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Abstract—Saliency is an important perceptual cue that occurs at
different levels of resolution. Important attributes of saliency are
symmetry, continuity, and closure. Detection of these attributes
is often hindered by noise, variation in scale, and incomplete
information. This paper introduces the iterative voting method,
which uses oriented kernels for inferring saliency as it relates to
symmetry. A unique aspect of the technique is the kernel topog-
raphy, which is refined and reoriented iteratively. The technique
can cluster and group nonconvex perceptual circular symmetries
along the radial line of an object’s shape. It has an excellent noise
immunity and is shown to be tolerant to perturbation in scale.
The application of this technique to images obtained through
various modes of microscopy is demonstrated. Furthermore, as a
case example, the method has been applied to quantify kinetics
of nuclear foci formation that are formed by phosphorylation of
histone H2AX following ionizing radiation. Iterative voting has
been implemented in both 2-D and 3-D for multi image analysis.

Index Terms—Foci detection, geometric voting, iterative voting,
segmentation, subcellular localization.

I. INTRODUCTION

T
HE response of tissues and biological material to exoge-

nous stimuli, such as ionizing radiation, is often heteroge-

neous and requires a large amount of data for detailed charac-

terization. These responses, which are often multidimensional

in space and time, and can be imaged using digital microscopy.

Quantitative analysis of these multispectral images is a neces-

sary step toward the construction of predictive models. Research

in this area has leveraged machine learning techniques using a

texture field that is based on patterns of protein localization [11]

and variational methods for segmentation of subcellular com-

partments [8], [12], [14], [23]. Nuclear segmentation often pro-

vides context for quantifying protein localizations that are either

nuclear-bound or near nuclear membranes. These protein com-
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plexes may be punctate (e.g., radially symmetric), may vary in

size and shape, and may potentially overlap each other. Thus,

segmentation of protein complexes may become an additional

necessary step for a more refined representation of functional

events that lead to a particular state of a cell. From a human

vision perspective, radial symmetry is an important perceptual

cue for feature-based representation, localization, and segmen-

tation. For example, in protein localization studies, fluorescence

microscopy may be used to quantify nuclear-bound foci forma-

tion, and, in structural biology, cryo-EM may be used to image

macro-molecular assembly for 3-D reconstruction.

In image understanding, saliency or perceptual grouping [6],

[9], [19] can be driven by continuity [21], symmetry, or clo-

sure. Among these, it is well known that symmetry is a preatten-

tive process [1] that improves recognition, provides an efficient

mechanism for scene representation, and aids in reconstruction

and description. Radial symmetry is a special class of symmetry,

which persists in nature at multiple scales. Robust and efficient

detection of inexact radial symmetries facilitates the semantic

representation of images for summarization and interpretation.

At the lowest level, a radial symmetry operator can be used as an

interest operator for detecting critical features that lead, for ex-

ample, toward visual attention. However, interest operators have

to be fast, retain good noise immunity, be sufficiently stable with

respect to the underlying intensity distribution, and be capable

of delineating and resolving nearby features into disjoint events.

Yet, the notion of radial symmetry is used in a weak sense, since

the basic geometry can deviate from convexity and strict sym-

metry for the purpose of approximating the center of mass.

The method proposed here allows inference of saliency from

incomplete boundary information through voting and perceptual

grouping and is implemented through the refinement of specif-

ically tuned voting kernels [24]. Fig. 1 shows several examples

indicating potential application areas. In Fig. 1(a), living cells

are imaged in bright-field, and their responses are tracked as

a function of exogenous stimuli. In Fig. 1(b), a mouse mam-

mary tissue section is stained with a DNA counterstain in one

channel to provide context for localization studies in other chan-

nels [14]. Some of the nuclear regions in this example have

perceptual boundaries. In Fig. 1(c), nuclear foci are visualized

following phosphorylation of histone following ion-

izing radiation. In the last example, a protein complex with

two stable resting positions is imaged through cryo-electron mi-

croscopy with the ultimate intent of building a 3-D structure

through large numbers of observations. While the proposed ap-

plication is demonstrated in a number of biological domains, it

has been applied for one biological endpoint that involves quan-

titative assessment of the kinetics of the phosphorylation of hi-
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Fig. 1. Presence of radial symmetries at different physical scales: (a) cells imaged in bright field microscopy mode; (b) nuclei in mouse mammary tissue imaged
with fluorescence microscopy; (c) phosphorylation of histone H2AX within the nuclear region following ionizing radiation; (d) macromolecular assemblies imaged
through cryo-electron microscopy.

stone following ionizing radiation. Once these events

are detected, other attributes are also computed for a more com-

plete representation.

Spatial voting has been studied for at least four decades.

Hough introduced the notion of parametric clustering in terms

of well-defined geometry, which was later extended to the

generalized Hough transform [4]. In general, voting operates

on the notion of continuity and proximity, which can occur at

multiple scales, e.g., points, lines, lines of symmetry, or gen-

eralized cylinders. The novelty of our approach is in defining

a series of kernels that vote iteratively along the radial or

tangential directions. Voting along the radial direction leads

to localization of the center of mass, while voting along the

tangential direction enforces continuity. At each iteration, the

kernel orientation is refined until it converges to a single focal

response. Several different variations of these kernels have

been designed and tested. They are cone shaped, have a specific

orientation but variable in scale, and target geometric features

of approximately known dimensions in both 2-D and 3-D. In

the case of radial symmetry, the voting kernels are initially

applied along the gradient direction, then at each consecutive

iteration and at each edge location, the kernel orientation is

aligned along the maximum response in the space. The shape

of the kernel is also refined and focused as the iterative process

continues. The method is applicable to perceptual shape fea-

tures, has excellent noise immunity, is tolerant to variations in

scale, and is applicable to a large class of application domains.

The organization of this paper is as follows. Section II pro-

vides a brief review of the previous research. Section III de-

scribes the basic idea and detailed implementation of evolu-

tionary voting. Section IV defines and explains the parameters

of the algorithm. Section V demonstrates the performance of

the technique on a variety of spatial distributions. Section VI

applies the proposed method to a data set for detailed quantita-

tive analysis. Section VII concludes the paper.

II. REVIEW OF PREVIOUS WORK

The difficulties in the detection of saliency are often due to

variations in scale, noise, and topology. Other complexities

originate from missing data and perceptual boundaries that

lead to diffusion and dispersion of the spatial grouping in the

object space. Fig. 2 shows variations in the shape geometry as

a result of angular deviation between the gradient and radial

vector along an object’s boundary that can result in ambiguity

Fig. 2. Topological variation as a result of an angular difference between the
radial gradient vectors: (a) circle; (b) ellipse; (c) general convex region.

in the presence of noise. Techniques in the detection of radial

symmetries can be classified into three different categories: 1)

point operations leading to dense output, 2) clustering based on

parameterized shape models or voting schemes, and 3) iterative

techniques. Point operations are usually a series of cascade

filters that are tuned for radial symmetries. These techniques

use image gradient magnitudes and orientations to infer the

center of mass for blobs of interest [17], [18], [20]. Recent

efforts have focused on speed and reliability [7]. Parametric

clustering techniques are often based on a variant of the Hough

transform, e.g., circle or ellipse finders. These techniques

produce loci of points corresponding to the parametric models

of well-known geometries. These point distributions are then

merged, and model parameters are refined [3]. Nonparametric

clustering techniques operate along the gradient direction to

search for radial symmetry, using either line- or area-based

search. Line-based search [10] is also known as the spoke

filter, where the frequency of occurrence of points normal to

the edge direction is aggregated. In contrast, area-based voting

accumulates votes in a small neighborhood along the gradient

direction. Examples of iterative methods include the level set

method [13] and the regularized centroid transform (RCT) [23],

which iteratively transport boundary points to the local center of

mass. The centroid transform can be classified as curve-based

voting since the voting path is not along a straight line but along

a minimum energy path. Voting paths can be easily distorted

by noise, local structures, and other singularities in the image,

and may lead to over-segmentation. Thus, the problem is often

regularized at different levels through either nonlinear diffusion

of random noise [15], or nonlinear diffusion of speckle noise

[23], or enforcing smoothness of the path leading each point on

the surface to its local centroid [23].

The first two categories of radial symmetry detection can

be summarized as follows. Interest-point operators are fast and



PARVIN et al.: ITERATIVE VOTING FOR INFERENCE OF STRUCTURAL SALIENCY 617

well suited for detecting small features for higher levels of in-

terpretation and manipulation. Parametric voting techniques are

potentially memory-intensive, depending upon the dimension-

ality of the parameter space, and remain sensitive to small de-

viations from the underlying geometric model. Line- and area-

based voting produce a voting space that is diffuse and subject

to further ad hoc analysis.

Techniques for grouping local features into globally salient

structures have incorporated dynamic programming [21], clus-

tering and graph theoretic methods [22], and tensor voting [9].

While these techniques differ in their methods, they share a

common thread of using continuity and proximity along the

minimum energy path to infer global saliency. The method pro-

posed here falls into the category of iterative techniques, which

are adaptive to geometric perturbation and typically produce

more stable results. This method shares several attributes with

tensor-based voting [9]; however, it differs in that it is iterative

and scalar. It demonstrates excellent performance in the pres-

ence of noise, variations in scale, and topological changes.

In summary, most optimization problems in computer vision

rely on establishing proper geometric constraints and then reg-

ularizing the solution, which is expressed as a gradient search

problem leading to a local minima. Iterative voting operates in

the same fashion, where geometric constraints are expressed

in the shape of the voting kernel and the regularization is em-

bedded in the smoothness of kernel. The iterative process leads

the solution into its local minima by searching for the maximum

response in a local neighborhood.

III. APPROACH

Detection of radial symmetry is iterative where gra-

dient magnitude is projected along the radial direction ac-

cording to a kernel function. The kernel function is smooth

and its topography becomes more focused and dense at

each iteration. Let be the original image, where

the domain points are 2-D image coordinates. Let

be the voting direction at each image point, where

for some angle

that varies with the image location. Let be the

radial range and be the angular range, both defined in

Section IV. It is clear that the object size is never exact; there-

fore, variations in size can be expressed either by specifying

lower and upper bounds, or by an average size measure and

a deviation around it. In our implementation, we have opted

with the former representation. The main advantage is that

if , then one parameter is eliminated at the cost of

higher computational cost and at no loss to reliability. Let

be the vote image, dependent on the

radial and angular ranges and having the same dimensions

as the original image. Let be the local

voting area, defined at each image point and dependent

on the radial and angular ranges, defined by

(1)

Finally, let be a 2-D Gaussian kernel (e.g.,

with variance , masked

Fig. 3. Kernel topography: (a)–(e) Evolving kernel for the detection of radial
symmetries (shown at a fixed orientation) has a trapezoidal active area with
Gaussian distribution along both axes. Application of the voting method requires
continuous refinement in the shape of the kernel for improved localization.

by the local voting area , and oriented

in the voting direction . Fig. 3 shows a subset of voting

kernels that vary in topography, scale, and orientation. The

kernel shapes are further described in Section IV.

The iterative voting algorithm is outlined below for radial

symmetry. Naturally, in the case of continuity, the voting di-

rection is along the tangential direction as opposed to the radial

direction.

Iterative Voting

1) Initialize the parameters: Initialize and

a sequence .

Set , where is the number of iterations, and let

. Also fix a low gradient threshold, , and

a kernel variance, , depending on the expected scale of

salient features.

2) Initialize the saliency feature image: Define the feature

image to be the local external force at each pixel

of the original image. The external force is often set to the

gradient magnitude or maximum curvature, depending

upon the type of saliency grouping and the presence of

local feature boundaries.

3) Initialize the voting direction and magnitude: Compute the

image gradient, , and its magnitude, .

Define a pixel subset .

For each grid point , define the voting direction

to be

4) Compute the votes: Reset the vote image

for all points .

For each pixel , update the vote image as

follows:

5) Update the voting direction: For each grid point

, revise the voting direction. Let

Let , , and
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Fig. 4. Re-orientation of the kernel at each iteration.

6) Refine the angular range: Let , and repeat

steps 4)–6) until .

7) Determine the points of saliency: Define the centers of

mass or completed boundaries by thresholding the vote

image

In step 6) of the above algorithm, and remain sta-

tionary, and only the voting spread, defined by , is reduced

and becomes more focused. The kernel evolution is shown in

Fig. 3. The only remaining variable is the impact of a partic-

ular edge detector on voting. In the current implementation, the

edge detector corresponds to the derivative of the Gaussian with

. Larger values of simply diffuse noise and reduce the

voting intensity due to reduced edge magnitude across the en-

tire image, but this only reduces the amplitude in the voting

landscape globally and has no other impact. Smaller values of

amplify noise and the edge strength at the same time. How-

ever, noise is random, and as a result, its voting contribution is

uniformly distributed in the image. On the other hand, voting

results corresponding to true edges tend to be directed and fo-

cused to the center of mass.

A. Initialization of Voting Direction and Magnitude

In the absence of prior knowledge about object locations, it is

reasonable to assume that the center of mass is positioned along

the gradient direction of the object boundary. The main intent

is to integrate the contribution of all edge locations on the grid,

which may be densely or sparsely distributed, as shown in Fig. 1.

Unlike the existing practice of grouping illusory contours into a

continuous representation [9], we aim at localizing gross islands

of information.

B. Updating Voting Direction

Voting along the gradient direction provides a hypothesis pro-

file for saliency, which is initially quite ambiguous. At each con-

secutive iteration and each edge location, the kernel is refined

and reoriented along the maximum value in its search window,

as shown in Fig. 4. For each point , if is the maximum in

’s voting area, then the new voting direction at is along the

direction. The rationale for choosing the maximum as the

estimated center is as follows.

1) Under ideal conditions, the maximum value is exactly the

center of mass.

2) By aligning the voting direction along the maximum

values, local maxima in the same neighborhood are

grouped together.

3) Localization of the maximum is not compute intensive.

Fig. 5. Detection of radial symmetries for a synthetic image with multiple over-
lapping objects: (a) original image; (b)–(g) voting landscape at each iteration;
(h) final localization of centers of mass.

Fig. 6. Evolution of radial voting on a nuclear image: (a) original image with
edges being projected inward in the directions of the voting kernels; (b)–(d)
voting landscapes from a subset of iterations. Notice that the initial bimodal
voting landscape is eventually condensed into a single convex region.

As pointed out in the previous section, existing methods use

either a single line or a constant angular range

. Voting along a single line provides a better local maximum

but suffers from noise and small variations in scale. Here, the

angular range is initialized to a large number, which is gradually

decremented to zero. As a result, the voting landscape is refined

and focused from coarse to fine. Eventually, radial symmetry or

saliency along a boundary is reduced to a single isolated point

or a group of points that is strongly clustered together.

An example of the application of radial kernels to synthetic

overlapping objects is shown in Fig. 5 together with the inter-

mediate results. The voting landscape corresponds to the spa-

tial clustering that is initially diffuse and subsequently refined

and focused into distinct islands. A more visual example jus-

tifying the iterative nature of the technique is shown in Fig. 6.

Notice that the voting landscape is not initially localized; how-

ever, through continued refinement, a more refined landscape

has emerged.

C. Computational Complexity

The computational complexity of the iterative voting al-

gorithm is now analyzed. Let us examine the voting area

defined by (1). The cost of generating

such a voting area is very high. To solve this problem, a voting

direction can be quantized into angular bins, e.g.,

and a template voting area may be generated and stored for each

angular bin. The number of angular bins is usually set to

, or . Compared to the voting operation, the cost
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of precomputing and searching these templates can be ignored.

The computational complexity of performing a single voting

operation at iteration is , where

is the number of pixels in the original image. If we select the

sequence of angular ranges to be , where is

the number of iterations, then the total complexity of the voting

operations is

Essentially, the complexity is determined by the image size and

the predetermined radial and angular ranges, which depend on

the geometric shapes of the objects of interest. If the objects are

known to be nearly circular, then and can

be set to be quite small, and may

be reduced to as low as .

IV. VOTING PARAMETERS

The voting algorithm contains a number of parameters that

need to be appropriately defined. Each of these parameters and

its impact on the voting process is analyzed below.

• Voting area: For radial voting, the algorithm can be tuned

to look exclusively for dark or bright objects, or both, by

selecting the signs in (1), which dictate whether the kernels

are oriented in the direction of positive versus negative gra-

dient. For bright objects, is set to

For dark objects, is set to

In the case of tangential voting, or if we want to detect both

bright and dark objects, then bidirectional voting is needed

• Voting magnitudes: The voting profile contributed by each

pixel is a function of its strength (e.g., gradient magnitude).

Weak features can be thresholded with a small value, ,

to improve computational efficiency; however, this is not a

necessary step. It is the edge magnitude and organization

of edges that contribute to the voting landscape, thus sup-

pressing random noise even further.

• Radial and angular ranges: The bounds and on

the radial range, and the maximum angular range ,

are preselected given the shapes of the objects to be de-

tected. For example, to detect circles, we can set

and , and to detect ellipses of the form

, we set ,

, and , which

Fig. 7. Synthetic images perturbed with noise: (a), (b) objects with incomplete
boundaries; (c), (d) checkerboard with increasing amount of noise.

is the maximum angle between the radial and the gradient

(normal) vectors of the ellipse (e.g., , ,

and in Fig. 2). While these are ideal cases, toler-

ances are added for real-world images.

• Step size in the evolution of kernel shape: An important

value in the protocol is the step size with which the voting

area is iteratively reduced. If the step size is too large, then

the centers of mass or boundaries will be fragmented, and

if it is too small, then the computational cost will rise.

The monotonically decreasing sequence,

, controls the convergence rate of

the algorithm. Each time the voting direction is updated,

the angular range is decreased to shrink the voting area. In

our system, the interval [0, ] is equally partitioned,

and the maximum value is set interactively. For an object

demonstrating simple circular geometry, a few iterations

(e.g., ) are adequate. A higher value is necessary for

noisy images with overlapping objects.

• Threshold of output image: The final vote image is always

ranked. In some cases, a threshold may be set to select

the most prominent set of hypotheses.

V. PERFORMANCE ANALYSIS

The proposed method for detecting saliency has been applied

to a wide variety of object classes across various application do-

mains. We will show that our method is tolerant to variations in

scale and geometry, has excellent noise immunity, and can de-

tect overlapping objects with incomplete or perceptual bound-

aries. The only comparison has been with the Hough transform,

which did not perform well on test images, and the results have

not been reported.

1) Synthetic Data: Fig. 7 shows several synthetic images cor-

rupted by noise, where the detection results are marked by dark

squares. The boundary information in Fig. 7(a) and (b) is in-

complete, so the problem is one of perceptual grouping. The

algorithm detects the centers of the five objects successfully.

Fig. 7(c) and (d) shows the correct detection and localization

of symmetries in noisy images. The voting method is applied

along the radial direction to detect an approximate location of

centers of mass of both bright and dark noisy regions. For a more

detailed assessment, we have opted for test data consisting of

two overlapping circles that are corrupted by noise and change

in scale (e.g., radius of the circles). In both experiments, pa-

rameters are constant, and never changed; these are

and . Other parameters such as and voting

threshold have minimal effect on the final outcome.

Fig. 8 shows the detection result when the signal-to-noise ratio is

varied from 26 to 6 dB. To demonstrate variability to scaling,
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Fig. 8. Detection of radial symmetries for a synthetic image with two overlap-
ping circles and gradual increase in noise: (a) SNR = 26 dB; (b) SNR = 20 dB;
(c) SNR = 12 dB; (d) 6 dB; (e) 0 dB; (f) �3.5 dB; (g) �6.0 dB. Noise has no
effect in (a)–(d) and (f), but there are false positives in (e) and (g). Even at high
SNR, iterative voting detects objects of interest, but at the cost of increased false
alarms.

Fig. 9. Detection of radial symmetries for synthetic images with two overlap-
ping circles and a gradual change in the size of the radius by up to �60% from
the reference image (c): (a-b) results after the size reduction; (c) detection results
where the parameter setting is performed; and (d-e) results following expansion.

Fig. 10. Cells imaged in bright field and florescence: (a) the image demon-
strates complex intensity distributions in the imaging signatures of each cell;
(b) the voting technique localizes the position of each cell even though some
are adjacent to each other; (c) iterative voting provides initial seeding for
nuclei from a 3-D cell culture model with overlapping compartments. These
images demonstrate potential conditions where segmentation through boundary
completion remains ambiguous, as indicated by the arrows. However, through
seeding and subsequent tessellation, a more meaningful localization can be
inferred.

the radius of each circle was altered by up to 60%, with the de-

tection result shown in Fig. 9. These results indicate tolerance

to noise and scale (e.g., object size) for a well-defined object.

2) Real Data: Several examples from different modes of mi-

croscopy at different physical scales are demonstrated. The first

group, shown in Fig. 10(a) and (b), corresponds to cells imaged

in bright field that have gone through apoptosis (cell death) as a

result of an exogenous stimuli. The image shows a nonuniform

intensity distribution within each cell, with cells overlapping

each other. It is also an example, where tensor voting through

boundary completion may fail to separate touching cells.

Another example, corresponding to a 3-D cell culture model,

is shown in Fig. 10(c), where overlapping nuclei are clearly

delineated. Again, segmentation through boundary completion

methods (e.g., tensor voting) will not produce desirable results.

However, through seeding and subsequent tessellation, a more

Fig. 11. (a) Fixed sample from C. elegans observed through fluorescence mi-
croscopy; (b) detected nuclei.

Fig. 12. Evolution of the voting landscape for localization of nuclei in a mouse
mammary tissue section: (a) original image; (b)–(e) refinement of the voting
map; (f) final localization of radial symmetries.

confined local neighborhood can be constructed. The second

group, shown in Fig. 11, corresponds to nuclear localization

in developmental biology to study proliferation rates. In this

case, samples at different time points are fixed and imaged

with an epi-fluorescence microscope to examine the kinetics

of cell division in the C. elegans model system under different

treatments. The technique is being used to build a stochastic

representation of the growth rate from these studies. The third

group, shown in Fig. 12, is an example of mouse mammary

tissue imaged with confocal microscopy. The nuclei have a

number of substructures corresponding to chromatin that add

texture to the nuclear regions; they possess a wide variety

of geometric shapes, and their boundaries overlap. In this

example, intermediate results of the iterative voting are shown

to demonstrate the refinement behavior of the technique. The

fourth example, shown in Fig. 13, corresponds to small protein

assemblies, which are potentially related to double-strand

breaks as a result of ionizing radiation. In this case, radial

voting is used as an interest operator to count the number of

these protein assemblies in each nucleus. These assemblies are

heterogeneous in scale and intensity; as a result, intensity-based

thresholding may not produce reliable detection results. Studies
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Fig. 13. Fluorescence assay for H2ax proteins indicates punctate events within
the nuclear regions: (a) original; (b) detected assemblies at a specific scale and
dimension. Isolated detected events outside of the nuclear regions can be filtered
in context.

Fig. 14. CryoEM image: projections of protein structures observed with a
transmission electron microscope are often noisy and, and depending upon the
3-D resting position, the protein structure’s geometric projections are diverse.
The voting technique detects radial symmetries in the presence of noise and
significant geometric variation: (a) original image; (b) detected structures.

have shown that the number of these protein markers correlates

with the radiation dosage. The final group, shown in Fig. 14,

corresponds to a protein structure with two stable positions,

and imaged with cryo-electron microscopy. The image is very

noisy (as a result of small exposure time to reduce radiation

damage) and contains objects with different geometries.

These images demonstrate that 1) objects of interest often

have variable scales and topologies, 2) objects of interest often

overlap, and 3) a significant amount of noise—both random and

speckle—is often present. In all four groups of images, the radial

voting method successfully localizes the centers of mass of the

objects of interest.

VI. EXPERIMENTAL RESULTS

The above voting method has been applied to detection of

foci formed by phosphorylation of histone following

ionizing radiation. A system has been developed to segment the

nuclear regions [16], which provide context for quantifying pro-

tein localization. However, segmentation of foci is complicated

as a result of variation in 1) background intensity, 2) foreground

intensity, 3) sample preparation, and 4) instrument configura-

tion. Furthermore, our experience indicates significant intensity

crosstalk between neighboring foci. While voting provides an

initial localization of foci, a robust method for accurate seg-

mentation is needed. Our proposed approach is based on 1) es-

Fig. 15. Spot detection and neighborhood formation with Voronoi tessellation:
(a) original image; (b) detected spots and Voronoi tessellation forming a local
neighborhood for estimating background and foreground density.

Fig. 16. Three-dimensional visualization of foci in a single nucleus: (a), (c) top
views; (b), (d) side views.

tablishing a local neighborhood for each of the foci based on

Voronoi tessellation, as shown in Fig. 15, which is also bounded

by the maximum size of the foci, and 2) modeling the local in-

tensity distribution as a mixture of two Gaussian distributions,

whose latent variables are estimated using the expectation-max-

imization method [2]. The technique has been validated on syn-

thetic data with and without noise, and then applied to real data.

Two data sets from a recent experiment have been used for de-

tailed quantitative analysis. In this experiment, cells were ir-

radiated and then fixed at different time points for a kinetics

analysis. The results were then compared with the control data

set (e.g., zero irradiation) that provides an estimate of the back-

ground foci formation as a normal cell process. Samples were

irradiated in such a way that the 2-D and 3-D image acquisition

produces the same number of foci in each case. Furthermore, the

voting technique is extended and implemented in 3-D for com-

parative analysis, and two examples of 3-D segmentation results

are shown in Fig. 16. Samples were initially imaged in 3-D, and

2-D images were obtained through maximum projection along

the axis. Foci were then counted and segmented for each nu-

cleus in the image. Each image has approximately 50 cells, and

there are a total of 128 images corresponding to control and ir-
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Fig. 17. Kinetics of DNA repair as measured by phosphorylation of H2AX
protein as measured from maximum and projection data (a) and the original 3-D
data from full 3-D analysis (b). Total of 128 images corresponding to control and
irradiated have been processed.

radiated samples. The kinetics of foci loss, as measured by re-

duction of the number of foci, is shown in Fig. 17. These plots

indicate that the kinetics of the foci losses are fast and occur

within the first 8 hours. Although 3-D voting is computation-

ally more expensive, it tends to be more robust since 1) more

information is present on each foci, and 2) there are fewer am-

biguities as a result of crosstalk between foci at adjacent focal

planes.

VII. CONCLUSION AND FUTURE WORK

A new iterative approach for detecting saliency in biolog-

ical images has been introduced. The main novelties are 1) a

re-estimation of voting direction and 2) an update of the voting

fields by focusing their energy at each consecutive iteration.

We suggest that a dynamic and evolutionary voting strategy

overcomes the drawbacks of traditional static voting. The pro-

posed method can be viewed as sharing two features of the self-

organizing map [5]: 1) a gradual reduction in the neighborhood

size, and 2) the winner-take-all strategy. In our case, the neigh-

borhood size is reduced, but along a specific orientation, and

the kernel is always adjusted by the local maximum in its field

of view. The voting algorithm can provide a general framework

for inferring a variety of types of low-level saliency by simply

modifying the kernel shapes and external force measured from

the image (gradient, curvature, etc.). The performance of this

method has been demonstrated on synthetic and real data con-

taining noise, variation in scale (e.g., object size), and presence

of perceptual boundaries. Although the method has been applied

to a specific biological problem to estimate the formation and

resolution of radiation-induced nuclear foci, a wider applica-

tion of the method to atmospheric images and facial data has

been presented earlier. The data and software are posted on the

group’s website at http://www.vision.lbl.gov/ under the Soft-

ware section.
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