dependence polyhedra in

U1..d−1
Ψ weakly. Further, M

(d,•)
Ψ is constructed such that schedule dimension Ψ(d) carries all

dependence polyhedra in Cd
Θ \C1..d−1

Ψ . To obtain M
(d,•)
Ψ , we start by running an iteration of

Algorithm 4.2 (sampling of search space regions). We initialize G to the set of dependence
polyhedra not carried by Ψ(1..d−1) and Gd to the set of dependences carried by Θ(d) and
not carried by Ψ(1..d−1). The result of this first step is a polyhedron P containing legal

vectors to which we may initialize M
(d,•)
Ψ . To sample a vector from P , any algorithm for

the sampling of vectors with rational components from polyhedra can be used (refer to

Section 4.6). Should Gd be empty, we generate M
(d,•)
Ψ in the fashion of schedule completion

(refer to Section 4.7). Thereby, we avoid generating a schedule dimension that might be
eliminated entirely by schedule tree simplification (refer to Section 5.4). Simulated annealing
reduces the number of replaced schedule dimensions gradually.

Figure 6.1(a) illustrates dimension replacement. To show that the set of legal schedules is
closed under dimension replacement, we prove Theorem 6.2.1.

Theorem 6.2.1. Let S be a SCoP and let G be a set of dependence polyhedra that represent
the set of legality-affecting data dependences in S. Let n ∈ N and let MΘ be the matrix
of a legal n-dimensional schedule for S. Let MΨ be a schedule matrix that results from
mutating MΘ by dimension replacement. The following holds:

(
∀d ∈ {1, ..., n} : C1..d

Θ ⊆ C1..d
Ψ

)
. (6.1)

C1..n
Θ = G and Condition 6.1 imply the legality of Ψ.

6 Validity-Preserving Genetic Operators 81

Proof of Theorem 6.2.1. We use mathematical induction.

Base Case: d = 1

Case 1: M
(1,•)
Ψ = M

(1,•)
Θ

C1
Θ ⊆ C1

Ψ holds because the two schedule prefixes are equal.

Case 2: The algorithm generates a new row M
(1,•)
Ψ .

By the definition of dimension replacement, Ψ(1) satisfies the dependence polyhedra in
G \ C1..0

Ψ = G \ ∅ = G weakly and the dependence polyhedra in C1
Θ strongly. It follows

immediately that C1
Θ ⊆ C1

Ψ.

Induction Hypothesis: Let d′ be a value chosen arbitrarily but fixed from {1, ..., n− 1}.
It holds that

C1..d′

Θ ⊆ C1..d′

Ψ .

Step Case: d = d′ + 1

Case 1: M
(d,•)
Ψ = M

(d,•)
Θ

C1..d
Ψ = ⊲ definitions in Section 2.2.2.3,

Ψ(d) = Θ(d), and d = d′ + 1

C1..d′

Ψ ∪ Sd
Θ ⊇ ⊲ induction hypothesis

C1..d′

Θ ∪ Sd
Θ = ⊲ definitions in Section 2.2.2.3

and d = d′ + 1

C1..d
Θ

Case 2: The algorithm generates a new row M
(d,•)
Ψ . By the definition of dimension

replacement, we know that Cd
Ψ = Cd

Θ \ C1..d−1
Ψ .

C1..d
Ψ = ⊲ d = d′ + 1

C1..d′+1
Ψ = ⊲ definitions in Section 2.2.2.3

C1..d′

Ψ ∪ Cd′+1
Ψ = ⊲ definition of dimension re-

placement

C1..d′

Ψ ∪ (Cd′+1
Θ \ C1..d′

Ψ) = ⊲ set-theoretical simplification

C1..d′

Ψ ∪ Cd′+1
Θ ⊇ ⊲ induction hypothesis

C1..d′

Θ ∪ Cd′+1
Θ = ⊲ definitions in Section 2.2.2.3

Cd′+1
Θ = ⊲ d = d′ + 1

Cd
Θ

6.2.1.2 Schedule Prefix Replacement

The operator changes the prefix of a schedule matrix. That is, it replaces a number of
rows at the top of the schedule matrix. Figure 6.1(b) illustrates this type of mutation.
The number of rows to be replaced is chosen randomly, but the annealing factor limits the
maximum length of the prefix. The new prefix carries at least the dependence polyhedra
carried by the old prefix.

Let us assume that we would like to replace M
(1..e,•)
Θ , e ∈ {1, ..., rows(MΘ)}. The length of

the prefix of MΨ can be any number e′ ∈ N \ {0}. To produce M
(1..e′,•)
Ψ , we start by running

82 6.2 Schedule Mutation and Crossover

a modification of Algorithm 4.2 (sampling of search space regions). The modified algorithm
chooses the sets Gd randomly as subsets of C1..e

Θ and terminates as soon as all dependences
in C1..e

Θ are carried. The result of Algorithm 4.2 is a list of polyhedra. To sample the rows of

M
(1..e′,•)
Ψ from this list, we rely on Algorithm 4.3 (sampling of schedules from search space

regions) and any of the sampling techniques for polyhedra that are described in Section 4.6.

By coincidence, Ψ(1..e′) may carry more dependence polyhedra than Θ(1..e). Also, Ψ may
be located in a different search space region than Θ. Altering the outer schedule dimensions
influences specifically the fusion and distribution of statements in the transformed program.

It is legal to append M
(e+1..rows(MΘ),•)
Θ to M

(1..e′,•)
Ψ because, by the definition of schedule

prefix replacement, we have C1..e
Θ ⊆ C1..e′

Θ .

6.2.1.3 Schedule Suffix Replacement

Other than schedule prefix replacement, this operator replaces a number of rows chosen
randomly at the bottom of a schedule matrix. We illustrate this kind of mutation in
Figure 6.1(c).

The number of rows replaced is random, but is bounded from above by the annealing
factor. Let n = rows(MΘ) and let m ∈ N, 0 < m < n, be the number of rows to be replaced.

We set M
(1..n−m,•)
Ψ = M

(1..n−m,•)
Θ . To complete MΨ and preserve legality, we generate a

schedule that carries the dependence polyhedra in G \ C1..n−m
Θ . We use Algorithms 4.2

and 4.3 for this purpose. In the case that C1..n−m
Θ = G, the new schedule’s inner dimensions

result entirely from schedule completion.

The inner dimensions of a schedule have a particular influence on spatial data locality
and the applicability of loop vectorization and tiling.

6.2.1.4 Generator Coefficient Replacement

This mutation operator is specific to the search space exploration with Chernikova sampling
(refer to Section 4.6.5). We showed that by its design Chernikova sampling cannot reach
certain schedules (refer to Example 4.6.1). Generator coefficient replacement fills this gap.

As illustrated in Figure 6.1(d), generator coefficient replacement is similar to dimension
replacement (refer to Section 6.2.1.1). It replaces some rows of a schedule matrix while
leaving others intact. Yet, generator coefficient replacement is more finely grained. The new
rows have a bigger similarity to the rows that they replace than with dimension replacement.

When we sample a schedule matrix MΘ, Algorithm 4.3 picks each row M
(d,•)
Θ , with

d = 1, ..., rows(MΘ), from a polyhedron Pd that represents one dimension of a search space

region. M
(d,•)
Θ is a linear combination of a subset of the generators of Pd. Pd’s generators

are divided into a set Vd of points, one from each of Pd’s minimal faces, a set Rd of rays,
and a set Ld of lines. When using Chernikova sampling, we store this combination along
with each row of a schedule matrix:

M
(d,•)
Θ =

∑

~vi∈V d
Θ

αi · ~vi +
∑

~ri∈Rd
Θ

βi · ~ri +
∑

~li∈Ld
Θ

γi ·~li, V
d
Θ ⊆ Vd ∧ V d

Θ 6= ∅, Rd ⊆ Rd
Θ, L

d
Θ ⊆ Ld.

The coefficients adhere to the following constraints:

α1, ..., α|V d
Θ|

∈ Q+ ∧

|V d
Θ|∑

i=1

αi = 1, β1, ..., β|Rd
Θ|

∈ Q+, γ1, ..., γ|Ld
Θ|

∈ Q \ {0}.

In schedule matrices produced by Algorithm 4.3 (sampling of schedules from search space
regions) and Chernikova sampling, we can alter the generators’ coefficients of any row in a
way that obeys the above constraints and preserve schedules’ legality. Recall from Section 4.6

6 Validity-Preserving Genetic Operators 83

that we can choose a coefficient vector from each of the polyhedra Pd that represent a search
space region independently and obtain a legal schedule matrix. This allows for a finely
grained mutation operator. While Chernikova sampling uses only integer coefficients for the
generators, generator coefficient replacement may introduce rational coefficients with small
denominators. Thereby, it solves cases such as Example 4.6.1.

Many of the genetic operators presented in Section 6.2 exploit situations in which schedule
dimensions Θ(d) satisfy dependence polyhedra DO,T weakly or strongly not by the definition
of the polyhedron Pd from which they had been sampled originally, but by coincidence.
In such cases, Pd \WO,T = ∅ and Pd \ SO,T = ∅ may not hold. Modifying the generator
coefficients of a schedule dimension may cause dimension d or a subsequent one to violate
dependence polyhedra. Alternatively, a dependence polyhedron may not be carried by the
resulting schedule MΨ. In these cases, we use Algorithms 4.2 (sampling of search space
regions) and 4.3 (sampling of schedules from search space regions) to replace the schedule
matrix suffix starting from the first illegal row or to complete MΨ such that all dependence
polyhedra are carried.
Simulated annealing controls the number of rows mutated and, per mutated row, the

share of generator coefficients mutated. It may be necessary to alter additional generator
coefficients to preserve legality.

6.2.1.5 Outlook: Partial Schedule Replacement

Figure 6.2: Par-
tial Schedule
Replacement.

In addition to the mutation operators that were implemented in Polyite
at the time of the evaluation, we propose another mutation operator
that allows the search to move between search space regions and retain
much of the parent schedule’s properties at the same time.

Replacing blocks of subsequent schedule dimensions (or partial multi-
dimensional schedules), as illustrated in Figure 6.2, increases particularly
the genetic algorithm’s ability to push the schedule dimension that carries
a dependence polyhedron inward or outward. At the same time, the
other schedule dimensions are retained. Simulated annealing steers the
dimensionality of the partial schedule that is to be replaced.

The proof of partial schedule replacement’s legality is largely analogous
to the proof of dimension replacement’s legality.

6.2.2 Crossover Operators

We continue with the crossover operators. A crossover operator takes two schedule matrices
MΘ1 and MΘ2 as input and combines them to an offspring schedule matrix ΘΨ. Figure 6.3
illustrates our tailored legality-preserving crossover operators for schedule optimization.

6.2.2.1 Row-Based Crossover

As illustrated by Figure 6.3(a), row-based crossover takes as input two schedule matrices
MΘ1 and MΘ2 and recombines their rows to a new schedule matrix MΨ. Per schedule

dimension d, the operator may set either M
(d)
Ψ = M

(d)
Θ1

or M
(d)
Ψ = M

(d)
Θ2

.
Pouchet et al. [124] proposed a row-based crossover for their genetic algorithm. Since

their exploration is limited to a single search space region, it is legal to assign M
(d,•)
Θ1

or

M
(d,•)
Θ2

to M
(d,•)
Ψ for any d ∈ {1, ..., n} with n being the dimensionality of the search space

region. Thus, their row-based crossover is uniform [100] at row level. Pouchet et al. see the
advantage of a row-based crossover in its ability to combine profitable dimensions of two
schedules Θ1 and Θ2 to a new schedule ΘΨ, and, thereby, eliminate other, less profitable
dimensions of both Θ1 and Θ2. They state that, in the absence of a row-based crossover,
ΘΨ could still originate from a mutation of Θ1 or Θ2, but with smaller probability.

84 6.2 Schedule Mutation and Crossover

(a) Row-Based Crossover (b) Geometric Crossover

Figure 6.3: Illustrations of our schedule crossover operators. Each box symbolizes a row of
a schedule matrix. The rows represented by the narrow blank boxes at the bottom of the
offspring matrices MΨ resemble the rows appended by schedule completion.

The wider range of our search space complicates the construction of a row-based crossover
under which the set of legal schedules is closed. Two schedules can originate from different
search space regions. Therefore, they can have different numbers of dimensions and may
carry a given legality-affecting dependence polyhedron at different dimensions. Combining
their schedule matrices’ rows arbitrarily in the way described does not necessarily lead
to a legal offspring schedule matrix. Instead, we must construct MΨ recursively, starting
from the first row and continuing with the next. Each recursive step appends one row.
The recursion stops as soon as Ψ carries all dependences in G. If we end up in one of the
following situations, while choosing row d of MΨ, we must backtrack and change our choice
of a previous row:

• We have tested both choices for row d unsuccessfully.

• We find that, to retain legality, we would have to use both M
(d,•)
Θ1

and M
(d,•)
Θ2

for M
(d,•)
Ψ

because, otherwise, either one or the other dependence polyhedron in G is not carried
by Ψ.

• Any choice that we can make for M
(d,•)
Ψ immediately leads to a schedule that violates

some dependence polyhedron in G.

By coincidence, or due to our choice of MΘ1 or MΘ2 , we may end up reconstructing MΘ1

or MΘ2 . Algorithm 6.2 is the complete procedure. The algorithm avoids searching subtrees
of the search tree that it explores as soon as it detects that none of the solutions in a subtree
is a legal schedule. We show that Theorem 6.2.2 holds.

Theorem 6.2.2. All schedules constructed by Algorithm 6.2 satisfy all dependence polyhedra
in G weakly. The schedule represented by M ′Ψ in line 21 is certain to be a prefix of a legal
schedule.

The algorithm always returns a legal schedule. We show that Theorem 6.2.3 holds.

Theorem 6.2.3. Algorithm 6.2 always returns a schedule that carries all dependence
polyhedra in G.

6 Validity-Preserving Genetic Operators 85

Algorithm 6.2: Row-Based Crossover (rowCross)
Input: MΘ1

,MΘ2
: The pair of schedules to be crossed

d ∈ N: The index of the current schedule dimension
MΨ: The already constructed prefix of the offspring matrix

Output: The matrix of a legal schedule that carries all dependences in G or ⊥ if we could not complete
MΨ accordingly

Parameters: G: Set of legality-affecting dependence polyhedra
1 U ← G \ C1..d−1

Ψ ; ⊲ dependence polyhedra that must be carried
⊲ MΨ is complete. ⊳

2 if U = ∅ then
3 return MΨ

⊲ We will not be able to carry all dependences in G. ⊳
4 if rows(MΘ1

) < d ∧ rows(MΘ2
) < d then

5 return ⊥

6 mustUseΘ1
← rows(MΘ2

) < d
7 mustUseΘ2

← rows(MΘ1
) < d

⊲ Are we forced to choose M
(d,•)
Θ1

or M
(d,•)
Θ2

to carry some dependences? ⊳

8 mustUseΘ1 ← (∃DO,T ∈ U : M
(d,•)
Θ1

∈ SO,T ∧ (∀e ∈ {d+ 1, ..., rows(MΘ1) : M
(e,•)
Θ1

/∈ SO,T }) ∧ (∀e ∈

{d, ..., rows(MΘ2
) : M

(e,•)
Θ2

/∈ SO,T }))

9 mustUseΘ2 ← (∃DO,T ∈ U : M
(d,•)
Θ2

∈ SO,T ∧ (∀e ∈ {d+ 1, ..., rows(MΘ2) : M
(e,•)
Θ2

/∈ SO,T }) ∧ (∀e ∈

{d, ..., rows(MΘ1
) : M

(e,•)
Θ1

/∈ SO,T }))

⊲ We cannot use M
(d,•)
Θ1

and M
(d,•)
Θ2

→ Backtrack ⊳

10 if mustUseΘ1
∧ mustUseΘ2

then
11 return ⊥

⊲ Select potential assignments for M
(d,•)
Ψ ⊳

12 if mustUseΘ1
then

13 C ← {M
(d,•)
Θ1

}

14 else if mustUseΘ2
then

15 C ← {M
(d,•)
Θ2

}

16 else

17 C ← {M
(d,•)
Θ1

,M
(d,•)
Θ2

}

⊲ Test each potential assignment for M
(d,•)
Ψ ⊳

18 M ′′
Ψ ← ⊥

19 foreach ~m ∈ C do
20 if (M ′′

Ψ = ⊥) ∧ (∀DO,T ∈ U : ~m ∈WO,T) then

21 M ′
Ψ ←

(

MΨ

~m

)

22 M ′′
Ψ ← rowCross(MΘ1

,MΘ2
, d+ 1,M ′

Ψ)

23 if M ′′
Ψ 6= ⊥ then

24 return M ′′
Ψ

25 return M ′′
Ψ

86 6.2 Schedule Mutation and Crossover

Figure 6.4: The idea of geometric crossover is to create a sched-
ule coefficient vector by interpolating two existing schedule
coefficient vectors. The white points on the line segment are

potential assignments for M
(d)
Ψ .

Proof of Theorem 6.2.2. We show that, for each n ∈ N \ {0}, all schedule matrices with n
rows that are constructed by Algorithm 6.2 satisfy all dependence polyhedra in G weakly.

Base Case: n = 1.
From rows(M ′Ψ) = n = 1 follows that MΨ is an empty matrix. Furthermore, since Θ1

and Θ2 are legal schedules, neither Θ
(1)
1 nor Θ

(1)
2 violate a dependence polyhedron in G.

Therefore, M
(1,•)
Θ1

and M
(1,•)
Θ2

are both legal assignments for M ′Ψ
(1,•) and M ′Ψ satisfies all

dependence polyhedra in G weakly.

Induction Hypothesis: Let n′ ∈ N \ {0} be chosen arbitrarily but fixed. Any schedule
matrix MΨ constructed by Algorithm 6.2 with rows(MΨ) = n′ satisfies all dependence
polyhedra in G weakly.

Step Case: n = n′ + 1
To construct coefficient matrix M ′Ψ with n rows, Algorithm 6.2 appends a row to a given

coefficient matrix MΨ with n′ rows. From the induction hypothesis, we know that the
schedule represented by MΨ weakly satisfies all dependence polyhedra in G. The guard in
line 20 prevents us from appending schedule coefficient vectors to MΨ that violate dependence
polyhedra in U = G \ C1..n′

Ψ . Thus, all schedule matrices M ′Ψ with n rows that we construct
in line 21 satisfy all dependence polyhedra in G weakly.

Proof of Theorem 6.2.3. The result of the recursive case of Algorithm 6.2 (the return on
line 25) is entirely the result of a recursive call. Thus, to show that the algorithm returns
only legal schedules, it is sufficient to inspect the non-recursive cases of Algorithm 6.2, which
are the returns on lines 3, 5, and 11. In all but the case on line 3, the algorithm returns
⊥. In line 3, MΨ will be returned under the condition that Ψ carries all dependences in G.
Thus, Algorithm 6.2 can return only legal schedules or ⊥.

The algorithm always returns a legal schedule, as it can always reconstruct MΘ1 or MΘ2

(up to the last schedule dimension that carries a dependence polyhedron), which are both
legal schedules.

6.2.2.2 Geometric Crossover

The idea of geometric crossover is to interpolate between the rows of two schedule matrices.
This allows us to reach schedules that we cannot reach using Chernikova sampling. Figure 6.4
illustrates the idea.
Let d ∈

{
1, ...,min{rows(MΘ1), rows(MΘ2)}

}
. We construct row M

(d,•)
Ψ as a convex

combination of M
(d,•)
Θ1

and M
(d,•)
Θ2

. Recall that with Chernikova sampling row d of a schedule
matrix is a linear combination of the generators of the polyhedron Pd that represents the
schedule’s corresponding search space region’s dth dimension. Chernikova sampling cannot
reach points in Pd that are reachable only via a convex combination of multiple points, of
which each belongs to a different of Pd’s minimal faces. Furthermore, Chernikova sampling
uses integer coefficients for the generators. Geometric crossover lifts both limitations.

6 Validity-Preserving Genetic Operators 87

We cross MΘ1 and MΘ2 in dimension d if U1..d−1
Θ1

⊆ U1..d−1
Θ2

or U1..d−1
Θ2

⊆ U1..d−1
Θ1

. Without

loss of generality, let us assume U1..d−1
Θ1

⊆ U1..d−1
Θ2

. We show that Theorem 6.2.4 holds.

Theorem 6.2.4.
Let Θ1 and Θ2 be two legal schedules for a SCoP. Let d ∈ {1, ...,min{dim(Θ1), dim(Θ2)}}
and U1..d−1

Θ1
⊆ U1..d−1

Θ2
. All one-dimensional schedules represented by the coefficient vectors

in conv.hull(M
(d,•)
Θ1

,M
(d,•)
Θ2

) satisfy the dependences in U1..d−1
Θ1

weakly.

Proof of Theorem 6.2.4. The preconditions tell us that

(
∀DO,T ∈ U1..d−1

Θ1
:
(
∀

(
~iO
~iT

)
∈ DO,T : Θ1

(d)
T (~iT)−Θ1

(d)
O (~iO) ≥ 0

))
(6.2)

and (
∀DO,T ∈ U1..d−1

Θ1
:
(
∀

(
~iO
~iT

)
∈ DO,T : Θ2

(d)
T (~iT)−Θ2

(d)
O (~iO) ≥ 0

))
. (6.3)

Let α ∈ [0, 1]. Further, let DO,T ∈ U1..d−1
Θ1

and

(
~iO
~iT

)
∈ DO,T . By definition

Θ
(d)
X (~iX) = M

(d)
ΘX

·

~iX
~p
1

holds for any statement X, statement instance ~iX ∈ IX and schedule dimension d. ~p is the
vector of the SCoP’s structure parameters.

Let us show that M
(d,•)
Ψ = α · M

(d,•)
Θ1

+ (1 − α) · M
(d,•)
Θ2

represents a one-dimensional sched-

ule that satisfies the dependence between ~iO and ~iT weakly. From α ∈ [0, 1] we know that

M
(d,•)
Ψ ∈ conv.hull(M

(d,•)
Θ1

,M
(d,•)
Θ2

).

Ψ
(d)
T (~iT)−Ψ

(d)
O (~iO)

= ⊲ Definition of Ψ

(
α ·MΘ1

(d,•)
T + (1− α) ·MΘ2

(d,•)
T

)
·

~iT
~p
1

−

(
α ·MΘ1

(d,•)
O + (1− α) ·MΘ2

(d,•)
O

)
·

~iO
~p
1

= ⊲ distributivity

α ·MΘ1

(d,•)
T ·

~iT
~p
1

+ (1− α) ·MΘ2

(d,•)
T ·

~iT
~p
1

− α ·MΘ1

(d,•)
O ·

~iO
~p
1

− (1− α) ·MΘ2

(d,•)
O ·

~iO
~p
1

= ⊲ commutativity

α ·MΘ1

(d,•)
T ·

~iT
~p
1

− α ·MΘ1

(d,•)
O ·

~iO
~p
1

+ (1− α) ·MΘ2

(d,•)
T ·

~iT
~p
1

− (1− α) ·MΘ2

(d,•)
O ·

~iO
~p
1

= ⊲ definitions of Θ1 and Θ2

α ·Θ1
(d)
T (~iT)− α ·Θ1

(d)
O (~iO) + (1− α) ·Θ2

(d)
T (~iT)− (1− α) ·Θ2

(d)
O (~iO)

= ⊲ distributivity

α ·
(
Θ1

(d)
T (~iT)−Θ1

(d)
O (~iO)

)
+ (1− α) ·

(
Θ2

(d)
T (~iT)−Θ2

(d)
O (~iO)

)

≥ ⊲ Equation 6.2 and α ≥ 0

0 + (1− α) ·
(
Θ2

(d)
T (~iT)−Θ2

(d)
O (~iO)

)

≥ ⊲ Equation 6.3 and α ∈ [0, 1]⇒ (1− α) ≥ 0

0

We have shown that, by its construction, M
(d,•)
Ψ carries all dependences in U1..d−1

Θ1
. To

construct a legal schedule, we set M
(1..d−1,•)
Ψ = M

(1..d−1,•)
(Θ1

and complete MΨ by generating

88 6.3 Equivalence of Schedules

Table 6.1: Overview of the mutation and crossover operators. All operators are designed
such that they cannot derive an illegal schedule from legal schedules.

Genetic Operator Description Illustration

Dimension Replacement Replaces randomly chosen rows of a schedule
matrix.

Figure 6.1(a)

Schedule Prefix Replacement Replaces the first rows of a schedule matrix. Figure 6.1(b)

Schedule Suffix Replacement Replaces the last rows of a schedule matrix Figure 6.1(c)

Partial Schedule Replacement
(currently not implemented)

Replaces randomly chosen blocks of subsequent
schedule matrix rows. The blocks’ lengths are
also random.

Figure 6.2

Generator Coefficient
Replacement

Replaces schedule matrix rows chosen randomly
by schedule coefficient vectors constructed from
the same generators as the original rows.

Figure 6.1(d)

Row-Based Crossover Combines the rows of two schedule matrices to
a new schedule matrix.

Figure 6.3(a)

Geometric Crossover Interpolates between rows of two given schedule
matrices.

Figure 6.3(b)

a new suffix using Algorithms 4.2 (sampling of search space regions) and 4.3 (sampling of
schedules from search space regions). Figure 6.3(b) illustrates the composition of MΨ. When

using Chernikova sampling, the set of generators of M
(d,•)
Ψ is the union of the generators of

M
(d,•)
Θ1

and M
(d,•)
Θ2

. We have to derive their new coefficients from the original coefficients
and α.

6.2.3 Summary

In total, we have presented seven different genetic operators. Five are mutation operators and
two are crossover operators. The operators serve different purposes and vary in the degree
of difference between an offspring schedule matrix and its parent schedule matrices. While
the crossover operators and some of the mutation operators have the ability to construct an
offspring schedule matrix that lies in a different search space region than its parents, there
are also mutation operators that operate at a more finely grained level.

Table 6.1 provides an overview of our mutation and crossover operators.

6.3 Equivalence of Schedules

For a genetic algorithm, it can be important to avoid adding duplicate solutions to its
population or even solutions that are equivalent to already present ones with respect to
some predicate. With respect to our genetic algorithm for polyhedral schedule optimization,
at least four different equivalence relations are candidates:

1. Equivalent schedules share the same rational coefficient matrix. If constructed via
Chernikova sampling (refer to Section 4.6.5), they must also have the same set of
generators per matrix row.

2. Equivalent schedules share the same integer coefficient matrix after the conversion
from rational to integer coefficients (refer to Section 4.6.5).

3. Equivalent schedules correspond to the same simplified schedule tree.

6 Validity-Preserving Genetic Operators 89

4. Equivalent schedules yield the same execution order after the application of tiling
and potential other schedule tree optimizations such as strip mining. This criterion is
equivalent to Equation 5.9 in Section 5.5.4.

Especially the first two criteria, but to some extent also the third, permit the presence of
different schedule matrices in the genetic algorithm’s population that prescribe the same
execution order of the SCoP’s statement instances. Yet, some schedule matrices may be more
effective than others: for instance, there may be schedule matrices that contain extremely
large schedule coefficients or the original rational schedule matrix could contain coefficients
with high denominators. We must consider such matrices to be degraded as they are
likely to yield integer overflows, which can cause miscompilation and wrong computation
results. Introducing extrem coefficients into more schedules by mutation and crossing is
likely counterproductive. Therefore, evicting all representations of a generally effective
schedule, except the most degraded one, may cause the population of the genetic algorithm
to degenerate. Currently, we use the first criterion as the primary criterion for schedule
equivalence in Polyite.

6.4 Felix Bernasch’s Bachelor Thesis: A Distributed Genetic

Algorithm for Polyite

Felix Bernasch proposes an approach to turn Polyite’s genetic algorithm into a distributed
evolutionary algorithm in his Bachelor thesis [23]. A distributed evolutionary algorithm [3]
maintains a population of candidate solutions that is split into subpopulations. Each of
the subpopulations develops separately. Occasionally, the subpopulations exchange small
numbers of solutions. The subpopulations are said to reside on islands, which may correspond
to different compute nodes, processes or sockets. A migration policy determines the frequency
of the exchange of solutions between the islands, the selection of the solutions that will
migrate, the solutions that will be replaced by the migrants, and the arrangement of the
islands. The latter determines the pairs of islands that can exchange migrants.

Alba and Tomassini [3] describe that the advantage of distributed evolutionary algorithms
over standard evolutionary algorithms, which maintain a single large population, lies not
only in an efficient parallelization across several sockets or the nodes of a compute cluster.
Splitting the population into several subpopulations that communicate only occasionally
is likely to decrease the numbers of solutions that need to be tested in order to find an
acceptably profitable solution. The reason is that a distributed evolutionary algorithm tends
to keep a stronger diversity of its complete population and is therefore more likely to explore
different regions of the search space simultaneously than standard evolutionary algorithms.
This also reduces the probability of premature convergence [4].

Bernasch proposes to use either of two given topologies for Polyite’s distributed evo-
lutionary algorithm. The first is a ring-based topology to which Bernasch refers as the
Neighbor Strategy. We illustrate this strategy in Figure 6.5(a). The islands are arranged in
a circle and each can exchange migrating schedules with its left and its right neighbor. The
Neighbor Strategy is inspired by the ring topology described by Belkadi et al. [20] and by the
stepping stone model, which Hiroyasu et al. [70] describe. Further, Bernasch describes what
he calls the Neighborhood Strategy. We illustrate it in Figure 6.5(b). The Neighborhood
Strategy arranges the islands on a rectangular grid. Each island can exchange migrating
schedules with any of its four neighbors (top, left, bottom, and right). Islands on the edge of
the grid exchange schedules with the respective islands on the grid’s opposite side. Belkadi
et al. [20] describe this strategy and refer to it as a grid topology with two dimensions. It
can also be interpreted as a grid that is projected onto the surface of a torus.

The migration takes place every n ∈ N generations. During a migration phase, an island
sends schedules to one of each of its potential migration partners. The order in which an

90 6.4 Felix Bernasch’s Bachelor Thesis: A Distributed Genetic Algorithm for Polyite

(a) Neighbor Strategy (b) Neighborhood Strategy

Figure 6.5: Illustrations of Polyite’s distributed evolutionary algorithms. The islands are
represented by the bigger circles. The small circles represent individual schedules. Islands
that can exchange migrating schedules are connected by arrows.

island serves its migration partners is fixed. The migration frequency n and the number of
schedules that migrate from one island to another are configurable. Any schedule in the
basis of an island’s next local population is an equal candidate for migration.

7 Classification of Schedules

The genetic algorithm for schedule optimization presented in Chapter 6 determines a
schedule’s profitability by benchmarking. Given a program to be optimized and a schedule
that has not been evaluated yet, Polyite applies the schedule to the program and measures
the transformed program’s execution time. Having evaluated all schedules in the current
population, the genetic algorithm selects the fitter half of the population and uses it as the
basis for the subsequent population. Figure 7.1 illustrates this procedure.

While benchmarking of the transformed program is the most precise method to determine
a schedule’s profitability, it is also time-consuming and hardware-demanding. Moreover,
cross-compilation is impossible since the target hardware must be available to determine
the execution time of a program variant. One could reduce the optimization time by
benchmarking with very small data sets, but this would bias the optimization result since
it may reduce the effect of data locality optimizations and coarse-grained parallelization.
Instead, we propose to replace benchmarking to the extent possible by a less precise,
but cheaper-to-evaluate performance predictor. This predictor is based on a surrogate
performance model learned from a set of training data using supervised machine learning.
The training data must originate from iterative optimizations using the genetic algorithm
based on benchmarking, which we call GAB in the following, as shown in Figure 7.1, or
random exploration, or a combination of both. Thus, we still need the target hardware for
generating training data for a surrogate performance model, but then we can use the trained
model to optimize in an iterative, but mostly hardware-independent manner.
We train the surrogate performance models on structural features of schedules and the

execution time of the corresponding transformed code. To make the approach practical,
schedule features that can be extracted at low cost must be available. The features must be
designed such that the learned model is transferable: the model must be able to predict the
profitability of schedules for unseen programs. We use features that characterize schedules,
rather than characterizing SCoPs or programs. Thereby, we give up on the possibility to
learn a widely applicable performance model from a carefully chosen and comprehensive set
of training programs. We gain the ability to train a model that targets a specific domain
of programs with similar performance characteristics. Such a domain could be matrix
multiplication. By abstaining from features that characterize programs (SCoPs in our case,
i.e., program regions with static control), the ability to transfer a program model will not
be hampered by differences between programs that have no influence on the choice of an
effective program optimization in the specific case.

Figure 7.1: Workflow of our genetic algorithm for schedule optimization, as described in
Chapter 6. The schedule evaluation relies on execution time measurement.

91

92

0.125
0.25

0.5
1
2
4
8

16
32

0 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p
 o

v
e
r

O
3

generation

(a) 3mm

0.5

1

2

4

8

16

0 4 8 12 16 20 24 28 32 36 40

generation

(b) adi

Figure 7.2: Distribution of speedups yielded by the schedules in the GA’s generations for
3mm and adi.

Danner [46] attempted to predict the speedup in execution time over the execution time
of the original sequential code yielded by a schedule in his Master thesis. Danner used
regression models and a set of schedule tree features that are strongly related to different
performance aspects. Even though Danner’s study covered only a set of simple programs
(namely cholesky, gemm, seidel-2d, syrk, syr2k, and trmm of PolyBench 4.1 [121]), the
results were disheartening. Normalizing the speedup values in the training data to [0, 1]
had not been tested, and may improve the prediction accuracy there. Another problem of
Danner’s approach is the high run-time complexity of the included processor cache hit rate
approximation. This appears to be a general drawback of contemporary polyhedral cache
models [14, 37]. Finally, Danner’s study was performed on an early stage of Polyite and
may be biased by issues that were resolved later on.

From this experience, we moved to another approach that is based on the classification
of schedules and comparatively simple structural features of schedule trees [66] (refer to
Section 5.2). An analysis of GAB revealed that the variance of the speedups in execution
time yielded by the schedules in the genetic algorithm’s populations decreases fast. Also, the
maximum speedup reachable is approached quickly. We attribute these findings primarily to
GAB ’s elitism and to the chosen configuration of the sampling strategy that makes profitable
schedules likely to occur. In particular, coarse-grained parallelism is likely to occur and we
avoid dense schedule matrices. Exemplarily, we illustrate the two findings in Figure 7.2 for
the PolyBench 4.1 benchmarks 3mm and adi.

We show, per benchmark and generation of the genetic algorithm, the distribution of the
speedups yielded by the schedules in the population. The speedups are calculated over the
execution time of the original sequential program. The genetic algorithm was executed for
40 generations, excluding the initial population, with a population size of 30. 630 schedules
were tested in total. In both cases, the variance of speedups decreases fast. For adi, the
maximum speedup is reached almost in the initial population. In the case of 3mm, 90% of the
maximum speedup are reached after eleven generations, which corresponds to 195 schedules
tested. This and all other execution times of transformed program versions that we present
in Chapter 7 were produced on an Intel Xeon E5-2650 v2 CPU @ 2.6GHz with eight
physical cores and 20MB of L3 cache. The operating system was Debian 9 with Linux 4.9.
To apply the schedules generated by Polyite, we relied on LLVM in the version of commit
bf8415a8 (Jan. 10, 2016), clang8 in the version of commit 9909f323 (Jan. 27, 2016), and
Polly in the version of commit 2b618e01 (Jan. 27, 2016)9. We modified Polly such that
we could import schedule trees and apply Polly’s schedule tree transformations, like tiling,

8LLVM’s front end for languages in the C language family (C, C++, Objective C, etc.
(http://clang.llvm.org)

9The commit hashes refer to commits in http://llvm.org/git/llvm.git, http://llvm.org/git/clang.
git, and http://llvm.org/git/polly.git, respectively.

http://clang.llvm.org
http://llvm.org/git/llvm.git
http://llvm.org/git/clang.git
http://llvm.org/git/clang.git
http://llvm.org/git/polly.git

7 Classification of Schedules 93

Table 7.1: The symbols that we use in the features’ definitions.

dim(IS) The dimensionality of the iteration domain of statement S.
I The set of the SCoP’s statements’ iteration domains
dim(Θ) Dimensionality of schedule Θ
S The number of sequence nodes in a given schedule tree.
L The number of leaves of a given schedule tree.
A The total number of memory access relations in the SCoP. We distinguish

between read and write accesses.
∆Si

The number of loops surrounding statement Si, or 1 (instead of 0) in the
absence of loops. As a simplification we use the value of dim(ISi

).

to imported schedules trees. We configured Polly to tile with a default tile size of 64, kept
prevectorization (strip-mining) disabled, and enabled parallelization. Each program version
was further optimized by -O3. The findings motivated us to use a classifier that identifies
likely profitable schedules and to evaluate whether such a classifier suffices to guide our
genetic algorithm.

In Section 7.1, we present a set of structural schedule features that can be extracted from
schedule trees. A discussion of these features can be found in Section 7.1.4. We continue by
describing how we can learn a surrogate performance model for a schedule classifier using
supervised machine learning. Also, we propose two ways of combining the classifier with our
genetic algorithm (refer to Section 7.2).

7.1 Schedule Features

Our schedule features are functions that map schedule trees to real numbers. We compute
the feature values from simplified schedule trees, as described in Chapter 5. Schedule features
are either structural, such as the depth of the schedule tree, or performance-related, such as
coarse-grained parallelism. Note that the features’ design relies on the fact that we use them
to characterize linearly affine schedule functions. Further, we exploit the property that each
statement occurs in exactly one branch of any schedule tree. The latter is due to the design
of Algorithm 5.1 for schedule tree construction. Some features may not be meaningful for
schedule trees that do not have these properties. In Table 7.1, we list the symbols that we
use in the features’ definitions. We assume a SCoP with m ∈ N \ {0} statements. Thus, we
have I = {IS1 , ..., ISm}.

As described in Section 5.6, to prepare a schedule for code generation, we transform it
to a schedule tree, but do not represent every case of detectable textual execution order
of statements using sequence nodes. In particular, we do not use shifted stride detection.
Thereby, we extended the applicability of tiling to imperfect loop nests. In the design of
our schedule features, we must reflect this decision: per feature, we describe whether we
extract it from the schedule tree prepared for code generation or from a schedule tree that
always represents detectable textual order using sequence nodes and allows for a stronger
simplification. We refer to the schedule tree prepared for code generation by TC and to the
schedule tree during whose construction we also used shifted stride detection by TS . As
discussed in Section 5.6, extracting features from the schedules before tiling, which Polyite
does not perform by itself but delegates to the polyhedral compiler that applies the schedule
to the program to optimize, is a tradeoff between run-time complexity and algorithmic
complexity on the one side, and accuracy on the other side.

94 7.1 Schedule Features

domain: IR ∪ IS

schedule: Θ
(1)
R (i, j)T = i; Θ

(1)
S (i, j, k)T = i

coincident : [1]

sequence

filter: IR

schedule :
Θ

(2)
R (i, j)T = j

coincident : [1]

•

filter: IS

schedule :
Θ

(3)
S (i, j, k)T =

(k, j)T

coincident : [1, 0]
permutable : 1

•

(a) TS

domain: IR ∪ IS

schedule:
ΘR(i, j)

T = (2 · i, j, 0)T ; ΘS(i, j, k) = (2 · i+ 1, k, j)T

coincident : [0, 1, 0]
permutable : 1

•

(b) TC

Figure 7.3: Simplified schedule tree of the schedule in Equation 7.1. Shifted stride detection
was enabled in the construction of the tree in Figure 7.3(a). Shifted stride detection was
disabled in the construction of the tree in Figure 7.3(b).

7.1.1 Requirements for a Set of Schedule Features

Before we define the features, we list the requirements for schedule features that are necessary
for the learned surrogate performance models to be transferable.

• A schedule feature must be independent of the SCoP size or the SCoP’s complexity.
Otherwise, performance models are not be transferable between SCoPs of different size
since the affected features’ value ranges depend on the size of the SCoPs: the same
feature value has a different meaning for a small SCoP than for a large SCoP. As an
example, an unsuitable feature is the number of statements in the program.

• It must be possible to normalize feature values to the interval [0, 1] (or any other
interval). Otherwise, we have a similar problem as with features that reflect SCoP size:
we cannot transfer learned performance model between programs whose feature values’
ranges differ. Good candidates for features that can be normalized are those for which
we can determine a maximum feature value for a given SCoP. To normalize a feature’s
value, we may simply divide by the feature’s maximum value for the current SCoP.

• Feature calculation must be fast. The duration must not exceed the time needed to
evaluate a program version’s execution time by benchmarking.

• Finally, the feature set should cover the most relevant performance aspects of schedules.

Example 7.1.1. We continue the running example syrk. We demonstrate feature extraction
using the following schedule:

ΘR(i, j)
T = (2 · i, j, 0)T , ΘS(i, j, k)

T = (2 · i+ 1, k, j)T . (7.1)

From schedule tree construction and simplification, we obtain the two schedule trees TS

and TC shown in Figure 7.3.
From Figure 7.3 it is apparent that, while TC exposes a large tilable band, it does not

expose much of the schedule’s other structural properties. Conversely, TS has smaller tilable
bands, but the schedule tree is simplified more strongly and exposes parallelism and the
textual order of the statements. ⊳

7 Classification of Schedules 95

In Section 7.1.4, we assess the set of features that we propose in the following for their
compliance with the requirements enumerated above.

7.1.2 Structural Features of Schedule Trees

The following features characterize the structure of a schedule tree. They are not obviously
related to a performance aspect. We discuss how they may relate to performance. Some
of our structural features refer to loop distribution and fusion and are consequently not
meaningful for SCoPs that consist of a single statement. A transfer of a performance model
from a SCoP with a single statement to a SCoP with multiple statements is still possible,
but the set of features used will have to be reduced to those that are meaningful for both
kinds of SCoP.

7.1.2.1 Number of Leaves

The number of leaves of a schedule tree grows with loop distribution and shrinks with
(partial) loop fusion (and cases in which we cannot decide about the actual order of two
statements, as illustrated in Section 5.6).

Bondhugula et al. [27] proposed an approach to account for the impact of loop fusion and
distribution in an automatic polyhedral parallelizing compiler. An approach by Pouchet
et al. [125] determines a suitable balance of loop fusion and distribution by an iterative
search and, at the same time, accomplishes parallelism, the minimization of communication
and synchronization, and the possibility to tile the resulting loop nests in a model-driven way.
Both approaches are motivated by the perception that maximal loop fusion and maximal
loop distribution can act orthogonally in some situations. Fusing maximally can avert
parallelization and vectorization, and it may interfere with hardware prefetching. Conversely,
distributing maximally may reduce data locality. We illustrate the tradeoff between data
locality and parallelism in Figure 7.4.
In our case, each statement corresponds to exactly one branch of a schedule tree. Con-

sequently, the maximum number of leaves of a schedule tree is |I|. When Polyite fuses
two statements that are not in a dependence relation, it tends to leave their textual order
unspecified. We can leverage these facts to use the schedule tree’s number of leaves as a
feature that relates to (partial) loop fusion and loop distribution. The normalized feature is

FLeaves =
L

|I|
.

We extract the feature from TS since it provides the most accurate information about
textual ordering that is available.

Example 7.1.2. We continue Example 7.1.1. The SCoP has two statements and TS has
two leaf nodes (refer to Figure 7.3(a)). Consequently, we have

FLeaves =
L

|I|
=

2

2
= 1.

⊳

7.1.2.2 Number of Sequence Nodes

The number of sequence nodes is another schedule tree feature that corresponds to loop
distribution and loop fusion. While FLeaves is sensitive to a (partial) fusion of statements
that are not in a dependence relation, a feature that expresses the number of sequence nodes
of a schedule tree also incorporates the number of schedule dimensions at which the textual
ordering of statements is encoded in a given schedule.

96 7.1 Schedule Features

✞
1 for (int i = 0; i < n; ++i)
2 for (int i = 0; i < n; ++i) {
3 A[i][j] = i; // statement X
4 A[i + 1][j + 1] = A[i + 1][j] + A[i][j] +
5 A[i][j + 1] + A[i][j + 2] // statement Y
6 }

✝ ✆ 0

1

2

3

1 2 3

j

i

statement X statement Y

(a) Loop Fusion

✞
1 # pragma omp parallel for
2 for (int i = 0; i < n; ++i)
3 for (int i = 0; i < n; ++i)
4 A[i][j] = i; // statement X
5 for (int i = 0; i < n; ++i)
6 for (int i = 0; i < n; ++i)
7 A[i + 1][j + 1] = A[i + 1][j] + A[i][j] +
8 A[i][j + 1] + A[i][j + 2] // statement Y

✝ ✆
0

1

2

3

1 2 3

j

i

j

i

statement X statement Y

(b) Loop Distribution

Figure 7.4: Comparison of loop fusion and loop distribution. While loop fusion improves
data locality by enabling the immediate reuse of A[i][j], it prohibits parallelization.
In the case of loop distribution, we lose data locality, but the first loop nest can be
parallelized.

The normalization of the feature’s value relies on the maximum number of sequence nodes
that can occur in a schedule tree in which every statement corresponds to exactly one branch.
This number is reached in a schedule tree that is binary and in which every leaf corresponds
to one statement. In such a tree, the number of leaves is |I| and the number of sequence
nodes is |I| − 1, which is a well known property of binary trees. Let S be a given schedule
tree’s number of sequence nodes. The feature is then defined as follows:

FSeq =
S

|I| − 1
.

Since the feature relates to the textual ordering of statements, we extract its value from TS .
By Example 7.1.3 we motivate the increased expressiveness of the combination of FLeaves

and FSeq compared to only FLeaves.

Example 7.1.3. Consider the following statement iteration domains:

IX = IY = IZ = {i | i ∈ N ∧ 0 ≤ i < n}, n ∈ N.

Figure 7.5 shows the trees of two schedules Θ1 and Θ2 for these iteration domains and the
corresponding code. For this example, the computation of the sample program is irrelevant.
Therefore, we only sketch statements using a notation similar to a function call in our code
snippets. Although Θ1 fuses all three statements in one loop while Θ2 partially distributes
the statements, we have FLeaves = 1 for both schedules. In contrast, FSeq exposes this
difference: the feature’s value is 0.5 for Θ1 and 1 for Θ2. ⊳

7 Classification of Schedules 97

domain: IX ∪ IY ∪ IZ

schedule: Θ
(1)
X (i) = i; Θ

(1)
Y (i) = i; Θ

(1)
Z (i) = i

sequence

filter: IX

•

filter: IY

•

filter: IZ

•
✞

1 for (int i = 0; i < n; ++i) {
2 X(i);
3 Y(i);
4 Z(i);

✝ ✆

(a) Θ1: maximum loop fusion with a total order-
ing of the fused statements. FLeaves = 1, FSeq = 1

domain: IX ∪ IY ∪ IZ

sequence

filter: IX ∪ IY

schedule:

Θ
(2)
X (i) = i; Θ

(2)
Y (i) = i

sequence

filter: IX

•

filter: IY

•

filter: IZ

schedule:

Θ
(2)
Z (i) = i

•

✞
1 for (int i = 0; i < n; ++i) {
2 X(i);
3 Y(i);
4 }
5 for (int i = 0; i < n; i += 1)
6 Z(i);

✝ ✆

(b) Θ2: partial loop distribution with a total ordering
of the fused statements. FLeaves = 1, FSeq = 0.5.

Figure 7.5: Two schedules for a set of statement iteration domains. The schedules differ
with respect to loop fusion and distribution. Only the combination of FLeaves and FSeq

can expose this difference. Per schedule, we show its tree and the corresponding code.

Example 7.1.4. We continue Example 7.1.1. The schedule tree in Figure 7.3(a) has one
sequence node and the SCoP has two statements. We get

FSeq =
S

|I| − 1
=

1

2− 1
= 1.

⊳

7.1.2.3 Schedule Tree Depth

Schedule trees can be characterized by their depth, i.e., by the length of the longest path
from the domain node at the tree’s root to any leaf.

The depth of a schedule tree increases with distribution of statements at different schedule
dimensions and the absence of forward-only data communication in band nodes’ partial
schedules, which prevents the gathering of their partial schedules in single band nodes that
are marked permutable. The height of a schedule tree is inversely proportional to the number
of partial schedules that can be grouped into permutable band nodes and the frequency of
(partial) loop fusion.

For a normalized schedule tree depth feature, we must determine the depth that a schedule
tree for a given SCoP can have. Without counting domain nodes and filter nodes, the true
maximum depth is

Γ = |I|+

|I|∑

i=1

dim(ISi
).

We observed that, when we sample schedules with Chernikova sampling (refer to Section 4.6.5)
in a configuration that yields schedule matrices with a high sparsity, we mostly obtain

98 7.1 Schedule Features

schedules that corresponds to schedule trees that have a depth lower than the following,
smaller bound:

Γ′ = |I|+
|I|

max
i=1

dim(ISi
) + 1.

With γ denoting the actual depth of a schedule tree, the normalized schedule tree depth
feature is

FDepth =
γ

Γ′
.

Normalizing the schedule tree depth by Γ′, on the one hand, allows a few schedules to
have a normalized schedule tree depth larger than 1 but, on the other hand, allows for a
larger variance of the feature’s value across different schedules. We extract FDepth from TS .
Thereby, we primarily classify the maximally simplified schedule tree, but not so much the
actual transformed program. Conversely, extracting the feature from TC means accepting
a different bias that is due to the reduced detection of textual ordering and the weaker
simplification. In summary, directly relating FDepth to performance is difficult.

The theoretical maximum depth Γ corresponds to the case that every statement corresponds
to a different branch of the schedule tree, every sequence node separates only one statement
from the remaining, not yet separated, statements. The depth of this cascade of sequence
nodes and leaves is |I|. Below the schedule tree’s domain node and above the first sequence
node is a sequence of band nodes. Each band node encodes exactly one loop around one
statement and none of them can be grouped into a permutable band node. The length of

this sequence is
∑|I|

i=0 dim(Si). In Example 7.1.5, we show a schedule tree that has depth Γ.

Example 7.1.5. Let us consider a SCoP with iteration domains

IX = {i | i ∈ N ∧ 0 ≤ i < n}, IY = {i | i ∈ N ∧ 0 ≤ i < n}, n ∈ N

and dependence polyhedron

DX,X = {(i, i+ 1)T | i ∈ IX ∧ (i+ 1) ∈ IX}.

The schedule
ΘX(i) = (i,−i, 0)T , ΘY (i) = (0, i, 1)T

corresponds to the schedule tree in Figure 7.6, which has depth

Γ = |I|+
∑

IS∈I

dim(IS) = 2 + dim(IX) + dim(IY) = 4.

Due to the negative direction of DX,X with respect to Θ
(2)
X , the two one-dimensional band

nodes cannot be combined to one band node with a two-dimensional partial schedule that is
marked permutable. ⊳

Example 7.1.6. Having shown a case in which a schedule tree has exactly depth Γ, let
us illustrate a case in which a schedule tree has exactly depth Γ′. Given are the following
statement iteration domains:

IX = IY = IZ = {i | i ∈ N ∧ 0 ≤ i < n}, n ∈ N.

Assuming the absence of data dependences, the schedule

ΘX(i) = (i, 0, 0, 0, 0)T , ΘY (i) = (0, i, 1, 0, 0)T , ΘZ(i) = (0, 0, 1, i, 1)T

corresponds to a simplified schedule tree with depth

Γ′ = |I|+ (max
IS∈I

dim(IS)) + 1 = 3 +max{dim(IX), dim(IY), dim(IZ)}+ 1 = 3 + 1 + 1 = 5.

We show the schedule tree in Figure 7.7. ⊳

7 Classification of Schedules 99

domain: IX ∪ IY

schedule:

Θ
(1)
X (i) = i; Θ

(1)
Y (i) = 0

schedule:

Θ
(1)
Y (i) = −i; Θ

(1)
Y (i) = i

sequence

filter: IX

•

filter: IY

•

Figure 7.6: Example of a schedule tree that
has the maximum depth possible.

domain: IX ∪ IY ∪ IZ

schedule:

Θ
(1..2)
X (i) = (i, 0)T ; Θ

(1..2)
Y (i) = (0, i)T ;

Θ
(1..2)
Z (i) = (0, 0)T

sequence

filter: IX

•

filter: IY ∪ IZ

schedule:

Θ
(4)
Y = 0; Θ

(4)
Z = i

sequence

filter: IY

•

filter: IZ

•

Figure 7.7: A schedule tree that has ex-
actly depth Γ′.

Example 7.1.7. We continue Example 7.1.1 to demonstrate FDepth. The schedule tree
in Figure 7.3(a) has depth γ = 4, the SCoP contains two statements and the maximum
dimensionality of a statement iteration domain in the SCoP of syrk is |IS | = 3. Thus,

FDepth =
γ

Γ′
=

γ

|I|+
|I|
max
i=1

dim(ISi
) + 1

=
4

2 +max{dim(IR), dim(IS)}+ 1

=
4

2 +max{2, 3}+ 1
=

4

6
=

2

3
.

⊳

7.1.2.4 Sparsity of Iteration Variable Coefficients

We could substantiate the widely held conjecture, that the sparsity of schedule matrices
sampled by Polyite using Chernikova sampling (compare Section 4.6.5) correlates to the
probability of finding an effective schedule [61]. When sampling schedule coefficient vectors
from polyhedra with Chernikova sampling, we construct each vector as a linear combination
of a set of generators (points, rays, and lines). We can control the sparsity of the schedule
matrix by controlling the number of generators with non-zero coefficients.

A schedule matrix that contains a large share of non-zero iteration variable coefficients (the
~λ parts in the statement schedule matrix rows) skews many loops. While skewing can enable
parallelization and tiling, it also complicates the expressions in memory access functions
and loop boundaries. Thus, needless skewing is detrimental to good performance. Also,
non-zero coefficients of structure parameters may complicate the detection of statements’
textual order.

For feature FSpIter, we analyze the iteration variables coefficients in all band nodes’ partial
schedules. We determine the number of coefficients that are zero and divide this number by
the total number of iteration variable coefficients. We extract the feature from TS . Thereby,
we avoid to incorporate as many of the coefficients that have no influence on the transformed
code as possible, but also miss some coefficients that only become relevant after tiling. We
could go a step further and incorporate only the iteration variable coefficients that occur in
those parts of partial schedules that correspond to loops in the transformed program. On

100 7.1 Schedule Features

the other hand, we would neglect additional iteration variable coefficients that could become
relevant after tiling.

Example 7.1.8. The total number of iteration variable coefficients in schedule tree TS

(refer to Figure 7.3(a)) of our running example is 13. Eight of them are zero. Thus, we have

FSpIter =
8

13
.

⊳

7.1.2.5 Sparsity of Structure Parameter Coefficients and the Constant

Analogously to the sparsity of the iteration variable coefficients, we can determine the
sparsity of structural parameters and the constant parts of the schedules. That is, per
dimension of a band node’s partial schedule, we must examine the coefficients of the structure
parameters and the constant (the ~µ and ν parts in the statement schedule matrix rows).
Feature FSpP relates to partial fusion of statements, loop distribution that we cannot detect
with the heuristic detection of statements’ textual ordering in Section 5.3, and also loop
peeling [143]. Loop peeling refers to splitting off a small number of first or last iterations of
a loop. This can move the potentially costly identification and treatment of special cases
that occur only in the computations at the border of an iteration space out of the loop.
Loop peeling is a special case of loop splitting [64].

Example 7.1.9. The schedule tree of the schedule in Example 7.1.1 (refer to Figure 7.3(a))
does not contain any non-zero coefficients of structure parameters and the constant 1.
Therefore, the features value is 1. ⊳

7.1.3 Performance-Related Features of Schedule Trees

The features introduced in Section 7.1.2 represent primarily the structure of a schedule tree,
but have no immediate relation to specific performance aspects. Yet, we could relate most
of them to certain aspects that do affect performance loosely. In the following, we present
four schedule features that have an immediate relation to performance. They refer directly
to coarse-grained parallelism, applicability of tiling, and temporal and spatial data locality.
For the design of these features, it is important to know precisely how the polyhedral code
generator that will be used to apply schedules to the program to be optimized, will process
the schedules further, for instance by tiling, and how it will optimize the transformed code
further, for example by parallelizing loops. The code generator on which Polyite relies is
Polly in the version of commit 2b618e01 of http://llvm.org/git/polly.git from Jan.
27, 2016.

We start by describing one of the features that rely on the internal behavior of Polly.
The feature relates to coarse-grained parallelism.

7.1.3.1 Parallel Loops

Loop parallelization exploits the ability of multicore CPUs and SMT processors to run
multiple execution threads in parallel. Creating and synchronizing threads both have a cost.
This cost can be reduced by reducing the number of synchronization points between threads
that run in parallel and by ensuring that the amount of computation performed by the
threads justifies their creation. Thus, parallelizing an outer loop of a loop nest is likely to
be more effective than parallelizing an inner loop. Polly conforms to this argumentation:
the code generator will parallelize the outermost loop in each loop nest that does not carry
a data dependence. Yet, a second preconditions to an effective loop parallelization exists:
single-thread locality, which means that each execution thread mostly operates on its own
small enough set of data. Single-thread locality is important for parallelization on multicore

http://llvm.org/git/polly.git

7 Classification of Schedules 101

Listing 7.1: One loop with a guard for
X. The loop cannot be parallelized.

✞
1 for (int i = 0; i < 2 ∗ n; i += 1) {
2 if (n >= i + 1)
3 X(i);
4 Y(i);
5 }

✝ ✆

Listing 7.2: Two loops without guards.
The second loop can be parallelized.

✞
1 for (int i = 0; i < n; i += 1) {
2 X(i);
3 Y(i);
4 }
5
6 #pragma omp parallel for
7 for (int i = n; i < 2 ∗ n; ++i)
8 Y(i);

✝ ✆

processors to scale well [27]. If the second precondition is not met, simultaneously running
threads will compete for the memory bus and for levels in the processor’s cache hierarchy
that are shared among the processor’s cores (refer to Section 2.1.1). Specifically, the threads
will mutually cancel each other’s local data set from the shared cache.

Other than the parallelism feature proposed by Danner [46], our feature does not take the
overhead yielded by parallelization, nor the interaction of parallelization with tiling into
account. Tiling of a loop nest changes the effect of parallelizing the outermost loop in the
nest that does not carry data dependences as it changes the amount of computation carried
out between thread synchronization points. Also, we do not account for the interaction with
data locality. We cover both tiling and data locality by separate, dedicated features.

In the design of our parallelism feature, we rely on the detection of schedule dimensions that
do not carry data dependences in band nodes’ partial schedules described in Section 5.5.3.
Also, we use the detection of parts of band nodes’ partial schedules that encode loops
(refer to Section 5.5.1). Due to the heuristic nature of the parallelism detection, which we
discuss in Section 5.6 our parallelism feature is approximative. Specifically, it will not be
sensitive to cases of parallelism in the presence of partially fused loops, in which one of two
neighboring loops is parallel and the other must be executed sequentially. Similarly, the
fact that we are unable to determine statements’ textual order in some situations prevents
us from detecting parallelism in some cases. Furthermore, it cannot account for parallel
loops that were not present before tiling. Attempting to detect all present parallelism would
make the parallelism feature’s value dependent on the values of structure parameters and
loop iterators of encasing loops. Also, it would become dependent on the choice of tile sizes.
Without the knowledge of all structure parameters’ values, the knowledge of the tile sizes,
and the ability to precisely predict the code generator’s behavior, a precise feature value
cannot be calculated. We illustrate the latter problem with Example 7.1.10.

Example 7.1.10. Consider the statement iteration domains

IX = {i | i, j ∈ N ∧ 0 ≤ i < n}

IY = {i | i, j ∈ N ∧ 0 ≤ i < 2 · n}, n ∈ N

and the following data dependence polyhedron:

DX,X = {(i, i+ 1)T | i ∈ IX ∧ (i+ 1) ∈ IX}.

From the iteration domains, the dependence polyhedron and the schedule

ΘX(i) = (i, 0)T , ΘY (i) = (i, 1)T .

A polyhedral code generator may generate the code in Listing 7.110 or the code in Listing 7.2.
While we cannot parallelize in the case of Listing 7.1, half of the iterations of Y in Listing 7.2
can be executed in parallel. Such details of a code generator’s behavior must be considered
volatile and are therefore difficult to account for by an external optimizer. ⊳

10This is the code produced by isl, commit cfebc0c6 (Dec. 11, 2015), with the default options applied.

102 7.1 Schedule Features

Per statement, we number the dimensions of its schedule that correspond to loops in
the generated code. We start from zero at the outermost such dimension. We then weigh
each statement by the index of the outermost parallel and loop generating dimension in its
schedule. In future, the feature may be improved by weighing each statement by its amount
of computation. An estimation of the amount of computation has to take the statement’s
number of iterations into account, which requires knowledge of structure parameters’ values,
but also the number and kind of operations performed by the statement, and, potentially,
the number and pattern of memory accesses. Weighing the statements in such a way may
increase the feature’s expressiveness.
Given statement Si, we define δSi

to be the index of the outermost fully parallel loop-
generating dimension in ΘSi

and ωSi
to be some weight that expresses the statement’s

amount of computation. The normalized feature is:

FPar =

|I|∑
i=1

ωSi
·
dim(ISi

)− δSi

∆Si

|I|∑
i=1

ωSi

.

∆Si
is either the dimensionality of the iteration domain of Si or 1 in the absence of loops.

By the latter, we avoid dividing by zero. Generally, ∆Si
is an upper bound for the number

of loops that encase Si in the transformed program, since a schedule may eliminate some
loops. In the current implementation of Polyite, we do not weigh statements by their
amount of computation and, therefore, set ωSi

= 1 for all i ∈ {1, ..., |I|}. We extract the
feature from TS because the parallelism exposed by that schedule tree is maximal.

Example 7.1.11. The outermost band node of the schedule tree in Figure 7.1.1 encodes
a parallel loop around both statements of our running example syrk. Thus, we have
δR = δS = 0 and

FPar =

|I|∑
i=1

ωSi
·
dim(ISi

)− δSi

∆Si

|I|∑
i=1

ωSi

= ⊲ ωR = ωS = 1

|I|∑
i=1

dim(ISi
)− δSi

∆Si

|I|∑
i=1

1

=

dim(IR)− δR

∆R

+
dim(IS)− δS

∆S

|{IR, IS}|
=

2− 0

2
+

3− 0

3
2

=
1 + 1

2
= 1.

⊳

An improved definition of FPar would not take statements into account that are not
encased by loops (i.e., statements that have a singleton iteration domain).

7.1.3.2 Tilable Schedule Bands

Tiling is a transformation of loop nests that can improve data locality and increase the
effectiveness of coarse-grained loop parallelism [73]. As recalled in Section 2.2.2.4, rectangular
tiling changes the execution order of loop nests. Tiling blocks the loop in the nest with
a given block size, thereby doubling the number of loops- Subsequently, the loops are
interchanged such that the loops that enumerate the blocks become the outer loops (the tile
loops) of the nest while the loops that iterate inside the blocks become the inner loops (the
point loops). The result is a partition of the loop nest’s iteration space into blocks. The
tile loops enumerate the tiles while the point loops iterate inside the tiles. The concept is
generalizable to imperfect loop nests [171]. This transformation is applicable iff the schedule
dimensions to be tiled form a permutable band: the dimensions must be interchangeable

7 Classification of Schedules 103

without violating data dependences. There are situations in which tiling is detrimental to
performance [141]. Generally, the success of tiling depends on the proper choice of tile sizes,
that is the block size per tiled loop. Tile sizes can be determined by empirical search [163],
analytically [127], or by the combination of an analysis and limited empirical search [139].

Section 5.5.2, describes how we identify sequences of band nodes in schedule trees whose
partial schedules correspond to sequences of permutable loops. In this process, we replace
such sequences of band nodes by single band nodes, whose partial schedule represents the
partial schedules of the replaced nodes. We mark the new nodes as representing permutable
bands. We must now identify those permutable band nodes that will be tiled by Polly.
Polly’s tiling transformation operates on schedule trees. In the version of Polly that
we use, the transformation tiles permutable band nodes whose children are leaves. From
version 5.0 (of July 2017) on, Polly tiles also permutable band nodes whose children are
sequence nodes that have only leaves as their children. This increases the number of cases in
which tiling will be applied after loop fusion. Polyite supports both tiling criteria. We can
partially avoid this shortcoming of older versions of Polly by encoding textual ordering in
loop bodies with shifted strides (refer to Section 5.3).
We rely on the detection of loop-generating parts of band nodes’ partial schedules that

is described in Section 5.5.2 and weigh each statement Si by the number λSi
of loops that

encase Si and that are encoded in the tilable band that is associated to Si. The normalized
tiling feature is defined as follows:

FTile =

|I|∑
i=1

λSi

∆Si

|I|
.

We extract the feature from TC . Thereby, we operate on the same schedule tree as Polly’s
tiling transformation.
Danner’s tiling feature [46] differs from ours in the weighing of the statements and the

normalization of the feature value. Like us, Danner does not take the computational overhead
into account that results from the tiling of a loop nest.

Example 7.1.12. From the schedule tree TC in Figure 7.3(b), we know that all dimensions
of the schedule in our running example can be gathered in one permutable band node. Thus,
we have λR = dim(IR) = 2 and λS = dim(IS) = 3 and, therefore,

FTile =

|I|∑
i=1

λSi

∆Si

|I|
=

λR

∆R
+

λS

∆S

|{IR, IS}|
=

2

2
+

3

3
2

=
1 + 1

2
= 1.

⊳

FTile can be improved by not taking statements into account that are encased by less than
two loops (i.e., |IS | < 2 for a statement S).

7.1.3.3 An Approximative Data Locality Feature

Processors access memory through a hierarchy of cache levels (refer to Section 2.1.1). Also,
reading data from a memory address does not result in a single value being transferred to
the CPU’s cache, but an entire cache line (that is, a block of data). Since cache size is
limited, a replacement strategy must make space for new cache lines. Thus, to profit from
caching, cache lines must be re-accessed with few accesses to other cache lines in between.

For a data locality feature, an exact model of cache behavior would be ideal. However, the
computations involved in such a model seem too complex for practical use [14, 37, 46]. It is
noteworthy that recent work on analytical modeling of caches by Bao et al. [14] can handle
multi-level cache hierarchies and shows a promising tendency in observed time complexity.

104 7.1 Schedule Features

In consequence, we propose a computationally cheaper feature. The idea is that, the
larger the volume of data communicated by the dependences in a dependence polyhedron
DO,T is in terms of the number of involved memory cells (i.e., cache footprint), the more
we can profit from executing the pairs of dependent statement instances modeled by DO,T

with few other statement instances being executed in between. Consequently, the larger the
volume of data communicated by DO,T , the more deeply DO,T should be carried in the loop
nest. This is relevant not only in the context of sequential execution, but particularly if
we can execute an outer loop of a nest in parallel: we reduce the probability of execution
threads mutually evicting data from shared cache levels that they would reuse otherwise.
In this context, read-after-read dependences are relevant, too. The set of read-after-read
dependences is specific to a schedule and, therefore, cannot be precomputed. To reduce the
cost of computing the read-after-read dependences for a given schedule, we do not eliminate
transitive dependences during their computation. Let O and T be two statements in a SCoP
and let RO, RT be the respective sets of reading memory access functions. We calculate the
set of dependence polyhedra that correspond to read-after-read dependences between two
statements O and T and a schedule Θ as follows:

{
conv.hull(D) | D ∈ Λ

({(~iO
~iT

)
|~iO ∈ IO ∧ ~iT ∈ IT ∧ ΘO(~iO) ≺ ΘT (~iT) ∧

(
∃rO ∈ RO, rT ∈ RT : rO ∈ (IR → A) ∧ rT ∈ (IT → B) ∧ A = B ∧ rO(~iO) = rT (~iT)

)})}
.

We miss out on read-after-read dependences if a schedule leaves the textual ordering of
two statements undetermined between which no legality-affecting data dependence exists.
Furthermore, we cannot account for read-after-read dependences that were not present
before tiling or for the case that the order of two reads changes due to tiling.

To estimate the communicated data volume of a dependence polyhedron, we evaluate,
per array or scalar accessed (a scalar is a zero-dimensional array), the number of array
cells that are accessed by both the dependence polyhedron’s source and target statement
instances. We distinguish between reads and writes. Analogously to RS as the set of all
reading memory access functions of statement S, let WS be the set of all writing memory
access functions of S. Let M be the set of all arrays and scalars in the SCoP. The estimated
communicated data volume of a dependence polyhedron DO,T is:

ηO,T = v(RO, RT) + v(WO, RT) + v(RO,WT) + v(WO,WT)

with

v(AO, AT) =
∑

L∈M

∣∣∣∣∣∣

⋃

f∈AO

{
f(~i) |~i ∈ IO ∧ f ∈ (O → L) ∧

(
∃~j :

(
~i
~j

))
∈ DO,T

}

∩

⋃

f∈AT

{
f(~i) |~i ∈ IT ∧ f ∈ (O → L) ∧ (∃~j :

(
~j
~i

)
) ∈ DO,T

}

∣∣∣∣∣∣
.

We calculate an upper bound for the number of values that would have to be cached at any
time for fast reuse among all memory accesses of O and T that are involved in DO,T . The
distinction between reads and writes overexaggerates the feature’s value if reads and writes
occur simultaneously. Thereby, the feature also expresses whether there are read and write
accesses to an array or scalar or only one kind of access. At the same time, the order of
magnitude of the estimated communicated data volume remains unaffected. To calculate
ηO,T , we rely on Barvinok’s counting algorithm [157] (refer to Section 2.2.1.5). For the
determination of these values, the value ranges of all memory access functions’ arguments
must be known (it suffices to know the values of all structure parameters that occur in loop
bounds.). These values can be determined by instrumenting the memory accesses in the
SCoP to be optimized and executing the instrumented program with a workload that is
representative for the intended use case.

7 Classification of Schedules 105

Further, we determine, per dependence polyhedron DO,T , the innermost schedule dimen-
sion dO,T that carries dependences in DO,T . Alternatively, we could determine the outermost,
or the average dimension that carries dependences in DO,T . Another option, which bears
a higher computational cost, is to partition dependence polyhedra by the dimension that
carries a dependence. Subsequently, each set in the partition would be associated with
exactly one schedule dimension and we would obtain a more precise data locality feature.

Assuming that the set of all data dependences yielded by the given SCoP and schedule is
modeled by k dependence polyhedra DOi,Ti

, i ∈ {1, ..., k}, we define the following normalized
data locality feature:

FDataLoc =

k∑
i=1

(ηOi,Ti
· dOi,Ti

)

dim(Θ) ·
(k∑
i=1

ηOi,Ti

).

Because dependence polyhedra can be overapproximations of originally non-convex sets
(refer to Sections 2.2.2.3 and 4.3) the computed numbers of accessed memory cells may
exceed the true number of accesses.

We could increase the feature’s expressiveness by multiplying the calculated numbers of
array cells by the bit width of the respective arrays’ data types. In the case of the benchmark
set PolyBench 4.1, which we used in our experiments, this improvement has only marginal
influence: nussinov is the only one of 30 programs in PolyBench 4.1 that uses arrays of
more than one type. nussinov operates on a char array of size n ∈ N and an array of int
values of size n2.

We extract the feature from a schedule matrix. This schedule matrix results from re-
transforming TS to the matrix representation.

Example 7.1.13. Setting the structure parameters in our running example syrk to n = 2600
and m = 2000, which corresponds to the use of the extra large data set configuration of
PolyBench 4.1, yields FDataLoc ≃ 0.62 for the schedule from Example 7.1.1 when using
the feature’s current implementation. ⊳

7.1.3.4 Memory Access Pattern

Section 7.1.3.3 discusses that a cache miss during a memory access does not result in an
individual memory cell’s value being transferred to the processor’s caches, but in the loading
of an entire cache line. This yields another type of data locality, namely spatial locality: an
efficient program does not access memory in random patterns but, ideally, in a pattern along
the innermost dimensions of the arrays accessed. In addition, the memory accesses should
have a small stride. Ideally, this stride is positive: in this case, the program may profit from
Intel’s data cache unit (or streaming) prefetcher that prefetches to the L1 data cache [72].
A program that has these properties can profit from the concept of cache lines: a cache
miss will be followed by a series of cache hits that ends only when an access goes beyond
the boundary of a recently loaded cache line. Hence, CPU caches provide a prefetching
mechanism from which programs with good spatial data locality can profit.

To account for spatial locality in our surrogate performance models, we determine the
number A′ of statements’ memory accesses of a SCoP that have a forward pattern along
the innermost array dimension, or that go to the same memory cell for one iteration of the
respective loop nest’s second-innermost loop.

Let us explain in detail how we determine whether a memory access in a transformed
program exhibits one of the two patterns stated above. Let ΘS : Zn → Zm with n,m ∈ N

be a schedule for a statement S that is injective. Consequently, each loop of the transformed
program that encases S is explicitly encoded in ΘS . Let f : Zn → Zk with k ∈ N be the
subscript function of one of the array accesses of S. We determine the coefficient matrix M of

106 7.1 Schedule Features

f ◦Θ−1 with Θ−1 being the inversion of Θ. Further, we determine the innermost dimension
d∗ of Θ that corresponds to a loop. This loop is the innermost loop in the transformed
code that encases S. The column of M that contains the coefficients for dimension d∗ of
the range of ΘS must contain 0 in all rows except the last. If the coefficient in the last row
is 0, all accesses in one execution of the innermost loop go to the same array cell. If the
coefficient in the last row is positive, the access pattern is forward along the innermost array
dimension.
With A being the total number of different memory access functions in the SCoP the

normalized feature is

FMemAcc =
A′

A
.

We extract the feature from TS .

Example 7.1.14. We demonstrate FMemAcc by continuing Example 7.1.1. Listing 7.3 shows
the code of syrk after transformation by the schedule in Equation 7.1.

Listing 7.3: The code of our running example syrk after transformation by the schedule in
Equation 7.1.✞

1 for (int i = 0; i < n; i++) {
2 for (int j = 0; j <= i; j++)
3 C[i][j] ∗= beta; // statement R
4 for (int k = 0; k <= i; k++)
5 for (int j = 0; j < m; j++)
6 C[i][k] += alpha ∗ A[i][j] ∗ A[k][j]; // statement S
7 }

✝ ✆

After the transformation of the program by the schedule in Equation 7.1, the accesses of
statement R to array C follow a forward pattern along the innermost array dimension. The
accesses to array C by statement S in one execution of the innermost loop that encases S
go to the same array cell. The accesses of S to array A follow a forward pattern along the
innermost array dimension. Obviously, all accesses to the scalars alpha and beta go to the
same respective memory address. Thus, we have FMemAcc = 1. ⊳

7.1.4 Discussion

The features that we have proposed in Section 7.1 cover the following performance aspects
of schedules: (partial) fusion and distribution of statements, sparsity of the partial schedules
of band nodes in schedule trees, parallelism, temporal and spatial data locality, and tiling.
Danner [46] also covered out-of-order execution and the computational overhead yielded by
conditional statements in loop bodies. While some of the features are meaningful only for
SCoPs with more than one statement, no feature explicitly characterizes SCoPs. Thus, we
avoid performance models that can be transferred only between programs of very similar
structure. All features can be normalized (approximately) to the interval [0, 1].

Currently, we do not cover loop vectorization in our feature set. During code generation,
LLVM may vectorize loops if possible, but we keep Polly’s more powerful polyhedral
vectorization strategy that relies on strip-mining [162] inactivated. Activating polyhedral
vectorization will likely make an additional vectorization feature necessary. The same
holds for any other loop transformation that requires an enabling transformation. One
such transformation is diamond tiling [29]. Our features cover multi-level tiling [80] in the
rectangular case already. The criterion for rectangular tiling is sufficient for unroll-and-jam,
which was noted by Sarkar [135] for the case of perfect loop nests. Other transformations,
such as simple loop unrolling, require no extra feature.

Our schedule features are meaningful for optimizing loop programs that can be expected
to profit from tiling and coarse-grained parallelization for execution on multicore CPUs.
An optimization for single-threaded processors, GPUs, or Intel Xeon Phi would require
a different set of features. Finding schedules that permit offloading of computations to

7 Classification of Schedules 107

GPUs, for instance by using the PPCG compiler [158] as code generator, would require the
restriction of the considered set of schedules to ones that yield tiles that can be computed
in parallel. Otherwise, one would encounter numerous schedules without this property.

To evaluate the run-time complexity of feature extraction empirically, we used the
partial loop unrolling technique proposed by Upadrasta and Cohen [148]. This technique
allows us to scale the number of statements, schedule coefficient space dimensions, and
dependence polyhedra of a SCoP. We measured the duration of schedule tree construction and
simplification (we only constructed TS and extracted all features from that representation)
and of feature extraction. Per benchmark and number of unrolled loop iterations, we
determined the algorithms’ average execution times across 100 schedules generated randomly.
The algorithms have been implemented in Scala 2.11 [110] and were executed on Oracle
JDK 8 on an Intel®Xeon®E5-2690 v2 CPU @ 3.00GHz CPU with ten physical
cores and 25MB of L3 cache. The operating system was Debian 9 with Linux 4.9. We
used isl (commit cfebc0c6 (Dec. 11, 2015) of https://repo.or.cz/isl.git) [152] and
libbarvinok [157] (commit 91ba8f18 of https://repo.or.cz/barvinok.git, May 26,
2018) to represent polyhedra. To model the unrolled loop nests as SCoPs, we used Polly
in the version of commit 2b618e01 (Jan. 27, 2016) of http://llvm.org/git/polly.git.
Figure 7.8 shows exemplary results for several programs from PolyBench 4.1. Per program,
we show the duration of the schedule tree transformation and simplification and the duration
of feature extraction. Additionally, we show the duration of computing the data locality
feature. We excluded FSpP from the evaluation since we found that this feature is mostly
insensitive to performance in other experiments (refer to Section 9.4).

While all other features can be extracted from the simplified schedule tree very quickly,
the duration of computing FDataLoc grows significantly with SCoP size. By analyzing
the algorithm to calculate FDataLoc, we found that the costliest part is to determine the
communicated volumes of data by the use of Barvinok’s counting algorithm (refer to
Section 2.2.1.5). The cost of this step depends strongly on the number of memory access
relations in the SCoP that address the same memory location. We mitigate this cost by
caching the communicated data volumes of legality-affecting data dependence polyhedra
already. This caching was enabled during the experiments reported above and the caches
were initialized in a warm-up run. Despite the exponential run-time complexity of Barvinok’s
counting algorithm, we believe that its use in our data locality feature is not problematic
since the dimensionality of the input polytopes is bounded by the dimensionality of the
arrays accessed by the SCoP’s statements. Their dimensionality is typically low. A data
locality feature that is cheaper to compute could rely on an estimation of statements’ memory
traffic [18, 124], which can be precomputed entirely.

To cover additionally programs that do not profit from coarse-grained parallelism and
tiling, we could include SCoP features such as the classification techniques for algorithms
that have been proposed by Nugteren et al. [106] and Sioutas et al. [141]. Sioutas et al. [141]
distinguish between loop nests that profit from temporal data locality and programs that
profit from spatial data locality. The algorithm species by Nugteren et al. [106] is more
finely grained. An algorithm species is a combination of five different array access patterns.
In an outlook to compilation assisted by machine learning, Pouchet [119] states further
program features, among them the number of statements, the maximum loop nest depth,
a characterization of the data dependences in the program, and, as another category of
features, a classification of programs by the kind of transformations and optimizations that
are applicable to them. By using a large and comprehensive set of training programs and
schedules, one may then be able to learn a widely applicable performance model. Depending
on the class of program, the configuration of the polyhedral code generator has to be modified
(for instance, by enabling or disabling loop parallelization).

As indicated in the introduction of Section 7.1 and illustrated in Section 5.6, we make a
tradeoff between reduced run-time complexity and algorithmic complexity on the one hand,

https://repo.or.cz/isl.git
https://repo.or.cz/barvinok.git
http://llvm.org/git/polly.git

108 7.2 Learning a Schedule Classifier and Integrating it with the Genetic Algorithm

0
1
2
3
4
5
6
7
8

5 10 15 20 25 30 35 40 45d
u

ra
ti

o
n

 i
n
 s

e
c
o
n
d
s

dependences

∅ schedule tree transformation
∅ feature extraction

∅ data locality feature

4
7 10

13
16

19
22

25
28

31

34

(a) atax

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50 55 60 65

3 7 11
15

19
23

27

31
35

39

43

(b) bicg

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4
5

8

12

(c) cholesky

0
0.5
1

1.5
2

2.5
3

3.5
4

10 15 20 25 30 35 40

7

10

13

16

(d) covariance

0

0.5

1

1.5

2

2.5

3

3.5

20 30 40 50 60 70 80 90

4

5
6

7
8

9

(e) fdtd-2d

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350

2 4
6

8
10

12

14

16

(f) floyd-warshall

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8 9 10

2

4

6

8

10

(g) gemm

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100 110 120

2

4

6

8

(h) jacobi-2d

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18

2 4 6
8

10
12

14

16

18

(i) syrk

0

0.2

0.4

0.6

0.8

1

1.2

4 6 8 10 12 14 16 18 20 22 24 26 28 30

3 5
7

9

11

13

(j) trisolv

Figure 7.8: The duration of schedule tree transformation and simplification, and the duration
of feature extraction relative to the number of data dependence polyhedra in a SCoP. We
show the duration of calculating FDataLoc separately to illustrate that it dominates the
total duration of feature extraction. Above each data point, the number of statements
in the respective SCoP is shown. Only the points correspond to measured values. They
have been connected by lines to improve perceptibility.

and accuracy on the other hand by extracting feature vectors from schedules before the
encoding of tiling. An empirical evaluation (refer to Section 9.4) must study whether the
learned model can distinguish profitable from unprofitable schedules sufficiently well despite
the tradeoff made. For instance, after tiling, a different schedule dimension may correspond
to a specific loop of the transformed program, which may affect the accuracy of FPar or
FMemAcc.

7.2 Learning a Schedule Classifier and Integrating it with the

Genetic Algorithm

To learn a model for a schedule classifier, we use either CART or random forest (refer to
Section 2.3.2). Both learning methods are supervised machine-learning techniques and,
therefore, need labeled training data. For the intended approach, the classifier must be
able to identify profitable schedules for a given SCoP. Thus, we must label schedules in
the training set as either profitable or unprofitable. The generation of training data takes
a set of schedules for a given SCoP as input. Per schedule, the execution time of the
respective transformed SCoP must be known. Further, the execution time of the original
code must be known. Here, we use the measured execution time of the binary that results

7 Classification of Schedules 109

unprofitable

profitable

≤ 50 % of max. speedup

Figure 7.9: Labeling of schedules for classifiers’ training data. The horizontal axis enumerates
the schedules in a set of schedules for program 3mm of PolyBench 4.1. The schedules
are ordered by yielded speedup in execution time over -O3. The vertical axis shows this
speedup. All schedules that yield a speedup smaller than 0.5 times the speedup yielded
by the most effective schedule are labeled as unprofitable (lower left corner), all other
schedules are labeled as profitable (upper right corner).

from the compilation of the original code with clang and -march=native -O3. We label
all schedules as “profitable” that yield a speedup over the execution time of the original
code compiled with -O3 that is at least 50% of the highest speedup yielded by any schedule
in the given set of schedules. We illustrate this labeling strategy in Figure 7.9. If all given
schedules for a SCoP yield a speedup smaller than 1.2, we assume that this SCoP does not
profit from the optimization with Polyite for an execution on multicore CPUs and the
given configuration of Polyite and Polly/LLVM. This threshold was chosen to identify
programs for which the maximum speedup yielded by Polly and Polyite is very low and
the variance of the speedups yielded by the schedules in the respective training sets is low, as
well. We wanted to avoid labeling many schedules in their training sets that are unprofitable
in reality as profitable.

A classifier that labels schedules as “profitable” or “unprofitable” can be combined with
the genetic algorithm that we propose in Chapter 6 in different ways. In the following, we
describe two possible combinations.

7.2.1 Classification as a Guard for Benchmarking

A conservative approach to combining the classification of schedules with our genetic
algorithm is to use the classifier as a guard for benchmarking. Instead of applying all
schedules in the genetic algorithm’s current population and measuring the transformed
program’s execution time in each case, one can classify the schedules and evaluate further
only the schedules that the classifier labels as profitable. Following the genetic algorithm
schema that is described in Section 6.1, we select the schedules evaluated by benchmarking
that yield the shortest execution times until we have selected half of the schedules in the
current population. If less than half of the schedules in the current population has neither
been successfully evaluated by benchmarking nor is being considered profitable by the
classifier, we fill up the set of schedules to be benchmarked with unprofitable schedules
chosen randomly. Thereby, we retain the population’s diversity. Figure 7.10 illustrates the
use of a schedule classifier as a guard for benchmarking.

110 7.2 Learning a Schedule Classifier and Integrating it with the Genetic Algorithm

Figure 7.10: A classifier can be used as a guard for the benchmarking of schedules.

Figure 7.11: Compared to the procedure illustrated in Figure 7.10, the duration of the
genetic algorithm can be reduced further by abstaining from benchmarking entirely until
the genetic algorithm’s last generation.

7.2.2 Two-Staged Approach

Remember our observation at the beginning of Chapter 7 that profitable schedules are
likely to occur among the schedules generated by Polyite under the precondition that the
search space exploration is biased to explore primarily specific subsets of the search space of
legal schedules by configuration. A faster approach to integrating the classification into the
genetic algorithm that is described in Section 6.1 is motivated by this observation: instead
of reducing the benchmarking effort by benchmarking only schedules that the classifier
labels as profitable, we may use classification alone until almost all schedules in the genetic
algorithm’s population are labeled as profitable.
We evaluate all yet unevaluated schedules in the current population by classification.

Thereafter, we select randomly a subset of the profitable schedules that contains half as
many schedules as the regular population size and use it as the subsequent population’s basis.
Since there may be few profitable schedules in the genetic algorithm’s early populations, we
may have to fill up the elected set of schedules with randomly chosen unprofitable schedules
to retain the population’s diversity. This process continues until half of the population has
been selected. If 95% of the schedules in the population are considered profitable by the
classifier or a maximum number of generations has been produced, the genetic algorithm is
terminated and the most profitable schedule in the genetic algorithm’s final population is
determined by benchmarking. Figure 7.11 illustrates this procedure. In the sequel of this
thesis, we refer to this variant of our genetic algorithm as GAC .
Compared to GAB and the approach presented in Section 7.2.1 that uses classification

as a guard for benchmarking, the probability that GAC keeps the most profitable schedule
visited during its search space exploration is reduced. It may be necessary to switch to one
of the two other variants of our genetic algorithm after a certain number of generations.

8 Implementation

This chapter is an overview of our iterative program optimizer Polyite. Polyite and
software on which it relies are available from http://github.com/stganser. We start
with an introduction to Polyite in Section 8.1 and continue by describing its usage in
Section 8.2. We go on with a description of existing software on which Polyite is based
(refer to Section 8.3). In Section 8.4, follows an overview of Polyite’s software architecture
and a detailed discussion of the schedule evaluation process and of parallel processing within
Polyite. Section 8.5 describes how we comply with the (super)-exponential asymptotic
run-time complexity of several algorithms used in Polyite.

8.1 Overview

Polyite is a stand-alone iterative polyhedral schedule optimizer that is written in Scala [110]
(version 2.11). Polyite can be used in combination with any polyhedral compiler that can
export polyhedral models of SCoPs in Polly’s [65] JSCOP format. JSCOP is a JSON
(Java Script Object Notation) [30] format. We illustrate the format in Example 8.1.1.

Example 8.1.1. To illustrate the JSCOP format, we show the model of our running
example syrk in Listing 8.1. The representation was exported by Polly in the version
after commit 2b618e01 (Jan. 27, 2016) of http://llvm.org/git/polly.git. A JSCOP
representation starts with the description of the SCoP’s structure parameters, the context
(line 2). The structure parameters p 2 and p 3 do not correspond to any actual structure
parameter of the SCoP. We found that, with release versions of Polly that are newer than
version 3.8, these additional structure parameters would not be present in the SCoP’s model.
Unfortunately, Polyite cannot reliably identify such artificial structure parameters and
adds dimensions that correspond to them to the schedule coefficient space. An inspection of
transformed programs revealed, that each of these additional structure parameters refers
to either n or m, which means that adding a non-zero coefficient for an artificial structure
parameter to a schedule matrix does not yield incorrect program behavior. We verified
this behavior for a number of the programs in PolyBench 4.1. The name of the SCoP
(line 3) and the list of the SCoP’s statements follow (lines 4-51). Per statement, the list
of its memory accesses (lines 6-19 and lines 25-46), its domain (lines 20 and 47), and its
schedule (lines 22 and 49) is given. All statement schedules have the same dimensionality.
As can be seen, JSCOP represents statement schedules by coefficient matrices (or linearly
affine expressions). The representation of iteration domains, schedules, and memory access
functions in JSCOP corresponds to the string representation of the data structures of the
Integer Set Library (isl) [152]. ⊳

Furthermore, the polyhedral compiler must be able to import schedules in our extended
JSCOP format and apply these schedules to the SCoP to be optimized. We extended
JSCOP by a schedule tree representation of the represented SCoP’s schedule to be able
to pass schedule trees to the polyhedral compiler. The extension is necessary because
we delegate schedule optimizations such as tiling to the polyhedral compiler. Polly can
apply tiling and any other schedule transformation only to schedule trees and is unable to
transform imported schedules further without our modification.

As illustrated in Figure 8.1, we achieve the decoupling of Polyite and the polyhedral
compiler by wrapping the compiler with a script that has a specified interface, but internally

111

http://github.com/stganser
http://llvm.org/git/polly.git

112 8.1 Overview

Listing 8.1: JSCOP representation of syrk, as exported by Polly.
✞

1 {
2 ” context ” : ” [n , m, p 2 , p 3] −> { : −2147483648 <= n <= 2147483647 and

−2147483648 <= m <= 2147483647 and 0 <= p 2 <= 4294967295 and 0 <= p 3 <=
4294967295 }” ,

3 ”name” : ” entry . s p l i t => f o r . end38” ,
4 ” statements ” : [
5 {
6 ” a c c e s s e s ” : [
7 {
8 ”kind” : ” read ” ,
9 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body6 [i 0 , i 1] −> MemRef C [

i 0 , i 1] }”
10 } ,
11 {
12 ”kind” : ” read ” ,
13 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body6 [i 0 , i 1] −>

MemRef beta [] }”
14 } ,
15 {
16 ”kind” : ” wr i t e ” ,
17 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body6 [i 0 , i 1] −> MemRef C [

i 0 , i 1] }”
18 }
19] ,
20 ”domain” : ” [n , m, p 2 , p 3] −> { Stmt for body6 [i 0 , i 1] : i 0 < n and 0 <= i1

<= i0 }” ,
21 ”name” : ” Stmt for body6 ” ,
22 ” schedu le ” : ” [n , m, p 2 , p 3] −> { Stmt for body6 [i 0 , i 1] −> [i 0 , 0 , i 1 , 0]

}”
23 } ,
24 {
25 ” a c c e s s e s ” : [
26 {
27 ”kind” : ” read ” ,
28 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] −>

MemRef A [i 0 , i 1] }”
29 } ,
30 {
31 ”kind” : ” read ” ,
32 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] −>

MemRef alpha [] }”
33 } ,
34 {
35 ”kind” : ” read ” ,
36 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] −>

MemRef A [i 2 , i 1] }”
37 } ,
38 {
39 ”kind” : ” read ” ,
40 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] −>

MemRef C [i 0 , i 2] }”
41 } ,
42 {
43 ”kind” : ” wr i t e ” ,
44 ” r e l a t i o n ” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] −>

MemRef C [i 0 , i 2] }”
45 }
46] ,
47 ”domain” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] : i 0 < n and 0

<= i1 < m and 0 <= i2 <= i0 }” ,
48 ”name” : ” Stmt for body14 ” ,
49 ” schedu le ” : ” [n , m, p 2 , p 3] −> { Stmt for body14 [i 0 , i 1 , i 2] −> [i 0 , 1 , i 1

, i 2] }”
50 }
51]
52 }

✝ ✆

8 Implementation 113

Figure 8.1: Tool chain of Polyite.

is specific to the compiler (in our case clang with Polly). The wrapper script does not
only invoke the compiler, but it also measures the compiled program’s execution time and
verifies its computation result. The script that is currently implemented is specific not
only to Polly, but also to the optimization of programs from PolyBench 4.1 [168]. This
eased the preparation of our experimental evaluation. The presence of a generic wrapper
script enables Polyite to optimize arbitrary SCoPs that can be modeled by Polly. The
generality of Polyite’s configuration options should support this goal. For practicality,
loop nests that are to be optimized iteratively should be extracted into a small separate
program and should be fed with artificial input data.
Internally, Polyite has a modular, extensible architecture. Alternative functionality,

such as different sampling strategies for schedules (refer to Section 4.6) or the kind fitness
assessment that is to be used by the genetic algorithm, can be selected by configuration.

8.2 Usage

To run Polyite, one must use one of the following three commands:

run genetic opt invokes an optimization by the genetic algorithm (refer to Chapter 6).

run rand exploration invokes random search space exploration (refer to Chapter 4).

run rand exploration letsee invokes random exploration using an adaptation of the
search space construction by Pouchet et al. [124] (refer to Section 4.8).

Each command takes two command line parameters:
> ./run genetic opt syrk.jscop syrk ga config.jscop

The first parameter specifies a file that contains the JSCOP representation of the SCoP
that is to be optimized. The second parameter is a configuration file. It configures the
behavior of Polyite. Among the configuration options are the sampling strategy to be
used, the number of generations for the genetic algorithm and its population size, and the
script that is to be called for the benchmarking of schedules. Polyite can be configured to
import an existing set of schedules from a file and start or continue its genetic algorithm
from the schedules given. Moreover, in random exploration mode, Polyite can import a
given set of schedules and benchmark or classify all of the given schedules that have not
been evaluated already. For the purpose of importing schedules, Polyite uses its own file
format which, like the (extended) JSCOP format, is based on JSON.
We provide a separate tool for the labeling of training sets of schedules for schedule

classifiers (refer to Chapter 7).

8.3 Existing Basic Building Blocks

As shown in Figure 8.1, besides clang/Polly, the main existing building blocks on which
Polyite relies are the Integer Set Library (isl) [152], libbarvinok [157], and scikit-learn.
This subsection introduces these and other dependencies of Polyite.

114 8.3 Existing Basic Building Blocks

8.3.1 The Integer Set Library (isl)

The Integer Set Library (isl) by Verdoolaege [152] is a library for the modeling of integer sets
(refer to Definition 2.2.13) and relations between integer sets (“maps”). Besides operations
on integer sets and maps, such as union, difference, projection, calculation of multiple types
of hulls, application of maps to sets, calculation of lexicographic minimum/maximum, etc.,
isl contains dedicated functionality for the polyhedron model. This comprises dependence
analysis, a variant [156] of the PLuTo scheduling algorithm [25] (refer to Section 2.2.2.5),
polyhedral code generation, and an implementation of schedule trees [66] (refer to Section 5.2).
At the heart of isl are an extension of Fourier-Motzkin variable elimination that is known
as the Omega Test [129, 152] and a parametric integer programming solver [153].

Since isl is written in C, Scala programs run on the Java Virtual Machine (JVM),
and Java libraries can be invoked from Scala code, Polyite can use isl via the Java
Native Interface (JNI)11. The generator of the JNI bindings for isl was built by Armin
Größlinger and is available from https://github.com/stganser/isl together with the
version of isl used.

We use isl in the version of commit cfebc0c6 (Dec. 11, 2015) of https://repo.or.cz/
isl.git.

8.3.2 libbarvinok

libbarvinok by Verdoolaege et al. [157] is an extension of isl that can count the number
of elements of an integer set. Since we do not have Java/ Scala bindings for libbarvinok
available, Polyite uses libbarvinok by running a subprocess that provides the library’s
functionality via a text-based interface.

We use libbarvinok in the version of commit 91ba8f18 (May 26, 2018) of https:
//repo.or.cz/barvinok.git.

8.3.3 Größlinger’s Implementation of Chernikova’s Algorithm

Our implementation of Chernikova sampling uses Armin Größlinger’s implementation of
Chernikova’s algorithm [107, 108, 109] (refer to Section 2.2.1.2) in Scala. The library relies
on isl. Größlinger implemented the algorithm’s extensions by Fernández and Quinton [55]
and Le Verge [90].

8.3.4 LLVM

LLVM by Lattner and Adve [89] is a modular compiler and virtual machine infrastructure.
Further, LLVM contains a just-in-time compiler for program optimization at run time.
Internally, LLVM represents programs in its intermediate representation (LLVM IR). As
illustrated by Figure 8.2, the compilation of programs in LLVM is divided into three phases
from a macroscopic perspective: Initially, an LLVM front end must translate the code that
is written in the original source language to LLVM IR. The LLVM front end for languages
in the C language family is clang 12. In the second phase, the program’s representation in
LLVM IR is optimized by different optimization passes. After the optimization of LLVM
IR, a back end must be used to translate the program to code that is suitable for the
intended run-time environment target, which is often a computer architecture. One back
end translates to assembler code for the x86 processor architecture. Back ends perform
optimizations that are specific to the corresponding target.

11https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
12https://clang.llvm.org

https://github.com/stganser/isl
https://repo.or.cz/isl.git
https://repo.or.cz/isl.git
https://repo.or.cz/barvinok.git
https://repo.or.cz/barvinok.git
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://clang.llvm.org

8 Implementation 115

Figure 8.2: Macroscopic view of the architecture of compilers that are based on LLVM. The
layout of the figure is inspired by Lattner [88].

Figure 8.3: High-level steps taken by Polly to detect and optimize SCoPs in a program.

We use LLVM in the version of commit bf8415a8 (Jan. 10, 2016) of http://llvm.org/
git/llvm.git in combination with clang in the version of commit 9909f323 (Jan. 27,
2016) of http://llvm.org/git/clang.git.

8.3.5 Polly

Polly, which was initiated by Grosser et al. [65], is a set of LLVM (refer to Section 8.3.4)
passes that provide polyhedral program analyses and optimization. Internally, Polly relies
on isl (refer to Section 8.3.1).

As illustrated in Figure 8.3, Polly identifies regions in LLVM IR that are SCoPs. Polly
builds these SCoPs’ polyhedral models, optimizes the models’ schedules, and generates
optimized LLVM IR code from the transformed model. The version of Polly used models
each basic block in the SCoP as one statement. A basic block is a sequence of statements
that does not contain branching instructions. The optimization of schedules consists of two
steps. In the first step, Polly uses a variant [156] of the PLuTo scheduling algorithm [25]
(refer to Section 2.2.2.5) to compute a linearly affine schedule that minimizes the reuse
distances of data dependences and enables tiling and parallelization. The resulting schedule
is represented by a schedule tree (refer to Section 5.2). In a second step, Polly optimizes
this schedule tree further, for instance by tiling and strip-mining.

Besides optimizing a SCoP’s schedule by itself, Polly can export the SCoP’s model via
its JSCOP interface (refer to Example 8.1.1), reimport a transformed model, and replace
the SCoP’s code according to the imported model. As shown in the example, JSCOP is
based on isl maps. Thus, it is impossible to apply Polly’s schedule tree optimizations from
the second phase of Polly’s internal schedule optimization. We extended JSCOP by an
embedded schedule tree, to which Polly can apply its schedule tree optimizations after the
import. Polly verifies the legality of imported schedules. For a sufficient legality criterion,
we must check the legality of imported schedule trees after the application of schedule
tree optimizations. Unfortunately, this check proved to be computationally too expensive.
Therefore, we verify imported schedule trees only before their further transformation. This
check is necessary, but not sufficient for the legality of an imported schedule. In other words,

http://llvm.org/git/llvm.git
http://llvm.org/git/llvm.git
http://llvm.org/git/clang.git

116 8.3 Existing Basic Building Blocks

client

control daemon

compute cluster

...

slurmctld

User

srun
srun task_2.bash

srun task_n.bash... job
allocation

job allocation request

stdin/stdout/
stderr

slurmd

task_n.bash

slurmd

task_n.bash

slurmd

task_n.bash

Figure 8.4: Architecture of the SLURM Workload Manager. This figure is a simplified
reproduction of a figure by Yoo et al. [167]. We show only the aspects that are relevant
to Polyite.

if Polyite groups schedule dimensions in a permutable band incorrectly, Polly will not be
able to recognize the schedule tree’s illegality.

We use Polly in the version of commit 2b618e01 (Jan. 27, 2016) of http://llvm.org/
git/polly.git.

8.3.6 SLURM Workload Manager

The Simple Linux Utility Resource Manager (SLURM) [167] is a workload manager for
compute clusters whose nodes run Linux. Figure 8.4 shows the main architectural aspects
of SLURM. To submit a computation job, clients invoke the srun program. Along with the
script that executes the computation job, the client must specify the required computation
resources. srun sends the job allocation request to the SLURM control daemon, which
creates an allocation on a compute node that matches the resource specification. Using a
direct connection of the client and a compute node, the standard input, output, and error
streams of the computation job are connected to the srun process on the client computer.
Thereby, the client can interact with the computation job. Besides interactive job allocations
with srun, SLURM also supports the submission of non-interactive batch jobs. Inside a
SLURM job, srun can be used to initiate a job step, which is a sub-computation that may
be limited to a subset of the allocated computation resources.

8.3.7 scikit-learn

For the classification of schedules (refer to Section 7.2), Polyite relies on the implementations
of CART and random forest (refer to Sections 2.3.2.1 and 2.3.2.2) in the machine-learning
library scikit-learn [118] in version 0.19.2. The application programming interface of
scikit-learn is written in Python 13. To integrate scikit-learn with Polyite, we train
models and classify schedules’ feature vectors in interactive Python 3.5.3 sessions that are
subprocesses of Polyite. We use multiple Python sessions to be able to classify schedules
in parallel. Polyite’s generic interface to interactive Python sessions supports virtual

13https://www.python.org/

http://llvm.org/git/polly.git
http://llvm.org/git/polly.git
https://www.python.org/

8 Implementation 117

Python environments 14 and the execution of Python scripts. The former increases the
portability of Polyite by making an existing installation of scikit-learn unnecessary.

An alternative to scikit-learn that would not require subprocesses is the Weka [58]
data mining library. Weka is written in Java, and Polyite could therefore be linked to it.

8.3.8 MPI

The Message Passing Interface (MPI) [98] is a standard for inter-process communication
in the context of distributed-memory parallelization. Processes that collaborate to compute
a task in parallel and potentially run on different computers can communicate via MPI.
MPI offers one-to-one communication and functions to distribute data to all processes in
a group of processes or to collect data from all processes in a group. SLURM (refer to
Section 8.3.6) can initialize the MPI communication among processes that run on nodes of
a compute cluster. Bernasch [23] contributed a distributed genetic algorithm to Polyite
(refer to Section 6.4) that uses Open MPI 15. Polyite is known to be compatible with
Open MPI in version 2.1.1. Open MPI is an implementation of the MPI standard that
provides bindings for Java programs on the basis of the Java Native Interface (JNI).

8.3.9 The ExaStencils Code Generator

Basic operations of the schedule search space construction were originally implemented
by Stefan Kronawitter as part of a polyhedral schedule search space exploration in the
ExaStencils code generator [87]. Polyite was implemented on the basis of this code.
The functionality that we reused comprises the basic layout of the schedule coefficient space
(refer to Section 4.2), the dependence analysis (refer to Section 4.3), the functionality to
build the sets of weakly and strongly satisfying schedule coefficient vectors for a given
dependence polyhedron (refer to Section 2.2.2.3), functions to calculate sets of vectors that
are linearly dependent or independent from a given set of vectors in certain dimensions (refer
to Section 4.7), and, finally, the functionality to determine the direction of a dependence
polyhedron relative to a given one-dimensional schedule (refer to Section 2.2.2.3).

8.4 Software Architecture

Most functionality in Polyite is provided by loosely-coupled replaceable modules. Most of
these modules are stateless. To allow for variability within modules, we either pass strategies
to respective functions as function parameters, or rely on factories. Polyite’s configuration
is stored in an object, which is accessible to many functions via a reference that we pass as
a function argument.

We start by providing an overview of Polyite’s most important (replaceable) components.
We continue by describing how Polyite can utilize SLURM to benchmark multiple schedules
in parallel on a compute cluster. Finally, we discuss the parallelization of tasks in Polyite.

8.4.1 Class Diagram

Figure 8.5 is a UML class diagram that shows the central components of Polyite and
interfaces, which are called traits in Scala, for the most relevant kinds of replaceable
functionality. The white box labeled Polyite represents the main module of Polyite and is,
in reality, divided into several Scala objects. An object is a class that implicitly is a singleton,
which means that only one instance of it exists. There are more objects that play a central
role in Polyite. They are represented by the striped nodes in Figure 8.5. Polyite’s genetic

14https://docs.python.org/3/tutorial/venv.html
15https://www.open-mpi.org/

https://docs.python.org/3/tutorial/venv.html
https://www.open-mpi.org/

118 8.4 Software Architecture

F
ig
u
re

8.
5:

U
M
L
cl
as
s
d
ia
gr
am

th
at

sh
ow

s
th
e
m
a
in

co
m
p
on

en
ts

of
P
o
ly

it
e
.
M
os
t
fu
n
ct
io
n
al
it
y
is

p
ro
v
id
ed

b
y
re
p
la
ce
ab

le
st
ra
te
gi
es
.

8 Implementation 119

algorithm (refer to Chapter 6) is implemented in the object GeneticOptimization. Genetic
Optimization relies on the factory GeneticOperatorFactory for genetic operators. The
genetic operators are implemented in two objects: one object for mutations and one for
crossover operators. As described in Section 6.3, there are multiple ways to define the equality
of two schedules. Based on the current configuration, ScheduleHashFunctionFactory can
add a wrapper to a schedule matrix that implements the desired equivalence relation in its
methods equals and hashCode.

Variable behavior is defined by a set of traits. We use the strategy design pattern [60]
(1) to implement the schedule equivalence relations that are described in Section 6.3, (2)
to allow the export of schedules and performance data to different file formats (currently
CSV, JSCOP, and Polyite’s own JSON-based file format), (3) to implement the sampling
techniques for schedule matrices that are described in Section 4.6, (4) to provide replaceable
schedule migration strategies for Polyite’s distributed genetic algorithm (Section 6.4)16,
(5) replaceable selection strategies for our genetic algorithm, and (6) replaceable termination
criteria (refer to Sections 6.1 and 7.2.2) for the genetic algorithm.

Further, we allow for the replacement of the schedule evaluation strategy. Here, we rely
on the template method design pattern[60]. We can either evaluate schedules by the use of
benchmarking or by one of the strategies that involve classification (refer to Section 7.2).

8.4.2 Schedule Evaluation

Polyite can evaluate a configurable number of schedules in parallel. Each schedule
evaluation thread selects a schedule that has not been evaluated yet and starts the schedules’
evaluation by transforming it to a simplified schedule tree. If the schedule evaluation requires
the classification of schedules, the thread will continue by computing the schedule’s feature
vector and will rely on its dedicated interactive Python shell to classify the schedule.
Consequently, for n schedule evaluation threads, we train n schedule classifiers that run in n
interactive Python shells.

To benchmark schedules in parallel, Polyite relies on SLURM. A schedule evaluation
thread that needs to apply a schedule to the program that is to be optimized and measure
the transformed program’s execution time starts srun as a subprocess of Polyite and passes
the name of the compiler wrapper script as a command line parameter. The call to srun

will block until SLURM has allocated a compute cluster node for the benchmarking of the
schedule. SLURM links the standard input and output streams of the srun process, which
runs locally, and the benchmarking script, which executes on the cluster node. Therefore,
the schedule evaluation thread can send a textual representation of the schedule to the
benchmarking script via the standard input stream of srun and receive the measured
execution times via srun’s standard output stream.

In summary, the remote execution of the schedule benchmarking procedure is transparent
to Polyite. Even if Polyite and the benchmarking of schedules are executed on the same
node of a compute cluster, for instance on different sockets, using srun can be handily to
control the behavior of hyperthreading or Intel Turbo Boost.

8.4.2.1 Caching

Particularly in the case of small SCoPs and in late generations of the genetic algorithm,
the schedule evaluation may encounter simplified schedule trees that have already been
evaluated before. To avoid a repeated evaluation of a schedule tree, we cache evaluation
results in a cache of unbounded size.

16These were contributed by Bernasch [23].

120
8.5 Complying with the (Super-)Exponential Asymptotic Run-Time Complexity of

Algorithms in Polyite

8.4.3 Parallelization

Two levels of parallelism can be enabled in Polyite. The first level is shared-memory
parallelism. Enabling the second level turns Polyite’s genetic algorithm into a distributed
genetic algorithm (refer to Section 6.4) running in parallel using distributed memory.

8.4.3.1 Shared Memory

The shared-memory parallelization is a parallel version of our sequential genetic algorithm
for schedule optimization (refer to Sections 6.1 and 7.2). We parallelize the fitness evaluation
of the schedules, as described in Section 8.4.2. Further, we parallelize the generation of
random schedules and the generating of offspring populations by mutating and crossing.
This requires a synchronization of the threads that generate the schedules to avoid the
insertion of duplicate schedules into the population.
As described in Section 8.3.1, Polyite relies on isl to represent many of its main data

structures. Each object in isl (for instance, an integer set) is associated with a context
object [154]. isl context objects are not thread-safe. Yet, multiple context objects are
allowed to exist in one application. All isl objects that are involved in an operation must
be associated with the same context. The JNI bindings for isl that Polyite uses achieve
thread safety for any isl object by acquiring a lock on the object’s associated context object
before the start of any operation on the object. Naturally, this design causes a contention
of the schedule generation threads. To overcome the contention, we transfer isl objects to
temporary contexts before time-consuming library calls or invocations of algorithms that
perform a large number of calls to isl library functions. Unfortunately, isl did not support
the transfer of objects among contexts at the time of writing this thesis. We serialize isl
objects to character strings and parse the serialization in the target context. This costly
practice requires a careful consideration of when to use temporary contexts.
Apart from the fact that a genetic operator that is cheaper to apply than other genetic

operators may be able to profit from its efficiency and produce more schedules by chance,
the behavior of the shared-memory parallel genetic algorithm does not differ fundamentally
from the sequential genetic algorithm.
Alba and Tomassini [3] testify that, for parallel versions of a sequential evolutionary

algorithm, parallelizing parts of the algorithm other than the fitness evaluation of the
population’s individuals is typically not worthwhile. Yet, in our case, the cost of preserving
a schedule’s legality and of encoding all of the transformed program’s loops in the schedule
explicitly makes parallelizing random schedule generation, mutation, and crossover likely
worthwhile.

8.4.3.2 Distributed Memory

Bernasch [23] implemented an extension of Polyite’s sequential genetic algorithm that
turns it into a distributed genetic algorithm (refer to Section 6.4). Each subpopulation of
the distributed genetic algorithm resides in a dedicated Polyite process. For the migration
of schedules between the subpopulations, Bernasch’s implementation relies on MPI (refer to
Section 8.3.8). Using Polyite’s parallel schedule evaluation and SLURM, each Polyite
process can allocate compute cluster nodes dynamically to benchmark schedules. Figure 8.6
illustrates the distributed setup.

8.5 Complying with the (Super-)Exponential Asymptotic
Run-Time Complexity of Algorithms in Polyite

Many algorithms used by Polyite, such as Chernikova’s algorithm [107, 108, 109] (refer
to Section 2.2.1.2), Fourier-Motzkin variable elimination [138, 161], and parametric integer

8 Implementation 121

Figure 8.6: Polyite’s genetic algorithm can be
distributed across a compute cluster’s nodes.
Each node maintains a subpopulation. Via
MPI, schedules can migrate between nodes.
By using SLURM, the Polyite processes
can allocate other cluster nodes for the bench-
marking of schedules.

programming [50] (refer to Section 2.2.1.3), have a (super-)exponential asymptotic time
complexity. While the average time complexity is much lower, we must be able to bail out
of computations which take unacceptably long. For this purpose, we rely on isl’s ability to
limit the number of internal low-level steps of a function invocation and on timeouts that
are based on execution time measurement. In the current implementation, we apply both
timeout mechanisms to both the mutation and crossover of schedules and to the random
sampling of schedules. In the case of a timeout, Polyite tries to sample a different schedule.

9 Evaluation

In Chapters 4 to 7 we propose a novel approach to iterative (or search-based) program
optimization in the polyhedron model. Our focus is on numerical computations such as
matrix multiplication, stencils, or algorithms in dynamic programming that profit from
coarse-grained OpenMP parallelism and optimizations of data locality. The theoretical
foundation is the iterative schedule optimization technique by Pouchet et al. [122, 124]. Our
technique is implemented in the tool Polyite (refer to Chapter 8), which uses LLVM [89] and
its polyhedral optimizer Polly [65] to detect SCoPs in programs, to build their polyhedral
model, and to apply schedules to SCoPs. Polyite is compatible with a customized version
of Polly (refer to Section 8.3.5). Polly may apply tiling and loop parallelization with
OpenMP after the application of the schedules that are generated by Polyite. Currently,
Polyite is incompatible with Polly’s polyhedral prevectorization (strip-mining). A correct
prevectorization appears to require an additional preparation of the schedules in Polyite.
Thus, we excluded polyhedral vectorization from the scope of our evaluation entirely.

Our expectation is that, with our approach to schedule search space exploration, it is
possible to find significantly better schedules under the preconditions set (refer to Section 9.1
for details on the experimental setup) than with the use of isl’s version of the PLuTo
scheduling algorithm [25, 152] (refer to Section 2.2.2.5). Furthermore, we expect that the
surrogate performance models proposed in Chapter 7 can be useful to speed up our genetic
algorithm and to reduce the benchmarking effort in comparison to random exploration
without losing the benefit of iterative optimization.

The schedule search space exploration of our approach is necessarily incomplete. It is
difficult or may even be impossible to identify guarantees for the quality of the optimization’s
result analytically. Instead, we resort to an empirical evaluation. As the baseline, we use
the PLuTo scheduling algorithm and an exploration of the search space that is constructed
by our adaptation of the algorithm for search space construction by Pouchet et al. [124].

We split the empirical evaluation into two parts: in Section 9.3, the focus is on the sampling
techniques that Chapter 7 presents and the genetic algorithm described in Chapter 6. This
genetic algorithm relies solely on benchmarking for the determination of schedules’ fitness.
Like in Chapter 7, we refer to it as GAB. Section 9.4 describes the result of an evaluation
of the surrogate performance models described in Chapter 7 and their combination with our
genetic algorithm that we introduced as GAC in Section 7.2.2.

We start with a description of the experimental setup in Section 9.1 and continue with a
characterization of the benchmark set for the experiments in Section 9.2. In Sections 9.3
and 9.4, we present the two parts of our evaluation. Both sections have the same structure:
first, we raise a number of research questions to shed light on our expectations to iterative
schedule optimization for parallelization and the use of our surrogate performance models for
schedules. Next, we present experiments that we conducted to study the research questions.
Based on the experiments’ results we give answers to the research questions. We conclude
the chapter by a discussion of potential threats to validity in Section 9.5.

9.1 Experimental Setup

Our experimental setup comprises four components: the implementation of our approach,
which includes the libraries used, the tool chain for the compilation of program versions, the

123

124 9.1 Experimental Setup

execution environment and the settings used for the benchmarking of program versions, and
the configuration of the search space exploration.

9.1.1 Implementation

Polyite is written in Scala (version 2.11). For machine learning, we use scikit-learn
[118] (version 0.20.2). scikit-learn runs in a Python (version 3.5.3) session that is a child
process of Polyite. To handle polyhedra, Polyite relies on JNI bindings for isl (commit
cfebc0c6 of https://repo.or.cz/isl.git on Dec. 11, 2015) and libbarnvinok (version
0.41). Details of the implementation can be found in Chapter 8.

9.1.2 Tool Chain

For SCoP extraction, tiling, and code generation, Polyite relies on a modified version of
Polly that is based on commit 2b618e01 (Jan. 27, 2016) of http://llvm.org/git/polly.
git, LLVM in the version of commit bf8415a8 (Jan. 10, 2016) of http://llvm.org/git/
llvm.git, and clang in the version of commit 9909f323 (Jan. 27, 2016) http://llvm.
org/git/clang.git. The relevant compiler flags that we use to tile (with a fixed tile size of
64), generate code, and parallelize loops are: -march=native -O3 -mllvm -polly -mllvm

-polly-position=early -mllvm -polly-parallel=true -mllvm -polly-tiling=true

-mllvm -polly-vectorizer=none -mllvm -polly-default-tile-size=64. For the base-
line measurements, we set -polly-optimizer=isl, if we import schedules that are produced
by Polyite, we set -polly-optimizer=none. An additional exploration of other tile sizes
on top of the polyhedral schedule space exploration would add further dimensions to our
search space, which would make its exploration impractical. Thus, combing schedule search
space exploration with an optimization of tile sizes such as by the autotuner of Sato et al.
[136] or the approach of Shirako et al. [139] in a practical way remains an open challenge.
Adding a static heuristics for tile size selection, for instance, the heuristics used by Pouchet
et al. [127], who compute tile sizes such that the data accessed by each tile roughly fits into
the L1 cache, would likely be unproblematic. Depending on the polyhedral compiler’s ability
to accept different vectors of tile sizes for different loop nests in the transformed SCoP, it
may then be necessary to encode tiling already into the schedules inside Polyite. Polyite
uses a debug build of LLVM, clang, and Polly because the original tool chain relied
on LLVM’s debug tools opt and llc for the injection of schedules into Polly. With the
current setup, which starts the entire compilation process by a single invocation of clang,
we could use a release build of the compiler, which would increase the efficiency of the
program variants’ compilation.

9.1.3 Benchmarking

The compilation of transformed program versions and the benchmarking of the transformed
code was run on the Intel Xeon E5-2650 v2 CPU @ 2.6GHz with eight physical cores
and 20MB of L3 cache. Hyperthreading and Intel Turbo Boost [36] were disabled. The
operating system was Debian 9 with Linux 4.9. We ran Polyite on OpenJDK 8. To
mitigate measurement bias, we executed each transformed program version five times and
took the shortest measured execution time. In an additional preceding run, we verified the
computation result. We purged any schedule that yielded incorrect computation results.
As the reference result, we took the output that had been produced by a binary that was
compiled by the same version of clang with -O0. While all schedules are legal in theory,
they can, for instance, trigger integer overflows in the transformed programs. A schedule’s
evaluation may fail for the following reasons: a timeout (five minutes for compilation and 30
minutes overall17), failed compilation, and miscompilation resulting in a run-time error.

17For the programs lu and ludcmp, we use an overall timeout of 40 minutes.

https://repo.or.cz/isl.git
http://llvm.org/git/polly.git
http://llvm.org/git/polly.git
http://llvm.org/git/llvm.git
http://llvm.org/git/llvm.git
http://llvm.org/git/clang.git
http://llvm.org/git/clang.git

9 Evaluation 125

9.1.4 Configuration

In Chapter 4, we could identify two sampling strategies for schedules that are potentially
useful for a schedule search space exploration: projection sampling (refer to Section 4.6.6)
and Chernikova sampling (refer to Section 4.6.5). While projection sampling scales better
with SCoP size, Chernikova sampling is suitable for the SCoP sizes found in PolyBench 4.1.
Furthermore, Chernikova sampling enables generator coefficient replacement (refer to Sec-
tion 6.2.1.4) as an additional mutation operator for our genetic algorithm. Finally, controlling
the number of rays and lines that Chernikova sampling may use to form a schedule coefficient
vector is a straightforward way to regulate the sparsity of schedule matrices. It is widely
believed that sparse schedule matrices are likely more profitable than dense matrices. Thus,
we use Chernikova sampling as our primary sampling strategy for schedules.

For the number of rays and lines that may form a schedule coefficient vector together
with a point on one of the corresponding polyhedron’s minimal faces, we use three settings
with Chernikova sampling: (1) If at most two rays and two lines may be added to a vertex
to form a schedule coefficient vector, the schedule matrix has a high sparsity because many
coefficients are zero. We call this the sparse setting. (2) If the allowed number of rays and
lines is only limited by their total number, the matrices tend to be dense which we call the
dense setting. (3) The mixed setting produces sparse and dense matrices. These settings
apply to the generation of coefficient vectors by random exploration as well as by genetic
operators.

Some experiments also cover projection sampling (refer to Section 4.6.6). Projection
sampling takes the probability function of a discrete probability distribution as a parameter.
We use a geometric distribution with p = 0.7. We accept a schedule coefficient c ∈ Z if
the acceptance test according to the geometric probability function accepts |c|. If c was
chosen from an interval [lb, ub], lb, ub ∈ Z with 0 /∈ [lb, ub], we perform the acceptance test
for |c| −min{|lb| , |ub|}. By default, we require c ∈ ([−4, 4] ∩ Z). With these settings, we
expect to obtain comparatively sparse schedule matrices with small coefficients.

A run of our genetic algorithm has at most 40 generations (excluding the initial population).
GAB may either be configured to run for a fixed number of generations (either 20 or 40 in
our experiments) or it may terminate early if, over the last eight generations, the execution
time yielded by the optimal schedule was reduced by less than 2% from one generation
to the next. In the latter case, the maximum number of generations possible is 40. We
had determined the parameters for the latter termination criterion by an analysis of GAB ’s
behavior when it runs for a fixed number of 40 generations. One observation was that, for
most programs in the benchmark set used, the number of 40 generations is too high. GAC

terminates if at least 95 percent of the schedules in the population are classified as profitable
or after 40 generations. The initial population is produced randomly using the sparse setting
of random exploration.

The population size of GAB is 30 schedules. A bigger population size or a larger number
of generations conflicts with GAB’s costly fitness evaluation. As, in one generation, we
replace half of the population, GAB visits at most 630 schedules. In comparisons of GAB

and random exploration, we let random exploration visit the same number of schedules. To
ensure a good distribution of randomly sampled schedules, we sample one or two schedules
from the search space region currently visited. Still, the exploration may enter a search
space region repeatedly. If, during random schedule generation, a thread has not been able
to find a new schedule after 1000 tries it terminates. For the generating of the genetic
algorithms initial population and for mutation and crossover, we use a smaller threshold of
20, which is justified by the genetic algorithm’s small population size.

For GAC , we increased the population size to 50 schedules to raise the population’s diversity.
Also, an increased population should not affect GAC ’s processing time substantially because

126 9.2 Benchmark Set

the costly evaluation by benchmarking is applied to only the schedules in the final population.
The maximum number of schedules that GAC may visit in one run is 1050.

The mutation operators are configured to mutate 10% of a schedule’s dimensions at the
start of the optimization process, but at least one row. Accordingly, generator coefficient
replacement mutates 10% of the line, ray, and vertex coefficients at the beginning. Since,
for schedule matrices with less than 11 rows, this always results in one row to be modified,
the effect of simulated annealing diminishes for small SCoPs. The annealing function
f(p, g) = p/

√
ln(g + e− 1) calculates the fraction of schedule dimensions to be mutated

from the currently generated generation g ∈ N and the initial fraction p ∈ [0, 1]. Geometric
crossover produces up to three schedules at once. The other operators produce just one
schedule. The special role of geometric crossover is justified, since it produces otherwise
unreachable rows. In each generation of the GA, we introduce two randomly generated
schedules. The chosen configuration is the result of preliminary experiments. We challenge
some of the choices in the research questions.

9.2 Benchmark Set

We have evaluated our approach on the widely used PolyBench 4.1 [121] benchmark set.
PolyBench is dedicated to the evaluation of techniques in the context of the polyhedron
model. PolyBench 4.1 is a collection of 30 small programs that contain each one function
whose body is a SCoP. These functions represent the actual benchmarks. The programs
perform numerical computations from different domains. Among these domains are stencils,
algorithms from linear algebra, and dynamic programming. Among other features, Poly-
Bench enables the verification of computation results, the measurement of the benchmark
function’s execution time, and variable configurable problem sizes. The problem sizes range
from “mini” to “extra large”. In our experiments, we use the extra large setting. Since we
would like to optimize for parallelism and improved data locality, we need a problem size that
yields a workload that is sufficiently large to profit from parallelization, and, ideally, we must
ensure that the program processes an amount of data that does not fit into the processor
cache. Table 9.1 characterizes the programs in PolyBench 4.1 and shows results of our
baseline measurements with Polly and isl’s variant of the PLuTo scheduling algorithm.

Per program, we show the number of statements in the SCoP’s model. Recall from
Section 8.3.5 that the version of Polly used for our evaluation of Polyite treats each basic
block as one statement. Next, we show the number of dependence polyhedra that Polyite
constructs to model a program’s legality-affecting data dependences (these are the flow,
output, and anti dependences). The fourth column shows the maximum loop nesting depth
in each program’s SCoP. As in Chapter 7, we heuristically use the maximum dimensionality
of any statement iteration domain of the SCoP as its maximum loop depth.

Note that we use the SCoPs as they are modeled by Polly. Polly uses a heuristics to
avoid adding statements to SCoPs that are unlikely to profit from its optimizations. We
continue with the number of structure parameters in the SCoP’s model. The last static
property is the SCoP’s relative dependence interference. Dependence interference is a metric
that Pouchet et al. [124] used to characterize dependence polyhedra. Two dependence
polyhedra interfere if it is not possible to construct a one-dimensional schedule that strongly
satisfies both dependence polyhedra. With n ∈ N as the number of a SCoP’s dependence
polyhedra, one dependence polyhedron can interfere with at most n− 1 other dependence
polyhedra. Let ki be the number of dependence polyhedra with which dependence polyhedron
i, i ∈ {1, ..., n}, interferes. We define the relative dependence interference of the SCoP as

n∑
i=1

ki

n · (n− 1)
.

9 Evaluation 127

Table 9.1: Characteristics of the programs in the PolyBench 4.1 benchmark set. Per
program, we quantify several static properties and we show results of baseline measurements
with the version of LLVM/Polly used with Polyite and with LLVM/Polly, version 8.

program #
state-
ments

depen-
dence
polyhe-

dra

max.
loop
depth

#
struct.

pa-
rame-
ters

dep.
inter-

ference

exec.
time
-O3

(sec.)

speedup
-O3 + isl +
tiling +
OpenMP

speedup
-O3 + isl +
tiling +

OpenMP +
vect.

exec.
time -O3

(sec.)

clang 8

speedup
-O3 + isl +
tiling +
OpenMP

clang 8

speedup
-O3 + isl +
tiling +

OpenMP +
vect.

clang 8

2mm 4 6 3 7 0.00 % 37.75 13.81 38.25 37.64 16.82 44.64
3mm 6 10 3 9 0.00 % 51.33 13.39 41.72 50.93 17.11 46.95
adi 9 64 3 3 0.00 % 171.91 7.61 7.16 176.86 6.99 compile error
atax 3 4 2 3 0.00 % 0.01 0.99 1.13 0.01 0.89 1.25

bicg 2 4 2 3 0.00 % 0.01 1.05 1.05 0.01 2.10 compile error
cholesky 4 8 3 2 0.00 % 13.47 2.68 2.62 13.49 2.84 2.84
correlation 13 19 3 3 0.00 % 53.11 33.36 91.10 53.86 42.64 89.10
covariance 7 12 3 3 0.00 % 53.09 33.44 92.39 53.92 42.95 93.88

deriche 11 25 2 3 0.00 % 0.86 1.07 1.07 0.86 1.07 1.07
doitgen 3 8 4 5 0.00 % 5.48 4.06 8.04 5.38 4.64 8.62
durbin 10 43 2 1 0.11 % 0.02 0.99 1.00 0.02 1.01 1.00
fdtd-2d 4 24 3 4 0.00 % 26.81 0.92 0.92 26.64 1.23 1.23

floyd-warshall 1 18 3 2 11.11 % 196.72 0.15 0.15 196.46 0.15 0.15
gemm 2 2 3 5 0.00 % 8.95 4.23 10.13 8.82 4.80 11.11
gemver 4 6 2 2 0.00 % 0.10 3.78 4.54 0.10 3.79 4.33
gesummv 3 3 2 2 0.00 % 0.03 3.13 3.16 0.03 3.06 compile error

gramschmidt 9 23 3 3 0.40 % 42.20 8.10 9.07 41.95 8.49 8.62
heat-3d 2 171 4 2 0.00 % 37.31 2.68 2.69 37.81 0.53 0.53
jacobi-1d 2 16 2 2 0.00 % 0.01 0.88 0.89 0.01 0.75 0.75
jacobi-2d 2 56 3 3 0.00 % 32.82 1.13 1.13 33.36 1.02 1.04

lu 3 8 3 2 0.00 % 71.53 5.38 4.90 71.60 8.22 7.70
ludcmp 20 89 3 2 0.31 % 69.19 0.97 0.98 69.16 1.33 1.33
nussinov 8 24 3 3 1.45 % 80.98 0.96 0.95 63.40 1.01 1.00
mvt 2 2 2 2 0.00 % 0.08 4.65 5.71 0.08 5.18 6.05

seidel-2d 1 59 3 3 0.00 % 233.94 0.93 0.93 233.91 1.07 1.07
symm 5 21 3 4 1.90 % 27.41 1.01 1.01 27.40 2.35 2.33
syr2k 2 2 3 4 0.00 % 91.40 21.57 38.38 90.91 24.95 41.14
syrk 2 2 3 4 0.00 % 18.36 13.76 25.68 18.10 16.42 27.97

trisolv 3 5 2 2 0.00 % 0.01 0.36 0.37 0.01 0.36 0.36
trmm 2 4 3 4 0.00 % 18.86 2.02 1.99 18.77 1.81 1.77

minimum 1 2 2 1 0.00 % 0.01 0.15 0.15 0.01 0.15 0.15
maximum 20 171 4 9 11.11 % 233.94 33.44 92.39 233.91 42.95 93.88
median 3 11 3 3 0.00 % 27.11 2.68 2.66 27.02 2.59 2.33

In columns 6 to 12, we show the results of baseline measurements with LLVM’s -O3

optimization sequence and the PLuTo scheduling algorithm as it is implemented in isl
(the “isl scheduler”) and being used by Polly. We show the execution time in seconds of
each program after its optimization by -O3. Further, we we show the speedup in execution
time that results from enabling Polly with the isl scheduler and tiling and OpenMP
parallelization enabled. These speedup values are the primary baseline in the experiments
in Section 9.3. Additionally, we show the speedup that results from enabling Polly’s
polyhedral vectorizer, as well. One can see that some but not all programs profit from
Polly’s vectorization. As part of the -O3 optimization sequence, LLVM’s loop vectorizer
is, of course, always active. As an additional reference, we show the same kind of baseline
results for the most recent upcoming release versions of LLVM, clang, and Polly at the
time of writing. We show results for the upcoming release 8 in its state on Feb. 1, 2019.
One major difference between Polly 8 and the version used together with Polyite is
that Polly 8 applies tiling to loop nests under more circumstances. Depending on the
schedule’s representation, versions of Polly that are prior to version 5, may not tile loop
nests whose innermost loop encases more than one statement. Furthermore, Polly 8 adds
fewer structure parameters to SCoPs’ polyhedral models and it is capable of modeling SCoPs
at the granularity level of actual statements, instead of basic blocks. In the optimization
with Polly 8, we did not enable Polly’s pattern-based detection of matrix multiplication
because it frequently yielded different computation results.

128 9.3 Search Space Exploration

In our adaptation of the search space construction by Pouchet et al. [124] (refer to
Section 4.8) and in the computation of the data locality feature that is described in
Section 7.1.3.3, we need to know the values of structure parameters. In general, the structure
parameters’ values would most likely have to be derived by running an instrumented version
of the SCoP that is to be optimized with a typical workload. The instrumentation code
would record the structure parameters’ values. For all programs in PolyBench 4.1 except
nussinov, we could statically derive the values of all structure parameters that are involved
in the calculation of the statements’ estimated memory traffic in our adaptation of the
search space construction by Pouchet et al. [124]. The same holds for the calculation of the
legality-affecting data dependences in our data locality feature. As described in Section 8.3.5,
the version of Polly that we use in our experiments adds structure parameters to SCoPs’
models that do not obviously correspond to variables in programs’ source code. Thus,
we could not automatically extract their values from the code and assumed their value
to be 0 instead. This behavior of Polyite makes the calculation of input dependences’
communicated data volumes in our data locality feature heuristic. We excluded nussinov

from any experiments that require knowledge of the program’s structure parameters’ values.

For few combinations of the configuration of Chernikova sampling and the program to be
optimized, we must make use of the techniques to purge rays with overly large components
and to move points in polyhedra’s geometric representation to adjacent points with integer
coordinates described in Section 4.6.5.1. This affects our adaptation of the approach to
search space construction by Pouchet et al. [124] with programs adi and correlation.
Furthermore, random exploration with the mixed and the dense setting is affected in
combination with program 3mm.

9.3 Search Space Exploration

In the first part of the evaluation, we focus on the sampling techniques that are presented
in Chapter 4 and the genetic algorithm described in Chapter 6.

9.3.1 Research Questions

With our approach to iterative schedule optimization for parallelization, we aim at finding
more profitable schedules than can be found with model-based scheduling algorithms such
as PLuTo and the existing iterative optimization technique by Pouchet et al. [124]. We
expect a speedup in the execution time yielded by the optimal schedules found over the
technique by Pouchet et al. since they optimized for sequential execution and bounded
their schedule search space accordingly. To be able to challenge this assumption empirically,
we have adapted their approach to schedule search space construction in Polyite (refer
to Section 4.8). With our genetic algorithm, we expect to find better schedules in terms
of speedup in execution time than by random exploration or, at least, to find acceptably
profitable schedules with less effort.

We define the following research questions to verify our expectations and to examine
further aspects:

RQ 9.3.1: Does our approach find loop transformations that yield higher performance than
the transformations found by established approaches to polyhedral schedule optimization?
We evaluate whether our iterative search produces similar or better program schedules than
established approaches. Answering this question gives us a baseline and demonstrates the
practicality of our approach.

RQ 9.3.2: Is our augmentation of the schedule search space justified?
In contrast to Pouchet, we explore potentially the entire space of legal program transforma-
tions. We evaluate whether this expansion is actually meaningful (in terms of finding better

9 Evaluation 129

schedules) as it complicates the optimization process considerably. This question relates to
Section 4.5. The question also concerns schedule completion as described in Section 4.7.

RQ 9.3.3: Does optimization with our genetic algorithm have an advantage over random
sampling?
We evaluate whether a simple random search on the space of legal schedules can find
schedules that perform equally well as our genetic algorithm. Again, answering this question
provides a comparison to a baseline, which is often used for related problems due to their
simplicity. The question relates to Chapter 6.

RQ 9.3.4: Do schedule matrices with high sparsity yield better performance than dense
matrices?
This question sheds some light on the decisions made for the configuration of the experiments.
We can control the maximum number of rays and lines that Chernikova sampling adds to a
vertex to form a schedule coefficient vector (refer to Section 4.6.5). Here, we explore whether
it is better to add only a small number of rays and lines, which yields schedule matrices
with high sparsity, or whether we should leave the number unspecified.

RQ 9.3.5: Are projection sampling and Chernikova sampling comparable with respect to
the speedups in execution time over -O3 yielded by the optimal schedules found?
For the experiments that we present in this chapter, we used Chernikova sampling as the
primary sampling strategy for schedules. Yet, Chernikova sampling does not scale for large
SCoPs. Projection sampling has been implemented as an alternative sampling strategy in
Polyite. Projection sampling has smaller run-time complexity than Chernikova sampling.
It is relevant to understand how strongly the quality of schedules sampled by Chernikova
sampling and projection sampling differs. This question relates to Sections 4.6.5, 4.6.6, and
to the discussion of the different sampling strategies for schedules in Section 4.6.7.

RQ 9.3.6: Is our configuration of the genetic algorithm justified?
The presence of many tuning options is an intrinsic characteristic of iterative optimization
tools. Their number makes it hard to find an optimal setup. Hence, we investigate whether
the setup that we have chosen for the evaluation of our tool actually performs well.

RQ 9.3.7: Does our genetic algorithm converge?
The use of simulated annealing in the design of our genetic algorithm is based on the
assumption that, after having visited a certain number of schedules, the genetic algorithm
will not be able to make strong improvements over the fitness of the optimal schedule that
have been found so far. Instead, the reachable optimum should be approached in steps that
become gradually smaller. In other words, the changes to schedules made by mutations must
shrink. This localization of search is only reasonable, if very small changes to schedules also
lead to mostly small changes in the speedups yielded. Generally, this property cannot be
guaranteed in the context of schedule matrices: changing a single coefficient in a schedule
coefficient matrix can lead to a major difference in performance. For instance, a loop may
be skewed after the change, or two previously fused statements may be distributed.

9.3.2 Experiments

In the following, we present the experiments that we conducted to receive answers to the
research questions in Section 9.3.1. After the title of each experiment, we list in parentheses
the research questions to which it relates.

E 9.3.1: Convergence Rate of Iterative Optimization (RQ 9.3.3, RQ 9.3.4, RQ 9.3.5)
We compare the number of schedules that different variants of iterative optimization have
to visit, on average, to find the optimal reachable schedule. We compare the following
configurations:

130 9.3 Search Space Exploration

(1) random exploration with our adaptation of Pouchet’s approach with the sparse setting

(2) random exploration with our adaptation of Pouchet’s approach with the sparse setting
and schedule completion (as described in Section 4.7, schedule completion adds
dimensions to a schedule until all loops of the transformed program are encoded in
the schedule explicitly)

(3) random exploration with the sparse setting (random sparse)

(4) random exploration with the dense setting (random dense)

(5) random exploration with the mixed setting (random mixed)

(6) random exploration with projection sampling (random rojection)

(7) GAB with the sparse setting

We selected programs 3mm, adi, and correlation, which belong to different categories
of PolyBench. They are promising candidates for this experiment, as the number of
generators in the geometric representation of their search space regions is high compared
to other programs and Polyite is capable of optimizing them. Thus, an actual difference
between sparse and dense setting can be expected. Table 9.2 is a statistics regarding the
average number and characterization of the generators of 1000 search space regions chosen
randomly and independently per program in PolyBench 4.1. For the average number of
rays, lines, and points, we analyzed P1 of each search space region’s representation since
this polyhedron is among the most constrained polyhedra in each region’s representation.
To mitigate the effect of an incomplete exploration, we applied each configuration 10 times
to each program. We fixed the number of generations of GAB to 20, which corresponds to
generating 330 schedules. The random exploration runs generated 330 schedules, as well.
We reduced the number of replicated execution time measurements per generated program
variant from 5, as described in Section 9.1.3, to 3. This is acceptable as no variant of any of
the three programs selected has an extraordinarily short execution time far below one second.
Figure 9.1 shows the median speedup over -O3 that was reached by each optimization
strategy after evaluating n schedules. The x-axis is n. The y-axis is the speedup in execution
time over -O3 yielded by the optimal schedule found after evaluating n schedules.

GAB and random sparse converge at the same rate and to almost the same optimal
speedup value in case of adi and correlation. The speedup yielded by GAB is minimally
higher. In the case of 3mm, GAB yields a higher maximum speedup than random sparse.
Random mixed and random dense perform worse than random sparse. Random mixed lies
between random sparse and random dense. Our adaptation of the approach by Pouchet et al.
[124] performs worse than GAB and random sparse. In the cases of adi and correlation,
this sampling strategy profits from schedule completion. For comparison, we also marked
the speedup in execution time over -O3 yielded by the isl scheduler with the dashed line in
each plot. -O3 corresponds to the horizontal line that crosses the vertical axis at 1.

Figure 9.2 is a comparison of the configurations of search-based optimization that are
enumerated above with respect to the distribution of the speedups in execution time over
-O3 that the schedules generated by the each configuration yield. The vertical axis is the
speedup in execution time over -O3. The horizontal axis enumerates the schedules that were
produced by the ten replicated runs of a configuration, from the schedule that yields the
highest speedup to the schedule that yields the smallest speedup. On average, the schedules
produced by GAB yield higher speedups than the schedules produced by random exploration.
Looking at random exploration, random sparse produces schedules that yield a higher
average speedup than the schedules produced by random mixed. Random mixed performs
better than random dense. In the case of 3mm, the average speedup of the schedules produced

9 Evaluation 131

0.0625

0.25

1

4

16

0 50 100 150 200 250 300

s
p
e
e
d
u
p
 o

v
e
r

O
3

number of visited schedules

GAB
random sparse
random dense

random Pouchet et al.

+ completion

random mixed

random Pouchet et al.
random projection

O3
isl

(a) 3mm

0.5

1

2

4

8

16

0 50 100 150 200 250 300

s
p
e
e
d
u
p
 o

v
e
r

O
3

number of visited schedules

(b) adi

0.5

1

2

4

8

16

32

64

0 50 100 150 200 250 300

s
p
e
e
d
u
p
 o

v
e
r

O
3

number of visited schedules

(c) correlation

Figure 9.1: Median convergence speed of
different configurations of iterative opti-
mization for the programs 3mm, adi, and
correlation across 10 runs per config-
uration. Only every 20th data point is
plotted.

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 500 1000 1500 2000 2500 3000

s
p
e
e
d
u
p
 o

v
e
r

O
3

schedule index

(a) 3mm

0.25

0.5

1

2

4

8

16

0 500 1000 1500 2000 2500 3000

s
p
e
e
d
u
p
 o

v
e
r

O
3

schedule index

(b) adi

0.0625

0.25

1

4

16

64

0 500 1000 1500 2000 2500 3000

s
p
e
e
d
u
p
 o

v
e
r

O
3

schedule index

(c) correlation

Figure 9.2: Distribution of the speedups
yielded by the schedules generated by
different configurations of iterative op-
timization for the programs 3mm, adi,
and correlation. We show aggregated
results from 10 runs per configuration.
Note that not every data point is plot-
ted.

132 9.3 Search Space Exploration

Table 9.2: Characteristics of the PolyBench 4.1 programs’ search space regions’ geometric
representations. Per program, we show the average numbers of generators of P1 of 1000
schedule search space regions generated randomly and independently.

program avg. # lines avg. # rays avg. # points

2mm 9 19 1
3mm 10 31 1
adi 4 27 4
atax 4 11 1
bicg 4 6 1
cholesky 3 27 4
correlation 17 37 1
covariance 4 26 1
deriche 4 70 26
doitgen 6 1 1
durbin 2 28 4
fdtd-2d 5 32 3
floyd-warshall 3 1 1
gemm 8 7 1
gemver 3 15 1
gesummv 4 7 1
gramschmidt 4 45 4
heat-3d 3 19 2
jacobi-1d 3 4 1
jacobi-2d 4 6 1
lu 3 23 3
ludcmp 3 66 10
mvt 8 2 1
nussinov 13 3 1
seidel-2d 4 3 1
symm 5 1 1
syr2k 7 7 1
syrk 7 6 1
trisolv 3 8 1
trmm 6 9 1

by our adaptation of Pouchet’s search space construction is smaller with schedule completion
than without completion. For adi and correlation, the influence on the distribution of
the speedups yielded by the schedules that are produced by our adaptation of Pouchet’s
search space construction is smaller than for 3mm.

The difference in the distribution of the speedups yielded by random sparse and random
projection is small, but significant. We tested the differences’ signficance using a Wilcoxon
rank sum test [142]. We obtained the following p-values 3mm: p < 2.2e− 16; adi: p = 0.02,
correlation: p = 0.04. The p-values are the probability of erroneously assuming a difference
between the two distributions of speedups.

From Figure 9.2, it is also apparent that not from all schedules a transformed program can
be generated that operates correctly and that can be benchmarked within the timeout set.
This happens although all schedules are conceptually legal. As described in Section 8.3.4,
Polly verifies the schedules’ legality before the application of tiling. Because this tests
only a necessary but not sufficient condition for the schedules’ legality after tiling, we fully
verified the legality of a sample of schedules that were known to yield corrupted binaries
and could not attest their illegality. Table 9.3 is a statistics of causes of failure.

During the evaluation of a schedule, the compilation of the transformed program can
reach a timeout and the compiler can fail. Next, the execution of the resulting binary can
fail, for instance, due to a segmentation fault or a bus error. The transformed code can
produce wrong results, and the duration of the entire benchmarking procedure can reach a
timeout. Our adaptation of the approach by Pouchet et al. yields almost no errors. Only
in the case of 3mm and the variant with schedule completion, the evaluation of 30.18 % of

9 Evaluation 133

Table 9.3: Percentage of schedules that cannot be benchmarked successfully for different
reasons.

program configuration
compile

timeout
miscompiles

execution

fails

wrong

output
timeout healthy

3mm GAB 0.61 % 0.00 % 7.76 % 0.73 % 0.73 % 90.18 %
3mm random sparse configuration 1.82 % 0.03 % 16.91 % 1.33 % 3.39 % 76.52 %
3mm random dense configuration 81.12 % 1.94 % 8.24 % 1.52 % 0.15 % 7.03 %
3mm random mixed configuration 62.58 % 1.27 % 15.39 % 2.09 % 0.48 % 18.18 %
3mm random Pouchet et al. 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 %
3mm random Pouchet et al. + completion 0.39 % 0.00 % 0.00 % 0.00 % 30.18 % 69.42 %
3mm random with projection 37.48 % 0.64 % 3.76 % 0.82 % 0.15 % 57.15 %

adi GAB 0.79 % 0.03 % 2.42 % 0.97 % 0.18 % 95.61 %
adi random sparse configuration 0.85 % 0.06 % 5.48 % 1.97 % 0.73 % 90.91 %
adi random dense configuration 7.52 % 0.06 % 22.42 % 17.79 % 4.45 % 47.76 %
adi random mixed configuration 8.42 % 0.03 % 14.85 % 11.88 % 3.94 % 60.88 %
adi random Pouchet et al 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 %
adi random Pouchet et al + completion 0.00 % 0.03 % 0.00 % 0.00 % 0.03 % 99.94 %
adi random with projection 9.61 % 0.06 % 4.82 % 1.85 % 1.00 % 82.67 %

correlation GAB 0.33 % 0.09 % 6.30 % 1.18 % 0.03 % 92.06 %
correlation random sparse configuration 0.15 % 0.15 % 12.15 % 2.48 % 0.12 % 84.94 %
correlation random dense configuration 55.27 % 5.79 % 19.09 % 4.00 % 0.21 % 15.64 %
correlation random mixed configuration 36.70 % 3.52 % 24.09 % 4.91 % 0.33 % 30.45 %
correlation random Pouchet et al 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 %
correlation random Pouchet et al + completion 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 %
correlation random with projection 14.27 % 0.91 % 8.79 % 3.30 % 0.24 % 72.48 %

the schedules reaches a time out. GAB and random sparse yield fewer failures than random
dense, random mixed, and random projection.

E 9.3.2: Comparison of GAB with existing Approaches and Random (RQ 9.3.1, RQ 9.3.2,
RQ 9.3.3) We compared the following configurations by the speedup that they yield over
the execution of the original code optimized with -O3:

(1) isl’s adaptation of the PLuTo algorithm [152, 153, 156]

(2) random exploration with the sparse setting (random sparse)

(3) random exploration with our adaptation of Pouchet’s approach and the sparse setting

(4) random exploration with our adaptation of Pouchet’s approach combined with schedule
completion and the sparse setting

(5) GAB running for 40 generations

The comparison to isl’s scheduler is fairer than a comparison to the original PLuTo
algorithm [25] would be because the latter excludes some loop transformations that require
negative coefficients for iteration variables [28]. The comparison is made solely in terms of
the performance yielded by the best found program transformation.

In case of a few small SCoPs, configuration (3) did not find the intended number of 630
pairwise different schedule matrices. These are atax (588 schedules), bicg (290 schedules),
floyd-warshall (627 schedules), gemver (293 schedules), gesummv (171 schedules), and
mvt (129 schedules).

Figure 9.3 is a histogram that shows, per program and optimization method, the speedup
over plain -O3 yielded by the best schedule found. Table 9.4 shows the numbers plotted
to allow for a detailed inspection. Also, It also shows, per configuration, the speedups’
geometric mean. Using the arithmetic mean of normalized data can be misleading [56]. At
mean, our iterative optimization technique yields more profitable schedules than all other
configurations tested. The difference between GAB and random sparse is small and in

134 9.3 Search Space Exploration

0.125

0.25

0.5

1

2

4

8

16

32

64

2m
m

3m
m adi

ata
x

bicg

ch
olesk

y

co
rre

latio
n

co
varia

nce

deric
he

doitg
en

durb
in

fd
td

-2
d

floyd-w
arsh

all

gem
m

gem
ver

gesu
m

m
v

gra
m

sc
hm

idt

heat-3
d

jaco
bi-1

d

jaco
bi-2

d lu

ludcm
p

m
vt

nuss
inov

se
idel-2

d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

s
p
e
e
d
u
p
 o

v
e
r

O
3

GAB

random sparse
random Pouchet et al.

random Pouchet et al. + completion
isl

O3

Figure 9.3: Speedups over plain -O3 reached by different configurations.

some cases, random sparse yields a higher speedup than GAB . Adding schedule completion
to our adaptation of the approach by Pouchet et al. increases the mean speedup across
the benchmark set yielded by the configuration. We failed to evaluate any schedule for
floyd-warshall that was produced by our adaptation of the search space construction of
Pouchet et al. within the timeout of 30 minutes that we configured for the evaluation of
each schedule. This affects both the variant with schedule completion and the one without
schedule completion.

Let us compare the speedups yielded by GAB to speedups yielded by the isl scheduler
in combination with Polly’s polyhedral vectorizer (-polly-vectorizer=polly) (refer to
Table 9.1). In the case of 22 programs out of 30, the speedup yielded by GAB is higher.

We evaluated the statistical significance of the difference between the speedups yielded by
the configurations tested using a pairwise Wilcoxon signed rank test [142] in combination
with false discovery rate control [22]. Table 9.5 shows, per pair of configurations, the
probability of erroneously assuming a difference between the configurations’ results.

Table 9.6 lists the speedup over -O3 of single-thread18 and 8-threads19 parallel execution of
the optimal schedules found by GAB . This gives an idea of the influence of the parallelization
on the achieved speedups. The achieved speedups are largely due to parallelization.

Finally, we estimated the number of search space regions visited by GAB and random
sparse. Each dimension of a schedule corresponds to a set of dependence polyhedra that
are carried by the schedule dimension. Thus, each schedule corresponds to a list of sets of
dependence polyhedra. For both GAB and random sparse, we grouped the respective sets
of schedules by the schedules’ associated lists of dependence polyhedra. In both cases, we
counted the number of groups. Table 9.7 shows the results.

On average, GAB visits 41% of the search space regions visited by random exploration. It
was to be expected that GAB visits fewer regions because our mutation operators (refer to
Section 6.2.1) are designed to construct schedules that are not entirely different from the
input schedules. For large SCoPs, the degree of similarity between the input and the output
schedule of a mutation increases even further with an increasing number of generations of
the genetic algorithm. This is due to our use of simulated annealing. Using Spearman’s rank
correlation [85][Chap. 4], we could show that the number of regions visited by both GAB

and random sparse correlate strongly with the SCoP’s number of statements. We obtain the
following correlation coefficients and p-values:

GAB: ρ = 0.91, p = 4.752e− 12; random sparse: ρ = 0.96, p < 2.2e− 16.

The p-values are the results of a two-sided significance test.

Next, we tested for a correlation with the number of dependence polyhedra that resulted
from the analysis of the legality-affecting dependences. We found that the number of

18In fact, we executed the parallel binary with OMP NUM THREADS=1.
19Different from the other experiments, we set OMP NUM THREADS=8 explicitly.

9 Evaluation 135

Table 9.4: Speedups over plain -O3 reached by different configurations. Figure 9.3 is a
histogram of the same data.

program GAB
random
sparse

random following
Pouchet et al.

random following
Pouchet et al.
+ completion

isl

2mm 18.88 19.25 10.66 18.28 13.81
3mm 20.20 13.92 5.01 4.98 13.39
adi 8.57 8.51 1.36 4.34 7.61
atax 3.09 3.02 0.64 1.99 0.99
bicg 2.79 2.78 0.52 0.54 1.05
cholesky 5.81 6.48 2.33 3.06 2.68
correlation 43.81 35.48 16.55 36.14 33.36
covariance 42.24 36.37 16.68 35.93 33.44
deriche 1.12 1.06 1.36 1.33 1.07
doitgen 5.63 5.01 2.99 2.93 4.06
durbin 1.18 1.17 1.18 1.17 0.99
fdtd-2d 3.80 3.72 3.46 3.38 0.92
floyd-warshall 1.00 1.00 – – 0.15
gemm 4.72 5.00 2.25 4.29 4.23
gemver 6.27 6.47 1.26 4.44 3.78
gesummv 8.99 9.02 0.53 3.45 3.13
gramschmidt 11.17 8.53 3.09 3.98 8.10
heat-3d 4.19 2.97 4.46 1.65 2.68
jacobi-1d 1.37 1.37 1.38 1.37 0.88
jacobi-2d 4.21 4.20 4.18 3.30 1.13
lu 9.86 9.44 6.62 6.50 5.38
ludcmp 1.03 1.02 1.01 1.01 0.97
mvt 8.25 7.65 1.15 6.11 4.65
nussinov 0.98 0.98 – – 0.96
seidel-2d 10.56 10.46 1.12 1.12 0.93
symm 1.02 1.02 1.02 1.02 1.01
syr2k 25.97 26.21 6.98 26.05 21.57
syrk 17.27 17.23 6.32 15.22 13.76
trisolv 1.06 1.98 0.38 0.38 0.36
trmm 22.43 22.40 14.04 19.75 2.02

geometric mean 5.31 5.16 2.43 3.68 2.74

dependence polyhedra and the number of search space regions visited for random sparse are
weakly correlated; there is no correlation for GAB:

GAB: ρ = 0.40, p = 0.03; random sparse: ρ = 0.55, p = 0.002.

The test is inconclusive regarding a correlation of the estimated number of search space
regions visited with the SCoP’s maximum loop nest depth:

GAB: ρ = 0.04, p = 0.85; random sparse: ρ = 0.10, p = 0.61.

Also, we cannot decide whether the estimated number of search space regions and the
SCoP’s number of structure parameters correlate:

GAB: ρ = 0.04, p = 0.84; random sparse: ρ = 0.02, p = 0.93.

E 9.3.3: Performance Distribution in the Generations of GAB (RQ 9.3.7) We analyzed
the distribution of the speedups in execution time of the transformed program yielded by
the schedules in each population of GAB. The data are from E 9.3.2. We observed three
kinds of behavior. The first kind corresponds to the majority of the GAB runs in E 9.3.2:
the optimization starts from an initial population with a comparatively large variance of

136 9.3 Search Space Exploration

Table 9.5: p-values obtained from a pairwise Wilcoxon signed rank test quantifying the
significance of differences between different configurations of schedule optimization.

random
adapt.

Pouchet et al.

adapt.

Pouchet et al.

+ completion

isl

GAB 4.63e-02 5.42e-05 5.38e-05 1.12e-05
random – 6.59e-05 6.59e-05 1.12e-05
adapt. Pouchet et al. – – 2.63e-02 4.63e-02
adapt. Pouchet et al. + completion – – – 4.63e-02

Table 9.6: Speedups over -O3 in execution time of the transformed program that are yielded
by the optimal schedules found by GAB. We show results for single-thread and 8-thread
parallel execution.

program

2m
m

3m
m adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gem
m

gem
ver

single-thread
speedup

2.81 2.97 1.24 0.64 2.76 0.93 5.29 4.98 1.01 1.09 1.17 1.02 1.00 0.59 1.17

8-threads par.
speedup

18.94 20.06 8.61 1.24 2.76 5.83 43.68 37.00 1.10 5.60 1.17 3.83 1.00 4.60 5.28

program

gesum
m
v

gram
schm

idt

heat-3d

jacobi-1d

jacobi-2d lu

ludcm
p

m
vt

nussinov

seidel-2d

sym
m

syr2k
syrk

trisolv

trm
m

single-thread
speedup

2.56 1.90 0.77 1.36 1.06 2.40 0.99 1.26 0.96 2.45 1.03 3.59 2.21 0.39 3.07

8-threads par.
speedup

4.26 10.49 4.16 1.35 4.16 9.94 0.99 6.50 0.96 10.66 1.01 25.69 17.19 0.75 21.33

Table 9.7: The estimated number of search space regions per program that were visited by
GAB and random sparse.

program

2m
m

3m
m adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gem
m

gem
ver

GAB # regions 104 145 265 118 47 129 236 177 244 145 182 81 30 19 142
random sparse
regions

415 542 609 284 121 388 626 552 617 369 575 348 30 43 418

gesum
m
v

gram
schm

idt

heat-3d

jacobi-1d

jacobi-2d lu

ludcm
p

m
vt

nussinov

seidel-2d

sym
m

syr2k
syrk

trisolv

trm
m

84 134 29 13 27 42 239 21 286 17 211 22 29 61 59
149 587 153 52 166 268 629 17 624 39 531 36 36 229 150

9 Evaluation 137

0.125

0.25

0.5

1

2

4

8

0 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p
 o

v
e
r

O
3

generation

(a) heat-3d

0.0625

0.125

0.25

0.5

1

2

4

8

0 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p
 o

v
e
r

O
3

generation

(b) jacobi-2d

0.5

1

2

0 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p
 o

v
e
r

O
3

generation

(c) ludcmp

Figure 9.4: Box plots showing the distribution of performance within the generations of
GAB. The data are from E 9.3.2. The whiskers extend from the ends of the box to the
most distant point whose value lies within 1.5 times the interquartile range. Points that
lie beyond that distance are drawn as outliers [165].

the speedups yielded by the schedules in the initial population. The maximum speedup is
lower than the optimal speedup that GAB reaches eventually. The variance of the speedups
yielded by the schedules in the population diminishes while the optimization proceeds. We
illustrate such a case in Figure 9.4(a). The horizontal axis enumerates the populations. The
vertical axis shows speedup over -O3. The second largest group of runs corresponds to the
behavior shown in Figure 9.4(b). The initial population contains a schedule that yields a
speedup that is close to the optimal speedup that is reached. Over time, the variance of the
speedups yielded by the schedules in the population diminishes and the median speedup
converges towards the maximum. Finally, in the cases of programs ludcmp, nussinov, and
symm, we are unable to find a schedule that reduces the execution time below the duration
of the original sequential programs after its optimization with -O3. The variance of the
speedups yielded by the schedules in the populations is very low throughout the optimization
process. We illustrate this case for ludcmp in Figure 9.4(c).
Figure 9.4 exhibits a notable property of the genetic algorithm: it delivers a set of

profitable schedules, while optimizing a SCoP requires just one. We wanted to know
how many semantically different schedules the set contains. To determine the according
equivalence classes, we prepared the schedules by transforming them to simplified schedule
trees in the same way as we would prepare them for code generation by Polly (refer to
Section 5.6). Subsequently, we encoded rectangular loop nest tiling in the schedule trees
following the steps of Polly’s tiling strategy. Following Vasilache [149], we consider the
schedules Θ1 and Θ2 to be equivalent if

(
∀IX , IY ∈ I :

(
∀(~iX ,~iY) ∈ IX × IY :

(
Θ(~iX) ≺ Θ(~iY)

)
⇔
(
Θ′(~iX) ≺ Θ′(~iY)

)))

holds after the encoding of tiling in both schedules (refer to Section 5.5.4 for details). In
Table 9.8, we show, per program, the number of equivalence classes in the final generation
of the GAB run that we performed in E 9.3.2.

We tested the number of equivalence classes in GAB ’s final population for correlation with
the SCoP’s number of statements, the number of dependence polyhedra, and the maximum

138 9.3 Search Space Exploration

Table 9.8: Per program, the number of equivalence classes in the final generation of the
GAB run that we performed in E 9.3.2.

program

2m
m

3m
m adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gem
m

gem
ver

equiv. classes 24 16 23 7 8 10 25 28 18 6 8 15 3 21 10

program

gesum
m
v

gram
schm

idt

heat-3d

jacobi-1d

jacobi-2d lu

ludcm
p

m
vt

nussinov

seidel-2d

sym
m
syr2k

syrk

trisolv

trm
m

equiv. classes 5 26 30 6 11 21 6 27 16 18 7 13 10 8 10

loop nest depth using Spearman’s rank correlation [85][Chap. 4]. In all three cases, the test
is inconclusive:

number of statements: ρ = 0.17, p = 0.37

number of dependence polyhedra: ρ = 0.15, p = 0.42

maximum loop nest depth: ρ = 0.30, p = 0.10.

The complexity of the remaining experiments that we present in Section 9.3.2 forced us
to limit them to one program. Of the three programs that have been studied in more detail
already, we chose 3mm since its numbers of statements and dependence polyhedra and its
maximum loop depth are closer to the respective median values across PolyBench 4.1
than those of adi and correlation. With respect to the average values, 3mm is closer to
average in the number of statements than adi and correlation but farther away from
average than correlation in the number of dependence polyhedra.

E 9.3.4: Effectiveness of the Genetic Operators (RQ 9.3.6) To evaluate and compare the
effectiveness of the genetic operators, we optimized the schedule of 3mm with six configurations
of GAB. In each configuration, one operator was disabled. Otherwise, the configurations
meet the specification in Section 9.1.4. We ran each configuration ten times, starting
from one of ten initial populations. GAB was configured to run for a fixed number of 20
generations. As in E 9.3.1, we reduced the number of time measurements per schedule
to three. A strong effect of disabling any of the operators on the convergence speed or
the profitability of the optimal found schedule cannot be observed. Yet, from E 9.3.1 and
E 9.3.3, we know that the last generation consists mostly of profitable schedules and that
the mean speedup in execution time yielded by GAB is higher than the speedup yielded by
random sparse. So, in combination, our genetic operators are effective.

Figure 9.5 shows, per configuration tested, the median speedup of the optimal schedule
known after visiting n schedules.

E 9.3.5: Intensity of the Mutations (RQ 9.3.6) We evaluated the effect of varying the
genetic algorithm’s mutations’ intensity. We set the initial intensity to 10%, and later
increased it to 30%, and then to 60%. GAB was configured to run for a fixed number of
20 generations. As in E 9.3.1, we reduced the number of time measurements per schedule
to three. With each configuration, we optimized 3mm ten times, starting from one out of
ten initial populations. Increasing the mutations’ intensity does not affect the convergence
speed of the GA or the profitability of the optimal schedule found. This was to be expected:
in E 9.3.1, we already noticed that GAB, with its mutation intensity set to 10%, does
not converge significantly faster than random sparse. Furthermore, we expect the genetic
algorithm to degenerate to a purely random search as we increase the mutation intensity.
So, in our case, increasing the intensity of mutations should not yield faster convergence.

9 Evaluation 139

0.5

1

2

4

8

16

32

0 50 100 150 200 250 300

s
p
e
e
d
u
p
 o

v
e
r

O
3

number of visited schedules

replace dims off
replace prefix off
replace suffix off

mutate generators coeffs off
geometric crossover off

row crossover off
O3
isl

Figure 9.5: Per configuration tested in E 9.3.4, the median speedup of the optimal schedule
known after visiting n schedules. The horizontal axis is n, the vertical axis is speedup in
execution time over -O3.

 1

 2

 4

 8

 16

 32

 0 50 100 150 200 250 300

s
p
e
e
d
u
p
 o

v
e
r

O
3

number of visited schedules

0.1 0.3 0.6 O3 isl

Figure 9.6: Per configuration tested in E 9.3.5, the median speedup of the optimal schedule
known after visiting n schedules. The horizontal axis is n, the vertical axis is speedup in
execution time over -O3.

Due to the small size of the programs considered, a mutation intensity below 10% should
not yield different results, either.

Figure 9.6 shows, per configuration tested, the median speedup of the optimal schedule
known after visiting n schedules.

9.3.3 Discussion

We can answer RQ 9.3.1 positively, based on the results of E 9.3.2. Iterative optimization
detects program transformations yielding a higher performance than those found by isl’s
variant of the PLuTo algorithm. There are many possible reasons. The underlying
assumptions of the PLuTo algorithm may not apply in every case: it maximizes the size of
tilable bands, which our iterative approach does not. In their hybrid search-based and model-
driven approach to schedule optimization, Pouchet et al. [126] search for a good partitioning
of a SCoP’s statements into classes with different execution date and then schedule the
statement instances in each partition in a model-driven way. Their motivation is that cost
models for scheduling inside each class are well understood, while those for the partitioning
itself are not. Likewise, our iterative approach may profit from this fact by finding a better

140 9.3 Search Space Exploration

partitioning. It is likely that, on different hardware, the iterative optimization would identify
different optimal schedules. Furthermore, the tile shapes chosen by the PLuTo algorithm
may be suboptimal. Iterative optimization may find different ones. In the end, performance
optimization is hardware-specific. Naturally, iterative optimization can adapt itself more
easily than model-driven algorithms.
Let us explain the higher performance of the code optimized by Polyite compared to

Polly’s result exemplary for trmm and jacobi-2d. Polly yields a speedup of 2.02 over
-O3 for trmm, while Polyite yields 22.43 at best. Both, Polly and Polyite segregate
trmm’s statements into fully separate loop nests. Polly can only tile the second loop nest.
Polyite interchanges the loops in the first nest, skews them in another way than Polly,
and can tile both loop nests. For jacobi-2d, the speedup yielded by Polly is 1.13 while
Polyite yields 4.21. Polly fuses the two statements and cannot parallelize while Polyite
splits the loop nest inside the time loop and both inner loop nests can be parallelized at
their outermost level.
Some cases in which the speedup in execution time yielded by Polly is lower than

the speedup yielded by Polyite may be due to isl not selecting a schedule that yields
outer parallelism. Manually forcing outer parallelism, which is possible in isl’s scheduling
algorithm [156], may sometimes improve the speedup yielded by Polly. Versions of Polly
that are newer than the version used in our experiment have a command line option that
allows to force outer parallelism manually.

E 9.3.2 revealed that random exploration with the sparse configuration almost always
finds schedules that yield better performance than random exploration with our adaptation
of the search space construction by Pouchet et al. [124]. The latter profits significantly
from schedule completion but, still, random sparse yields significantly higher speedups.
These findings strengthen the assumption that an optimization for parallelization and tiling
likely requires the exploration of a larger or different subset of the schedule search space in
combination with schedule completion. Thus, we can answer RQ 9.3.2 positively.

We continue by discussing RQ 9.3.3. E 9.3.2 revealed that the maximum speedup in
execution time yielded by the schedules found by GAB are higher at mean than the maximum
speedups yielded by random sparse. The speedups yielded by GAB and random sparse
differ significantly. In E 9.3.1, we found that, in the cases of adi and correlation, GAB

and random sparse converge at the same speed but, in the case of 3mm, GAB converges to a
higher maximum speedup in the execution time of the program optimized. Furthermore, we
found that GAB tends to find fewer ineffective schedules than random sparse and yields fewer
schedules that we cannot test successfully. So, in summary, we observed a small advantage
of our genetic algorithm over random sampling and can answer RQ 9.3.3 positively.

On the basis of E 9.3.1, we can answer RQ 9.3.4 positively. Sparse schedule matrices
generated randomly yield higher speedups than dense coefficient matrices generated randomly.
Also, random sparse yields fewer schedules that we cannot test successfully than random
dense. The effect is strong for 3mm and correlation. It is less pronounced for adi. These
findings conform to the prediction of Pouchet et al. [124] that picking schedule coefficients
close to zero is beneficial. Also, schedule matrices formed from a large number of generators
tend to contain larger coefficients, which may trigger integer overflows at run time.

Chernikova sampling has several advantages for our approach to explore the search space
of legal schedules and, in particular, for our genetic algorithm. Among the disadvantages
of Chernikova sampling are rarely occurring rays with extremely large components, points
with rational coordinates that have large denominators (refer to Section 4.6.5.1), and the
high run-time complexity of Chernikova’s algorithm, which makes Chernikova sampling
impractical for large SCoPs. Projection sampling does not have these disadvantages. In

9 Evaluation 141

0.25

0.5

1

2

4

8

16

0 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p
 o

v
e
r

O
3

generation

(a) gramschmidt

0.5

1

2

4

8

16

32

64

0 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p
 o

v
e
r

O
3

generation

(b) correlation

Figure 9.7: Box plots showing the distribution of performance within the generations of
GAB.

E 9.3.1, we compared the distribution of the speedups yielded by the schedules that resulted
from random exploration with a configuration of projection sampling and random sparse. We
found that the schedules generated by the tested configuration of projection sampling perform
slightly worse than the schedules generated by random sparse. This difference is statistically
significant. To answer RQ 9.3.5, we are confident that tuning of its configuration will allow
projection sampling to perform equally well in random exploration.

In E 9.3.4 and E 9.3.5, we challenged the configuration of our genetic algorithm that we
used in the experiments presented. In E 9.3.4, we did not observe that disabling any genetic
operator has an effect on the genetic algorithms convergence speed. Further, in E 9.3.5, we
did not observe that a higher initial intensity of the mutations yields a better optimization
result or leads to faster convergence. To answer RQ 9.3.6, we assume that our choices for
the configuration of our genetic algorithm are justified. Of course, other aspects, such as the
population size and the number of generations that the genetic algorithm performs, have an
influence on the optimization result, as well. Finally, there may be an interaction between
different configuration options.

Replacing a single coefficient in a schedule matrix can unarguably impact performance
strongly, for instance, by skewing a loop of distributing two previously fused statements.
Thus, one must not expect to find locality in a sense that a small change to a schedule
usually leads to a similarly or even better performing schedule in the search space of schedule
matrices. Yet, Pouchet et al. [124] control the intensity of the mutations in their genetic
algorithm by an annealing factor and we adopted this choice. This leads us to the discussion
of RQ 9.3.7.

Let us discuss E 9.3.3, in which we studied GAB ’s behavior with a focus on its convergence.
We analyzed the distribution of the speedups yielded by the schedules in each generation
of the genetic algorithm. The reduction of the variance of the speedups that lie above the
median is primarily a consequence of our genetic algorithm’s elitism. Yet, as can be seen
in Figure 9.7 for the programs correlation and gramschmidt, the variance of speedups
below the median reduces as well. We observed this behavior also for several other programs.
Consequently, the search does become more local over time. At the same time, the insertion
of schedules generated randomly and the crossovers reduce the probability that the search
becomes trapped at a local optimum. In particular, the geometric crossover has the ability
to produce offspring schedules that differ strongly from their parents. We expect that the
mutation of schedule matrices by partial schedule replacement, which we propose as an
outlook in Section 6.2.1.5, would further increase the genetic algorithm’s ability to escape
from local optima more easily without losing all properties of the mutation’s input schedule.

142 9.4 Genetic Algorithm with Schedule Classification

9.4 Genetic Algorithm with Schedule Classification

The second part of the evaluation focuses on the surrogate performance models for schedules
that we propose in Chapter 7 and the combination of these models with our genetic algorithm
for schedule optimization. In Section 7.2, we propose two ways of combining our genetic
algorithm and a schedule classifier. In the evaluation, we focus on the two-staged approach,
which entirely replaces benchmarking by classification in the genetic algorithm and uses
benchmarking only to determine the most profitable schedule among the schedules in the
genetic algorithm’s final population. We refer to this combination by GAC .

9.4.1 Research Questions

The overarching goal of what we present in Chapter 7 is to make Polyite’s genetic algorithm
time-efficient to the point of practicality. To reach this goal, we replace most of the time-
consuming fitness assessment of schedules that is based on benchmarking with a classifier
that uses a machine-learned surrogate performance model. Thanks to the classifier, only
the schedules in the genetic algorithm’s final population require benchmarking. We train
the classifier based on feature vectors that we extract from schedules that result from
previous iterative optimizations, for instance, from earlier versions of the same program. The
classification of schedules must be computationally cheap to achieve a saving of optimization
time. In Section 7.1.4, we verified already that the extraction of the schedules’ feature
vectors is possible within a few hundred milliseconds to a small number of seconds for SCoPs
with tens of statements and tens up to a few hundreds of dependence polyhedra. Moreover,
the surrogate model must be transferable from the programs used for training to new ones.
In the end, the whole optimization process must still obtain sufficient speedups.

RQ 9.4.1: Are our schedule features sensitive to profitability of schedules?
Given two schedules for a SCoP that yield strongly different execution times of the trans-
formed code, we call a feature sensitive to performance if its value differs between the
two schedules. Some of the features that Section 7.1 presents may not be sensitive to the
profitability of schedules. The features that are insensitive to the transformed programs
execution time can be excluded from the feature vector.

RQ 9.4.2: Can our classifiers distinguish reliably between profitable and unprofitable program
schedules?
Is the difference between profitable and unprofitable schedules for a SCoP expressible using
the features of Section 7.1 and decision tree classifiers? Can a model be learned on schedules
of a set of programs and then be used to classify schedules of another program correctly?

RQ 9.4.3: Is our schedule classifier an acceptable surrogate for benchmarking?
We must compare running GAC (refer to Section 7.2.2), GAB and random exploration with
respect to two criteria. The first criterion is the time saved by the use of the classifier. The
second one is the optimization’s outcome.

9.4.2 Training Sets

The experiments presented in Section 9.4.3 require training sets for schedule classifiers. A
training sample refers to one schedule and consists of a vector of feature values and a label
that indicates whether the corresponding schedule is profitable or unprofitable. A feature
value is a real number.

To obtain a set of training samples for a program, we ran GAB over 40 generations. This
corresponds to generating 630 schedules. We generated another 630 schedules using random
exploration with the sparse setting. We merged the two sets of schedules and filtered for
schedules that we could benchmark successfully. The merging procedure considers two
schedule matrices equivalent if they share the same rational coefficient matrix and if the

9 Evaluation 143

Table 9.9: Characteristics of the training sets. Per program, we show the total number of
schedules in the training set and the numbers of profitable and unprofitable schedules.

program

2m
m

3m
m adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gem
m

gem
ver

schedules 1112 1060 1166 1184 1175 805 1136 1192 1070 1255 1231 832 590 1222 1165
profitable 488 301 472 421 639 106 462 605 0 550 0 421 0 756 395
unprofitable 624 759 694 763 536 699 674 587 1070 705 1231 411 590 466 770

% profitable
43.88

%

28.40
%

40.48
%

35.56
%

54.38
%

13.17
%

40.67
%

50.76
%

0.00
%

43.82
%

0.00
%

50.60
%

0.00
%

61.87
%

33.91
%

program

gesum
m
v

gram
schm

idt

heat-3d

jacobi-1d

jacobi-2d lu

ludcm
p

m
vt

nussinov

seidel-2d

sym
m

syr2k
syrk

trisolv

trm
m

schedules 1172 996 857 1167 1103 907 793 1086 1227 1201 1241 1209 1190 1094 1193
profitable 569 484 248 836 330 316 0 508 0 513 0 740 712 345 485
unprofitable 603 512 609 331 773 591 793 578 1227 688 1241 469 478 749 708

% profitable
48.55

%

48.59
%

28.94
%

71.64
%

29.92
%

34.84
%

0.00
%

46.78
%

0.00
%

42.71
%

0.00
%

61.21
%

59.83
%

31.54
%

40.65
%

rows of the matrices result from the same linear combination of points, rays, and lines. This
is the equivalence relation that we also apply to test whether a schedule should enter the
genetic algorithm’s population. The result of the merge is a set of up to 1260 schedules that
covers reasonably the profitability range of the schedules in which we are interested.

We calculated the schedules’ feature values and labeled each schedule as either profitable
or unprofitable. Recall from Section 7.2, that a schedule is profitable if it yields an execution
time of the transformed code that is not longer than twice the execution time yielded by the
best known schedule for the program. When labeling schedules for a given SCoP as training
data we label all schedules as unprofitable if none of the schedules yields a speedup over
the execution time of the original sequential code after its optimization with -O3 that is
higher than 1.2. We use the optimal configuration found to determine the extent to which
knowledge regarding schedules’ profitability can be transferred from one program to another.

Table 9.9 characterizes the training sets. The total number of schedules in all training
sets together is 29613.

9.4.3 Experiments

We conducted the experiments that we present in the following to shed light on the research
questions in Section 9.4.1. Together with the title of each experiment, we reference the
research questions to which the experiment relates.

As described in Section 9.2, we exclude the program nussinov from the experiments. We
are unable to obtain sufficient information for the correct estimation of the data volumes that
are communicated by the legality-affecting dependence polyhedra of nussinov. Furthermore,
we exclude the programs seidel-2d and floyd-warshall, which are the only two programs
in PolyBench 4.1 that Polly models with a single statement.

E 9.4.1: Sensitivity of Features (RQ 9.4.1) The sparsity of parameters’ coefficients and
the constant appears to be the least sensitive feature. Its value is almost always between
0.75 and 1 and barely differs between schedules with different profitability. Thus, we did
not use the feature in the other experiments.

144 9.4 Genetic Algorithm with Schedule Classification

0

0.2

0.4

0.6

0.8

1

c, -, 10, -

c, -, 15, -

c, -, 20, -

r, 100, 10, 4

r, 100, 10, 6

r, 100, 10, 8

r, 100, 15, 4

r, 100, 15, 6

r, 100, 15, 8

r, 100, 20, 4

r, 100, 20, 6

r, 100, 20, 8

r, 200, 10, 4

r, 200, 10, 6

r, 200, 10, 8

r, 200, 15, 4

r, 200, 15, 6

r, 200, 15, 8

r, 200, 20, 4

r, 200, 20, 6

r, 200, 20, 8

r, 300, 10, 4

r, 300, 10, 6

r, 300, 10, 8

r, 300, 15, 4

r, 300, 15, 6

r, 300, 15, 8

r, 300, 20, 4

r, 300, 20, 6

r, 300, 20, 8

ra
ti

o

cart|random forest, # trees, min # samples per leaf, max # features

false negatives false positives

Figure 9.8: Comparison of different configurations of the learning algorithm for the schedule
classifiers. Per configuration tested, we show two box plots that express the distributions
of the rates of false negatives and false positives that we collected while testing the
configuration for each p and combinations of training set and verification set of schedules.

E 9.4.2: Leave-p-Out Across Programs (RQ 9.4.1, RQ 9.4.2) In this experiment, we
tested different configurations of the learning algorithms CART and random forest (refer
to Section 2.3.2). Our aim was to determine an effective configuration for the learning of
schedule classifiers that can distinguish between profitable and unprofitable schedules.

Regarding the learning algorithm’s configuration, we investigated primarily the choice
between random forest and CART with respect to their classification accuracy. Furthermore,
both techniques have a number of configuration parameters that substantially influence the
classifiers’ accuracy. We tuned the most important ones. The minimum number of data
points that are classified in a leaf node of a classification tree (min samples leaf) controls
the tree’s depth. By setting the parameter properly, overfitting of the model learned can
be prohibited. We tested the values 10, 15, and 20. The motivation for the maximum
tested value 20 is that, given the total number of schedules in the union of our training sets
and assuming a balanced decision tree, each feature can be considered at least once on a
path from a decision tree’s root to a leaf and two features can be considered twice. The
parameter max features controls the number of features chosen randomly to consider when
searching for the optimal splitting criterion for a node of a single classification tree. Since
CART constructs only one decision tree, we allowed it to inspect all features. For random
forest, we tested the values 4, 6, and 8. With random forest, the number of trees in a forest
(n estimators) is another parameter that requires tuning. More trees yield more stable
predictions, but longer computations. We tested with 100, 200, and 300 trees. Since we use
bootstrapping, each tree is learned from a subset of the training data chosen randomly.

To test each configuration, we removed the schedules of p ∈ N programs from the training
set and learned a performance model on the remaining ones. Then, we classified the removed
schedules and verified the predictions. In this way, we were able to determine the extent to
which our performance models are transferable to unseen programs for each configuration.
The schema is known as leave-p-out. We scaled p from 1 up to 5. Per program and
configuration, we determined the ratio of actually profitable schedules classified wrongly
(the false negatives) relative to the number of actually profitable schedules and the ratio of
actually unprofitable schedules classified wrongly (the false positives) relative to the number
of actually unprofitable schedules. Figure 9.8 shows, per configuration of the learning
algorithm, the distribution of the ratios of false positives and false negatives across all
values of p and combinations of training set and verification set of schedules. CART yields
notably more false positives at median than random forest. The following configuration

9 Evaluation 145

FDataLoc

FMemAcc

FLeaves

FSeq

FPar

FSpIter

FTile

FDepth

2m
m
3m

m
adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen

durbin

fdtd-2d

gem
m
gem

ver

gesum
m
v

gram
schm

idt

heat-3d

jacobi-1d

jacobi-2d

lu ludcm
p

m
vt

sym
m
syr2k

syrk
trisolv

trm
m

0.0625

0.125

0.25

0.5

1

Figure 9.9: A heat map that shows the GINI importance per feature and program.

is among the random forest configurations that yield the lowest median numbers of false
negatives: n estimators = 100, max features = 8, min samples leaf = 20. Among all
comparable configurations it uses the smallest number of trees per random forest. We used
this configuration in all other experiments.

Table 9.10 shows the results for this optimal configuration of random forest.

The average share of false negatives among the profitable schedules is 65% for p = 1 and
66% in the remaining cases. In contrast to that, the average share of false positives among
the unprofitable schedules is only 8% for all values of p. For some programs, the share of
false negatives among the profitable schedules is extreme.

To explain this situation, we started by computing the features’ importance for splitting
each program’s training set into profitable and unprofitable schedules. The heat map in
Figure 9.9 shows the GINI importance [103] per feature and program.

The GINI importance of a feature F is the sum of the decreases of GINI impurity at a
decision tree’s nodes whose splitting criterion is based on F . The impurity decrease is the
difference between the GINI impurity at a node and the weighted sum of the GINI impurity
at its children. In case of random forests, the value is normalized by the number of trees. To
compute the GINI importances, we learned random forests with the following configuration:
min samples leaf = 20, max features = 2, and n estimators = 500. Again, we use
bootstrapping, which means that we learn each tree from a randomly chosen subset of a
program’s training set of schedules. The large number of trees per random forest and the
low number of features considered for determining a splitting condition result in a diverse
set of trees in each forest. In contrast, deriving the GINI importances from a single CART
learned with a configuration that requires the consideration of all features for determination
of each splitting condition would identify primarily the most important feature per program,
but it would not yield strong evidence for the other features.

Per program, we assigned a rank to each feature according to its importance compared to
the other features. Next, we summated each feature’s ranks. In cases in which all features
had an importance of 0 we assigned rank 0 to all features. In Table 9.11, we enumerate
the features, from the most important to the least important, and show their rank sums.
Furthermore, we learned a random forest from all programs’ training sets together and
determined the features’ GINI importances. Table 9.12 shows the results. Apart from the
ordering of the two least important features, the features’ order is the same as in Table 9.11.

The ranking of the features that we derived does not fit all programs in the benchmark set.
This is a first indicator that, with our set of features, we cannot learn a model that allows
us to distinguish successfully profitable from unprofitable schedules of arbitrary programs.

Another aspect that we must take into account is the value range of the features. For
instance, FTile is useful for the distinction of profitable from unprofitable schedules of both
3mm and adi but, as can be seen from Figure 9.10, the feature’s value ranges for the two

146 9.4 Genetic Algorithm with Schedule Classification

T
a
b
le

9
.1
0:

A
ve
ra
ge

re
su
lt
s
p
er

co
m
b
in
at
io
n
of

p
ro
gr
am

an
d
p
fo
r
th
e
op

ti
m
al

co
n
fi
gu

ra
ti
on

of
ra
n
d
om

fo
re
st

th
at

w
e
d
et
er
m
in
ed

in
E

9
.4
.2
.
L
is
te
d

ar
e,

p
er

p
ro
gr
am

an
d
p
,
th
e
av
er
ag
e
ra
te

of
fa
ls
e
p
os
it
iv
es

am
on

g
th
e
u
n
p
ro
fi
ta
b
le

sc
h
ed
u
le
s,

th
e
av
er
ag
e
ra
te

of
fa
ls
e
n
eg
at
iv
es

am
on

g
al
l
p
ro
fi
ta
b
le

sc
h
ed

u
le
s,

am
on

g
th
e
sc
h
ed

u
le
s
th
at

y
ie
ld

≥
80

%
of

th
e
sp
ee
d
u
p
,
an

d
am

on
g
th
e
sc
h
ed

u
le
s
th
at

y
ie
ld

≥
95

%
of

th
e
sp
ee
d
u
p
.
F
in
al
ly
,
w
e
sh
ow

th
e

av
er
ag
e
ra
te

of
m
is
p
re
d
ic
ti
on

s
p
er

co
m
b
in
at
io
n
of

p
ro
gr
am

an
d
p
.
In

th
e
ab

se
n
ce

of
p
ro
fi
ta
b
le

sc
h
ed
u
le
s
fo
r
a
p
ro
gr
am

,
th
e
sh
ar
e
of

fa
ls
e
n
eg
at
iv
es

is
u
n
d
efi

n
ed

,
w
h
ic
h
w
e
in
d
ic
at
e
b
y
d
as
h
es
.

p
r
o
g
r
a
m

p

2m
m

3m
m

ad
i

at
ax

bi
cgch

ol
es
ky

co
rr
el
at
io
n

co
va
ri
an
ce

de
ri
ch
e

do
it
ge
n

du
rb
infd
td
-2
d

ge
m
m

ge
m
ve
r

ge
su
m
m
v

gr
am

sc
hm

id
t

he
at
-3
dja
co
bi
-1
d

ja
co
bi
-2
d

lu

lu
dc
m
p
m
vt

sy
m
msy

r2
k

sy
rk

tr
is
ol
v

tr
m
mro
w
av
g.

%
fa
ls
e
p
o
s
.

1
4

1
6

3
1
4

4
1

1
0

9
0

2
0

2
1
0

8
1
4

0
4
4

5
3

2
0

5
1

0
1
0

7
0

8
8

%
fa
ls
e
n
e
g
.

1
1
3

4
9
7

7
0

9
7

1
0
0

9
1

5
5

–
1
0
0

–
9
9

1
3

8
8

2
1

1
0
0

5
1

9
7

6
8

9
7

–
4
5

–
7

4
1

1
0
0

4
9

6
5

%
fa
ls
e
n
e
g
.
≥

8
0
%

1
3

1
9
7

8
4

9
8

1
0
0

9
2

5
8

–
1
0
0

–
9
9

1
3

9
0

1
4

1
0
0

3
8

1
0
0

6
5

9
8

–
3
0

–
5

4
1

1
0
0

2
7

6
3

%
fa
ls
e
n
e
g
.
≥

9
5
%

1
2

2
1
0
0

9
6

9
8

1
0
0

1
0
0

9
2

–
1
0
0

–
9
9

5
7

1
0
0

1
3

1
0
0

0
1
0
0

6
5

9
9

–
0

–
2

5
6

1
0
0

2
5

6
5

t
o
t
a
l
%

m
is
p
r
e
d
.

1
8

1
2

4
1

3
4

5
5

1
4

4
3

3
2

0
4
5

0
5
1

1
2

3
5

1
7

4
9

4
6

7
1

2
2

3
5

0
4
8

0
8

2
8

3
2

2
5

2
8

%
fa
ls
e
p
o
s
.

2
4

1
6

3
1
4

3
0

1
0

9
0

2
0

2
1
1

8
1
4

0
2
3

5
3

1
0

5
0

0
9

7
3

8
8

%
fa
ls
e
n
e
g
.

2
1
5

5
9
7

6
4

9
6

1
0
0

9
0

5
2

–
9
9

–
9
9

1
2

8
6

4
3

1
0
0

7
0

9
7

6
9

9
7

–
4
0

–
7

3
6

9
4

4
9

6
6

%
fa
ls
e
n
e
g
.
≥

8
0
%

2
5

1
9
7

7
5

9
7

9
9

9
3

5
4

–
1
0
0

–
9
9

1
3

8
8

4
0

1
0
0

4
6

1
0
0

6
8

9
9

–
2
2

–
5

3
4

9
8

2
8

6
3

%
fa
ls
e
n
e
g
.
≥

9
5
%

2
2

2
9
9

7
4

9
7

1
0
0

9
9

8
7

–
1
0
0

–
9
9

6
3

9
9

4
0

1
0
0

4
6

1
0
0

6
7

9
9

–
0

–
3

4
4

9
6

2
4

6
7

t
o
t
a
l
%

m
is
p
r
e
d
.

2
9

1
3

4
1

3
2

5
4

1
3

4
3

3
1

0
4
5

0
5
1

1
2

3
4

2
8

4
9

3
6

7
1

2
3

3
5

0
4
5

0
8

2
4

3
1

2
5

2
8

%
fa
ls
e
p
o
s
.

3
5

1
6

4
1
4

4
0

1
0

1
0

0
4

0
2

1
1

8
1
3

0
1
7

5
3

2
0

4
9

0
9

7
3

9
8

%
fa
ls
e
n
e
g
.

3
1
7

5
9
5

6
3

9
5

1
0
0

9
0

5
0

–
9
7

–
9
9

1
2

8
4

5
4

1
0
0

7
4

9
7

7
3

9
7

–
3
5

–
7

3
7

9
3

4
9

6
6

%
fa
ls
e
n
e
g
.
≥

8
0
%

3
6

1
9
5

7
6

9
5

9
8

9
3

5
1

–
1
0
0

–
9
9

1
3

8
7

5
4

1
0
0

5
0

1
0
0

7
2

9
8

–
1
9

–
5

3
5

9
6

2
9

6
4

%
fa
ls
e
n
e
g
.
≥

9
5
%

3
3

2
9
8

7
5

9
5

1
0
0

9
9

8
0

–
1
0
0

–
9
9

6
4

9
6

5
4

1
0
0

5
7

1
0
0

7
2

9
8

–
0

–
3

4
6

9
6

2
5

6
8

t
o
t
a
l
%

m
is
p
r
e
d
.

3
1
0

1
3

4
1

3
1

5
3

1
3

4
3

3
0

0
4
5

0
5
1

1
2

3
4

3
3

4
9

3
4

7
1

2
4

3
5

0
4
2

0
8

2
5

3
2

2
5

2
8

%
fa
ls
e
p
o
s
.

4
5

1
6

5
1
3

4
0

1
0

1
0

0
5

0
2

1
1

8
1
3

0
1
5

5
2

2
0

4
7

0
9

7
4

9
8

%
fa
ls
e
n
e
g
.

4
1
8

5
9
4

6
3

9
4

1
0
0

9
0

4
9

–
9
6

–
9
9

1
2

8
3

6
0

1
0
0

7
6

9
7

7
7

9
6

–
3
3

–
7

3
8

9
0

4
8

6
6

%
fa
ls
e
n
e
g
.
≥

8
0
%

4
8

1
9
4

7
7

9
4

9
8

9
2

4
9

–
9
9

–
9
9

1
2

8
6

6
1

1
0
0

5
3

1
0
0

7
6

9
8

–
1
6

–
5

3
7

9
6

2
9

6
4

%
fa
ls
e
n
e
g
.
≥

9
5
%

4
4

2
9
8

7
7

9
5

1
0
0

9
8

7
5

–
9
9

–
9
9

6
4

9
5

6
0

1
0
0

6
6

1
0
0

7
5

9
8

–
0

–
3

4
9

9
6

2
5

6
9

t
o
t
a
l
%

m
is
p
r
e
d
.

4
1
1

1
3

4
1

3
1

5
3

1
3

4
3

3
0

0
4
5

0
5
1

1
2

3
3

3
6

4
9

3
3

7
1

2
5

3
5

0
4
0

0
8

2
5

3
1

2
5

2
8

%
fa
ls
e
p
o
s
.

5
5

1
6

5
1
3

5
0

1
0

1
0

0
6

0
2

1
1

8
1
3

0
1
4

5
2

2
0

4
6

0
9

7
5

9
8

%
fa
ls
e
n
e
g
.

5
2
0

5
9
3

6
4

9
3

9
9

9
0

4
8

–
9
5

–
9
9

1
2

8
2

6
3

1
0
0

7
7

9
7

7
8

9
6

–
3
1

–
7

3
9

8
9

4
8

6
6

%
fa
ls
e
n
e
g
.
≥

8
0
%

5
1
0

1
9
4

7
8

9
4

9
7

9
2

4
7

–
9
9

–
9
9

1
2

8
6

6
4

1
0
0

5
6

1
0
0

7
7

9
7

–
1
5

–
5

3
9

9
7

2
9

6
5

%
fa
ls
e
n
e
g
.
≥

9
5
%

5
4

2
9
8

7
9

9
4

1
0
0

9
8

7
1

–
9
9

–
9
9

6
3

9
4

6
4

1
0
0

6
9

1
0
0

7
7

9
7

–
0

–
3

5
2

9
6

2
5

6
9

t
o
t
a
l
%

m
is
p
r
e
d
.

5
1
2

1
3

4
1

3
1

5
3

1
3

4
3

2
9

0
4
5

0
5
1

1
2

3
3

3
7

4
9

3
2

7
1

2
5

3
5

0
3
9

0
8

2
6

3
1

2
5

2
8

9 Evaluation 147

Table 9.11: Our schedule features ordered by their importance across the set of benchmark
programs. We show each feature’s rank sum.

feature FTile FPar FDataLoc FMemAcc FSpIter FDepth FSeq FLeaves

rank sum 124 109 104 79 76 65 52 40

Table 9.12: GINI importances of our features for the union of all program’s training sets.

feature FTile FPar FDataLoc FMemAcc FSpIter FDepth FLeaves FSeq

GINI importance 0.21 0.20 0.16 0.15 0.11 0.08 0.06 0.05

programs differ. This complicates the transfer of knowledge regarding the profitability of
schedules among programs further.
To understand why the accuracy of our classification is particularly low in the cases of

adi, bicg, cholesky, doitgen, fdtd-2d, gramschmidt, jacobi-1d, lu, and trisolv, we
learned a strongly simplified decision tree from the union of the training sets of all programs
in the benchmark set. We achieved the simplification by requiring that each leaf must
correspond to at least 1500 schedules in the training set. Figure 9.11 shows this decision tree.
We pruned subtrees whose leaf nodes share the same majority class of the corresponding
training samples.

On the basis of the tree, we could identify three primary classes of schedules that correspond
to good performance:

1. Strong parallelism and good applicability of tiling: FPar > 0.766 ∧ FTile > 0.845

2. Strong parallelism and mostly beneficial memory access pattern:

FPar > 0.766 ∧ FTile < 0.845 ∧ FMemAcc > 0.558

3. Medium or weak parallelism, some tiling, not too much skewing, very good memory
access pattern: FPar ≤ 0.766 ∧ FTile > 0.22 ∧ FSpIter > 0.356 ∧ FMemAcc > 0.881

We marked the respective paths from the tree’s root. With the exception of some schedules
of jacobi-1d that are in class 3, the grand majority of the schedules of the programs that we
listed above do not correspond to any of the three classes. The subtree that is marked by the

0

0.25

0.5

0.75

1

0 6 12 18

fe
a
tu

re
 v

a
lu

e

speedup over O3

1

10

100

(a) 3mm

0

0.25

0.5

0.75

1

0 3 6 9
speedup over O3

1

10

100

(b) adi

Figure 9.10: Comparison of the value distribution of FTile between 3mm and adi. The
horizontal axis is speedup, the vertical axis is the feature value. The color of the squares
expresses the number of schedules whose feature value is located at a position.

148 9.4 Genetic Algorithm with Schedule Classification

1

2

3

feature value ≤ threshold

samples = # samples

value = [#unprof., # prof.]

class = majority class

Condition true Condition false

Figure 9.11: A decision tree that is learned from all programs’ training sets. We identified
three primary classes of profitable schedules and have marked the paths from the root
node that correspond to these classes. The splitting conditions in the subtree marked are
diffuse. Developing this subtree more deeply may be helpful. We pruned subtrees whose
leaves share the same majority class.

9 Evaluation 149

dashed line corresponds to mostly diffuse splitting conditions. Developing this subtree more
deeply may be helpful to distinguish better between profitable and unprofitable schedules in
the training set that correspond to this subtree. It is remarkable that most of the subtree’s
leaves do not relate unambiguously to either profitable or unprofitable schedules.

E 9.4.3: k-Fold Cross-Validation on the Full Training Set (RQ 9.4.1, RQ 9.4.2) In
addition to E 9.4.2, we carried out k-fold cross-validation on the union of all programs’
training sets. Instead of leaving all schedules of p programs out of the training set, as we
did in E 9.4.2, we removed a share of 1/k (k = 5, 6, ..., 20) randomly chosen schedules from
the full training set. Then, we learned a performance model from the remaining schedules
using the configuration that we had elected in E 9.4.2. Using the model, we classified the
removed schedules. Per k, we repeated the experiment until the determined shares of false
negatives among the profitable and false positives among the unprofitable schedules became
significant. Table 9.13 shows the results.

Across the benchmark set, the average rate of false negatives among the actually profitable
schedules is between 15% and 16%. The average rate of false positives among the actually
unprofitable schedules is approximately 6%.

E 9.4.4: Cost-Benefit-Analysis of Replacing Benchmarking with Classification (RQ 9.4.3)
In this experiment, we evaluated the cost and the benefit of replacing our genetic algorithm’s
fitness function that is based on benchmarking with a classifier that relies on a machine-
learned surrogate performance model. Section 7.2 describes two ways of combining a classifier
with our genetic algorithm. The first way uses the classifier as a filter for the actual fitness
evaluation that relies on benchmarking. The second way relies completely on classification
for the fitness evaluation of schedules and uses benchmarking only to select the best schedule
from the genetic algorithm’s final population. As already described, we focus on the second
way of combining the classification of schedules with our genetic algorithm here. We refer to
this combination by GAC .

For this experiment, we used a NUMA (non-uniform memory access) [82] computer
architecture with two CPU sockets. An Intel Xeon E5-2650 v2 CPU @ 2.6GHz CPU
with eight physical cores and 20MB of L3 cache is mounted on each of the sockets. We
use numactl [82] to pin Polyite to one CPU socket and the benchmarking of schedules
(i.e., the script that invokes clang with Polly and performs the benchmarking; refer to
Section 8.1) to the other CPU socket. We use a single thread to generate schedules. The
classification of schedules classifies 20 schedules in parallel. We wrap the benchmarking
script by the srun command of SLURM, which initiates a SLURM job step on the already
allocated local compute node (refer to Section 8.3.6) and allows us to deactivate Intel
Turbo Boost during the benchmarking process. We measure the execution time of GAC ,
the total time needed for the evaluation of the schedules in GAC ’s final population, and,
per schedule in the final population, the execution time of the program to be optimized
after the application of the schedule. From the latter, we can calculate the speedup over the
sequential execution of the original program after its optimization by -O3. To account for
the randomness of GAC , we run each configuration ten times and use the median of the
maximum speedups yielded by the ten runs as GAC ’s result for a program.

The experiment has two steps. In the first step, we guided GAC with a model learned
from schedules of the program to be optimized. This allowed us to determine how well GAC

performs when it is guided by a performance model that resembles well the program to
be compiled. Here, we labeled any schedule as profitable that yields at least 50% of the
speedup yielded by the best schedule in the program’s training set. This deviates from the
labeling rule described in Section 7.2.

In the second step, we used the leave-one-out schema to evaluate how well transfer-learned
performance models direct GAC . We learned the models from all programs’ training sets
except the program to be optimized. We labeled the training data as described in Section 7.2.

150 9.4 Genetic Algorithm with Schedule Classification

T
a
b
le

9
.1
3:

R
es
u
lt
s
of

E
9
.4
.3

(k
-F
o
ld

C
ro
ss
-V

a
li
d
a
ti
o
n
o
n
th
e
F
u
ll
T
ra
in
in
g
S
et
).

P
er

p
ro
gr
am

an
d
va
lu
e
of

k
,
w
e
sh
ow

th
e
sh
ar
e
of

fa
ls
e
n
eg
at
iv
es

a
m
o
n
g
th
e
p
ro
fi
ta
b
le

sc
h
ed

u
le
s
a
n
d
th
e
sh
a
re

o
f
fa
ls
e
p
os
it
iv
es

am
on

g
th
e
u
n
p
ro
fi
ta
b
le

sc
h
ed

u
le
s.

kto
ta
l

2m
m

3m
m

ad
i

at
ax

b
ic
gch
ol
es
kyco
rr
el
at
io
n

co
va
ri
an
ce

d
er
ic
h
ed
oi
tg
en

d
u
rb
in

fd
td
-2
d
ge
m
m
ge
m
ve
r

ge
su
m
m
v

gr
am

sc
h
m
id
th
ea
t-
3dja
co
b
i-
1dja
co
b
i-
2d

lu

lu
d
cm

p
m
vt

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

%
fa
ls
e
n
e
g
.

5
1
5
.6
2
1
1
.5
8

6
.1
6
2
3
.3
7
1
0
.3
0

7
.8
4
1
5
.2
3
3
1
.7
7
2
0
.6
0
–

1
7
.1
6
–

1
4
.5
5

5
.8
3
1
0
.6
9
1
3
.9
7
1
2
.9
6
4
2
.2
0
1
4
.4
2
3
3
.3
2
3
0
.8
0
–

1
8
.7
0
–

6
.9
0
1
1
.2
6
1
6
.7
8
1
6
.0
6

%
fa
ls
e
p
o
s
.

5
6
.2
1

4
.7
5

7
.4
8

9
.2
2

9
.7
8

5
.8
9

1
.9
2
1
0
.2
8

9
.4
9

0
.1
9

4
.4
0

0
.0
0

7
.0
6

7
.5
0

9
.1
4
1
1
.7
5

3
.0
4
1
0
.7
2

3
.2
7
1
2
.5
3

8
.6
2

0
.0
0
1
0
.5
0

0
.0
0

6
.4
5

6
.2
8
1
1
.5
5

8
.8
5

%
fa
ls
e
n
e
g
.

6
1
5
.5
3
1
1
.6
8

6
.1
0
2
3
.0
0
1
0
.6
3

7
.9
7
1
5
.0
0
3
1
.6
1
2
0
.5
9
–

1
6
.9
4
–

1
4
.2
6

5
.7
6
1
0
.6
2
1
3
.6
5
1
2
.6
4
4
1
.4
3
1
4
.3
3
3
3
.6
4
3
0
.2
2
–

1
8
.8
5
–

6
.7
7
1
1
.5
1
1
6
.7
5
1
6
.1
1

%
fa
ls
e
p
o
s
.

6
6
.0
9

4
.4
5

6
.9
5

9
.2
4

9
.3
5

5
.6
0

1
.9
1
1
0
.5
1

9
.3
6

0
.1
8

4
.1
0

0
.0
0

6
.8
8

7
.7
8

9
.3
4
1
1
.6
0

3
.0
1
1
1
.3
9

2
.9
4
1
2
.2
7

8
.5
7

0
.0
0

9
.3
9

0
.0
0

6
.2
8

6
.1
0
1
1
.3
6

8
.3
3

%
fa
ls
e
n
e
g
.

7
1
5
.5
7
1
1
.5
3

5
.9
4
2
3
.0
8
1
0
.9
5

7
.7
9
1
4
.7
7
3
1
.6
3
2
1
.0
0
–

1
7
.0
0
–

1
4
.3
7

5
.7
1
1
0
.7
1
1
3
.8
4
1
2
.4
0
4
1
.9
6
1
4
.5
3
3
4
.4
7
3
0
.3
6
–

1
8
.6
2
–

6
.5
6
1
1
.2
0
1
7
.1
0
1
5
.9
5

%
fa
ls
e
p
o
s
.

7
6
.0
9

4
.4
1

7
.0
0

9
.0
3

9
.4
5

5
.8
6

1
.9
4
1
0
.3
8

9
.2
9

0
.2
2

4
.0
0

0
.0
0

6
.4
8

7
.4
4

9
.2
0
1
1
.3
9

3
.2
0
1
1
.3
6

2
.9
6
1
2
.1
4

8
.6
5

0
.0
0
1
0
.5
2

0
.0
0

6
.4
3

5
.8
8
1
1
.6
1

8
.0
2

%
fa
ls
e
n
e
g
.

8
1
5
.5
0
1
1
.5
6

6
.1
5
2
3
.1
2
1
0
.7
5

7
.8
8
1
5
.2
6
3
2
.0
8
2
0
.8
9
–

1
6
.7
1
–

1
3
.6
6

5
.7
5
1
0
.8
1
1
3
.8
4
1
2
.2
7
4
1
.8
3
1
4
.4
9
3
2
.6
1
3
0
.1
7
–

1
8
.7
2
–

6
.5
5
1
1
.0
4
1
6
.9
7
1
6
.0
2

%
fa
ls
e
p
o
s
.

8
6
.1
1

4
.4
3

7
.0
3

9
.0
1

9
.3
5

5
.6
8

2
.0
0
1
0
.4
1

9
.4
5

0
.2
1

4
.1
3

0
.0
0

6
.4
5

7
.2
9

9
.2
6
1
1
.5
8

3
.1
0
1
1
.5
5

2
.8
2
1
2
.3
2

8
.5
4

0
.0
0

9
.8
3

0
.0
0

6
.3
8

6
.1
8
1
1
.7
9

8
.2
8

%
fa
ls
e
n
e
g
.

9
1
5
.4
3
1
1
.5
7

6
.0
9
2
2
.9
3
1
0
.3
7

7
.5
5
1
5
.0
4
3
1
.9
2
2
0
.9
5
–

1
6
.0
8
–

1
4
.0
7

5
.6
9
1
0
.5
6
1
3
.4
7
1
2
.0
4
4
0
.3
6
1
4
.4
4
3
2
.9
8
3
0
.6
7
–

1
8
.7
8
–

6
.8
2
1
1
.5
7
1
7
.1
1
1
5
.9
3

%
fa
ls
e
p
o
s
.

9
6
.1
0

4
.4
8

6
.9
9

8
.7
5

9
.3
4

5
.6
8

1
.9
3
1
0
.5
4

9
.2
3

0
.2
4

4
.0
9

0
.0
0

6
.4
4

7
.4
7

9
.2
5
1
1
.4
7

3
.3
5
1
1
.4
1

2
.8
3
1
2
.4
7

8
.7
1

0
.0
0
1
0
.7
0

0
.0
0

6
.2
7

5
.6
0
1
1
.5
6

8
.0
0

%
fa
ls
e
n
e
g
.
1
0

1
5
.3
6
1
1
.8
3

6
.0
4
2
2
.2
8
1
0
.7
9

7
.6
8
1
5
.3
6
3
1
.5
7
2
0
.6
6
–

1
6
.4
0
–

1
3
.8
3

5
.8
1
1
0
.2
3
1
3
.5
0
1
1
.8
6
3
9
.9
8
1
4
.4
0
3
3
.5
9
2
9
.5
6
–

1
8
.8
7
–

6
.6
8
1
1
.1
2
1
6
.9
0
1
6
.1
6

%
fa
ls
e
p
o
s
.
1
0

6
.0
6

4
.4
0

7
.0
6

9
.1
2

9
.2
9

5
.5
4

1
.9
5
1
0
.1
2

9
.2
5

0
.1
9

4
.1
1

0
.0
0

6
.4
1

7
.5
7

9
.2
0
1
1
.1
3

3
.3
5
1
1
.6
8

2
.8
8
1
2
.1
9

8
.2
8

0
.0
0
1
0
.0
6

0
.0
0

6
.7
1

5
.8
2
1
1
.5
2

7
.9
4

%
fa
ls
e
n
e
g
.
1
1

1
5
.3
3
1
1
.4
7

6
.2
4
2
2
.2
6
1
0
.9
6

7
.6
3
1
5
.6
3
3
2
.0
4
2
0
.7
1
–

1
6
.4
7
–

1
4
.2
4

5
.8
2
1
0
.0
8
1
3
.2
6
1
1
.7
3
4
0
.1
2
1
4
.4
6
3
2
.7
4
3
0
.2
7
–

1
8
.5
0
–

6
.5
4
1
0
.9
6
1
6
.4
5
1
6
.4
0

%
fa
ls
e
p
o
s
.
1
1

6
.1
3

4
.9
7

7
.0
5

9
.3
1

8
.9
0

5
.5
8

2
.0
2
1
0
.2
8

9
.3
6

0
.2
1

4
.0
6

0
.0
0

6
.5
2

7
.6
2

9
.3
6
1
1
.4
5

3
.3
6
1
1
.9
7

2
.8
9
1
2
.5
1

8
.3
6

0
.0
0
1
0
.5
5

0
.0
0

6
.3
5

5
.8
7
1
1
.5
4

8
.1
7

%
fa
ls
e
n
e
g
.
1
2

1
5
.3
4
1
1
.5
3

6
.1
1
2
3
.5
1
1
0
.6
6

7
.6
2
1
5
.0
9
3
2
.2
8
2
0
.4
1
–

1
6
.3
3
–

1
3
.9
4

5
.8
3
1
0
.2
3
1
3
.2
8
1
1
.7
1
4
0
.1
0
1
4
.3
6
3
3
.3
5
3
0
.3
0
–

1
8
.8
9
–

6
.6
3
1
0
.9
3
1
6
.6
7
1
5
.9
7

%
fa
ls
e
p
o
s
.
1
2

6
.0
7

4
.7
7

6
.8
5

9
.0
3

9
.3
4

5
.6
4

1
.9
4
1
0
.4
6

9
.3
3

0
.2
2

4
.0
5

0
.0
0

6
.3
7

7
.4
3

9
.0
6
1
1
.3
4

3
.3
5
1
2
.0
4

2
.6
8
1
2
.1
4

8
.2
5

0
.0
0
1
0
.4
6

0
.0
0

6
.4
5

5
.4
4
1
1
.4
7

7
.9
1

%
fa
ls
e
n
e
g
.
1
3

1
5
.3
9
1
1
.5
7

6
.2
0
2
3
.4
8
1
1
.2
0

7
.4
5
1
4
.8
3
3
1
.8
4
2
0
.5
0
–

1
6
.3
3
–

1
3
.8
6

5
.9
9
1
0
.0
1
1
3
.4
7
1
1
.6
8
4
0
.2
4
1
4
.5
5
3
2
.3
1
3
0
.2
1
–

1
8
.9
7
–

6
.4
3
1
1
.1
8
1
7
.2
0
1
6
.1
4

%
fa
ls
e
p
o
s
.
1
3

6
.0
4

4
.6
8

6
.9
6

9
.0
1

8
.9
7

5
.6
7

1
.9
1
1
0
.2
2

9
.3
4

0
.1
9

4
.1
7

0
.0
0

6
.4
1

7
.3
9

8
.9
3
1
1
.2
9

3
.5
7
1
1
.9
6

2
.6
3
1
2
.1
7

8
.3
4

0
.0
0
1
0
.0
8

0
.0
0

6
.3
3

5
.7
3
1
1
.6
6

7
.8
9

%
fa
ls
e
n
e
g
.
1
4

1
5
.3
4
1
1
.4
0

6
.2
1
2
2
.2
1
1
0
.7
1

7
.4
3
1
6
.1
6
3
2
.5
8
2
0
.7
7
–

1
6
.2
2
–

1
3
.9
4

6
.1
0
1
0
.0
7
1
2
.9
3
1
1
.6
8
3
9
.2
0
1
4
.3
8
3
3
.0
9
3
0
.1
5
–

1
8
.9
5
–

6
.5
6
1
1
.1
5
1
6
.7
5
1
6
.3
3

%
fa
ls
e
p
o
s
.
1
4

6
.0
6

4
.8
2

6
.7
7

8
.9
5

9
.0
8

5
.5
0

1
.8
9
1
0
.1
4

9
.3
3

0
.2
0

4
.1
1

0
.0
0

6
.5
5

7
.2
4

9
.0
6
1
1
.4
0

3
.1
9
1
2
.2
8

3
.1
4
1
2
.3
0

8
.5
0

0
.0
0
1
0
.5
7

0
.0
0

6
.2
7

5
.4
8
1
1
.6
8

7
.8
8

%
fa
ls
e
n
e
g
.
1
5

1
5
.3
0
1
1
.3
9

6
.2
3
2
2
.2
6
1
1
.1
3

7
.6
0
1
5
.5
6
3
1
.9
5
2
0
.5
1
–

1
6
.2
8
–

1
3
.7
0

5
.8
2
1
0
.2
0
1
3
.1
2
1
2
.0
6
4
0
.0
1
1
4
.3
9
3
2
.6
9
3
0
.0
3
–

1
9
.3
5
–

6
.5
8
1
1
.1
6
1
6
.6
2
1
6
.3
3

%
fa
ls
e
p
o
s
.
1
5

6
.0
7

4
.5
5

7
.0
2

9
.0
9

9
.1
2

5
.5
1

1
.9
8
1
0
.5
5

9
.1
5

0
.2
4

4
.1
3

0
.0
0

6
.2
6

7
.4
4

9
.0
4
1
0
.9
4

3
.4
3
1
2
.1
3

2
.9
3
1
2
.0
9

8
.4
0

0
.0
0
1
0
.4
7

0
.0
0

6
.4
3

5
.7
5
1
1
.7
2

8
.0
3

%
fa
ls
e
n
e
g
.
1
6

1
5
.2
4
1
1
.3
9

6
.3
9
2
2
.6
1
1
1
.0
2

7
.4
0
1
4
.5
6
3
1
.7
2
2
0
.5
3
–

1
6
.3
2
–

1
3
.8
4

5
.8
9
1
0
.1
3
1
2
.8
7
1
1
.4
6
3
9
.0
8
1
4
.1
0
3
2
.8
3
3
0
.0
6
–

1
9
.1
3
–

6
.3
7
1
1
.0
8
1
6
.8
0
1
6
.0
8

%
fa
ls
e
p
o
s
.
1
6

6
.0
5

4
.7
4

6
.8
4

8
.8
3

8
.9
8

5
.5
1

1
.9
7
1
0
.2
6

9
.0
7

0
.2
2

3
.9
9

0
.0
0

6
.2
9

7
.5
8

9
.2
4
1
1
.1
0

3
.3
8
1
2
.1
0

2
.7
8
1
2
.4
4

8
.5
3

0
.0
0
1
0
.6
3

0
.0
0

6
.2
8

5
.8
0
1
1
.8
1

7
.9
0

%
fa
ls
e
n
e
g
.
1
7

1
5
.2
5
1
1
.4
2

6
.2
0
2
3
.0
1
1
0
.9
3

7
.6
7
1
5
.1
1
3
2
.4
1
2
0
.6
3
–

1
6
.1
5
–

1
4
.0
7

5
.9
5
1
0
.1
0
1
3
.1
9
1
1
.7
2
3
8
.5
3
1
4
.3
0
3
2
.6
2
2
9
.3
5
–

1
8
.5
7
–

6
.4
8
1
0
.9
5
1
6
.8
2
1
6
.2
2

%
fa
ls
e
p
o
s
.
1
7

6
.0
9

4
.6
9

6
.8
4

8
.9
7

9
.2
3

5
.4
5

1
.9
9
1
0
.1
2

9
.3
9

0
.2
0

4
.1
6

0
.0
0

6
.1
8

7
.6
7

9
.2
3
1
1
.2
5

3
.4
5
1
2
.3
1

3
.0
1
1
2
.4
8

8
.2
4

0
.0
0
1
0
.6
8

0
.0
0

6
.2
7

5
.8
1
1
1
.5
5

7
.6
5

%
fa
ls
e
n
e
g
.
1
8

1
5
.2
4
1
1
.3
9

6
.2
5
2
2
.5
7
1
1
.2
5

7
.5
8
1
4
.8
0
3
1
.9
6
2
0
.3
9
–

1
6
.1
9
–

1
3
.7
6

5
.6
2
1
0
.2
8
1
3
.0
3
1
1
.3
6
3
9
.1
6
1
4
.4
4
3
2
.6
1
2
9
.6
7
–

1
8
.8
4
–

6
.3
7
1
0
.9
9
1
6
.7
5
1
6
.2
8

%
fa
ls
e
p
o
s
.
1
8

6
.0
7

4
.5
9

7
.2
2

8
.7
2

8
.7
4

5
.6
7

1
.9
5
1
0
.3
6

8
.8
8

0
.2
0

4
.0
9

0
.0
0

6
.2
1

7
.6
4

9
.2
7
1
1
.4
4

3
.3
8
1
2
.0
6

2
.8
9
1
2
.5
7

8
.4
4

0
.0
0
1
0
.2
6

0
.0
0

6
.5
5

5
.9
5
1
1
.7
4

7
.7
4

%
fa
ls
e
n
e
g
.
1
9

1
5
.1
9
1
1
.2
2

6
.1
9
2
2
.2
0
1
0
.8
0

7
.5
7
1
5
.0
6
3
2
.3
2
2
0
.4
9
–

1
6
.1
8
–

1
3
.9
4

5
.8
5
1
0
.0
5
1
2
.8
8
1
1
.4
7
3
8
.4
5
1
4
.2
7
3
2
.0
4
2
9
.8
5
–

1
8
.9
7
–

6
.5
1
1
0
.9
3
1
6
.7
3
1
6
.2
0

%
fa
ls
e
p
o
s
.
1
9

6
.0
8

4
.7
0

6
.9
3

8
.9
9

8
.9
8

5
.5
4

1
.9
4
1
0
.2
9

9
.2
2

0
.1
8

3
.9
7

0
.0
0

5
.9
9

7
.6
3

9
.3
7
1
1
.2
7

3
.4
3
1
2
.3
8

2
.9
4
1
2
.6
0

8
.4
7

0
.0
0
1
0
.4
4

0
.0
0

6
.6
6

5
.7
1
1
1
.5
4

7
.8
0

%
fa
ls
e
n
e
g
.
2
0

1
5
.2
0
1
1
.3
5

6
.3
1
2
2
.8
6
1
0
.8
3

7
.5
7
1
5
.8
7
3
1
.5
1
2
0
.4
0
–

1
6
.1
4
–

1
3
.3
9

5
.8
0
1
0
.1
5
1
2
.9
3
1
1
.6
6
3
9
.1
9
1
4
.3
6
3
2
.3
9
2
9
.7
5
–

1
8
.8
5
–

6
.4
1
1
1
.1
1
1
6
.3
3
1
6
.0
1

%
fa
ls
e
p
o
s
.
2
0

6
.0
8

4
.5
9

6
.8
6

9
.1
3

8
.7
8

5
.5
1

1
.9
7
1
0
.5
4

9
.1
0

0
.2
0

4
.1
9

0
.0
0

6
.0
0

7
.5
1

9
.1
5
1
1
.1
5

3
.3
9
1
2
.2
8

2
.8
1
1
2
.2
1

8
.3
4

0
.0
0
1
0
.6
1

0
.0
0

6
.6
8

5
.7
1
1
1
.7
2

7
.8
3

9 Evaluation 151

As the baseline, we ran GAB with the window-based early termination criterion described
in Section 6.1, using the configuration specified in Section 9.1.4 five times per program.
Running GAB for a fixed number of generations that is chosen independently from the
program to be optimized would have been unfair in terms of the total duration of the
optimization because GAC ’s termination criterion also allows for an early termination. As
the optimal speedup reached by GAB , we used the median of the maximum speedups reached
by the five runs.

The second baseline are, per program, ten sets of schedules generated by random explo-
ration with the sparse configuration. Each set contained 50 schedules, which equals the size
of GAB’s final population.

We expect that the benchmarking effort to determine the most profitable schedule in
GAC ’s final population is lower than the effort that is required to determine the most
profitable schedules among the schedules generated randomly. Further, we expect that the
optimal schedule found by GAC yields an equal or higher speedup in execution time of the
transformed program than the best schedule found by random exploration. In addition, we
compare the distributions of the speedups yielded by the successfully applicable schedules
found by GAC and those found by random exploration. If the distribution of the speedups
do not differ, this is an indicator that GAC is nothing but random exploration. As a simple
test, we check whether the schedules in GAC ’s final population yield significantly higher
average speedups than the schedules generated randomly.

In the comparison to GAB, we expect to be able to reduce the overall duration of the
optimization by using GAC . Furthermore, we evaluate the effect on the speedup yielded by
the optimal schedule found that results from replacing benchmarking by classification.

Table 9.14 shows the results from an analysis of the speedups yielded by GAC , GAB , and
random exploration. We also show the speedups yielded by the configuration of GAB that
we used in E 9.3.2. This configuration fixed GAB’s number of generations to 40. Here, we
refer to this configuration by GA40

B . Thereby, we can evaluate the quality of our criterion
for the early termination of GAB.

Across the benchmark set, the speedup yielded by GAB is reduced by a mean factor of
0.95 compared to GA40

B . On the other hand, instead of computing 40 generations of the
genetic algorithm, which corresponds to testing 630 schedules, GAB computes less than 10
generations on average, which corresponds to less than 180 schedules. The speedups yielded
by GAC with the well fitting classifier are reduced by a mean factor of 0.90 compared to
GAB . In case of GAC in the leave-one-out schema, the mean speedup reduces by a factor of
0.82 compared to GAB . If we compare GAC to GA40

B directly, the optimal speedup reduces
by a factor of 0.86 in the case of the well fitting classifier and by the factor 0.78 in the case of
the leave-one-out schema. Compared to the isl scheduler, GAC with the well fitting classifier
yields speedups that are higher by a mean factor of 1.53 compared to the isl scheduler. The
speedups yielded by GAC in the leave-one-out schema are 1.39 times higher at mean than
the speedups yielded by the isl scheduler. By looking at random exploration, one notices
that random often performs surprisingly well. GAC with the well fitting classifier yields
speedups that are higher by a factor of 1.04 than the maximum speedups yielded by random.
In the leave-one-out schema, GAC yields a mean maximum speedup that is reduced by 0.94
compared to random. The average speedup yielded by all successfully applicable schedules
in GAC ’s final populations is higher for most benchmarks than the average speedup yielded
by all schedules generated randomly. This indicates that the benchmarking effort that is
required to evaluate all schedules in GAC ’s final population may be reduced compared to
benchmarking the schedules generated randomly. Yet, the actual benchmarking effort also
depends on the number of schedules that result in miscompilation or incorrect binaries
or that cannot be benchmarked within the timeout for schedule evaluation. Figure 9.12
compares the distribution of the speedups yielded by the schedules in GAC ’s final population
and the speedups yielded by schedules generated randomly. In most cases, the median

152 9.4 Genetic Algorithm with Schedule Classification

T
a
b
le

9
.1
4:

S
p
ee
d
u
p
s
y
ie
ld
ed

b
y
th
e
co
n
fi
g
u
ra
ti
o
n
s
th
a
t
w
e
ev
a
lu
a
te
d
in

E
9
.4
.4
.
C
o
lu
m
n
s
2
to

6
sh
ow

th
e
b
a
se
li
n
e.

T
h
e
se
v
en
th

a
n
d
th
e
ei
g
h
th

co
lu
m
n
sh
ow

th
e
re
su
lt
s
of

G
A

C
.
In

th
es
e
co
lu
m
n
s
w
e
sh
ow

tw
o
va
lu
es

p
er

ce
ll
:
th
e
va
lu
e
to

th
e
le
ft

co
rr
es
p
on

d
s
to

th
e
fi
rs
t
st
ep

of
th
e
ex
p
er
im

en
t

in
w
h
ic
h
w
e
u
se
d
a
cl
as
si
fi
er

th
at

re
se
m
b
le
s
th
e
p
ro
gr
am

to
b
e
op

ti
m
iz
ed

w
el
l.

T
h
e
se
co
n
d
va
lu
e
co
rr
es
p
on

d
s
to

th
e
le
av
e-
on

e-
ou

t
ca
se
.
T
h
e
la
st

fo
u
r

co
lu
m
n
s
co
m
p
ar
e
is
l
,
G
A

C
,
G
A

B
,
G
A

4
0

B
,
an

d
ra
n
d
o
m
.

p
r
o
g
r
a
m

is
l

s
p
e
e
d
u
p

G
A

4
0

B

s
p
e
e
d
u
p

G
A

B

m
e
d
ia
n

m
a
x
.

s
p
e
e
d
u
p

r
a
n
d
.

m
e
a
n

s
p
e
e
d
u
p

r
a
n
d

m
e
d
ia
n

m
a
x
.

s
p
e
e
d
u
p

G
A

C

m
e
d
ia
n

m
a
x
.

s
p
e
e
d
u
p

G
A

C
m

e
a
n

s
p
e
e
d
u
p

G
A

C
m

e
d
ia
n

m
a
x
.
s
p
e
e
d
u
p

G
A

B
m

e
d
ia
n

m
a
x
.
s
p
e
e
d
u
p

G
A

C
m

e
d
ia
n

m
a
x
.
s
p
e
e
d
u
p

r
a
n
d
o
m

m
e
d
ia
n

m
a
x
.
s
p
e
e
d
u
p

G
A

C
m

e
d
ia
n

m
a
x
.
s
p
e
e
d
u
p

is
l
s
p
e
e
d
u
p

G
A

B
m
e
d
ia
n

m
a
x
.
sp

e
e
d
u
p

G
A

4
0

B
sp

e
e
d
u
p

2
m
m

1
3
.8
1

1
8
.8
8

1
9
.8
8

4
.4
6

1
5
.4
7

1
8
.1
7
|
1
8
.2
1

1
0
.9
3
|
1
0
.8
0

0
.9
1
|
0
.9
2

1
.1
7
|
1
.1
8

1
.3
2
|
1
.3
2

1
.0
5

3
m
m

1
3
.3
9

2
0
.2
0

1
8
.8
3

2
.5
5

1
1
.3
7

1
7
.9
4
|
1
3
.7
2

1
0
.5
6
|

6
.1
3

0
.9
5
|
0
.7
3

1
.5
8
|
1
.2
1

1
.3
4
|
1
.0
2

0
.9
3

a
d
i

7
.6
1

8
.5
7

8
.4
1

2
.5
5

7
.9
0

7
.9
0
|
7
.6
2

5
.3
1
|
2
.6
9

0
.9
4
|
0
.9
1

1
.0
0
|
0
.9
6

1
.0
4
|
1
.0
0

0
.9
8

a
t
a
x

0
.9
9

3
.0
9

3
.0
2

0
.7
8

2
.7
8

2
.3
2
|
2
.7
0

1
.7
5
|
1
.3
2

0
.7
7
|
0
.8
9

0
.8
3
|
0
.9
7

2
.3
5
|
2
.7
4

0
.9
8

b
i
c
g

1
.0
5

2
.7
9

2
.7
8

1
.1
9

2
.7
7

2
.7
8
|
2
.7
6

2
.3
8
|
1
.4
3

1
.0
0
|
0
.9
9

1
.0
0
|
1
.0
0

2
.6
5
|
2
.6
3

1
.0
0

c
h
o
l
e
s
k
y

2
.6
8

5
.8
1

6
.4
0

1
.3
1

3
.3
2

2
.8
2
|
4
.0
8

1
.1
6
|
2
.4
1

0
.4
4
|
0
.6
4

0
.8
5
|
1
.2
3

1
.0
5
|
1
.5
3

1
.1
0

c
o
r
r
e
l
a
t
i
o
n

3
3
.3
6

4
3
.8
1

3
6
.6
9

7
.1
9

3
2
.2
7

3
1
.3
9
|
3
3
.9
9

1
1
.6
2
|
1
6
.2
9

0
.8
6
|
0
.9
3

0
.9
7
|
1
.0
5

0
.9
4
|
1
.0
2

0
.8
4

c
o
v
a
r
i
a
n
c
e

3
3
.4
4

4
2
.2
4

3
6
.4
0

1
1
.3
5

3
5
.1
7

3
6
.2
3
|
3
6
.2
2

2
4
.6
3
|
2
3
.5
4

1
.0
0
|
1
.0
0

1
.0
3
|
1
.0
3

1
.0
8
|
1
.0
8

0
.8
6

d
e
r
i
c
h
e

1
.0
7

1
.1
2

1
.0
7

0
.6
7

1
.0
1

1
.0
2
|
0
.9
5

0
.6
8
|
0
.6
0

0
.9
5
|
0
.8
9

1
.0
1
|
0
.9
4

0
.9
5
|
0
.8
8

0
.9
6

d
o
i
t
g
e
n

4
.0
6

5
.6
3

4
.8
6

1
.8
7

4
.1
0

4
.3
7
|
4
.2
3

2
.9
3
|
3
.0
2

0
.9
0
|
0
.8
7

1
.0
7
|
1
.0
3

1
.0
8
|
1
.0
4

0
.8
6

d
u
r
b
i
n

0
.9
9

1
.1
8

1
.0
0

0
.6
6

1
.0
0

1
.0
0
|
1
.0
0

0
.7
0
|
0
.6
3

1
.0
0
|
1
.0
0

1
.0
0
|
1
.0
0

1
.0
1
|
1
.0
1

0
.8
5

f
d
t
d
-
2
d

0
.9
2

3
.8
0

3
.3
2

0
.7
4

2
.6
7

3
.0
0
|
2
.5
5

1
.4
6
|
1
.3
0

0
.9
0
|
0
.7
7

1
.1
2
|
0
.9
6

3
.2
6
|
2
.7
7

0
.8
8

g
e
m
m

4
.2
3

4
.7
2

4
.9
3

2
.0
9

4
.3
9

4
.4
0
|
4
.3
9

2
.9
6
|
3
.2
2

0
.8
9
|
0
.8
9

1
.0
0
|
1
.0
0

1
.0
4
|
1
.0
4

1
.0
4

g
e
m
v
e
r

3
.7
8

6
.2
7

6
.0
7

0
.8
3

2
.7
5

4
.7
3
|
2
.9
0

2
.7
2
|
1
.2
4

0
.7
8
|
0
.4
8

1
.7
2
|
1
.0
5

1
.2
5
|
0
.7
7

0
.9
7

g
e
s
u
m
m
v

3
.1
3

8
.9
9

9
.0
4

2
.9
6

8
.9
3

8
.9
2
|
8
.9
1

6
.5
5
|
5
.6
3

0
.9
9
|
0
.9
9

1
.0
0
|
1
.0
0

2
.8
5
|
2
.8
5

1
.0
1

g
r
a
m
s
c
h
m
i
d
t

8
.1
0

1
1
.1
7

8
.5
6

1
.9
4

7
.9
9

8
.2
1
|
4
.6
4

4
.4
9
|
1
.7
5

0
.9
6
|
0
.5
4

1
.0
3
|
0
.5
8

1
.0
1
|
0
.5
7

0
.7
7

h
e
a
t
-
3
d

2
.6
8

4
.1
9

3
.6
5

0
.8
2

2
.8
1

3
.5
0
|
2
.4
3

1
.8
2
|
0
.8
8

0
.9
6
|
0
.6
7

1
.2
5
|
0
.8
7

1
.3
1
|
0
.9
1

0
.8
7

j
a
c
o
b
i
-
1
d

0
.8
8

1
.3
7

1
.3
7

0
.6
4

1
.3
6

1
.3
7
|
1
.0
0

1
.0
1
|
0
.5
2

1
.0
0
|
0
.7
3

1
.0
1
|
0
.7
4

1
.5
6
|
1
.1
4

1
.0
0

j
a
c
o
b
i
-
2
d

1
.1
3

4
.2
1

4
.1
9

0
.9
7

4
.1
1

4
.1
9
|
4
.1
7

2
.2
9
|
3
.0
2

1
.0
0
|
0
.9
9

1
.0
2
|
1
.0
1

3
.6
9
|
3
.6
8

1
.0
0

l
u

5
.3
8

9
.8
6

9
.4
4

2
.2
4

6
.9
9

7
.6
7
|
3
.5
4

4
.9
1
|
1
.7
3

0
.8
1
|
0
.3
8

1
.1
0
|
0
.5
1

1
.4
3
|
0
.6
6

0
.9
6

l
u
d
c
m
p

0
.9
7

1
.0
3

1
.0
2

0
.9
7

1
.0
1

1
.0
1
|
1
.0
1

0
.9
7
|
0
.9
7

0
.9
9
|
0
.9
8

1
.0
0
|
0
.9
9

1
.0
5
|
1
.0
4

0
.9
9

m
v
t

4
.6
5

8
.2
5

8
.1
0

2
.5
1

6
.4
4

6
.1
1
|
5
.5
8

4
.1
3
|
2
.0
8

0
.7
5
|
0
.6
9

0
.9
5
|
0
.8
7

1
.3
1
|
1
.2
0

0
.9
8

s
y
m
m

1
.0
1

1
.0
2

1
.0
2

1
.0
0

1
.0
1

1
.0
2
|
1
.0
2

1
.0
0
|
1
.0
0

1
.0
0
|
1
.0
0

1
.0
0
|
1
.0
0

1
.0
0
|
1
.0
0

1
.0
0

s
y
r
2
k

2
1
.5
7

2
5
.9
7

2
5
.9
9

1
1
.8
9

2
5
.8
0

2
5
.9
2
|
2
5
.9
8

2
0
.6
8
|
2
0
.3
3

1
.0
0
|
1
.0
0

1
.0
0
|
1
.0
1

1
.2
0
|
1
.2
0

1
.0
0

s
y
r
k

1
3
.7
6

1
7
.2
7

1
6
.1
4

6
.9
7

1
6
.4
7

1
5
.9
8
|
1
5
.9
7

1
1
.5
9
|
1
2
.0
8

0
.9
9
|
0
.9
9

0
.9
7
|
0
.9
7

1
.1
6
|
1
.1
6

0
.9
3

t
r
i
s
o
l
v

0
.3
6

1
.0
6

1
.0
0

0
.4
8

1
.3
3

1
.0
0
|
1
.0
0

0
.8
6
|
0
.9
0

1
.0
0
|
0
.9
9

0
.7
5
|
0
.7
5

2
.7
4
|
2
.7
4

0
.9
5

t
r
m
m

2
.0
2

2
2
.4
3

2
2
.4
1

6
.4
2

2
1
.3
8

2
1
.4
4
|
2
1
.8
4

1
2
.0
4
|

9
.5
2

0
.9
6
|
0
.9
7

1
.0
0
|
1
.0
2

1
0
.5
9
|
1
0
.7
9

1
.0
0

g
e
o
m

e
t
r
ic

m
e
a
n

3
.3
0

5
.8
7

5
.5
8

1
.8
3

4
.8
6

5
.0
4
|
4
.5
8

3
.2
8
|
2
.6
1

0
.9
0
|
0
.8
2

1
.0
4
|
0
.9
4

1
.5
3
|
1
.3
9

0
.9
5

9 Evaluation 153

Table 9.15: p-values that resulted from a pairwise Wilcoxon signed rank test that quantified
the significance of differences in the distribution of the values in columns 2 to 8 of
Table 9.14. From the results, the significance of differences in the outcome of the schedule
optimization techniques that were evaluated in E 9.4.4 can be derived.

GA40
B

speedup

GAB median

max. speedup

rand.

mean

speedup

rand. median

max. speedup

GAC median

max. speedup

(well fitt. class.)

GAC median

max. speedup

(leave-p-out)

GAC mean

speedup (well

fitt. class.)

GAC mean

speedup

(leave-p-out)

isl speedup 3.00E-08 5.60E-08 2.60E-05 1.78E-03 1.00E-05 3.68E-03 6.55E-02 1.51E-02

GA40
B

speedup
– 6.03E-03 3.00E-08 1.00E-06 3.00E-08 8.00E-08 3.00E-08 3.00E-08

GAB median
max. speedup

– – 3.00E-08 1.40E-05 3.00E-08 3.00E-08 3.00E-08 3.00E-08

rand. mean
speedup

– – – 3.00E-08 3.00E-08 3.00E-08 3.60E-07 5.70E-04

rand. median
max. speedup

– – – – 9.81E-02 8.04E-01 3.00E-08 3.00E-08

GAC median
max. speedup
(well fitt. class.)

– – – – – 4.47E-02 3.00E-08 3.00E-08

GAC median
max. speedup
(leave-p-out)

– – – – – – 3.20E-06 3.00E-08

GAC mean
speedup (well
fitt. class.)

– – – – – – – 1.96E-02

speedup yielded by the schedules in GAC ’s final population is higher than the median
speedup yielded by the schedules generated randomly.

We tested whether the observations listed above correspond to significant differences in the
respective results’ distribution across the benchmark set. Table 9.15 shows the results of a
pairwise Wilcoxon signed rank test [142] in combination with false discovery rate control [22]
for columns 2 to 8 of Table 9.14.

The optimal speedups yielded by GA40
B are significantly higher than the maximum speedups

yielded by GAC . GAB yields significantly higher speedups than GAC for both the well fitting
classifiers and the classifiers learned in the leave-one-out schema. GAC yields significantly
higher speedups than isl in the case of the well fitting classifiers and in the leave-one-out
schema. The test is inconclusive regarding the difference between the optimal speedups
yielded by random exploration and GAC . The average speedup yielded by the schedules
in GAC ’s final population is significantly higher than the average speedup yielded by the
schedules generated randomly for both the well fitting classifiers and the classifiers that were
trained in the leave-one-out schema. Table 9.15 makes further comparisons.

We continue by comparing the total duration of optimizing a program with GAB and
the total duration of optimizing it with GAC in the leave-p-out schema. Table 9.16 shows
that across the benchmark set GAC is faster by the mean factor 2.26. Particularly in the
case of small SCoPs with a short execution time, the lead of GAC is likely to reduce if
we disable Intel Turbo Boost for the entire optimization process and, consequently,
avoid the interaction with SLURM per schedule. As stated in Section 9.1.2, switching to a
release build of LLVM would decrease the effort that is required to benchmark transformed
program versions.

Table 9.16 compares the configurations tested with respect to the duration of the opti-
mization and the benchmarking effort on the target hardware that is required. Furthermore,
the table shows the median number of generations produced by GAB. For all programs
except gramschmidt, it was possible to reach at least 84% at median of the speedup in
execution time of the optimized program over the execution time of the original sequential
code after its optimization by -O3 within less than half the number of generations produced

154 9.4 Genetic Algorithm with Schedule Classification

0
.0

6
2
5

0
.2

514

1
6

6
4

2
m

m
3
m

m
a
d
i

a
ta

x
b
ic

g
ch

o
le

sk
y

co
rr

e
la

ti
o
n

co
v
a
ri
a
n
ce

d
e
ri
ch

ed
o
it
g
e
nd
u
rb

infd
td

-2
dg
e
m

mg
e
m

v
e
r

g
e
su

m
m

v

g
ra

m
sc

h
m

id
t

h
e
a
t-

3
d

ja
co

b
i-
1
d

ja
co

b
i-
2
d

lu
lu

d
cm

pm
v
t

sy
m

m
sy

r2
ksy

rk
tr

is
o
lvtr

m
m

speedup over O3

G
A

ra
n
d
o
m

O
3

G
A

B 4
0

(a
)
w
el
l
fi
tt
in
g
cl
a
ss
ifi
er

0
.0

6
2
5

0
.2

514

1
6

6
4

2
m

m
3
m

m
a
d
i

a
ta

x
b
ic

g
ch

o
le

sk
y

co
rr

e
la

ti
o
n

co
v
a
ri
a
n
ce

d
e
ri
ch

ed
o
it
g
e
nd
u
rb

infd
td

-2
dg
e
m

mg
e
m

v
e
r

g
e
su

m
m

v

g
ra

m
sc

h
m

id
t

h
e
a
t-

3
d

ja
co

b
i-
1
d

ja
co

b
i-
2
d

lu
lu

d
cm

pm
v
t

sy
m

m
sy

r2
ksy

rk
tr

is
o
lvtr

m
m

speedup over O3

(b
)
le
av
e-
o
n
e-
o
u
t

F
ig
u
re

9.
1
2:

C
o
m
p
a
ri
so
n
o
f
th
e
sp
ee
d
u
p
s
y
ie
ld
ed

b
y
th
e
sc
h
ed
u
le
s
in

th
e
fi
n
a
l
g
en
er
a
ti
o
n
s
o
f
G
A

C
a
n
d
th
e
sp
ee
d
u
p
s
y
ie
ld
ed

b
y
sc
h
ed
u
le
s
g
en
er
a
te
d

ra
n
d
o
m
ly
.
P
er

p
ro
g
ra
m
,
th
e
b
ox

p
lo
t
o
n
th
e
le
ft

co
rr
es
p
o
n
d
s
to

G
A

C
a
n
d
th
e
b
ox

p
lo
t
o
n
th
e
ri
g
h
t
co
rr
es
p
o
n
d
s
to

ra
n
d
o
m
.
T
h
e
w
h
is
k
er
s
ex
te
n
d

fr
om

th
e
en
d
s
of

th
e
b
ox

to
th
e
m
os
t
d
is
ta
n
t
p
oi
n
t
w
h
os
e
va
lu
e
li
es

w
it
h
in

1.
5
ti
m
es

th
e
in
te
rq
u
ar
ti
le

ra
n
ge
.
P
oi
n
ts

th
at

li
e
b
ey
on

d
th
at

d
is
ta
n
ce

ar
e

d
ra
w
n
as

ou
tl
ie
rs

[1
65

].
T
h
e
h
or
iz
on

ta
l
li
n
e
co
rr
es
p
on

d
s
to

th
e
se
q
u
en
ti
al

ex
ec
u
ti
on

of
th
e
or
ig
in
al

co
d
e
af
te
r
it
s
op

ti
m
iz
at
io
n
w
it
h
-
O
3
.
T
h
e
d
ot

in
b
et
w
ee
n
th
e
b
ox

p
lo
ts

m
ar
k
s
th
e
sp
ee
d
u
p
y
ie
ld
ed

b
y
G
A

4
0

B
.

9 Evaluation 155

by GA40
B . The median speedup reached by the five replicated runs of GAB for gramschmidt

was 77% of the speedup reached by GA40
B .

Finally, we compare the time needed by GAC in the leave-p-out schema to benchmark
the schedules in its final population and the time needed to benchmark the schedules
generated randomly. Table 9.16 shows that the benchmarking of the schedules in GAC ’s
final population is faster than the benchmarking of the same number of schedules generated
randomly by the factor 1.56 at mean. We cannot include the result of gesummv in the
comparison for technical reasons. Using the Wilcoxon signed rank test, we found that, in
the configuration tested, the median duration of optimization with GAC is significantly
faster across the benchmark set than the median duration of the optimization with GAB.
Also, the median duration of benchmarking the schedules in GAC ’s final population is
significantly lower than the duration of benchmarking an equally sized set of schedules
generated randomly.

Of course, we make the presence of suitable training data for classifiers a precondition.
Without training data, one cannot profit from the faster optimization of GAC compared to
GAB or the reduced benchmarking effort compared to random exploration.

9.4.4 Discussion

In RQ 9.4.1, we asked whether all of the features in Section 7.1 are useful for prediction. In
E 9.4.1, we found that the sparsity of structure parameters is largely insensitive to speedup
and purged it.

In E 9.4.2, we found that classifiers based on our transfer-learned performance models fail
to recognize many profitable schedules. In contrast, the models yielded few false positives. An
analysis of the features’ importance and value distribution per program largely explains why
transfer to some programs is complicated. There are several programs, such as gemm and syrk

in PolyBench 4.1, that are transformed best by fully tiling each loop nest and parallelizing
its outermost loop. These programs’ simplicity may bias our performance models and
decrease their applicability to more complex programs. Our features’ approximative nature
may add to the classifiers’ inability to recognize some profitable schedules: in the presence
of partially fused loops, our parallelism feature may be unable to recognize some parallelism.
Yet, a precise identification of parallelism is generally impossible due to parametric loop
bounds and unknown parameter values. While we could identify partial loop fusion and
model it using sequence nodes in schedule trees, we would still be unable to decide for every
loop whether it will actually be executed at run time. Also, as described in Section 9.2, the
computation of FDataLoc suffers from spurious structure parameters that the version of Polly
that we used in our experiments introduces in many SCoPs’ models. This is no longer an
issue with newer versions of Polly. An improved schedule tree transformation as suggested
in Section 5.6 would increase the features’ accuracy and could possibly increase performance
by enabling tiling in more situations. Generally, the extraction of the feature vectors before
tiling adds to the inaccuracy. The findings in E 9.4.2 indicate that a normalization of the
feature values may also be helpful to increase the classifiers’ precision. To interpret the
result of the k-fold cross-validation on the entire training data in E 9.4.3, one must be
aware that the programs’ training sets are not free of redundancy. Multiple schedules per
program that correspond to the same pair of simplified schedule trees and, thus, to the same
feature vector can exist. Yet, the experiment shows that the programs’ differences do not
lead to the effect that they trigger mispredictions mutually.

In summary, the answer to RQ 9.4.2 is that, to a good extent, models learned from the
results of previous iterative optimization can be used to recognize profitable schedules of
unseen programs. The success depends on the similarity of the programs involved. We do
not recognize many very profitable schedules of many programs as such. The inclusion of
program features in our feature vector would certainly improve our performance models’

156 9.4 Genetic Algorithm with Schedule Classification

T
a
b
le

9
.1
6:

C
om

p
ar
is
on

of
G
A

B
an

d
G
A

C
in

th
e
le
av
e-
on

e-
ou

t
sc
h
em

a
w
it
h
re
sp
ec
t
to

th
e
to
ta
l
d
u
ra
ti
on

of
th
e
op

ti
m
iz
at
io
n
an

d
of

G
A

C
an

d
ra
n
d
om

ex
p
lo
ra
ti
o
n
w
it
h
re
sp
ec
t
to

th
e
b
en

ch
m
ar
k
in
g
eff

or
t
re
q
u
ir
ed

.

p
ro

g
ra

m
G
A

B
m
e
d
ia
n

#
g
e
n
.

G
A

B
m
e
d
ia
n

#
sc
h
e
d
u
le
s

e
v
a
lu
a
te

d

G
A

B
m
e
d
ia
n

d
u
ra

ti
o
n

(m
in
.)

G
A

C
m
e
d
ia
n

d
u
ra

ti
o
n

(m
in
.)

G
A

C
fi
n
a
l
g
e
n
.

b
e
n
ch

m
.
m
e
d
ia
n

d
u
ra

ti
o
n

(m
in
.)

ra
n
d
.
e
x
p
l.

b
e
n
ch

m
.
m
e
d
ia
n

d
u
ra

ti
o
n

(m
in
.)

G
A

C
sp

e
e
d
u
p

in
o
p
ti
m
iz
a
ti
o
n

ti
m
e
o
v
e
r
G
A

B

G
A

C
sp

e
e
d
u
p

in
b
e
n
ch

m
.
d
u
ra

ti
o
n

o
v
e
r
ra

n
d
.
e
x
p
l.

2
m
m

15
25
5

34
0
.3
7

67
.6
6

49
.2
3

1
5
0.
6
2

5
.0
3

3.
0
6

3
m
m

18
30
0

78
3
.1
5

16
0.
96

13
5.
85

2
5
0.
8
5

4
.8
7

1.
8
5

a
d
i

9
16
5

11
39

.6
5

75
2.
24

66
4.
79

5
8
2.
2
8

1
.5
2

0.
8
8

a
t
a
x

13
22
5

22
.7
7

14
.4
3

4.
94

6.
3
5

1
.5
8

1.
2
8

b
i
c
g

7
13
5

18
.1
8

9.
85

2.
54

6.
1
7

1
.8
5

2.
4
3

c
h
o
l
e
s
k
y

9
16
5

31
39

.3
2

10
02
.2
5

98
5.
15

1
0
0
4.
6
8

3
.1
3

1.
0
2

c
o
r
r
e
l
a
t
i
o
n

10
18
0

34
5
.8
2

20
0.
36

71
.0
8

1
1
9.
9
8

1
.7
3

1.
6
9

c
o
v
a
r
i
a
n
c
e

7
13
5

16
0
.1
8

61
.2
3

41
.9
1

8
8.
2
7

2
.6
2

2.
1
1

d
e
r
i
c
h
e

7
13
5

28
2
.6
5

16
2.
23

94
.7
1

1
0
2.
8
5

1
.7
4

1.
0
9

d
o
i
t
g
e
n

16
27
0

20
2
.4
5

63
.6
3

38
.9
6

6
0.
7
5

3
.1
8

1.
5
6

d
u
r
b
i
n

7
13
5

24
.5
5

58
.0
4

8.
07

8.
0
7

0
.4
2

1.
0
0

f
d
t
d
-
2
d

9
16
5

62
0
.1
3

22
3.
38

19
6.
23

2
8
0.
6
5

2
.7
8

1.
4
3

g
e
m
m

7
13
5

11
1
.8
3

39
.0
4

34
.9
2

6
6.
6
3

2
.8
6

1.
9
1

g
e
m
v
e
r

15
25
5

34
.3
7

22
.0
2

8.
30

9.
3
3

1
.5
6

1.
1
2

g
e
s
u
m
m
v

7
13
5

15
.7
0

8.
40

4.
22

–
1
.8
7

–
g
r
a
m
s
c
h
m
i
d
t

11
19
5

48
9
.0
8

24
3.
29

19
0.
74

1
9
2.
3
2

2
.0
1

1.
0
1

h
e
a
t
-
3
d

13
22
5

12
11

.0
3

53
9.
21

38
1.
58

4
3
1.
8
2

2
.2
5

1.
1
3

j
a
c
o
b
i
-
1
d

7
13
5

21
.3
5

17
.4
4

3.
65

7.
6
8

1
.2
2

2.
1
1

j
a
c
o
b
i
-
2
d

7
13
5

60
0
.4
5

14
1.
59

11
3.
29

4
3
3.
1
7

4
.2
4

3.
8
2

l
u

14
24
0

57
72

.4
7

11
93
.6
7

11
76
.9
1

1
2
9
4.
0
5

4
.8
4

1.
1
0

l
u
d
c
m
p

7
13
5

31
90

.1
7

11
04
.5
8

70
9.
94

9
2
7.
5
5

2
.8
9

1.
3
1

m
v
t

8
15
0

19
.2
3

15
.7
3

10
.4
5

8.
2
8

1
.2
2

0.
7
9

s
y
m
m

7
13
5

30
3
.4
2

15
4.
85

11
8.
86

1
5
6.
6
7

1
.9
6

1.
3
2

s
y
r
2
k

7
13
5

19
7
.8
7

50
.6
3

48
.9
2

1
2
6.
7
3

3
.9
1

2.
5
9

s
y
r
k

7
13
5

10
5
.0
7

30
.0
3

27
.4
5

6
3.
8
3

3
.5
0

2.
3
3

t
r
i
s
o
l
v

7
13
5

15
.3
5

12
.5
4

2.
32

6.
5
7

1
.2
2

2.
8
3

t
r
m
m

10
18
0

14
6
.1
7

45
.5
8

37
.4
8

5
8.
4
3

3
.2
1

1.
5
6

a
v
e
ra

g
e
:

9.
67

g
e
o
m
e
tr
ic

m
e
a
n
:

2.
2
6

1.
5
6

9 Evaluation 157

accuracy, but would also require a larger and comprehensive training set of programs. If
learned from a carefully chosen training set, such a model might be widely applicable. Here,
we have studied the extent to which one can abstain from program features and a fully
precise feature extraction and learn from data that is available.

The answer to RQ 9.4.3 is that a classifier that is based on a transfer-learned surrogate
performance model can help to accelerate the iterative optimization of new programs, at
least in our experimental setup. Optimizing the experimental setup may reduce the lead
of GAC particularly in the case of very short-running program. Sometimes, the profitable
schedules cannot be recognized, though, because the characteristics of profitable schedules
for the program to be optimized differ too much from those of profitable schedules for the
programs in the training set. Also, the schedules found by GAC are a bit less profitable
than the schedules that can be found with GAB. While GAB never loses its best schedule
found, GAC is not guaranteed to keep it. Yet, the average performance of the schedules in
GAC ’s final population is significantly higher than the average performance of schedules
generated by random sparse. Regarding the speedup yielded by the optimal schedule found,
random exploration often performs surprisingly well, but it tests more ineffective schedules
on the target hardware than GAC . Under the precondition that suitable training data is
available the reduced benchmarking effort that results from the use of GAC , is a benefit.

For GAB, we set the population size to 30 and let the genetic algorithm run for 40
generations (630 schedules). We had increased the population size to 50 for GAC and still
let the genetic algorithm run for at most 40 generations (1050 schedules). We intended
to increase the search space coverage by raising the population size, since our classifiers
often miss actually very profitable schedules. To investigate this choice, we let our genetic
algorithm with classification run again, but with a population size of 30 and for at most
⌈(50/30)·40⌉ = 67 generations (1035 schedules). Again, we optimized each program ten times.
On average, GAC with the reduced population size terminates after 54 generations (840
schedules). Compared to the original configuration, the median share of schedules classified
as profitable is 2.46% higher, on average. The Wilcoxon signed rank test is inconclusive
regarding a difference in the number of schedules classified as profitable. Although the larger
number of generations appears to improve the share of profitable schedules in GAC ’s final
population, the larger population size of 50 schedules increases the coverage of the search
space.

Table 9.17 compares GAC in the leave-one-out schema of E 9.4.4 and with the well
fitting classifiers of E 9.4.4 to GAC in the leave-one-out schema with a population size
of 30 and at most 67 generations. Like in E 9.4.4, we compare results of ten runs per
configuration and program. We look at the median number of generations of the genetic
algorithm computed and the median number of profitable schedules in the genetic algorithm’s
final generation. On average, GAC with the reduced population size terminates after 54
generations (840 schedules). Compared to the configuration of GAC in E 9.4.4 with the
leave-one-out schema, the average of the median shares of schedules that are classified as
profitable is 2.46% higher. Using the Wilcoxon signed rank test we found that there is a
significant difference in the distribution of the median shares of profitable schedules between
the two configurations. Although the larger number of generations appears to improve the
share of profitable schedules in GAC ’s final population, the larger population size of 50
schedules increases the coverage of the search space.

158 9.4 Genetic Algorithm with Schedule Classification

T
a
b
le

9
.1
7:

C
om

p
ar
is
on

of
th
re
e
co
n
fi
gu

ra
ti
on

s
of

G
A

C
w
it
h
re
sp
ec
t
to

th
e
m
ed

ia
n
sh
ar
e
of

p
ro
fi
ta
b
le

sc
h
ed

u
le
s
in

th
e
fi
n
al

ge
n
er
at
io
n
s,

th
e
m
ed

ia
n

n
u
m
b
er

of
ge
n
er
at
io
n
s
co
m
p
u
te
d
an

d
th
e
p
er
ce
n
t
of

G
A

C
ru
n
s
th
at

te
rm

in
at
ed

ea
rl
y.

A
va
lu
e
of

0
fo
r
th
e
n
u
m
b
er

of
ge
n
er
at
io
n
s
in
d
ic
at
es

th
at

th
e

g
en

et
ic

a
lg
or
it
h
m

te
rm

in
at
ed

im
m
ed

ia
te
ly

af
te
r
th
e
ev
al
u
at
io
n
of

th
e
in
it
ia
l
p
op

u
la
ti
on

.

E
9
.4
.4
,
w
e
ll

fi
t
t
in

g
c
la
s
s
ifi

e
r

E
9
.4
.4
,
le
a
v
e
-o

n
e
-o

u
t
s
c
h
e
m

a
p
o
p
u
la
t
io
n

s
iz
e
3
0
,
m

a
x
.
6
7

g
e
n
e
r
a
t
io
n
s
,
le
a
v
e
-o

n
e
-o

u
t
s
c
h
e
m

a

p
r
o
g
r
a
m

m
e
d
ia
n

%
p
r
o
f.

s
c
h
e
d
u
le
s

m
e
d
ia
n

#
g
e
n
e
r
a
t
io
n
s

%
r
u
n
s
w
it
h

e
a
r
ly

e
x
it

m
e
d
ia
n

%
p
r
o
f.

s
c
h
e
d
u
le
s

m
e
d
ia
n

#
g
e
n
e
r
a
t
io
n
s

%
r
u
n
s
w
it
h

e
a
r
ly

e
x
it

m
e
d
ia
n

%
p
r
o
f.

s
c
h
e
d
u
le
s

m
e
d
ia
n

#
g
e
n
e
r
a
t
io
n
s

%
r
u
n
s
w
it
h

e
a
r
ly

e
x
it

2
m
m

9
0

4
0

3
0

8
3

4
0

0
9
3

5
8

5
0

3
m
m

8
8

4
0

2
0

8
5

4
0

4
0

9
7

2
9

6
0

a
d
i

8
4

4
0

2
0

8
0

4
0

1
0

8
2

6
7

1
0

a
t
a
x

8
8

4
0

0
7
8

4
0

0
7
8

6
7

2
0

b
i
c
g

9
6

9
.5

9
0

8
3

4
0

1
0

8
3

6
7

4
0

c
h
o
l
e
s
k
y

6
8

4
0

0
6
7

4
0

1
0

8
2

6
7

2
0

c
o
r
r
e
l
a
t
i
o
n

8
4

4
0

2
0

7
8

4
0

1
0

9
7

2
4
.5

8
0

c
o
v
a
r
i
a
n
c
e

9
7

9
1
0
0

9
6

1
9
.5

8
0

9
7

1
7
.5

1
0
0

d
e
r
i
c
h
e

1
0
0

0
1
0
0

6
2

4
0

0
4
0

6
7

0
d
o
i
t
g
e
n

8
2

4
0

1
0

7
1

4
0

1
0

7
2

6
7

2
0

d
u
r
b
i
n

9
8

4
1
0
0

0
4
0

0
0

6
7

0
f
d
t
d
-
2
d

8
4

4
0

0
6
8

4
0

0
6
7

6
7

0
g
e
m
m

9
6

5
1
0
0

9
6

1
7
.5

9
0

9
7

6
.5

1
0
0

g
e
m
v
e
r

9
0

4
0

4
0

7
4

4
0

0
9
2

6
0

5
0

g
e
s
u
m
m
v

8
5

4
0

2
0

9
6

1
8

6
0

9
7

1
8

1
0
0

g
r
a
m
s
c
h
m
i
d
t

9
0

4
0

3
0

0
4
0

0
0

6
7

0
h
e
a
t
-
3
d

7
2

4
0

0
7
9

4
0

0
8
0

6
7

2
0

j
a
c
o
b
i
-
1
d

9
6

7
1
0
0

7
7

4
0

0
8
0

6
7

2
0

j
a
c
o
b
i
-
2
d

7
0

4
0

0
6
1

4
0

0
6
5

6
7

0
l
u

7
8

4
0

1
0

6
7

4
0

0
6
3

6
7

0
l
u
d
c
m
p

1
0
0

0
1
0
0

0
4
0

0
0

6
7

0
m
v
t

7
7

4
0

0
7
8

4
0

0
8
3

6
7

2
0

s
y
m
m

1
0
0

0
1
0
0

0
4
0

0
0

6
7

0
s
y
r
2
k

9
6

1
8

8
0

9
6

2
1

6
0

9
7

1
3

1
0
0

s
y
r
k

9
6

2
3

7
0

9
6

1
3
.5

8
0

9
7

1
6

1
0
0

t
r
i
s
o
l
v

8
4

4
0

2
0

7
8

4
0

0
7
2

6
7

0
t
r
m
m

8
0

4
0

0
6
8

4
0

0
7
5

6
7

0

a
v
e
r
a
g
e

8
8

2
8

4
3

6
7

3
6

1
7

7
0

5
4

3
4

9 Evaluation 159

9.5 Threats to Validity

In the following, we discuss aspects that may affect the reproducibility of our empirical
results and the generality of the conclusions drawn.

Threats to Internal Validity (Reproducibility of results) The search space of legal schedules
for a SCoP has an enormous size. Conceptually, it is infinite, but even the size of the finite
subset of reasonable schedules is thousands to millions strong. Our search space exploration
is necessarily incomplete and repeated runs may yield different results. To mitigate the effect
of randomness, we executed most tested configurations repeatedly and used the aggregated
results. An exception are the runs of different configurations of our search space exploration
in E 9.3.2. Here, we reduced the influence of the search’s incompleteness by the high
number of generations (40) computed by our genetic algorithm and the high number of
schedules (630) tested by the configuration of random exploration evaluated. Moreover, we
found a number of apparent regularities in the data. Especially, random exploration and
the genetic algorithm often yield very similar performance.
Although all schedules visited are theoretically legal, some result in broken binaries or

compilation failures. Any schedule that can be identified as mathematically illegal before the
application of tiling will be caught by Polly and will be reported to Polyite. Polyite will
then abort. One of the run-time failures is the presence of overly large schedule coefficients.
We tested the validity of a sample of the schedules drawn from the results of E 9.3.1 after
the application of tiling to the schedules and found no mathematically illegal schedules.
To verify generally the legality of schedules after tiling appears to be computationally too
expensive. As already mentioned in the discussion, we noticed that dense schedule matrices
are likely to cause failure. They are also likely to increase compilation time tremendously.
The problematic schedules can simply be discarded but, the more schedules are discarded,
the longer it takes to find the desired number of healthy schedules. An examination of the
schedules from E 9.3.1 revealed that, in contrast to random dense, the GA and random
sparse discover only few schedules that fail (refer to Table 9.3).

To control execution time measurement bias, we took several precautions. We benchmarked
every transformed program version five times. In E 9.3.1, E 9.3.4, and E 9.3.5 we
performed three measurements per program version. Five measurements are hardly enough
to reach statistical significance but a higher number of measurements conflicts with the
extremely large total number of program versions that had to be evaluated in our experiments.
Figure 9.13 provides an insight into the stability of our measurements. We analyzed the
data that resulted from the search space exploration with random sparse in E 9.3.2. Per
schedule, we determined the relative standard error of the five execution time measurements’
results. The plot shows per program a box plot of the respective 630 schedules’ computed
standard errors. The measured execution times’ relative standard errors per schedule are low,
except for the very short-running programs mvt, gesummv, and atax for which we observed
increased values. Our benchmarking machines ran no other workloads in parallel. E 9.4.4
ran on machines with a two-socket NUMA design. We pinned Polyite to one socket and
the benchmarking of program versions to the other.

Threats to External Validity (Generality of conclusions drawn) We use the benchmark
set PolyBench 4.1. It contains algorithms that occur in application domains for which
the polyhedron model is relevant. Yet, the benchmark set’s small size limits our conclusions’
generality. Furthermore, our approach currently targets primarily programs that profit from
coarse-grained parallelism. Its applicability to very short-running loop nests that operate on
small data sets is limited. This limitation is enlarged by the fact that Polyite cannot be
used in combination with Polly’s polyhedral vectorizer, yet.

160 9.5 Threats to Validity

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

tr
m

m
 (
3
1
.0

2
4
..
)

tr
is

o
lv

 (
0
.0

1
0
5
..
)

sy
rk

 (
1
.3

4
1
9
..
)

sy
r2

k
 (
6
.0

0
0
7
..
)

sy
m

m
 (
2
7
.1

8
6
..
)

se
id

e
l-
2
d
 (
1
7
8
.0

4
..
)

n
u
ss

in
o
v
 (
8
4
.1

8
8
..
)

m
v
t
(0

.0
1
6
4
..
)

lu
d
cm

p
 (
7
2
.2

8
2
..
)

lu
 (
1
1
.4

4
3
..
)

ja
co

b
i-
2
d
 (
4
0
.6

0
3
..
)

ja
co

b
i-
1
d
 (
0
.0

1
0
9
..
)

h
e
a
t-

3
d
 (
2
8
.4

9
2
..
)

g
ra

m
sc

h
m

id
t
(1

0
.4

8
8
..
)

g
e
su

m
m

v
 (
0
.0

0
6
1
..
)

g
e
m

v
e
r
(0

.1
6
7
5
..
)

g
e
m

m
 (
2
.3

7
5
7
..
)

flo
y
d
-w

a
rs

h
a
ll

(1
9
6
.9

2
..
)

fd
td

-2
d
 (
2
2
.2

2
4
..
)

d
u
rb

in
 (
0
.0

2
0
9
..
)

d
o
it
g
e
n
 (
1
.8

8
8
5
..
)

d
e
ri
ch

e
 (
1
.1

2
5
9
..
)

co
v
a
ri
a
n
ce

 (
2
6
.1

6
4
..
)

co
rr

e
la

ti
o
n
 (
1
6
.1

3
5
..
)

ch
o
le

sk
y
 (
6
.1

3
1
2
..
)

b
ic

g
 (
0
.0

5
1
2
..
)

a
ta

x
 (
0
.0

1
0
6
..
)

a
d
i
(2

8
.1

3
2
..
)

3
m

m
 (
8
3
.6

2
1
..
)

2
m

m
 (
1
2
.0

6
3
..
)

relative standard error of measured

execution times per schedule

b
e
n
c
h

m
a
rk

 +
 (

a
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 i
n
 s

e
c
o
n
d
s
)

F
ig
u
re

9.
1
3:

B
ox

p
lo
ts

th
at

sh
ow

th
e
d
is
tr
ib
u
ti
on

of
th
e
st
an

d
ar
d
er
ro
rs

of
m
ea
su
re
d
ex
ec
u
ti
on

ti
m
es

p
er

sc
h
ed

u
le

th
at

re
su
lt
ed

d
u
ri
n
g
th
e
ev
al
u
at
io
n

o
f
se
t
o
f
sc
h
ed

u
le
s
ge
n
er
at
ed

ra
n
d
om

ly
.
In

p
a
re
n
th
es
es
,
th
e
m
ea
n
ex
ec
u
ti
on

ti
m
e
in

se
co
n
d
s
of

ea
ch

p
ro
gr
am

is
sh
ow

n
.

10 Conclusion and Future Work

We propose an approach of iterative schedule optimization for OpenMP parallelization
and tiling in the polyhedron model. Our approach’s theoretical foundation is the iterative
polyhedral schedule optimization of the sequential execution time of programs in the absence
of tiling by Pouchet et al. [122, 124].

We remove restrictions that Pouchet et al. imposed on the schedule search space that are
likely detrimental to parallelization and tiling. Our approach combines the wider search
space with sampling strategies for a non-uniform random search space exploration and
an adaptation of the genetic algorithm schema by Pouchet et al. that uses a novel set of
genetic operators. These operators facilitate the traversal of our wider search space. Our
implementation Polyite relies on the compiler infrastructure LLVM [89] and its polyhedral
optimizer Polly [65]. In an evaluation on the PolyBench 4.1 benchmark set [121], we
were able to reach significantly higher speedups than the PLuTo scheduling algorithm [25]
as it is adapted by the Integer Set Library [152, 156] and being used by Polly. This
finding applies to programs with long-running loops that operate on larger data sets since
we used PolyBench with its extra large data set configuration.

While our genetic algorithm does not yield strongly higher speedups in the execution time
of the optimized program than an informed non-uniform random sampling, it requires the
evaluation of fewer comparatively unprofitable schedules than a random exploration that
visits the same number of schedules as the genetic algorithm.

Determining the fitness of a program transformation by applying it to the program to
be optimized and measuring the transformed code’s execution time in iterative program
optimization induces a strong overhead. This makes iterative optimization impractical to
use in many cases. To mitigate the overhead, we propose to train a classifier on results of
previous iterative optimizations with Polyite and to replace benchmarking of transformed
program versions by classification in Polyite’s genetic algorithm to the extent possible. Our
empirical evaluation reveals that a reduction of the number of program versions that need
to be evaluated by benchmarking is possible without severely reducing the speedup yielded
by the optimal program transformation found. A prerequisite for a successful acceleration
of the optimization is that training data from an optimization of programs exists that are
sufficiently similar to the program to be optimized.

In the following, we provide a more detailed summary. Section 10.5 addresses open
questions and research directions.

10.1 Sampling of Schedules

The search space of legal linearly affine schedules for a program is a set of lists of polyhedra.
We refer to these lists as search space regions. Basically, each search space region corresponds
to one mapping of legality-affecting data dependences to schedule dimensions that carry them
if they were not already carried by a previous dimension. In theory, the number of search
space regions is infinite, since the first schedule dimension that carries a data dependence
may be preceded by an arbitrary number of dimensions that satisfy the dependence weakly.
We modified the algorithm for search space construction by Pouchet et al. [124] to sample
the set of search space regions.

For the sampling of schedules from search space regions, Danner [46] evaluated four
techniques that permit to sample schedules uniformly from a single search space region. We

161

162 10.2 Schedule Simplification and Analysis

recall these techniques and partly broaden the description and the algorithm’s description
and assessment. Danner rejected a sampling of search space regions by enumeration,
acceptance rejection sampling – we demonstrate its inefficiency by an example – and
pattern hit-and-run sampling. Danner suggested to sample search space regions using
geometric divide-and-conquer sampling. An empirical evaluation of the algorithm’s run-time
complexity revealed its impracticality. Danner had limited his empirical study to programs
with a small complexity. In addition to the sampling strategies evaluated by Danner, we
propose Chernikova sampling, which relies on the geometric representation and Chernikova’s
algorithm, and projection sampling, which is an adaptation of the sampling strategy by
Pouchet et al. [124] for non-uniform random sampling without an underlying statistical model
of the search space. We evaluated the run-time complexity of geometric divide-and-conquer
sampling, Chernikova sampling, and projection sampling empirically and observed that,
while the first is impractical, Chernikova sampling and projection sampling are viable for
schedule search space exploration.

We enable the traversal of a wide polyhedral schedule search space that does not require
prior knowledge. Configuration parameters exist to bias both the sampling of search space
regions and the sampling of schedules from search space regions.

The schedules sampled by the approach of Pouchet al. do not necessarily encode all
loops of the transformed code explicitly. To facilitate tiling, we complete each schedule by
appending additional dimensions such that all loops are encoded explicitly.

Lastly, we describe an adaptation of the search space construction by Pouchet et al. in
Polyite.

Our evaluation reveals that, with our approach to schedule search space exploration, it is
possible to outperform the widely used PLuTo scheduling algorithm and random sampling
from the search space that results from our adaptation of the search space construction of
Pouchet et al. Polyite is not able to perform polyhedral prevectorization (strip-mining)
and is inferior to PLuTo in the case of some benchmark programs if the latter is combined
with vectorization.

10.2 Schedule Simplification and Analysis

Different schedule representations facilitate different tasks. For the sampling of schedules, we
rely on their representation by coefficient matrices. While coefficient matrices are convenient
for the purpose of sampling, they are less suitable for an analysis or transformation of
schedules. A representation that is more convenient for these purposes is the schedule
tree [66]. We propose a conversion from schedule coefficient matrix to schedule tree that is
more sophisticated than storing the entire schedule function in one schedule tree node.

Our schedules generated randomly contain schedule coefficients or even entire schedule
dimensions that are useless because they do not influence the SCoP’s statement instances’
execution order. Other information may influence the execution order of statement instances,
for instance after tiling by specific tile sizes, yet we consider it to be unwanted noise that
complicates schedules’ analysis and increases the complexity of the generated code without
being apparently beneficial. We propose a sequence of simplification steps for schedule trees
that remove such unwanted information. The simplifications retain schedules’ legality and
preserve or increase the applicability of tiling to loop nests in the transformed program.

With this schedule transformation and simplification, we mitigate the effect of noise that
is due to random schedule generation, and facilitate the analysis, characterization, and
further optimization of schedules.

10 Conclusion and Future Work 163

10.3 Genetic Algorithm

Besides non-uniform random exploration of the schedule search space, we propose a genetic
algorithm for a more guided search space traversal. The genetic algorithm’s schema is
derived from the genetic algorithm for schedule optimization by Pouchet et al. [124], who
observed that a polyhedral schedule search space contains mostly schedules that are no
improvement. Well performing schedules are reported to be scarce. Our derived genetic
algorithm schema comprises many aspects that reflect this finding. In particular, we refer
to the use of elitism, which guarantees the survival of the best performing schedules in a
generation to its consecutive generation, a strong diversity in the initial population, and
the attenuation of mutations with time. Since legal schedules, which preserve program
semantics, are rare compared to illegal schedules, the set of legal schedules for a program
must be closed under mutation and crossover.

We propose a set of novel mutation and crossover operators because the operators designed
by Pouchet et al. cannot traverse our wider schedule search space. Our empirical evaluation
suggests that the genetic algorithm does not yield strongly better schedules than an informed
random exploration but that it requires the benchmarking of fewer ineffective schedules.

10.4 Schedule Classification

Iterative compilation can be impractical due to the large time and resource consumption
that is mainly due to the evaluation of program versions with benchmarking. We mitigate
this drawback partly by replacing benchmarking by a prediction from a random forest
classifier to the extent possible. The classifier can label a schedule either as profitable
or as unprofitable. It relies on structural and directly performance-related features of
schedules. In the performance models, we do not characterize programs using static or
dynamic program features. Instead, we suggest to train the classifier on schedules and the
respective measured execution times that originate from the previous optimization of other
programs or earlier versions of the program to be optimized. We confirmed empirically
that, under the precondition that there is sufficient similarity between the training programs
and the program to be optimized, the classifier trained will be useful in reducing the
benchmarking overhead of our genetic algorithm for schedule optimization without impairing
the optimization result seriously. The evaluation was performed in a leave-one-program-out
schema on the PolyBench 4.1 benchmark set.

10.5 Open Questions and Research Directions

Tuning of Tile Sizes In our empirical evaluation, we used a fixed tile size of 64. Yet, to
gain maximum performance for a given combination of program, linearly affine schedule as
it results from Polyite’s search space exploration, and target hardware, it is important
to tune tile sizes per tilable loop nest und loop dimension. The combined purely iterative
optimization of schedule and tile sizes remains an open question. We expect that combining
the schedule search space exploration with an optimization of tile sizes by autotuning,
such as by the autotuner of Sato et al. [136] or the approach of Shirako et al. [139], may
lead to an increase in the search space’s dimensionality that makes exploration impractical.
Alternatively, tile sizes could be optimized by an analytical model, for instance, the heuristics
used by Pouchet et al. [127], who compute tile sizes such that the could data accessed by
each tile fits roughly into the L1 cache.

164 10.5 Open Questions and Research Directions

Short-Running Loops Our evaluation on PolyBench 4.1 with the extra large data set
setting can be generalized primarily to long-running loops that profit from data locality
optimization and coarse-grained parallelism. Moreover, the schedule features described
in Section 7.1 target loop nests of this kind. To optimize short-running loop nests that
operate on small data sets, Polyite must be developed further to prevectorize loop nests by
strip-mining or to be able to interoperate with Polly’s polyhedral vectorizer. A schedule
feature that quantifies the applicability of vectorization similar to the existing feature for
tiling will be necessary.

Prediction of Speedups We train classifiers that predict whether a given schedule is
profitable. In our evaluation, this coarse-grained classification sufficed to reduce the bench-
marking effort in our iterative schedule optimization and retain an acceptable optimization
result. Revisiting the approach by Danner [46] of learning a regression model to predict the
speedup yielded by a given schedule would allow to rank schedules by their profitability
at a more finely grained level and could further reduce the benchmarking overhead of
iterative schedule optimization. Another direction that seems promising is the kind of
classifier proposed by Ruvinskiy and van Beek [134]. Their classifier takes a tuple of program
transformations as its input and decides whether the first transformation its more profitable
than the second. If successfully adapted to Polyite, such a classifier would allow to rank
the schedules in the genetic algorithm’s population without the requirement to learn a
regression model.

Program Features Our classifiers are trained on feature vectors that characterize schedules
with respect to the kind of transformation that they encode. We do not include features
that characterize the associated program, though. On the one hand, this increases the
transferability of our models somewhat, on the other hand, the models are transferable
only between programs that require similar transformations. Specifically, as our evaluation
indicates, we cannot learn models that are useful for the optimization of a wide range
of programs that differ strongly in the kind of transformation from which they benefit.
Including program features in our feature vector and training a performance model from a
large and comprehensive set of training programs could yield a model that could be widely
applicable and could be distributed together with Polyite. Pouchet [119] [Chap. 9] lists
likely useful program features.

Small Improvements Throughout the thesis we make several suggestions for small im-
provements that may increase the quality of program optimization with Polyite.

Bibliography

[1] A. Acharya and U. Bondhugula. PLUTO+: Near-complete modeling of affine transfor-
mations for parallelism and locality. In A. Cohen and D. Grove, editors, Proceedings of
the 20th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming
(PPoPP), pages 54–64. ACM, Feb. 2015.

[2] F. V. Agakov, E. V. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to focus
iterative optimization. In Proc. 4th IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 295–305. IEEE, Mar. 2006.

[3] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 6(5):443–462, 2002.

[4] E. Alba and J. M. Troya. Improving flexibility and efficiency by adding parallelism to
genetic algorithms. Statistics and Computing, 12(2):91–114, 2002.

[5] J. R. Allen and K. Kennedy. Automatic loop interchange. In M. S. V. Deusen and S. L.
Graham, editors, Proceedings of the SIGPLAN Symposium on Compiler Construction,
pages 233–246. ACM, June 1984.

[6] A. H. Ashouri, A. Bignoli, G. Palermo, and C. Silvano. Predictive modeling method-
ology for compiler phase-ordering. In C. Silvano, J. M. P. Cardoso, G. Agosta, and
M. Hübner, editors, Proceedings of the 7th Workshop on Parallel Programming and
Run-Time Management Techniques for Many-core Architectures and the 5th Workshop
on Design Tools and Architectures For Multicore Embedded Computing Platforms
(PARMA-DITAM), pages 7–12. ACM, Jan. 2016.

[7] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano. COBAYN:
compiler autotuning framework using bayesian networks. ACM Transactions on
Architecture and Code Optimization (TACO), 13(2):21:1–21:25, 2016.

[8] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and J. Cavazos.
MiCOMP: Mitigating the compiler phase-ordering problem using optimization sub-
sequences and machine learning. ACM Transactions on Architecture and Code Opti-
mization (TACO), 14(3):29:1–29:28, 2017.

[9] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. A survey on
compiler autotuning using machine learning. ACM Computing Surveys (CSUR), 51
(5):96:1–96:42, 2019.

[10] J. Avigad and J. Zach. The epsilon calculus. In E. N. Zalta, editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab Center for the Study of Language
and Information Stanford University Stanford, CA 94305, winter 2013 edition, 2013.

[11] R. Baghdadi, A. Cohen, S. Verdoolaege, and K. Trifunovic. Improved loop tiling based
on the removal of spurious false dependences. ACM Transactions on Architecture and
Code Optimization (TACO), 9(4):52:1–52:26, 2013.

165

166 BIBLIOGRAPHY

[12] S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm.
In Proceedings of the 12th International Conf. on Machine Learning (ICML), pages
38–46. Morgan Kaufmann, 1995.

[13] W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet, F. Rastello, and
P. Sadayappan. Static and dynamic frequency scaling on multicore CPUs. ACM
Transactions on Architecture and Code Optimization (TACO), 13(4):51:1–51:26, 2016.

[14] W. Bao, S. Krishnamoorthy, L.-N. Pouchet, and P. Sadayappan. Analytical modeling
of cache behavior for affine programs. Proceedings of the ACM on Programming
Languages (PACMPL), 2(POPL):32:1–32:26, 2018.

[15] A. I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. Mathematics of Operations Research, 19(4):769–779,
1994.

[16] C. Bastoul. Code generation in the polyhedral model is easier than you think.
In Proceedings of thr 13th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 7–16. IEEE, Sept. 2004.

[17] C. Bastoul. Improving Data Locality in Static Control Programs. PhD thesis, Université
Pierre-et-Marie-Curie, 2004.

[18] C. Bastoul and P. Feautrier. Improving data locality by chunking. In G. Hedin, editor,
Proceedings of the 12th International Conference on Compiler Construction (CC),
pages 320–334. Springer, Apr. 2003.

[19] U. Beaugnon, A. Pouille, M. Pouzet, J. A. Pienaar, and A. Cohen. Optimization
space pruning without regrets. In P. Wu and S. Hack, editors, Proceedings of the 26th
International Conference on Compiler Construction (CC), pages 34–44. ACM, 2017.

[20] K. Belkadi, M. Gourgand, and M. Benyettou. Parallel genetic algorithms with migration
for the hybrid flow shop scheduling problem. Journal of Applied Mathematics and
Decision Sciences (JAMDS), 2006:65746:1–65746:17, 2006.

[21] M. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The polyhedral
model is more widely applicable than you think. In R. Gupta, editor, Compiler
Construction (CC), LNCS 6011, pages 283–303. Springer, Mar. 2010.

[22] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series
B (Methodological), 57(1):289–300, 1995.

[23] F. Bernasch. A distributed genetic algorithm for Polyite. Bachelor thesis, University
of Passau, 2018.

[24] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1996.

[25] U. Bondhugula, M. M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
and P. Sadayappan. Automatic transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral model. In L. J. Hendren, editor,
Compiler Construction (CC), LNCS 4959, pages 132–146. Springer, Mar. 2008.

[26] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. In R. Gupta and S. P. Amarasinghe,
editors, Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI), pages 101–113. ACM, June 2008.

BIBLIOGRAPHY 167

[27] U. Bondhugula, O. Günlük, S. Dash, and L. Renganarayanan. A model for fusion and
code motion in an automatic parallelizing compiler. In V. Salapura, M. Gschwind,
and J. Knoop, editors, Proceedings of the 19th International Conference on Parallel
Architecture and Compilation Techniques (PACT), pages 343–352. ACM, 2010.

[28] U. Bondhugula, A. Acharya, and A. Cohen. The Pluto+ algorithm: A practical
approach for parallelization and locality optimization of affine loop nests. ACM
Transactions on Programming Languages and Systems (TOPLAS), 38(3):12:1–12:32,
May 2016.

[29] U. Bondhugula, V. Bandishti, and I. Pananilath. Diamond tiling: Tiling techniques to
maximize parallelism for stencil computations. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 28(5):1285–1298, May 2017.

[30] T. Bray. The JavaScript object notation (JSON) data interchange format. RFC, 8259:
1–16, 2017.

[31] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[32] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

[33] P. Brémaud. Markov Chains, volume 31 of Texts in Applied Mathematics. Springer,
1st edition, 2010.

[34] J. Cavazos, G. Fursin, F. V. Agakov, E. V. Bonilla, M. F. P. O’Boyle, and O. Temam.
Rapidly selecting good compiler optimizations using performance counters. In Pro-
ceedings of the 5th International Symposium on Code Generation and Optimization
(CGO), pages 185–197. IEEE, Mar. 2007.

[35] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus,
R. H. Dennard, and W. Haensch. Practical strategies for power-efficient computing
technologies. Proceedings of the IEEE, 98(2):215–236, 2010.

[36] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova. Evaluation of the
Intel® Core™ i7 Turbo Boost feature. In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 188–197. IEEE, 2009.

[37] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the cache
behavior of nested loops. In M. Burke and M. L. Soffa, editors, Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation
(PLDI), pages 286–297. ACM, June 2001.

[38] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin, and
A. Krishnamurthy. Learning to optimize tensor programs. In S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Annual
Conference on Neural Information Processing Systems (NeurIPS), pages 3393–3404.
NIPS, 2018.

[39] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and C. Wu. Evaluating
iterative optimization across 1000 datasets. SIGPLAN Notices, 45(6):448–459, June
2010.

[40] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temam, and C. Wu. De-
constructing iterative optimization. ACM Transactions on Architecture and Code
Optimization (TACO), 9(3):21:1–21:30, Sept. 2012.

168 BIBLIOGRAPHY

[41] M. Christen, O. Schenk, and H. Burkhart. PATUS: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures. In
25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
pages 676–687. IEEE, 2011.

[42] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformulating software en-
gineering as a search problem. IEE Proceedings – Software, 150(3):161–175, June
2003.

[43] A. Cohen, M. Sigler, S. Girbal, O. Temam, D. Parello, and N. Vasilache. Facilitating
the search for compositions of program transformations. In Proceedings of the 19th
International Conference on Supercomputing (ICS), pages 151–160. ACM, 2005.

[44] K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Subramanian, L. Torczon,
and T. Waterman. ACME: adaptive compilation made efficient. In Y. Paek and
R. Gupta, editors, Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 69–77. ACM,
June 2005.

[45] B. Cosenza, J. J. Durillo, S. Ermon, and B. H. H. Juurlink. Autotuning stencil
computations with structural ordinal regression learning. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 287–296. IEEE, 2017.

[46] D. K. Danner. A performance prediction function based on the exploration of a
schedule search space in the polyhedron model. Master thesis, University of Passau,
2017.

[47] G. B. Dantzig. Linear programming. Operations Research, 50(1):42–47, 2002.

[48] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic parallelization.
Birkhäuser, 2000.

[49] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideovt, E. Bassous, and A. R.
Leblanc. Design of ion-implanted MOSFET’s with very small physical dimensions.
IEEE Solid-State Circuits Society Newsletter, 12(1):38–50, 2007.

[50] P. Feautrier. Parametric integer programming. RAIRO – Operations Research, 22(3):
243–268, 1988.

[51] P. Feautrier. Dataflow analysis of array and scalar references. International Journal
of Parallel Programming (IJPP), 20(1):23–53, 1991.

[52] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part I. One-
dimensional time. International Journal of Parallel Programming (IJPP), 21(5):
313–347, 1992.

[53] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Mul-
tidimensional time. International Journal of Parallel Programming (IJPP), 21(6):
389–420, 1992.

[54] P. Feautrier and C. Lengauer. Polyhedron model. In D. A. Padua, editor, Encyclopedia
of Parallel Computing, volume 3, pages 1581–1591. Springer, 2011.

[55] F. Fernández and P. Quinton. Extension of Chernikova’s algorithm for solving general
mixed linear programming problems. Technical Report RR-0943, INRIA, 1988.

BIBLIOGRAPHY 169

[56] P. J. Fleming and J. J. Wallace. How not to lie with statistics: The correct way to
summarize benchmark results. Communications of the ACM, 29(3):218–221, 1986.

[57] F. Franchetti, T. M. Low, D. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson,
M. Püschel, J. C. Hoe, and J. M. F. Moura. SPIRAL: extreme performance portability.
Proceedings of the IEEE, 106(11):1935–1968, 2018.

[58] E. Frank, M. A. Hall, and I. H. Witten. Data Mining: Practical Machine Learning
Tools and Technique, chapter The WEKA Workbench, Online Appendix, pages 1–128.
Morgan Kaufmann, 4th edition, 2016.

[59] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M. Namolaru,
E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard, E. Ashton,
E. V. Bonilla, J. Thomson, C. K. I. Williams, and M. F. P. O’Boyle. Milepost GCC:
machine learning enabled self-tuning compiler. International Journal of Parallel
Programming (IJPP), 39(3):296–327, 2011.

[60] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, chapter Behavioral Patterns, pages 221–349.
Addison-Wesley Publishing Company, 1994.

[61] S. Ganser, A. Größlinger, N. Siegmund, S. Apel, and C. Lengauer. Iterative schedule
optimization for parallelization in the polyhedron model. ACM Transactions on
Architecture and Code Optimization (TACO), 14(3):23:1–23:26, Aug. 2017.

[62] S. Ganser, A. Größlinger, N. Siegmund, S. Apel, and C. Lengauer. Speeding up
iterative polyhedral schedule optimization with surrogate performance models. ACM
Transactions on Architecture and Code Optimization (TACO), 15(4):56:1–56:27, Jan.
2019.

[63] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

[64] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. International Journal
of Parallel Programming (IJPP), 28(6):607–631, Dec. 2000.

[65] T. Grosser, A. Größlinger, and C. Lengauer. Polly – Performing polyhedral optimiza-
tions on a low-level intermediate representation. Parallel Processing Letters (PPL), 22
(4), 2012.

[66] T. Grosser, S. Verdoolaege, and A. Cohen. Polyhedral AST generation is more than
scanning polyhedra. ACM Transactions on Programming Languages and Systems
(TOPLAS), 37(4):12:1–12:50, Aug. 2015.

[67] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists
and Engineers. Chapman and Hall / CRC Computational Science Series. CRC Press,
2011.

[68] M. Harman. The current state and future of search based software engineering. In L. C.
Briand and A. L. Wolf, editors, International Conference on Software Engineering
(ICSE)), Proc. Workshop on the Future of Software Engineering (FOSE), pages
342–357. IEEE, May 2007.

[69] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

170 BIBLIOGRAPHY

[70] T. Hiroyasu, M. Miki, and M. Negami. Distributed genetic algorithms with randomized
migration rate. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, volume 1, pages 689–694. IEEE, Oct 1999.

[71] J. H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press, 1992.

[72] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel, Apr.
2018. URL https://software.intel.com/sites/default/files/managed/9e/bc/

64-ia-32-architectures-optimization-manual.pdf.

[73] F. Irigoin. Tiling. In D. A. Padua, editor, Encyclopedia of Parallel Computing,
volume 4, pages 2040–2049. Springer, 2011.

[74] F. Irigoin and R. Triolet. Supernode partitioning. In J. Ferrante and P. Mager,
editors, Confernence Record of the 15th Annanual ACM Symposium on Principles of
Programming Languages (POPL), pages 319–329. ACM Press, 1988.

[75] R. M. Karp. Reducibility among combinatorial problems. In M. Jünger, T. M.
Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. A. Wolsey, editors, Proceedings of a Symposium on the Complexity of Computer
Computations, pages 85–103. Springer, 1972.

[76] C. Kartsaklis, O. R. Hernandez, C. Hsu, T. Ilsche, W. Joubert, and R. L. Graham.
HERCULES: A pattern driven code transformation system. In 26th IEEE International
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPS),
pages 574–583. IEEE, 2012.

[77] V. I. Kelefouras. A methodology pruning the search space of six compiler transfor-
mations by addressing them together as one problem and by exploiting the hardware
architecture details. Computing, 99(9):865–888, Sept. 2017.

[78] W. Kelly and W. Pugh. A unifying framework for iteration reordering transformations.
In Proceedings of the 1st International Conference on Algorithms and Architectures
for Parallel Processing (ICAPP), volume 1, pages 153–162. IEEE, Apr. 1995.

[79] K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. A. Padua, editors, 6th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), LNCS 768, pages 301–320. Springer, Aug. 1993.

[80] D. Kim, L. Renganarayanan, D. Rostron, S. V. Rajopadhye, and M. M. Strout. Multi-
level tiling: M for the price of one. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), pages
51:1–51:12. ACM, 2007.

[81] V. Klee and G. J. Minty. How good is the simplex algorithm? In Inequalities, III
(Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the
memory of Theodore S. Motzkin), pages 159–175. Academic Press, New York, 1972.

[82] A. Kleen. An NUMA API for Linux. Technical report, SUSE Labs, 2004.

[83] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. Combined selection of tile
sizes and unroll factors using iterative compilation. The Journal of Supercomputing,
24(1):43–67, 2003.

[84] P. M. W. Knijnenburg, T. Kisuki, K. A. Gallivan, and M. F. P. O’Boyle. The effect of
cache models on iterative compilation for combined tiling and unrolling. Concurrency
and Computation: Practice and Experience, 16(2-3):247–270, 2004.

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

BIBLIOGRAPHY 171

[85] P. R. Krishnaiah and P. K. Sen, editors. Handbook of Statistics, volume 4. North-
Holland, 1984.

[86] S. Kronawitter. Automatic Performance Optimization of Stencil Codes. PhD thesis,
University of Passau, 2020.

[87] S. Kronawitter and C. Lengauer. Polyhedral search space exploration in the exastencils
code generator. ACM Transactions on Architecture and Code Optimization (TACO),
15(4):40:1–40:25, 2019.

[88] C. Lattner. LLVM and Clang: Next generation compiler technology. In BSDCan: The
BSD Conference, May 2008.

[89] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the 2nd IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 75–88. IEEE, Mar. 2004.

[90] H. Le Verge. A note on Chernikova’s algorithm. Res. Report RR-1662, INRIA, 1994.

[91] S. Long and G. Fursin. A heuristic search algorithm based on unified transformation
framework. In 34th International Conference on Parallel Processing Workshops (ICPP
2005 Workshops), pages 137–144. IEEE, 2005.

[92] S. Long and G. Fursin. Systematic search within an optimisation space based on
unified transformation framework. International Journal of Computational Science
and Engineering (IJCSE), 4(2):102–111, 2009.

[93] S. Long and M. F. P. O’Boyle. Adaptive Java optimisation using instance-based
learning. In P. Feautrier, J. R. Goodman, and A. Seznec, editors, Proceedings of the
18th International Conference on Supercomputing (ICS), pages 237–246. ACM, June
2004.

[94] S. Long and W. Zhu. A solution to the can or cannot problem of learning based com-
pilation. In Proceedings of the 6th International Conference on Natural Computation
(ICNC), pages 3261–3265. IEEE, Aug. 2010.

[95] S. Long and W. Zhu. Outlier detection for learning-based optimizing compiler. In
I. Stojmenovic, G. E. Farin, M. Guo, H. Jin, K. Li, L. Hu, X. Wei, and X. Che, editors,
Proceedings of the 5th International Conference on Frontier of Computer Science and
Technology (FCST), pages 570–575. IEEE, Aug. 2010.

[96] J.-F. Mai and M. Scherer. Simulating Copulas: Stochastic Models, Sampling Algorithms,
and Applications, volume 6 of Series in Quantitative Finance. World Scientific, 2nd
edition, 2017.

[97] T. H. Matheiss and D. S. Rubin. A survey and comparison of methods for finding all
vertices of convex polyhedral sets. Mathematics of Operations Research, 5(2):167–185,
1980.

[98] Message Passing Interface Forum. MPI: A message-passing interface standard. Stan-
dard, Revision 3.1, 5 University of Tennessee, Knoxville, June 2015.

[99] H. O. Mete and Z. B. Zabinsky. Pattern hit-and-run for sampling efficiently on
polytopes. Operations Research Letters, 40(1):6–11, 2012.

[100] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

172 BIBLIOGRAPHY

[101] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic
production of compiler heuristics. In D. Scott, editor, Artificial Intelligence: Method-
ology, Systems, and Applications (AIMSA), LNCS 2443, pages 41–50. Springer, Sept.
2002.

[102] G. E. Moore. Progress in digital integrated electronics. In Proceedings of the 1975
International Electron Devices Meeting, volume 21, pages 11–13, 1975.

[103] S. Nembrini, I. R. König, and M. N. Wright. The revival of the Gini importance?
OUP Bioinformatics, pages 1–8, 2018.

[104] A. Nisbet. GAPS: A compiler framework for genetic algorithm (GA) optimised
parallelisation. In P. Sloot, M. Bubak, and B. Hertzberger, editors, International
Conference and Exhibition on High-Performance Computing and Networking (HPCN
Europe), LNCS 1401, pages 987–989. Springer, Apr. 1998.

[105] A. Nisbet. Towards retargettable compilers – feedback directed compilation using
genetic algorithms. In Proceedings of the 9th International Workshop on Compilers
for Parallel Computers (CPC), page 12 pages, 2001.

[106] C. Nugteren, P. Custers, and H. Corporaal. Algorithmic species: A classification of
affine loop nests for parallel programming. ACM Transactions on Architecture and
Code Optimization (TACO), 9(4):40:1–40:25, 2013.

[107] N.V. Chernikova. Algorithm for finding a general formula for the non-negative solutions
of a system of linear inequalities (in russian). U.S.S.R. Computational Mathematics
and Mathematical Physics, 4(4):151–158, 1964.

[108] N.V. Chernikova. Algorithm for finding a general formula for the non-negative solutions
of a system of linear inequalities (in russian). U.S.S.R. Computational Mathematics
and Mathematical Physics, 5(2):228–233, 1965.

[109] N.V. Chernikova. Algorithm for discovering the set of all solutions of a linear program-
ming problem (in russian). U.S.S.R. Computational Mathematics and Mathematical
Physics, 8(6), 1968.

[110] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima, 2008.

[111] I. Pak. Foundations of Computational Mathematics, chapter On Sampling Integer
Points in Polyhedra, pages 319–324. World Scientific, 2002.

[112] P.-Q. Pan. Linear Programming Computation. Springer, 2014. ISBN 978-3-642-40754-3.

[113] E. Park, S. Kulkarni, and J. Cavazos. An evaluation of different modeling techniques
for iterative compilation. In R. K. Gupta and V. J. Mooney, editors, Proceedings
of the 14th International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), pages 65–74. ACM, Oct. 2011.

[114] E. Park, L.-N. Pouchet, J. Cavazos, A. Cohen, and P. Sadayappan. Predictive modeling
in a polyhedral optimization space. In Proceedings of the 9th International Symposium
on Code Generation and Optimization (CGO), pages 119–129. IEEE, Apr. 2011.

[115] E. Park, J. Cavazos, and M. A. Alvarez. Using graph-based program characterization
for predictive modeling. In C. Eidt, A. M. Holler, U. Srinivasan, and S. P. Amarasinghe,
editors, Proceedings of the 10th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 196–206. ACM, Apr. 2012.

BIBLIOGRAPHY 173

[116] E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, and P. Sadayappan.
Predictive modeling in a polyhedral optimization space. International Journal of
Parallel Programming (IJPP), 41(5):704–750, 2013.

[117] E. Park, C. Kartsaklis, and J. Cavazos. HERCULES: strong patterns towards more
intelligent predictive modeling. In Proceedings of the 43rd International Conference
on Parallel Processing (ICPP), pages 172–181. IEEE, Sept. 2014.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research (JMLR), 12:2825–2830, 2011.

[119] L.-N. Pouchet. Iterative Optimization in the Polyhedron Model. PhD thesis, Université
de Paris-Sud, 2010.

[120] L.-N. Pouchet. LeTSeE – The LEgal Transformation SpacE Explorator, 2012. URL
http://web.cs.ucla.edu/~pouchet/software/letsee/.

[121] L.-N. Pouchet and T. Yuki. PolyBench 4.1, 2015. http://web.cse.ohio-state.edu/

~pouchet/software/polybench/.

[122] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the
polyhedral model: Part I, One-dimensional time. In Proceedings of the 5th IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages 144–156.
IEEE, Mar. 2007.

[123] L.-N. Pouchet, C. Bastoul, J. Cavazos, and A. Cohen. A note on the performance
distribution of affine schedules. In 2nd Workshop on Statistical and Machine learning
approaches applied to ARchitectures and compilaTion (SMART), Göteborg, Sweden,
Jan. 2008.

[124] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in the
polyhedral model: Part II, Multidimensional time. In R. Gupta and S. P. Amarasinghe,
editors, Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI), pages 90–100. ACM, June 2008.

[125] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, and P. Sa-
dayappan. Hybrid iterative and model-driven optimization in the polyhedral model.
Research Report RR-6962, INRIA, 2009.

[126] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sadayap-
pan. Combined iterative and model-driven optimization in an automatic parallelization
framework. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–11. IEEE, Nov. 2010.

[127] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan,
and N. Vasilache. Loop transformations: Convexity, pruning and optimization. In
T. Ball and M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL, pages 549–562. ACM,
Jan. 2011.

[128] B. Pradelle, P. Clauss, and V. Loechner. Adaptive runtime selection of parallel
schedules in the polytope model. In L. T. Watson, G. W. Howell, W. I. Thacker, and
S. Seidel, editors, Proceedings of the 19th High Performance Computing Symposia
(HPC), pages 81–88. SCS/ACM, 2011.

http://web.cs.ucla.edu/~pouchet/software/letsee/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/

174 BIBLIOGRAPHY

[129] W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In R. Elliott, editor, Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing (SC), pages 4–13. ACM, 1991.

[130] M. Püschel, J. M. F. Moura, J. R. Johnson, D. A. Padua, M. M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: code generation for DSP transforms. Proceedings of the IEEE,
93(2):232–275, 2005.

[131] F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient nested loops from
polyhedra. International Journal of Parallel Programming (IJPP), 28(5):469–498,
2000.

[132] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P. Amarasinghe.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In H. Boehm and C. Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
519–530. ACM, 2013.

[133] J. B. Rogers. A Prolog Primer. Addison-Wesley Longman Publishing Co., Inc., 1986.

[134] R. Ruvinskiy and P. van Beek. An improved machine learning approach for selecting
a polyhedral model transformation. In D. Barbosa and E. E. Milios, editors, Advances
in Artificial Intelligence (Canadian AI), LNAI 9091, pages 100–113. Springer, 2015.

[135] V. Sarkar. Optimized unrolling of nested loops. In Proceedings of the 14th International
Conference on Supercomputing (ICS), pages 153–166. ACM, 2000.

[136] Y. Sato, T. Yuki, and T. Endo. An autotuning framework for scalable execution of
tiled code via iterative polyhedral compilation. ACM Transactions on Architecture
and Code Optimization (TACO), 15(4):67:1–67:23, Jan. 2019.

[137] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and J. Teich. Exaslang: a domain-
specific language for highly scalable multigrid solvers. In Proceedings of the Fourth
International Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing (WOLFHPC), pages 42–51. IEEE, 2014.

[138] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1994.

[139] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet, J. Ramanujam, P. Sadayappan, and
V. Sarkar. Analytical bounds for optimal tile size selection. In M. F. P. O’Boyle,
editor, Proceedings of the 21st International Conference on Compiler Construction
(CC), pages 101–121. Springer, 2012.

[140] A. Simbürger and A. Größliger. On the variety of static control parts in real-world
programs: from affine via multi-dimensional to polynomial and just-in-time. In
S. Rajopadhye and S. Verdoolaege, editors, Proceedings of the 4th International
Workshop on Polyhedral Compilation Techniques (IMPACT), Jan. 2014.

[141] S. Sioutas, S. Stuijk, H. Corporaal, T. Basten, and L. J. Somers. Loop transformations
leveraging hardware prefetching. In Proceedings of the 2018 International Symposium
on Code Generation and Optimization (CGO), pages 254–264. ACM, 2018.

[142] P. J. Smith. Into Statistics. Springer, 1997.

[143] L. Song and K. M. Kavi. A technique for variable dependence driven loop peeling. In
Proceedings of the 5th International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP), pages 390–395, Oct 2002.

BIBLIOGRAPHY 175

[144] K. Stock, L.-N. Pouchet, and P. Sadayappan. Using machine learning to improve
automatic vectorization. ACM Transactions on Architecture and Code Optimization
(TACO), 8(4):50:1–50:23, 2012.

[145] J. Thomson, M. F. P. O’Boyle, G. Fursin, and B. Franke. Reducing training time in a
one-shot machine learning-based compiler. In G. R. Gao, L. L. Pollock, J. Cavazos,
and X. Li, editors, 22nd International Workshop on Languages and Compilers for
Parallel Computing (LCPC) 2009, Revised Selected Papers, pages 399–407. Springer,
2009.

[146] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen. Polyhedral-model guided
loop-nest auto-vectorization. In Proceedings of the 18th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 327–337. IEEE,
2009.

[147] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia, R. Ladelsky,
S. Pop, J. Sjödin, and R. Upadrasta. GRAPHITE two years after: First lessons learned
from real-world polyhedral compilation. In D. N. Grigori Fursin, editor, Proceedings
of the International Workshop on GCC Research Opportunities (GROW), pages 1–13,
2010.

[148] R. Upadrasta and A. Cohen. Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. In R. Giacobazzi and R. Cousot, editors, Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 483–496. ACM, Jan. 2013.

[149] N. Vasilache. Scalable Program Optimization Techniques in the Polyhedral Model. PhD
thesis, Université Paris-Sud, 2007.

[150] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation in the real world.
In Proceedings of the 15th International Conference on Compiler Construction (CC),
pages 185–201. Springer, May 2006.

[151] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses, S. Ver-
doolaege, A. Adams, and A. Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. Computing Research Repository
(CoRR), 2018.

[152] S. Verdoolaege. isl : An integer set library for the polyhedral model. In K. Fukuda,
J. van der Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software –
ICMS 2010, LNCS 6327, pages 299–302. Springer, 2010.

[153] S. Verdoolaege. Presburger formulas and polyhedral compilation. Technical report,
Polly Labs and KU Leuven, 2016.

[154] S. Verdoolaege. Integer Set Library: Manual. INRIA, 2018. Version isl-0.19.

[155] S. Verdoolaege and T. Grosser. Polyhedral extraction tool. In U. Bondhugula and
V. Loechner, editors, Proceedings of the 2nd International Workshop on Polyhedral
Compilation Techniques (IMPACT), Jan. 2012.

[156] S. Verdoolaege and G. Janssens. Scheduling for PPCG. Technical Report CW706, CS
Department, KU Leuven, 2017.

[157] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Counting integer
points in parametric polytopes using Barvinok’s rational functions. Algorithmica, 48
(1):37–66, June 2007.

176 BIBLIOGRAPHY

[158] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and F. Catthoor.
Polyhedral parallel code generation for CUDA. ACM Transactions on Architecture
and Code Optimization (TACO), 9(4):54:1–54:23, Jan. 2013.

[159] J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History
of Computing, 15(4):27–75, 1993.

[160] Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’Boyle. Integrating profile-driven
parallelism detection and machine-learning-based mapping. ACM Transactions on
Architecture and Code Optimization (TACO), 11(1):2:1–2:26, 2014.

[161] V. Weispfenning. Parametric linear and quadratic optimization by elimination. Tech-
nical Report MIP-9404, University of Passau, Jan. 1994.

[162] M. Weiss. Strip mining on SIMD architectures. In Proceedings of the 5th International
Conference on Supercomputing, (ICS), pages 234–243. ACM, Nov. 1991.

[163] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of
software and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

[164] S. Williams, A. Waterman, and D. A. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):
65–76, 2009.

[165] T. Williams and C. Kelly. gnuplot 5.2: An Interactive Plotting Program, Jan. 2019.

[166] M. Wolfe. Loops skewing: The wavefront method revisited. International Journal of
Parallel Programming (IJPP), 15(4):279–293, Aug. 1986.

[167] A. B. Yoo, M. A. Jette, and M. Grondona. SLURM: simple linux utility for resource
management. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, 9th
International Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
pages 44–60. Springer, 2003.

[168] T. Yuki. Understanding PolyBench/C 3.2 kernels. In S. Rajopadhye and S. Verdoolaege,
editors, Proceedings of the 4th International Workshop on Polyhedral Compilation
Techniques (IMPACT), Jan. 2014.

[169] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo, Z. Cheng, K. Rupnow, and
D. Chen. Machine learning on fpgas to face the iot revolution. In S. Parameswaran,
editor, International Conference on Computer-Aided Design (ICCAD), pages 819–826.
IEEE, 2017.

[170] O. Zinenko, L. Chelini, and T. Grosser. Declarative transformations in the polyhedral
model. Research Report RR-9243, Inria, ENS Paris - Ecole Normale Supérieure de
Paris, ETH Zurich, TU Delft, IBM Zürich, Dec. 2018.

[171] O. Zinenko, S. Verdoolaege, C. Reddy, J. Shirako, T. Grosser, V. Sarkar, and A. Cohen.
Modeling the conflicting demands of parallelism and temporal/spatial locality in affine
scheduling. In C. Dubach and J. Xue, editors, Proceedings of the 27th International
Conference on Compiler Construction (CC), pages 3–13. ACM, Feb. 2018.

	Contents
	List of Symbols, Abbreviations, and Names
	List of Tables
	List of Figures
	List of Algorithms
	Introduction and Problem Statement
	Background
	Parallel Computing
	The Evolution towards Modern Multicore Processors
	Multicore Processors

	Polyhedron Model
	Mathematical Foundation
	Polyhedral Optimization Framework

	Machine Learning and Iterative Optimization Techniques
	Genetic Algorithms
	Supervised Machine Learning

	Related Work
	Iterative Polyhedral Scheduling Algorithms
	Model-Based Polyhedral Scheduling Algorithms
	Hybrid Polyhedral Scheduling Algorithms
	Other Use Cases of Polyhedral Features of Schedules and Programs
	Other Approaches to Machine Learning and Iterative Optimization in Compilation
	Iterative Approaches
	Combined Machine-Learning and Iterative Approaches
	Machine-Learning Approaches

	Sampling the Search Space of Legal Schedules
	Objectives of a Sampling Algorithm
	The Optimal Schedule Representation for Sampling
	Restriction to Legal Schedules
	The Size and Structure of the Search Space
	Sampling Search Space Regions
	Search Space Construction by Louis-Noël Pouchet
	Our Generalization
	Termination
	Summary
	Discussion

	Sampling Schedules from Search Space Regions
	Enumeration of Schedules
	Acceptance-Rejection Sampling
	Pattern Hit-and-Run Sampling
	Geometric Divide-and-Conquer Sampling
	Geometric Approach Based on the Decomposition Theorem for Polyhedra ("Chernikova Sampling")
	Sampling by Projection
	Discussion

	Schedule Completion
	Adapting Pouchet's Approach in Polyite

	Schedule Simplification and Analysis
	Motivation
	Schedule Trees
	Schedule Tree Transformation
	Schedule Tree Simplification
	Remove Statements' Common Offset
	Overly Large Schedule Coefficients
	Elimination of Superfluous Subtrees
	Elimination of Degenerate Loops
	Further Normalization of Band Nodes
	Collapsing Cascades of Sequence Nodes

	Schedule Tree Analysis
	Detection of Loop-Generating Schedule Dimensions
	Detection of Permutable Schedule Bands
	Detection of Parallelism
	Detecting Equivalence Classes

	Discussion

	Validity-Preserving Genetic Operators
	A Genetic Algorithm for Polyhedral Schedule Optimization
	Schedule Mutation and Crossover
	Mutation Operators
	Crossover Operators
	Summary

	Equivalence of Schedules
	Felix Bernasch's Bachelor Thesis: A Distributed Genetic Algorithm for Polyite

	Classification of Schedules
	Schedule Features
	Requirements for a Set of Schedule Features
	Structural Features of Schedule Trees
	Performance-Related Features of Schedule Trees
	Discussion

	Learning a Schedule Classifier and Integrating it with the Genetic Algorithm
	Classification as a Guard for Benchmarking
	Two-Staged Approach

	Implementation
	Overview
	Usage
	Existing Basic Building Blocks
	The Integer Set Library (isl)
	libbarvinok
	Größlinger's Implementation of Chernikova's Algorithm
	LLVM
	Polly
	SLURM Workload Manager
	scikit-learn
	MPI
	The ExaStencils Code Generator

	Software Architecture
	Class Diagram
	Schedule Evaluation
	Parallelization

	Complying with the (Super-)Exponential Asymptotic Run-Time Complexity of Algorithms in Polyite

	Evaluation
	Experimental Setup
	Implementation
	Tool Chain
	Benchmarking
	Configuration

	Benchmark Set
	Search Space Exploration
	Research Questions
	Experiments
	Discussion

	Genetic Algorithm with Schedule Classification
	Research Questions
	Training Sets
	Experiments
	Discussion

	Threats to Validity

	Conclusion and Future Work
	Sampling of Schedules
	Schedule Simplification and Analysis
	Genetic Algorithm
	Schedule Classification
	Open Questions and Research Directions

	Bibliography

