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Abstract

Iterative self-consistent parallel imaging reconstruction (SPIRiT) is an ef-
fective self-calibrated reconstruction model for parallel magnetic resonance
imaging (PMRI). The joint L1 norm of wavelet or tight frame coefficients
and joint total variation (TV) regularization terms are incorporated into the
SPIRiT model to improve the reconstruction performance. The simultane-
ous two-directional low-rankness (STDLR) in k-space data is incorporated
into SPIRiT to realize improved reconstruction. Recent methods have ex-
ploited the nonlocal self-similarity (NSS) of images by imposing nonlocal
low-rankness of similar patches to achieve a superior performance. To fully
utilize both the NSS in Magnetic resonance (MR) images and calibration
consistency in the k-space domain, we propose a nonlocal low-rank (NLR)-
SPIRiT model by incorporating NLR regularization into the SPIRiT model.
We apply the weighted nuclear norm (WNN) as a surrogate of the rank
and employ the Nash equilibrium (NE) formulation and alternating direc-
tion method of multipliers (ADMM) to efficiently solve the NLR-SPIRiT
model. The experimental results demonstrate the superior performance of
NLR-SPIRiT over the state-of-the-art methods via three objective metrics
and visual comparison.
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(SPIRiT), nonlocal low-rank (NLR), Nash equilibrium (NE), parallel
magnetic resonance imaging (PMRI), compressed sensing (CS), alternating
direction method of multipliers (ADMM), weighted nuclear norm (WNN)

1. Introduction

Magnetic resonance (MR) imaging (MRI) provides an indispensable imag-
ing method without ionizing radiation in contemporary clinical applications.
However, the scanning speed of MR imaging technique is limited. Both com-
pressed sensing (CS) and parallel imaging (PI) techniques have been applied
to reduce the MRI scanning time.

A variety of k-space undersampling patterns has been applied to reduce
the amount of collected data, such as one-dimensional (1D) uniform un-
dersampling (1DUU), 1D Gaussian random undersampling (1DGU), two-
dimensional (2D) Poisson-disc undersampling (2DPU), 2D Gaussian random
undersampling (2DGU), and non-Cartesian undersampling. According to the
CS theory [1, 2], it is feasible to reconstruct the MR images from highly un-
dersampled measurements [2], since the MR images exhibit a sparsity in the
wavelet transform domain and spatial finite differences. CS-MRI methods
[2, 3] have been proposed to solve reconstruction problems with regulariza-
tion terms of the total variation (TV) and L1 norm of wavelet coefficients.
Qu et al. developed the patch-based directional wavelet (PBDW and PB-
DWS) [4, 5] and graph-based redundant wavelet transform (GBRWT) [6] to
improve the reconstruction performance. In addition to fixed sparse trans-
form methods, adaptive sparse representation-based reconstruction methods
have been proposed, such as dictionary learning-based MRI (DLMRI) [7]
and transform learning-based MRI (TLMRI) [8, 9, 10, 11] algorithms. These
algorithms have been proven to attain a high reconstruction performance.

Recently, some researchers have proposed certain methods to exploit the
nonlocal self-similarity (NSS) of image patches to improve the image quality,
such as the nonlocal means (NL-means) [12], block-matching 3D denoising
(BM3D) [13, 14], patch-based nonlocal operator (PANO) [15], and nonlocal
low-rank (NLR)-CS [16] methods. The BM3D method exploits the NSS of
image patches via their grouping for image denoising purposes [13, 14], which
has been applied in MRI reconstruction. Qu et al. [15] exploited the NSS of
image patches and established a PANO to reduce the reconstruction error.
Dong et al. [16] developed the very promising NLR-CS model employing NLR
regularization of similar image patches constructed though block matching
(BM).

Parallel MRI (PMRI) is also a well-known technique to accelerate MRI
[17, 18, 19, 20], which is often been combined with the CS theory to improve
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the reconstruction performance. Sensitivity encoding (SENSE) [17] explicitly
utilizes sensitivity information. However, the performance of these methods
is limited due to the difficulty in the accurate measurement of sensitivity
information in practical applications. An iterative self-consistent parallel
imaging reconstruction using eigenvector maps (ESPIRiT) model has been
proposed [18]. In contrast to the SENSE model, ESPIRiT model estimates
multiple sets of coil sensitivity. We introduced the Lp pseudo-norm joint TV
regularization term into the ESPIRiT scheme to improve the reconstruction
performance [21].

Another type of PMRI reconstruction method avoids the difficulty in sen-
sitivity estimation by implicitly considering sensitivity information[19], such
as the generalized autocalibrating partially parallel acquisitions (GRAPPA)
[20, 22] and iterative self-consistent parallel imaging reconstruction (SPIRiT)
[23, 19, 24, 25, 26, 27] methods, which relies on the k-space local kernel cal-
ibration. SPIRiT includes two reconstruction schemes in both the image
[19, 24, 26] and k-space [23, 19, 25, 28] domains. An L1-SPIRiT scheme was
obtained by combining the regularization term of the joint L1 norm (JL1) in
the wavelet domain with the k-space domain-based SPIRiT model and solved
with the projection over convex sets (POCS) algorithm [23, 25]. Duan et al.
[27] applied the fast iterative shrinkage thresholding algorithm (FISTA) to
solve the SPIRiT PMRI reconstruction problem in the k-space domain with
the joint TV (JTV) regularization term. Weller et al. [26] adopted the al-
ternating direction method of multipliers (ADMM) technique to solve the
SPIRiT PMRI reconstruction problem in the image domain with the JTV
regularization term. The STDLR-SPIRiT scheme has been established [29]
by combining the SPIRiT model with the simultaneous two-directional low-
rankness (STDLR) in k-space to realize improved reconstruction. In fact,
STDLR-SPIRiT has exploited the local low-rank (LR) prior rather than the
LR feature based on nonlocal image structures. Most recently, Zhang et
al. proposed the pFISTA-SPIRiT scheme [30] to solve the L1-SPIRiT model
with tight frames, such as the shift-invariant discrete wavelets transform
(SIDWT), and provided a guarantee convergence analysis.

Recent methods have exploited the NSS of images by imposing the group
sparsity or the low-rankness of nonlocal similar patches to improve the re-
construction quality [12, 13, 14, 15, 16, 31]. Among them, the NLR-based
methods have achieved an excellent performance [16, 31]. In addition, there
have been a variety of improved SPIRiT-based methods for PMRI reconstruc-
tion. However, to the best of our knowledge, no SPIRiT-based algorithm has
applied low-rankness of nonlocal similar patches. In this paper, we propose
an NLR-SPIRiT scheme incorporating NLR regularization into the SPIRiT
model. The NLR-SPIRiT model fully utilizes both the NSS in MR images
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and the calibration consistency in the k-space domain to improve the recon-
struction performance. By employing the Nash equilibrium (NE) formulation
[32, 33], we reformulate the NLR-SPIRiT model into a two-objective opti-
mization problem including a rank minimization problem and a least-squares
(LS) problem. We adopt the weighted nuclear norm (WNN) [34, 35] instead
of the nuclear norm (NN) as a surrogate of the rank, which yields a more
efficient method to solve the rank minimization problem. The LS problem is
efficiently solved with the ADMM technique [36]. The experimental results
demonstrate the superior performance of the NLR-SPIRiT model over state-
of-the-art methods in terms of three objective metrics and visual comparison.

We organize the rest of this article as follows: in Section 2, we review
the SPIRiT model and SPIRiT-based algorithms. In Section 3, we describe
the NLR-SPIRiT model, which incorporates NLR regularization of similar
patches into the SPIRiT model. We adopt the WNN as a surrogate of the
rank and employ the NE formulation and ADMM technique to efficiently
solve the NLR-SPIRiT model. Section 4 presents the experimental results,
analysis, and discussion. Finally, we provide the conclusion of this paper in
Section 5.

2. Related work

2.1. Overview of the nonlocal low-rank penalty problem

Suppose X̂ ∈ CN represents a single coil image stacked in column, and
Ŷ ∈ CM represents the undersampled k-space data of the single coil image
stacked in column. P ∈ RM×N is an undersampled operator selecting only
the acquired k-space data from the entire k-space grid, Uy ∈ CNy×Ny and
Ux ∈ CNx×Nx are discrete 2D Fourier transform matrices, F = Uy ⊗ Ux ∈
CN×N is the Fourier operator applied on the single coil image. X̂ is divided
into Np overlapping patches. The mapping Vi : X̂ 7→ Vi(X̂) is a BM operator,

where Vi(X̂) represents the similar patch group matrix of the ith reference
patch [16]. Because all Vi(X̂) are LR matrices, the patch-based self-similarity
constraint can be written as the following NLR penalty:

Ψ(X̂) =

Np∑
i=1

rank(Vi(X̂)) (1)

where rank(Vi(X̂)) denotes the rank of the matrix Vi(X̂). With the NLR
penalty, reconstructing a single coil image X̂ from k-space undersampled
data Ŷ can be usually reformulated as the following minimization problem:

X̂ = arg min
X̂

1

2

∥∥∥PFX̂ − Ŷ ∥∥∥2
2

+ αΨ(X̂) (2)
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2.2. Overview of the Nash equilibrium formulation

Considering an optimization problem regarding variables p and q, as fol-
lows:

(p, q) = arg min
p,q

f1(p, q) + f2(p) + f3(q) (3)

where f1(p, q) is the function of p and q, f2(p) the function of p, and f3(q) is
the function of q. Employing the Nash equilibrium (NE) formulation [32, 33],
problem (3) can be transformed to the following two problems:

p∗ = arg min
p
L1(p)

q∗ = arg min
q
L2(q)

(4)

where:
L1(p) = f1(p, q

∗) + f2(p) (5)

L2(q) = f1(p
∗, q) + f3(q) (6)

where p∗ and q∗ are both fixed values. According to the game theory, problem
(3) can be interpreted as a game between p and q. Minimizing L1(p) will
increase the value of L2(q) and minimizing L2(q) will increase L1(p). The
equilibrium of this game is called Nash equilibrium, which finds a balance
between p and q. Especially, problem (3) is optimal in the fixed point (p∗, q∗).

2.3. Overview of the SPIRiT model

Suppose X ∈ CNC represents a multicoil image stacked in columns, Y ∈
CMC denotes the undersampled k-space data of the multicoil image stacked
in columns, F = IC ⊗ F ∈ CNC×NC , P = IC ⊗ P ∈ CMC×NC , A = PF ∈
CMC×NC represents the undersampled encoding matrix, IC is a C×C identity
matrix, ⊗ denotes Kronecker product, N = Nx ×Ny, where Nx and Ny are
the number of rows and columns of the single-coil image, respectively, and
C is the total number of coils. The undersampled k-space data of multicoil
images are thus given by:

Y = AX (7)

The SPIRiT calibration consistency equation in the image domain is ex-
pressed as:

X = GX (8)

where G is the image domain-based SPIRiT operator, acquired from auto-
calibration signal (ACS) lines (as shown in Fig. 1(a)) [18].

Then, the image domain-based SPIRiT minimization problem is as fol-
lows:

X = arg min
X

1

2
‖AX − Y ‖22 +

µ

2
‖(G− I)X‖22 (9)
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Figure 1: The schematic illustration of NLR-SPIRiT. (a) Calculation of G [18]: A series of
SPIRiT kernels are estimated through k-space autocalibration signal (ACS). The matrix
G is obtained by calculating the IFFT of the matrix composed of SPIRiT kernels. (b)
Preprocessing steps for calculating (take only two coils as an example) [26]: The matrix
∆ = µ1(G− I)H(G− I) + βI has a diagonal-block structure, then a simple reordering of
the matrix yields a block-diagonal structure. The inverse of the matrix, ∆−1, is computed
by directly inverting each block. (c) Non-local low-rank denoising: Choose similar patches
closest to the reference patch in terms of the Euclidean distance. The selected similar
patches are vectorized and grouped to construct a similar patch group matrix Vci(X). The
low-rank approximationDci is obtained by solving the weighted nuclear norm minimization
(WNNM) problem, and then placed back to the original positions.

3. The proposed algorithm

3.1. Problem formulation

Past works have verified that the NSS prior information facilitated spar-
sity enforcement, resulting in reconstruction quality enhancement. To further
improve the PMRI reconstruction quality, we incorporate the NLR regular-
ization term into the SPIRiT model to fully utilize the NSS of PMRI.

Suppose Xc ∈ CN denotes the cth coil image of X, and a single coil
image is divided into Np overlapping patches of size

√
n ×
√
n. For each

reference patch, we search for similar patches within a local window (e.g.,
40×40) [16], and choose m similar patches closest to the reference patch in
terms of the Euclidean distance. The selected similar patches are vectorized
and grouped to construct a similar patch group matrix Vci(X) ∈ Cn×m,
where Vci : X ∈ CNC 7→ Vci(X) ∈ Cn×m is a BM operator. The step of
obtaining NSS prior information is depicted in Fig. 1(c). Therefore, the
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PMRI reconstruction problem based on the NLR regularization term and
the SPIRiT model can be formulated as the following problem:

X = arg min
X

1

2
‖AX − Y ‖22 +

µ1

2
‖(G− I)X‖22 + τ

C∑
c=1

Np∑
i=1

rank (Vci(X))

(10)
where rank (Vci(X)) denotes the rank of the matrix Vci(X), µ1 and τ are tun-
ing parameters, which are applied to balance the data fidelity, the calibration
consistency, and the NLR regularization term.

3.2. Problem solution

Problem (10) is a large-scale nonconvex optimization problem that is dif-
ficult to solve. Authors [32, 33] have proposed employing an NE formulation.
With the application of the NE formulation, we convert the reconstruction
(10) into a two-objective optimization problem:{

Dk+1
ci

}
=arg min

{Dci}

1

2

∥∥Vci(Xk)−Dci

∥∥2
F

+τrank(Dci) (11)

Xk+1 = arg min
X
‖AX − Y ‖22 + µ1 ‖(G− I)X‖22 + µ2

∥∥X −Qk+1
∥∥2
2 (12)

where ‖·‖F denotes the Frobenius norm, Dk+1
ci denotes LR approximation of

the patch group matrix Vci(X
k), and Qk+1 is determined as follows:

Qk+1 =

(
C∑
c=1

Np∑
i=1

V ∗ciVci

)−1(
C∑
c=1

Np∑
i=1

V ∗ci(D
k+1
ci )

)
∈CNC (13)

where V ∗ci : Cn×m 7→ CNC , the adjoint operator of Vci, places back the
denoised patches Dk+1

ci at their original positions (as shown in Fig. 1(c)).∑C
c=1

∑Np

i=1 V
∗
ciVci ∈ CNC×NC is a diagonal matrix with each diagonal element

equal to the time of the corresponding pixel belonging to the overlapping
patches throughout {Vci(X)}.

1) Minimization with respect to {Dci}: Generally, the rank penalty
objective optimization problem of {Dci} is a nondeterministic polynomial
time (NP)-hard problem. Thus, given that the WNN [34, 35] may yield a
better rank approximation than the NN, we adopt the WNN as a convex
surrogate of the rank. The WNN of {Dci} can be written as [34]:

‖Dci‖w,∗ =

min(n,m)∑
j=1

wjσj (Dci) (14)

7



With the use of the WNN as a surrogate of the rank, let 2τ = δ2, problem
(11) can be rewritten as follows:

{Dk+1
ci } = arg min

{Dci}

∥∥Vci(Xk)−Dci

∥∥2
F

+ δ2‖Dci‖w,∗ (15)

Problem (15) is a weighted nuclear norm minimization (WNNM) [34]
problem. Let UΣV H = Vci(X

k) be the full singular value decomposition
(SVD) of Vci(X

k), Σ = diag(σ1(Vci(X
k)), ..., σj(Vci(X

k)), ..., σJ(Vci(X
k))) ,

σj
(
Vci(X

k)
)

is the jth singular value of Vci(X
k), and J = min(m,n). Hence,

the optimal solution to (15) is Dk+1
ci = UΓV T , Γ = diag(γ1, ..., γj, ..., γJ),

where γj can be calculated as:

γj = soft
(
σj
(
Vci(X

k)
)
, wj

)
(16)

where soft(·) is the soft threshold operator, soft(σ,w) = max(σ−w, 0). And
the weight wj can be calculated as:

wj =
b0
√
m

σ̂j + ε
(17)

where b0 is a constant, ε = 10−16 is to avoid dividing by zero, and then the
initial σ̂j can be initialized by:

σ̂j =

√
max(σj(Vci(Xk))2 −mδ2, 0) (18)

2) Image reconstruction: After calculating {Dk+1
ci }, the whole image

can be reconstructed by solving problem (12). By introducing an auxiliary
variable Z = X and corresponding Lagrange multiplier uZ , the LS problem
(12) can be converted to the following subproblems via the ADMM technique:

Zk+1 =arg min
Z
µ1 ‖(G−I)Z‖22 + β

∥∥Z−(Xk+ukZ
)∥∥2

2
(19)

Xk+1 = arg min
X
‖AX − Y ‖22 + β

∥∥X − Zk+1 + ukZ
∥∥2
2

+ µ2

∥∥X −Qk+1
∥∥2
2

(20)
uk+1
Z = ukZ + η

(
Xk+1 − Zk+1

)
(21)

The solution to subproblem (19) with respect to Z is given by:

Zk+1 =
[
µ1(G−I)H(G−I) + βI

]−1(
βXk + βukZ

)
(22)

Let ∆ = µ1(G− I)H(G − I) + βI, and ∆−1 can thus be obtained via
the direct inversion of each C × C block in matrix ∆, as shown in Fig. 1(b)
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Algorithm 1 NLR regularization-based SPIRiT (NLR-SPIRiT) PMRI re-
construction algorithm

1: Input: undersampled k-space data Y of the multicoil image.

2: Set X0 = F−1Y , Z0 = 0, u0Z = 0, k = 0, ∆−1 =
(
µ1(G− I)

H
(G− I) + βI

)−1

3: repeat

4: If mod(k, T ) = 0, update the patch grouping Vci by BM.

5: Construct similar patch group matrix Vci(X
k).

6: for each group Vci(X
k) do

7: Compute the full SVD of UΣV T of Vci(X
k).

8: Update the weights wj via Eq. (17).

9: Compute Γ = diag(γ1, ..., γj , ..., γJ), where γj was computed via Eq. (16).

10: Compute Dk+1
ci = UΓV T .

11: end for
12: Compute Qk+1 via Eq. (13).

13: Compute Zk+1 = ∆−1
(
βXk + βukZ

)
.

14: Compute Xk+1 via Eq. (23).

15: Update uk+1
Z via Eq. (21).

16: Compute xk+1 via Eq. (24).

17: k = k + 1.

18: until RE < tol or k > K

19: Output the reconstructed image X̂.

[26]. Then, we have the update of Z as Zk+1 = ∆−1
(
βXk + βukZ

)
. PHP is a

diagonal matrix, and subproblem (20) with respect to X yields the following
closed-form solution (please refer to equations (A.10)-(A.13) of appendix for
the similar derivation of X):

Xk+1 = FH

[
PHY+F

(
β
(
Zk+1−ukZ

)
+ µ2Q

k+1
)

PHP + βI + µ2I

]
(23)

Since subproblems (11), (19), and (20) are efficiently solved, the C-coil
image X is obtained, and then combined into a single magnitude image x by
using the square root of sum of squares (SOS):

x = SOS(X) =

√√√√ C∑
c=1

|Xc|2 (24)

Finally, we obtain the NLR regularization-based SPIRiT (NLR-SPIRiT)
PMRI reconstruction algorithm, as expressed in Algorithm 1. And the
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schematic illustration of NLR-SPIRiT is described in Fig. 1. Algorithm
1 is terminated when the relative error (RE) RE =

∥∥xk+1 − xk
∥∥
2

/∥∥xk∥∥
2

falls
below the tolerance tol. In Algorithm 1, the BM step is performed every T
(T = 3) iterations to reduce the computational complexity, as shown in step
4.

The optimization problem (10) can also be solved by using the variable
splitting and ADMM techniques [36]. The corresponding algorithm is called
ADMM-NLR-SPIRiT. Please refer to the appendix for details.

4. Experimental results

4.1. Experimental setup

In our experiments, we compared the proposed NLR-SPIRiT model to
state-of-the-art algorithms to solve the PMRI reconstruction problems such
as: JTV-SPIRiT [26], STDLR-SPIRiT [29], pFISTA-SPIRiT [30], and NLR-
SPIRiT-baseline (a variant of the NLR-SPIRiT model with the standard
NN). All the considered algorithms were implemented in MATLAB. The
source code of NLR-SPIRiT and data can be downloaded from the following
website: https://drive.google.com/file/d/1Pkw__GA9nzOqYFuk4gWkGa3rztHaEy
J4/view?usp=sharing.

To validate the performances of all the considered algorithms, we conduct
experiments on freely available fully sampled in vivo human datasets. The
first set of data include 47 brain datasets [37] (where dataset 1 is shown
in Fig. 3(a) and other six datasets are shown in Fig. 9). All data are
acquired on a clinical MR scanner (Discovery MR750) using a 12-channel
head-neck-spine coil and a 3D T1-weighted gradient echo sequence (matrix
size = 256 × 218 × 170 or 256 × 218 × 180, TR/TE/TI = 6.3/2.6/650 ms
or TR/TE/TI = 7.4/3.1/400 ms, slice thickness = 1 mm). We chose a
single slice of each multislice dataset in our experiment. The second fully
sampled knee dataset [38] (dataset 2, as shown in Fig. 4(a)) was acquired
on a GE scanner using an 8-channel HD knee coil and a 3D FSE CUBE
sequence (matrix size = 320 × 320 × 256, TR/TE = 1550/25 ms, FOV =
160 × 160 mm, slice thickness = 0.6 mm). We chose a single slice of each
multislice dataset in our experiment. The third fully sampled brain dataset
[39] (dataset 3, as shown in Fig. 5(a)) was acquired on a 3T SIEMENS Trio
system and an 8-channel head array coil (matrix size = 256 × 256, TR/TE
= 2530/3.45 ms, slice thickness = 1.33 mm, FOV = 256× 256 mm).

To validate the considered algorithms, fully sampled datasets were sub-
jected to retrospective undersampling with the above different undersampling
patterns in our experiments, such as the 2DPU patterns (including 24 × 24
ACS lines), the 1DUU patterns and the 1DGU patterns (including 20 ACS

10
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lines) with different acceleration factors (AFs). All experiments were simu-
lated on a workstation machine equipped with an Intel Core i9-10900X @ 3.7
GHz processor, 64 GB of RAM memory and a Windows 10 operating system
(64 bit).

Three commonly adopted objective metrics were employed to evaluate the
quality of the reconstructed images, namely, the signal-to-noise ratio (SNR)
[40], high-frequency error norm (HFEN) [7], and structural similarity index
measure (SSIM) [41]. It should be noted that the calculation of all metrics
is limited to the region of interest (ROI). High SNR and SSIM values or
low HFEN values indicate more accurate reconstruction. In regard to the
reference image x and the reconstructed image x̂, the SNR is defined as:

SNR = 10log10

(
V ar

MSE

)
(25)

where MSE denotes the mean square error between x and x̂, and V ar is the
variance in x.

The HFEN is expressed as:

HFEN =
‖filter(x̂)− filter(x)‖2

‖filter(x)‖2
(26)

where filter(.) is a Laplacian Gaussian filter operator used to determine the
image edges.

The SSIM is calculated as:

SSIM =
(2uxux̂ + c1) (2σxx̂ + c2)

(ux2 + ux̂2 + c1) (σx2 + σx̂2 + c1)
(27)

where ux and ux̂ are the means of x and x̂, respectively, σx
2 and σx̂

2 are the
variances of x and x̂, respectively, σxx̂ represents the covariance of x and x̂,
c1 and c2 are constant, where c1 = 0.01 and c2 = 0.03.

4.2. Parameter settings

A kernel size of 5× 5 was adopted in the SPIRiT-based algorithms in the
following experiments. The parameters of JTV-SPIRiT, STDLR-SPIRiT
and pFISTA-SPIRiT were manually tuned for SNR optimal. In regard to
NLR-SPIRiT-baseline and NLR-SPIRiT, 6× 6 (n = 36) image patches were
used, and the total number of similar patches was 43 (m = 43). A reference
image patch was extracted every 5 pixels along the horizontal and vertical
directions to reduce the computational complexity. The main parameters
were defined as follows: µ1 = µ2 = 1, b0 = 0.4, and η =

√
2. These settings

remained fixed in all experiments.
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Figure 2: SNR, HFEN and RE versus the iteration number when reconstructing the
dataset 1. (a), (b), and (c) are based on the 2DPU pattern (AF = 5), the 1DUU pattern
(AF = 3), and the 1DGU pattern (AF = 3), respectively.

In addition, to obtain a better parallel image reconstruction performance,
the parameter δ and β were adjusted to optimize the SNR and HFEN values.
We run the proposed algorithm on the same undersampled data considering
the ranges of δ ∈ [1, 6] and β ∈ [0.1, 1].

We chose δ and β based on the highest SNR and smallest HFEN values.
For example, at δ = 3 and β = 0.3, these two optimal indicators (SNR and
HFEN) of dataset 1 were roughly optimized.

4.3. Convergence analysis

To reflect the convergence of the proposed NLR-SPIRiT algorithm, Fig.
2 shows SNR, HFEN, and RE versus the iteration number during the re-
construction of dataset 1 based on the 2DPU pattern (AF = 5), the 1DUU
pattern (AF = 3), and the 1DGU pattern (AF = 3). As shown in Fig. 2(a),
NLR-SPIRiT approximately reaches the maximum SNR and the minimum
HFEN when RE falls below 1e − 4. In Fig. 2(b) and Fig. 2(c), the ap-
proximately maximum SNR and the minimum HFEN of NLR-SPIRiT occur
when RE falls below 5e−5. At this time, NLR-SPIRiT converges. Moreover,
almost all the tested data can achieve the maximum SNR at K = 30 and
K = 80 based on 2D and 1D undersampling pattern, respectively. Hence,
K = 30 , tol = 1e − 4 and K = 80 , tol = 5e − 5 are selected as the
maximum iteration and the stop tolerance for the 2DPU patterns and 1D
undersampling patterns, respectively.

4.4. Comparison to previous works

In the following experiments, JTV-SPIRiT [26], STDLR-SPIRiT [29],
pFISTA-SPIRiT [30], NLR-SPIRiT-baseline, and NLR-SPIRiT were com-
pared.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3: Reconstructed results of dataset 1 based on the 2DPU pattern (AF = 5). (a)
Reference image; (b) reconstructed image via JTV-SPIRiT [26]; (c) reconstructed image
via LPJTV-ESPIRiT [21]; (d) reconstructed image via STDLR-SPIRiT [29]; (e) recon-
structed image via the NLR-SPIRiT-baseline; (f) reconstructed image by NLR-SPIRiT;
(g) undersampling pattern; (h), (i), (j), (k), and (l) show the error maps of (b), (c), (d),
(e), and (f), respectively.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4: Reconstructed results of dataset 2 based on the 2DPU pattern (AF = 5). (a)
Reference image; (b) reconstructed image via JTV-SPIRiT [26]; (c) reconstructed image
via LPJTV-ESPIRiT [21]; (d) reconstructed image via STDLR-SPIRiT [29]; (e) recon-
structed image via the NLR-SPIRiT-baseline; (f) reconstructed image by NLR-SPIRiT;
(g) undersampling pattern; (h), (i), (j), (k), and (l) show the error maps of (b), (c), (d),
(e), and (f), respectively.
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Figure 5: Reconstructed results of dataset 3 based on the 2DPU pattern (AF = 5). (a)
Reference image; (b) reconstructed image via JTV-SPIRiT [26]; (c) reconstructed image
via LPJTV-ESPIRiT [21]; (d) reconstructed image via STDLR-SPIRiT [29]; (e) recon-
structed image via the NLR-SPIRiT-baseline; (f) reconstructed image by NLR-SPIRiT;
(g) undersampling pattern; (h), (i), (j), (k), and (l) show the error maps of (b), (c), (d),
(e), and (f), respectively.

4.4.1. Comparison results of 2DPU patterns

To facilitate the assessment of the image quality (commonly a subjective
parameter), Figs. 3-5 show the images reconstructed via all considered al-
gorithms based on the 2DPU patterns (AF = 5), and their corresponding
error maps. As shown in Fig. 3, the reconstructed image reconstructed via
JTV-SPIRiT obvious artifacts. STDLR-SPIRiT, pFISTA-SPIRiT and NLR-
SPIRiT-baseline mitigate these artifacts to a certain extent. The proposed
NLR-SPIRiT algorithm effectively removes image artifacts and preserves the
details. Hence, NLR-SPIRiT achieves the best visual quality among all com-
peting algorithms. Fig. 4 shows that the reconstructed images via JTV-
SPIRiT and pFISTA-SPIRiT exhibit apparent artifacts. STDLR-SPIRiT
and NLR-SPIRiT-baseline mitigate artifacts to a certain extent. The pro-
posed NLR-SPIRiT algorithm further removes these artifacts and succeeds in
reconstructing certain details accurately, such as knee joint, whereas artifact
areas remain in images more obviously reconstructed via other considered
algorithms. NLR-SPIRiT produces the visually best reconstructed image
based on visual comparison. Fig. 5 shows that the reconstructed images via
JTV-SPIRiT, STDLR-SPIRiT, pFISTA-SPIRiT, and NLR-SPIRiT-baseline
exhibit comparable artifacts. NLR-SPIRiT obtain fewest errors and pro-
duces the visually best reconstructed image based on visual comparison. In
summary, STDLR-SPIRiT and pFISTA-SPIRiT obtain better visual recon-
structed performance than JTV-SPIRiT, NLR-SPIRiT-baseline can improve
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the visual performance of image reconstruction to a certain extent, and NLR-
SPIRiT model achieves the best visual performance.

Table 1: Comparison of the three metrics of the reconstructed images via the competing
algorithms based on 2DPU patterns (AF = 3− 7) for dataset 1.

Algorithms Metrics
Acceleration Factor (AF)

3 4 5 6 7

JTV-SPIRiT [26]

SNR 24.35 22.85 21.55 20.38 19.56
HFEN 0.0938 0.1197 0.1505 0.1816 0.2048
SSIM 0.9679 0.9585 0.9483 0.9373 0.9277

STDLR-SPIRiT [29]

SNR 24.54 22.91 21.45 20.22 19.34
HFEN 0.0898 0.1141 0.1438 0.1715 0.1943
SSIM 0.9689 0.9577 0.9452 0.9328 0.9220

pFISTA-SPIRiT [30]

SNR 24.48 22.91 21.63 20.58 19.76
HFEN 0.0916 0.1193 0.146 0.1747 0.1988
SSIM 0.9706 0.9611 0.95 0.9399 0.9311

NLR-SPIRiT-baseline

SNR 24.79 23.37 22.16 21.16 20.36
HFEN 0.0898 0.1122 0.1381 0.1605 0.1804
SSIM 0.9712 0.9626 0.9532 0.9436 0.9344

NLR-SPIRiT

SNR 25.37 24.16 22.98 21.90 21.05
HFEN 0.0810 0.0995 0.1247 0.1509 0.1744
SSIM 0.9749 0.9690 0.961 0.9516 0.9429

Table 2: Comparison of the three metrics of the reconstructed images via the competing
algorithms based on 2DPU patterns (AF = 3− 7) for dataset 2.

Algorithms Metrics
Acceleration Factor (AF)

3 4 5 6 7

JTV-SPIRiT [26]

SNR 18.75 17.53 16.85 16.23 15.76
HFEN 0.2507 0.3022 0.3272 0.3568 0.3855
SSIM 0.9161 0.8953 0.8831 0.8739 0.8638

STDLR-SPIRiT [29]

SNR 19.34 17.83 17.02 16.07 15.24
HFEN 0.2245 0.2810 0.3084 0.3483 0.3886
SSIM 0.9262 0.9026 0.8878 0.8714 0.8524

pFISTA-SPIRiT [30]

SNR 19.39 17.95 17.11 16.57 16.05
HFEN 0.2069 0.2654 0.3 0.3244 0.3537
SSIM 0.929 0.9069 0.892 0.8801 0.8702

NLR-SPIRiT-baseline

SNR 19.13 18.42 17.75 17.20 16.67
HFEN 0.2146 0.2427 0.2655 0.2909 0.3143
SSIM 0.9201 0.9094 0.8984 0.8889 0.8781

NLR-SPIRiT

SNR 20.24 19.08 18.33 17.75 17.19
HFEN 0.1860 0.2184 0.2421 0.2667 0.2921
SSIM 0.9352 0.9172 0.9049 0.8947 0.8852

To quantitatively evaluate the reconstruction performance of all consid-
ered algorithms based on 2DPU patterns with different AF values, compari-
son results of the SNR, HFEN, and SSIM values of the reconstructed images
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Table 3: Comparison of the three metrics of the reconstructed images via the competing
algorithms based on 2DPU patterns (AF = 3− 7) for dataset 3.

Algorithms Metrics
Acceleration Factor (AF)

3 4 5 6 7

JTV-SPIRiT [26]

SNR 27.36 24.73 22.65 20.55 19.22
HFEN 0.1362 0.1836 0.2322 0.2994 0.3382
SSIM 0.9756 0.9619 0.9463 0.9273 0.9112

STDLR-SPIRiT [29]

SNR 27.53 25.11 22.99 20.94 19.48
HFEN 0.1333 0.1765 0.2245 0.2882 0.3316
SSIM 0.9807 0.9702 0.9576 0.9409 0.9250

pFISTA-SPIRiT [30]

SNR 27.53 25.11 22.95 20.83 19.44
HFEN 0.1327 0.1776 0.2262 0.2914 0.3343
SSIM 0.9817 0.971 0.9583 0.9413 0.9264

NLR-SPIRiT-baseline

SNR 27.74 25.36 23.80 21.80 20.45
HFEN 0.1294 0.1685 0.2022 0.2586 0.2948
SSIM 0.9819 0.9727 0.9644 0.9497 0.9381

NLR-SPIRiT

SNR 28.11 26.11 24.31 22.27 20.73
HFEN 0.1223 0.1544 0.1909 0.2446 0.2849
SSIM 0.9836 0.9761 0.9673 0.9529 0.9406

via the considered algorithms are summarized in Tables 1-3. The best metric
in each case is marked in bold.

As indicated in Tables 1-3, one can see that the proposed NLR-SPIRiT
method produces the best metrics for all datasets and AFs. For dataset 1,
NLR-SPIRiT achieves SNR improvements of 1.34 dB, 1.39 dB, 1.21 dB, and
0.71 dB on average over JTV-SPIRiT, STDLR-SPIRiT, pFISTA-SPIRiT and
NLR-SPIRiT-baseline, respectively. In regard to dataset 2, NLR-SPIRiT
achieves SNR improvements of 1.49 dB, 1.41 dB, 1.10 dB, and 0.68 dB,
respectively, on average. Regarding dataset 3, NLR-SPIRiT achieves SNR
improvements of 1.40 dB, 1.09 dB, 1.04 dB, and 0.48 dB, respectively, on
average.

4.4.2. Comparison results of 1D undersampling patterns

We also visually compare the images via the proposed NLR-SPIRiT and
all considered algorithms for dataset 1 based on the 1DGU pattern and 1DUU
pattern (AF = 3), as shown in Fig. 6 and Fig. 7. The NLR-SPIRiT
algorithm achieves the least artifacts inside the image and the least errors
at the edge, so the NLR-SPIRiT algorithm yields the highest visual quality
among all considered algorithms.

Table 4 summarizes the SNR, HFEN, and SSIM values of the recon-
structed images shown in Fig. 6 and Fig. 7. As indicated in Table 4 ,NLR-
SPIRiT achieves SNR improvements of 1.74 dB, 1.63 dB, 2.21 dB, and 0.68
dB on average over JTV-SPIRiT, STDLR-SPIRiT, pFISTA-SPIRiT, and
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(g) (h) (i) (j) (k) (l)

Figure 6: Reconstructed results of dataset 1 based on the 1DUU pattern (AF = 3). (a)
Reference image; (b) reconstructed image via JTV-SPIRiT [26]; (c) reconstructed image
via LPJTV-ESPIRiT [21]; (d) reconstructed image via STDLR-SPIRiT [29]; (e) recon-
structed image via the NLR-SPIRiT-baseline; (f) reconstructed image by NLR-SPIRiT;
(g) undersampling pattern; (h), (i), (j), (k), and (l) show the error maps of (b), (c), (d),
(e), and (f), respectively.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7: Reconstructed results of dataset 1 based on the 1DGU pattern (AF = 3). (a)
Reference image; (b) reconstructed image via JTV-SPIRiT [26]; (c) reconstructed image
via LPJTV-ESPIRiT [21]; (d) reconstructed image via STDLR-SPIRiT [29]; (e) recon-
structed image via the NLR-SPIRiT-baseline; (f) reconstructed image by NLR-SPIRiT;
(g) undersampling pattern; (h), (i), (j), (k), and (l) show the error maps of (b), (c), (d),
(e), and (f), respectively.

17



Table 4: Comparison of the three metrics of the reconstructed images via the competing
algorithms based on 1DUU and 1DGU patterns (AF = 3− 6) for dataset 1.

Algorithm mertic
1DUU 1DGU

AF=3 AF=4 AF=5 AF=6 AF=3 AF=4 AF=5 AF=6

JTV-SPIRiT [26]

SNR 21.71 19.48 17.06 16.56 19.19 16.89 15.52 13.55
HFEN 0.155 0.2089 0.2956 0.3067 0.2132 0.2877 0.3443 0.4412
SSIM 0.9389 0.9129 0.8765 0.8723 0.9173 0.8828 0.8635 0.833

STDLR-SPIRiT [29]

SNR 21.11 19.16 17.7 17.09 19.21 17.04 15.84 13.7
HFEN 0.1815 0.2304 0.2755 0.2933 0.219 0.2896 0.3368 0.4434
SSIM 0.9468 0.9247 0.9059 0.8984 0.9338 0.9047 0.8915 0.8655

pFISTA-SPIRiT [30]

SNR 21.19 19.18 17.14 15.98 18.89 16.4 14.85 12.65
HFEN 0.174 0.223 0.2906 0.3339 0.2199 0.3055 0.3794 0.5026
SSIM 0.9496 0.9286 0.9035 0.8926 0.9357 0.904 0.884 0.8522

NLR-SPIRiT-baseline

SNR 22.37 20.53 18.87 17.81 20.31 18.12 16.35 14.11
HFEN 0.1392 0.1874 0.2347 0.2598 0.1836 0.2483 0.3119 0.418
SSIM 0.9555 0.9401 0.9197 0.9103 0.9426 0.918 0.9001 0.8746

NLR-SPIRiT

SNR 23.16 20.79 19.2 18.58 21.02 18.7 17.26 15.16
HFEN 0.1289 0.1873 0.2306 0.2453 0.1738 0.2367 0.2789 0.364
SSIM 0.9633 0.9425 0.9239 0.9156 0.9489 0.9212 0.9072 0.8846
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Figure 8: Violin plots show the relative differences of (a) SNR, (b) HFEN, and (c) SSIM
between NLR-SPIRiT and JTV-SPIRiT, STDLR-SPIRiT, pFISTA-SPIRiT and NLR-
SPIRiT-baseline, which are simplified as NLR, JTV, STDLR, pFISTA, and baseline in
plots, respectively.

NLR-SPIRiT-baseline, respectively. In a word, the proposed NLR-SPIRiT
can more effectively reconstruct the MR images from undersampled k-space
data based on 1D undersampling patterns.

We also provide violin plots for the relative metric differences between
NLR-SPIRiT and the comparing algorithms in Tables 1-4. As shown in Fig.
8, NLR-SPIRiT significantly outperforms all comparing algorithms in terms
of SNR, HFEN, and SSIM.

4.4.3. Comparison results of NLR-SPIRiT-baseline and NLR-SPIRiT

The NLR-SPIRiT algorithm and the NLR-SPIRiT-baseline algorithm use
different surrogate functions to solve the LR minimization problem, corre-
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(a) (b) (c) (d) (e) (f)

Figure 9: Six MR images used for further discussing performance of the proposed algo-
rithm.

Table 5: The average SNR, HFEN and SSIM differences between NLR-SPIRiT and the
considered SPIRiT-based algorithms for reconstructing six data sets shown in Fig. 9 based
on the 2DPU patterns with AF = 3− 7.

Competing algorithms mertic AF=3 AF=4 AF=5 AF=6 AF=7

JTV-SPIRiT [26]

SNR 0.52 0.62 0.83 0.97 1.19
HFEN 0.0148 0.0205 0.0283 0.0329 0.0409
SSIM 0.0233 0.0303 0.0361 0.0419 0.0481

STDLR-SPIRiT [29]

SNR 0.74 0.97 1.21 1.37 1.55
HFEN 0.0158 0.0258 0.0372 0.0442 0.0518
SSIM 0.0051 0.0076 0.0103 0.0126 0.0151

pFISTA-SPIRiT [30]

SNR 0.81 0.81 0.97 1.09 1.32
HFEN 0.0078 0.0112 0.0189 0.0246 0.0366
SSIM 0.0046 0.0044 0.0051 0.0073 0.0100

sponding to the WNN and the NN, respectively.
The previous experimental results has compared JTV-SPIRiT, STDLR-

SPIRiT, pFISTA-SPIRiT, NLR-SPIRiT-baseline and NLR-SPIRiT algorithms.
As shown in Figs. 3-8 and Tables 1-4, NLR-SPIRiT-baseline almost outper-
forms all other considered algorithms for dataset 1-3 based on 2DPU patterns
and two different 1D undersampling patterns in terms of visual comparison
and three metrics. NLR-SPIRiT performs better than NLR-SPIRiT-baseline,
and outperforms other considered algorithms.

In other words, the introduction of the NLR regularization term con-
tributes to the reconstruction performance improvement of these SPIRiT-
based algorithms. Furthermore, using the WNN can achieve better visual
performance and numerical metrics than using the NN.

4.4.4. Further discussion about performance of the proposed algorithm

Another six datasets are used to further verify the image reconstruc-
tion performance of the proposed algorithm, including three brain datasets
and three knee datasets, as shown in Fig. 9. These datasets are multi-coil
raw k-space data from NYU fastMRI [42, 43]. The three brain datasets
come from the first frame of the dataset “brain AXT1POST 200 6001959”,
“brain AXT1 201 6002688” and “brain AXT2 200 2000003” acquired by us-
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Table 6: Comparison of the runtime and memory demands of the considered PMRI re-
construction algorithm for the dataset 1 based on the 2DPU pattern (AF = 5).

Algorithms runime (s) memory demand (GB)
JTV-SPIRiT [26] 28 0.46

STDLR-SPIRiT [29] 1273 45.35
pFISTA-SPIRiT [30] 181 0.50

NLR-SPIRiT 796 0.49

ing a 20-channel coil (matrix size = 320 × 320). In our experiments, we
use the coil compression technique [44] to compress these data from 15-
channel to 8-channel. The three knee datasets are the 20th slice of the
dataset “knee file1000005”, “knee file1000010”, and “knee file1000012” ac-
quired on a 15-channel coil (matrix size = 320 × 640). These knee datasets
are cropped into the size of 320× 320 and compressed into eight channels in
the experiments.

The NLR-SPIRiT algorithm and previous SPIRiT-based algorithms are
used to reconstruct six datasets based on 2DPU patterns and AF = 3 − 7.
For different AF values, the average differences of the three metrics between
the NLR-SPIRiT algorithm and other compared algorithms are calculated
and shown in Table 5.

Table 5 shows that the STDLR-SPIRiT algorithm reconstructs the images
with the lowest SNR and SSIM. pFISTA-SPIRiT is better than STDLR-
SPIRiT. The JTV-SPIRiT algorithm outperforms pFISTA-SPIRiT. And the
NLR-SPIRiT algorithm has a noticeable improvement over other compared
algorithms in all three metrics.

4.4.5. Comparison of runtime and memory demand

Next, we compare the runtime and memory demands of JTV-SPIRiT,
STDLR-SPIRiT, pFISTA-SPIRiT, and NLR-SPIRiT. Table 6 summarizes
the runtime and memory demands of the considered algorithms in PMRI
reconstruction for dataset 1 based on the 2DPU pattern (AF = 5). As in-
dicated in Table 6, JTV-SPIRiT has advantages in runtime and memory de-
mands. STDLR-SPIRiT has the highest computational complexity, requires
the longest runtime, and the maximum memory. Compared with STDLR-
SPIRiT, NLR-SPIRiT requires 0.49 GB of RAM memory for reconstruction,
only approximately one-92th of the memory demand of STDLR-SPIRiT.
Overall, the required runtime of NLR-SPIRiT is more than JTV-SPIRiT and
pFISTA-SPIRiT but less than STDLR-SPIRiT. And the required memory
of STDLR-SPIRiT is more than other SPIRiT-based method.

In fact, the proposed NLR-SPIRiT method has a lot of improvement room
in runtime. The runtime of NLR-SPIRiT is K × (tBM/T + tNLR + t1) + t0,
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Table 7: SNR values for reconstructing undersampled dataset 1 based on the 2DPU
pattern (AF = 5) when using different autocalibration signal (ACS) sizes and calibration
kernel sizes (KS).

SNR
ACS size

6×6 7×7 8×8 9×9 10×10 11×11 12×12 13×13 14×14 20×20 24×24

KS

3×3 14.33 20.44 21.07 21.57 21.7 21.81 21.85 21.97 22.03 22.43 22.68
5×5 - - - 13.63 21.01 22.1 22.21 22.26 22.34 22.75 22.98
7×7 - - - - - - 12.76 19.58 22.14 22.71 22.99

where K is the outer iteration number, tBM is the runtime of the block-
matching operation performed every T iterations, tNLR is the runtime of
one LR approximation, t1 is the runtime to update Z, X and uZ once, and
t0 is the runtime of algorithm initialization and preprocessing. The very
high computational complexity of the LR approximation and block-matching
steps result in large tNLR and tBM values. Therefore, we will optimize the
LR approximation step and block-matching steps with a graphics processing
unit (GPU) to efficiently accelerate the proposed NLR-SPIRiT algorithm in
the future.

4.5. Comparison to different ACS size and calibration kernel size

In the calibration consistency step of the SPIRiT-based algorithm, the
ACS size and the calibration kernel size (KS) are vital parameters. The
experiment tests the performance of the proposed NLR-SPIRiT algorithm
when using different ACS sizes and KS = 3×3, 5×5, 7×7 in 2DPU patterns.
Table 7 shows the SNR values for reconstructing undersampled dataset 1
based on the 2DPU pattern (AF = 5).

As shown in Table 7, the experimental results reveal: a) the small ACS
region will degrade the reconstruction image quality to some extent, so we
chose the ACS size as 24×24 for a better reconstruction quality; b) when the
ACS size is large enough (such as ACS > 10×10), the SNR with KS = 5×5 is
higher than that with KS = 3×3 and KS = 7×7. So we chose KS as 5×5 for
a better reconstruction quality; c) for some smaller ACS sizes (ACS = 7× 7
- 10 × 10), we can reduce KS (such as KS = 3 × 3) to guarantee the image
reconstruction quality. In addition, the SNR dramatically drops to a low
value (14.33 dB) when KS = 3× 3, with the ACS size reducing to 6× 6. At
this time, NLR-SPIRiT cannot reconstruct images well.

4.6. Proposed NE formulation versus ADMM formulation

According to the derivations of the NLR-SPIRiT model and ADMM-
NLR-SPIRiT algorithm (see the appendix), we observe that these two algo-
rithms attain almost the same calculation time for one-iteration.
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Figure 10: SNR curves of ADMM-NLR-SPIRiT and NLR-SPIRiT for dataset 1 based on
the 2DPU pattern (AF = 5).

We compared the reconstruction results obtained with NLR-SPIRiT and
ADMM-NLR-SPIRiT for dataset 1 based on the 2DPU pattern (AF = 5).
As shown in Fig. 10, NLR-SPIRiT attains faster convergence and obtains
a slightly higher SNR value than ADMM-NLR-SPIRiT. And we determine
that they require almost the same reconstruction time every iteration. In ad-
dition, NLR-SPIRiT contains two fewer parameters than does ADMM-NLR-
SPIRiT, and therefore it is easier to tune the parameters of NLR-SPIRiT. In
summary, it is concluded that the proposed NLR-SPIRiT algorithm exhibits
obvious advantages in practical applications.

4.7. Further discussion about parameter settings

We found that there exist similar parameters for reconstructing the MR
images of same kind, so we also offer a parameter selection method for prac-
tical application. First, we train the parameters from 15 retrospective un-
dersampling data sets with the 2DPU pattern (AF = 5). We ran NLR-
SPIRiT on the training undersampling data sets on the ranges of δ ∈ [1, 6]
and β ∈ [0.1, 1], and obtained SNRs for different parameter settings. The
average SNR relative difference between the maximum SNR and the SNR
for each parameter setting is calculated. As shown in Fig. 11(a), the aver-
age SNR relative differences are minimized at δ = 3 and β = 0.3. Second,
we ran NLR-SPIRiT on the 32 retrospective validation undersampling data
sets on the ranges of δ ∈ [1, 6] and β ∈ [0.1, 1], and obtained the average
SNR relative differences for each parameter setting. As shown in Fig. 11(b),
the average SNR relative differences are also minimized around δ = 3 and
β = 0.3. Therefore, for this kind of data sets, the optimal parameter setting
was determined to be δ = 3 and β = 0.3.

We also compare NLR-SPIRiT with the parameters δ = 3, β = 0.3 and
the competing algorithms with optimal parameters. Table 8 tabulates the
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Figure 11: We ran NLR-SPIRiT on the 15 training and 32 validation undersampling data
sets on the ranges of δ ∈ [1, 6] and β ∈ [0.1, 1], and obtained the average SNR relative
differences between the maximum SNR and the SNR for each parameter setting. Contour
plots show the average SNR relative differences of (a) 15 training data sets and (b) 32
validation data sets. The average SNR relative differences are also minimized around δ = 3
and β = 0.3.

(a) (b) (c) (d) (e) (f)

Figure 12: six MR images of same kind with dataset 1.

Table 8: The average SNR, HFEN and SSIM differences between NLR-SPIRiT and the
considered SPIRiT-based algorithms for reconstructing six data sets shown in Fig. 12
based on the 2DPU patterns with AF = 3− 7.

Competing algorithms mertic AF=3 AF=4 AF=5 AF=6 AF=7

JTV-SPIRiT [26]

SNR 0.76 1.02 1.15 1.23 1.32
HFEN 0.0110 0.0170 0.0207 0.0246 0.0288
SSIM 0.0132 0.0188 0.0226 0.0269 0.0296

STDLR-SPIRiT [29]

SNR 0.79 1.33 1.60 1.71 1.68
HFEN 0.0161 0.0297 0.0387 0.0449 0.0452
SSIM 0.0039 0.0102 0.0151 0.0200 0.0212

pFISTA-SPIRiT [30]

SNR 0.72 1.06 1.18 1.18 1.15
HFEN 0.0092 0.0157 0.0195 0.0197 0.0212
SSIM 0.0028 0.0071 0.0095 0.0114 0.0108

average SNR, HFEN and SSIM differences between NLR-SPIRiT and the
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competing algorithms for reconstructing six data sets shown in Fig. 12 based
on the 2DPU patterns with AF = 3− 7. As shown in Table 8, NLR-SPIRiT
with the parameters δ = 3, β = 0.3 can achieve better reconstruction perfor-
mance than the competing algorithms with optimal parameters in terms of
SNR, HFEN and SSIM.

5. Conclusions

In this paper, we propose the NLR-SPIRiT model, which incorporates the
NLR regularization into the SPIRiT model. The NLR-SPIRiT model fully
utilizes both the NSS in MR images and the calibration consistency in the
k-space domain. We adopt the WNN instead of the NN as a surrogate of the
rank, and employ the NE formulation and the ADMM technique to efficiently
solve the NLR-SPIRiT model. Experimental results considering different in
vivo datasets and undersampling patterns indicate that the proposed NLR-
SPIRiT algorithm almost achieves a better performance in terms of three
objective metrics and visual perception over state-of-the-art methods. In
addition, we propose a parameter setting method for practical application,
which selects a set of near-optimal parameters for the same kind of MR im-
ages. We will optimize the most time-consuming BM and LR approximation
steps with a GPU to efficiently accelerate the NLR-SPIRiT algorithm in the
future. The proposed NLR-SPIRiT algorithm is very promising in regard to
PMRI applications.
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Appendix A. Alternative algorithm

The PMRI reconstruction problem based on the NLR regularization and
the SPIRiT model can be rewritten as follows:

X = arg min
X

1

2
‖AX − Y ‖2F +

µ1

2
‖(G− I)X‖2F + τ

C∑
c=1

Np∑
i=1

rank (Vci(X))

(A.1)
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Problem (A.1) can be solved with the variable splitting (VS) and ADMM
techniques. First of all, by introducing auxiliary variables Z = X, Dci =
Vci (X), B = X and D = [D11, ..., Dci, ..., DCNp ], in addition to correspond-
ing Lagrange multipliers uZ , uDci

, uB, and uD = [uD11 , ..., uDci
, ..., uDCNp

],
respectively, problem (A.1) is decomposed into the following subproblems
via the ADMM method:

Zk+1 = arg min
Z
µ1 ‖(G− I)Z‖2F + β1

∥∥Z − (Xk + ukZ
)∥∥2

F
(A.2)

{
Dk+1

ci

}
=arg min

{Dci}

β2
2

∥∥Dci−
(
Vci(X

k)+ukDci

)∥∥2
F

+ τrank(Dci) (A.3)

Bk+1 =arg min
B
β2

C∑
c=1

Np∑
i=1

∥∥Vci(B)−
(
Dk+1

ci −ukDci

)∥∥2
F

+β3
∥∥B−Xk−ukB

∥∥2
F

(A.4)

Xk+1 =arg min
X
‖AX−Y ‖2F +β1

∥∥X−(Zk+1−ukZ
)∥∥2

F
+β3

∥∥X−(Bk+1−ukB)
∥∥2
F

(A.5)
uk+1
Z = ukZ + η1

(
Xk+1 − Zk+1

)
(A.6)

uk+1
Dci

= ukDci
+ η2

(
Vci(X

k+1)−Dk+1
ci

)
(A.7)

uk+1
B = ukB + η3

(
Xk+1 −Bk+1

)
(A.8)

As mentioned in Section III of the manuscript, the subproblems (A.2)
and (A.3) are efficiently solved with respect to Z and Dci, respectively. Sub-
problem (A.4) with respect to B yields the following closed-form solution:

Bk+1 =

β2
C∑
c=1

Np∑
i=1

V ∗ci
(
Dk+1

ci − ukDci

)
+β3

(
Xk + ukB

)
β2

C∑
c=1

Np∑
i=1

V ∗ciVci + β3I

(A.9)

Subproblem (A.5) can be solved by the following formulation:(
AHA+ β1I + β3I

)
Xk+1 = AHY +β1

(
Zk+1−ukZ

)
+β3

(
Bk+1−ukB

)
(A.10)

Substituting A = PF and multiplying two-dimensional discrete Fourier
transform F on both side of (A.10), we can obtain the following equation:

F
(
FHPHPFF−1F + β1F−1F + β3F−1F

)
Xk+1

=F
(
FHPHY +β1

(
Zk+1−ukZ

)
+β3

(
Bk+1−ukB

)) (A.11)
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Equation (A.11) can be rewritten as:(
PHP + β1I + β3I

)
FXk+1 = PHY +F

(
β1
(
Zk+1−ukZ

)
+β3

(
Bk+1−ukB

))
(A.12)

Since PHP + β1I + β3I is a diagonal matrix, X is easily computed by:

Xk+1 =FH

[
PHY +F

(
β1
(
Zk+1−ukZ

)
+β3

(
Bk+1−ukB

))
PHP+β1I+β3I

]
(A.13)

Now that subproblems (A.2)-(A.8) can be solved, we obtain the SPIRiT
PMRI reconstruction algorithm, denoted as ADMM-NLR-SPIRiT.
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