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Abstract

In high-dimensional prediction problems, where

the number of features may greatly exceed the

number of training instances, fully Bayesian ap-

proach with a sparsifying prior is known to pro-

duce good results but is computationally challeng-

ing. To alleviate this computational burden, we

propose to use a preprocessing step where we first

apply a dimension reduction to the original data

to reduce the number of features to something

that is computationally conveniently handled by

Bayesian methods. To do this, we propose a new

dimension reduction technique, called iterative

supervised principal components (ISPCs), which

combines variable screening and dimension re-

duction and can be considered as an extension

to the existing technique of supervised principal

components (SPCs). Our empirical evaluations

confirm that, although not foolproof, the proposed

approach provides very good results on several

microarray benchmark datasets with very afford-

able computation time, and it can also be very

useful for visualizing high-dimensional data.

1 INTRODUCTION

Inference in high-dimensional problems, where the num-

ber of features may greatly exceed the number of training

instances, remains a topic of active research. The frequen-

tist approaches typically formulate the problem as an opti-

mization task with a penalty that forces the solutions to be

sparse, the most popular example being the Lasso (Tibshi-

rani, 1996), but various others have also been proposed (e.g.,

Fan and Li, 2001; Zou and Hastie, 2005; Zou, 2006; Can-

des and Tao, 2007). In the Bayesian literature, the domi-
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nant approach is to use a use sparsifying prior, such as the

spike-and-slab (Mitchell and Beauchamp, 1988; George and

McCulloch, 1993) or the horseshoe (Carvalho et al., 2010).

Inference is typically carried out by using Markov chain

Monte Carlo (MCMC), but also expectation-maximization

(EM) based mode finding strategies have gained popularity

recently (Rockova and George, 2014; Chang et al., 2016;

Bhadra et al., 2017). Empirical evidence indicates that the

Bayesian approach is more accurate (Polson and Scott, 2011;

Piironen and Vehtari, 2017b,c; Bhadra et al., 2017) but is

computationally expensive for large number of features,

especially if MCMC is used for inference.

This paper studies a practical strategy for alleviating the

computational burden related to the Bayesian inference in

these problems via dimension reduction. We investigate

the following two-step procedure. First, we perform a di-

mension reduction which reduces the number of features to

something that is computationally conveniently handled by

fully Bayesian methods. Second, we perform the Bayesian

model fitting using the reduced set of features with a sparsi-

fying prior that will discover which of these new features

are the most relevant.

Although not routinely used in the Bayesian workflow, this

approach is certainly not new and has actually been very

successful in empirical evaluations. Most notably, this was

the key idea behind the overall winners of the NIPS 2003

feature selection challenge (Neal and Zhang, 2006), who

used feature screening based on univariate significance tests

and dimension reduction with principal component analysis

(PCA) to reduce the dimensionality of the problem. There

have also been many other explorations on these ideas (with

both Bayesian and non-Bayesian emphasis), such as the

supervised PCA (SPCA) (Bair et al., 2006; Yu et al., 2006).

Especially the various screening approaches have proved to

be promising and have received attention during the recent

years (Fan and Lv, 2008; Song and Liang, 2015; Mukhopad-

hyay and Dutta, 2016; Ahmed and Bajwa, 2017; Chen and

Dunson, 2017).

We propose a new method, called iterative supervised PCA

(ISPCA) that combines screening and dimension reduction
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in such a way that the produced set of features aims to be

maximally relevant for predicting the target variable. The

method is most closely related to the SPCA and could be

considered as an extended version of it.

The main contributions of the paper are summarized as fol-

lows. We present a (non-trivial) extension to the original

SPCA method. Unlike the original formulation, our method

is model independent and does not need cross-validation for

estimating the screening parameter. We also show how to

handle multiclass classification problems, which was not

discussed by the original SPCA paper. Based on the empiri-

cal evaluation, our method is overall competitive with the

PCA and SPCA, but sometimes yields better results when

used for predictive model construction. When used for visu-

alizing high-dimensional data using only a few features, our

method consistently yields at least as good and sometimes

considerably better results than PCA or SPCA, which makes

it a useful tool for exploratory analysis.

We would like to point out that the two-step procedure dis-

cussed in this paper is not fully Bayesian as it uses the data

twice: first when constructing the new feature representation

and second time when fitting the predictive model. Never-

theless, we are sometimes willing to relax the full Bayesian

view in the pursuit for a scalable method that allows us

to handle high-dimensional problems in a computationally

feasible manner.

2 BACKGROUND

This section briefly reviews some background essential for

understanding our method.

2.1 Principal Components

Assume we are given dataset with feature matrix X ∈ R
n×D

and target values y ∈ R
n. Throughout this paper will

assume each column of X is standardized to have a zero

mean and unit variance if not otherwise stated. In linear

dimension reduction we find a transformed set of features

Z that are typically (but not necessarily) orthogonal and

obtained by a linear projection of the original feature matrix

onto a set of vectors W ∈ R
D×K

Z = XW. (1)

Principal components analysis (PCA), where W consists of

K ≤ min(n− 1, D) first right singular vectors of X, is a

well-known example of such method and a natural choice

for dimension reduction.

However, because PCA is an unsupervised technique, there

is no guarantee that the projections onto the first K principal

components would result in an informative set of features

Z regarding the prediction of y. For instance, suppose we

would like perform linear regression of y onto some set of

features and β
∗
∈ R

D denotes the optimal coefficients in the

original feature space X. Now, if the number of features D
greatly exceeds the number of training instances n and there

is enough variation in X unrelated to y, it is possible that β
∗

is not in the space spanned by the principal components (the

column space of W). This means it is impossible to recover

the optimal solution using the transformed set of features

Z. Even if the optimal solution would be recoverable, the

solution is not necessarily sparse in the new feature space

(even if it was in the original space) which can make the

learning more difficult and may require a large number of

transformed features K.

2.2 Supervised Principal Components

Supervised PCA (SPCA) (Bair et al., 2006) is a technique

to alleviate problems with the standard unsupervised PCA.

SPCs are computed as follows:

1. Compute the univariate scores sj = S(xj ,y) between

each feature xj and the target variable y.

2. Retain only those features with univariate score above

some threshold γ, and compute the first (or first

few) principal components of the reduced feature ma-

trix Xγ .

The score function S(xj ,y) is generally taken to be the

absolute univariate regression coefficient between xj and

y which is up to a constant the same as the (absolute) cor-

relation between the two variables. For determining an

appropriate threshold γ, Bair et al. (2006) proposed to use

cross-validation for the final prediction model that utilizes

the extracted features.

SPCA can written in the form (1) by padding the principal

components of Xγ with zeros corresponding to the features

that were screened out. The benefit of SPCA compared to

the standard PCA is that the screening step anticipates other

sources of variation in X unrelated to the target variable y,

and thus the extracted features will typically be more related

to the relevant variation.

Some problems still persist, however. One is that the screen-

ing step ignores the uncertainty about the relevance of the

features with univariate score sj less than γ. Although

for many datasets this does not appear to be harmful from

predictive point of view, we would like a more principled

approach for treating the remaining features than simply

ignoring them since it is possible for a feature to be rele-

vant even if its univariate score would be exactly zero (see

example in Sec. 4.1). Secondly, choosing the thresholding

parameter via cross-validation makes the construction of

SPCs dependent of the model used for prediction. This can

make the procedure computationally expensive (especially

if Bayesian model is used) and it would be conceptually

more satisfactory to find model independent procedure for
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the dimension reduction. A third issue is that the original

formulation of Bair et al. (2006) does not provide a way of

handling classification problems with more than two class.

The next section discusses our proposed method that is in-

spired by the idea of SPCA but aims to provide a solution

for all these problems.

3 ITERATIVE SUPERVISED PRINCIPAL

COMPONENTS

This section discusses our proposed method of iterative su-

pervised PCA (ISPCA). We shall first outline the algorithm

and then discuss its properties, further ideas and implemen-

tational details in more detail.

3.1 Outline of the Algorithm

The algorithm consists of iterating the following steps K
times:

1. Compute the univariate scores sj = S(xj ,y) for each

feature xj .

2. Retain only features with univariate score sj > γ, and

compute the first principal component vγ of these fea-

tures Xγ . Choose γ so that the projection of Xγ onto

this vector zγ = Xγvγ maximises the score S(zγ ,y).
Denote the extracted feature by z.

3. Subtract the variation explained by z from each column

in X (including those that were screened out at step 2)

as x′

j = xj − bj z where bj = (zTz)−1(xT

j z). This

yields a modified feature matrix X′.

4. Set X← X′ and go to step 1.

The intuition behind the algorithm is as follows. At step 2 of

each iteration, we seek direction that is maximally relevant

for explaining variance of y. Step 3 ensures that the subse-

quent directions will capture variation that is not explained

by the directions that we have computed so far. This is

useful, because there may be features in X that are screened

out at step 2 but are still correlated with those that are re-

tained after screening, and we do not want subsequent latent

features z to be correlated (see discussion below).

3.2 Properties of the Method

Like PCA and SPCA, the algorithm in Section 3.1 results

in a transformed set of features Z ∈ R
n×K (computed at

step 2) that are orthogonal and obtained by a linear pro-

jection of the original feature matrix onto a set of vectors

W ∈ R
D×K as in Equation (1).

To see that the features Z will be orthogonal, consider the

following. After step 3 in the algorithm, all the columns of

X′ will be orthogonal to z because

x′T

j z = (xj − bj z)
Tz

=
(

xj − (zTz)−1(xT

j z) z
)T

z

= xT

j z− (zTz)−1(xT

j z) z
Tz

= 0,

and therefore any linear combination of these (that is, the

latent feature to be extracted at the next iteration) will also

be orthogonal to z. Using induction, it is straightforward

to show that each latent feature is orthogonal also to all the

other extracted features, not only to the previous one (the

proof is omitted).

To prove that the extracted features can be written in the

form of Equation (1), we need to set up some notation. De-

note the feature matrix used at steps 1 and 2 at iteration k
as Xk, so that X1 = X is the original feature matrix. More-

over, denote the principal components computed at step 2 as

v1, . . . ,vK . For notational convenience, we shall now as-

sume that these vectors are padded with zeros corresponding

to those features that were screened out at the corresponding

iteration, so that each vk ∈ R
D.

Using this notation, the latent variables zk computed at

step 2 satisfy zk = Xkvk for all k = 1, . . . ,K. The con-

struction of the next feature matrix Xk+1 from the previous

one Xk at step 3 can be written in a matrix form as

Xk+1 = Xk − ZkBk, (2)

where all the columns of Zk ∈ R
n×D are equal to zk, and

Bk is a diagonal matrix with elements b1, . . . , bD from iter-

ation k. We can rewrite Zk = XkVk where Vk ∈ R
D×D

with all columns equal to vk. By plugging this into (2) we

get

Xk+1 = Xk −XkVkBk

= Xk(I−VkBk) | Ak := I−VkBk

= XkAk,

from which we deduce

Xk = XA1A2 . . .Ak−1 = X

k−1
∏

t=1

At.

This lets us write the latent features zk as

zk = Xkvk = X

(

k−1
∏

t=1

At

)

vk,

and thereby we arrive at decomposition (1) by defining the

columns of the projection matrix W as

wk =

(

k−1
∏

t=1

At

)

vk =

(

k−1
∏

t=1

(I−VtBt)

)

vk. (3)



Iterative Supervised Principal Components

In practice we never form matrices Vk or Bk to compute W.

By exploiting the structure of these matrices, the columns

of W can be computed much more efficiently (see details

in the supplementary material).

It is worth noticing that although the new features Z will be

orthogonal, the columns of the rotation matrix W typically

will not. This is not a handicap and can, in fact, be very

beneficial as it allows detecting features that are not relevant

alone but become relevant after some other features are

included in the model (see Sec. 4.1 for a simple example).

3.3 Combination of Supervised and Unsupervised

Components

In principle, we could extract min(n−1, D) ISPCs from the

data (or until none of the features have univariate score nu-

merically distinguishable from zero). In practice, however,

this is not advisable and we call this the naive algorithm.

This is because the process of repeatedly finding the most

relevant direction can overfit especially when the sample

size n is small because some features may have a relatively

large absolute sample correlation with y although they are

completely irrelevant, simply due to random fluctuation

in the data. Thus the algorithm may find “relevant” fea-

tures that are in fact noise. This will result in biases in the

inference when the extracted features are later used for visu-

alization or predictive model construction. Thus in practice

we typically extract only a few supervised components, and

if needed, compute the standard unsupervised PCs with the

rest of the data variation. A practical automatic strategy for

deciding the number of supervised components is discussed

in Section 3.4.

After the supervised iteration, we can compute standard

principal components as usual but with the exception that

these are now computed from the modified data matrix X′

that we are left with after the supervised iteration (after

subtracting the variation explained by the K supervised

components at step 3 of each iteration). If we denote the

total number of components by Ktot and the unsupervised

components by vk, k = K + 1, . . . ,Ktot, the columns of

the final projection matrix W ∈ R
D×Ktot corresponding to

the unsupervised components are given by

wk =

(

K
∏

t=1

(I−VtBt)

)

vk, k = K + 1, . . . ,Ktot.

(4)

It is worth noticing that after this process, all the extracted

features zk (both supervised and unsupervised) will be or-

thogonal, which is often useful. The inclusion of unsuper-

vised components can be important for constructing a good

predictive model. This is simply due to the fact that not

always all the relevant variation will be captured by the first

supervised components. This point will be demonstrated

experimentally in Section 4. We also point out that we can

apply this same idea for the original SPCA, that is, com-

pute unsupervised components from the features screened

out, and make these unsupervised features orthogonal to the

supervised ones.

3.4 Deciding the Number of Supervised Components

As discussed in Section 3.3, the unrestricted supervised

iteration may overfit, that is, find features that are appear

relevant but are in fact noise. Fortunately, there is a simple

but effective way of discovering how many components we

can extract without substantial overfitting. We do this using

a permutation test. Before computing the next supervised

principal component at step 2 of each iteration, we compute

a p-value

p =
1

R

R
∑

r=1

1

(

max
j

S(xj ,yr) ≥ max
j

S(xj ,y)

)

, (5)

where yr denotes a random permutation of the original y

and 1 (E) = 1 if event E is true and zero otherwise. Quan-

tity (5) estimates how likely it is that the largest univariate

score would be as extreme as actually observed if none of

the variables xj were actually related to y. If p < α for a

relatively small α, we have strong evidence that there is still

relevant variation left in the data and we can extract the next

component being fairly confident that the finding was not a

false discovery. If p ≥ α, we stop the supervised iteration

and proceed to extracting unsupervised features if needed.

In our experiments we used α = 0.01 and R = 1000 ran-

dom permutations, which makes the number of false dis-

coveries small. In principle we believe that it is better to

be too conservative in setting α than to allow the algorithm

to overfit. After all, for predictive model construction we

can always compute the standard unsupervised PCs with

the rest of the data variation, use Bayesian model with a

sparsifying prior and let the data decide which components

are really relevant and which not. The results indicate that

this strategy is both computationally feasible and performs

well in practice.

3.5 More Algorithmic Details

Finding the optimal screening threshold γ at step 2 would re-

quire computing the first principal component for all feature

subset sizes from 1 to D which is computationally expensive.

In practice we use a more crude search and set up an evenly

spaced grid of values between γmin and γmax, where γmax is

the smallest γ so that all but one feature are screened out,

and γmin the largest γ so that the number of features after

screening is W . We could set W = D but since in practice

the optimal γ is rarely so that almost all features survive

the screening, we typically use W < D which makes the

algorithm faster and concentrates the grid on more plausible

values. The computational complexity of computing a PC
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among at most W features is the minimum of O(WN2)
and O(W 2N), which shows that computational savings can

be obtained by adjusting the feature window size W . In our

experiments we used grid of size M = 10 with feature win-

dow limit W = 500 which seem to provide good balance

between accuracy and speed. In fact, especially when n is

fairly large, typically more time is spent in the permutation

test (Sec. 3.4) which scales as O(RND).

As a minor detail, we mention that before using the new

features Z for predictive model construction, we typically

normalize them to have unit variance so that none of the

features is favored a priori. For visualization purposes this

is not necessary but does not hurt either.

3.6 Multiclass Classification and Other Observation

Models

The supervised algorithm in Section 3.1 can naturally be

extended to classification problems with C > 2 classes. We

do this by defining C binary variables yc = 1 (y = c), that

is, “class c or some other class”, for c = 1, . . . , C. We then

repeat steps 1 and 2 for all these C auxiliary target vari-

ables which yields candidate directions vc, c = 1, . . . , C
from which then choose the one which maximizes the score

S(Xvc,yc). This typically results in direction v that tries to

separate one of the classes from the rest (see the multiclass

example in Sec. 4.2).

We propose to use this same idea also for SPCA; in this

case we define the univariate scores in the screening to be

the maxima of the C scores as S̃(xj ,y) = maxc S(xj ,yc).
Although simple, this approach turns out to be quite success-

ful, and lets us extend also SPCA to multiclass problems

(not discussed by Bair et al. (2006)).

When computing the univariate scores S(xj ,y) in other

than regression or classification problems we could use

pseudo-data t in place of y, so that t is derived from the sec-

ond order expansion to the log-likelihood from an univariate

(generalized) regression of y onto xj . This is discussed by

Bair et al. (2006) so we do not discuss it further here.

3.7 Interpretation and Obtaining a Sparse Solution

in the Original Space

The columns of the projection matrix W are directly in-

terpretable by investigating which entries are nonzero, as

the corresponding features are likely to be correlated and

predictive about y (at least if the column was computed in a

supervised fashion). If a linear model is used with the new

set of features Z, the corresponding regression coefficients

β̃ can be transformed back to the original feature space

simply as β = Wβ̃.

Although the columns of W will typically have a lot of

zeros, they can still contain quite a few nonzeros as the

nonzero entries correspond to correlated features that carry
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Figure 1: Illustration of ISPCA for two toy binary classifica-

tion datasets (the two columns). Top row shows the original

dataset (colors denoting the different classes), supervised

components found by ISPCA with the permutation test, and

the first unsupervised PC. Middle row shows the feature

matrix obtained after subtracting the variation related to

the first ISPC from X (in the plots, x′

2 is exactly zero but

has been jittered by a small amount to aid visualization).

Bottom row shows the transformed features Z.

similar information. To obtain an even more sparse solution

in the original feature space, we can use the projective vari-

able selection framework (Goutis and Robert, 1998; Dupuis

and Robert, 2003) which has shown to be successful for

finding a sparse solution when there is redundancy in the

features (Piironen and Vehtari, 2017a). This technique has

also been studied from a non-Bayesian viewpoint with good

results, and is known as “preconditioning” for variable se-

lection (Paul et al., 2008). Due to the space constraints, we

do not discuss this further but merely point out that this is

possible.

4 EXPERIMENTS

4.1 Toy Examples

We first illustrate the use of ISPCA with two simple toy

problems that will shed light on the algorithm, see Figure 1.
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Figure 2: Some of the binary classification datasets visualized using first two latent features obtained by PCA (top row),

SPCA (middle row) and ISPCA (bottom row). Colors refer to the two classes. For Basehock and PCMac the visualization is

done using only a subset of the data to reduce data overlap, but the features are extracted using the full datasets. For the last

three datasets, the second feature of ISPCA is actually unsupervised, since only one supervised component was supported

by the data.

The first column shows data where only one of the variables

(x2) is relevant for separating the two classes. Out of the two

variables, x2 has higher univariate score, and since this is

higher than the univariate score for the principal component

of the two features (x1, x2), the first ISPC points to direction

w = (0, 1). After subtracting the variation explained by

this direction from the feature matrix X, we end up with

a modified feature matrix X′ where only x′

1 has nonzero

variance (middle row). However, this feature has univariate

score close to zero (thereby failing the permutation test), and

hence the supervised iteration terminates. If we compute

unsupervised PCA using this rest of the data variation X′,

we end up with transformed features (z1, z2) (bottom row),

where only the first one is supervised and also the only

relevant feature.

The second column shows a more interesting example.

Again, feature x1 is irrelevant alone (has univariate score

close to zero), but becomes relevant together with x2 (that

is, x1 and x2 together have better class separation than x2

alone). Again the first ISPC points towards w = (0, 1),
but now after subtracting the variance explained by this

direction from X, since x1 and x2 are correlated, we end

up with a new feature matrix X′ where the feature x′

1 has

a significant correlation with the class label. The first PC

of X′ points to direction v = (0, 1), but transforming this

back to the original feature space using Equation (3), the

second ISPC points roughly to direction w = (1.6, −1) in

the original space (top plot). This results in a new set of

features (z1, z2) out of which both are supervised and about

equally relevant (bottom plot).

In both of these examples the first unsupervised PC does

not explain variation relevant for separating the two classes.

SPCA would work well in the first case because then x1

would be screened out and the first SPC would be equal to

the first ISPC. However, the second case shows an example

where ISPCA has a distinctive advantage over the SPCA.

Also in this case SPCA would screen x1 out and would find

only the first relevant direction (that is, feature x2), whereas

the iterative procedure can discover that x1 becomes relevant

when x2 is included. Obviously, one could set the screening

threshold γ in SPCA so low that also x1 would survive the

screening, but in practice this means setting the threshold

so low that basically all features are included, meaning that

SPCA would in essence reduce to the standard PCA with

the problems explained in Section 2.1.

4.2 Data Visualization

This section illustrates the use of ISPCA for visualization

of high-dimensional real world data and shows how it com-

pares to PCA and SPCA1. All the datasets involve a classi-

fication problem with the number of features ranging from

about 1500 to 22000 and the number of training instances

from about 50 to 2000. Our main interest are the “small n,

large D” cases and most of the problems fall into this cate-

gory, but we included also a few problems with moderately

large n. See Table 1 and the associated text in the supple-

mentary material for more information about the datasets.

1Unlike in Bair et al. (2006) who used a model dependent cross-
validation scheme to chose the screening threshold for SPCA, we
used a simpler strategy and computed the p-values for each feature
based on a permutation test for the univariate scores and retained
only features with p < 0.001.
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Figure 3: Visualization of Lung-5c cancer data

(n = 203, D = 3312) using the first four latent features

from PCA, SPCA and ISPCA. Different colours refer to

the five different classes. Using only four features, ISPCA

is able to separate the classes almost perfectly.

Figure 2 shows a representative set of the binary classifica-

tion datasets visualized using the first two latent features

obtained using the three methods. The benefit of supervision

for visualization purposes is very clear: in many cases the

two classes are considerably overlapping when visualized

using the first two unsupervised PCs, but become fairly well

separated when using either SPCA or ISPCA. By visual in-

spection, ISPCA seems to work clearly better than SPCA in

at least one example (Basehock), slightly better in a few of

the cases (PCMac, Arcene and Prostate) and slightly worse

in one (Dexter).

Figure 3 shows a visualization of a dataset with five classes

using the first four latent features of the three methods. Here

PCA and SPCA perform very similarly; the first two latent

features are informative for separating the red and green

classes from the rest, but the remaining two features are

only weakly informative and in this plot the classes are

considerably overlapping. ISPCA on the other hand shows a

substantial improvement; the method is able to find the third

and fourth features so that also the orange and brown classes

become well separated from the rest, and improves also the

separation of the red and green class from the rest. By

investigating which of the entries in the vectors w1, . . . ,w4

are nonzero we can get an idea about which of the features

characterize the differences between the five classes (see

Figure 6 in the supplementary material).

4.3 Predictive Model Construction

Finally, we shall consider how the different dimension reduc-

tion techniques perform when the extracted latent features

are used for predictive model construction. In all cases we

use the standard logistic regression model (in multiclass

cases multinomial softmax regression) with the regularized

horseshoe prior (Piironen and Vehtari, 2017c) for the re-

gression coefficients. This prior shrinks the coefficients of

irrelevant features heavily towards zero and softly regular-

izes the coefficients of relevant features. More details of the

prior, implementation of the models and computation can

be found from the supplementary material.

We tested the following dimension reduction methods:

• PCA: first Ktot unsupervised PCs (Ktot defined below).

• SPCA: supervised PCA; compute Ktot first PCs among

those features with univariate score statistically signifi-

cant (p < 0.001)

• SPCA-2: compute first Ktot/2 PCs among those fea-

tures with univariate score statistically significant, and

compute first Ktot/2 PCs using the rest of the features

after subtracting the variation explained by the super-

vised components (see Sec. 3.3).

• ISPCA-naive: first Ktot ISPCs.

• ISPCA-small: first K ISPCs, decide K using the per-

mutation test (Sec. 3.4).

• ISPCA: as ISPCA-small, but in addition compute

Ktot −K unsupervised components.

For the binary classification datasets we used Ktot = 50 and

multiclass problems Ktot = 20. In addition we computed

results also for ridge logistic regression and Lasso using the

original features to get baseline results for the comparisons.

The prediction accuracy was measured by splitting the data

randomly into two parts, using one fifth as a test set, and

then averaging the results over fifty such random splits.

Figure 4 shows the mean log predictive densities on test data

for different methods on each dataset, the last plot denoting

the average over all datasets (for classification accuracies,

see Figure 5 in the supplementary material). The results

show that ISPCA yields better results than PCA or SPCA

for several datasets, but also loses to one of these in many

cases, the overall result being very close with SPCA having

a slight edge (see the last plot). Overall the dimension

reduction techniques outperform Lasso by a clear margin,

but the best method depends on data, which emphasizes that



Iterative Supervised Principal Components

Ridge

Lasso

PCA

SPCA

SPCA-2

ISPCA

ISPCA-naive

ISPCA-small

Ridge

Lasso

PCA

SPCA

SPCA-2

ISPCA

ISPCA-naive

ISPCA-small

-0.400 -0.275 -0.150

-0.250 -0.175 -0.100

-0.7 -0.5 -0.3

-0.35 -0.20 -0.05

-0.450 -0.325 -0.200

-0.50 -0.35 -0.20

-0.40 -0.25 -0.10

-0.7 -0.5 -0.3

-0.50 -0.35 -0.20

-0.500 -0.325 -0.150

-1.20 -0.85 -0.50

-0.450 -0.375 -0.300

-1.35 -0.95 -0.55

Ovarian

Lung-5c

Colon

Basehock

Prostate

PCMac

Leukemia

Arcene

Glioma

Dexter

Glioma-4c

Average

Lung

Figure 4: Mean log predictive densities (MLPD) on test data for the different methods on different datasets (larger is better).

Horizontal bars denote the 95% intervals. The dashed vertical line denotes the performance estimate for the Lasso which

was chosen as the baseline for the comparison. The last plot denotes the average over all the datasets.

no single method is optimal for every problem. The trend

seems to be that ISPCA performs best on average for the

microarray datasets (Ovarian – Lung-5c) whereas SPCA

works better for the text classification datasets where the

features are word counts (Basehock, PCMac, Dexter). This

is an interesting pattern since it is somewhat at odds with

the very good two dimensional feature representation of

ISPCA which is better than for PCA and SPCA at least for

Basehock and PCMac datasets (Figure 2). These results call

for further investigation to better understand the successes

and failures of each method.

The comparison of ISPCA to ISPCA-naive and ISPCA-

small show that not using the permutation test can lead to

inferior results due to overfitting (Colon, Prostate, Lung-2c),

and that inclusion of the unsupervised features is basically

never harmful, but can clearly improve the results in some

cases (PCMac, Arcene). For SPCA the inclusion of unsu-

pervised features does not appear to be crucial as the results

for SPCA and SPCA-2 are practically the same for every

dataset.

Computationally the three dimension reduction approaches

are quite similar in the “small n, large D” realm, ISPCA

being somewhat more expensive for multiclass problems

and large n (see Table 2 in the supplementary). In these

cases the number of supervised iterations is typically larger,

which results in more permutation tests which are the most

time consuming part of the method. However, even in these

cases the computational bottleneck is still the fitting of the

predictive model. Overall, although the considered methods

cannot compete with Lasso in speed, the computation times

are very affordable, considering that most problems allow

the model to be fitted in a matter of seconds.

5 CONCLUSIONS

This paper has proposed a new supervised dimension re-

duction technique. Our experiments indicate that the pro-

posed method is useful in many cases for visualizing high-

dimensional labeled data as well as for reducing the di-

mensionality for predictive model construction. For visual-

ization purposes, the proposed method appears to perform

better than PCA or SPCA, which is due to the algorithm’s

greedy nature that tries to maximally load all the predic-

tive power on the first few latent features. This makes the

method useful for exploratory analysis. Regarding the pre-

dictive performance, although the method gave better results

than the other methods on several problems, the experiments

also demonstrated that it is not infallible and in some cases

better results could be obtained by other means, such as the

original SPCA. Based on the results it seems that none of

the considered dimension reduction techniques is optimal

for every problem, but in almost all cases at least one of

them gave very good results (clearly better than Lasso or

ridge), confirming that the dimension reduction approach

is very viable alternative for (Bayesian) supervised learn-

ing in these problems and encourages further research and

methodological development in this area.

As it stands, our pragmatic advice would be to use cross-

validation for assessing the fit of the models obtained after

the different computational shortcuts (such as SPCA and

ISPCA) and to use the validation results to guide the model

selection. We emphasize that it is advisable to validate

also the dimension reduction process (that is, the dimension

reduction is computed separately for each fold) to avoid any

potential bias induced by conditioning the inference twice

on the observed data.

The R implementations for the methods discussed in the

paper are freely available at https://github.com/

jpiironen/dimreduce.

https://github.com/jpiironen/dimreduce
https://github.com/jpiironen/dimreduce
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