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ABSTRACT

Collocation discretisation of boundary integral equations leads to fully populated
complex valued non-hermitian boundary element equations. In this paper we
study the efficient solution of these linear systems by various iterative methods
based on the splitting of the discrete operators. In particular the boundary el-
ement solution of the Burton and Miller formulation for the exterior Helmholtz
equation is considered where the hypersingular operator, the derivative of the
double layer Helmholtz potential, is present. The choice of the coupling param-
eter in the formulation and the splitting of the operator are shown to play an
important role in the convergence of the iterative methods.

1 INTRODUCTION

General boundary integral equations of interest can be written in operator
form as ̂  = /, where ,4 : ?f (P) -» ?f-*(r) is a pseudodifTerential opera-
tor of order a. The advantage of the pseudodifferential operator framework
is that much of the operator properties and convergence analyses of bound-
ary element methods can be treated in a unified fashion, Schatz et a! [10].
Discretisation of these equations using the piecewise polynomial approxi-
mation spaces leads to fully populated linear systems An<t>n — fn where n
is the number of degrees of freedom. For large n the cost of their solution
by direct methods is prohibitive.

Well-known iterative techniques such as multi-grid and conjugate gradi-
ent type methods, developed for the solution of the large, sparsely populated
finite element and finite difference systems, have been applied to boundary
element equations. For second kind Fredholm equations, corresponding to
a = 0, these methods have been shown to be efficient (see Amini and Chen
[3, 4], and references therein). For the case of the first kind equation, corre-
sponding to a = —1, or the hypersingular equation (a = +1), these meth-
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1 94 Boundary Element Method XVI

ods, without appropriate modifications, either diverge or converge slowly,
A mini et al [5].

We study various iterative methods based on the splitting of An as
Dm — Cn, where T>n corresponds to the discretisation of the most dominant
part of A., with the restriction that solutions of systems ̂ D^Vn — bn can
be carried out in O(n̂ ) operations with p < 2. Although our results are
applicable to general boundary element equations we concentrate on the
solution of the exterior Helmholtz equation. In Section 2 we introduce the
boundary integral equation for the Helmholtz equation together with its
numerical approximation. In Section 3, our iterative schemes are introduced
and finally we present the results of numerical experiments in Section 4.

2 EXTERIOR HELMHOLTZ PROBLEM

The direct boundary integral solution of the Helmholtz equation

subject to appropriate boundary and radiation conditions, is given by

D+ is the unbounded region exterior to the closed boundary F, Gk is the
fundamental solution of the Helmholtz equation and -j^ denotes differenti-
ation in the direction of the normal to F pointing towards D+.

A uniquely solvable direct boundary integral equation, due to Burton
and Miller [6], which relates the Cauchy data <j> and ^ is

fc + irj(-I + Ml) > — (p), p G F. (I)

In the above, L^ and Mk are the single and double-layer Helmholtz potentials
respectively and Mj and 7V& are their respective normal derivatives whilst
7] is a real constant coupling parameter. We may write the above equation
in shorthand as

Akn(j) — Bkri (2)
' dn

The case r? = 0 gives the classical Surface Helmholtz Equation (SHE) which
is singular for a countable set, /p, of real values of k. For the case where F is a
unit circle it is easy to show that 7p = \k\ Jn(k) = 0, for some n — 0,1,. . .},
where J^ are the Bessel functions, see A mini [2] and Kress [9].

The operators L^,M&,Mj : 7~T*(F) —* J~T̂ (T) are pseudodifferential
operators of order — 1 (once smoothing), whilst Nk has order +1, essentially
a once differentiating operator, Colton and Kress [8].

The choice of the coupling parameter affects the conditioning of equation
(2). Based on exact analysis for the case of a circle (or a sphere in 3-D), it
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Boundary Element Method XVI 195

has been shown that the choice ̂  = ^ almost minimises the conditioning of
the equation, see Amini [1, 2] and Kress [9].

We attempt the numerical solution of equation (2) for the Neumann
problem by the collocation method based on piecewise constant approxima-

tions.

3 ITERATIVE METHODS

We are concerned with the iterative solution of equation

the boundary element discretisation of equation (2). Various iterative tech-
niques have been analysed and implemented successfully for second kind
equations where there is clustering of the eigenvalues of the integral opera-
tor (see for example, [3, 4]). The problem here is the presence of the operator
A^ as the eigenvalues of its discrete approximation grow with rt. This means
that without modification these methods will not work efficiently.
We split the matrix A% into D^ - C^ and write equation (3) as

Dm^n = Cn̂ n, + A-

We attempt two iterative methods for the solution of the above, namely

• direct iteration as

wM + A, (4)

• two-grid method, using equation (4) in the smoothing and interpola-

tion step [7].

For the T>^ matrix we propose to take three possible choices:

(a) the diagonal elements of An,

(b) the tridiagonal band, or

(c) the tridiagonal band together with the (1,7%) and (rt, 1) corner
elements, which will be referred to as periodic tridiagonal split-
ting.

Note (c) reflects taking an element on either side of any collocation point
and (a) is recognised to be the well-known Jacobi method. The periodic
tridiagonal system has a simple LU factorisation of the form

\ / 1

x
x x

x
1

x \
x

X

X
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1 96 Boundary Element Method XVI

which can be stored in 4 vectors.

3.1 2-GRID SCHEMES

Suppose we discretise the boundary integral equation (2) on the two grids
GU and Gm with n and m elements respectively (n < ra). The idea is to
obtain the solution of *A.m<f>m — fm on the fine grid Gm using information
from the coarse grid Gn-
We can briefly describe our 2-grid cycle in the form:

Initialize:

Begin Iteration:
Restrict r^, to coarse grid; r^ — » r^
Solve on G^; ̂u^ = r^
Interpolate Vn to fine grid; Vn — > ^™
Smooth f^; t?^ ̂  ̂
Correct <?L; <?L := <zL + ^
If \\Vm\\ < TOL exit with solution
Calculate residual on (7̂ ; r^ = fm — An^m

End Iteration.

If we choose nodes of Gn to coincide with those on Gm then the re-
striction step can be performed by simple injection. The solution on the
coarse grid is carried out by a direct method eg. Gaussian elimination with
partial pivoting, the LU factors being stored for use at each iteration. The
interpolation of values from the coarse to the fine grid is carried out using
the generalised Picard iteration T>m^m — CnVn~\-fm- The smoothing process
can be written in the form T>̂ v̂ ^ — CmV$ -f r^ where vffl — Vm and
y(p) — v^i^ p is the number of smoothing iterations.

4 NUMERICAL EXPERIMENTS

For the first test problem we take F as the unit circle or an ellipse of ap-
proximate length 2?r with minor to major axis ratio of 1:2 (i.e. a = 0.65,
6 = 1.30 with (x/a)̂  -f- (y/bY — 1). Both are divided into equal length
elements and the collocation points are the element midpoints. We con-
sider the field produced on the surface of F due to a source at (0.5,0.0) at
4 wavenumbers k = 3,5,8 and 10.

In Table 1 the results are shown for both boundaries (the circle being
represented by ratio 1, the ellipse by ratio 2) for the Burton and Miller equa-
tion (1) with coupling parameter rj = l/k for the direct iterative schemes
(4) and number of elements n. The values shown are the number of itera-
tions and the resulting error achieved. The measure of error quoted in all
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Boundary Element Method XVI 197

tables is Iog2 RME where the Relative Mean Error is defined as:

RME = \<f>(pi)\ .

The pi are the collocation points, (f) is the exact solution and <^ denotes the
iterative method approximation to the collocation solution </>„,. The same
schemes applied to either the Surface Helmholtz Equation or the B&M
equation with rj = I generally diverge.

6(n)
3(36)

3(72)

5(60)

8(96)

10(120)

ratio
1
2
1
2
1
2

1
2
1
2

tridiagonal
11(-10.39)
10(-8.65)
50(-12.34)
49(-10.65)
12(-11.51)
12(-9.87)
14(-11.96)
14(-10.18)
14(-11.99)
14(-10.34)

periodic tridiagonal
11(-10.44)
10(-8.68)
53(-12.36)
49(-10.66)
11(-11.71)
ll(-9.89)
14(-11.97)
12(-10.17)
12(-12.10)
13(-10.31)

Table 1: Standard Iterations rj = l/k

The results for the direct iteration with Jacobi splitting are not presented
here as the iteration matrix T>~^Cn had spectral radius very close to 1.
When convergence was achieved the number of iterations was > 100. A
disappointing feature of the direct iteration scheme is that as n is increased
in order to improve accuracy (for fixed k) the number of iterations rises
dramatically.

&(m)
3(36)

3(72)

5(60)

8(96)

10(120)

ratio
1
2
1
2
1
2

1
2
1
2

SHE
2(-9.64)
2(-7.63)
2(-11.59)
2(-9.66)
4(-7.87)
4(-7.31)
2(-9.00)
2(-7.38)
4(-7.23)
3(-7.84)

77 = 1
8(-8.92)
15(-8.16)
7(-ll.ll)
11(-9.10)
14(-8.45)
20(-7.82)

77 = 1/6
5(-10.35)
6(-8.47)
5(-11.55)
6(-10.06)
7(-11.41)
6(-9.47)
6(-11.98)
6(-10.15)
5(-11.97)
6(-10.22)

Table 2: 2-Grid Iterations with 2 Jacobi Smoothing Steps
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198 Boundary Element Method XVI

&(m)
3(36)

3(72)

5(60)

8(96)

10(120)

ratio
1
2

1
2
1
2

1
2

1
2

SHE
3(-9.62)
4(-7.59)
2(-11.59)
2(-8.82)
4(-7.87)
4(-7.31)
2(-9.00)
3(-7.68)
4(-7.23)
3(-8.01)

77=1
3(-8.80)
2(-8.09)
3(-11.44)
3(-9.10)
3(-8.55)
3(-7.85)
2(-8.41)
2(-7.57)
3(-9.45)
2(-7.55)

% = !/&
2(-10.26)
2(-8.57)
3(-12.31)
2(-9.59)
2(-11.47)
2(-9.98)
2(-12.06)
2(-10.17)
2(-12.06)
2(-10.25)

Table 3: 2-Grid Iterations with 2 Tridiagonal Smoothing Steps

&(m)
3(36)

3(72)

5(60)

8(96)

10(120)

ratio
1
2
1
2

1
2
1
2
1
2

SHE
2(-9.66)
3(-7.61)
2(-ll.59)
3(-9.63)
3(-7.85)
3(-7.37)
2(-9.01)
3(-7.69)
4(-7.23)
3(-8.01)

77 = 1
2(-9.02)
3(-8.14)
3(-11.46)
3(-10.31)
2(-8.68)
2(-8.11)
2(-8.42)
3(-7.80)
3(-9.46)
3(-7.63)

% = !/&
2(-10.41)
2(-8.62)
3(-12.32)
3(-10.58)
2(-11.50)
2(-9.86)
2(-12.07)
3(-10.18)
2(-12.08)
2(-10.30)

Table 4: 2-Grid Iterations with 2 PT Smoothing Steps

Tables 2 to 4 give the results for the 2-Grid Scheme using the Jacobi,
tridiagonal or periodic tridiagonal smoothing for the SHE and the B&M
equation with the coupling parameter rj — 1 or 1/fc. The number of elements
is ?7i for the fine grid and n = m/3 on the coarse grid. Blank spaces in Table
2 mean that the particular problem diverged.

All the methods work well for the SHE, as to be expected for a second
kind Fredholm problem. For equation (1) the choice of coupling parameter
is very important if Jacobi smoothing is considered. It has less effect on the
number of iterations for the other cases but greatly increases the accuracy
due to the improved conditioning of equation (1). Increasing the collocation
points does not result in a marked increase in the number of iterations as
happens for the direct iterative scheme.

The second test problem considers the field produced on the surface of a
square with vertices (0,0), (0,1), (1,0) and (1,1), by a source at the centre.
We take a uniform mesh with collocation at the element midpoints. In
tables 5 and 6 the number of iterations are given for the 2-Grid methods
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Boundary Element Method XVI 199

applied to the SHE and B&M at 3 wavenumbers with m elements on the
fine grid and ra/3 on the coarse. The direct iterative schemes either do not

converge or converge too slowly.

k
I
3
3
5
5

m
12
36
72
60
120

SHE
3(-6.91)
3(-8.04)
3(-9.82)
3(-7.91)
2(-9.80)

m
24
72
144
120
240

B&M (77 = 1)
3(-5.57)
3(-6.60)
3(-7.56)
3(-6.43)
3(-7.35)

B&M (// = I/A;)
3(-5.57)
3(-7.04)
3(-8.04)
3(-7.67)
3(-8.52)

Table 5: 2-Grid Iterations with 2 Jacobi Smoothing Steps

k
1
3
3
5
5

m
12
36
72
60
180

SHE
3(-7.08)
3(-8.03)
3(-9.78)
3(-7.94)
3(-9.76)

77%
24
72
144
120
240

B&M (77 = 1)
3(-5.56)
3(-6.52)
3(-7.45)
3(-6.18)
3(-7.16)

B&M (7; = I/A:)
3(-5.56)
3(-6.96)
3(-7.89)
3(-7.38)
3(-8.31)

Table 6: 2-Grid Iterations with 1 PT Smoothing Step

In all cases we find that the use of one periodic tridiagonal smoothing
step gives very similar results to that of 2 Jacobi iterations. Taking 77 = l/k
again improves the accuracy though to a lesser extent to that of the smooth

boundary.

5 CONCLUSIONS

Several iterative methods based on the splitting of the discrete operator
have been implemented for the solution of boundary element equations.
The direct iterative schemes (4) are efficient only for the case of smooth
boundaries and whenever a modest level of accuracy is required. However,
the application of these splitting schemes as smoothers within a 2-Grid cycle
results in methods which converge in a small number of iterations in all cases
considered. For the SHE we see that the Jacobi smoother performs well,
whilst for the Burton and Miller equation (involving the Nk operator) the
choice of periodic tridiagonal with rj = l/k gives consistently good results.
We are at present studying the design of appropriate preconditioners to be
used with conjugate gradient methods for the efficient solution of systems
involving the hypersingular operator.
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