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Abstract. In computational inverse problems, it is common that a detailed and accurate

forward model is approximated by a computationally less challenging substitute. The

model reduction may be necessary to meet constraints in computing time when optimization

algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo

(MCMC) calculations in the Bayesian framework. The use of an approximate model

introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution

of the ill-posed inverse problem, or it may severely distort the estimate of the posterior

distribution. In the Bayesian paradigm, the modeling error can be considered as a random

variable, and by using an estimate of the probability distribution of the unknown, one may

estimate the probability distribution of the modeling error and incorporate it into the inversion.

We introduce an algorithm which iterates this idea to update the distribution of the model error,

leading to a sequence of posterior distributions that are demonstrated empiricially to capture

the underlying truth with increasing accuracy. Since the algorithm is not based on rejections,

it requires only limited full model evaluations.

We show analytically that, in the linear Gaussian case, the algorithm converges

geometrically fast with respect to the number of iterations. For more general models, we

introduce particle approximations of the iteratively generated sequence of distributions; we

also prove that each element of the sequence converges in the large particle limit. We show

numerically that, as in the linear case, rapid convergence occurs with respect to the number of

iterations. Additionally, we show through computed examples that point estimates obtained

from this iterative algorithm are superior to those obtained by neglecting the model error.

Keywords: Model discrepancy, Discretization error, Particle approximation, Importance

sampling, Electrical impedance tomography, Darcy flow
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1. Introduction

The traditional way of describing an inverse problem is to define a forward map relating the

unknown to an observed quantity, and to look for an estimate of the unknown when the data

is corrupted by noise. In this description, it is often tacitly assumed that an underlying ”truth”

exists, and the noiseless data arises from applying the forward map on this true value. On the

other hand, it is commonly acknowledged that a mathematical model does not coincide with

the reality, and therefore part of the noise must be attributed to the model discrepancy, or the

mismatch between the model and the reality. Modeling this discrepancy is an active research

topic in statistics – see [24, 7, 6] and the references therein; it is also a closely related to the

concept of the “inverse crime”, a procedure of testing a computational method with data that

has been generated by the same model that is used to solve the inverse problem [14, 23].

Common sources of modeling errors in inverse problems include:

(i) model reduction – a complex, computationally intensive model is replaced by a simpler,

less demanding model;

(ii) parametric reduction – in a model depending on poorly known parameters, some of them

are frozen to fixed values, assuming that the solution is not sensitive to them;

(iii) unknown geometry – a computational domain of unknown shape is approximated by a

standard geometry.

Including the modeling error into the computations in the traditional deterministic setting may

not be straightforward. Recasting the inverse problem via Bayesian inference provides tools

to carry this out in a natural statistical fashion. The present article introduces and analyzes

a Bayesian methodology for model error estimation which demonstrably leads to improved

estimates of the true unknown function generating the data.

1.1. Background

In this article, we consider the problem of estimating an unknown quantity u based on indirect

observations. In the Bayesian framework, the prior belief about the quantity u is encoded in

the prior probability distribution P(u), and given the observed data b, the posterior distribution

P(u | b) follows from Bayes’ formula,

P(u | b) ∝ P(b | u)P(u),

where ∝ denotes proportionality up to a scaling constant depending on b but not on u, and the

distribution P(b | u) of b is the likelihood. To construct the likelihood, a forward model from

u to b needs to be specified. A commonly used model, assuming additive observation noise

that is independent of the unknown u, is

b = F (u) + ε
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where ε ∼ πnoise(·) is a realization of random noise, and F is a mapping defined typically

on the parameter space for u, which is often infinite-dimensional (u is a function) or high

dimensional (a function has been discretized to obtain u). Under these assumptions, the

likelihood is equal to the distribution of ε with mean shifted by F (u), i.e.,

P(b | u) = πnoise(b− F (u)).

To estimate u, or derived quantities based on it, numerical approximations of integrals with

respect to the posterior distribution are required, and a common approach is to use sampling

methods such as Markov chain Monte Carlo (MCMC). This requires a large number of

repeated evaluations of the forward map F , which is often expensive to evaluate numerically.

A particular instance that we have in mind is the situation where evaluation of F requires

numerical solution of a partial differential equation. If computational resources or time are an

issue, an attractive approach is to trade off the accuracy of evaluations with the computational

cost by adjusting the resolution of the mesh that the PDE is solved upon. Denoting by f an

approximation to F on a coarse mesh, a model for the data can be written as

b = f(u) +m+ ε

wherem = F (u)−f(u) denotes the model error induced by moving from the accurate model

F to the approximate one. If we ignore the fact that m depends on u, and instead model it as

additive independent noise, the conditional likelihood P(b | u,m) is then given by

P(b | u,m) = πnoise(b− f(u)−m);

evaluations of this map then only require evaluation of the approximate map f . Furthermore,

the likelihood P(b | u) can be found by marginalizing out the model error m. However, the

marginalization requires the distribution of m which is not known. As suggested in [22], the

Bayesian approach provides a natural approximate solution to this problem: By using the

prior distribution of u and the model error mapping M(u) = F (u) − f(u), one can generate

a sample of model errors to estimate the model error distribution. This approach, referred to

as the enhanced error model, has been shown to produce more accurate point estimates than

those that come from neglecting the model error (the conventional error model), see, e.g.,

[2, 17, 23, 3] for static inverse problems, and [19, 20, 21] for extensions to dynamic inverse

problems.

In [8], the enhanced error model was developed further using the observation that the

the posterior distribution based on the error model contains refined information about the

unknown u beyond the point estimate determined by the enhanced error model; as a

consequence the model error distribution can be updated by pushing forward the distribution

under the model error mapping M . When the data are particularly informative, posterior

samples may differ significantly from prior samples, and this should produce a much

better approximation to the distribution of the model error, potentially yielding a better

approximation of the posterior distribution of u, and at the very least providing point estimates
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of higher accuracy. The procedure can be iterated to produce a sequence of approximate

posterior distributions that have the potential to yield a sequence of point estimates of

improved accuracy; they may also approximate the true posterior distribution with increasing

accuracy. In this article, we address this approach in a systematic way, with particular focus

on convergence of the iterative updating.

The effect of model error and model discrepancy in Bayesian inference is a widely studied

topic. Early works focus primarily on code uncertainty – the uncertainty that arises due to

expense of forward model evaluations meaning that it is only practical to compute outputs of

the model for a limited finite number of inputs. A review of work in this direction is given in

[31], including the problems of optimal choice of inputs at which to evaluate the forward

model, and how to predict the output for inputs away from the computed ones. In [24]

the numerous sources of uncertainty within computational inverse problems are discussed,

including those arising from model inadequacy and code uncertainty. The authors model this

error as a function independent of the approximate model, which can be justified in certain

cases. Hierarchical Gaussian priors are placed upon the model and the model error, and

the model and error are then linked by imposing correlations between the hyperparameters.

The technique has subsequently been developed further in [7], and used in, for example, the

context of model validation [4] and uncertainty quantification [18]. More recent work in

probabilistic numerical methods [6] provides a unifying perspective on this body of work,

linking it to earlier research connecting numerical algorithms to Bayesian statistics [16].

1.2. Our Contribution

• We develop further the iterative updating of the posterior probability densities based

on repeated updating of the model error distribution, leading to an approximation of

the posterior probability density. While the approximation error is defined through the

computationally expensive accurate model, the posterior approximation we introduce

relies primarily on the computationally inexpensive approximate model, and a limited

number of evaluations of the accurate model.

• In the case where the models are linear and the noise and prior distributions are

Gaussian, we show that the means and covariances of the resulting sequence of posterior

distributions converge to a limit geometrically fast.

• For more general models and prior/noise distributions we introduce particle approxima-

tions to allow the algorithm to be implemented numerically, and show convergence of

these approximations in the large particle limit.

• We illustrate numerically the effectiveness of the algorithms in multiple different settings,

showing the advantage over the conventional and enhanced error models.



Iterative Updating of Model Error for Bayesian Inversion 5

1.3. Outline

The iterative approach of updating the posterior distributions is introduced in Section 2.

In Section 3 we focus on the particular case where the forward model is linear, and the

noise and prior distributions are Gaussian. The assumptions imply that the approximate

posterior distributions are also Gaussian, and can therefore be characterized by their means

and covariances. We identify conditions guaranteeing the convergence of the sequence of

approximate posteriors to a non-degenerate limit as the number of iterations tends to infinity.

In Section 4 we discuss different sampling methods which may be used to implement the

algorithm in practice. In particular we focus on particle methods that require a finite number

of full model evaluations in order to estimate the modeling error and posterior distribution,

and show convergence to the correct sequence of approximate distributions in the large

particle limit. Finally, in Section 5, we provide numerical illustrations of the behavior and

performance of the algorithm for three different forward models. Section 6 contains the

conclusions and discussion.

2. Problem Formulation

We start by introducing the main ingredients of the iterative algorithm: the accurate and

approximate models are defined in Subsection 2.1, along with some examples whose details

will be discussed later on. The enhanced error model [22] is reviewed in Subsection 2.2,

prompting the question of how to update the density of the modeling error. In subsection 2.3

we provide an iterative algorithm for doing this, in the case where all measures involved have

Lebesgue densities; a more general algorithm is provided in the appendix for cases such as

those arising when the measures are defined on infinite-dimensional function spaces.

2.1. Accurate vs. Approximate Model

Let X, Y be two Banach spaces representing the parameter and data spaces, respectively. Let

F : X → Y, u 7→ b

denote a reference forward model, referred to as the accurate model, and let the approximate

model be denoted by

f : X → Y, u 7→ b.

We write the observation model using the accurate model,

b = F (u) + ε, (1)

and equivalently, using the approximate model, as

b = f(u) + (F (u)− f(u)) + ε
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= f(u) +m+ ε, (2)

where m represents the modeling error,

m = F (u)− f(u) =M(u).

In light of the above observation, we may view the data as coming from the approximate

model, with an error term which reflects both observational noise ε and modeling error m.

The main problem addressed in this paper is how to model the probability distribution of the

model error. We study this question with the goal of providing computations to estimate the

unknown u from b using only the less expensive model f , and not the true model F , without

creating modeling artifacts.

We conclude this subsection by giving two examples of approximate models, both of which

may be relevant in applications.

Example 2.1 (Linearization). In electrical impedance tomography (EIT), the goal is to

estimate the conductivity distribution inside a body from a finite set of current/voltage

measurements at the boundary, as discussed in more detail in Subsection 5.2. We denote

by F the differentiable non-linear forward model, mapping the appropriately parametrized

conductivity distribution to the voltage measurements. We define the approximate model

through the linearization,

f(u) = F (u0) + DF (u0)(u− u0),

where DF (u0) is the Jacobian of the forward map, and u0 is a fixed parameter value,

representing, e.g., a constant conductivity background.

Example 2.2 (Coarse Mesh). In the EIT model, the accurate model represents the forward

model computed with a FEM grid fine enough to guarantee that the numerical solution

approximates the solution of the underlying PDE within a required precision. To speed

up computations, we introduce the reduced model f as the forward model based on FEM

built on a coarse grid. We assume that both computational grids are built on an underlying

independent discretization of the conductivity σ, appropriately parametrized, and the FEM

stiffness matrices that require integration over elements are computed by evaluating σ in the

Gauss points of the elements, respectively.

2.2. The Enhanced Error Model

We start by reviewing the basic ideas of the enhanced error model and, for simplicity, assume

here thatX and Y are Euclidean spaces and that all probability distributions are expressible in

terms of Lebesgue densities. We assume that u is an X-valued random variable with a given

a priori density,

u ∼ πprior(u).
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Furthermore, we assume that the additive noise ε is a Y -valued random variable, independent

of u, with the density

ε ∼ πnoise(ε).

In view of the model (1), we may write the likelihood as

π(b | u) = πnoise(b− F (u)),

and the posterior density is, according to Bayes’ formula, given by

π(u | b) ∝ πprior(u)πnoise(b− F (u)).

If, instead, we want to use the approximate model f(u) for the data, the modeling error m

needs to be taken into account. The idea of the enhanced error model in [22] is the following:

Given the prior distribution µ0(du) = πprior(u)du, with no other information about u, the

probability distribution of m =M(u) is obtained as a push-forward of the prior distribution:

m ∼M#µ0.

To obtain a computationally efficient formalism, the distribution of m is approximated by a

Gaussian distribution sharing the mean and covariance of the push-forward measure,

m ∼ N (m,Σ),

where in practice the mean and covariance may be estimated numerically by sampling the

modeling error. The Gaussian approximation is particularly convenient if the additive noise is

Gaussian,

ε ∼ N (0, Γ),

as it leads to the approximate likelihood model

π(b | u) ∝ exp

(

−1

2
(b− f(u)−m)T(Γ+ Σ)−1(b− f(u)−m)

)

,

and, consequently, to the posterior model

π(u | b) ∝ πprior(u) exp

(

−1

2
(b− f(u)−m)T(Γ+ Σ)−1(b− f(u)−m)

)

.

Note that the enhanced error model can be interpreted as a form of variance inflation: if

the model error is neglected as in the conventional error model, then the covariance matrix

in the likelihood would be smaller in the sense of positive-definite quadratic forms, since

Σ is non-negative definite. This is to be expected as the lack of accuracy in the model

contributes additional uncertainty to the problem; we do not wish to be over-confident in an

inaccurate model. In the next section we explain how this idea may be built upon to produce

the algorithms studied in this paper.
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2.3. The Iterative Algorithm

In this subsection we generalize the preceding enhanced error model in two ways: (i) we

iterate the construction of the model error, updating its probability distribution by pushing

forward byM the measure µℓ , the posterior distribution of uwhen the model error distribution

is computed as the pushforward under M of the measure µℓ−1; in this iterative method we

choose µ0 to be the prior and so the first step is analogous to what is described in the previous

subsection; (ii) we do not invoke a Gaussian approximation of the model error, leaving open

other possibilities for practical implementation. We describe the resulting algorithm here in

the case where Lebesgue densities exist, and refer to the appendix for its formulation in a

more abstract setting.

Algorithm (Lebesgue densities). Let µℓ denote the posterior distribution at stage ℓ, with

density πℓ, so that µℓ(du) = πℓ(u) du. Denote πℓ(b | u) the likelihood at stage ℓ.

1. Set π0(u) = πprior(u) and ℓ = 0.

2. Given µℓ, assume m ∼ M#µℓ. Assuming that u and m are mutually independent, we

have

π(b | u,m) = πnoise(b− f(u)−m),

and by marginalization,

πℓ+1(b | u) =
∫

Y

πnoise(b− f(u)−m)(M#µℓ)(dm)

=

∫

X

πnoise(b− f(u)−M(z))πℓ(z)dz.

Hence using Bayes’ theorem, update the posterior distribution:

πℓ+1(u) ∝ πprior(u)

∫

X

πnoise(b− f(u)−M(z))πℓ(z)dz. (3)

3. Set ℓ 7→ ℓ+ 1 and go to 2.

We can give an explicit expression for the above density πℓ(u):

πℓ(u) ∝ πprior(u)

∫

X

· · ·
∫

X

(
ℓ∏

i=1

πnoise(b− f(zi+1)−M(zi))πprior(zi)

)

dz1 . . . dzℓ

where we define zℓ+1 = u.

The above algorithm can be generalized to the case when no Lebesgue densities exist, such as

will be the case on infinite dimensional Banach spaces, see the Appendix.

3. The Linear Gaussian Case

We analyze the convergence of the general algorithm in the case where both the accurate

model F and the approximate model f are linear, and the noise and prior distributions
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are Gaussian. With these assumptions the posterior distributions forming the sequence

remain Gaussian, and are hence characterized by the sequences of means and covariances.

Convergence properties of the iteration can be established by using the updating formulas

for these sequences. Though the iteration is not immediately implementable, since the full

matrix for the accurate model F is required to calculate each covariance matrix, the explicit

convergence results give insight into the implementable variants of the algorithm introduced

in Section 4, as well as for non-linear forward maps.

In subsection 3.1, we first describe how the posterior density evolves, establishing the

iterations that the means and covariances satisfy. In subsection 3.2 we show that if the

model error is sufficiently small, the sequences of posterior means and covariances converge

geometrically fast. Moreover, despite the repeated incorporation of the data into the posterior,

the limiting distribution does not become singular. Additionally, in subsection 3.3 we show

that in finite dimensions the assumption of small model error is not needed in order to establish

convergence of the covariance.

3.1. Evolution of the Posterior Distribution

When the noise distribution πnoise and prior distribution πprior are Gaussian, the measure µℓ is

Gaussian at each stage ℓ, and we can write down expressions for the evolution of its mean and

covariance. Let X, Y be separable Hilbert spaces and A⋆ : X → Y a linear operator. Assume

that the data b ∈ Y arise from A⋆ via

b = A⋆u+ ε, ε ∼ N (0, Γ)

where Γ : Y → Y is a symmetric positive definite covariance operator. Let A : X → Y

denote an approximation to A⋆ so that the expression for b may be rewritten

b = Au+ (A⋆ − A)u+ ε.

We define the model error operator M : X → Y by M = A⋆ − A, so that Mu represents the

(unknown) model error. We assume that the model error is Gaussian, with unknown mean

w and covariance Σ. Additionally we assume that it is independent of the observation noise.

The data is now given by

b = Au+ ε̂, ε̂ ∼ N (w,Σ+ Γ).

Let µ0 = N(m0,C0) denote the prior distribution on u. We first estimate w and Σ by pushing

forward µ0 by the model error operator M:

M#µ0 = N (Mm0,MC0M
∗) ≡ N (ŵ1, Σ̂1).

Then, assuming for now that the model error has this distribution, the resulting posterior

distribution on u can be calculated as µ1 = N(m1,C1), where

C1 = (A∗(Γ+MC0M
∗)−1A+ C−1

0 )−1,

m1 = C1(A
∗(Γ+MC0M

∗)−1(b−Mm0) + C−1
0 m0).
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As described previously, in order to obtain a better approximation of the model error, the

above step can be repeated so that the measure pushed forward to approximate the model

error is closer to the posterior distribution. Therefore, in the next step, we approximate the

distribution of the model error by

M#µ1 = N (Mm1,MC1M
∗) ≡ N (ŵ2, Σ̂2),

and make a further posterior approximation. Iterating this process, we see that the posterior

mean and covariance evolve via

Cℓ+1 = (A∗(Γ+MCℓM
∗)−1A+ C−1

0 )−1, (4)

mℓ+1 = Cℓ+1(A
∗(Γ+MCℓM

∗)−1(b−Mmℓ) + C−1
0 m0).

We wish to show that these sequences are convergent.

We may write the above iteration in an equivalent form as

Cℓ+1 = C0 − C0A
∗(Γ+MCℓM

∗ + AC0A
∗)−1AC0,

mℓ+1 = m0 + C0A
∗(Γ+MCℓM

∗ + AC0A
∗)−1(b− Am0 −Mmℓ),

using results from [25, 27], assuming that C0 is trace-class and Γ is trace-class or white. This

form has the advantage that the unbounded operator C−1
0 does not appear, and so we need not

worry about its domain of definition. In what follows we simply assume that this equivalent

expression for the evolution of the means and covariances is valid.

In the following subsections, we consider two different cases. In the first one, we limit the data

into a finite dimensional space Y but let the space X to be a Hilbert space. The convergence

of the algorithm is demonstrated under certain restrictive conditions: the modeling error needs

to be small enough. In the second case, we also limit the unknown u to a finite dimensional

space, and show that in this case the convergence proof can be obtained without the restrictions

needed in the former case. We emphasize that, although we establish convergence of the

iteration in various settings, the limiting distribution does not coincide with the true posterior

distribution found in the absence of model error. Nonetheless our numerical experiments will

show that the limiting distribution can significantly improve point estimates of the underlying

value used to generate the data.

3.2. Convergence in Infinite Dimensions

We introduce a scalar parameter δ controlling the accuracy of the approximation A of A⋆,

writing δM in place of M. By writing explicitly the dependence of the mean and covariance

on δ, we have

Cℓ+1(δ) = C0 − C0A
∗(Γ+ δ2MCℓ(δ)M

∗ + AC0A
∗)−1

AC0,

mℓ+1(δ) = m0 + C0A
∗(Γ+ δ2MCℓ(δ)M

∗ + AC0A
∗)−1(b− Am0 − δMmℓ(δ)).

Let L(X) denote the space of bounded linear operators on X , equipped with the operator

norm. Let S+(X) ⊆ L(X) denote the set of positive bounded linear operators on X , and
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S+(X) the set of non-negative bounded linear operators on X . We may write the iteration for

Cℓ(δ) as

Cℓ+1(δ) = F (Cℓ(δ), δ) (5)

where F : S+(X)× R → S+(X) is given by

F (B, δ) = C0 − C0A
∗(Γ+ δ2MBM∗ + AC0A

∗)−1
AC0.

We show that under certain assumptions, for all δ sufficiently small, F ( · , δ) has a unique

stable fixed point C(δ). The assumptions we make are as follows.

Assumptions 3.1. (i) C0 ∈ S+(X) and is trace-class.

(ii) Y is finite dimensional, and Γ ∈ S+(Y ).

(iii) A⋆, A : X → Y are bounded.

We first establish the following result concerning convergence of the sequence of covariance

operators:

Proposition 3.2. Let Assumptions 3.1 hold. Then there is a β > 0 such that for all δ < 1/β,

a unique C(δ) ∈ S+(X) exists with

C(δ) = F (C(δ), δ).

Moreover, C(δ) is a stable fixed point of F ( · , δ), and there is a constant α1 such that

‖Cℓ(δ)− C(δ)‖L(X) ≤ α1(βδ)
2ℓ for all ℓ ≥ 1.

In particular, for δ < 1/β, the sequence {Cℓ(δ)}ℓ≥1 converges geometrically fast.

From this geometric convergence of {Cℓ(δ)}ℓ≥1 we can deduce that also the means mℓ(δ)

converge: Define the maps Gℓ : X × R → X , ℓ ≥ 0, by

Gℓ(m, δ) = m0 + C0A
∗(Γ+ δ2MCℓ(δ)M

∗ + AC0A
∗)−1(b− Am0 − δMm)

so that the update for mℓ(δ) is given by

mℓ+1(δ) = Gℓ(mℓ(δ), δ).

Define also the limiting map G : X × R → X by

G(m, δ) = m0 + C0A
∗(Γ+ δ2MC(δ)M∗ + AC0A

∗)−1(b− Am0 − δMm).

Then we have the following result:

Proposition 3.3. Let Assumptions 3.1 hold, and let β be as in Proposition 3.2. Then for all

δ < 1/β, there exists a unique m(δ) ∈ X with

m(δ) = G(m(δ), δ).
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Moreover, there is an α2 > 0 such that

‖mℓ(δ)−m(δ)‖X ≤ α2(βδ)
ℓ for all ℓ ≥ 1.

Hence, for δ < 1/β, the sequence {mℓ(δ)}ℓ≥1 converges geometrically fast.

To prove the above propositions we first prove the following lemma. In the proof, the

following notation is used: Given symmetric non-negative linear operators B1,B2 ∈ L(X),

we write B1 ≤ B2 to mean that B2 − B1 is non-negative.

Lemma 3.4. Let Assumptions 3.1 hold. Then the family of operators K(B, δ) : Y → X given

by

K(B, δ) = C0A
∗(Γ+ δ2MBM∗ + AC0A

∗)−1

is bounded uniformly over B ∈ S+(X) and δ ∈ R.

Proof. We have that

Γ+ AC0A
∗ ≤ Γ+ Q+ AC0A

∗,

for any Q ∈ S+(Y ), which implies that

(Γ+ Q+ AC0A
∗)−1 ≤ (Γ+ AC0A

∗)−1,

and consequently

‖(Γ+ Q+ AC0A
∗)−1‖L(Y ) ≤ ‖(Γ+ AC0A

∗)−1‖L(Y ).

By choosing Q = δ2MBM∗ the claim follows.

In what follows we will denote Kmax = sup {‖K(B, δ)‖L(Y,X) | B ∈ S+(X), δ ∈ R}.

Furthermore, we define the parameter β = Kmax‖M‖L(Y ).

Proof of Proposition 3.2. We first show that for δ sufficiently small, the map F ( · , δ) is a

contraction on S+(X). To do this, we look at the Fréchet derivative of the map, which may

be calculated explicitly. For B ∈ S+(X) and V ∈ L(X), we have

DBF (B, δ)V

= δ2C0A
∗(Γ+ δ2MBM∗ + AC0A

∗)−1MVM∗(Γ+ δ2MBM∗ + AC0A
∗)−1AC0

= δ2K(B, δ)MVM∗K(B, δ)∗

where K(B, δ) is as defined in Lemma 3.4. The norm of the derivative can be estimated as

‖DBF (B, δ)‖L(X)→L(X) = sup
‖V‖L(X)=1

‖DBF (B, δ)V‖L(X)

≤ sup
‖V‖L(X)=1

δ2‖K(B, δ)‖2L(Y,X)‖M‖2L(Y )‖V‖L(X)

≤ (βδ)2
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by the estimate of Lemma 3.4. Since the above bound is uniform in B, we may use the mean

value theorem to deduce that for all B1,B2 ∈ S+(X),

‖F (B1, δ)− F (B2, δ)‖L(X) ≤ (βδ)2‖B1 − B2‖L(X)

and so F ( · , δ) is a contraction for δ < 1/β. The set S+(X) is a complete subset of the space

L(X), and so by the Banach fixed-point theorem there exists a unique C(δ) ∈ S+(X) such

that

C(δ) = F (C(δ), δ),

and we have Cℓ(δ) → C(δ). Moreover,

‖Cℓ(δ)− C(δ)‖L(X) = ‖F (Cℓ−1(δ), δ)− F (C(δ), δ)‖L(X)

≤ (βδ)2‖Cℓ−1(δ)− C(δ)‖L(X),

and recursively,

‖Cℓ(δ)− C(δ)‖L(X) ≤ (βδ)2ℓ‖C1(δ)− C0‖L(X) = α1(βδ)
2ℓ.

We finally show that we actually have C(δ) ∈ S+(X) and so the covariance does not become

degenerate in the limit. We denote Cpost = F (Cpost, 0) the exact posterior covariance in

the absence of model error, noting that Cpost ∈ S+(X) as we assume C0 ∈ S+(X) and

Γ ∈ S+(Y ). From a similar argument as in the proof of Lemma 3.4, we have

0 < Cpost = C0 − C0A
∗(Γ+ AC0A

∗)−1AC0

≤ C0 − C0A
∗(Γ+ δ2MC(δ)M∗ + AC0A

∗)−1AC0

= C(δ),

which gives the result.

Proof of Proposition 3.3. We may express Gℓ in the form of an affine mapping,

Gℓ(m, δ) = Hℓ(δ)m+ gℓ(δ)

where Hℓ(δ) and gℓ(δ) are given by

Hℓ(δ) = −δC0A
∗(Γ+ δ2MCℓ(δ)M

∗ + AC0A
∗)−1

M

= −δK(Cℓ(δ), δ)M,
gℓ(δ) = m0 + C0A

∗(Γ+ δ2MCℓ(δ)M
∗ + AC0A

∗)−1(b− Am0)

= m0 + K(Cℓ(δ), δ)(b− Am0),

respectively. From the estimates of Lemma 3.4, we obtain the uniform bounds

‖Hℓ(δ)‖L(X) ≤ βδ < 1,

‖gℓ(δ)‖X ≤ ‖m0‖X + ‖K(Cℓ(δ), δ)‖L(Y )‖b− Am0‖X
= ‖m0‖X + β‖b− Am0‖X = L.
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From the convergence of the sequence {Cℓ(δ)}ℓ≥1 in the previous proposition, we see

that {Hℓ(δ)}ℓ≥1 and {gℓ(δ)}ℓ≥1 also converge, the limits being denoted by H(δ) and g(δ),

respectively. Explicitly,

H(δ) = −δK(C(δ), δ)M,
g(δ) = m0 + K(C(δ), δ)(b− Am0).

Moreover, since B 7→ K(B, δ) is Fréchet differentiable, this convergence occurs at the same

rate as the convergence of {Cℓ(δ)}ℓ≥1.

Next we show that {mℓ(δ)}ℓ≥1 remains bounded for sufficiently small δ. From the bounds

above, we have

‖mℓ(δ)‖X ≤ ‖Hℓ−1(δ)‖L(X)‖mℓ−1(δ)‖X + ‖gℓ−1(δ)‖X
≤ βδ‖mℓ−1‖X + L,

and therefore, by repeatedly applying the estimate, we obtain

‖mℓ(δ)‖X ≤ (βδ)ℓ‖m0‖X + L

ℓ−1∑

j=0

(βδ)j

≤ (βδ)ℓ‖m0‖X +
L

1− βδ
,

which provides a uniform bound for δ < 1/β.

To prove the convergence, we write first for i ≥ 1 the estimate

‖mi+1(δ)−mi(δ)‖X = ‖Hi(δ)mi(δ) + gi(δ)− Hi−1(δ)mi−1(δ)− gi−1(δ)‖X
≤ ‖Hi(δ)mi(δ)− Hi(δ)mi−1(δ)‖X

+ ‖Hi(δ)mi−1(δ)− Hi−1(δ)mi−1(δ)‖X
+ ‖gi(δ)− gi−1(δ)‖X

≤ ‖Hi(δ)‖L(X)‖mi(δ)−mi−1(δ)‖X
+ ‖Hi(δ)− Hi−1(δ)‖L(X)‖mi−1(δ)‖X
+ ‖gi(δ)− gi−1(δ)‖X ,

and further, by the geometric convergence of the sequences {Hi(δ)} and {gi(δ)}, and the

uniform boundedness, for some γ > 0,

‖mi+1(δ)−mi(δ)‖X ≤ βδ‖mi(δ)−mi−1(δ)‖X + γ(βδ)2i.

By by repeatedly applying the estimate, we arrive at

‖mi+1(δ)−mi(δ)‖X ≤ (βδ)i+1‖m0‖X + γ
i∑

j=0

(βδ)j((βδ)2)i−j

= (βδ)i+1‖m0‖X + γ
((βδ)2)i+1 − (βδ)i+1

(βδ)2 − βδ
,
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From this bound, it follows that {mℓ(δ)}ℓ≥1 is a Cauchy sequence: For k > ℓ, we have

‖mk(δ)−mℓ(δ)‖X ≤
k−1∑

i=ℓ

‖mi+1(δ)−mi(δ)‖X

≤ ‖m0‖X
k−1∑

i=ℓ

(βδ)i+1 + γ

k−1∑

i=ℓ

((βδ)2)i+1 − (βδ)i+1

(βδ)2 − βδ

= ‖m0‖X
(βδ)ℓ+1 − (βδ)k+1

1− βδ
+ γ

(βδ)ℓ+1 − (βδ)k+1

(βδ − 1)((βδ)2 − βδ)

+ γ
((βδ)2)ℓ+1 − ((βδ)2)k+1

(δ2 − 1)(δ2 − βδ)

which tends to zero as k, ℓ → ∞, provided δ is small enough. Thus the sequence {mℓ(δ)}
converges, and we denote the limit by m(δ). Taking the limit as k → ∞ in the above

inequality, we have

‖mℓ(δ)−m(δ)‖X ≤ (βδ)ℓ+1

βδ − 1
+ γ

(βδ)ℓ+1

(βδ − 1)((βδ)2 − βδ)
+ γ

((βδ)2)ℓ+1

(δ2 − 1)((βδ)2 − βδ)

= O((βδ)ℓ)

for all ℓ ≥ 1, and it follows that {mℓ(δ)}ℓ≥1 converges geometrically with rate βδ.

To show that the limit m(δ) is indeed a fixed point of G(·, δ), we first we note that

‖Gℓ(mℓ(δ), δ)−G(m(δ), δ)‖X = ‖Hℓ(δ)mℓ(δ) + gℓ(δ)− H(δ)m(δ)− g(δ)‖X
≤ ‖Hℓ(δ)− H(δ)‖L(X)‖mℓ(δ)‖X

+ ‖H(δ)‖L(X)‖mℓ(δ)−m(δ)‖X + ‖gℓ(δ)− g(δ)‖X
→ 0,

as ℓ→ ∞, and so it follows that

m(δ) = lim
ℓ→∞

mℓ+1(δ) = lim
ℓ→∞

Gℓ(mℓ(δ), δ) = G(m(δ), δ).

All that remains is to check that the fixed point is unique. Supposing that h(δ) is another fixed

point, it follows that

‖m(δ)− h(δ)‖X = ‖G(m(δ), δ)−G(h(δ), δ)‖X
≤ ‖H(δ)‖L(X)‖m(δ)− h(δ)‖X
≤ βδ‖m(δ)− h(δ)‖X .

Hence, for δ < 1/β we must have that m(δ) = h(δ), and the result follows.

3.3. Convergence in Finite Dimensions

Above we had to assume that the prior distribution was sufficiently close to the posterior in

order to guarantee convergence; in finite dimensions we may drop this assumption and still
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get convergence of the covariances. Here we assume that X and Y are Euclidian spaces,

X = RN and Y = RJ .

In the following, we use the following convention: For symmetric matrices B1,B2, we write

B1 ≥ B2, or B1 > B2 to indicate that B1 − B2 is non-negative definite, or positive definite,

respectively. We denote by SN+ ⊆ RN×N the set of positive definite N × N matrices. In this

section, the adjoint operators are denoted as transposes.

We start by showing that the iterative updating formula (4) gives a convergent sequence.

However, instead of the covariance matrices, it is more convenient to work with the precision

matrices, defined as Bℓ := C−1
ℓ . Observe that formula (4) can be written as

C−1
ℓ+1 = AT(Γ+MCℓM

T)−1A+ C−1
0 ,

which motivates the following result.

Proposition 3.5. Let B0 = C−1
0 ∈ SN+ be a positive definite precision matrix, and let the

sequence {Bℓ}ℓ≥0 be generated iteratively by the formula Bℓ+1 = R(Bℓ), where R : SN+ →
SN+ is given by

R(B) = AT(Γ+MB−1MT)−1A+ B0.

Then the sequence {Bℓ}ℓ≥0 is increasing in the sense of quadratic forms, and there exists a

positive definite B ∈ SN+ such that Bℓ ↑ B.

Consequently, the sequence of covariances {Cℓ}ℓ≥0 defined by (4) satisfies Cℓ ↓ C := B−1.

Proof. We first show that Bℓ+1 ≥ Bℓ for all ℓ using induction. Write

r(B) = AT(Γ+MB−1MT)−1A,

so that R(B) = r(B) + B0. If B > 0, then r(B) ≥ 0, proving that B1 = r(B0) + B0 ≥ B0.

Now assume that Bℓ ≥ Bℓ−1. Then we have

Bℓ+1 − Bℓ = R(Bℓ)−R(Bℓ−1)

= r(Bℓ)− r(Bℓ−1)

= AT

(

(Γ+MB−1
ℓ MT)−1 − (Γ+MB−1

ℓ−1M
T)−1

)

A.

To prove the claim, it suffices to show that the bracketed difference is non-negative definite.

Consider the difference

(Γ+MB−1
ℓ−1M

T)− (Γ+MB−1
ℓ MT) = M(B−1

ℓ−1 − B−1
ℓ )MT ≥ 0

by the induction assumption. Therefore,

(Γ+MB−1
ℓ−1M

T)−1 ≤ (Γ+MB−1
ℓ MT)−1,

which implies the desired non-negative definiteness.
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To prove that the sequence {Bℓ}ℓ≥0 is bounded as quadratic forms, denote the quadratic form

as

Qℓ(u, v) = uTBℓv, u, v ∈ RN .

Since

(Γ+MB−1
ℓ−1M

T)−1 ≤ Γ−1,

we have

Qℓ(u, u) ≤ (Au)TΓ−1Au+ uTB0u,

proving the boundedness of the sequence.

In particular, it follows that for each u ∈ RN ,

Qℓ(u, u) → uTBu, as ℓ→ ∞

for some symmetric positive definite matrix B ∈ RN×N . The fact that the matrix entries of Bℓ

converge to the corresponding entries of B follows from the polar identity,

uTBℓv =
1

4
(Qℓ(u+ v)− Qℓ(u− v)) ,

with u, v being the canonical basis vectors. This completes the proof.

4. The General Case

In general, the sequence of distributions πℓ are not Gaussian, and so it is considerably harder

to analyze the convergence as we did in the previous section. In this section we consider

how the algorithm may be implemented in practice, and in particular, how to produce an

approximation to the posterior distribution using a finite number of full model evaluations.

This approximate distribution can be used for generating samples using only approximate

model evaluations, leading to a significantly lower computational cost over sampling using

the true posterior based on the full model.

In subsection 4.1 we outline the general framework for sampling from the approximate

posterior sequence and updating the density, making use of particle approximations. In

subsection 4.2 we reformulate the iteration (3) in terms of operators on the set of probability

measures, and provide results on properties of these operators. Convergence in the large

particle limit is shown, using the new formulation of the update. In subsection 4.3 a particular

rejection sampling method, based on a Gaussian mixture proposal, is studied. Importance

sampling is then considered in subsection 4.4 and similar convergence is shown.
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4.1. Updating the Densities via Sampling

We consider the algorithm in Section 2.3, and in particular, address the question of how to

generate a sequence of approximate samples from the iteratively defined densities µℓ given by

(3). We shall use particle approximations to do this. Assume that

Sℓ = {(u1ℓ , w1
ℓ ), (u

2
ℓ , w

2
ℓ ), . . . , (u

N
ℓ , w

N
ℓ )}, ℓ = 0, 1, 2, . . .

is the current approximate sample of the unknowns with relative weights wjℓ . For ℓ = 0, the

sample is obtained by independent sampling from the prior, and wj0 = 1/N . We then compute

the modeling error sample,

Mℓ = {m1
ℓ ,m

2
ℓ , . . . ,m

N
ℓ }, ℓ = 0, 1, 2, . . .

by defining

mj
ℓ =M(ujℓ).

Consider now the model (2). Assuming that the modeling error is independent of the unknown

u, we may write a conditional likelihood model,

π(b | u,m) ∝ πnoise(b− f(u)−m).

Let νℓ(m) denote the probability density of the modeling error based on our current

information. Then, the updated likelihood model based on the approximate model is

πℓ+1(b | u) =
∫

π(b | u,m)νℓ(m)dm,

and, using a Monte Carlo integral approximation, postulating that the realizations mj
ℓ inherit

the weights of the sample points ujℓ , we obtain

πℓ+1(b | u) ≈
N∑

j=1

wjℓπ(b | u,mj
ℓ).

The current approximation for the posterior density is

πℓ+1(u | b) ∝ πprior(u)
N∑

j=1

wjℓπ(b | u,mj
ℓ),

suggesting an updating scheme for Sℓ → Sℓ+1:

(a) Draw an index kj by replacement from {1, 2, . . . , N}, using the probabilities wjℓ ;

(b) Draw the sample point

ujℓ+1 ∼ πprior(u)π(b | u,mkj
ℓ ). (6)
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Part (b) above is straightforward, in particular, if the model is Gaussian and f is linear, such as

in the linearized model for EIT, since the measure (6) is then a Gaussian. We will demonstrate

the effectiveness of this approach in Section 5.2. Otherwise we may consider other sampling

methods such as importance sampling; this is what is done in the following subsections.

4.2. A convergence result for particle approximations

In this section, we rewrite the updating formula in terms of mappings of measures, and analyze

the convergence of the particle approximation under certain limited conditions.

Let µℓ denote the current approximation of the posterior density for u. The updated likelihood

based on the modeling error is

πℓ+1(b | u) ∝
∫

X

πnoise(b− f(u)−M(z))µℓ(dz),

and therefore, the updating, by Bayes’ formula, is given by

µℓ+1(du) ∝ µprior(du)

∫

X

πnoise(b− f(u)−M(z))µℓ(dz) = Pµℓ(du). (7)

Furthermore, we write the normalization formally as an operator,

Lµ =
µ

µ(1)
, µ(1) =

∫

X

µ(du).

The model updating algorithm can therefore be written concisely as

µℓ+1 = LPµℓ, µ0 = µprior.

Let M(X) denote the set of finite measures on X . Denote by P(X) the set of probability

measures on X , and for p ∈ (0, 1) denote by Mp(X) the set of finite measures with total mass

lying in the interval [p, p−1].

Let µ and ν denote two random M(X)-valued measures, i.e., µω, νω ∈ M(X) for ω ∈ Ω,

where Ω is a probability space. Denoting by E the expectation, we define the distance between

random measures through

d(µ, ν)2 = sup
‖ϕ‖∞=1

E|µ(ϕ)− ν(ϕ)|2,

where the functions ϕ are continuous over X . For non-random measures, the definition

coincides with the total variation distance.

In the following two lemmas, which we need for the large particle convergence result that

follows them, we make a restrictive assumption about the noise distribution.

Assumptions 4.1. There exists κ ∈ (0, 1) such that for all ε ∈ Y , κ ≤ πnoise(ε) ≤ κ−1.
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Under this assumption, we show the following results concerning the mappings P and L

defined before.

Lemma 4.2. Let Assumptions 4.1 hold. Then P : P(X) → Mκ(X), and

d(Pµ, Pν) ≤ κ−1d(µ, ν).

Proof. First note that κ ≤ πnoise < κ−1 implies that κ ≤ (Pµ)(1) ≤ κ−1, and so P does

indeed map P(X) into Mκ(X). Exchanging the order of integration, we see for any bounded

measurable ϕ,

(Pµ)(ϕ) =

∫

X

(∫

X

πprior(u)πnoise(b− f(u)−M(z))ϕ(u)du

)

︸ ︷︷ ︸

=:ψ(z)

µ(dz)

and so

|(Pµ)(ϕ)− (Pν)(ϕ)|2 = |µ(ψ)− ν(ψ)|2.

Using that πnoise < κ−1, we see that ‖ϕ‖∞ ≤ 1 implies that ‖ψ‖∞ ≤ κ−1, and so

d(Pµ, Pν)2 ≤ sup
‖ψ‖∞≤κ−1

E|µ(ψ)− ν(ψ)|2

≤ sup
‖ψ‖∞≤1

κ−2E|µ(ψ)− ν(ψ)|2

= κ−2d(µ, ν)2,

implying the claim.

A similar result for the mapping L can be obtained.

Lemma 4.3. Let Assumptions 4.1 hold. Then it follows that L : Mκ(X) → P(X), and

furthermore, for µ, ν ∈ Mκ(X), we have

d(Lµ, Lν) ≤ 2κ−2d(µ, ν).

Proof. The proof is essentially identical to that of Lemma 5.17 in [15], with 1 in place of g.

We skip the details here.

We use the above results to analyze the convergence of particle approximations of the

measures. We introduce the sampling operator SN : P(X) → P(X),

SNµ =
1

N

N∑

j=1

δuj , u1, . . . , uN ∼ µ i.i.d.
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and we have

(SNµ)(ϕ) =
1

N

N∑

j=1

ϕ(uj), u1, . . . , uN ∼ µ i.i.d.

Observe that SNµ is a random measure, as it depends on the sample. It is shown in [15],

Lemma 5.15, that the operator SN satisfies

sup
µ∈P(X)

d(SNµ, µ) ≤ 1√
N
.

Define the sequence of particle approximations {µNℓ }ℓ≥0 to {µℓ}ℓ≥0 by

µN0 = SNµ0,

µNℓ+1 = SNLPµNℓ . (8)

in light of the previous lemmas, now we prove the following result regarding convergence of

this approximation as N → ∞:

Proposition 4.4. Let Assumptions 4.1 hold. Define {µℓ}ℓ≥0, {µNℓ }ℓ≥0 as above. Then, for

each ℓ,

d(µNℓ , µℓ) ≤
1√
N

ℓ∑

k=0

(2κ−3)k.

In particular, d(µNℓ , µℓ) → 0 as N → ∞.

Proof. The triangle inequality for d(·, ·) yields

eℓ := d(µNℓ , µℓ) ≤ d(SNLPµNℓ−1, LPµ
N
ℓ−1) + d(LPµNℓ−1, LPµℓ−1),

and applying the bounds given by the previous lemmas, we obtain

eℓ ≤
1√
N

+ 2κ−2d(PµNℓ−1, Pµℓ−1)

≤ 1√
N

+ 2κ−3d(µNℓ−1, µℓ−1)

=
1√
N

+ 2κ−3eℓ−1.

The result follows since e0 = d(SNµ0, µ0) ≤ 1/
√
N .

4.3. Particle approximation with Gaussian densities

In this section, we consider the particle approximation when the approximate model is linear,

while the accurate model need not be. This is the situation in the computed examples that will

be discussed later.
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Suppose that the approximate model f is linear, f(u) = Au, and the noise and prior

distributions are Gaussian,

πnoise = N (0, Γ), πprior = N (m0,C0).

Then the measure (6) is a Gaussian mixture:

πprior(u)π(b | u,mj
ℓ) =

1

N

N∑

j=1

N (u | pjℓ,C)

where the means and covariance are given by

C = (ATΓ−1A+ C0)
−1,

pjℓ = C(ATΓ−1(b−mj
ℓ) + C−1

0 m0).

The collection of samples Sℓ can then be evolved via the following algorithm.

Algorithm (Linear Approximate Model):

1. Set ℓ = 0. Define the covariance operator C = (ATΓ−1A + C0)
−1. Draw an initial

ensemble of particles {ujℓ}Nj=1 from the prior measure µ0(du) = πprior(u)du, and define

the collection Sℓ = {u1ℓ , u2ℓ , . . . , uNℓ }.

2. Define the means pjℓ = C(ATΓ−1(b−M(ujℓ)) + C−1
0 m0), j = 1, . . . , N .

3. For each j = 1, . . . , N

(i) Sample kj uniformly from the set {1, . . . , N}
(ii) Sample ujℓ+1 ∼ N(p

kj
ℓ ,C)

4. Set Sℓ+1 = {u1ℓ+1, u
2
ℓ+1, . . . , u

N
ℓ+1}.

5. Set ℓ 7→ ℓ+ 1 and go to 2.

Remark 4.5. For more general models, one could use a method such as rejection sampling

in order to produce exact samples from the measure (6). A suitable proposal distribution for

this rejection sampling could be, for example, a Gaussian mixture with appropriately chosen

means and covariances [9].

Two natural candidates for non-Gaussian priors, that retain some of the simplicity of the

Gaussian models without being as limited, are:

(i) Hierarchical, conditionally Gaussian prior models,

πprior(u | θ) ∼ N (µθ,Cθ),

where the mean and covariance depend on a hyperparameter vector θ that follows a

hyperprior distribution,

θ ∼ πhyper.

The hypermodels allow the introduction of sparsity promoting priors, similar to total

variation; [10, 11].
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(ii) Gaussian mixtures, which allow a fast sampling from non-Gaussian distributions through

a local approximation by Gaussian or other simple distributions [33].

Remark 4.6. We point out here that the approximation result of Proposition 4.4 does not

apply to the Gaussian likelihood, as the noise density is not bounded from below.

4.4. Importance Sampling and Convergence

In this section we consider an approximate sampling based updating scheme of the probability

densities using importance sampling. This method effectively turns a collection of prior

samples into samples from the posterior by weighting them appropriately, using the fact that

the posterior is absolutely continuous with respect to the prior.

Assume that at stage ℓ of the approximation scheme, we have a collection of N particles and

the corresponding weights, Sℓ = {(ujℓ, wjℓ)}Nj=1. The associated particle approximation µNℓ
of the probability distribution acting on a test function ϕ is

µNℓ (ϕ) =
N∑

j=1

wjℓϕ(u
j
ℓ).

We evolve this distribution by acting on it with P and L. By the definition (7) of P , we first

get an approximation

PµNℓ (du) =

(
N∑

j=1

wjℓπnoise(b− f(u)−M(ujℓ))

)

µprior(du)

=: gℓ(u)µprior(du).

To generate an updated sample based on this approximation, we use independent sampling to

draw ujℓ+1 ∼ µ0, j = 1, . . . , N , and define the particle approximation by

µNℓ+1(ϕ) =
N∑

j=1

wjℓ+1ϕ(u
j
ℓ+1), wjℓ+1 =

gℓ(u
j
ℓ+1)

∑N

j=1 gℓ(u
j
ℓ+1)

.

Denoting by TN : P(X) → P(X) the importance sampling step, consisting of independent

sampling and weighting, we may define an iterative algorithm symbolically as

µN0 = TNµ0,

µNℓ+1 = TNLPµNℓ . (9)

Explicitly, the algorithm can be described as follows.

Algorithm (Importance sampling)

1. Set ℓ = 0. Draw an initial ensemble of particles {ujℓ}Nj=1 from the prior measure

µ0(du) = πprior(u)du, and initialize the weights wjℓ = 1/N for each j = 1, . . . , N .

Define the collection Sℓ = {(u1ℓ , w1
ℓ ), (u

2
ℓ , w

2
ℓ ), . . . , (u

N
ℓ , w

N
ℓ )}.
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2. Define

gℓ(u) =
N∑

j=1

wjℓπnoise(b− f(u)−M(ujℓ)).

3. Sample ujℓ+1 ∼ µ0, j = 1, . . . , N i.i.d. and define the weights

wjℓ+1 =
gℓ(u

j
ℓ+1)

∑N

j=1 gℓ(u
j
ℓ+1)

, j = 1, . . . , N.

4. Set Sℓ+1 = {(u1ℓ+1, w
1
ℓ+1), (u

2
ℓ+1, w

2
ℓ+1), . . . , (u

N
ℓ+1, w

N
ℓ+1)}.

5. Set ℓ 7→ ℓ+ 1 and go to 2.

As in the previous section, we establish a convergence result for N → ∞ only under the

restrictive condition of Assumption 4.1. We recall the following result from [1]:

Lemma 4.7. Let µ ∈ P(X) be absolutely continuous with respect to the prior measure µ0,

µ(du) ∝ g(u)µ0(du),

where µ0(g
2) <∞. Define the quantity ρ ≥ 1 by ρ = µ0(g

2)/µ0(g)
2. Then

d(TNµ, µ) ≤ 2

√
ρ

N
.

By Assumption 4.1, there exists κ ∈ (0, 1) such that κ ≤ gℓ(ε) ≤ κ−1 for all ε ∈ Y , implying

that

µ0(g
2
ℓ )

µ0(gℓ)2
≤ κ−4.

In particular, by applying the above lemma to the measure µ̂ℓ+1 = LPµℓ, we see that

d(TNLPµℓ, LPµℓ) ≤
2κ−2

√
N
.

We are ready to prove the following proposition establishing the convergence of the particle

approximations as N → ∞:

Proposition 4.8. Let Assumptions 4.1 hold for the noise distribution, and let {µℓ}ℓ≥0 be the

sequence of the model error approximations of the posterior, and {µNℓ }ℓ≥0 a sequence of

importance sampling approximations obtained as above. Then, for each ℓ,

d(µNℓ , µℓ) ≤
2κ−2

√
N

ℓ−1∑

k=0

(2κ−3)k +
(2κ−3)ℓ√

N
.

In particular, d(µNℓ , µℓ) → 0 as N → ∞.
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Proof. From the triangle inequality for d( · , · ), we have

eℓ := d(µNℓ , µℓ) ≤ d(TNLPµNℓ−1, LPµ
N
ℓ−1) + d(LPµNℓ−1, LPµℓ−1).

The bounds derived above yield

eℓ ≤
2κ−2

√
N

+ 2κ−2d(PµNℓ−1, Pµℓ−1)

≤ 2κ−2

√
N

+ 2κ−3d(µNℓ−1, µℓ−1)

=
2κ−2

√
N

+ 2κ−3eℓ−1.

Since we have e0 = d(TNµ0, µ0) = d(SNµ0, µ0) ≤ 1/
√
N , the result follows.

Remark 4.9. In theory, the importance sampling method described above can be used with

very weak assumptions on the forward maps and prior/noise distributions. However in

practice it may be ineffective if the posterior is significantly far from the prior, such as when

the size of the observational noise is small. To overcome this issue, one could instead consider

Sequential Monte Carlo or Sequential Importance Sampling methods to evolve prior samples

into posterior samples by introducing a sequence of intermediate measures [5, 26].

5. Numerical Illustrations

In this section, we demonstrate the convergence properties established in the preceding

sections by means of computed examples. Furthermore, we demonstrate the enhanced

reconstructions obtained by modelling error as advocated in this paper. The first example is

a linear inverse source problem, elucidating the geometric convergence in the linear Gaussian

case. The second example is the EIT problem with linearized approximate model with a

coarse FEM mesh, allowing for straightforward particle updates. In the last example we

consider the problem of recovering the permeability field in the steady state Darcy flow model,

again with a linearized approximate model.

5.1. Inverse Source Problem

As a proof of concept, we start by considering a simple one-dimensional inverse source

problem. Let Ω = (0, 1) and define X = L2(Ω). Given u ∈ X , let p = P (u) ∈ H1
0 (Ω)

be the solution to the Laplace equation,

{−p′′ = u x ∈ Ω

p = 0 x ∈ ∂Ω

The inverse problem is to estimate the source u from pointwise observations of p. Therefore,

define the observation operator O : H1
0 (Ω) → RJ by

O(u) = (u(q1), . . . , u(qJ))
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for some set of points {q1, . . . , qJ} ⊆ Ω. We define the exact forward operator Aexact
⋆ = O◦P .

For numerical simulations, the exact forward model Aexact
⋆ is approximated by a high fidelity

proxy, A⋆, obtained by approximating the solution p through a finite difference solution on a

fine mesh. The coarse mesh approximation of Aexact
⋆ , used in the inverse model, is denoted by

A = An. In our computed example, we use 210 − 1 = 1 023 equally spaced interior points

for A⋆, while the coarse mesh model An is computed with of 2n − 1 equally spaced interior

points, n < 10.

We let qj = j/16, j = 1, . . . , 15 = J be equally spaced observation points, and to generate

the simulated data, we corrupt the high fidelity data with a small amount of white noise,

ε ∼ N (0, Γ), where we set Γ = 10−8IJ . The prior is chosen to be a standard Brownian

motion, specifically we take µ0 = N (0,C0) with

C0 = (−∆)−1, ∆ =
d2

dx2
,

D(−∆) =
{

u ∈ H2(Ω)
∣
∣
∣u(0) = 0,

du

dx
(1) = 0

}

,

and the true source used for data generation is drawn from the prior. Numerically the precision

operator C−1
0 is implemented as the finite difference Laplacian matrix. We perform L = 30

iterations in each simulation.

The posterior mean and covariance, mpost,Cpost, corresponding to the high fidelity model,

and the corresponding mean and covariance, mn
post,C

n
post, based on the approximate model

are given by

mpost = m0 + C0A
T

⋆ (Γ+ A⋆C0A
T

⋆ )
−1(b− A⋆m0),

Cpost = C0 − C0A
T

⋆ (Γ+ A⋆C0A
T

⋆ )
−1A⋆C0,

mn
post = m0 + C0A

T

n(Γ+ AnC0A
T

n)
−1(b− Anm0),

Cnpost = C0 − C0A
T

n(Γ+ AnC0A
T

n)
−1AnC0,

respectively. The approximate posterior mean and covariances (4) obtained by the modeling

error approach, after ℓ iterations, are denoted by mℓ and Cℓ, respectively.

Table 1 shows the approximation errors arising from both approximations of Cpost and mpost

with different discretization levels. The table shows that the modeling error approach produces

a better approximation of the posterior mean than the model ignoring the modeling error,

while the approximate covariances are slightly less accurate as approximations of the posterior

covariance than those found without allowing for the modeling error correction. These

experiments confirm our assertion at the start of the paper, namely that allowing for model

error can result in improved point estimates (here the posterior mean) but that the iteration

introduced does not converge to the true posterior distribution (as evidenced by the error in

the covariance at fixed n and large L.)

To demonstrate the convergence rate, Figure 1 shows the mean and covariance errors for

various approximation levels as functions of the number of iterations. The plots, as well as

the tabulated values, Table 2, of the logarithmic slopes of the approximation errors verify the
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Table 1. The approximation errors of the approximate posterior means and covariances for

various approximation levels with and without the inclusion of the modeling error correction.

The matrix norms are the Frobenius norms.

n ‖mL −mpost‖ ‖mn
post −mpost‖ ‖CL − Cpost‖ ‖Cnpost − Cpost‖

4 0.1906 0.2986 0.0676 0.0381

5 0.0455 0.0739 0.0170 0.0095

6 0.0111 0.0182 0.0043 0.0024

7 0.0028 0.0045 0.0011 0.0006

8 0.0007 0.0011 0.00026 0.00015

9 0.0002 0.0003 0.00006 0.00004

Table 2. The convergence rates quantified in terms of the slope of the logarithmic plot of

mean and covariance deviation from the limit values mL and CL before the deviations plateau,

indicating that the algorithm has converged.

n Slope of log ‖mℓ −mL‖ Slope of log ‖Cℓ − CL‖ ‖An − A⋆‖
4 -1.80 -3.60 0.101

5 -3.13 -6.26 0.0706

6 -4.57 -9.00 0.0491

7 -6.30 -11.9 0.0335

8 -7.73 -14.8 0.0219

9 -9.34 -14.9 0.0127

geometric convergence rates, with their dependence on the approximation level. Observe that

the logarithm of the convergence rate for the covariance, a quadratic quantity, is twice that of

the mean.

5.2. Electrical Impedance Tomography (EIT)

In this section, we revisit the modeling error due to coarse discretization of a PDE model in the

context of Electrical Impedance Tomography (EIT). Let Ω ⊂ Rd, d = 2, 3, denote a bounded

connected set with boundary ∂Ω, and let σ : Ω → R be a function modeling the electric

conductivity in Ω, 0 < σm ≤ σ ≤ σM < ∞. We assume that S electrodes are attached to

the boundary ∂Ω, and we model them as open disjoint surface patches es ⊂ ∂Ω, 1 ≤ s ≤ S.

Assuming that an electric current Is is injected through es into the body modeled by Ω, the

electric voltage potential v in Ω, and the electrode voltages Vs on the electrodes can be found
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Figure 1. The trace of the errors ‖mℓ − mL‖ and ‖Cℓ − CL‖, illustrating their convergence

rates. From left to right, top to bottom, the approximation level n is increased from 4 to 9.

as a solution of the Complete Electrode Model (CEM) boundary value problem [32],






∇ · (σ∇v) = 0 x ∈ Ω

σ
∂v

∂n
= 0 x ∈ ∂Ω \⋃S

s=1 es

v + zsσ
∂v

∂n
= Vs x ∈ es, 1 ≤ s ≤ S

∫

es

σ
∂v

∂n
dS = Is 1 ≤ s ≤ S.

Here, the parameters zs > 0 are the presumably known contact impedances, and the currents

satisfy the Kirchhoff’s law, or conservation of charge condition,

S∑

s=1

Is ∈ RS
0 =

{

V ∈ RL
∣
∣
∣

S∑

s=1

Vs = 0
}

.

The solution of the boundary value problem is the unique solution (v, V ) ∈ H1(Ω) × RS
0 of

the weak form variational problem

B((w,W ), (v, V )) =
S∑

s=1

IsWs = 〈(w,W ), bI〉, for all (w,W ) ∈ H1(Ω)× RS
0 ,

where bI = (0, I) ∈ H1(Ω)× RS
0 , and

B((w,W ), (v, V )) =

∫

Ω

σ∇w · ∇vdx+
S∑

s=1

1

zs

∫

es

(w −Ws)(v − Vs)dS.

To discretize the problem, assume that Ω is approximated by the union of triangular or

tetrahedral elements, the mesh containing nf nodes (‘f’ for fine), and let {ψj}nf
j=1 denote a
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nodal-based piecewise polynomial Lagrange basis. Further, let {φs}S−1
s=1 denote a basis of RS

0 .

We define the basis functions ψj ∈ H1(Ω)× RS
0 as

ψj = (ψj, 0), 1 ≤ j ≤ nf , ψnf+s
= (0, φs), 1 ≤ s ≤ S − 1.

We approximate the potential-voltage pair (v, V ) as

(v, V ) =

nf+S−1∑

j=1

αjψj,

and discretize the forward problem by choosing (w,W ) = ψk, to arrive at the Galerkin

approximation,

nf+S−1∑

j=1

B(ψk, ψj)αj = 〈ψk, bI〉, 1 ≤ k ≤ nf + S − 1. (10)

Further, to parametrize the conductivity, we define a discretization of Ω by triangular or

tetrahedral elements, independent of the discretization above, with K nodes, and denote by

{ηj}Kj=1 the nodal-based piecewise polynomial Lagrange basis functions. We then parametrize

the conductivity by writing

σ(x) = σ0exp

(
K∑

j=1

ujηj(x)

)

, x ∈ Ω,

where σ0 > 0 is a fixed background conductivity. The matrix [B(ψk, ψj)] defining the system

(10) is parametrized by the vector u ∈ RK , and we write the equation in matrix form concisely

as

Anf
u α = b(I),

where we have indicated explicitly the dependency on the discretization by the number nf of

nodes. Solving this system for α, extracting the last S− 1 components αnf+s, 1 ≤ s ≤ S− 1,

and representing the voltage in terms of the basis functions φs defines the forward map

u 7→ V =
S−1∑

s=1

αnf+sφs = Rnf
u I, where α = (Anf

u )−1b(I),

where Rnf
u ∈ RS×S is the resistance matrix. We repeat the calculation for a full frame of

S − 1 linearly independent current patterns, I1, . . . , IS−1 ∈ RS
0 , obtaining the full frame of

voltage patterns V 1, . . . , V S−1. Finally, the voltage patterns are stacked together in a vector,

constituting the forward model for the observation,

V =






V 1

...

V S−1




 = F nf (u), F nf : RK → RS(S−1).
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To guarantee satisfactory accuracy of the forward model, the discretization needs to be fine

enough, in particular to capture the singularities of the voltage potential v at the electrode

edges. To demonstrate the modeling error effect, we construct a forward map defined over

a coarser FEM mesh with nc nodes (’c’ for coarse), nc < nf , and denote the corresponding

forward map by

V = F nc(u), F nc : RK → RS(S−1), nc < nf .

Observe that the discretization of u is independent of the FEM mesh, and is not changed when

passing to a coarser computational mesh. In our computed examples, we use a piecewise

linear Lagrange basis to represent both u and v over the different meshes. The three meshes

that we base our simulations, generated with the mesh generator described in [28], on are

shown in Figure 2. The number of electrodes is S = 16.

Figure 2. Triangular meshes used in the numerical simulations. The number of electrodes is

L = 16, and they are indicated by red nodal points in the plot. The mesh for representing the

conductivity distribution (left) has K = 733 vertices and 1 364 elements. The coarse mesh for

the forward solver (middle) has nc = 877 vertices and 1 592 elements, and the fine scale mesh

(right) consist of nf = 2418 vertices and 4 562 elements.

We assign the Whittle-Matérn prior [29, 30] for the vector u defining the conductivity so that

ζλ−1
(
−λ2Lg + IK

)
u ∼ N (0, IK), (11)

where Lg ∈ RK×K is the graph Laplacian defined on the conductivity mesh, λ > 0 is a

correlation length parameter, ζ > 0 is amplitude scaling, and IK is the identity matrix. In

Figure 3, three independently drawn realizations of the conductivity distributions are shown.

The values of the model parameters are indicated in the figure caption.

We generate the data using the fine scale model F = F nf , and using the Conventional Error

Model, i.e., ignoring the modeling error, compute a MAP estimate uMAP using the forward

map f = F nc in the inverse solver. The estimate is based on a simple Gauss-Newton iteration.

The additive noise covariance in this simulation is Γ = γ2IS(S−1) with γ = 10−3Vmax, where

Vmax is the maximum of all noiseless electrode voltages over the full frame of S − 1 voltage

patterns. The noise level is assumed to be low so that the modeling error is the predominant

part in the uncertainty. In Figure 4, we show the conductivity distribution that was used to

generate the synthetic data with the model F , the Conventional Error Model MAP estimate

based on the coarse mesh model f , as well as the Enhanced Error Model estimate. In the
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Figure 3. Conductivities σ = σ0exp(u) corresponding to three independent draws of u from

the prior density. The parameter values used here are λ = 0.2 and ζ = 1/15. The background

conductivity is σ0 = 1.5. The radius of the disc is unity, and the units are arbitrary.

latter, the modeling error mean and covariance are estimated from a sample of 1 500 random

draws from the prior of u.
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Figure 4. Left: The true conductivity used to generate the test data using the finely

discetized FEM forward model. Center: A Gauss-Newton-based MAP estimate based on the

coarsely discretized FEM forward model, using the Conventional Error Model that ignores the

modeling error. Right: The MAP estimate computed by using the Enhanced Error Model, in

which the modeling error mean and covariance are estimated from 1 500 random draws from

the prior.

Observe that in the reconstruction based on the Conventional Error Model, the true inclusions

are completely overshadowed by the boundary artifacts that are concentrated around the

edges of the electrodes. This is to be expected, since the basis functions in the coarse

FEM mesh do not capture the voltage singularities at the electrode edges, and the inverse

solution compensates the modeling error with elevated conductivity at the edges to mitigate

the singularity. In agreement with previously published results, the Enhanced Error Model

produces a solution without modeling error artifacts.

The computation of the MAP estimate, regardless of the error model, requires repeated

linearization of the forward map. The re-evaluation of the Jacobian may be time consuming,

and therefore it is tempting to replace the coarse mesh FEM model with a linearized

approximation around the background conductivity σ0 corresponding to u = 0,

f(u) = F nc(0) + DF nc(0)u.

The solution of the inverse problem with the linearized model and Gaussian prior is

particularly straightforward, requiring a solution of a linear system. We iterate the posterior
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Figure 5. Sample means of the conductivity uℓ for ℓ = 1, 2, 3, 4 (upper row), and sample

marginal variances of the components of the vectors u at the same iterations.

updating algorithm, generating samples Sℓ = {u1ℓ , . . . , uNℓ }, ℓ = 0, 1, 2, · · · using the

modeling error updating scheme. In Figure 5, we plot the conductivities corresponding to

the posterior means,

σℓ = σ0exp(uℓ), uℓ =
1

N

N∑

j=1

ujℓ,

as well as the marginal variances of the parameters uℓ, that is,

varℓ = diag

(

1

N

N∑

j=1

(ujℓ − uℓ)(u
j
ℓ − uℓ)

T

)

.

The sample size here was N = 5000.

Finally, we consider the convergence of the iterated densities πℓ towards the posterior density

by means of the Kullback-Leibler divergence, which we approximate using the particles

drawn from πℓ,

DKL(πℓ‖πpost) =
∫

πℓ(u) log

(
πℓ(u)

πpost(u)

)

du ≈ 1

N

N∑

j=1

log

(

πℓ(u
j
ℓ)

πpost(u
j
ℓ)

)

=
1

N

N∑

j=1

log

(

πℓ(b | ujℓ)
π(b | ujℓ)

)

− log

(
π(b)

πℓ(b)

)

,

the second term corresponding to the normalization factors of the true and approximate

posteriors. Observe that to evaluate the posterior density, the fine mesh model needs not
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Figure 6. Left: The Kullback-Leibler divergence (12) difference estimated by using a sample

of 5 000 realizations drawn from the approximate posterior densities πℓ. Right: The relative

distance of the sample mean from the true conductivity over five iterations.

to be evaluated anew, since the fine mesh evaluations are already computed for the modeling

error sample. The sample-based approximation of the KL divergence is straightforward to

compute up to the normalizing constants.

Figure 6 shows the sample-based estimates of the Kullback-Leibler divergence for ℓ =

1, 2, . . . , ℓmax = 5. To subtract the unknown normalization offset, we plot the differences

∆DKL(πℓ‖πpost) = DKL(πℓ‖πpost)−DKL(πℓmax‖πpost). (12)

The figure shows also the relative error of the sample mean approximating the true

conductivity,

er(uℓ) =
‖σ − σℓ‖

‖σ‖ .

As in the previous subsection, the numerical results demonstrate that the approach to model

error advocated in this paper leads to improved estimates of the true value used to generate

the data.

5.3. Steady State Darcy Flow

In the last computed example, we consider the inverse problem of estimating the permeability

distribution in porous medium from a discrete set of pressure measurements. More precisely,

let the computational domain be Ω = (0, 1)2, and define X = L∞(Ω). For a given u ∈ X ,

called log-permeability define the pressure filed p = P (u) ∈ H1
0 (Ω) to be the solution to the

steady-state Darcy equation with Dirichlet boundary conditions,
{−∇ · (eu∇p) = g x ∈ Ω

p = 0 x ∈ ∂Ω
(13)

for some fixed and presumably known source term g ∈ H−1(Ω).
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We define now the observation operator O : H1
0 (Ω) → RJ by

Oj(p) =
1

2πε

∫

Ω

p(x)e−
1

2ε2
(x−qj)

2

dx, j = 1, . . . , J,

for some set of points {q1, . . . , qJ} ⊆ Ω. The observations are smoothed observations

at the points {q1, . . . , qJ}, converging to point observations as ε → 0. Note that each

Oj is a bounded linear functional on H1
0 (Ω). In what follows, we choose ε = 0.02,

g(x1, x2) = 100 sin(πx1) sin(πx2), and let {q1, . . . , q25} be a uniformly spaced grid of 25

points in Ω. The accurate model is then defined by the composition F = O ◦ P . As in the

EIT example, the approximate model is defined through linearization,

f(u) = F (u0) + DF (u0)u.

for some fixed u0 ∈ X; in this example we choose u0 = 0. To construct the linear model,

the derivative may be computed inexpensively using an adjoint method. The computation of

the full Jacobian DF (u0) requires J + 1 numerical solutions of a PDE of the form (13), and

needs to be performed only once.

In this example, we generate three different data sets corresponding to different noise

levels: The noiseless data generated by using the non-linear model is perturbed by additive

observational noise drawn from normal distribution N (0, Γi), where Γi = 10−i−1I, and

i = 1, 2, 3. The true log-permeability u†, defined as the sum of two unnormalized Gaussian

densities, is shown in Figure 7. In the same figure, the computed pressure field is shown, with

the observation points indicated by black dots. Each data set is generated using a uniform

mesh of 128× 128 points, while in the inverse computations, we use a reduced model with a

uniform mesh of 64×64 points. We perform 10 iterations of the posterior updating algorithm,

using as few as 100 particles in the particle approximation model.

As in the EIT simulations, we choose a Whittle-Matérn prior distribution for the vector u

defining the permeability as given in (11). We make the choices λ = 0.1 and ζ = 1, and note

that here Lg corresponds to the the finite-difference Laplacian on the reduced mesh using the

standard 5-point stencil.

In Figure 8 the conditional means arising from the different error models and data sets

are shown. In this example the conventional and enhanced error models have very similar

performance in terms of inferring the conditional mean. They are both able to infer the

geometry of the log-permeability field, particularly when the observational noise is small,

however they fail to obtain the magnitude. The iterative algorithm proposed in this article

is able to obtain both the geometry and magnitude with good accuracy in a small number of

iterations. Figure 9 shows the evolution of the size of the error between the conditional mean

at iteration ℓ and the true log-permeability field. In all cases the error has converged in 4 or

5 iterations, similarly to what was observed in the EIT experiments. As in the previous two

subsections, the numerical results demonstrate that the approach to model error advocated in

this paper leads to improved accuracy of the point estimates of the true parameter underlying

the data.
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Figure 7. (Left) The true log-permeability used to generate the data. (Right) The true pressure

and the observation points {qj}25j=1
.

Figure 8. (Left column) Conditional mean arising from conventional error model. (Middle

column) Conditional mean arising from enhanced error model. (Right column) Conditional

mean arising from iterative error model, iteration 10. From top to bottom, observational noise

standard deviation is 10−2, 10−3, 10−4 respectively.
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Figure 9. Convergence of the error ‖uℓ − u†‖ between the conditional mean and the truth as

the number of iterations increases. From left to to right observational noise standard deviation

is 10−2, 10−3, 10−4 respectively.

6. Conclusions

Ill-posedness is a characteristic feature of inverse problems, and therefore, special attention

needs to be paid to model uncertainties and model discrepancies that manifest themselves

as highly correlated noise, deviating the measured data from the value predicted by the

forward model. The modeling error is particularly detrimental when the quality of the data

is good, and the exogenous noise does not mask the modeling errors that may become the

predominant component of the noise. Quantification of the uncertainty due to the modeling

errors is therefore an important part of successfully solving the inverse problem. Modeling

error depends on the unknown that is the target of the inverse problem, and therefore, the

Bayesian framework provides a natural basis for attacking the problem: the unknown of

interest, modeled as a random variable, can be used in a natural way to define the modeling

error as a random variable, thus allowing a statistical interpretation of the modeling error.

In this article we introduce, and study the properties of, an iterative method of refining the

statistical description of the modeling error as our information about the unknown increases.

From the implementational point of view, two cases in which the refinement of the modeling

error distribution can be computed are identified. When the model is linear and the

distributions are Gaussian, a fairly straightforward updating strategy of the posterior estimate

is found, and convergence of this iteration can be shown. For non-linear inverse problems,

a linearized approximate model leads to a tractable iterative algorithm based on particle

approximations of the posterior, and as demonstrated in the numerical experiments, the

computed point estimates can be very good, significantly improving on estimates which ignore

model error. However, as pointed out in the article, the limiting approximate probability

density obtained by the iterative algorithm is not identical to the Bayesian posterior density,

although it may be close to it. Regarding both the point estimate and the posterior it is

important to recognize that while the approximation error approach does requires a number

of evaluations of the expensive forward model, unlike traditional MCMC algorithms no

rejections occur. Thus the methodology has potential to compute point estimates more

economically than conventional non-Bayesian approaches such as Tikhonov regularization;

and it also holds the potential to produce reasonable posterior distributions at considerably



Iterative Updating of Model Error for Bayesian Inversion 37

lower cost than MCMC using the fully accurate Bayesian posterior. One of the future

directions of research is to see how the approximation process proposed in this article can

be effectively used to produce an estimate of the true posterior density.
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Appendix A. Abstract Formulation of Algorithm

Let (Z,Z) be a measurable space, and given A ∈ Z define the indicator function IA : Z → R

by

IA(z) =

{

1 z ∈ A

0 z /∈ A.

Given two measures µ, ν on (Z,Z), let µ ∗ ν denote their convolution, i.e. the measure on

(Z,Z) given by

(µ ∗ ν)(A) =
∫

Z×Z

IA(u+ v)µ(du)ν(dv)

for any A ∈ Z . Note that if we have u ∼ µ and v ∼ ν independently, then u+ v ∼ µ ∗ ν.

Algorithm (General). Let µ0 denote the prior distribution on u and Q0 the distribution of the

noise ε. Given v ∈ Y , define Tv : Y → Y to be the translation operator Tv(y) = y + v. Set

ℓ = 0.

1. Given µℓ, assume m ∼ M#µℓ independently of ε, so m + ε ∼ Q
(ℓ+1)
0 := M#µℓ ∗ Q0.

The likelihood is given by

b | u ∼ Q(ℓ+1)
u := T#

f(u)Q
(ℓ+1)
0 .

Assume that Q
(ℓ+1)
u ≪ Q

(ℓ+1)
0 , so that we have Radon-Nikodym density

dQ
(ℓ+1)
u

dQ
(ℓ+1)
0

(b) = exp (− Φ(ℓ+1)(u; b)).

Bayes’ Theorem gives the posterior distribution

µℓ+1(du) ∝ exp (− Φ(ℓ+1)(u; b))µ0(du). (A.1)
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2. Set ℓ 7→ ℓ+ 1 and go to 1.

The above iteration could be written more directly as

µℓ+1(du) ∝
d[T#

f(u)(M
#µℓ ∗Q0)]

d[M#µℓ ∗Q0]
(b)µ0(du).

though the expression (A.1) makes links with previous work on non-parametric Bayesian

inverse problems clearer.
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