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Abstract

Genome-wide association study (GWAS) entails examining a large number of single nucleo-

tide polymorphisms (SNPs) in a limited sample with hundreds of individuals, implying a vari-

able selection problem in the high dimensional dataset. Although many single-locus GWAS

approaches under polygenic background and population structure controls have been

widely used, some significant loci fail to be detected. In this study, we used an iterative modi-

fied-sure independence screening (ISIS) approach in reducing the number of SNPs to a

moderate size. Expectation-Maximization (EM)-Bayesian least absolute shrinkage and

selection operator (BLASSO) was used to estimate all the selected SNP effects for true

quantitative trait nucleotide (QTN) detection. This method is referred to as ISIS EM-

BLASSO algorithm. Monte Carlo simulation studies validated the new method, which has

the highest empirical power in QTN detection and the highest accuracy in QTN effect esti-

mation, and it is the fastest, as compared with efficient mixed-model association (EMMA),

smoothly clipped absolute deviation (SCAD), fixed and randommodel circulating probability

unification (FarmCPU), and multi-locus random-SNP-effect mixed linear model (mrMLM).

To further demonstrate the newmethod, six flowering time traits in Arabidopsis thaliana

were re-analyzed by four methods (New method, EMMA, FarmCPU, and mrMLM). As a

result, the new method identified most previously reported genes. Therefore, the new

method is a good alternative for multi-locus GWAS.

Author summary

Genome-wide association study is concerned with the associations between markers and

traits of interest so as to identify all the significantly associated markers. In genome-wide

association studies, hundreds of thousands of markers are genotyped for several hundreds

of individuals. Usually, only a very minor subset of these markers is associated with the

trait. Most penalization methods fail when the number of markers is much larger than the

sample size. Based on this fact, we have developed an algorithm that proceeds in two

stages. In the first stage (screening), we reduced the number of markers via correlation
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learning to a moderate size. We then used a moderate-scale variable selection method to

select variables in the reduced model. Conditional on the selected variables, we repeated

the screening procedure and chose another set of variables. In the second stage (estima-

tion), all the above-selected variables are accurately estimated in a multi-locus model. Our

approach is simple, accurate in estimation, fast and shows high statistical power of detect-

ing relevant markers on simulated data. We have also used this method to identify rele-

vant genes in real data analysis. We recommend our approach for conducting a multi-

locus genome-wide association study.

Introduction

Genome-wide association study (GWAS) focuses on associations between single nucleotide

polymorphism (SNP) and traits of interest in order to investigate the genetic foundation of

these traits [1, 2]. In GWAS, hundreds of thousands of SNPs are genotyped for several hun-

dreds of individuals. In this case, statistical estimation and detection of the relationship

between these SNPs and the traits become challenging. Although the single variant analysis in

standard GWAS methods has succeeded in identifying thousands of genetic variants associ-

ated with hundreds of various traits, this approach fails to consider the joint effect of multiple

genetic markers on traits. Another problem with this approach is the issue of multiple test cor-

rection for the threshold value of significance test. The Bonferroni correction is too stringent,

and many relevant loci are missed out.

In genetics, only a small subset of SNPs is associated with the phenotype of a trait. This is

an example of a variable selection problem for high-dimensional data, where the number of

SNPs (p) is several times larger than the number of individuals (n) [3]. To solve this issue,

many penalization methods have been developed in statistics, for example, bridge [4], nonneg-

ative garotte [5], least absolute shrinkage and selection operator (LASSO) [6], smoothly

clipped absolute deviation (SCAD) [7], elastic net [8], fused LASSO [9], adaptive LASSO [10]

and minimax concave penalty [11]. Among these methods, Bayesian LASSO [12], penalized

logistic regression [13], sure independence screening [14], adaptive mixed LASSO [15], elastic

net [16], LASSO [17], empirical Bayes [18] and empirical Bayes LASSO [19] have been adopted

in GWAS. These methods are multi-locus in nature, hence a less stringent significance crite-

rion can be adopted [20]. Despite these methods being able to shrink some markers to zero,

they will fail when the number of markers is several times larger than the sample size. In this

case, the solution lies in reducing the number of markers before employing a shrinkage

method in the multi-locus genetic model. For example, a Bayesian sparse linear mixed model

[21] and Bayesian mixture models [22]. However, the computing time becomes a major con-

cern for these Bayesian approaches. An alternative is to integrate single-marker scanning with

the multi-locus models, such as a model-free approach [23], multi-locus random-SNP-effect

mixed linear model (mrMLM) [20], and fixed and randommodel circulating probability unifi-

cation (FarmCPU) [24].

In this study, we developed an approach that reduced the number of markers, p, via correla-

tion learning (i.e. Iterative modified-Sure Independence Screening) to a moderate number. A

moderate-scale variable selection method, SCAD, was then employed to select variables in the

reduced model. We chose SCAD because of its nice oracle property. Conditional on the

selected variables, we repeated the screening procedure and chose another set of variables. All

the effects of the above-selected variables were estimated by Expectation-Maximization (EM)-

Bayesian LASSO algorithm [25] and tested by likelihood ratio statistic for true quantitative
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trait nucleotide (QTN) detection. We call this approach Iterative modified-Sure Independence

Screening EM-Bayesian LASSO (ISIS EM-BLASSO) algorithm. A series of simulated and real

datasets were used to validate this new method. We compared our new method with single-

locus methods: efficient mixed-model association (EMMA) [26] and FarmCPU [24], multi-

locus methods: SCAD [7] and mrMLM [20]. Several reasons guided the choice of these com-

parison methods: EMMA [26] has been a standard gold method for GWAS, FarmCPU [24]

reduces the number of markers used in GWAS just like ISIS EM-BLASSO, SCAD [7] is used

in the screening method of ISIS EM-BLASSO hence the need to compare it independently and

lastly, mrMLM [20] integrates single locus with multi-locus approach.

Results

Statistical power for QTN detection

Three Monte-Carlo simulation experiments were carried out to measure the effectiveness of

our new method. We used statistical power to evaluate the effectiveness of ISIS EM-BLASSO

method alongside the three methods for comparison purposes. For each QTN, we defined its

statistical power as the fraction of the samples in which the QTN was detected (see Methods for

significant testing). Fig 1A, 1B and 1C represents the results of the statistical power of detecting

each QTN from the three simulation experiments respectively. In the first simulation experi-

ment in which no polygenic variance was simulated, ISIS EM-BLASSOmethod has the highest

power for detecting almost all the six simulated QTNs except QTN two. mrMLM has a high

power of detecting the second QTN. EMMA and FarmCPU have a low power of detecting the

second and fourth simulated QTNs (Fig 1A and S1 Table). Indeed, Bonferroni correction is too

stringent, and it may cause many significant loci to be missed out. SCAD has a moderately

higher power than EMMA and FarmCPU for the second, third and sixth QTNs. SCAD lacks

consistency in detecting the simulated QTNs hence it cannot be relied upon especially when the

QTN size is small. The same trends were observed in the second simulation experiment (Fig 1B

and S2 Table) when an additive polygenic variance was added to the polygenic background. In

the third simulation experiment (Fig 1C and S3 Table) where three pairs of epistatic effects (col-

lectively contributing 0.15 to the phenotypic variance) were added to the genetic background,

ISIS EM-BLASSO is still powerful in detecting almost all the six simulated QTNs. We presented

a paired t- test for the differences in statistical power (Table 1). We observe that there are signifi-

cance differences (at the 0.05 level) in statistical power between ISIS EM-BLASSO and the other

three methods (SCAD, EMMA, FarmCPU). There are no significance differences in statistical

power between ISIS EM-BLASSO and mrMLM except in the third simulation (at the 0.1 level).

Based on these findings, it implies that the simulated QTNs are mostly likely to be identified

when ISIS EM-BLASSOmethod is used.

Accuracies of estimated QTN effects

Mean squared error (MSE) was used to measure the accuracy of each estimated QTN effect for

all the methods. We evaluated the accuracies of all the six simulated QTNs effects in the three

simulation experiments. The results of all methods considered are presented in Fig 2 and S1,

S2 and S3 Tables. The ISIS EM-BLASSO method is consistently more accurate in estimating

the QTN effects than the other methods (EMMA, SCAD, and FarmCPU). From these results,

EMMA has the highest MSEs for each of six simulated QTNs, implying it is inaccurate in esti-

mating the QTN effect. ISIS EM-BLASSO has lower MSEs than mrMLM for simulated QTNs

4, 5 and 6 in all the three simulations. This implies that it is reliable for estimating the QTN

effects. At the 0.05 significance level, the differences of MSEs between ISIS EM-BLASSO and

other methods (EMMA and SCAD) were significant (Table 1). Applying EM-Bayesian LASSO

ISIS EM-Bayesian LASSO algorithm for multi-locus GWAS
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Fig 1. Statistical powers for all the simulated QTNs detected by ISIS EM-BLASSO, SCAD, EMMA, FarmCPU and mrMLM in Monte
Carlo simulation experiments 1 (a), 2 (b) and 3 (c).

doi:10.1371/journal.pcbi.1005357.g001
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to SNPs selected from the iterative procedure will not only remove unimportant SNPs but also

improves the effect estimation.

Empirical type 1 errors and ROC curve

Type 1 errors for all the methods in the three simulation experiments were calculated (Fig 3).

The values for Type 1 errors for each method in each simulation are recorded in S1, S2 and S3

Tables. Despite having high power in the detection of QTNs, ISIS EM-BLASSO had slightly

higher Type 1 errors compared with SCAD, EMMA, FarmCPU, and mrMLM. Note that all

the Type 1 errors were less than 0.04%. Bonferroni correction eliminates many un-associated

loci hence reducing the false positive rate in FarmCPU and EMMA at the expense of some

associated SNPs. Conversely, this study reveals that ISIS EM-BLASSO method may slightly

include some un-important SNPs in the model than SCAD, EMMA, FarmCPU and mrMLM

though with a higher power in detecting associated QTNs.

Receiver operating characteristic (ROC) curve is used to compare different methods for

their efficiencies in the detection of significant effects. ROC curve is a plot of the statistical

power against the controlled Type 1 error. A method with the highest ROC curve is deemed

the best. We simulated various 67 probability levels of significance between 1e-8 to 1e-2, with

these values we calculated the corresponding powers in the first simulation experiment. Fig 4

shows a comparison of the ROC curves from the four methods for the first experiment for

each of the six QTNs simulated. ISIS EM-BLASSO performs best among all the other methods

considered for all the simulated QTNs.

Computational efficiency

Comparing the computing times (Fig 5 and S1, S2 and S3 Tables) of these methods in the

three simulation experiments respectively, we observed that ISIS EM-BLASSO has the lowest

computing time whereas EMMA takes a longer computing time (Intel Core i5-4570 CPU

3.20GHz, Memory 7.88G). ISIS EM-BLASSO is computationally efficient and can be used in

GWAS in a few hours to obtain the associated genes. ISIS EM-BLASSO in itself reduces the

number of SNPs to only those that are significantly correlated with the phenotype and hence

this reduces the problem to a moderate high dimensional data setting problem saving on the

computational time.

Table 1. The t values and their probabilities in paired t tests for the differences (A−B) of statistical power or mean squared error (MSE) between
ISIS EM-BLASSO (A) and other methods (B) in Monte Carlo simulation experiments.

Case Simulation experiment ISIS EM-BLASSO &
EMMA

ISIS EM-BLASSO &
SCAD

ISIS EM-BLASSO &
FarmCPU

ISIS EM-BLASSO &
mrMLM

t-value P-value t-value P-value t-value P-value t-value P-value

Statistical power (%) I 6.78 0.0011*** 4.99 0.0041*** 4.43 0.0069*** 0.98 0.3704

II 3.85 0.0121** 4.08 0.0095*** 3.65 0.0147** 1.38 0.2266

III 5.97 0.0019*** 4.81 0.0048*** 5.21 0.0035*** 2.44 0.0588*

MSE I -7.46 0.0007*** -3.77 0.0131** -1.89 0.1167 -0.81 0.4540

II -3.98 0.0105** -3.95 0.0109** -1.55 0.1819 -0.19 0.8532

III -4.18 0.0086*** -3.41 0.0190** -1.48 0.2002 -0.07 0.9447

H0: no significance differences (A−B) in statistical power or MSE between ISIS EM-BLASSO (A) and the other method (B). EMMA: efficient mixed model

association; SCAD: smoothly clipped absolute deviation; FarmCPU: fixed and randommodel circulating probability unification; mrMLM: multi-locus random-

SNP-effect mixed linear model.

*, ** and ***: statistical significances at the 0.1, 0.05 and 0.01 levels, respectively.

doi:10.1371/journal.pcbi.1005357.t001
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Fig 2. Mean square error (MSE) for all the simulated QTN effects estimated by ISIS EM-BLASSO, SCAD, EMMA, FarmCPU and
mrMLM in Monte Carlo simulation experiments 1 (a), 2 (b) and 3 (c).

doi:10.1371/journal.pcbi.1005357.g002
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Real data analysis in Arabidopsis

Six Arabidopsis flowering time traits in Atwell et al. [27] have been re-analyzed by ISIS EM-

BLASSO, EMMA, FarmCPU, and mrMLM. These traits are LD, LDV, SD, 0W, 2W, and 4W.

ISIS EM-BLASSO detected 14, 11, 23, 21, 9 and 11 SNPs to be significantly associated respec-

tively with the six traits above. These detected SNPs for each trait were used to conduct a mul-

tiple linear regression analysis, and the corresponding AIC and BIC were calculated. The ISIS

EM-BLASSO method showed low AIC and BIC values for nearly all traits (S4 Table). The only

method that compares almost equally with ISIS EM-BLASSO is mrMLM. This indicates that

SNPs detected by ISIS EM-BLASSO fit the data better than the other methods.

The numbers of known genes in the proximity of SNPs for the above six traits were in total

67 genes from ISIS EM-BLASSO, 22 genes from mrMLM, 15 genes from FarmCPU, and 13

genes from EMMA. ISIS EM-BLASSO detected more known genes than the other methods

(S5 Table). Among these known genes, 50 were identified only by ISIS EM-BLASSO (Table 2).

It is interesting to note that for the trait SD, EMMA was not able to determine any signifi-

cant gene whereas the new approach identified 21 genes. A similar trend is also observed when

we considered trait 0W where FarmCPU did not detect any gene. Based on these results, we

Fig 3. Empirical type 1 error rates derived from ISIS EM-BLASSO, SCAD, EMMA, FarmCPU and mrMLM in the Monte Carlo
simulation experiments 1 (a), 2 (b) and 3 (c).

doi:10.1371/journal.pcbi.1005357.g003

Fig 4. Statistical powers of all the simulated QTNs in the first simulation experiment plotted against Type 1 error (in a log10 scale) for the five
GWASmethods (ISIS EM-BLASSO, SCAD, EMMA, FarmCPU, andmrMLM).

doi:10.1371/journal.pcbi.1005357.g004
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Fig 5. Computing times (hours) in the Monte Carlo simulation experiments 1 (a), 2 (b) and 3 (c).

doi:10.1371/journal.pcbi.1005357.g005
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Table 2. Known genes identified only by ISIS EM-BLASSO in the GWAS of six flowering time traits in Arabidopsis thaliana.

Trait Gene name Gene ID Chr SNP position (bp) ISIS EM-BLASSO Distance to gene (bp)

r2 Effect LOD

LD NTL AT1G11570 1 3875883 1.65 -0.11 3.95 -7397

SPL4 AT1G53160 1 19802665 2.47 -0.19 5.68 3754

VAR2 AT2G30940 2 13143390 2.24 -0.11 6.93 -25143

EHD2 AT4G05520 4 2819449 0.94 -0.07 3.69 -11520

APX3 AT4G35000 4 16689198 1.67 -0.10 4.81 -14427

LDV MOS2 AT1G33520 1 12179065 3.22 -0.05 10.33 20112

FKF1 AT1G68050 1 25508081 1.51 0.03 5.05 595

SMG7 AT5G19400 5 6546259 3.06 -0.06 6.66 1244

ATPI4K*3 AT5G24240 5 8248050 2.45 0.06 5.89 13900

AGL17 AT2G22630 2 9588685 3.66 -0.05 4.17 -29687

SD RAV1 AT1G13260 1 4553530 2.32 -0.07 13.61 9788

EXT3 AT1G21310 1 7448446 0.37 -0.02 3.64 -4790

AT2G12400 AT2G12400 2 4999298 0.96 -0.04 8.48 -5645

PAP13 AT2G32770 2 13912889 3.45 -0.10 21.88 14612

SPA1 AT2G46340 2 19044616 0.63 -0.04 5.65 17203

PDF1 AT3G25800 3 9437458 0.24 0.03 4.16 11414

CDG1 AT3G26940 3 9926056 0.65 -0.03 6.38 -10526

CKL11 AT4G14340 4 8228311 0.24 -0.03 3.90 -19975

EBS AT4G22140 4 11707246 1.05 0.06 9.07 -20480

CESA1 AT4G32410 4 15645842 1.95 -0.07 13.21 -823

CYCLIN 1 AT4G37490 4 17632478 1.75 -0.05 11.87 8193

STN8 AT5G01920 5 338648 0.44 -0.03 4.33 -20459

NAC089 AT5G22290 5 7379995 0.54 -0.05 5.43 2351

0W FKF1 AT1G68050 1 6371569 0.42 -0.05 3.05 595

SPDS1 AT1G23730 1 8392979 0.57 0.06 4.39 27286

SPDS1 AT1G23820 1 8417196 1.23 0.07 7.74 -3069

ERD15 AT2G41430 2 17285257 0.77 -0.05 4.56 14715

ADL4 AT3G60190 3 22255698 0.44 -0.05 3.18 7865

GAI AT4G02780 4 1228186 2.17 -0.09 8.25 -9581

NRGA1 AT4G05590 4 2903746 1.25 -0.07 8.73 -3319

NIP5;1 AT4G10380 4 6415030 0.30 0.04 3.36 -16206

RAP74 AT4G12610 4 7459086 1.30 0.09 6.32 768

AGL19 AT4G22950 4 12048235 1.33 -0.07 7.45 20814

CESA1 AT4G32410 4 15645842 1.97 -0.11 7.70 -823

HAM4 AT4G36710 4 17325234 0.76 0.0484 5.43 17591

ATXR5 AT5G09790 5 3037582 0.45 0.04 4.48 -1396

ROXY2 AT5G14070 5 4867634 1.01 -0.07 5.01 -8881

SPL7 AT5G18830 5 6289819 0.53 -0.04 4.46 9138

DGR2 AT5G25460 5 8844702 2.46 -0.09 8.34 -18661

2W DD46 AT1G22015 1 7758148 2.44 -0.13 5.66 4629

LPAT3 AT1G51260 1 19008023 1.76 -0.10 3.8131 2382

ABCB19 AT3G28860 3 10855475 1.77 0.10 3.12 -14563

ATRBL11 AT3G58460 3 21613189 1.10 -0.09 3.06 -5206

NGA2 AT3G61970 3 22949227 1.89 0.09 4.43 -2236

4W ELP AT1G05850 1 1771680 2.00 -0.11 6.94 2985

WRKY25 AT2G30250 2 12916879 1.91 -0.09 6.44 11681

(Continued)
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observe that the new approach can capture the genes associated with the trait under study. We

also noted that some genes tested were found significant in nearly all the traits considered. For

example, gene DOGIwas discovered to be associated with LDV, SD, 0W, and 4W, gene SVP

was found to be related to LD and LDV, gene ETC3was found to be associated with LD, 0W,

and 2W, and gene ABCB19was discovered to be related to SD, 2W, and 4W. These results are

consistent with previous studies related to these traits as outlined in the references presented

in S5 Table.

Based on the results obtained from this study, we observe that correlation learning can be

used as a screening tool to reduce the number of markers in GWAS study. As already noted,

most methods used in variable selection in linear regression fail in high and ultra-high dimen-

sional settings. This study has presented a simple yet powerful tool to solve this problem. There-

fore, the Arabidopsis thaliana GWAS results of this study are reliable.

Discussion

The single locus tests in standard GWASmethods have been used successfully in identifying

thousands of genetic variants associated with hundreds of various traits. As noted by Segura et al.

[28], when we carry out single-locus tests of association, we risk using the wrong model unless

the trait is actually due to a single locus. Single locus tests fail to consider the joint effect of multi-

ple genetic markers on traits. They also suffer from the issue of multiple test correction for the

threshold value of significance test. The Bonferroni correction is too stringent, and many signifi-

cant loci are missed out. This calls for multi-locus testing in GWAS. Because only a subset of

SNPs is associated with the phenotype, penalized variable selection methods are appropriate in

GWAS. Several penalized methods have been used in solving this problem although they fail

when the number of variables, p, is several times larger than the sample size (n).

In this article, we developed an algorithm, ISIS EM-BLASSO that screens and significantly

reduces the number of SNPs to a moderate number. A moderate-scale variable selection

method was used to select variables in the reduced set. We chose SCAD since it is asymptoti-

cally oracle efficient. Parameter estimation and significance testing were done in the last stage

by applying EM-Bayesian LASSO [25] and likelihood ratio test. This algorithm is based on cor-

relation learning in the screening stage. Our approach lays emphasis on the significance of the

correlation between SNPs and the trait of interest in the screening stage. It is only the SNPs

that are significantly correlated with the trait that are selected in the screening stage. Hence we

do not need to subjectively fix the number of SNPs in the screening stage as in Fan and Lv [14]

method. ISIS EM-BLASSO differs with the original sure independence screening method by

how screening is done. Secondly, it integrates EM- Bayesian LASSO algorithm [25] in the final

stage to select and estimate effects. We compared the results of our new approach with results

Table 2. (Continued)

Trait Gene name Gene ID Chr SNP position (bp) ISIS EM-BLASSO Distance to gene (bp)

r2 Effect LOD

GSTF9 AT2G30860 2 13143876 2.67 -0.12 7.52 3631

CCT1 AT2G32260 2 13701496 0.71 -0.05 3.42 855

SMG7 AT5G19400 5 6525973 5.21 -0.19 11.00 -14030

CKB1 AT5G47080 5 19139239 0.97 0.06 3.64 12586

LD: days to flowering under long days; LDV: days to flowering under long days with vernalization, SD: days to flowering under short days; 0W: days to

flowering under LD with no vernalization; 2W and 4W: days to flowering under long days with 2 and 4 weeks vernalized, respectively.

doi:10.1371/journal.pcbi.1005357.t002
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obtained from EMMA [26], FarmCPU [24] and SCAD [7] methods. The reasons are varied:

EMMA [26] has been a standard gold method for GWAS, FarmCPU [24] just like ISIS EM-

BLASSO also reduces the number of markers used in GWAS, SCAD [7] is actually used in

the screening method of ISIS EM-BLASSO hence the need to compare it independently and

mrMLM [20] integrates single locus with multi-locus approach. ISIS EM-BLASSO is the fastest

as compared to these other methods. ISIS EM-BLASSO only takes 3% of the computing time

needed by the EMMAmethod, 16% of the time taken by mrMLM, 20% of the time taken by

SCAD and 50% of the time taken by FarmCPUmethods. Screening stage reduces the number

of SNPs to an average number hence less time taken in the overall process. More importantly,

ISIS EM-BLASSO performs generally the best; it has high statistical power, low Type 1 error

and lowMSE of estimated QTN effects (S1, S2 and S3 Tables). This algorithm improves the

estimation of parameters because even in the last stage, EM-Bayesian LASSO still performs

variable selection shrinking other SNPs to zero hence significantly improving the estimates and

empirical power. Notice that EM-Bayesian LASSO [25] performs effectively in the last stage

because the number of SNPs has been reduced considerably. Just like SCAD, EM-Bayesian

LASSO will fail when the number of SNPs runs into hundreds of thousands. For this reason we

did not perform tests for EM-Bayesian LASSO independently. Combining sure independence

screening, SCAD, and EM-Bayesian LASSO improves the results regarding of empirical power,

accuracy, and computational efficiency.

In the screening stage of ISIS EM-BLASSO, iterative sure independence screening can be

performed several times. In the article, we only performed a single iteration since we chose a

high level of significance, 0.01, for identifying predictors that are significantly correlated with

the response. At this level of significance, we expect to have moderately more variables in the

screening stage so that SCAD can be applied to shrink some of these variables to zero. A lower

level of significance and/or multiple test correction in the screening stage might be too strin-

gent and may result in missing significant SNPs at this juncture. Most shrinkage methods will

still perform effectively even when the number of variables, p, is moderately greater than or

equal to the number of observations, n. Therefore the choice of a level of significance of 0.01

without any multiple test correction is justified. Note that if several iterations are performed,

then many unimportant variables are selected. Even so, this algorithm is still valid because the

extension of this method with EM-Bayesian Lasso [25] in the last stage eliminates un-associ-

ated. Other multi-locus GWAS approaches such as multi-locus mixed model (MLMM) [28]

have been studied before. MLMM approach of Segura et al. [28] is inadequate since its greedy

forward-backward method inclusion of SNPs is clearly limited in exploring the huge model

space.

ISIS EM-BLASSO considers the joint effect of all SNPs that passes the screening criterion.

Unlike EMMA and FarmCPU, we do not apply the Bonferroni correction for multiple testing

hence ISIS EM-BLASSO performs better than these methods regarding statistical power. Bon-

ferroni correction is indeed too stringent hence it removes some significant SNPs in the final

results when EMMA and FarmCPU are used. Although we still used a slightly stringent crite-

rion of LOD value 3 in our final stage, ISIS EM-BLASSO still has high statistical power and

low false positive rate, indicating a better performance of the new algorithm over EMMA and

FarmCPU. mrMLM compares almost equally with ISIS EM-BLASSO regarding power and

MSE (S1, S2 and S3 Tables). mrMLM is also a two stage method hence the similarity. Never-

theless, ISIS EM-BLASSO is still faster than mrMLM. The results obtained here also demon-

strate that many penalized methods fail when the number of SNPs is many times larger than

sample size as seen from results obtained when SCAD is used to analyze data.

ISIS EM-BLASSO was used to analyze six flowering time traits in this study. As a result,

67 known genes were detected. Among these known genes, 50 were identified only by ISIS

ISIS EM-Bayesian LASSO algorithm for multi-locus GWAS
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EM-BLASSO (Table 2). Many genes obtained by our approach are in the neighborhood of the

89 SNPs detected (S5 Table). These results are consistent with those previously reported, as

shown in the database (http://www.arabidopsis.org/) the work of Atwell et al. [27] and other

related references in S5 Table. Atwell et al. [27] listed many significantly associated SNPs to

these traits though some of them were not significant at the 0.05/m criterion. Therefore, the

Arabidopsis thaliana GWAS results presented by our algorithm in this study are reliable.

Conclusion

We considered an iterative modified sure independence screening (ISIS) and extended it by

applying EM Bayesian LASSO algorithm herein referred to as ISIS EM-BLASSO. This

approach was used to identify relevant genes in GWAS study in real data. The new approach is

simple, fast and shows high statistical power of detecting relevant SNPs on simulated data.

Mean squared errors of the estimated effects are also minimal. We recommend this approach

as an accurate and fast alternative for carrying out multi-locus GWAS study especially in high

dimensional settings. ISIS EM-BLASSO reduces the search to a moderate number of SNPs that

are significantly correlated with the trait of interest. As a result, we reduce the computing time

for GWAS, and also ensure that GWAS can be carried out on a small computer. Our extension

by EM-Bayesian LASSO ensures that the parameter estimates are reliable.

Methods

Genetic model

In this study, we considered the regression model,

y ¼ mþ
Xq

j¼1

Qjajþ
Xp

i¼1

Xibi þ ε ð1Þ

with y being a n×1 vector of phenotypic quantitative trait, μ is the overall average, Qj is the jth

fixed effect which must be included in the model, for example, the population structure, Xi is a

n×1 vector of the ith SNP values and ε*MVNn(0,σ
2I) is the residual error.

Screening and estimation

Given the model in Eq (1) we corrected y for the fixed effectsQj, j = 1,2,. . .,q before applying the

screening procedure. The effects â j are obtained by ordinary least squares. Eq (1) then becomes,

yc ¼ y �
Xq

j¼1

Qjaj ¼mþ
Xp

i¼1

Xibi þ ε and without loss of generality, this can just be denoted as

y ¼ mþ
Xp

i¼1

Xibi þ ε ð2Þ

SCAD. All regularized regression methods aim at estimating the vector β of regression

coefficients in Eq (2) by minimizing an objective function ξ composed of a loss function (e.g.

residual sum of squares (RSS)) and a penalty function

xl;gðβÞ ¼ arg min
b

Xn

i¼1

yi �
Xp

j¼1

ðbjXijÞ

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

loss function

þ
Xp

j¼1

rl;gðjbjjÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

penalty function

8

>><

>>:

9

>>=

>>;

ð3Þ

where ρλ,γ(�) is a function of the vector of coefficients β = (β1,β2,� � �,βp)
T and the tuning
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(penalty) parameter λ > 0 controls the trade-off between minimizing the loss and the penalty

term. γ>0 is a shrinkage parameter that determines the order of the penalty function. Notice

that we avoided μ in Eq (3) because we assume that the input data is standardized making

overall mean zero. Minimizing Eq (3) yields a spectrum of solutions depending on the value of

λ. The gradient (first derivative) of a penalty function determines how it affects the answer in

(3) [29]. Typically, the penalty function ρ is symmetric about the origin (ρ(0) = 0) and its non-

decreasing in the interval (0,1) [7].

Of great importance to us in this study is the SCAD penalty which is defined as

rl;gðβÞ ¼ ljβj1fjβj<lg þ
gljβj � 0:5ðβ2 þ l

2Þ

g� 1
1fl<jβj�glg þ

l
2ðg2 � 1Þ

2ðg� 1Þ
1fjβj>glg ð4Þ

with λ � 0, λ > 2 and 1{x2A} being an indicator function. This penalty gradually reduces the

penalization rate to zero as |β| gets larger. The regularization parameter γ controls the degree
of concavity, with smaller γ corresponding to more concave penalty when γ !1, SCAD con-

verges to the L1 penalty. [7] Suggested using γ = 3.7 for SCAD. SCAD is asymptotically oracle-

efficient [7].

EM-Bayesian LASSO (EM-BLASSO). Xu [25] developed the EM-algorithm for the

Bayesian LASSO by considering the linear mixed model

Y ¼
Xq

j¼1

Xjbj þ
Xp

k¼1

Zkgk þ ε ð5Þ

where βj is the jth non-QTN effect, Xj is the corresponding design matrix, γk is a vector of SNP
effects for locus k and Zk is the corresponding incidence matrix determined by the genotypes

of the locus k. The dimensions of γk and Zk depend on the number,mk of genotypes for the

locus k. The residual error vector ε is assumed to be distributed as MVNn(0,σ
2In). In our case

X will include the overall mean and the population structure matrix we will use the original

before Y correction. Using a normal prior for γk, i.e., gk � MVNmk
ð0; s2

kImkÞ and two different

types of priors of s2

k , one can solve for ŝ2

k [25]. As for the fixed effects, we have [30],

β̂ ¼ ðXTV�1XÞ
�1
XTV�1Y

where V ¼
Xp

k¼1

ZkZ
T
k s

2

k þ Is2 is the variance component and residual variance estimator is

ŝ2 ¼
1

n
ðY� XβÞT

(

ðY� XβÞ �
Xp

k¼1

ZkEðgkÞ

)

ð6Þ

where E(γk) = E(γk|θ,y). The EM steps of Xu [25] are developed by letting γk be the missing val-

ues and by using the following expectations for maximization step.

EðgkÞ ¼ s2

kZ
T
kV

�1ðY� XβÞ

EðgTk gkÞ ¼ EðgTk ÞEðgkÞ þ tr½varðgkÞ�

varðgkÞ ¼ Is2

k � s2

kZ
T
kV

�1Zks
2

k

ð7Þ

Iterative Sure Independence Screening-EM Bayesian LASSO (ISIS EM-BLASSO). We

describe a multi-stage approach for screening and selecting relevant variables/SNPs. Our

approach first reduces the number of variables via correlation learning approach to a moderate

number that can be handled by any moderate-scale variable selection method. In the screening

ISIS EM-Bayesian LASSO algorithm for multi-locus GWAS
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stage, we first reduce the number of SNPs by selecting only SNPs/predictors that are signifi-

cantly correlated with the response. Applying SCADmethod, we select relevant variables while

shrinking others to zero. Notice that this is a modified version of sure independence screening

(SIS) in Fan and Lv [14]. Herein, our emphasis is on the significance of correlation. In the next

stage, we find significant predictors that are marginally uncorrelated with a response. Using an

iterative modified sure independence screening (ISIS) procedure, we repeat the SIS procedure

conditional on the previously selected variables so as to capture essential variables that are

marginally uncorrelated with a response. Notice that a combination of variables selected from

the above two steps may not be regarded as a set of significant variables since the false detec-

tion rate will be extremely high. Therefore, we have extended this approach by applying

EM-Bayesian LASSO algorithm [25] in the final stage. Parametric estimation and significance

tests of variables are performed at this last stage. We call this algorithm ISIS EM-BLASSO. We

describe the ISIS EM-BLASSO briefly in two stages as follows;

1. Screening Stage

a. We correct the phenotypes using fixed effects that must be included in the model such

as the population structure. We center each input variables so that the observed mean is

0, and scale each predictor so that the sample standard deviation is 1. Let KT = {1� i�

p: βi 6¼ 0} be the exact sparse model of size k = |KT|. The other p−k variables can also be

correlated with the response variable via linkage to the predictors that are contained in

the model.

b. We let r = {r1,r2,� � �,rp} be a p-vector that is obtained by component-wise regression, i.e.,

r ¼ X0Y ð8Þ

with data matrix X first being standardized column-wise. r is a vector of marginal corre-

lations of predictors with the response variable, rescaled by the standard deviation of the

response.

c. By sorting only significant marginal correlation, we define a sub-model,

K
1
¼ f1 � i � p : jrij is significant at the 0:01 levelg ð9Þ

We chose to use a significance level of 0.01. At a significant level of 0.01, we will capture

even slight correlations between predictors and the response. By sparsity, we expect that

the actual model KT has a size less than n hence any moderate shrinkage method will

remove unimportant predictors. SCAD is a moderate-scale variable selection method

since it selects variables from moderately high dimensional linear model shrinking the

unimportant ones to zero. Hence, we applied penalty in Eq (4) to the sub-model K1 and

selected the variables related to the response with a high probability i.e. K1 � K
T. ncvreg

package in R language downloaded from http://cran.r-project.org/web/packages/ncvreg/

facilitates this step. This step is a modified version of SIS-SCAD in Fan and Lv [14].

d. To screen variables that may not be marginally correlated with the response, an iterative

modified sure independence screening (ISIS) method is applied. After the modified

SIS-SCAD (step (iii) above) has been implemented, we obtain the selected variables of

say size τ1. Then we have an n-vector of residuals from regressing the response Y over

T1 ¼ fXi1;Xi2; � � � ;Xit1g. Treating the residuals as the new responses, we apply the same

procedure in steps (i)–(iii) to the remaining p−τ1 variables. This results in another subset

of size, say τ2 of variables in the sub-model T2 ¼ fXj1;Xj2; � � � ;Xjt2g. This results in a

selected sub-model of size, say τ = τ1 + τ2. There is a high probability that K
T� T1[T2.

ISIS EM-Bayesian LASSO algorithm for multi-locus GWAS
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2. Estimation stage

We apply EM-Bayesian LASSO algorithm [25] to filter out and estimate the true effects

from the set T1[T2 of size τ = τ1 + τ2. Using the model,

Y ¼ Xβ þ
Xt

k¼1

Zkgk þ ε ð10Þ

we estimate γk for k = 1,2,. . .,τ with the EM steps being updated using Eqs (6) and (7) till

convergence occurs so that ĝk ¼ EðgkÞ and Var(γk) is the prediction error for γk. Notice
that at this stage, we use the original Y before correction, so that Zk denotes the kth SNP val-

ues and X includes overall mean and population structure.

A diagrammatic representation of our overall algorithm is presented in Fig 6. The new algo-

rithm has been implemented in R and its software can be downloaded from https://cran.r-

project.org/web/packages/mrMLM/index.html. For comparison purposes, we have compared

ISIS EM-BLASSO with four methods, which are EMMA (http://mouse.cs.ucla.edu/emma/)

[26], SCAD (http://cran.r-project.org/web/packages/ncvreg/) [7], mrMLM (http://cran.r-

project.org/web/packages/mrMLM/index.html) [20], and FarmCPU (http://www.ZZLab.net/

FarmCPU) [24].

Significance testing

ISIS-EM-BLASSO gives the marker effects estimates, γkwhich must be tested for their signifi-

cance to the phenotype under study. We propose that all ĝk 6¼ 0 k = 1,2,� � �,p could be viewed to

be associated with the trait under study. With the model (10) above at hand, and all ĝk 6¼ 0 let’s

say of size q, we consider the model’s likelihood functions. Let L
0
¼ Lðŷ�kÞ and L1 ¼ Lðŷ

1
Þ be

short expressions of the natural logarithms of the likelihood functions under the null model and

the full model, respectively, with ŷ�k ¼ fgð1Þ; � � � ; gðk�1Þ; gðkþ1Þ; gðqÞg and ŷ1
¼ fgð1Þ; � � � ; gðqÞg.

In essence, we test the null hypothesis,H0:γ(k) = 0 that there is no QTN linked to the marker

k. We use log of odds (LOD) score as the test statistic. The original likelihood functions (before

taking the natural log) are l
0
¼ eL0 and l

1
¼ eL1 , respectively. The LOD score is defined as

LOD ¼ log
10

l
0

l
1

� �

¼
�2ðL

0
� L

1
Þ

4:6052
ð11Þ

The LOD score is easy to interpret because of base 10. We select all markers with a score

LOD� 3 and regard them as significant. Note that LOD value 3 is a slightly stringent criterion

and is equivalent to p-value: Pr(χ2> 3×4.6052) = 0.0002. If the null hypothesis is true, LOD ×

4.6052 follows a Chi-square distribution with one degree of freedom. A similar procedure is

used to test the significance of the estimates obtained from SCAD and mrMLM.

It is important to point out that, for the EMMA and FarmCPUmethods we select signifi-

cant markers based on Bonferroni correction for multiple tests by setting a threshold for P-

value at 0.05/m, wherem is the number of markers.

Numerical studies and application

Monte Carlo simulation experiments. In our simulation studies, all the genetic values for

SNP markers were randomly sampled from Atwell et al. [27] (http://www.arabidopsis.org/)

and all the phenotypes values for quantitative traits were simulated. The dataset of Atwell et al.

[27] includes 199 diverse inbred lines each with 216,130 SNPs. From these SNPs in Atwell

et al. [27], we obtained 10000 SNP genotypes by sampling 2000 SNPs randomly from each

ISIS EM-Bayesian LASSO algorithm for multi-locus GWAS
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chromosome. The positions and genotypes for all the selected SNPs were same as those in

Wang et al. [20].

In our first simulation study, the dataset consisted of 10000 SNP genotyped from 199

inbred lines. We set six QTN and placed them on the SNPs with allelic frequencies of 0.30; the

heritabilities were set as 0.10, 0.05, 0.05, 0.15, 0.05 and 0.05, respectively. The positions and

effects of these QTN are listed in S1, S2 and S3 Tables. We set the mean at 10 and variance of

random errors at 10. In our simulation study, we applied the ISIS EM-BLASSO, EMMA,

SCAD, mrMLM and FarmCPUmethods in 1000 runs. For each simulated QTN, we counted

the samples in which LOD� 3 for ISIS EM-BLASSO, SCAD and mrMLM whereas for EMMA

and FarmCPU we selected all markers with p-values less than 0.05/m (Bonferroni correction

for multiple tests), wherem is the number of markers. Each QTN within 1kb of the simulated

QTN was considered a true QTN. A fraction of the number of such samples over the total

number of run (1000) represented the empirical power of this QTN. The false positive rate

(FPR) was calculated as a fraction of the number of false positive effects over the total number

of zero effects considered in the full model. We calculated the mean squared error (MSE) for

each QTN to measure the bias of QTN effect estimate. We also performed a paired t-test for

the differences (A–B) of statistical power or MSE between ISIS EM-BLASSO (A) and other

methods (B).

Fig 6. Diagrammatic representation of ISIS EM-BLASSO algorithm.

doi:10.1371/journal.pcbi.1005357.g006
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In our second simulation study, we investigated the effect of the polygenic (small effect

genes) background on ISIS EM-BLASSO. The polygenic effect was simulated by multivariate

normal distribution,MVNnð0;Ks
2

polyÞ where s
2

poly is the polygenic variance, and K kinship coef-

ficient matrix between a pair of individuals. Here s2

poly ¼ 2 hence h2poly ¼ 0:092. The QTN size

(h2), average, residual variance, and other values were the same as those in the first simulation

study.

In our third simulation study, we studied the effect of epistatic background on ISIS EM-

BLASSO. Three epistatic QTN each with s2

epi ¼ 1:25 and h2epi ¼ 0:05 were simulated. The

details for the three epistatic QTN were described in Wang et al. [20]. The QTN size (h2), aver-

age, residual variance, and other values were the same as those in the first simulation study.

All the above simulated datasets are saved in S1 Dataset.

Real data analysis. Six flowering time-related traits in Arabidopsis [27] were analyzed by

the ISIS EM-BLASSO, EMMA, and FarmCPUmethods to validate the new method. These

traits are days to flowering under long days (LD), days to flowering under long days with ver-

nalization (LDV), days to flowering under short days (SD), days to flowering under LD with

no vernalization (0W), days to flowering under long days with 2 weeks vernalized (2W) and

days to flowering under long days with 4 weeks vernalized (4W). These datasets were down-

loaded from http://www.arabidopsis.usc.edu/. In the real data analyses, the significantly associ-

ated SNPs were determined by the critical threshold of LOD� 3 for the new method, SCAD,

and mrMLM, and with the P-value less than 0.05/m for EMMA and FarmCPU. Candidate

genes for the trait under study were mined within 30 kb of the significantly associated SNP.

Supporting information

S1 Table. Comparison of ISIS EM-BLASSO (new), EMMA, SCAD, FarmCPU and mrMLM

in the first simulation experiment without polygenic background.

(DOC)

S2 Table. Comparison of ISIS EM-BLASSO (new), EMMA, SCAD, FarmCPU and mrMLM

in the second simulation experiment with an additive polygenic background (explaining

0.092 of the phenotypic variance).

(DOC)

S3 Table. Comparison of ISIS EM-BLASSO (new), EMMA, SCAD, FarmCPU and mrMLM

in the third simulation experiment with three epistatic QTNs each explaining 0.05 of the

phenotypic variance.

(DOC)

S4 Table. Goodness of fit (AIC, BIC) for SNPs detected by four methods (ISIS

EM-BLASSO (new), EMMA, FarmCPU, and mrMLM), where a lower value indicates a bet-

ter fit.

(DOC)

S5 Table. Genome-wide association studies for six flowering time traits in Arabidopsis

thaliana using ISIS EM-BLASSO (new), EMMA, FarmCPU, and mrMLM.

(DOC)

S1 Dataset. All the genetic values for SNP markers were randomly sampled from Atwell

et al. [1] (2010) (“Genotypes” sheet) and all the phenotypes values for quantitative traits

were simulated (Phenotypes_1, Phenotypes_2 and Phenotypes_3 sheets). In the “Geno-

types” sheet, there are 199 diverse inbred lines, each with 10000 SNP genotypes, obtained by
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sampling 2000 SNPs randomly from each chromosome in Atwell et al. [27] (http://www.

arabidopsis.org/). In the “Phenotypes_�” sheet, all the phenotypic values with 1000 replicates

were simulated based on genotypic values in “Genotypes” sheet and simulated parameters. The

ith sample consists of the (199(i−1)+1)th to 199ith rows in the first column (i = 1,. . .,1000). “�”

indicates the sequence number (1, 2 and 3) of simulated experiments.

(XLSX)
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