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Machine learning approaches have been successfully employed in many fields of computational chemistry

and physics. However, atomistic simulations driven by machine-learned forces are still very challenging.

Here we show that reactive self-sputtering from a beryllium surface can be simulated using neural

network trained forces with an accuracy that rivals or exceeds other approaches. The key in machine

learning from density functional theory calculations is a well-balanced and complete training set of

energies and forces. We have implemented a refinement protocol that corrects the low extrapolation

capabilities of neural networks by iteratively checking and improving the molecular dynamic simulations.

The sputtering yield obtained for incident energies below 100 eV agrees perfectly with results from ab

initio molecular dynamics simulations and compares well with earlier calculations based on pair

potentials and bond-order potentials. This approach enables simulation times, sizes and statistics similar

to what is accessible by conventional force fields and reaching beyond what is possible with direct ab

initio molecular dynamics. We observed that a potential fitted to one surface, Be(0001), has to be

augmented with training data for another surface, Be(01�10), in order to be used for both.

Introduction

In molecular dynamics (MD) simulations energies and forces

are complicated functions of nuclear coordinates and element

types. Calculating forces on-the-y by electronic structure

methods avoids having to handle these functions explicitly but

is, even with density functional methods, still restricted to small

systems and short times, compared to MD with analytic

potential energy functions. Even for non-reactive systems the

development of a reliable force eld is very tedious. Conse-

quently, machine learning approaches are developed to ll this

gap by learning energy and forces from quantum chemical data

and to replace a conventional force eld.1–5 Feedforward Neural

Networks4,6–8 and Gaussian Approximation Potentials9–12 are

most widely used at present. In both of them Cartesian coor-

dinates of the atoms are rst transformed into symmetry

invariant atom-centered representations by various methods.7,13

The present work applies feedforward neural networks and the

Behler–Parrinello type6 atomistic representation. The parame-

ters are the bias parameters that act on individual neurons and

the weights that interconnect articial neurons in different

layers. The number of parameters only depends on the size of

the neural network. When increasing the number of parame-

ters, the network can basically store the information it is trained

on almost perfectly and it can also interpolate to some extent.

We can train the network on a nite set of energies and

forces and its quality will depend very much on the choice and

size of the training set and on the power of the global optimizer

to reach a low-lyingminimum. Compared to the huge positional

phase space spanned by all combinations of atomic positions,

the number of congurations (�6000 in this work) used to train

the network is meagre.

In this work, we implement a rening procedure based on

previous work4,14 for training set construction and we train

a neural network potential (NNP) for molecular dynamics

simulations of reactive beryllium (Be) self-sputtering and show

that our NNP based simulations are accurate in predicting

sputtering yields. Knowledge of the stability of Be surfaces is

very relevant because beryllium sheets have been chosen as

armor material in the rst wall of the ITER reactor currently

being constructed.15 Having only 4 valence electrons, beryllium

has the additional advantage that it can be treated with density

functional calculations rather efficiently, making comparisons

with ab initioMD feasible. Previous work on this system include

an MD study by Ueda et al. where a pair potential was developed

and self-sputtering processes of Be at low incident energies

(#100 eV) was simulated.16 Björkas et al. developed a bond

order potential for the ternary system Be–C–H, and the Be

potential was applied to MD simulations of Be self-sputtering.17
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Training set generation and refinement

The NNP is trained on energies and forces obtained with plane-

wave DFT calculations. Details of the DFT and ab initio MD

calculations are given in the section on Computational

methods. Artrith and Behler have already described a rene-

ment procedure based on dynamic simulations to extend the

accuracy and applicability of a neural network potential for MD

simulations.4,14 In the present work, our rening procedure

also relies on the assumption that two different neural

networks that have been tted to the same data set will deliver

approximately the same result for well-sampled regions of the

phase space but not in extrapolations out of these regions. This

allows to systematically and automatically identify structures

that are missing in the training data. The iterative procedure is

schematically shown in Fig. 1. In a rst step, congurations

were created by randomly extracting snapshots from 500 ab

initio MD sputtering trajectories on a small Be(0001) surface

slab with 96 atoms. Two preliminary NNPs, NNP1 and NNP2

were tted to this training set. NNP1 and NNP2 have the same

topology and differ only in the starting values of their t

parameters which are randomly chosen. They are simple

feedforward 53 � 30 � 30 � 1 NNs with two hidden layers. We

found that including more parameters or making the neural

network deeper does not improve the accuracy any more. More

details on the employed symmetry functions and the neural

network are given in the Computational methods.

The renement procedure starts with using NNP1 for short

MD simulations (40 fs) of the Be self-sputtering process at

various impact energies on the surface slab with 96 atoms. The

energies and forces of these new congurations were then

predicted by NNP2 along the same trajectories, and energies

and forces of both networks were compared with each other as

shown in Fig. 2. Congurations with energy differences larger

than 3E ¼ 20 meV per atom or maximum force differences larger

than 3F ¼ 2 eV Å�1 were selected and subjected to a DFT

calculation of energies and forces which were then added to the

training data.

Two new neural network potentials NNP3 and NNP4 were

tted to the rened training set and their differences for new

trajectories is shown in Fig. 3. It is apparent that already aer

one cycle of the renement process, the differences between the

two NNPs decrease considerably. For most congurations in

Fig. 3, the energy and maximum forces differences between

NNP3 and NNP4 are within 5meV per atom and 1 eV Å�1. Due to

this excellent improvement, we reduced the number of trajec-

tory calculations in the second renement step.

Further renement can be done iteratively as indicated in

Fig. 1. In our case, a second renement step with much smaller

energy and force thresholds (3E ¼ 2 meV per atom, 3F ¼ 0.8 eV

Å�1) was sufficient.

With this iterative renement process, the nal reference

data set consists of 5871 congurations containing 97 atoms

Fig. 1 Schematic of the iterative refinement procedure based on
previous work4,14 for training set generation. Energies and forces
predicted with NNP1 and NNP2 are compared with each other along
molecular dynamics trajectories generated with NNP1. The decision
(NNP1�NNP2?) of including a particular phase-space point into the
training set is made either by the energy criterion |E(NNP1)� E(NNP2)|
> 3E or the force criterion |Fx,y,z(NNP1) � Fx,y,z(NNP2)| > 3F.

Fig. 2 Comparison of energies and forces of the preliminary NN
potentials NNP1 and NNP2 along the same trajectories. Configurations
with absolute values of energy differences higher than 3E¼ 20meV per
atom or maximum force differences higher than 3F ¼ 2 eV Å�1 have
been recalculated by DFT and added to the training data to obtain the
refined NNP in Fig. 3.
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each. Thus, 5270 energies and 1 533 486 forces are used to t

the nal potential energy function NNP5 and 601 energies and

174 870 forces are part of the test set which is not used for

training but rather to validate the potential and to prevent

overtting. Aer 60 training epochs, the root mean square

errors (RMSE) in the test set converged to 0.7 meV per atom for

energies and 32.0 meV Å�1 per atom for forces, very close to the

corresponding value in the training set (0.6 meV per atom and

31.8 meV Å�1).

Static performance of the refined
neural network potential

The correlation of NNP5 and DFT energies and forces for each

atom are shown in Fig. 4(a) and (b). Only the x-component of

the forces is shown here since y and z have been inspected but

give virtually identical plots. DFT and NNP5 energies are very

close except for very few congurations in the training set.

Similarly, the values of NNP5 and DFT forces at all three

directions are perfectly correlated.

We are now in a position to go to a larger system, a Be(0001)

surface with 490 atoms. This surface will later be used for the

sputtering simulations. The equilibrium lattice constants of

using NNP5 turn out reasonable (Table 1) with NNP5 and DFT

showing relative differences of less than 2% compared to

experimental values. The NNP5 total energy for this congura-

tion is also very close to the DFT value with an absolute devia-

tion of 3.3 meV per atom. Relaxation of the surface to its

equilibrium conguration is necessary for the subsequent

sputtering calculations since otherwise, a large amount of

potential energy is heating the system at the beginning that

could irreversibly change the structure due to expansion and

melting.

Performance of the refined neural
network potential in reactive
sputtering simulations

Although only a small system was used to train NNP5, the

energy contribution from each atom depends only on the local

chemical environment and therefore it can be used to simu-

late a larger system. MD simulations performed on the

Be(0001) surface slab with 490 atoms result in a self-

sputtering yield of 5.6% which agrees perfectly with a yield

of 5% obtained from 500 ab initio MD trajectories calculated

on the same system under identical conditions for 100 eV

incident energy. The sputtering yields of all our simulations

Fig. 3 Comparison of energies and forces of the refined NN potentials
NNP3 and NNP4 along the same trajectories. Configurations with
absolute values of energy differences higher than 3E ¼ 2 meV per atom
or force differences higher than 3F¼ 0.8 eV Å�1 have been recalculated
by DFT and added to the training data to obtain a final NNP.

Fig. 4 Correlation between the NNP5 and DFT energies per atom (a)
and x-components of the forces (b) for all configurations in the
training and test set.
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are summarized in Table 2 and compared with other MD

simulations, Monte Carlo data and experimental estimates in

Fig. 5. Statistically, their accuracy increases with the number

of simulation runs and the error bars are estimated by

D ¼ 2s=
ffiffiffiffi

N
p

where the standard deviation s is obtained by

assuming a Bernoulli distribution of N trajectories. The NNP5

sputtering yields fall well within other available data. Timings

included in Table 2 show that the NNP5-based MD simula-

tions are more than two orders of magnitude faster than their

ab initio MD simulations.

For all incident energies, we never encountered reections of

the Be projectile. In our energy range this is expected and agrees

with the simulation results from Ueda et al.16 where a pair

potential had been used. No atoms were sputtered for incident

energies below 50 eV, which is consistent with the ndings from

Ueda et al. only if the large error bars are taken into account but

not in good agreement with the BOP-based results of Björkas

et al. who reported a similar value than Ueda et al. at 50 eV

incident energy but with a much smaller statistical error.17 The

sputtering threshold energy dened by no sputtering event

occurring in 500 trajectories lies within 50 and 55 eV for our

setup with NNP5 and is higher than previous estimates from

16–25 eV.17,19

We used an estimated sputtering threshold energy Eth ¼

53 eV, the parameters q ¼ 0.82, m ¼ 1.34 and l ¼ 2.03 from

literature19 and the experimental data at high energies to t the

sputtering yields to the Eckstein formula.20 The resulting

function is also included in Fig. 5. Since the available experi-

mental data is in the keV range, it is not possible to make

a direct comparison with our simulated results. At an incident

energy of 100 eV, our result is very close to the values from Roth

et al.,21 Ueda et al.16 and Björkas et al.17 At 75 eV, the NNP5 based

sputtering yield is very close to that from the bond-order

potential.17

In order to check the convergence of our model system with

respect to surface size, we also simulated a system with 2000

atoms (the crystal size is given in Table 2) at an incident energy

of 100 eV. With 500 simulation runs, we obtained 27 sputtering

events (sputtering yield 0.054) and obtained very good agree-

ment with the smaller system (sputtering yield 0.056).

Transferability of the neural network
potential

With the purpose of testing the transferability of NNP5 to

a different surface structure that had not been included in the

training set, we performed self-sputtering simulations with an

incident energy of 75 and 100 eV on a Be(01�10) surface con-

sisting of 480 atoms. We obtained much smaller sputtering

yields than reported by Ueda.16 Applying an iterative renement

step as described above on Be(01�10) and retting the neural

network, more reasonable results are obtained, albeit of course

now with a different potential (NNP6). The sputtering yields for

the Be(01�10) surface using NNP6 are summarized in Table 3 and

plotted in Fig. 6. A t to the Eckstein formula is also shown. We

used the same values of the parameters q, m and l as for the

Be(0001) surface but a lower estimate of the threshold energy

Eth ¼ 30 eV.20 The sputtering yield at 100 eV for NNP6 is much

larger than the one from NNP5 and is comparable to Ueda's

results.16 The sputtering yields for the (0001) and (01�10) surfaces

are close to each other at 100 eV, while at lower energies the

(01�10) surface is more susceptible to sputtering with the simple

reason that the Be(0001) surface is more stable. In fact, the DFT

calculated surface binding energy of 5.13 eV for the (0001)

surfaces is much higher than 2.48 eV for the (01�10) surface.24

Finally, we note that the upgrade from NNP5 to NNP6 conserves

the accuracy for the (0001) surface with a sputtering yield of

0.052 (0.056) for NNP6 (NNP5) on 500 trajectories.

Table 1 Lattice constants and total energy of the Be(0001) surface from NNP5 and DFT calculations. Both simulations used a periodic slab
consisting of 490 atoms

Lattice constants (Å) Total energy (eV)

Energy difference per
atom (meV per atom)

NNP5 DFT Exp.18 ENNP5 EDFT

(ENNP5 �

EDFT) per atom

a ¼ 2.28; c ¼ 3.55 a ¼ 2.28; c ¼ 3.54 a ¼ 2.29; c ¼ 3.58 �1791.7 �1790.1 �3.3

Table 2 Sputtering yields and statistical error estimates for the Be(0001) surface obtained from neural network based MD simulation at various
incident energies and from an ab initioMD simulation at 100 eV incident energy. The average computational time for each NNP basedMD and ab

initioMD simulation is compared. Note that we have performed 5000 trajectories for low incident energies (55 eV, 60 eV and 65 eV) using NNP5
to obtain a lower error bar

Crystal size (Å)

Sputtering yield of Be(0001)

CPU time/trajectory50 eV 55 eV 60 eV 65 eV 75 eV 100 eV

15.6 � 15.6 � 30.1 (490 atoms) NNP5 0 0.003 (0.0015) 0.0072 (0.0024) 0.0086 (0.0026) 0.026 (0.014) 0.056 (0.021) 10 minutes (4 cores)

ab initio MD — — — — — 0.050 (0.019) 30 hours (16 cores)

22.8 � 22.8 � 48.4 (2000 atoms) NNP5 — — — — — 0.054 (0.020)

4296 | RSC Adv., 2020, 10, 4293–4299 This journal is © The Royal Society of Chemistry 2020
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Summary

The self-sputtering simulations based on the rened neural

network potential give promising results for small and large

periodic cell-sizes of the Be(0001) surface. The sputtering yields

agree with full ab initio Born–Oppenheimer MD results at

100 eV incident energy. Compared to literature data, our

simulation protocol seems to be quite competitive while not

requiring manual potential development. Transferability to

another surface direction was only possible by additional

renement and including data of the new surface into the

training data. Although the neural network can only be used for

scenarios that are included in the training data and this

involves thousands of ab initio single-point calculations, the

nal neural network potential can be used on longer time-scales

and larger systems. Especially, there is no difference concep-

tually in treating more complicated systems such as alloys,

where the construction of conventional force elds becomes

increasingly cumbersome. As a next step, we plan to apply such

simulations to other plasma–wall interactions, in particular

considering the ternary H–Be–W system.

Computational methods
Neural network potential

In this work, we train a neural network potential of the Behler–

Parrinello type.6 The neural network code n2p2 (ref. 25 and 26)

recently developed by A. Singraber et al. is based on Behler's

work.6,7 It includes both force and energy tting and imple-

ments a Kalman lter optimizer26 which can deal with the

large number of data points when forces are included in the

tting. It has also been linked to the versatile molecular

dynamics code LAMMPS that we used to integrate the sput-

tering trajectories.27,28 In the Behler–Parrinello approach,6 the

total energy Epot of one conguration is the sum of atomic

energies Ei provided by element-specic neural networks that

depend on the local atomic neighbourhood only. Atomic

coordinates are transformed to symmetry-invariant atom-

centered symmetry functions before entering the neural

network in the input nodes. Efficient tting to forces requires

analytic gradients implemented in the n2p2 library. We chose

a simple feedforward neural network topology with two hidden

layers with 30 neurons each. The so-called so-plus activation

function29,30 which is a smooth approximation of rectied

Fig. 5 Dependence of the self-sputtering yield for the Be(0001)
surface on the incident energy. The results of MD simulations by Ueda
et al.16 and Björkas et al.,17 the data of Monte Carlo simulations
(assuming a surface binding energy of 3.38 eV) by Roth et al.21 and
experimental results22,23 are included for comparison.

Table 3 Calculated sputtering yields and statistical error estimates for the Be(01�10) surface obtained from neural network based MD simulations
at various incident energies

Crystal size (Å)

Sputtering yield of Be(01�10)

20 eV 35 eV 50 eV 75 eV 100 eV

13.7 � 17.7 � 28.8 NNP5 — 0.014 (0.010) 0.022 (0.013)

NNP6 0 0.012 (0.010) 0.026 (0.014) 0.062 (0.021) 0.072 (0.023)

— Ueda et al.16 — — 0.086 (0.059) — 0.102 (0.053)

Fig. 6 Dependence of the self-sputtering yield of the Be(011�0) surface
on the incident energy. The results of MD simulations by Ueda et al.16

and experimental results22,23 are included for comparison.

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 4293–4299 | 4297
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linear units (RELU)29 was used as recommended.31 A cutoff

radius of 7 Å is sufficient to include all relevant neighbour

atoms.32 The input consists of 9 radial, 24 angular narrow and

20 angular wide Behler-type symmetry functions7,25 as detailed

in the ESI.†

Density functional theory

The static DFT and the ab initio MD simulations to generate

training data were carried out using the Vienna Ab initio

Simulation Package (VASP).33,34 The core and valence electrons

were described by the Projector Augmented Wave (PAW)35

method and the Perdew–Burke–Ernzerhof (PBE)36 exchange–

correlation functional. A plane wave basis set with a cut-off

energy of 350 eV with periodic boundary conditions was used.

The PAW potential for beryllium was used as provided in the

VASP library. A Gamma-centered k-point mesh of 3 � 3 � 3 was

employed. The initial training set was generated by performing

Born–Oppenheimer ab initio MD on a small hexagonal closely

packed Be surface (0001) with 96 atoms (9.1 � 9.1 � 20.6 Å). It

was rst relaxed with a convergence criterion of 10�5 eV on the

total energy (about 10�4meV per atom) and of 1 meV Å�1 on the

forces. Subsequently, the relaxed surface was equilibrated at

300 K for 2 ps within the canonical ensemble using the Nosé–

Hoover algorithm.37,38 Then perpendicular impacts of single Be

atoms with energies of 20, 35, 50, 75 and 100 eV starting from

a distance of 5 Å above the surface were simulated. 100 ab initio

MD runs were performed for each impact energy. The time step

was chosen to be 0.5 fs and one run lasted 150 fs for low impact

energies (20, 35, 50 eV). Impacts with energies of 75 and 100 eV

were simulated for 50 fs.

MD simulations of sputtering on neural network potentials

In our MD simulations of non-accumulative self-sputtering, an

incident neutral Be atom impacts on a pristine Be surface. The

target consists of 490 atoms with a size of 15.6 � 15.6 � 30.1 Å.

Its crystal structure was relaxed and equilibrated for 2 ps at 300

K within the NVT ensemble using the Nosé–Hoover thermo-

stat37,38 before running the trajectories. The incident particle

was initially placed 5 Å above the surface while its x and y-

coordinates were randomly chosen. Kinetic energies of 50, 55,

60, 65, 75, and 100 eV were assigned to it by a respective initial

velocity in z-direction, thus only impacts perpendicular to the

surface were simulated in this work. Trajectories were initially

integrated for 120 fs with an integration step of 0.2 fs. Further

120 fs integration time were added to those trajectories where

the decision of an observed sputtering event could not be made

aer the rst 120 fs. 500 separate MD runs were performed for

each incident energy. For the MD simulations in the training

data renement process, the computational details are identical

to the sputtering simulations for larger surface systems except

for a shorter integration time of 40 fs.
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