
Iterative Value-Aware Model Learning

Amir-massoud Farahmand∗
Vector Institute, Toronto, Canada

farahmand@vectorinstitute.ai

Abstract

This paper introduces a model-based reinforcement learning (MBRL) framework
that incorporates the underlying decision problem in learning the transition model
of the environment. This is in contrast with conventional approaches to MBRL
that learn the model of the environment, for example by finding the maximum
likelihood estimate, without taking into account the decision problem. Value-Aware
Model Learning (VAML) framework argues that this might not be a good idea,
especially if the true model of the environment does not belong to the model class
from which we are estimating the model.
The original VAML framework, however, may result in an optimization problem
that is difficult to solve. This paper introduces a new MBRL class of algorithms,
called Iterative VAML, that benefits from the structure of how the planning is per-
formed (i.e., through approximate value iteration) to devise a simpler optimization
problem. The paper theoretically analyzes Iterative VAML and provides finite
sample error upper bound guarantee for it.

1 Introduction

Value-Aware Model Learning (VAML) is a novel framework for learning the model of the envi-
ronment in Model-Based Reinforcement Learning (MBRL) [Farahmand et al., 2017a, 2016a]. The
conventional approach to model learning in MBRL is based on minimizing some kind of probabilistic
loss. A common choice is to minimize the KL-divergence between the empirical data and the model,
which leads to the Maximum Likelihood Estimator (MLE). Farahmand et al. [2017a, 2016a] argue
that minimizing a probabilistic loss function might not be a good idea because it does not take into ac-
count the underlying decision problem. Any knowledge about the reward, value function, or policy is
ignored in the conventional model learning approaches in MBRL (some recent exceptions are Joseph
et al. [2013], Silver et al. [2017], Oh et al. [2017], Farquhar et al. [2018]; refer to the supplementary
material for a detailed literature review of MBRL). The main thesis behind decision-aware model
learning, including VAML, is that the knowledge about the underlying decision problem, which is
often available, should be considered in the model learning itself. VAML, as its name suggests, uses
the information about the value function. In particular, the formulation by Farahmand et al. [2017a]
incorporates the knowledge about the value function space in learning the model. In this work, we
suggest an alternative, and possibly simpler, approach called Iterative VAML (IterVAML, for short).

VAML defines a robust loss function and has a minP∈MmaxV ∈F structure, whereM is the transition
probability model of the environment to be learned and F is the function space to which the value
function belongs (we discuss this in more detail in Section 2). Solving this min max optimization can
be difficult in general, unless we impose some structure on F , e.g., linear function space. IterVAML
mitigates this issue by benefiting from special structure of how value functions are generated within
the approximate value iteration (AVI) framework (Section 3).

∗Homepage: http://academic.sologen.net. Part of this work has been done when the author was
affiliated with Mitsubishi Electric Research Laboratories (MERL), Cambridge, USA.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

http://academic.sologen.net

We theoretically analyze IterVAML (Section 4). We provide a finite-sample error upper bound
guarantee for the model learning that shows the effect of the number of samples and complexity of the
model on the error bound (Section 4.1). We also analyze how the errors in the learned model affect
the quality of the outcome policy. This is in the form of an error propagation result (Section 4.2).

2 Background on Value-Aware Model Learning

To formalize the framework, let us consider a discounted Markov Decision Process (MDP)
(X ,A,R∗,P∗, γ) [Szepesvári, 2010]. Here X is the state space, A is the action space, R∗ is
the reward distribution, P∗ is the transition probability kernel, and 0 ≤ γ < 1 is the discount factor.
In the RL setting, P∗ and R∗ are not known to the agent. Instead, the agent can interact with the
environment to collect samples from these distributions. The collected data is in the form of

Dn = {(Xi, Ai, Ri, X
′
i)}ni=1, (1)

with the current state-action being distributed according to Zi = (Xi, Ai) ∼ ν(X×A) ∈ M̄(X×A),
the reward Ri ∼ R∗(·|Xi, Ai), and the next-state X ′i ∼ P∗(·|Xi, Ai). We denote the expected
reward by r(x, a) = E [R∗(·|x, a)].2

The goal of model learning is to find a P̂ that is close to P∗.3 The learned model P̂ is then used
by an MBRL algorithm to find a policy. To formalize this, let us denote Planner as an algorithm
that receives a model P̂ and returns a policy, i.e., π ← Planner(P̂). We assume that the reward
function is already known to Planner, so we do not explicitly pass it as an argument. There are many
variations on how Planner may use the learned model to obtain a new policy. For example, Planner
might be a value function-based approach that computes an estimate of the optimal value function
based on P̂ , and then returns the greedy policy of the estimated value function. Or it might be a
policy gradient method that computes the gradient of the performance with respect to (w.r.t.) the
policy using the learned model.

A fundemental question is how we should measure the closeness of P̂ to P∗. The answer to this
question depends on how Planner is going to use the model. It is possible that some aspects of the
dynamics is irrelevant to Planner. The usual approaches based on the probabilistic losses, such as
the KL-divergence that leads to MLE, ignore this dependency. Therefore, they might be less efficient
than an approach that considers how Planner is going to use the learned model.

VAML, introduced by Farahmand et al. [2016a, 2017a], is a value-based approach and assumes that
Planner uses the Bellman optimality operator defined based on P̂ to find a Q̂∗, that is

T ∗P̂ : Q 7→ r + γP̂max
a

Q, (2)

and then outputs π = π̂(·; Q̂∗), the greedy policy w.r.t. Q̂∗ defined as π̂(x;Q) = argmaxa∈AQ(x, a).
For brevity, we sometimes use T̂ ∗ instead of T ∗P̂ . The use of the Bellman [optimality] operator is
central to value-based approaches such as the family of (Approximate) Value Iteration [Gordon, 1995,
Szepesvári and Smart, 2004, Ernst et al., 2005, Munos and Szepesvári, 2008, Farahmand et al., 2009,
Farahmand and Precup, 2012, Mnih et al., 2015, Tosatto et al., 2017, Farahmand et al., 2017b] or
(Approximate) Policy Iteration (API) algorithms [Lagoudakis and Parr, 2003, Antos et al., 2008,
Bertsekas, 2011, Lazaric et al., 2012, Scherrer et al., 2012, Farahmand et al., 2016b].

VAML focuses on finding P̂ such that the difference between T ∗Q and T̂ ∗Q is small. It starts from
assuming that V is known and defines the pointwise loss (or cost) between P̂ and P∗ as

c(P̂,P∗;V)(x, a) =
∣∣∣〈P∗(·|x, a)− P̂(·|x, a) , V

〉∣∣∣
=

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣ , (3)

2Given a set Ω and its σ-algebra σΩ, M̄(Ω) refers to the set of all probability distributions defined over σΩ.
As we do not get involved in the measure theoretic issues in this paper, we do not explicitly define the σ-algebra,
and simply use a well-defined and “standard” one, e.g., Borel sets defined for metric spaces.

3Learning the expected reward r is also a part of model learning, which can be formulated as a regression
problem. For simplicity of presentation, we assume that r is known.

2

in which we substituted maxaQ(·, a) in (2) with V to simplify the presentation. In the rest of the
paper, we sometimes use Pz(·) with z = (x, a) ∈ Z = X ×A to refer to the probability distribution
P(·|x, a), so PzV =

∫
P(dx′|x, a)V (x′).

Given a probability distribution ν ∈ M̄(X × A), which can be the same distribution as the data
generating one, VAML defines the expected loss function

c22,ν(P̂,P∗;V) =

∫
dν(x, a)

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 . (4)

Notice that the value function V is unknown, so we cannot readily minimize this loss function, or its
empirical version. What differentiates this work from the original VAML formulation is how this
unknown V is handled. VAML takes a robust approach: It considers the worst-case choice of V in
the value function space F that is used by Planner. Therefore, it minimizes

c22,ν(P̂,P∗) =

∫
dν(x, a) sup

V ∈F

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 . (5)

As argued by Farahmand et al. [2017a], this is still a tighter objective to minimize than the KL-
divergence. To see this, consider a fix z = (x, a). We have supV ∈F |〈P∗(·|x, a)− P̂(·|x, a), V 〉| ≤

‖P∗z − P̂z‖1 supV ∈F ‖V ‖∞ ≤
√

2KL(P∗z ||P̂z) supV ∈F ‖V ‖∞, where we used Pinsker’s inequal-
ity. As MLE is the minimizer of the KL-divergence based on data, these upper bounds suggest
that if we find a good MLE (with small KL-divergence), we also have an accurate Bellman op-
erator. These sequences of upper bounding, however, might be quite loose. For an extreme, but
instructive, example, suppose that the value function space consists of bounded constant functions
(F = {x 7→ c : |c| <∞}). In that case, supV ∈F |〈P∗(·|x, a)− P̂(·|x, a), V 〉| is always zero, no
matter how large the total variation and the KL-divergence of two distributions are. MLE does not
explicitly benefit from these interaction of the value function and the model. Asadi et al. [2018]
show that the VAML objective supV ∈F |〈P∗(·|x, a)− P̂(·|x, a), V 〉| with the choice of 1-Lipschitz
functions for F is equivalent to the Wasserstein metric between P∗(·|x, a) and P̂(·|x, a). Refer
to Farahmand et al. [2017a] for more detail and discussion about VAML and its properties.

The loss function (5) defines the population version loss of VAML. The empirical version, which is
minimized in practice, replaces P∗ and ν by their empirical distributions. The result is

c22,n(P̂) =
1

n

∑
(Xi,Ai,X′i)∈Dn

sup
V ∈F

∣∣∣∣V (X ′i)−
∫
P̂(dx′|Xi, Ai)V (x′)

∣∣∣∣2 . (6)

The estimated probability distribution P̂ is obtain by solving the following optimization problem:

P̂ ← argmin
P∈M

c22,n(P). (7)

Farahmand et al. [2017a] provide an expression for the gradient of this objective function when F
is the space of linear function approximators, commonly used in the RL literature, andM is an
exponential family. They also provide finite sample error upper bound guarantee showing that the
minimizer of (6) converges to the minimizer of (5).

3 Iterative Value-Aware Model Learning

In this section we describe an alternative approach to formulating a value-aware model learning
method. As opposed to the original formulation (5), and its empirical version (6), it is not based on a
worst-case formulation. Instead, it defines the loss function based on the actual sequence of value
functions generated by an (Approximate) Value Iteration (AVI) type of Planner.

Consider the Value Iteration (VI) procedure: At iteration k = 0, 1, . . . ,

Qk+1(x, a)← r(x, a) + γ

∫
P∗(dx′|x, a) max

a′
Qk(x′, a′), (8)

3

or more succinctly,

Qk+1 ← T ∗P∗Qk , r + γP∗Vk,

with Vk(x) , maxaQk(x, a). Here T ∗P∗ is the Bellman optimality operator defined based on the
true transition probability kernel P∗ (we similarly define T ∗P for any generic transition probability
kernel P). Because of the contraction property of the Bellman optimality operator for discounted
MDPs, we have Qk → Q∗ as k →∞. This is the basis of the VI procedure.

The intuition behind IterVAML can be developed by studying the sequence Q0, Q1, . . . generated by
VI. Starting from Q0 ← r, VI generates the following sequence

Q0 ← r

Q1 ← T ∗P∗V0 = r + γP∗r
Q2 ← T ∗P∗V1 = r + γP∗V1

...

To obtain the value of Q0, we do not need the knowledge of P∗. To obtain the value of Q1, we only
need to compute P∗V0 = P∗r. If we find a P̂ such that

P̂r = P∗r,

we may replace it with P∗ to obtain Q1 without any error, i.e., Q1 = r+γP∗r = r+γP̂r. Likewise,
for any k ≥ 1 and given Qk, in order to compute Qk+1 exactly we only need to find a P̂ such that

P̂Vk = P∗Vk.

We have two sources of errors though. The first is that we may only guarantee that

P̂Vk ≈ P∗Vk.

As a result, T ∗P̂Vk is not exactly the same as T ∗P∗Vk. IterVAML’s goal is to make the error P̂Vk−P∗Vk
as small as possible. Based on this, we define the following “idealized” optimization problem:

Given a model spaceM and the current approximation of the value function Q̂k (and therefore V̂k),
solve

P̂(k) ← argmin
P∈M

∥∥∥(P − P∗)V̂k
∥∥∥2
2

=

∫ ∣∣∣(P − P∗)(dx′|z) max
a′

Q̂k(x′, a′)
∣∣∣2 dν(z), (9)

where ν ∈ M̄(X × A) is a user-defined distribution over the state-action space. Oftentimes, this
distribution is the same as the empirical distribution generating Dn (1), hence our use of the same
notation. Afterwards, we use P̂(k) to find V̂k+1 by using the usual VI approach, that is,

Q̂k+1 ← T ∗P̂(k)Q̂k. (10)

This procedure is repeated. This is using the exact VI based on P̂(k).

This formulation is idealized as we do not have access to P∗ and ν, but only samples from them. We
use the empirical distribution instead:

P̂(k+1) ← argmin
P∈M

1

n

∑
(Xi,Ai,X′i)∈Dn

∣∣∣∣V̂k(X ′i)−
∫
P(dx′|Xi, Ai)V̂k(x′)

∣∣∣∣2 . (11)

The optimization problem minimizes the distance between the next-state expectation of V̂k according
to P and the samples V̂k(X ′) with X ′ being drawn from the true next-state distribution. In case the
integral is difficult to compute, we may replace it by samples from P , i.e.,∫

P(dx′|Xi, Ai)V̂k(x′) ≈ 1

m

m∑
j=1

V̂k(X ′i,j),

4

with X ′i,j ∼ P(·|Xi, Ai) for j = 1, . . . ,m. These are “virtual” samples generated from the model.

The second source of error is that the VI cannot be performed exactly (for example because the state
space is very large), and can only be performed approximately. This leads to the Approximate Value
Iteration (AVI) procedure (also known as Fitted Value or Q-Iteration) with a function space F |A|
(the space of action-value functions), see e.g., Ernst et al. [2005], Munos and Szepesvári [2008],
Farahmand et al. [2009], Farahmand and Precup [2012], Mnih et al. [2015], Tosatto et al. [2017].
Instead of setting Q̂k+1 ← T ∗P̂(k)

Q̂k, in AVI we have

Q̂k+1 ← argmin
Q∈F |A|

1

n

∑
(Xi,Ai,Ri)∈Dn

∣∣∣∣Q(Xi, Ai)−
(
Ri + γ

∫
P̂(k+1)(dx′|Xi, Ai)V̂k(x′)

)∣∣∣∣2 .
(12)

Notice that finding Q̂k+1 is a regression problem, for which many methods to solve are available,
including the regularized variants of this empirical risk minimization problem [Farahmand et al.,
2009]. As before, we may replace the integral with virtual samples, i.e.,∫

P̂(k+1)(dx′|Xi, Ai)V̂k(x′) ≈ 1

m

m∑
j=1

V̂k(X ′i,j),

with X ′i,j ∼ P̂(k+1)(·|Xi, Ai) for j = 1, . . . ,m, for each i = 1, . . . , n. These “virtual” samples
from the model play the same role as in the hypothetical experience in the Dyna architecture [Sutton,
1990] or imagination in imagination-augmented agents by Racanière et al. [2017].

Algorithm 1 summarizes a generic IterVAML procedure. The algorithm receives a model spaceM,
the action-value function space F |A|, the space of reward functions G, and the number of iterationsK.
At each iteration k = 0, 1, . . . , it generates a fresh training dataset D(k)

n = {(Xi, Ai, Ri, X
′
i)}ni=1 by

interacting with the environment. It learns the transition model P̂(k+1) by solving (11). It also learns
the reward function r̂, by minimizing LossR, which can be the squared loss (or a robust variant). We
do not analyze learning the reward function in this work. Afterwards, it performs one step of AVI by
solving (12). These steps are repeated for K iterations.

Many variations of this algorithm are possible. We briefly remark on some of them. Here the AVI
step only uses the model P̂ . In practice, however, one may use both the learned model P̂ and the
data Dn in solving the optimization problem (12) in order to obtain better solutions, as in the Dyna
architecture [Sutton, 1990]. Moreover, the summation in (12) is Dn (or ∪ki=0D

(i)
n as stated in the

algorithm), which is the dataset of true samples. If we also learn a distribution model of ν by ν̂, we
can sample from it too. In that case, we can increase the number of samples used in solving the
regression step of IterVAML. We have more discussion about the algorithm in the supplementary
material.

We can also similarly define a policy evaluation version of IterVAML.

4 Theoretical Analysis of Iterative VAML

We analyze the statistical properties of the IterVAML procedure. The analysis is divided into two
parts. First we analyze one iteration of model learning (cf. (11)) and provide an upper bound on
the error in learning the model (Theorem 1 in Section 4.1). Afterwards, we consider how errors at
each iteration propagate throughout the iterations of IterVAML and affect the quality of the learned
policy (Theorem 2 in Section 4.2). Theorem 3 combines these two results and shows how the model
learning errors affect the quality of the outcome policy. The proofs and more extensive discussions
are all referred to the extended version of the paper, which is provided as a supplementary material.

4.1 Error Analysis for a Single Iteration

We analyze the k-th iteration of IterVAML (11) and provide an error bound on ‖(P̂(k+1) −P∗)Vk‖2.
To reduce clutter, we do not specify the iteration index k, e.g., the analyzed loss would be denoted by
‖(P̂ − P∗)V ‖2 for a fixed V .

5

Algorithm 1 Model-based Reinforcement Learning Algorithm with Iterative VAML
// MDP (X ,A,R∗,P∗, γ)
// K: Number of iterations
//M: Space of transition probability kernels
// F |A|: Space of action-value functions
// G: Space of reward functions
Initialize a policy π0 and a value function V̂0.
for k = 0 to K − 1 do

Generate training set D(k)
n = {(Xi, Ai, Ri, X

′
i)}ni=1 by interacting with the true environment (potentially

using πk), i.e., (Xi, Ai) ∼ νk with X ′i ∼ P∗(·|Xi, Ai) and Ri ∼ R∗(·|Xi, Ai).

P̂(k+1) ← argminP∈M
∥∥∥V̂k(X ′i)−

∫
P(dx′|Xi, Ai)V̂k(x′)

∥∥∥2

∪ki=0D
(i)
n

.

r̂ ← argminr∈G LossR(r;∪k
i=0D

(i)
n)

Q̂k+1 ← argminQ∈F|A|

∥∥∥Q(Xi, Ai)−
(
r̂(Xi, Ai) + γ

∫
P̂(k+1)(dx′|Xi, Ai)V̂k(x′)

)∥∥∥2

∪ki=0D
(i)
n

.

πk+1 ← π̂(·; Q̂k+1).
end for
return πK

Consider a fixed value function V : X → R. We are given a dataset Dn = {(Xi, Ai, X
′
i)}ni=1 with

Zi = (Xi, Ai) ∼ ν(X × A) ∈ M̄(X × A), and the next-state X ′i ∼ P∗(·|Xi, Ai), as specified
in (1).

We now enlist our set of assumptions. Some of them are technical assumptions to simplify the
analysis, and some are characterizing crucial aspects of the model learning. We shall remark on these
as we introduce them.

Assumption A1 (Samples) At the k-th iteration we are given a dataset Dn(= D(k)
n)

Dn = {(Xi, Ai, X
′
i)}ni=1, (13)

with Zi = (Xi, Ai) being independent and identically distributed (i.i.d.) samples drawn from
ν(X ×A) ∈ M̄(X ×A) and the next-state X ′i ∼ P∗(·|Xi, Ai). Furthermore, we assume that D(k)

n

and D(k′)
n for k 6= k′ are independent.

The i.i.d. assumption is to simplify the analysis, and with extra effort one can provide similar
results for dependent processes that gradually “forget” their past. The forgetting behaviour can be
characterized by the mixing behaviour of the stochastic process [Doukhan, 1994]. One can then
provide statistical guarantees for learning algorithms under various mixing conditions [Yu, 1994,
Meir, 2000, Steinwart and Christmann, 2009, Mohri and Rostamizadeh, 2009, 2010, Farahmand and
Szepesvári, 2012].

In this assumption we also require that the datasets of two different iterations are independent. This
is again to simplify the analysis. In practice, we might reuse the same dataset in all iterations.
Theoretical results by Munos and Szepesvári [2008] suggest that the dependence between iterations
may not lead to significant performance degradation.

We need to make some assumptions about the model spaceM and its complexity (i.e., capacity).
We use covering number (and its logarithm, i.e., metric entropy) of a function space (here being the
model spaceM) as the characterizer of its complexity. The covering number at resolution ε is the
minimum number of balls with radius ε required to cover the model spaceM according to a particular
metric, and is denoted by N (ε,M) (see the supplementary material for definitions). As ε decreases,
the covering number increases (or more accurately, the covering number is non-decreasing). For
example, the covering number for a p-dimensional linear function approximator with constraint on
the magnitude of its functions behaves like O(1

εp). A similar result holds when the subgraphs of a
function space has a VC-dimension p. Model spaces whose covering number grows faster are more
complex, and estimating a function within them is more difficult. This leads to larger estimation error,
as we shall see. On the other hand, those model spaces often (but not always) have better model
approximation properties too.

In order to show the finer behaviour of the error bound, we defineM as a subset of a larger family of
probability distributionsM0. Let J :M0 → [0,∞) be a pseudo-norm defined on functions inM0.

6

We then defineM = {P ∈ M0 : J(P) ≤ R } for some R > 0. One may think of J as a measure
of complexity of functions inM0, soM would be a ball with a fixed radius R w.r.t. J . IfM0 is
defined based on a reproducing kernel Hilbert space (RKHS), we can think of J as the inner product
norm of the RKHS.

Assumption A2 (Model Space) For R > 0, letM = MR = {P ∈ M0 : J(P) ≤ R }. There
exist constants c > 0 and 0 < α < 1 such that for any ε,R > 0 and all sequences z1:n ,
z1, . . . , zn ⊂ X ×A, the following metric entropy condition is satisfied:

logN (ε,M, L2(z1:n)) ≤ c
(
R

ε

)2α

.

Furthermore, the model space M is convex, and compact w.r.t. d∞,TV(P1,P2) =
supz∈Z

∫
|P1(dy|z)− P2(dy|z)|.

This form of the metric entropy ofM =MR is suitable to capture the complexity of large function
spaces such as some RKHS and Sobolev spaces. For example, for Wk(Rd) = Wk,2(Rd), the Sobolev
space defined w.r.t. the L2-norm of the weak derivatives up to order k, we can set α = d

2k , see
e.g., Lemma 20.6 of Györfi et al. [2002]. For smaller function spaces, such as the p-dimensional
linear function approximator mentioned above, the behaviour of the metric entropy is p log(1

ε), which
can be seen as having α → 0 with a certain rate, For many examples of the covering number and
metric entropy results, refer to van de Geer [2000], Györfi et al. [2002], Zhou [2003], Steinwart
and Christmann [2008], Giné and Nickl [2015]. Also note that here we require the convexity and
compactness ofM. The convexity is a crucial assumption for obtaining fast convergence rate, as
was shown and discussed by Lee et al. [1998, 2008], Mendelson [2008]. The compactness w.r.t. this
particular metric is a technical assumption and it may be possible to be relaxed.

Assumption A3 (Value Function) The value function V is fixed (i.e., not dependent on Dn) and is
Vmax-bounded with Vmax ≥ 1.

This assumption is for the simplicity of the analysis. We use it in large deviation results that require
the boundedness of the involved random variables, e.g., Theorem 2.1 of Bartlett et al. [2005] or
Theorem 19.1 of Györfi et al. [2002], which we use in our proofs.

We are now ready to state the main result of this section.

Theorem 1. Suppose that Assumptions A1, A2, and A3 hold. Consider P̂ obtained by solving (11).
There exists a finite c(α) > 0, depending only on α, such that for any δ > 0, with probability at least
1− δ, we have∥∥∥(P̂z − P∗z)V

∥∥∥2
2,ν
≤ inf
P∈M

‖(Pz − P∗z)V ‖22,ν +
c(α)V 2

maxR
2α

1+α

√
log(1/δ)

n
1

1+α

.

This result upper bounds the error of P̂ in approximating the next-state expectation of the value
function. The upper bound has the model (or function) approximation error (the first term) and the
estimation error (the second term). It is notable that the constant in front of the model approximation
error is one, so the best we can hope from this algorithm, in the limit of infinite data, is as good as the
best model in the model classM.

The estimation error behaves as n−1/(1+α) (0 < α < 1). This is a fast rate and can reach n−1
whenever α → 0. We do not know whether this is an optimal rate for this particular problem, but
results from regression with least-squares loss suggest that this might indeed be optimal: For a
regression function belonging to a function space that has a packing entropy in the same form as in
the upper bound of Assumption A2, the rate Ω(n−1/(1+α)) is its minimax lower bound [Yang and
Barron, 1999].

We use local Rademacher complexity and analyze the modulus of continuity of empirical processes
to obtain rates faster than what could be achieved by more conventional techniques of analyzing the
supremum of the empirical processes. Farahmand et al. [2017a] used the supremum of the empirical
process to analyze VAML and obtained n−1/2 rate, which is slower than n−1/(1+α). Notice that the
loss functions of VAML and IterVAML are different, so this is only an approximate comparison. The

7

rate n−1/2, however, is common in the supremum of empirical process-based analysis, so we would
expect it to hold if we used those techniques to analyze IterVAML. Finally notice that the error rate
of VAML is not necessarily slower than IterVAML’s; the present difference is at least somehow due
to the shortcoming of their simpler proof technique.

4.2 Error Propagation

We analyze how the errors incurred at each step of IterVAML propagate throughout the iterations
and affect the quality of the outcome. For policy evaluation, the quality is defined as the difference
between V π and V̂K , weighted according to a user-defined probability distribution ρX ∈ M̄(X),
i.e., ‖V π − V̂K‖1,ρX . For the control case we consider the performance loss, which is defined as the
difference between the value of following the greedy policy w.r.t. Q̂K compared to the value of the
optimal policy Q∗, weighted according to a user-defined probability distribution ρ ∈ M̄(X ×A),
i.e., ρ(Q∗ −QπK) (cf. Algorithm 1). This type of error propagation analysis has been performed
before by Munos [2007], Antos et al. [2008], Farahmand et al. [2010], Scherrer et al. [2012], Huang
et al. [2015], Mann et al. [2015], Farahmand et al. [2016c].

Recall that there are two sources of errors in the IterVAML procedure. The first is the error in model
learning, which is caused because the model P̂(k+1) learned by solving the minimization problem (11)
only satisfies P̂(k+1)V̂k ≈ P∗V̂k instead of being exact. This error is studied in Section 4.1, and
Theorem 1 provides an upper bound on it.

The second source of error is that the AVI performs the Bellman update only approximately. So
instead of having Q̂k+1 = T ∗P̂(k)

Q̂k (or its policy evaluation equivalent), the function Q̂k+1 obtained

by solving (12) is only approximately equal to T ∗P̂(k)
Q̂k. As already mentioned, this step is essentially

solving a regression problem. Hence, many of the standard error guarantees for regression can be
used here too, with possibly some minor changes.

Consider a sequence of Q̂0, Q̂1, . . . , Q̂K with Q̂k+1 ≈ T ∗P̂(k+1)
Q̂k, with P̂(k+1) being an approxi-

mation of the true P , P∗. IterVAML, which consists of repeated solving of (11) and (12), is an
example of a procedure that generates these Q̂k. The result, however, is more general and does not
depend on the particular way P̂(k+1) and Q̂k+1 are produced.

We define the following concentrability coefficients, similar to the coefficient introduced by Farah-
mand et al. [2010], which itself is a relaxation of the coefficient introduced by Munos [2007]. These
coefficients are the Radon-Nikydom (R-N) derivative of the multi-step ahead state-action distribution
w.r.t. the distribution ν. The R-N. derivative can be thought of as the ratio of two probability density
functions.
Definition 1 (Expected Concentrability of the Future State-Action Distribution). Given ρ, ν ∈
M̄(X ×A), an integer number k ≥ 0, and an arbitrary sequence of policies (πi)

m
i=1, the distribution

ρPπ1 · · · Pπk denotes the future state-action distribution obtained when the first state-action is
distributed according ρ and the agent follows the sequence of policies π1, π2, . . . , πk. Define

c̄VI,ρ,ν(k) = sup
π1,...,πk

∥∥∥∥dρPπ1 · · · Pπk
dν

∥∥∥∥
2,ν

.

If the future state-action distribution ρPπ1 · · · Pπk is not absolutely continuous w.r.t. ν, we take
c̄VI,ρ,ν(k) =∞. Moreover, for a discount factor 0 ≤ γ < 1, define the discounted weighted average
concentrability coefficient as

C̄(ρ, ν) = (1− γ)2
∑
k≥1

kγk−1c̄VI,ρ,ν(k).

The definition of C̄(ρ, ν) is similar to the second order discounted future state distribution concentra-
tion coefficient of Munos [2007], with the main difference being that it is defined for the expectation
of the R-N derivative instead of its supremum.

The following theorem is our main error propagation result. It can be seen as the generalization of the
results of Farahmand et al. [2010], Munos [2007] to the case when we use a model that has an error,
whereas the aforementioned papers are for model-free case (or when the model is exact). Because of
this similarity, several steps of the proof are similar to theirs.

8

Theorem 2. Consider a sequence of action-value function (Q̂k)Kk=0, and their corresponding
(V̂k)Kk=0, each of which is defined as V̂k(x) = maxa Q̂k(x, a). Suppose that the MDP is such that
the expected rewards are Rmax-bounded, and Q̂0 is initialized such that it is Vmax ≤ Rmax

1−γ -bounded.

Let εk = T ∗P̂(k+1)
Q̂k − Q̂k+1 (regression error) and ek = (P∗ − P̂(k+1))V̂k (modelling error) for

k = 0, 1, . . . ,K − 1. Let πK be the greedy policy w.r.t. Q̂K , i.e., πK(x) = argmaxa∈A Q̂(x, a) for
all x ∈ X . Consider probability distributions ρ, ν ∈ M̄(X ×A). We have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
C̄(ρ, ν) max

0≤k≤K−1

(
‖εk‖2,ν + γ ‖ek‖2,ν

)
+ 2γKRmax

]
We compare this result with the results of Munos [2007], Farahmand et al. [2010], Farahmand [2011]
in the same section of the supplementary material. Before stating Theorem 3, which is the direct
implication of Theorems 1 and 2, we state another assumption.

Assumption A4 (Value Function Space) The value function space F |A| is Vmax-bounded with
Vmax ≤ Rmax

1−γ , and Vmax ≥ 1.

This assumption requires that all the value functions Q̂k and V̂k generated by performing a step
of AVI (12) and used in the model learning steps (11) are Vmax-bounded. This ensures that As-
sumption A3, which is required by Theorem 1, is satisfied in all iterations. This assumption is easy
to satisfy in practice by clipping the output of the value function estimator at the level of ±Vmax.
Theoretical analysis of such a clipped value function estimator, however, is more complicated. As
we do not analyze the value function estimation steps of IterVAML, which depends on the choice of
F |A|, we ignore this issue.

Theorem 3. Consider the IterVAML procedure in which at the k-th iteration the model P̂(k+1) is
obtained by solving (11) and Q̂k+1 is obtained by solving (12). Let εk = T ∗P̂(k+1)

Q̂k − Q̂k+1 be the
regression error. Suppose that Assumptions A1, A2, and A4 hold. Consider the greedy policy πK w.r.t.
Q̂K . For any ρ ∈ M̄(X ×A), there exists a finite c(α) > 0, depending only on α, such that for any
δ > 0, with probability at least 1− δ, we have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
C̄(ρ, ν)

(
max

0≤k≤K−1
‖εk‖2,ν + γemodel(n)

)
+ 2γKRmax

]
where

emodel(n) = sup
V ∈F+

inf
P∈M

‖(Pz − P∗z)V ‖2,ν +
c(α)VmaxR

α
1+α 4
√

log(K/δ)

n
1

2(1+α)

,

and F+ =
{

maxaQ(·, a) : Q ∈ F |A|
}
.

This result provides an upper bound on the quality of the learned policy πK , as a function of the
number of samples and the properties of the model spaceM and the MDP. The estimation error
due to the model learning is n

1
2(1+α) , which is discussed in some detail after Theorem 1. The model

approximation error term supV ∈F+ infP∈M ‖(Pz − P∗z)V ‖2,ν shows the interaction between the
modelM and the value function space F |A|. This quantity is likely to be conservative and can be
improved. We also note that an upper bound on ‖εk‖2,ν depends on the regression method, the choice
of F |A|, and the number of samples generated from P̂(k+1).

5 Conclusion

We have introduced IterVAML, a decision-aware model-based RL algorithm. We proved finite sample
error upper bound for the model learning procedure (Theorem 1) and a generic error propagation
result for an approximate value iteration algorithm that uses an inaccurate model (Theorem 2). The
consequence of these two results was Theorem 3, which provides an error upper bound guarantee on
the quality of the outcome policy of IterVAML.

There are several possible future research directions. One is empirical studies of IterVAML and
comparing it with non-decision-aware methods. Another direction is to investigate other approaches
to decision-aware model-based RL algorithms.

9

Acknowledgments

I would like to thank the anonymous reviewers for their helpful feedback, and Mehdi Ghasemi and
Murat A. Erdogdu for discussions.

References
András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with Bellman-

residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71:89–129, 2008. 2, 8

Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L. Littman. Equivalence between wasserstein
and value-aware model-based reinforcement learning. In FAIM Workshop on Prediction and
Generative Modeling in Reinforcement Learning, 2018. 3

Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities. The
Annals of Statistics, 33(4):1497–1537, 2005. 7

Dimitri P. Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of
Control Theory and Applications, 9(3):310–335, 2011. 2

Paul Doukhan. Mixing: Properties and Examples, volume 85 of Lecture Notes in Statistics. Springer-
Verlag, Berlin, 1994. 6

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research (JMLR), 6:503–556, 2005. 2, 5

Amir-massoud Farahmand. Regularization in Reinforcement Learning. PhD thesis, University of
Alberta, 2011. 9

Amir-massoud Farahmand and Doina Precup. Value pursuit iteration. In F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
(NIPS - 25), pages 1349–1357. Curran Associates, Inc., 2012. 2, 5

Amir-massoud Farahmand and Csaba Szepesvári. Regularized least-squares regression: Learning
from a β-mixing sequence. Journal of Statistical Planning and Inference, 142(2):493 – 505, 2012.
6

Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, and Shie Mannor. Reg-
ularized fitted Q-iteration for planning in continuous-space Markovian Decision Problems. In
Proceedings of American Control Conference (ACC), pages 725–730, June 2009. 2, 5

Amir-massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation for approximate
policy and value iteration. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, editors, Advances in Neural Information Processing Systems (NIPS - 23), pages
568–576. 2010. 8, 9

Amir-massoud Farahmand, André M.S. Barreto, and Daniel N. Nikovski. Value-aware loss function
for model learning in reinforcement learning. In 13th European Workshop on Reinforcement
Learning (EWRL), December 2016a. 1, 2

Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, and Shie Mannor. Regular-
ized policy iteration with nonparametric function spaces. Journal of Machine Learning Research
(JMLR), 17(139):1–66, 2016b. 2

Amir-massoud Farahmand, Daniel N. Nikovski, Yuji Igarashi, and Hiroki Konaka. Truncated
approximate dynamic programming with task-dependent terminal value. In AAAI Conference on
Artificial Intelligence, February 2016c. 8

Amir-massoud Farahmand, André M.S. Barreto, and Daniel N. Nikovski. Value-aware loss function
for model-based reinforcement learning. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 1486–1494, April 2017a. 1, 2, 3, 7

10

Amir-massoud Farahmand, Saleh Nabi, and Daniel N. Nikovski. Deep reinforcement learning for
partial differential equation control. In American Control Conference (ACC), 2017b. 2

Gregory Farquhar, Tim Rocktaeschel, Maximilian Igl, and Shimon Whiteson. TreeQN and ATreec:
Differentiable tree planning for deep reinforcement learning. In International Conference on
Learning Representations (ICLR), 2018. 1

Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge University Press, 2015. 7

Geoffrey Gordon. Stable function approximation in dynamic programming. In International Confer-
ence on Machine Learning (ICML), 1995. 2

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer Verlag, New York, 2002. 7

De-An Huang, Amir-massoud Farahmand, Kris M Kitani, and J. Andrew Bagnell. Approximate
MaxEnt inverse optimal control and its application for mental simulation of human interactions. In
AAAI Conference on Artificial Intelligence, January 2015. 8

Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P How, and Nicholas Roy. Reinforce-
ment learning with misspecified model classes. In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pages 939–946. IEEE, 2013. 1

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learning
Research (JMLR), 4:1107–1149, 2003. 2

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-
squares policy iteration. Journal of Machine Learning Research (JMLR), 13:3041–3074, October
2012. 2

Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. The importance of convexity in learning
with squared loss. IEEE Transactions on Information Theory, 44(5):1974–1980, 1998. 7

Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. Correction to the importance of convexity
in learning with squared loss. IEEE Transactions on Information Theory, 54(9):4395, 2008. 7

Timothy A. Mann, Shie Mannor, and Doina Precup. Approximate value iteration with temporally
extended actions. Journal of Artificial Intelligence Research (JAIR), 53:375–438, 2015. 8

Ron Meir. Nonparametric time series prediction through adaptive model selection. Machine Learning,
39(1):5–34, 2000. 6

Shahar Mendelson. Lower bounds for the empirical risk minimization algorithm. IEEE Transactions
on Information Theory, 54(8):3797 – 3803, August 2008. 7

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 02 2015. 2, 5

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-i.i.d. processes.
In Advances in Neural Information Processing Systems 21, pages 1097–1104. Curran Associates,
Inc., 2009. 6

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for stationary φ-mixing and β-mixing
processes. Journal of Machine Learning Research (JMLR), 11:789–814, 2010. ISSN 1532-4435. 6

Rémi Munos. Performance bounds in Lp norm for approximate value iteration. SIAM Journal on
Control and Optimization, pages 541–561, 2007. 8, 9

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research (JMLR), 9:815–857, 2008. 2, 5, 6

11

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems (NIPS - 30), pages 6118–6128. Curran Associates, Inc., 2017. 1

Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pas-
canu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. In Advances in Neural Information Processing Systems
(NIPS - 30), pages 5690–5701. Curran Associates, Inc., 2017. 5

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, and Matthieu Geist. Approximate
modified policy iteration. In Proceedings of the 29th International Conference on Machine
Learning (ICML), 2012. 2, 8

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, André M.S. Barreto, and Thomas Degris. The
predictron: End-to-end learning and planning. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pages 3191–3199, 2017. 1

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008. 7

Ingo Steinwart and Andreas Christmann. Fast learning from non-i.i.d. observations. In Advances in
Neural Information Processing Systems (NIPS - 22), pages 1768–1776. Curran Associates, Inc.,
2009. 6

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Proceedings of the 7th International Conference on Machine
Learning (ICML), 1990. 5

Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010. 2

Csaba Szepesvári and William D. Smart. Interpolation-based Q-learning. In Proceedings of the
twenty-first International Conference on Machine learning (ICML), 2004. 2

Samuele Tosatto, Matteo Pirotta, Carlo D’Eramo, and Marcello Restelli. Boosted fitted q-iteration. In
Proceedings of the 34th International Conference on Machine Learning (ICML), pages 3434–3443,
August 2017. 2, 5

Sara A. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000. 7

Yuhong Yang and Andrew R. Barron. Information-theoretic determination of minimax rates of
convergence. The Annals of Statistics, 27(5):1564–1599, 1999. 7

Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of
Probability, 22(1):94–116, January 1994. 6

Ding-Xuan Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Transactions on
Information Theory, 49:1743–1752, 2003. 7

12

