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Abstract We study Newton type methods for inverse problems described by non-
linear operator equations F(u) = g in Banach spaces where the Newton equations
F ′(un; un+1 − un) = g − F(un) are regularized variationally using a general data
misfit functional and a convex regularization term. This generalizes the well-known
iteratively regularized Gauss–Newton method (IRGNM). We prove convergence and
convergence rates as the noise level tends to 0 both for an a priori stopping rule and
for a Lepskiı̆-type a posteriori stopping rule. Our analysis includes previous order
optimal convergence rate results for the IRGNM as special cases. The main focus of
this paper is on inverse problems with Poisson data where the natural data misfit func-
tional is given by the Kullback–Leibler divergence. Two examples of such problems
are discussed in detail: an inverse obstacle scattering problem with amplitude data of
the far-field pattern and a phase retrieval problem. The performance of the proposed
method for these problems is illustrated in numerical examples.

Mathematics Subject Classification (2000) 65J15 · 65J20 · 78A46 · 65K10

1 Introduction

This study has been motivated by applications in photonic imaging, e.g. positron
emission tomography [45], deconvolution problems in astronomy and microscopy [8],
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746 T. Hohage, F. Werner

phase retrieval problems [28] or semi-blind deconvolution problems, i.e. deconvolu-
tion with partially unknown convolution kernel [43]. In these problems, data consist of
counts of photons which have interacted with the object of interest. The inverse prob-
lem of recovering the information on the object of interest from such photon counts
can be formulated as an operator equation

F (u) = g (1)

if one introduces an operator F : B ⊂ X → Y mapping a mathematical description
u ∈ B of the object of interest to the photon density g ∈ Y ⊂ L1(M) on the manifold
M at which measurements are taken. In this paper we focus on problems where the
operator F is nonlinear.

For fundamental physical reasons, photon count data are described by a Poisson
process with the exact data g† as mean if read-out noise and finite averaging volume of
detectors is neglected. Ignoring this a priori information often leads to non-competitive
reconstruction methods.

To avoid technicalities in this introduction, let us consider a discrete version where
the exact data vector g† belongs to [0,∞)J , and g†

j is the expected number of counts

of the j th detector. Then the observed count data are described by a vector gobs ∈ N
J
0

of J independent Poisson distributed random variables with mean g†. A continuous

version will be discussed in Sect. 6. Since P[gobs| g] = ∏J
j=1 e−g j g

gobs
j

j /gobs
j ! the

negative log-likelihood data misfit functional S
(
gobs; g

) = − ln P[gobs| g] + c (with
a constant c independent of g) is given by

S
(

gobs; g
)

:=
{∑J

j=1

[
g j −gobs

j ln g j

]
, g ≥ 0 and { j : gobs

j > 0, g j =0}=∅,
∞, else.

(2)

Here and in the following we use the conventions 0 ln 0 := 0 and ln 0 = −∞. Setting

gobs = g† and subtracting the minimal value
∑J

j=1

[
g†

j − g†
j ln g†

j

]
attained at g = g†,

we obtain a discrete version of the Kullback–Leibler divergence

KL

(
g†; g

)
:=
⎧
⎨

⎩

∑J
j=1

[

g j −g†
j −g†

j ln

(
g j

g†
j

)]

g ≥ 0, { j : g†
j > 0, g j =0}=∅,

∞, else.
(3)

Note that both S and KL are convex in their second arguments.
A standard way to solve perturbed nonlinear operator equations (1) is the Gauß-

Newton method. If F ′ denotes the Gateaux derivative of F , it is given by given by
un+1 ∈ argminu∈B‖F (un)+ F ′ (un; u − un)− gobs‖2. As explained above, for data
errors with a non-Gaussian distribution it is in general not appropriate to use a squared
norm as data misfit functional. Therefore, we will consider general data misfit func-
tionals S : Yobs × Y → (−∞,∞] where Yobs is a space of (possibly discrete)
observations gobs. Since inverse problems are typically ill-posed in the sense that F
and its derivatives F ′(un; ·) do not have continuous inverses, regularization has to
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Regularized Newton methods for general data misfit functionals 747

be used. Therefore, we add a proper convex penalty functional R : X → (−∞,∞],
which should be chosen to incorporate a priori knowledge about the unknown solution
u†. This leads to the iteratively regularized Newton-type method

un+1 ∈ argmin
u∈B

[
S
(

gobs; F (un)+ F ′ (un; u − un)
)

+ αnR (u)
]

(4a)

which will be analyzed in this paper. The regularization parameters αn are chosen such
that

α0 ≤ 1, αn ↘ 0, 1 ≤ αn

αn+1
≤ Cdec for all n ∈ N (4b)

for some constant Cdec, typically αn = α0C−n
dec with Cdec = 3/2.

If Y = R
J , F(u) = (Fj (u)) j=1,...,d , and S is given by (2), we obtain the convex

minimization problems

un+1 ∈ argmin
u∈Bn

[ J∑

j=1

[
Fj (un)+ F ′

j (un; u − un)

−gobs
j ln(Fj (un)+ F ′

j (un; u − un))
]+ αnR (u)

]
(5)

in each Newton step where

Bn :=
{

u ∈ B
∣
∣ S

(
gobs; F(u)+ F ′(un; u − un)

)
< ∞

}
.

In principle, several methods for the solution of (5) are available. In particular we
mention inverse scale space methods [12,37] for linear operator equations and total
variation penalties R. EM-type methods cannot readily be used for the solution of
the convex minimization problems (5) (or subproblems of the inverse scale space
method as in [12]) if F ′(un; ·) is not positivity preserving as in our examples. A simple
algorithm for the solution of subproblems of the type (5) is discussed in Sect. 7. We
consider the design of more efficient algorithms for minimizing the functionals (5) for
large scale problems as an important problem for future research.

The most common choice of the data misfit functional is S
(
ĝ; g

) = ∥
∥ g − ĝ

∥
∥2

Y
with a Hilbert space norm ‖ · ‖Y . This can be motivated by the case of (multi-variate)
Gaussian errors. If the penalty term is also given by a Hilbert space norm R (u) =
‖ u − u0‖2

X , (4) becomes the iteratively regularized Gauss–Newton method (IRGNM)
which is one of the most popular methods for solving nonlinear ill-posed operator
equations [2,3,9,31]. If the penalty term ‖ u − u0‖2

X is replaced by ‖ u − un‖2
X one

obtains the Levenberg–Marquardt method, which is well-known in optimization and
has first been analyzed as regularization method in [20]. Recently, a generalization of
the IRGNM to Banach spaces has been proposed and analyzed by Kaltenbacher and
Hofmann [30].
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748 T. Hohage, F. Werner

As an alternative to (4) we mention Tikhonov-type or variational regularization
methods of the form

ûα ∈ argmin
u∈B

[
S
(

gobs; F(u)
)

+ αR (u)
]
. (6)

Here α > 0 is a regularization parameter. For nonlinear operators this is in general
a non-convex optimization problem even if S

(
gobs; ·) and R are convex. Hence, (6)

may have many local minima and it cannot be guaranteed that the global minimum
can be found numerically. Let us summarize some recent convergence results on
this method: Bardsley [4] shows stability and convergence for linear operators and
S = KL. Benning and Burger [7] prove rates of convergence for linear operators under
the special source condition F∗ω ∈ ∂R(u†). Generalizations to nonlinear operators
and general variational source conditions were published simultaneously by Bot and
Hofmann [11], Flemming [16], and Grasmair [19].

Given some rule to choose the stopping index n∗ our main results (Theorems 2.3
and 4.2) establish rates of convergence of the method (4), i.e. uniform estimates of the
error of the final iterate in terms of some data noise level err

∥
∥
∥ un∗ − u†

∥
∥
∥ ≤ Cϕ(err) (7)

for some increasing, continuous function ϕ : [0,∞) → [0,∞) satisfying ϕ(0) = 0.
For the classical deterministic error model ‖gobs−g‖ ≤ δ and S

(
gobs; g

)=‖g−gobs‖r

with some r ≥ 1 we have err = δr . In this case we recover most of the known
convergence results on the IRGNM for weak source conditions. Our main results
imply error estimates for Poisson data provided a concentration inequality holds true.
In this case err = 1√

t
where t can be interpreted as an exposure time proportional to

the expected total number of photons, and an estimate of the form (7) holds true with
the left hand side replaced by an expected error.

As opposed to a Hilbert or Banach space setting our data misfit functional S does not
necessarily fulfill a triangle inequality. Therefore, it is necessary to use more general
formulations of the noise level and the tangential cone condition, which controls the
degree of nonlinearity of the operator F . Both coincide with the usual assumptions
if S is given by a norm. Our analysis uses variational methods rather than methods
based on spectral theory, which have recently been studied in the context of inverse
problems by a number of authors (see, e.g., [13,24,30,40,42]).

The plan of this paper is as follows: In the following section we formulate our first
main convergence theorem (Theorem 2.3) and discuss its assumptions. The proof will
be given in Sect. 3. In the following Sect. 4 we discuss the case of additive varia-
tional inequalities and state a convergence rates result for a Lepskiı̆-type stopping rule
(Theorem 4.2). In Sect. 5 we compare our result to previous results on the iteratively
regularized Gauss–Newton method. Section 6 is devoted to the special case of Pois-
son data, which has been our main motivation. We conclude our paper with numerical
results for an inverse obstacle scattering problem and a phase retrieval problem in
optics in Sect. 7.
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Regularized Newton methods for general data misfit functionals 749

2 Assumptions and convergence theorem with a priori stopping rule

Throughout the paper we assume the following mapping and differentiability proper-
ties of the forward operator F :

Assumption 1 (Assumptions on F and R) Let X and Y be Banach spaces and let
B ⊂ X a convex subset. Assume that the forward operator F : B → Y and the
penalty functional R : X → (−∞,∞] have the following properties:

1. F is injective.
2. F : B → Y is continuous, the first variations

F ′(u; v − u) := lim
t↘0

1

t
(F(u + t (v − u))− F(u))

exist for all u, v ∈ B, and h �→ F ′(u; h) can be extended to a bounded linear
operator F ′[u] ∈ L(X ,Y) for all u ∈ B.

3. R is proper and convex, and B ∩ dom(R) �= ∅.

At interior points u ∈ B the second assumption amounts to Gateaux differentiability
of F .

To motivate our assumptions on the data misfit functional, let us consider the case
that gobs = F(u†) + ξ , and ξ is Gaussian white noise on the Hilbert space Y , i.e.
〈ξ, g〉 ∼ N (0, ‖g‖2) and E〈ξ, g〉 〈ξ, g̃〉 = 〈g, g̃〉 for all g, g̃ ∈ Y . If Y = R

J ,
then the negative log-likelihood functional is given by S

(
gobs; g

) = ‖g − gobs‖2
2.

However, in an infinite dimensional Hilbert space Y we have ‖gobs‖Y = ∞ almost
surely, and S

(
gobs; ·) ≡ ∞ is obviously not a useful data misfit term. Therefore,

one formally subtracts ‖gobs‖2
Y (which is independent of g) to obtain S

(
gobs; g

) :=
‖ g‖2

Y − 2
〈
gobs, g

〉
Y . For exact data g† we can of course use the data misfit functional

T
(
g†; g

) = ∥
∥ g − g†

∥
∥2

Y . As opposed to S, the functional T is nonnegative and does
indeed describe the size of the error in the data space Y . It will play an important role
in our analysis.

It may seem cumbersome to work with two different types data misfit functionals
S and T . A straightforward idea to fix the free additive constant in S is to introduce
S̃
(
gobs; g

) := S
(
gobs; g

) − s̃ with s̃ := infg∈Y S
(
gobs; g

)
such that S̃

(
gobs; ·) is

nonnegative and S̃
(
g†; g

) = T
(
g†; g

)
. However, s̃ = −∞ a.s. A better choice of the

additive constant is s = ES
(
gobs; g

)− T
(
g†; g

) = −‖g†‖2 since for this choice the
error has the convenient representation S

(
gobs; g

)+‖g†‖2 −T
(
g†; g

) = −2〈ξ, g〉Y ,

and the expected error E
∣
∣S
(
gobs; g

) − s − T
(
g†; g

) ∣
∣2 is minimized. Note that s

depends on the unknown g†, but this does not matter since the value of s does not
affect the numerical algorithms. Bounds on supg∈Ỹ

∣
∣〈ξ, g〉Y

∣
∣ with high probabilities

for certain subsets Ỹ ⊂ Y (concentration inequalities) have been studied intensively
in probability theory (see e.g. [34]). Such results can be used in case of Gaussian
errors to show that the following deterministic error assumption holds true with high
probability and uniform bounds on err(g) for g ∈ Ỹ .
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750 T. Hohage, F. Werner

Assumption 2 (data errors, properties of S and T ) Let u† ∈ B ⊂ X be the exact
solution and denote by g† := F

(
u†
) ∈ Y the exact data. Let Yobs be a set containing

all possible observations and gobs ∈ Yobs the observed data. Assume that:

1. The fidelity term T : F (B) × Y → [0,∞] with respect to exact data fulfills
T
(
g†; g†

) = 0.
2. T and the fidelity term S : Yobs × Y → (−∞,∞] with respect to noisy data are

connected as follows: There exists a constant Cerr ≥ 1 and functionals err : Y →
[0,∞] and s : F (B) → (−∞,∞) such that

S
(

gobs; g
)

− s(g†) ≤ CerrT
(

g†; g
)

+ Cerrerr (g) (8a)

T
(

g†; g
)

≤ Cerr

(
S
(

gobs; g
)

− s(g†)
)

+ Cerrerr (g) (8b)

for all g ∈ Y .

Example 2.1 1. Additive deterministic errors in Banach spaces. Assume that
Yobs = Y ,

‖gobs − g†‖ ≤ δ, and S (g2; g1) = T (g2; g1) = ‖ g1 − g2‖r
Y

with r ∈ [1,∞). Then it follows from the simple inequalities (a + b)r ≤
2r−1 (ar + br ) and |a − b|r + br ≥ 21−r ar that (8) holds true with err ≡∥
∥ gobs − g†

∥
∥r

Y , s ≡ 0 and Cerr = 2r−1.
2. For randomly perturbed data a general recipe for the choice ofS, T and s is to define

S as the log-likelihood functional, s(g†) := Eg†S
(
gobs; g†

)
and T

(
g†; g

) :=
Eg†S

(
gobs; g

) − s(g†). Then we always have T
(
g†; g†

) = 0, but part 2. of
Assumption 2 has to be verified case by case.

3. Poisson data. For discrete Poisson data we have already seen in the introduction
that the general recipe of the previous point yields S given by (2), T = KL and

s(g†) = ∑J
j=1

[
g†

j − g†
j ln

(
g†

j

)]
. It is easy to see that KL

(
g†; g

) ≥ 0 for all g†

and g. Then (8) holds true with Cerr = 1 and

err(g) =
{∣∣
∣
∑J

j=1 ln
(
g j
) (

gobs
j − g†

j

) ∣
∣
∣, g ≥ 0, { j : g j =0, g†

j +gobs
j > 0}=∅

∞, else.

Obviously, it will be necessary to show that err (g) is finite and even small in some
sense for all g for which the inequalities (8) are applied (see Sect. 6).

To simplify our notation we will assume in the following analysis that s ≡ 0 or
equivalently replace S

(
gobs; g

)
by S

(
gobs; g

)− s(g†). As already mentioned in the
motivation of Assumption 2, it is not relevant that s(g†) is unknown since the value
of this additive constant does not influence the iterates un in (4a).

Typically S and T will be convex in their second arguments, but we do not need this
property in our analysis. However, without convexity it is not clear if the numerical
solution of (4a) is easier than the numerical solution of (6).
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Regularized Newton methods for general data misfit functionals 751

Assumption 3 (Existence) For any n ∈ N the problem (4a) has a solution.

Remark 2.2 By standard arguments the following properties are sufficient to ensure
existence of a solution to (4a) for convex S

(
gobs; ·) (see [16,24,39]): There are pos-

sibly weaker topologies τX , τY on X ,Y respectively such that

1. B is sequentially closed w.r.t. τX ,
2. F ′ (u; ·) is sequentially continuous w.r.t. τX and τY for all u ∈ B,
3. the penalty functional R : X → (−∞,∞] is sequentially lower semi-continuous

with respect to τX ,
4. the sets MR (c) := {

u ∈ X
∣
∣R (u) ≤ c

}
are sequentially pre-compact with

respect to τX for all c ∈ R and
5. the data misfit term S

(
gobs; ·) : Y → (−∞,∞] is sequentially lower semi-

continuous w.r.t. τY , and infu∈BS
(
gobs; F (un)+ F ′ (un; u − un)

)
> −∞.

Note that for our analysis we do not require that the solution to (4a) is unique or depends
continuously on the data gobs even though these properties are desirable for other
reasons. Obviously, uniqueness in (4a) is given if S is convex and R is strictly convex,
and there are reasonable assumptions on S which guarantee continuous dependence,
cf. [39].

All known convergence rate results for nonlinear ill-posed problems under weak
source conditions assume some condition restricting the degree of nonlinearity of the
operator F . Here we use a generalization of the tangential cone condition which was
introduced in [21] and is frequently used for the analysis of regularization methods
for nonlinear inverse problems. It must be said, however, that for many problems it
is very difficult to show that this condition is satisfied (or not satisfied). Since S does
not necessarily fulfill a triangle inequality we have to use a generalized formulation
of the tangential cone condition, which follows from the standard formulation if S is
given by the power of a norm (cf. Lemma 5.2).

Assumption 4 (Generalized tangential cone condition)

(A) There exist constants η (later assumed to be sufficiently small) and Ctc ≥ 1 such
that for all gobs ∈ Yobs

1

Ctc
S
(

gobs; F (v)
)

− ηS
(

gobs; F (u)
)

≤ S
(

gobs; F (u)+ F ′ (u; v − u)
)

≤ CtcS
(

gobs; F (v)
)

+ ηS
(

gobs; F (u)
)

for all u, v ∈ B. (9a)

(B) There exist constants η (later assumed to be sufficiently small) and Ctc ≥ 1 such
that

1

Ctc
T
(

g†; F (v)
)

− ηT
(

g†; F (u)
)

≤ T
(

g†; F (u)+ F ′ (u; v − u)
)

≤ CtcT
(

g†; F (v)
)

+ ηT
(

g†; F (u)
)

for all u, v ∈ B. (9b)
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752 T. Hohage, F. Werner

This condition ensures that the nonlinearity of F fits together with the data misfit
functionals S or T . Obviously, it is fulfilled with η = 0 and Ctc = 1 if F is linear.

It is well-known that for ill-posed problems rates of convergence can only be
obtained under an additional “smoothness condition” on the solution (see [15, Prop.
3.11]). In a Hilbert space setting such conditions are usually formulated as source
conditions in the form

u† − u0 = ϕ
(

F ′ [u†
]∗

F ′ [u†
])
ω (10)

for some ω ∈ X where ϕ : [0,∞) → [0,∞) is a so-called index function, i.e.
ϕ is continuous and monotonically increasing with ϕ(0) = 0. Such general source
conditions were systematically studied in [23,36]. The most common choices of ϕ are
discussed in Sect. 5.

To formulate similar source conditions in Banach spaces, we first have to introduce
Bregman distances, which will also be used to measure the error of our approximate
solutions (see [13]): Let u∗ ∈ ∂R (

u†
)

be a subgradient (e.g. u∗ = u† − u0 if R(u) =
1
2‖u − u0‖2 with a Hilbert norm ‖ · ‖). Then the Bregman distance of R between u
and u† is given by

Du∗
R
(

u, u†
)

:= R (u)− R
(

u†
)

−
〈
u∗, u − u†

〉
.

If X is a Hilbert space and R(u) = 1
2‖u −u0‖2

X , we have Du∗
R
(
u, u†

) = 1
2‖u −u†‖2

X .
Moreover, if X is a q-convex Banach space (1 < q < ∞) and R (u) = ‖ u‖q

X , then
there exists a constant Cbd > 0 such that

∥
∥
∥ u − u†

∥
∥
∥

q

X ≤ CbdDu∗
R
(

u, u†
)

(11)

for all u ∈ X (this follows from [47, Eqs. (2.16)′ and (2.17)′]). In those cases, con-
vergence rates w.r.t. the Bregman distance also imply rates w.r.t. the Banach space
norm.

Now we can formulate the following variational formulation of the source condition
(10), which is a slight variation of the one proposed in [30]:

Assumption 5A (Multiplicative variational source condition) There exists u∗ ∈
∂R

(
u†
) ⊂ X ′, β ≥ 0 and a concave index function ϕ : (0,∞) → (0,∞) such

that

〈
u∗, u† − u

〉
≤ βDu∗

R
(

u, u†
) 1

2
ϕ

(
T
(
g†; F (u)

)

Du∗
R
(
u, u†

)

)

for all u ∈ B. (12)

Moreover, we assume that

t �→ ϕ (t)√
t

is monotonically decreasing. (13)
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Regularized Newton methods for general data misfit functionals 753

As noted in [30] using Jensen’s inequality, a Hilbert space source condition (10)
for which

(
ϕ2
)−1

is convex implies the variational inequality

∣
∣
∣
〈
u∗, u − u†

〉∣
∣
∣ ≤ ‖ω‖

∥
∥
∥ u − u†

∥
∥
∥ ϕ

(∥
∥ F ′ [u†

] (
u − u†

)∥
∥2

∥
∥ u − u†

∥
∥2

)

. (14)

The tangential cone condition now shows that an inequality of type (12) is valid and
hence, in a Hilbert space setup Assumption 5 is weaker than (10) at least for linear
operators. As opposed to [30] we have omitted absolute values on the left hand side of
(12) since they are not needed in the proofs, and this form may allow for better index
functions ϕ if u† is on the boundary of B.

In many recent publications [11,16,25,42] variational source conditions in additive
rather than multiplicative form have been used. Such conditions will be discussed in
Sect. 4.

Since we use a source condition with a general index function ϕ, we need to restrict
the nonlinearity of F with the help of a tangential cone condition. Nevertheless, we
want to mention that for ϕ (t) = t1/2 in (12) our convergence analysis also works
under a generalized Lipschitz assumption, but this lies beyond the aims of this paper.
The cases ϕ (t) = tν with ν > 1

2 where similar results are expected are not covered
by Assumption 5, since for the motivation in the Hilbert space setup we needed to
assume that

(
ϕ2
)−1

is convex, which is not the case for ν > 1
2 .

In our convergence analysis we will use the following two functions, which are
both index functions as well as their inverses:

Θ (t) := tϕ2 (t) ,

ϑ (t) := √
Θ (t) = √

tϕ (t)
(15)

We are now in a position to formulate our convergence result with a priori stopping
rule:

Theorem 2.3 Let Assumption 1, 2, 3, 4A or 4B and 5A hold true, and suppose that
η, Du∗

R
(
u0, u†

)
and T

(
g†; F (u0)

)
are sufficiently small. Then the iterates un defined

by (4) with exact data gobs = g† fulfill

Du∗
R
(

un, u†
)

= O
(
ϕ2 (αn)

)
, (16a)

T
(

g†; F (un)
)

= O (Θ (αn)) (16b)

as n → ∞. For noisy data define

errn := 1

Cerr
err (F (un+1))+ 2ηCtcerr (F (un))+ CtcCerrerr

(
g†
)

(17a)
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754 T. Hohage, F. Werner

in case of Assumption 4A or

errn := err
(
F (un)+ F ′ (un; un+1 − un)

)

+Cerrerr
(
F (un)+ F ′ (un; u† − un

)) (17b)

under Assumption 4B, and choose the stopping index n∗ by

n∗ := min
{
n ∈ N

∣
∣ Θ (αn) ≤ τerrn

}
(18)

with a sufficiently large parameter τ ≥ 1. Then (16) holds for n ≤ n∗ and the following
convergence rates are valid:

Du∗
R
(

un∗ , u†
)

= O
(
ϕ2
(
Θ−1 (errn∗

)))
, (19a)

T
(

g†; F
(
un∗
)) = O

(
errn∗

)
. (19b)

3 Proof of Theorem 2.3

We will split the proof into to two main parts. For brevity we will denote

dn := Du∗
R
(

un, u†
) 1

2
, (20)

sn := T
(

g†; F (un)
)
. (21)

Let us now start with the following

Lemma 3.1 Let the assumptions of Theorem 2.3 hold true. Then we have a recursive
error estimate of the form

αnd2
n+1 + 1

CtcCerr
sn+1 ≤ η

(

Cerr + 1

Cerr

)

sn + αnβdn+1ϕ

(
sn+1

d2
n+1

)

+ errn (22a)

in the case of 4B and

αnd2
n+1 + 1

CtcCerr
sn+1 ≤ 2ηCerrsn + αnβdn+1ϕ

(
sn+1

d2
n+1

)

+ errn (22b)

in the case of 4A for all n ∈ N.

Proof Due to (12) we have

R (un+1)− R
(

u†
)

= Du∗
R
(

un+1, u†
)

−
〈
u∗, u† − un+1

〉

≥ d2
n+1 − βdn+1ϕ

(
sn+1

d2
n+1

)

. (23)
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From the minimality condition (4a) with u = u† we obtain

αn

(
R (un+1)− R

(
u†
))

+ S
(

gobs; F (un)+ F ′ (un; un+1 − un)
)

≤ S
(

gobs; F (un)+ F ′ (un; u† − un

))
, (24)

and putting (23) and (24) together we find that

αnd2
n+1 + S

(
gobs; F (un)+ F ′ (un; un+1 − un)

)

≤ S
(

gobs; F (un)+ F ′ (un; u† − un

))
+ αnβdn+1ϕ

(
sn+1

d2
n+1

)

. (25)

– In the case of 4B we use (8), which yields

αnd2
n+1 + 1

Cerr
T
(

g†; F (un)+ F ′ (un; un+1 − un)
)

≤ CerrT
(

g†; F (un)+ F ′ (un; u† − un

))
+ αnβdn+1ϕ

(
sn+1

d2
n+1

)

+ errn

and (9b) with v = u†, u = un leads to

αnd2
n+1 + 1

Cerr
T
(

g†; F (un)+ F ′ (un; un+1 − un)
)

≤ ηCerrsn + αnβdn+1ϕ

(
sn+1

d2
n+1

)

+ errn .

By (9b) with v = un+1, u = un we obtain (22a).
– In the case of 4A we are able to apply (9a) with v = u†, u = un and (9a) with
v = un+1 and u = un to (25) to conclude

αnd2
n+1 + 1

Ctc
S
(

gobs; F (un+1)
)

≤ 2ηS
(

gobs; F (un)
)

+ CtcS
(

gobs; F
(

u†
))

+ αnβdn+1ϕ

(
sn+1

d2
n+1

)

.

Due to (8) and Assumption 2.2 this yields (22b). ��

Before we deduce the convergence rates from the recursive error estimates (22)
respectively, we note some inequalities for the index functions defined in (15) and
their inverses:
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Remark 3.2 1. We have

ϕ
(
ϑ−1 (Ct)

)
≤ max

{√
C, 1

}
ϕ
(
ϑ−1 (t)

)
(26)

ϕ2
(
Θ−1 (Ct)

)
≤ max

{√
C, 1

}
ϕ2
(
Θ−1 (t)

)
(27)

for all t ≥ 0 and C > 0 if defined, where each inequality follows from two
applications of the monotonicity assumption (13) (see [30, Remark 2]).

2. Since ϕ is concave, we have

ϕ (λt) ≤ λϕ (t) for all t sufficiently small and λ ≥ 1 (28)

3. Equation (28) implies the following inequality for all t sufficiently small andλ ≥ 1:

Θ (λt) ≤ λ3Θ (t) (29)

The following induction proof follows along the lines of a similar argument in the
proof of [30, Theorem 1]:

Lemma 3.3 Let the assumptions of Theorem 2.3 hold. Then an estimate of the kind
(22a) implies

dn ≤ C1ϕ (αn) , (30)

sn ≤ C2Θ (αn) (31)

for all n ≤ n∗ in case of noisy data and for all n ∈ N in case of exact data where (due
to η sufficiently small)

C2 = max

⎧
⎨

⎩
4β2 (CtcCerrCdec)

3 ,
2CtcCerrC3

dec

τ
(

1 − 2C3
decCtcCerrη

(
Cerr + 1

Cerr

))

⎫
⎬

⎭
,

C1 = max
{√

2β 4
√

C2,
√

2 (ηC2 (Cerr + 1/Cerr)+ 1/τ)Cdec

}
.

Since (22b) is of the same form as (22a) (only the constants differ), (30) and (31) are
(with slightly changed constants) also valid under (22b).

Proof For n = 0 (30) and (31) are guaranteed by the assumption that d0 and s0 are
small enough. For the induction step we observe that (22a) together with (18) and the
induction hypothesis for n ≤ n∗ − 1 implies

αnd2
n+1 + 1

CtcCerr
sn+1 ≤ Cη,τΘ (αn)+ αnβdn+1ϕ

(
sn+1

d2
n+1

)

where Cη,τ = ηC2 (Cerr + 1/Cerr)+ 1/τ . Now we distinguish between two cases:
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Case 1 αnβdn+1ϕ

(
sn+1

d2
n+1

)

≤ Cη,τΘ (αn).

In that case we find

αnd2
n+1 + 1

CtcCerr
sn+1 ≤ 2Cη,τΘ (αn)

which by Θ (t) /t = ϕ2 (t), (28) and (29) implies

dn+1 ≤ √
2Cη,τ ϕ (αn) = √

2Cη,τ ϕ

(
αn

αn+1
αn+1

)

≤ √
2Cη,τCdecϕ (αn+1) ,

sn+1 ≤ 2CtcCerrCη,τΘ (αn) ≤ 2CtcCerrCη,τC3
decΘ (αn+1) .

The assertions now follow by
√

2Cη,τCdec ≤ C1 and 2CtcCerrCη,τC3
dec ≤ C2 which

is ensured by the definition of C2.

Case 2 αnβdn+1ϕ

(
sn+1

d2
n+1

)

> Cη,τΘ (αn).

In that case we find

αnd2
n+1 + 1

CtcCerr
sn+1 ≤ 2αnβdn+1ϕ

(
sn+1

d2
n+1

)

.

If dn+1 = 0, then this implies sn+1 = 0 and hence the assertion is trivial. By multi-
plying with

√
sn+1 and dividing by d2

n+1 we have

αn
√

sn+1 + 1

CtcCerr

sn+1

d2
n+1

√
sn+1 ≤ 2βαnϑ

(
sn+1

d2
n+1

)

. (32)

Considering only the first term on the left hand side of (32) this is

ϑ−1
(√

sn+1

2β

)

≤ sn+1

d2
n+1

(33)

and by considering only the second term on the left hand side of (32)

Φ

(
sn+1

d2
n+1

)
√

sn+1 ≤ 2βCtcCerrαn (34)

whereΦ (t) = √
t/ϕ (t) = t/ϑ (t). Plugging (33) into (34) using the monotonicity of

Φ by (13) we find

Φ

(

ϑ−1
(√

sn+1

2β

))√
sn+1 ≤ 2βCtcCerrαn .
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Since Φ
(
ϑ−1 (t)

) = ϑ−1 (t) /t this shows

ϑ−1
(√

sn+1

2β

)

≤ CtcCerrαn .

Hence,

sn+1 ≤ 4β2Θ (CtcCerrαn)

which by (29) and 4β2 (CdecCtcCerr)
3 ≤ C2 implies sn+1 ≤ C2Θ (αn+1).

Now from ϑ (t) = √
tϕ (t) we find b2

(
ϕ
(
ϑ−1

(√
a

b

)))2 = a/ϑ−1
(√

a
b

)
and

hence by (33)

d2
n+1 ≤ 4β2

(

ϕ

(

ϑ−1
(√

sn+1

2β

)))2

≤ 4β2
(

ϕ

(

ϑ−1
(√

C2

2β
ϑ (αn+1)

)))2

≤ 2β
√

C2ϕ (αn+1)
2

≤ C2
1ϕ (αn+1)

2

where we used (26), C2 ≥ 4β2 due to CdecCtcCerr ≥ 1 and
√

2β 4
√

C2 ≤ C1.
Therefore, we have proven that (30) and (31) hold for all n ≤ n∗ (or in case of

exact data for all n ∈ N).

With these two lemmas at hand we are able to complete the Proof of Theorem 2.3:
Inserting (18) into (30) and (31) we find using (27)

Du∗
R
(

un∗ , u†
)

≤ C1ϕ
2 (αn∗

) = O
(
ϕ2
(
Θ−1 (errn∗

)))

and

T
(

g†; F
(
un∗
)) ≤ C2Θ

(
αn∗

) = O
(
errn∗

)
.

4 A Lepskiı̆-type stopping rule and additive source conditions

In this section we will present a convergence rates result under the following variational
source condition in additive form:

Assumption 5B There exists u∗ ∈ ∂R(u†) ⊂ X ′, parameters β1 ∈ [0, 1/2), β2 > 0
(later assumed to be sufficiently small), and a strictly concave, differentiable index
function ϕ satisfying ϕ′ (t) ↗ ∞ as t ↘ 0 such that

〈
u∗, u† − u

〉
≤ β1Du∗

R
(

u, u†
)

+ β2ϕ
(
T
(

g†; F (u)
))

for all u ∈ B. (35)
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A special case of condition (35), motivated by the benchmark condition u∗ =
F
[
u†
]∗
ω was first introduced in [24] to prove convergence rates of Tikhonov-type

regularization in Banach spaces (see also [42]). Flemming [16] uses them to prove
convergence rates for nonlinear Tikhonov regularization (6) with general S and R.
Bot & Hofmann [11] prove convergence rates for general ϕ and introduce the use
of Young’s inequality which we will apply in the following. Finally, Hofmann &
Yamamoto [25] prove equivalence in the Hilbert space case for ϕ (t) = √

t in (10)
and (35) (with different ϕ, cf. [25, Prop. 4.4]) and almost equivalence for ϕ (t) = tν

with ν < 1
2 in (10) (again with different ϕ in (35), cf. [25, Prop. 6.6 and Prop. 6.8])

under a suitable nonlinearity condition. Latest research results show that a classic
Hilbert space source conditions (10), which have natural interpretations in a number
of important examples, relates to (35) in a way that one obtains order optimal rates
(see [17]). Nevertheless, this can be seen much easier for multiplicative variational
source conditions [see (14)].

The additive structure of the variational inequality will facilitate our proof and the
result will give us the possibility to apply a Lepskiı̆-type stopping rule. We remark
that for s �= 0 in Assumption 2 it is not clear how to formulate an implementable
discrepancy principle.

Given ϕ in (35), we construct the following further index functions as in [11], which
will be used in our convergence theorem:

ψ (t) =
{

1
ϕ′(ϕ−1(t))

if t > 0,

0 if t = 0,
=
{(
ϕ−1

)′
(t) if t > 0,

0 if t = 0,
(36a)

Ψ (t) =
t∫

0

ψ−1 (s) ds, t ≥ 0, (36b)

Λ = inf

{

g
∣
∣√g concave index function, g (t) ≥ Ψ (t)

t
for t ≥ 0

}

. (36c)

The definition (36c) ensures that
√
Λ is concave, which by (4b) implies

(Λ (αn))
1
q ≤ C

2
q
dec (Λ (αn−1))

1
q (37)

for all q ≥ 1 and n ∈ N. Since for linear problems
√
Ψ (αn) /αn is a bound on

the approximation error (see [11]) and since for Tikhonov regularization the approx-
imation error decays at most of the order O(αn), we expect that t �→ √

Ψ (t)/t is
“asymptotically concave” in the sense that limt↘0Λ(t)t/Ψ (t) = 1, so we don’t loose
anything by replacing �(t)/t by Λ(t). Indeed, it is easy to see that this is the case
for logarithmic and Hölder type source conditions with ν ≤ 1, and in the latter case
t �→ √

Ψ (t)/t itself is concave everywhere.

Lemma 4.1 Let Assumption 1, 2, 3, 4A or 4B and 5B hold true and assume that there
exists a uniform upper bound errn ≤ err for the error terms errn in Theorem 2.3.
Then, with the notation (20), the error of the iterates un defined by (4) for n ≥ 1 can

123



760 T. Hohage, F. Werner

be bounded by the sum of an approximation error bound Φapp(n), a propagated data
noise error bound Φnoi(n) and a nonlinearity error bound Φnl(n),

d2
n ≤ Φnl (n)+Φapp (n)+Φnoi (n) (38)

where

Φnl (n) := 2ηCNL
sn−1

αn−1
,

Φapp (n) := 2β2Λ(αn−1) ,

Φnoi (n) := 2
err
αn−1

.

and CNL := max {2Cerr,Cerr + 1/Cerr}. Moreover, if η and β2 are sufficiently small,
the estimate

Φnl (n) ≤ γnl
(
Φnoi (n)+Φapp (n)

)
(39)

holds true with

γnl := max

{
C2

decγ̄

1 − C2
decγ̄

,
Φnl (1)

Φapp (1)+Φnoi (1)

}

, γ̄ := ηCdecCNL
1

CtcCerr
− β2

.

Proof Similar to the proof of Lemma 3.1 the assumptions imply the iterative estimate

αn (1 − β1) d2
n+1 + 1

CtcCerr
sn+1 ≤ η

(

Cerr + 1

Cerr

)

sn + αnβ2ϕ (sn+1)+ err

for all n ∈ N in case of of 4B and

αn (1 − β1) d2
n+1 + 1

CtcCerr
sn+1 ≤ 2ηCerrsn + αnβ2ϕ (sn+1)+ err

for all n ∈ N in case of 4A. Now Young’s inequality ab ≤ ∫ a
0 ψ (t) dt+∫ b

0 ψ
−1 (s) ds

(cf. [22, Thm. 156]) with the index function ψ defined in (36a) applied to the second-
last term yields

αnβ2ϕ (sn+1) ≤ β2sn+1 + β2Ψ (αn) .

This shows that

αn (1 − β1) d2
n+1 +

(
1

CtcCerr
− β2

)

sn+1 ≤ ηCNLsn + β2Ψ (αn)+ err (40)
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for all n ∈ N both in case 4A and in case 4B. Together with 1/(1 − β1) ≤ 2 and
Ψ (t)

t ≤ Λ(t) this yields

d2
n+1 ≤ 2ηCNL

sn

αn
+ 2β2Λ(αn)+ 2

err
αn
.

for all n ≥ 0 which is by definition (38).
From (40) we conclude that

sn+1 ≤ ηCNL
1

CtcCerr
− β2

sn + β2
1

CtcCerr
− β2

Ψ (αn)+ err
1

CtcCerr
− β2

.

Now multiplying by 2ηCNL/αn+1 we find

Φnl (n + 2) ≤ γ̄ Φnl (n + 1)+ γ̄ Φapp (n + 1)+ γ̄ Φnoi (n + 1)

for all n ∈ N. Now we prove (39) by induction: For n = 1 the assertion is true by
the definition of γnl. Now let (39) hold for some n. Then by the inequality above, the
induction hypothesis, (37), and the monotonicity of Φnoi we find that

Φnl (n + 1) ≤ γ̄ Φnl (n)+ γ̄ Φapp (n)+ γ̄ Φnoi (n)

≤ γ̄ (1 + γnl)
(
Φapp (n)+Φnoi (n)

)

≤ C2
decγ̄ (1 + γnl)

(
Φapp (n + 1)+Φnoi (n + 1)

)
.

The definition of γnl implies C2
decγ̄ (1 + γnl) ≤ γnl and hence the assertion is shown.

��

Lemma 4.1 allows us to apply the Lepskiı̆ balancing principle as developed in
[5,6,35,36] as a posteriori stopping rule. Since the balancing principle requires a
metric on X we assume that there exists a constant Cbd > 0 and an exponent q > 1
such that

∥
∥
∥ u − u†

∥
∥
∥

q

X ≤ CbdDu∗
R
(

u, u†
)

for all u ∈ X . (41)

As already mentioned in (11) this is the case for R(u) = ‖ u‖q
X with a q-convex

Banach space X and 1 < q < ∞, but (41) can be valid also for other choices of R.
Now it follows from Lemma 4.1 by inserting (41) and taking the q-th root that

‖un − u†‖X ≤ C
1
q
bd

(
Φnl (n)

1
q +Φapp (n)

1
q +Φnoi (n)

1
q

)
.

Whereas Φapp and Φnl are typically unknown, it is important to note that the error
component Φnoi is known if an error bound err is available. Therefore, the following
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Lepskiı̆ balancing principle can be implemented:

Nmax := min

{

n ∈ N
∣
∣ C

1
q
bdΦnoi (n)

1
q ≥ 1

}

(42a)

nbal := min

{

n ∈ {1, . . . , Nmax}
∣
∣ ∀m ≥ n ‖ un − um‖X ≤ cΦ

1
q
noi (m)

}

(42b)

Moreover, it is important to note thatΦnoi is increasing andΦapp is decreasing. There-
fore, the general theory developed in the references above can be applied, and we
obtain the following convergence result:

Theorem 4.2 (Convergence rates under Assumption 5B) Let the assumptions of
Lemma 4.1 hold true and assume that Du∗

R
(
u0, u†

)
and S

(
g†; F (u0)

)
are sufficiently

small.

1. Exact data:
Then the iterates (un) defined by (4) with exact data gobs = g† fulfill

Du∗
R
(

un, u†
)

= O (Λ (αn)) , n → ∞. (43)

2. A priori stopping rule:
For noisy data and the stopping rule

n∗ := min
{
n ∈ N

∣
∣ Ψ (αn) ≤ err

}

with Ψ defined in (36b) we obtain the convergence rate

Du∗
R
(

un∗ , u†
)

= O
(
Λ
(
Ψ−1 (err)

))
, err → 0. (44)

3. Lepskiı̆-type stopping rule:
Assume that (41) holds true for some q > 1. Then the Lepskiı̆ balancing principle

(42b) with c = C
1
q
bd4 (1 + γnl) leads to the convergence rate

∥
∥
∥ unbal − u†

∥
∥
∥

q

X = O
(
Λ
(
Ψ−1 (err)

))
, err → 0.

Proof By (38) and (39) we find d2
n ≤ (1 + γnl)

(
Φapp (n)+Φnoi (n)

)
which implies

part 1 and

d2
n∗ ≤ (1 + γnl)

(

2β2Λ
(
αn∗−1

)+ 2
err
αn∗−1

)

.

Using the definition of n∗ and (37) we have

err
αn∗−1

≤ Ψ
(
αn∗−1

)

αn∗−1
≤ Λ

(
αn∗−1

) ≤ C2
decΛ

(
αn∗

)
.

123



Regularized Newton methods for general data misfit functionals 763

Using the definition of n∗ again we obtain αn∗ ≤ Ψ−1 (err). Putting these estimates
together yields (44).

To prove part 3 assume that err is sufficiently small in the following. We use again
d2

n ≤ (1 + γnl)
(
Φapp (n)+Φnoi (n)

)
, which yields by (41) the estimate

∥
∥
∥ un − u†

∥
∥
∥X ≤ C

1
q
bd (1 + γnl)

1
q

(
Φapp (n)

1
q +Φnoi (n)

1
q

)

for all n ∈ {1, . . . , Nmax}. Define ψ ( j) := 2C
1
q
bd (1 + γnl)

1
q Φnoi (Nmax + 1 − j) and

φ ( j) := 2C
1
q
bd (1 + γnl)

1
q Φapp (Nmax + 1 − j) and note that φ (1) ≤ ψ (1) if and

only ifΦapp (Nmax) ≤ 1. This is the case if Nmax is sufficiently large which holds true
for sufficiently small err as assumed. Thus by (37) we can apply [35, Cor. 1] to gain

∥
∥
∥ unbal − u†

∥
∥
∥X ≤ 6 (1 + γnl)

1
q C

2
q
decC

1
q
bd min

n≤Nmax

(
Φapp (n)

1
q +Φnoi (n)

1
q

)
.

If we can show that n∗ ∈ {1, . . . , Nmax} we obtain the assertion as in part 2. Since by
definition αn∗−1 > Ψ−1 (err), we have

Φnoi (n∗) = 2
err
αn∗−1

< 2
err

Ψ−1 (err)
≤ 2Λ

(
Ψ−1 (err)

)

and hence n∗ ≤ Nmax if err is sufficiently small. ��

5 Relation to previous results

The most commonly used source conditions are Hölder-type and logarithmic source
conditions, which correspond to

ϕν (t) := tν, ν ∈ (0, 1/2] , (45a)

ϕ̄p (t) :=
{
(− ln (t))−p if 0 < t ≤ exp (−p − 1) ,

0 if t = 0,
p > 0, (45b)

respectively. For a number of inverse problems such source conditions have been
shown to be equivalent to natural smoothness assumptions on the solution in terms of
Sobolev space regularity (see [15,27]). We have restricted the range of Hölder indices
to ν ∈ (0, 1/2] since for ν > 1/2 the monotonicity assumption (13) is violated. By
computing the second derivative, one can easily see that the functions ϕ̄p are concave
on the interval [0, exp(−p−1)], and condition (13) is trivial. If necessary, the functions
ϕ̄p can be extended to concave functions on [0,∞) by suitable affine linear function
on (exp(−p − 1),∞).

We note the explicit form of the abstract error estimates (19) for these classes of
source conditions as a corollary:
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Corollary 5.1 (Hölder and logarithmic source conditions) Suppose the assumptions
of Theorem 2.3 hold true.

1. If ϕ in (12) is of the form (45a) and n∗ := min

{

n ∈ N
∣
∣ αn ≤ τerr

1
1+2ν
n

}

with

τ ≥ 1 sufficiently large, then

Du∗
R
(

un∗ , u†
)

= O
(

err
2ν

1+2ν
n∗

)

. (46a)

2. If ϕ = ϕ̄p, n̄∗ := min
{
n ∈ N

∣
∣ α2

n ≤ τerrn
}

and τ ≥ 1 sufficiently large, then

Du∗
R
(

un̄∗ , u†
)

= O
(
ϕ̄2p

(
errn̄∗

))
. (47a)

Proof In the case of Hölder source conditions we already remarked that the conditions
in Assumption 5A are satisfied ν ∈ (0, 1/2], and we have Θ (t) = t1+2ν , Θ−1(ξ) =
ξ1/(1+2ν).

In the case of logarithmic source conditions we have Θ (t) = t · ϕ̄2p (t) . The
function Θ−1 does not have an algebraic representation, but its asymptotic behavior
at 0 can be computed: Θ−1 (t) = t

ϕ̄2p(t)
(1 + o (1)) as t ↘ 0. This implies that

ϕ̄p
(
Θ−1 (t)

) = ϕ̄p (t) (1 + o (1)) as t ↘ 0. Note that the proposed stopping rule n̄∗,
which can be implemented without knowledge of the smoothness index p, deviates
from the stopping rule

n∗ := min
{
n ∈ N

∣
∣ αn ϕ̄2p(αn) ≤ τ errn

}

proposed in Theorem 2.3. Asymptotically we have n∗ > n̄∗, and hence (16) holds for
n = n̄∗. Therefore, we still get the optimal rates since

Du∗
R
(

un̄∗ , u†
)

= O
(
ϕ̄2p

(
αn̄∗

)) = O
(
ϕ̄2p

(√
τerrn̄∗

)) = O
(
ϕ̄2p

(
errn̄∗

))
.

��
Recall from Sect. 2 that we can choose

err ≡ δr if ‖gobs − g†‖Y ≤ δ and S (g2; g1) = ‖g1 − g2‖r
Y , T = S

with r ∈ [1,∞). In particular, if X and Y are Hilbert spaces, r = 2 and R =
‖ u − u0‖2 for some u0 ∈ X , then (46a) and (47a) translate into the rates

‖un∗ − u‖ = O
(
δ

2ν
1+2ν

)
,

‖un∗ − u‖ = O
(
(− ln δ)−p) ,

respectively, for δ → 0 (see, e.g., [31]), which are known to be optimal for linear
inverse problems.

123



Regularized Newton methods for general data misfit functionals 765

It remains to discuss the relation of Assumption 4 to the standard tangential cone
condition:

Lemma 5.2 (tangential cone condition) Let S (g2; g1)=T (g2; g1)=‖g1 − g2‖r
Y . If

F fulfills the tangential cone condition

∥
∥ F (u)+F ′ (u; v − u)−F (v)

∥
∥Y ≤ η̄ ‖ F (u)−F (v)‖Y for all u, v ∈ B (48)

with η̄ ≥ 0 sufficiently small, then Assumptions 4A and 4B are satisfied.

Proof Using the inequality (a + b)r ≤ 2r−1 (ar + br ), a, b ≥ 0 we find that

∥
∥ F (u)+ F ′ (u; v − u)− g

∥
∥r
Y

≤
(∥
∥ F (u)+ F ′ (u; v − u)− F (v)

∥
∥Y + ‖ F (v)− g‖Y

)r

≤ 2r−1η̄r ‖ F (u)− F (v)‖r
Y + 2r−1 ‖ F (v)− g‖r

Y
≤ 22r−2η̄r ‖ F (u)− g‖r

Y +
(

2r−1 + η̄r 22r−2
)

‖ F (v)− g‖r
Y .

Moreover, with |a − b|r ≥ 21−r ar − br , a, b ≥ 0 we get

∥
∥ F (u)+ F ′ (u; v − u)− g

∥
∥r
Y

≥
∣
∣
∣‖ F (v)− g‖Y − ∥

∥ F (u)+ F ′ (u; v − u)− F (v)
∥
∥Y
∣
∣
∣
r

≥ 21−r ‖ F (v)− g‖r
Y − η̄r ‖ F (u)− F (v)‖r

Y
≥ 21−r ‖ F (v)− g)‖r

Y − 2r−1η̄r ‖ F (u)− g‖r
Y − 2r−1η̄r ‖ F (v)− g‖r

Y
=
(

21−r − 2r−1η̄r
)

‖ F (v)− g)‖r
Y − 2r−1η̄r ‖ F (u)− g‖r

Y

for all g ∈ Y . Hence, (9) holds true with η = 22r−2η̄r and

Ctc = max

{
1

21−r − 2r−1η̄r
, 2r−1 + η̄r 22r−2

}

≥ 1

if η̄ is sufficiently small. ��

6 Convergence analysis for Poisson data

In this section we discuss the application of our results to inverse problems with Poisson
data. We first describe a natural continuous setting involving Poisson processes (see
e.g. [1]). The relation to the finite dimensional setting discussed in the introduction is
described at the end of this section.

Recall that a Poisson process with intensity g† ∈ L1(M) on some submanifold
M ⊂ R

d can be described as a random finite set of points {x1, . . . , xN } ⊂ M written
as random measure G = ∑N

n=1 δxn such that the following conditions are satisfied:
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1. For all measurable subsets M
′ ⊂ M the number G(M′) = #{n : xn ∈ M

′} is
Poisson distributed with mean

∫
M′ g† dx .

2. For disjoint measurable subsets M
′
1, . . . ,M

′
m ⊂ M the random variables

G(M′
1), . . . ,G(M′

m) are stochastically independent.

Actually, the first condition can be replaced by the weaker assumption that EG(M′) =∫
M′ g† dx . In photonic imaging g† will describe the photon density on the measurement

manifold M, and x1, . . . , xN with denote the positions of the detected photons. For
a Poisson process G with intensity g† and a measurable function ψ : M → R the
following equalities hold true whenever the integrals on the right hand sides exist
(see [32]):

E
∫

M

ψ dG =
∫

M

ψg† dx , Var
∫

M

ψ dG =
∫

M

ψ2g† dx (49)

We also introduce an exposure time t > 0. Our convergence results will describe
reconstruction errors in the limit t → ∞. Assume the data G̃t are drawn from a
Poisson process with intensity tg† and define Gt := 1

t G̃t . The negative log-likelihood
functional is given by

S (Gt ; g) =
{∫

M
g dx−∫

M
ln g dGt = ∫

M
g dx− 1

t

∑N
n=1 ln g(xn), g ≥ 0

∞, else.
(50)

Using (49) we obtain the following formulas for the mean and variance of S (Gt ; g)
if the integrals on the right hand side exist:

ES (Gt ; g) =
∫

M

[
g − g† ln g

]
dx, Var S (Gt ; g) = 1

t

∫

M

(ln g)2g† dx . (51)

The term s(g†) = ES
(
Gt ; g†

) = ∫
M

[g† − g† ln g†] dx is finite if g† ∈ L1(M) ∩
L∞(M), M is bounded, and g† ≥ 0 as assumed below. Setting

T
(

g†; g
)

:= KL

(
g†; g

)
:=
{∫

M

[
g − g†−g† ln g + g† ln g†

]
dx , g ≥ 0

∞ , else,
(52)

we find that Assumption 2 holds true with Cerr = 1 and

err(g) :=
{∣
∣
∫
M

ln(g)
(
dGt − g† dx

)∣
∣ , g ≥ 0

0 , else.
(53)

This motivates the following assumption:
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Assumption P With the notation of Assumption 1 assume that

1. M is a compact submanifold of R
d , Y := L1(M) ∩ C(M) with norm ‖g‖Y :=

‖g‖L1 + ‖g‖∞ and

F(u) ≥ 0 for all u ∈ B.

2. For a subset Ỹ ⊂ Y specified later there exist constants ρ0, t0 > 0 and
a strictly monotonically decreasing function ζ : (ρ0,∞) → [0, 1] fulfilling
limρ→∞ ζ(ρ) = 0 such that the concentration inequality

P

⎛

⎝sup
g∈Ỹ

∣
∣
∣
∣
∣
∣

∫

M

ln(g)
(

dGt − g† dx
)
∣
∣
∣
∣
∣
∣
≥ ρ√

t

⎞

⎠ ≤ ζ(ρ) (54)

holds for all ρ > ρ0 and all t > t0.

Concerning the second part of this assumption we cite the following result:

Theorem 6.1 ([46, Thm. 2.1]) Let M ⊂ R
d be a bounded domain with Lipschitz

boundary and suppose s > d
2 . For R ≥ 1 consider the ball Bs (R) :=

{
g ∈ Hs (M)

∣
∣ ‖ g‖Hs (M) ≤ R

}
. Then there exists a constant Cconc > 0 depend-

ing only on M, s and
∥
∥ g†

∥
∥

L1(M)
such that (54) holds true with Ỹ = Bs (R),

ζ(ρ) = exp
(
− ρ

RCconc

)
, ρ0 = RCconc and t0 = 1.

The proof of this result is based on a concentration inequality by Reynaud-Bouret
[41]. Unfortunately, her result requires ‖ ln(g)‖∞ ≤ b for all g ∈ Ỹ , and this restriction
is carried over to Theorem 6.1 as s > d

2 implies by Sobolev’s embedding theorem

‖ ln(g)‖∞ ≤ C for all g ∈ Ỹ . To apply this result, we thus need to assume that
‖ ln(F(u))‖∞ ≤ C for all u ∈ B, which does not allow for zeros of F(u) even
on sets of measure 0 if F(u) is continuous and is hence very restrictive. Therefore,
we introduce the following shifted version of the Kullback–Leibler divergence (3)
involving an offset parameter σ ≥ 0 and a side-constraint g ≥ −σ

2 :

T
(

g†; g
)

:=
{

KL
(
g† + σ ; g + σ

)
if g ≥ −σ

2

∞ otherwise.
(55)

Note that (52) and (55) coincide for σ = 0. Correspondingly, we choose

S (Gt ; g) :=
{∫

M
[g − σ ln(g + σ)] dx − ∫

M
ln(g + σ)dGt if g ≥ −σ

2 ,

∞ else
(56)

as data misfit functional in (4a). Setting s(g†) := ∫
M

[g† − (g† + σ) ln(g† + σ)] dx ,
Assumption 2 is satisfied with

err (g) :=
{∣
∣
∫
M

ln (g + σ)
(
dGt − g† d

)
x
∣
∣ , g ≥ −σ

2 ,

0 else.
(57)
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Remark 6.2 (Assumptions 5A and 5B (source conditions)) Using the inequality

‖g1 − g2‖2
L2 ≤

(
4

3
‖g1‖L∞ + 2

3
‖g2‖L∞

)

KL (g2; g1)

(see [10, Lemma 2.2 (a)]), Assumption 5A/B with T (g1; g2) = ‖g1 − g2‖2
L2 imply

Assumption 5A/B with T (g1; g2) = KL (g1; g2) if F(B) is bounded in L∞(M).
However, Assumptions 5A/B with T (g1; g2) = KL (g1; g2) may be fulfilled with a
better index function ϕ if F(u†) is close to 0 in parts of the domain.

Before we state our convergence result, we introduce the smallest concave function
larger than the rate function in Theorem 4.2:

ϕ̂ := inf
{
ϕ̃
∣
∣ ϕ̃ concave index function, ϕ̃ (s) ≥ Λ

(
Ψ−1 (s)

)
for s ≥ 0

}
. (58)

From the case of Hölder-type source conditions we expect that ϕ̂will typically coincide
with Λ ◦ Ψ−1 at least in a neighborhood of 0 (see e.g. [25, Prop. 4.3]).

Corollary 6.3 Let the Assumptions 1, 3 and 5B hold true. Moreover, assume that one
of the following conditions is satisfied:

– Assumptions 4A and P hold true with S and T given by (50) and (52) and
Ỹ = F(B).

– Assumptions 4B and P hold true with T and S given by (55) and (56) and

Ỹ := {F(u)+ σ : u ∈ B}
∪
{

F(u)+ F ′(u; v − u)+ σ : u, v ∈ B, F(u)+ F ′(u; v − u) ≥ −σ
2

}
.

Suppose that β2 is sufficiently small, B is bounded and R is chosen such that (41)
holds true for some q > 1, and Lepskiı̆’s balancing principle (42) is applied with

c = C
1
q
bd4 (1 + γnl) and err = τζ−1(1/

√
t)√

t
with a sufficiently large parameter τ (a

lower will be given in the proof). Then we obtain the following convergence rate in
expectation:

E
∥
∥
∥ unbal − u†

∥
∥
∥

q

X ≤ O
(

ϕ̂

(
ζ−1(1/

√
t)√

t

))

, t → ∞. (59)

Proof In the case of Assumption 4A and σ = 0, we find that Assumption 2 holds true
with err defined by (53). Assumption P implies that the terms errn defined by (17a)
in Theorem 2.3 satisfy

P

[

sup
n∈N0

errn ≤ τρ√
t

]

≥ 1 − ζ(ρ) (60)
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for all ρ > ρ0 and t > t0 with τ := 1 + 2ηCtc + Ctc due to Cerr = 1. To show the
analogous estimate in the case of Assumption 4B, recall that Assumption 2 holds true
with err defined by (57). From the variational characterization of un+1 it follows that

F (un)+ F ′ (un; un+1 − un) ≥ −σ
2

(61)

Moreover, from Assumption 4B we conclude that

F (un)+ F ′ (un; u† − un

)
≥ −σ

2
(62)

This yields the inequality (60) with τ := 2 also for errn defined by (17b) using
Assumption P .

By virtue of (60) the sets Eρ :=
{

supn∈N0
errn ≤ τρ√

t

}
have probability ≥ 1−ζ (ρ)

if ρ > ρ0. Recall that ζ is monotonically decreasing and define ρ (t) := ζ−1
(
1/

√
t
)

where we assume t to be sufficiently large. We have

E
∥
∥
∥ unbal − u†

∥
∥
∥

q

X ≤ 2q

(

max
Eρ(t)

∥
∥
∥ unbal − u†

∥
∥
∥

q

X · P
(
Eρ(t)

)

+ sup
u,v∈B

‖ u − v‖q
X P

(
EC
ρ(t)

)
)

. (63)

Now we can apply Theorem 4.2 to obtain the error bound

max
Eρ(t)

∥
∥
∥ unbal − u†

∥
∥
∥

q

X ≤ C1ϕ̂ (err) ≤ C1τ ϕ̂

(
ζ−1(1/

√
t)√

t

)

with some constant C1 > 0 for all sufficiently large t . In the last inequality we have
used the concavity of ϕ̂. Plugging this into (63) yields

E
∥
∥
∥ unbal − u†

∥
∥
∥

q

X ≤ 2q

(

C1τ ϕ̂

(
ζ−1(1/

√
t)√

t

)

+ 1√
t

sup
u,v∈B

‖ u − v‖q
X

)

.

Since ϕ̂ is concave, there exists C2 > 0 such that s ≤ C2ϕ̂ (s) for all sufficiently

small s > 0. Moreover, 1√
t

in the second term is bounded by 1
ρ0

ζ−1(1/
√

t)√
t

, and thus

we obtain the assertion (59). ��
If ζ (ρ) = exp (−cρ) for some c > 0 as discussed above, then our convergence rates

result (59) means that we have to pay a logarithmic factor for adaptation to unknown
smoothness by the Lepskiı̆ principle. It is known (see [44]) that in some cases such a
logarithmic factor is inevitable.

The most important issue is the verification of Assumption P . In case of Assumption
4A this follows from the results discussed above only under the restrictive assumption
that F(u) is uniformly bounded away from 0 for all u ∈ B. On the other hand for
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the case of Assumption 4B we find from Theorem 6.1 that Assumption P is satisfied
under the mild condition

sup
u,v∈B

‖F(u)+ F ′(u, v − u)‖Hs < ∞.

Binning Let us discuss the relation between the discrete data model discussed in
the introduction and the continuous model above. Consider a decomposition of the
measurement manifold M into J measurable disjoint subdomains (bins) of positive
measure |M j | > 0:

M =
J⋃

j=1

M j

In practice each M j may correspond to a detector counting the number of photons in
M j , so the measured data are

gobs
j

= tGt (M j ) = #{n | xn ∈ M j } , j = 1, . . . , J.

Consider the linear operator SJ : L1(M) → R
J , (SJ g) j := ∫

M j
g dx and the mapping

S∗
J g := ∑J

j=1 |M j |−1g
j
1M j , which is adjoint to SJ with respect to the L2(M) inner

product and the inner product 〈g, h〉 := ∑J
j=1 |M j |−1g

j
h j . PJ := S∗

J SJ is the L2-

orthogonal projection onto the subspace of functions, which are constant on each M j .
SJ can naturally be extended to measures such that (SJ (Gt )) j = Gt (M j ) = 1

t #{n :
xn ∈ M j }. For distinction we denote the right hand sides of Eqs. (2) and (3) by S J
and KLJ , and define S∞ and KL∞ by (50) and (52). Then

S J

(
gobs; g

)
= S∞

(
S∗

J gobs; S∗
J g
)

and KLJ

(
g†; g

)
= KL∞

(
S∗

J g†; S∗
J g
)
.

The discrete data model above can be treated in the framework of our analysis by
choosing

S
(

gobs; g
)

:= S J

(
1

t
gobs; SJ g

)

,

s(g†) := S J

(
SJ g†; SJ g†

)
, and T := KL∞. Then Assumption 2 holds true with

err(g) :=
∣
∣
∣
∣
∣
∣

J∑

j=1

ln((SJ g) j )

(
1

t
gobs

j
− (SJ g†) j

)
∣
∣
∣
∣
∣
∣

+
∣
∣
∣KL∞

(
g†; g

)
− KL∞

(
PJ g†; PJ g

)∣
∣
∣ (64)

if SJ g ≥ 0, { j : (SJ g) j = 0, (Sg†) j + gobs
j
> 0} = ∅ and err(g) := ∞ else. To

achieve convergence, the binning has to be refined as t → ∞. The binning should be
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chosen such that the second term on the right hand side of (64) (the discretization error)
is dominated by the first term (the stochastic error) such that the reconstruction error
is determined by the number of observed photons rather than discretization effects.

7 Applications and computed examples

Solution of the convex subproblems We first describe a simple strategy to minimize
the convex functional (4a) with S as defined in (56) in each Newton step. For the
moment we neglect the side condition g ≥ −σ/2 in (56). For simplicity we further
assume that R is quadratic, e.g. R(u) = ‖u − u0‖2. We approximate S

(
gobs; g + h

)

by the second order Taylor expansion

S(2)[gobs; g](h) := S
(

gobs; g
)

+
∫

M

[(

1 − gobs + σ

g + σ

)

h + 1

2

gobs + σ

(g + σ)2
h2
]

dx

and define an inner iteration

hn,l := argmin
h

[
S(2)

[
gobs; F(un)+F ′[un](un,l −un);

]
(h)+αnR(un,l + h)

]
(65)

for l = 0, 1, . . . with un,0 := un and un,l+1 := un,l + sn,l hn,l . Here the step-length
parameter sn,l is chosen as the largest s ∈ [0, 1] for which s F ′[un] ≥ −ησ − F(un)

with a tuning parameter η ∈ [0, 1) (typically η = 0.9). This choice of sn,l ensures
that F(un)+ F ′[un](un,l+1 − un) ≥ −ησ , i.e. (65) is a reasonable approximation to
(4a), and η = 1/2 ensures that un,l+1 satisfies the side condition in (56). It follows
from the first order optimality conditions, which are necessary and sufficient due to
strict convexity here, that un,l = un,l+1 is the exact solution un+1 of (4a) if hn,l = 0.
Therefore, we stop the inner iteration if ‖hn,l‖/‖hn,0‖ is sufficiently small. We also
stop the inner iteration if sn,l is 0 or too small.

Simplifying and omitting terms independent of h we can write (65) as a least squares
problem

hn,l = argmin
h

[ ∫

M

1

2

(√
gobs + σ

gn,l + σ
F ′[un]h + gn,l − gobs

√
gobs + σ

)2

dx

+αnR
(
un,l + h

)
]

(66)

with gn,l := F(un)+ F ′[un](un,l − un). (66) is solved by the CG method applied to
the normal equation.

In the examples below we observed fast convergence of the inner iteration (65).
In the phase retrieval problem we had problems with the convergence of the CG
iteration when αn becomes too small. If the offset parameter σ becomes too small
or if σ = 0 convergence deteriorates in general. This is not surprising since the
iteration (65) cannot be expected to converge to the exact solution un+1 of (4a) if the
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side condition F(un) + F ′(un; un+1 − un) ≥ −σ/2 is active at un+1. The design of
efficient algorithms for this case will be addressed in future research.

An inverse obstacle scattering problem without phase information The scattering
of polarized, transverse magnetic (TM) time harmonic electromagnetic waves by a
perfect cylindrical conductor with smooth cross section D ⊂ R

2 is described by the
equations

�u + k2u = 0, in R
2\D, (67a)

∂u

∂n
= 0, on ∂D, (67b)

lim
r→∞

√
r
(us

r
− ikus

)
= 0, where r := |x |, us := u − ui . (67c)

Here D is compact, R
2\D is connected, n is the outer normal vector on ∂D, and

ui = exp(ikx · d) is a plane incident wave with direction d ∈ {x ∈ R
2 : |x | = 1}.

This is a classical obstacle scattering problems, and we refer to the monograph [14]
for further details and references. The Sommerfeld radiation condition (67c) implies
the asymptotic behavior

us(x) = exp(ik|x |)√|x |
(

u∞
(

x

|x |
)

+ O
(

1

|x |
))

as |x | → ∞, and u∞ is called the far field pattern or scattering amplitude of us .
We consider the inverse problem to recover the shape of the obstacle D from pho-

ton counts of the scattered electromagnetic field far away from the obstacle. Since the
photon density is proportional to the squared absolute value of the electric field, we
have no immediate access to the phase of the electromagnetic field. Since at large dis-
tances the photon density is approximately proportional to |u∞|2, our inverse problem
is described by the operator equation

F(∂D) = |u∞|2. (68)

A similar problem is studied with different methods and noise models by Ivanyshyn and
Kress [29]. Recall that |u∞| is invariant under translations of ∂D. Therefore, it is only
possible to recover the shape, but not the location of D. For plottings we always shift
the center of gravity of ∂D to the origin. We assume that D is star-shaped and represent
∂D by a periodic function q such that ∂D = {q(t)(cos t, sin t)� : t ∈ [0, 2π ]}. For
details on the implementation of F , its derivative and adjoint we refer to [26] where
the mapping q �→ u∞ is considered as forward operator. Even in this situation where
the phase of u∞ is given in addition to its modulus, it has been shown in [26] that for
Sobolev-type smoothness assumptions at most logarithmic rates of convergence can
be expected.

As a test example we choose the obstacle shown in Fig. 1 described by q†(t) =
1
2

√
3 cos2 t + 1 with two incident waves from “South West” and from “East” with

wave number k = 10 as shown in Fig. 1. We used J = 200 equidistant bins. The
initial guess for the Newton iteration is the unit circle described by q0 ≡ 1, and we
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(a) (b)

(c) (d)

Fig. 1 Numerical results for the inverse obstacle scattering problem (68). c, d Best and median reconstruc-
tion from 100 experiments with t = 1,000 expected counts. See also Table 1

choose the Sobolev norm R (q) = ‖ q − q0‖2
Hs with s = 1.6 as penalty functional.

The regularization parameters are chosen as αn = 0.5 · (2/3)n . Moreover, we choose
an initial offset parameter σ = 0.002, which is reduced by 4

5 in each iteration step.
The inner iteration (65) is stopped when ‖hn,l‖/‖hn,0‖ ≤ 0.1, which was usually the
case after about three iterations (or about five iterations for ‖hn,l‖/‖hn,0‖ ≤ 0.01).

For comparison we take the usual IRGNM, i.e. (4) with S
(
ĝ; g

) = ∥
∥ g − ĝ

∥
∥2

L2

and R as above as well as a weighted IRGNM where S is chosen to be Pearson’s
φ2-distance:

φ2
(

gobs; g
)

=
∫

M

∣
∣g − gobs

∣
∣2

gobs dx . (69)
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(a) (c)(b)

(d) (f)(e)

Fig. 2 Overview for the error terms (17b) for the inverse scattering problem. For different values of the
expected total number of counts the value maxn≤20 errn has been calculated in 100 experiments. The

figure shows the corresponding histograms and means. The decay of order 1√
t
, i.e. reduction by a factor of

√
10 ≈ 3.16 in the table is clearly visible. All parameters are as in Fig. 1

Since in all our examples we have many zero counts, we actually used

S
(

gobs; g
)

= φ2
c

(
gobs; g

)
=
∫

M

∣
∣g − gobs

∣
∣2

max
{
gobs, c

} dx .

with a cutoff-parameter c > 0.
Figure 2 lists histograms and empiric means of the error terms (17b) and shows the

decay of order 1/
√

t in accordance with the theoretic result from Theorem 6.1.
Error statistics of shape reconstructions from 100 experiments are shown in Table 1.

The stopping index N is chosen a priori such that (the empirical version of) the
expectation E‖qn − q†‖2

L2 is minimal for n = N , i.e. we compare both methods with
an oracle stopping rule. Note that the mean square error is significantly smaller for the
Kullback–Leibler divergence than for the L2-distance and also clearly smaller than
for Pearson’s distance. Moreover the distribution of the error is more concentrated
for the Kullback–Leibler divergence. For Pearson’s φ2 distance it must be said that
the results depend strongly on the cutoff parameter for the data. In our experiments
c = 0.2 seemed to be a good choice in general.

A phase retrieval problem A well-known class of inverse problems with numerous
applications in optics consists in reconstructing a function f : R

d → C from the mod-
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Table 1 L2-error statistics for the inverse obstacle scattering problem (68)

t S
(

gobs; g
)

N
√

E‖qN −q†‖2
L2

√
Var‖qN −q†‖L2

100 ‖g − gobs‖2
L2 7 0.124 0.033

φ2
c

(
gobs; g

)
2 0.122 0.018

S in Eq. (56) 3 0.091 0.025

1, 000 ‖g − gobs‖2
L2 9 0.106 0.014

φ2
c

(
gobs; g

)
7 0.091 0.012

S in Eq. (56) 5 0.070 0.017

10, 000 ‖g − gobs‖2
L2 9 0.105 0.004

φ2
c

(
gobs; g

)
23 0.076 0.048

S in Eq. (56) 5 0.050 0.005

The log-likelihood functional (56) is compared to the standard L2 and Pearson’s φ2 distance [cf. (69)] for
different values of the expected total number of counts t with 100 experiments for each set of parameters.
The error of the initial guess is ‖q0−q†‖L2 = 0.288. All parameters as in Fig. 1

ulus of its Fourier transform |F f | and additional a priori information, or equivalently
to reconstruct the phase F f/|F f | of F f (see Hurt [28]).

In the following we assume more specifically that f : R
2 → C is of the form

f (x) = exp(iϕ(x)) with an unknown real-valued function ϕ with known compact
support supp(ϕ). For a uniqueness result we refer to Klibanov [33], although not
all assumptions of this theorem are satisfied in the example below. It turns out to be
particularly helpful if ϕ has a jump of known magnitude at the boundary of its support.
We will assume that suppϕ = Bρ = {x ∈ R

2 : |x | ≤ ρ} and that ϕ ≈ χBρ close to
the boundary ∂Bρ (here χBρ denotes the characteristic function of Bρ). This leads to
an inverse problem where the forward operator is given by

F : Hs(Bρ) −→ L∞(M) ,

(Fϕ)(ξ) :=
∣
∣
∣
∣
∣

∫

Bρ
e−iξ ·x eiϕ(x) dx

∣
∣
∣
∣
∣

2

. (70)

Here Hs(Bρ) denotes a Sobolev space with index s ≥ 0 and M ⊂ R
2 is typically of

the form M = [−κ, κ]2. The a priori information on ϕ can be incorporated in the form
of an initial guess ϕ0 ≡ 1. Note that the range of F consists of analytic functions.

The problem above occurs in optical imaging: If f (x ′) = exp(iϕ(x ′)) = u(x ′, 0)
(x ′ = (x1, x2)) denotes the values of a cartesian component u of an electric field in
the plane {x ∈ R

3 : x3 = 0} and u solves the Helmholtz equation �u + k2u = 0
and a radiation condition in the half-space {x ∈ R

3 : x3 > 0}, then the intensity
g(x ′) = |u(x ′,�)|2 of the electric field at a measurement plane {x ∈ R

3 : x3 = �}
in the limit � → ∞ in the Fraunhofer approximation is given by |F2 f |2 up to
rescaling (see e.g. Paganin [38, Sec. 1.5]). If f is generated by a plane incident wave
in x3 direction passing through a non-absorbing, weakly scattering object of interest
in the half-space {x3 < 0} close to the plane {x3 = 0} and if the wave length is
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Median reconstructions for the phase retrieval problem with t = 106 expected counts

small compared to the length scale of the object, then the projection approximation
ϕ(x ′) ≈ k

2

∫ 0
−∞(n

2(x ′, x3)− 1) dx3 is valid where n describes the refractive index of
the object of interest (see e.g. [38, Sec. 2.1]). A priori information on ϕ concerning a
jump at the boundary of its support can be obtained by placing a known transparent
object before or behind the object or interest.
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The simulated test object in Fig. 3 which represents two cells is taken from Gieweke-
meyer et al. [18]. We choose the initial guess ϕ0 ≡ 1, the Sobolev index s = 1

2 , and the
regularization parameters αn = 5

106 · (2/3)n . The photon density is approximated by

J = 2562 bins. The offset parameter σ is initially set to 2·10−6 and reduced by a factor
4
5 in each iteration step. As for the scattering problem, we use an oracle stopping rule
N := argminnE‖ϕn − ϕ†‖2

L2 . As already mentioned, we had difficulties to solve the
quadratic minimization problems (66) by the CG method for small αn and had to stop
the iterations before residuals were sufficiently small to guarantee a reliable solution.

Nevertheless, comparing subplots (c) and (e) in Fig. 3, the median KL-reconstruction
(e) seems preferable (although more noisy) since the contours are sharper and details
in the interior of the cells are more clearly separated.
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