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Abstract—Imbalanced training sets are known to produce
suboptimal maps for supervised classification. Therefore, one
challenge in mapping land cover is acquiring training data that
will allow classification with high overall accuracy in which
each class is also mapped onto similar user’s accuracy. To
solve this problem, we integrated local adaptive region and box-
and-whisker plot (BP) techniques into an iterative algorithm to
expand the size of the training sample for selected classes in
the current study. The major steps of the proposed algorithm
are as follows. First, a very small initial training sample for
each class set is labeled manually. Second, potential new training
samples are found within an adaptive region by conducting local
spectral variation analysis. Lastly, three new training samples are
acquired to capture information regarding intra-class variation;
these samples lie in the lower, median, and upper quartiles of BP.
After adding these new training samples to the initial training
sample, classification is retrained and the process is continued
iteratively until termination. The proposed approach was applied
to three very high resolution (VHR) remote sensing images
and compared with a set of cognate methods. The comparison
demonstrated that the proposed approach produced the best
result in terms of overall accuracy and exhibited superiority in
balancing user’s accuracy. For example, the proposed approach
was typically 2%-10% more accurate than the compared methods
in terms of overall accuracy and it generally yielded the most
balanced classification.

Index Terms—Very high-resolution remote sensing image, land
cover classification, training sample collection.

I. INTRODUCTION

REMOTE sensing images with very high resolution

(VHR) can currently be obtained with ease. Considering

some of the advantages of VHR images, such as the clarity of

the images and the ability to capture ground geometry details,

these images have been applied successfully in applications

such as land cover mapping [1]–[4] and change detection

[5]. However, while VHR images typically have a fine spatial

resolution, they may have a low spectral resolution and con-

sequently may not necessarily yield an accurate classification

because of limited spectral separability. Even for a VHR image
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acquired in many wavebands, such as from a hyperspectral

sensor, a high classification accuracy is not guaranteed [6]–

[8].

A popular technique used to address some of the problems

encountered in the classification of VHR imagery is spatial-

spectral feature extraction [9], [10]. This method focuses on

exploring spatial features by utilizing the correlation between

a pixel and its neighbors in terms of spectra or another

derived feature to complement insufficient spectra. Zhang et

al. developed an algorithm, called pixel shape index (PSI), for

improving the classification of VHR remote sensing images

[11]. On the basis of PSI, Zhang et al. promoted a similar

algorithm, called object correlative index, for land cover

mapping with VHR remote sensing image [12]. Texture is

another helpful feature that can be coupled with spectra for

improving classification accuracy [13]–[15]. Many mathemat-

ical models have been developed for extracting spatial features

and supplementing insufficient spectra. For example, extended

morphological profiles (EMPs) were promoted for improving

hyperspectral and VHR remote sensing image classification

[16]. Thereafter, multi-shape structural element morphological

profiles (M EMPs) [17] and morphological attribute profiles

(APs) [18] were presented. Here it should be noted that a

spatial filter can also a helpful tool for smoothing noise in

classification maps based on VHR remote sensing images.

For example, an edge-preserving filter has been developed for

image classification, and comprehensive research has clearly

demonstrated the advantages of that filter [19]–[21]. A rolling

guide filter (RGF) has also been proposed and applied suc-

cessfully to the classification of VHR remote sensing images

[22], [23]. Recursive filters (RFs) have also been developed for

increasing the accuracy of classification from hyperspectral

and VHR remote sensing images [3]. In addition, object-

based approaches [24], [25], deep learning methods [26], [27],

and contextual models [28], [29], have been promoted and

applied to the classification of VHR remote sensing images.

Although numerous methods have been developed and im-

proved classification accuracy for VHR remote sensing images

in corresponding cases, no single method can be labeled “the

best” or “the most appropriate” for all cases [30]–[32]. More-

over, in terms of the supervised classification of VHR remote

sensing images, training sample selection for most available

methods are achieved manually [33], [34]. Often an equal

number of training samples are selected randomly per class

[6], [35], [36]. Therefore, training sample selection depends

excessively on the experience of practitioners, and on manually
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selecting the precise label which can be extremely difficult

due to the limitations of human vision [37]. Furthermore,

the experimental results based on current methods clearly

show that equal training samples per class may not provide

a sufficiently accurate classification [2], [35], [38]–[41]. The

quality of a classification may be assessed in a variety of

ways [42]. Often the focus is on the accuracy of the entire

classification assessed over all classes and on the accuracy

achieved on a per-class basis. Indeed, popular Anderson-type

targets focus on a level of overall accuracy to be achieved with

the accuracy for the individual classes to be broadly similar

or balanced [43], [44]. Accuracy on a per-class basis can be

assessed in a variety of ways depending on the objectives

of the analysis [42]. For example, here, a concern is with

commission error and hence accuracy on a per-class basis

may be assessed using user’s accuracy. It is argued here that

the training sample can be acquired in a way to enhance the

production of an image classification to help achieve desired

accuracy targets.

Regardless of spatial-spectral feature extraction, mathemat-

ical model-based approaches, or filter smoothing techniques,

training and testing are two unavoidable tasks in using su-

pervised classifiers for classification. Although the training

stage of a classification should be designed for the specific

classifier to be used, with a training set being of variable

value to different classifiers a widely observed trend is for

classification accuracy to increase with the size of the training

set [45], [46]. Thus, methods to help select training samples

have been suggested. For example, Richards et al. augmented

the training set by using suitable neighbors to improve classi-

fication accuracy with hyperspectral and VHR remote sensing

images for a maximum-likelihood classifier [47]. Imani et al.

explored features using weighted training samples for land

cover classification with VHR remote sensing images [48].

Kang et al. found that manually labeling the training sample

may result in assigning an incorrect label. Consequently,

they promoted an algorithm for correcting mislabeled training

samples to improve the classification accuracy [37]. Tu et

al. presented an algorithm for detecting and correcting noise

labels in the classification of hyperspectral and high spatial

resolution images [49], [50]. In addition, many researchers

have focused on classification with limited labeled training

samples because manually labeling samples for VHR remote

sensing images is both time consuming and labor intensive

[51], [52]. For example, Huang et al. proposed the automatic

labeling and selection of training samples with the assistance

of OpenStreetMap [51]. Li et al. promoted an unsupervised

sample collection method for urban land cover mapping with

Landsat satellite images [53]. Despite considerable research

related to training samples for hyperspectral or Landsat im-

ages, only a few approaches have focused on training sample

collection for VHR image classification. Although the current

literature [37], [47] indicates that neighboring pixels can

be used to exclude noise sample points and reduce their

negative effects on classification accuracy. Intra-class variation

within a land cover patch should be further considered when

collecting training samples. On the basis of these methods and

applications, the intra-class heterogeneity that defines the low

correlation among features of the same class should be fully

considered when expanding the initial training samples (ITSs)

to improve classification accuracy. Furthermore, balancing

user accuracy among all classes remains a challenging problem

when improving the classification accuracy of VHR remote

sensing images.

The use of imbalanced training sets is often a source

of classification error, with bias towards the more prevalent

classes over the rarer classes. To tackle the issue of class

imbalance, a well-known algorithm named Synthetic Minority

Over-sampling Technique (SMOTE) has been proposed in

[54]. The basic idea of the SMOTE algorithm lies in gen-

erating synthetic minority examples in order to over-sample

the minority class to acquire a relative balance classification

map. In recent years, SMOTE has been improved and applied

successfully in a range of fields, such as social data mining

[55], hyperspectral data classification [56], and deep learning

[57]. More comprehensive analysis on SMOTE can be seen in

[58]. It should be noted that, the initialization of the SMOTE

algorithm requires an unbalanced training sample set for each

class, and it also has limitation when it is applied to high-

dimensional data [59].

Therefore, in this study, we first propose an effective method

for expanding training samples to improve classification ac-

curacy while balancing user accuracy for classification from

VHR remote sensing images. The proposed approach consists

of the following steps. First, an ITS set with an extremely

small quantity is labeled manually. Then, to preserve the

uncertain shape and size of a land cover patch in a VHR image,

an adaptive region around each point of ITS is constructed

to utilize the contextual information. To detect potential new

training samples within the adaptive region, the spectral simi-

larity among each pixel within the adaptive region is obtained,

and a box-and-whisker plot (BP), which is a classical data

descriptive statistical tool, is used. Finally, three points around

each initial labeled point are assigned as expanding training

samples with the assistance of BP. The preceding steps are

considered as an iterative algorithm. In the iterative process,

whether the training sample for a specific class should be

expanded continually depends on whether the corresponding

classification map satisfies a predefined rule proposed here (the

details of the suggested rule are provided in Section III). Thus,

this algorithm can automatically adjust the number of training

samples for each class and seek to balance user’s accuracy.

The iterative algorithm is terminated when all the expanded

training samples for each class satisfy our proposed rule. The

major contributions of the proposed approach are as follows.

1) The proposed approach provides a novel method for

enriching the ITS set to improve the classification accuracy

of VHR images. Intuitively, the shape and size of different

individual land cover patches are unknown in a given VHR

image scene. Thus, the adaptive region around each training

sample point is more helpful than a regular window or a

strict mathematical model for utilizing contextual information.

In addition, given that the ITS for a specific class may not

cover sufficient spectral signature for a land cover patch, the

representative ability of the ITS may be scant for a class. To

include additional spectral signatures for a class, which is the
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basic motivation of this study, an iterative algorithm based on

the adaptive region and BP techniques is developed.

2) The proposed approach is effective for improving the

overall accuracy and balancing the user’s accuracy of classi-

fications with VHR remote sensing images. Compared with

the results based on ITSs without any processing, the training

sample enrichment approach [47], and the relatively new

mislabeled training sample detection and correction approach

[37], it is shown in this paper that our proposed method

achieves better overall accuracy and balanced user’s accuracy

in classifying VHR remote sensing images from three differ-

ent sources. Furthermore, the experimental results effectively

demonstrate that the proposed approach is feasible for the

classification of different image features. Although we have

only observed its accuracy on a support vector machine (SVM)

classifier, the proposed method may exhibit potential ability

for other supervised classification methods.

3) Notably, the proposed approach requires relatively fewer

training samples for initialization, and its parameters do not

necessitate hard-tuning for different datasets. The experimental

section clearly demonstrates that the proposed approach can

improve classification accuracy while adjusting user accuracy

among different classes. For example, when the ITS is less

than 4.2% of the ground reference samples used to test the

classifier, the accuracy of the proposed approach without

parameter hard-tuning remains competitive.

The remainder of this paper is organized as follows. The

assessment of classification accuracy with remote sensing

images is reviewed to enhance the understanding of the

contributions of our proposed approach in Section II. The

details of the proposed approach are presented in Section III.

Experiments are conducted and analyzed in Section IV. Lastly,

a conclusion is provided in Section V.

II. REVIEW OF THE LAND COVER MAPPING ASSESSMENT.

The accuracy of the classifications produced were evaluated

on an overall and per-class basis. Popular measures of accuracy

of relevance include overall accuracy (OA), average accuracy

(AA) and the kappa coefficient (Ka) [60]–[63]. If TP, TN,

FP, and FN are defined as the number of “True Positives”,

“True Negatives”, “False Positives”, and “False Negatives”,

respectively. OA is calculated as “OA= Tp+TN
TP+TN+FP+FN

”,

“AA=( TP
TP+FP

+ TN
TN+FN

) × 1

N
”, where N is the total

number of the pixels in a given image. In addition, the Ka

is the percentage of agreement corrected by the number of

agreements that would be expected due to chance alone, and

the class-specific accuracy [64]. Apart from these measure-

ments, user accuracy is another important index for evaluating

classification accuracy from the perspective of map users

[60], [61]. User accuracy essentially indicates how frequently

the class on a map will actually be present on the ground.

For a specific class (Cn), the user’s accuracy of Cn can

calculate as “UA(Cn)=
TPcn

Tpcn
+FPcn

”. This feature is referred

to the reliability. Thus, user accuracy is important in practical

engineering applications. If fact, UA is complemented by

commission error (CE): user accuracy = 100%-CE. Assume

that the confusion matrix between the result and the ground

reference is M =

[

C11 C12

C21 C22

]

, and the CEs for Classes C1

and C2 are CE(C1) = C12

C11+C12

and CE(C2) = C21

C21+C22

,

respectively. Then, high user accuracy indicates low CE and

high reliability of the result. Therefore, apart from OA, AA,

and Ka, the user accuracy of each class should be improved

in practical applications.

III. PROPOSED APPROACH

The major contribution of this paper is to propose an effec-

tive method for expanding training samples to improve OA,

AA, Ka, and user accuracy. Two techniques, namely, adaptive

region and BP, are integrated into an iterative algorithm to

achieve these objectives. To clarify the terminated condition

of the proposed approach, the matched pixel between two

iterations are defined and compared in (1), as presented as

follows:

|MCn

k−1,k −MCn

k,k+1
| ≤ ε (1)

MCn

k−1,k =
count(MCn

k−1
↔ MCn

k )

W ×H
(2)

MCn

k,k+1
=

count(MCn

k ↔ MCn

k+1
)

W ×H
(3)

where MCn

k−1,k and MCn

k,k+1
are defined in (2) and (3),

respectively. MCn

k−1,k is the ratio between the matched pixel

and the total pixels in terms of the classification map based

on different iterations for class Cn. In addition, ε is a very

small constant. In this study, ε is fixed at 0.003. Therefore, (1)

implies that when the difference among the classification maps

(Mk−1, Mk, and Mk+1) based on the different iterations’

expanded training samples for the specific class Cn is less

than ε the current training sample’s distribution and quantity

of training samples for class Cn are satisfactory. Thus, the

training samples for class Cn will not be adjusted in the next

iteration. However, when the training samples for other classes

are varied, these variations may affect the accuracy of class

Cn for a supervised classifier in the next iteration. Therefore,

each class should be checked to determine whether it meets

the predefined condition (i.e., (1)) in each iteration. When

the training samples for a class satisfy this condition, these

samples will be transformed directly into the next iteration.

Otherwise, the training samples for this class will be expanded

continuously. The iteration will be terminated when the result

of each class satisfies (1).

The details of the proposed algorithm is presented in Al-

gorithm 1. In this algorithm, ITS0 is defined as the original

training sample set, and LC0 , LC1 , LC2 ...LCT are the individ-

ual sample set for each class. Where T is the total number of

class.

From the perspective of technique and practical application-

s, the major advantages of the proposed approach lie in the

following aspects.

(1) The proposed approach is highly automated. Although

the proposed approach references three parameters (T1, T2,

and ε) in the iteration, they do not require hard-turning.
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Algorithm 1 The algorithm of the proposed approach.

Input: ITS0=
{

LC0 , LC1 , LC2 ...LCT

}

;

I={I(i, j)|0 ≤ i ≤ W, 0 ≤ j ≤ H}.

Output: Final land cover map.

1: Obtain the initial classification map (Mk−1) based on the

ITS using an SVM classifier. Where, k=1.

2: Scan each labeled training sample in ITSk−1 and detect

potential training samples around each labeled point using

the proposed adaptive region and BP techniques. Then, the

new ITS (ITSk) and classification map(Mk) are generated,

where, k=1.

3: Repeat Step 2. ITSk+1 and Mk+1 are obtained, where,

k=1.

4: Check the matched classified pixel for the class(Cn),

in terms of Mk−1, Mk and Mk+1. If the class does

not satisfy our predefined condition (Equation 1), then

continue detecting potential training samples around each

labeled point of ITSk+1; otherwise, check the next class

and repeat the previous judgment, where k=1.

5: After each point of the current training samples is scanned

and processed as Step 4, new expanded training samples

and the corresponding map are generated, where k++.

6: After k ≥ 2, Steps 4 and 5 are repeated iteratively.

7: The iteration terminates when all the classes satisfy the

predefined condition (1).

8: Return Final classification map.

Moreover, a competitive accuracy can be acquired under the

fixed parameter setting for different datasets.

(2) The user’s accuracy of each class can be balanced by

adjusting the training samples. In the iterative process of the

proposed approach, the training samples for each class are

adjusted until all the training samples meet our predefined

condition (Equation 1). The idea of balancing training samples

among different classes to avoid bias in the corresponding

accuracy is first promoted.

To guarantee the repeatability of our proposed ap-

proach, the referenced code can be downloaded here (http-

s://github.com/Yzxy669/CodeLink). In addition, it is worth

noting that the requirement of running the code is OpenCV

2.4 library, C++, and Win 10 system.

A. Construction of an adaptive region for utilizing contextual

information

Here, we assume that we can manually assign a small

initial training sample with rare points to each class. In-

stead of directly using ITS, ITS is adopted for the initial-

ization of our proposed approach. As shown in Algorithm

1, ITS0=
{

LC0 , LC1 , LC2 ...LCT

}

, where LC0 is the labeled

training sample set for class C0, T is the total number

of interesting classes for a given image scene, W and H

denote the width and height of the image, respectively. k is

the iteration number of the algorithm. To explore potential

additional training samples, an adaptive region technique is

employed to utilize the contextual information and then detect

the potential additional samples around each labeled pixel.

Fig. 1: Adaptive ability of the adaptive region technique in

terms of the shape and size of different land cover patches in

a Pavia University image (T1 = 5 and T2 = 500, a green point

denotes a labeled pixel, the blue contour depicts the adaptive

region, and the hole within the adaptive region results from

noise).

Fig. 2: Schematic illustration of the adaptive region con-

struction and standard deviation (δ) of each pixel within the

extended adaptive region central at the label pixel (green).

The adaptive region was constructed with two predefined

parameters (T1 and T2). First, ∆s is defined as the spectral

similarity between a labeled sample and its neighbors in terms

of gray value, ∆s = ‖Pij − Psur‖, where Pij and Psur

denotes the gray value of the pixel at the position (i, j) and

its surrounding neighbors, respectively. If ∆d denotes the total

number of the assigned samples around a labeled sample.

Then, a region is extended gradually and adaptively from a

single labeled pixel in an adaptive way and the iteration will

terminate until ∆s or ∆d is not less than the predefined T1

and T2, respectively. Therefore, the proposed adaptive region

exhibits an advantage in capturing the shape and size of an

irregular land cover patch, as shown in Fig. 1. This indicates

that the adaptive technique with a fixed setting of T1 and

T2 can describe the local boundary of different land cover

patches with various shapes and sizes. Selecting potential

samples within the adaptive region around the labeled pixel

(green point) is beneficial for improving positive probability.

Thereafter, the adaptive region technique is applied to each

pixel within the adaptive region of a labeled pixel, as shown

in Fig. 2, the pixels within an adaptive region have different

spectral values but are spectrally homogeneous because the

adaptive region is extended gradually by comparing the central

pixel and its eight neighboring pixels in terms of spectra.
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To further confirm which pixel is more suitable for expand-

ing the training samples, the standard deviation (δ) between

each pixel in the extended region and its central pixel is

obtained on the basis of its corresponding adaptive region, as

illustrated in Fig. 2, if the pixels within an adaptive region

has a small δ, it means the homogeneity of the adaptive

region is high. The number in each pixel represents the central

pixel in the adaptive region, the green pixel symbolizes the

initially or previously labeled sample point, and the yellow

pixel is the one within the extended adaptive region around

the labeled sample. In accordance with the principle of the

Tobler’s first law of geography (TFL) [24], everything is

related to everything else, but near things are more related

than distant things. The distribution of pixel in the remote

sensing image also obeys this principle. Therefore, when the

spectral variation around a pixel is low, the pixel is a good

representative for its surrounding spectral signature. Here, in

terms of gray image, the value of δ implies the spectral

variation of neighboring pixels. Thus, as the implication of

TFL, a large δ around a pixel indicates a low possibility of the

pixel being a sample, because δ is a measure of the variation

of the group pixel that consists of an adaptive region.

B. Expanding training samples with Box and Whisker Plots

(BPs)

After acquiring the δ of each pixel within the extended

adaptive region central at a labeled pixel, BP is proposed here

to expand the original training sample and cover the intra-class

spectral heterogeneity. BP exhibits an advantage in identifying

outliers from a given dataset without any distribution assump-

tion [65]. BP is used for the first time and integrated into

the adaptive region for the training sample collection of VHR

image classification.

In this section, BP is adopted to cover more heterogeneous

spectral signatures by expanding training samples. BP can

achieve this objective because it can classify outliers into

different levels, which reference three quartiles: low (Q1),

median (Q2), and high (Q3). Due to more than half of the

information can be covered between Q1 and Q3, the three-

value referred to Q1, Q2 and Q3 are proposed to assign as the

training samples. As shown in Fig. 3, 1) the range between

Q1 and Q3 covers approximately 64.29% information; and 2)

Q1, Q2, and Q3 signify the different values of a pixel group

for an adaptive region. Therefore, selecting Q1, Q2, and Q3

as the expanding training sample points cannot only extend

the quality of the training sample but can also cover wider

spectral heterogeneity of an entity.

To clarify the expansion of an ITS based on our proposed

approach, two GIF pictures from the Pavia University and

ZH-3 satellite image datasets are presented in the supporting

materials. When iteration=0, the distribution and quantity of

the ITS are presented as the legend in the pictures, and the

training samples expand automatically around each point of

the ITS with the increment of iteration.

IV. EXPERIMENTS

To verify the effectiveness and accuracy of the proposed

approach, two experiments are conducted with the following

Fig. 3: Example of expanding training samples for an adaptive

region around a labeled sample point.

objectives.

(1) Investigating superiority by compared with the cognate

methods: One experiment with two real VHR remote sensing

images is designed to investigate the superiority of the pro-

posed approach by comparing its results with those based on

using ITS directly and two cognate methods [37], [47].

(2) Testing adaptability to different image features: One

experiment with an image acquired from a camera mounted on

an unmanned aerial vehicle (UAV) is presented with different

spatial-spectral features, including RGFs [22], RFs [3], EMPs

[16], and M EMPs [17].

To ensure the fairness of the comparisons among different

methods, all the classification maps are achieved using the

popular supervised classifier, i.e., SVM. In addition to OA,

AA, and Ka for quantitative evaluation and comparison, the

standard deviation of user’s accuracy (SDUA) is calculated to

assess the ability of the proposed approach in balancing user’s

accuracy among all classes, as shown in equation (4).

SDUA =

√

√

√

√

1

T − 1

T
∑

i=1

(UAi − UA) (4)

Where SDUA is the standard deviation of user’s accuracy.

As mentioned before, T is the total number of interesting

classes in an image scene, UAi is the user accuracy for the

the i− th class, and UA is the mean value of user’s accuracy

for all the classes.

A. Data description

Three real VHR remote sensing images acquired from

different sensors are adopted for the following experiments.

The details of the datasets are presented as follows.

(1) Pavia University image: This image is acquired by the

Reflective Optics System Imaging Spectrometer (ROSIS-03)

sensor with a high spatial resolution of 1.3 m/pixel. The

original image contains 115 bands with a spectral range of

0.43-0.86 µm. Here, bands 10, 27, and 46 were selected to

signify the red, green, and blue bands, respectively, of the



6

Fig. 4: Pavia University image. (a) Three-band false-color

image and (b) ground reference map and class legend.

Fig. 5: ZH-3 image. (a) Three-band false-color image and (b)

ground reference map and class legend.

false color image. As shown in Fig. 4, the size of this area is

610× 340 pixels, and nine classes are included in this image

scene.

(2) ZH-3 image: This image is acquired by QuickBird

satellite, which has a spatial resolution of 0.62 m/pixel. The

original image has five spectral bands. As shown in Fig. 5,

seven classes are classified in this image scene. The size of

this area is 943× 926 pixels.

(3) UAV image scene: This image is acquired by a UAV

band with a Canon 5D Mark II camera. The flight elevation

when the image was acquired is approximately 100 m. The

image has three bands and a resolution of 0.1 m/pixel. As

shown in Fig. 6, the size of the image is 1400× 1000 pixels,

and seven classes are included in our experiments.

The first two images refer to an urban area, and the third

image is a typical countryside area in China. The three

images were acquired using different sensors, platforms, and

resolutions. Therefore, achieving a land cover map with highly

limited ITSs remains challenging.

Fig. 6: UAV image. (a) Three-band false-color image and (b)

ground reference map and class legend.

B. Experiment setting

To achieve the experiment objectives, the experimental

setting is as follows:

(1) Selection of ITSs for each experiment.

• Pavia University image: 20 points/class

• ZH-3 satellite image: 10 points/class

• UAV image: 20 points/class

2) Parameters of the SVM classifier.

The parameters of SVM are fixed as follows: kernel function

is radial basis function, gamma = 0.5, penalty parameter = 10,

and cross-validation = 5.

3) Parameters of the compared sample extension methods.

• Parameters of the proposed approach: T1=5, T2=100,

and ε = 0.003

• Richards‘method [47]: w= 3× 3 (Pavia University

image), w= 3× 3 (ZH-3 image)

• Kang‘s method [37]: δr= 0.3, δs= 200, and K= 0.1.

4) Parameters of the spatial-spectral feature extraction

method for testing the adaptability of the proposed approach.

• RGF [22]: δs = 4.0, δr = 0.1, integration = 5.

• RFs [3]: δs = 200, δr = 30, integration = 3.

• EMPs [16]: SE is a “disk” with an increasing size:

“2× 2, 4× 4, 6× 6”.

• M EMPs [17]: SE={‘disk’,‘line’,‘square’,‘diamond’}
with a fixed size of 4× 4 pixels.

The proposed approach focuses on improving overall classi-

fication accuracy and balancing the user’s accuracy by expand-

ing ITSs. To exclude other factors on accuracy, the parameters

of the SVM and spatial-spectral feature extraction methods are

fixed in each experiment. To ensure fairness in comparison, the

parameters of the compared cognate approaches [37], [47] are

optimized via the trial-and-error method.

C. Influence of parameters

As mentioned in Section III, three parameters (T1, T2, and

ε) are fixed without hard-tuning for different images. Given

that the proposed approach focuses on overall performance and

user’s accuracy, parameter ε of the proposed approach refers

to the number of iterations and training samples. Thus, the

relationship between training samples and OA, AA, and Ka

for each iteration is investigated for each image.

As shown in Fig. 7, the first, second, and third rows present

the relationship accuracy for the Pavia University, ZH-3, and

UAV images, respectively. In the first row, OA, AA, and

Ka increase with the number of iterations, and the iteration

process is terminated at the ninth round when the precondition

(1) is satisfied. In the second row, OA, AA, and Ka improve

when the iteration is from 0 to 1. Accuracy fluctuates with an

unpredicted trend when the iteration is larger than 2, and the

iteration for the ZH-3 image is terminated at the 10th round in

accordance with the predefined condition. These observations

compared with the result based on ITSs clearly demonstrate

that accuracies (OA, AA, and Ka) can be improved sharply

when the proposed approach is applied to expand ITS.

The third row of Fig. 7 clearly illustrates the feasibility and

adaptability of the proposed approach in terms of different

spatial-spectral features. Accuracy improves gradually with
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Fig. 7: Analysis of the influence of the iterations of the

proposed approach on the three images in terms of OA, AA,

and Ka. The first, second, and third rows represent the Pavia

University, ZH3 satellite, and UAV images, respectively.

the iteration of the proposed approach. When iteration = 5,

accuracy reaches its peak and exhibits a horizontal trend with

increasing iteration.

The user’s accuracy obtained by the proposed approach

for the Pavia University image is presented in Fig. 8. This

figure clearly shows the ability of the proposed approach

to improve and balance the accuracy of most classes. For

example, in the nine interesting classes, the accuracy of 7/9

classes is improved. Compared with the accuracy based on

ITSs and expanded ITSs, the improvement for these classes are

6.9% (asphalt), 17.17% (gravel), 34.4% (trees), 1.5% (painted

metal sheets), 39.6% (bare soil), 16.8% (bitumen), and 9.8%

(shadow). Although the accuracy of 2/9 classes (meadows and

self-blocking bricks) is reduced, the loss for meadow and self-

blocking bricks is 1.2% and 7.2%, respectively, which are

relatively slight. Moreover, OA, AA, and Ka based on the

proposed approach are higher than those based on ITSs.

Moreover, 1) the training sample for several classes may be

maintained by increasing the number of iterations, but the cor-

responding accuracy for these classes may be adjusted, such as

those for asphalt (Fig. 8a), gravel (Fig. 8c), and trees (Fig. 8d);

and 2) increasing training samples may not increase accuracy

for several classes, such as meadows (Fig. 8b). These results

demonstrate the ability and necessity of the proposed approach

in balancing user’s accuracy by automatically adjusting the

quality of the training samples. This ability is attributed to the

probability that the ratio for different training samples among

each interesting class may produce different user’s accuracy

for a supervised classifier. A similar observation is presented

in Fig. 9 for the ZH-3 image, where accuracy for 6/7 classes

is improved, but accuracy for 1/7 classes is slightly reduced.

To quantitatively evaluate the balancing ability of the pro-

posed approach for the user’s accuracy, SDUA is defined and

adopted as the assessment index. As shown in Fig. 10, SDUA

decreases with increasing number of iterations. This finding

demonstrates that deviation in the user’s accuracy decreases

with increasing number of iterations, verifying the balancing

ability for the user’s accuracy of the proposed approach.

Fig. 8: Relationship between the user’s accuracy and the

number of training samples for the SVM classifier, Pavia

University image, and the proposed approach: Each specific

class is presented from (a) to (i). The horizontal axis is labeled

by the number of training samples for each iteration.

Fig. 9: Relationship between the user’s accuracy and the

number of training samples for the SVM classifier, ZH-3

image, and the proposed approach: Each specific class is

presented from (a) to (g). The horizontal axis is labeled by

the number of training samples for each iteration.

Fig. 10: Relationship between SDUA and number of iterations.

(a) ZH-3 satellite and Pavia University images and (b) UAV

image based on four spatial features.
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D. Results

On the basis of the preceding parameter settings and anal-

ysis, the results of the two experiments are presented and

analyzed in this section.

The first experiment is conducted on a Pavia University

image using SVM. The result based on the proposed approach

is compared with those using ITSs directly, Kang’s method

[37], and Richard’s method [47]. As well as the proposed

algorithm, the Kang’s method [37] and Richard’s method [47]

are also utilize the contextual information to refine the training

samples for improving classification accuracy. The quantitative

results for each specific class are provided in Table I. The

comparisons clearly demonstrate that the selected training

sample refining methods achieve better accuracy than using

ITSs directly. For the trees in the Pavia University image,

Richard’s method [47] improves accuracy from 40.5% to

50.8% and Kang’s method [37] improves accuracy to 43.8%.

The proposed approach improves the detection accuracy for

trees by up to 74.9%. Compared with the other methods,

the proposed approach performs with the smallest SDUA.

This result demonstrates that the deviation among each class

is the smallest, and the user’s accuracy is better balanced

in the proposed approach. Moreover, the table shows that

the accuracy of nearly all the classes is evidently improved.

Furthermore, the proposed approach achieves the best accuracy

in terms of OA, AA, and Ka compared with using ITSs

directly, Richard’s method [47], and Kang’s method [37]. The

visual performance in Fig. 11 further verifies the effectiveness

of the proposed approach. The proposed approach achieves the

least salt-and-pepper noise in the result compared with using

ITSs directly, Richard’s method [47], and Kang’s method [37].

The first experiment based on the ZH-3 satellite image

further proves the feasibility and accuracy of the proposed ap-

proach. As shown in Table II, the user’s accuracy of nearly all

the classes is improved by the proposed approached compared

with using ITSs directly, Richard’s method [47], and Kang’s

method [37]. The proposed approach and Richard’s method

[47] achieve similar SDUA, but the former obtains better

accuracy in terms of OA, AA, and Ka. Thus, the application

of the proposed approach on the ZH-3 satellite image further

confirms its feasibility and accuracy in improving OA, AA,

and Ka and in balancing the user’s accuracy. The visual

presentation of these comparisons is provided in Fig. 12.

The second experiment is performed on a UAV image with

a spatial resolution of 0.1 m/pixel to test the feasibility and

adaptability of the proposed approach with regard to different

spatial-spectral features. Table III provides the classification

accuracy based on ITSs and our proposed approach while

using a specific spatial-spectral feature. The comparison in

the table indicates that a spatial-spectral feature with ITSs

processed using our proposed approach achieves higher ac-

curacy than that processed using ITSs directly. Furthermore,

SDUA shows that the proposed approach reduces deviation

among different classes in terms of the user’s accuracy. For

example, OA for the RGF [22] feature is improved from

79.92% to 93.66% when the proposed approach is applied to

process ITSs. Simultaneously, SDUA is reduced from 17.54

TABLE I: User’s accuracy (%) obtained using different meth-

ods with an SVM classifier for the Pavia University image

(#number indicates the optimized iterations for the proposed

approach).

Class
Initial Richards’ Kang’s Proposed

Sample Method [47] Method [37] Method(#9)

Asphalt 81.90 87.90 88.90 88.40
Meadows 77.80 80.70 73.90 76.70

Gravel 27.40 23.60 23.00 45.10
Trees 40.50 50.80 43.80 74.90

Painted metal Sheets 91.00 89.30 58.40 92.50
Bare soil 27.10 66.10 35.30 66.70
Bitumen 29.70 39.30 31.80 46.50

Self-blocking Bricks 71.10 72.30 54.20 63.90
Shadows 87.90 94.60 86.60 97.70

OA 59.84 66.69 55.12 74.14
AA 59.39 67.17 55.11 72.48
Ka 0.494 0.570 0.433 0.639

SDUA 26.03 23.16 22.60 17.78

TABLE II: User’s accuracy (%) obtained using different

methods with an SVM classifier for the ZH-3 satellite image

(#number indicates the optimized iterations for the proposed

approach).

Class
Initial Richards’ Kang’s Proposed

Sample Method [47] Method [37] Method(#9)

Road 55.70 60.50 3.130 66.70
Grass 74.20 76.90 43.70 79.10

Railway 28.20 48.20 28.80 44.40
Bare soil 64.10 45.60 69.20 46.40

Trees 71.60 77.20 53.40 79.90
Water 99.90 99.90 89.00 100.00

Building 50.10 53.90 44.50 62.90
OA 76.87 82.62 67.46 83.58
AA 63.43 66.03 47.39 68.48
Ka 0.664 0.745 0.503 0.759

SDUA 20.67 18.14 25.55 18.27

Fig. 11: Classification maps of the compared methods based

on the Pavia University image. (a) Initial training samples, (b)

Richards’ method [47], (c) Kang’s method [37], (d) proposed

approach, (e) ground reference map, and (f) legend.
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Fig. 12: Classification maps of the compared methods based

on the ZH-3 image. (a) Initial training samples, (b) Richards’

method [47], (c) Kang’s method [37], (d) proposed approach,

(e) ground reference map, and (f) legend.

to 8.14. When observing and comparing classification maps

obtained using ITSs directly and by applying the proposed

approach to process ITSs in terms of each spatial-spectral

feature, the visual accuracy of the classification map based

on our proposed approach presents considerable improvement

with less noise, as highlighted by the red rectangle in Fig. 13.

The results and comparison of the two experiments refer-

enced to three real VHR remote sensing images show the

following findings. 1) The proposed approach can improve

the classification accuracy of VHR remote sensing images

by expanding ITSs in terms of OA, AA, and Ka. Compared

with the cognate methods, the proposed approach achieves

better accuracy in each experiment. 2) The proposed approach

can improve the user’s accuracy of nearly all classes and

balance deviation among each specific class. 3) Although

the proposed approach references three parameters (T1, T2,

and ε), it can achieve the required accuracy for the different

images without parameter hard-tuning. 4) The initialization

of the proposed approach merely requires minimal samples,

such as less than 20 points for each class in the three images.

Moreover, satisfactory accuracy can be achieved using these

extremely few initial samples.

V. CONCLUSION

In this paper, a new training sample enrichment approach

is proposed to improve classification accuracy and balance the

deviation of the user’s accuracy. To achieve these objectives,

the proposed method assumes that the spectral feature in a

land cover patch is typically heterogeneous in a VHR remote

sensing image and attempts to enrich and adjust the training

samples for each class during the supervised classification

process. The proposed approach is implemented with a very

small ITS and without parameter hard-tuning, but it achieves

higher accuracy compared with state-of-the art cognate meth-

ods. In addition, the proposed approach exhibits an advantage

in improving the user’s accuracy of nearly all the classes and

Fig. 13: Visual performance comparisons of classification

maps based on ITSs and the proposed approach for SVM:

(a), (c), (e), and (g) are the results based on RGF [22], RF

[3], EMPs [16], and M EMP [17] spatial-spectral features,

respectively, using ITSs directly; (b), (d), (f), and (h) are the

results based on the RGF, RF, EMP, and M EMP spatial-

spectral features, respectively, using ITSs processed with our

proposed approach.

balancing deviation among each user’s accuracy. Thus, the

proposed approach may be widely used and accepted by many

practitioners.

The effectiveness and adaptability of the proposed approach

are validated on three VHR remote sensing images acquired

from different sensors, platforms, and resolutions. The study

areas are typical urban and rural scenes with various land

cover types, including roads, trees, meadows, and buildings.

Quantitative evaluation and visual comparisons based on the

images indicate that the proposed approach can achieve higher

accuracy and balanced the user’s accuracy for different classes.

In summary, the proposed approach is a promising algo-

rithm for VHR remote sensing image classification. From the

methodological perspective, however, the scientific concept of

the proposed approach still requires comprehensive investiga-

tion. In our future study, we plan to upgrade our computer and

apply it to large areas and other types of VHR remote sensing

images to further test the robustness and adaptability of

the proposed approach. In addition, convolutional multi-scale

features will be adopted instead of the single spectral feature

used in the proposed approach to improve its robustness and

effectiveness.
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