
ITiCSE 2010 Working Group Report

Motivating our Top Students

Janet Carter
School of Computing

University of Kent

Canterbury, Kent, UK

+44 1227 827978

J.E.Carter@kent.ac.uk

Su White
School of Electronics & Computing

University of Southampton

Southampton, Hants, UK

+44 23 8059 4471

saw@ecs.soton.ac.uk

Karen Fraser
School of Computing and Maths

University of Ulster

Newtownabbey, N. Ireland, UK

+44 28 9036 8938

k.fraser@ulster.ac.uk

Stanislav Kurkovsky
Computer Science Department

Central Connecticut State Uni

New Britain, CT, USA

+1 860 832 2720

kurkovskysta@mail.ccsu.edu

Colette McCreesh
School of Elec, Elec Eng & CS

Queenʼs University Belfast

Belfast, N. Ireland, UK

+44 28 9097 4816

c.mccreesh@qub.ac.uk

Malcolm Wieck
School of Computing

Christchurch Polytechnic Inst

of Technology, Christchurch, NZ

+64 3 940 8319

wieckm@cpit.ac.nz

ABSTRACT

It would be unlikely for any first year programming class to be

solely composed of novices with the same aptitude for learning.

We all have students who arrive with a range of abilities and

backgrounds. We have students who barely know their way

around a keyboard and those who have programmed

professionally; this starting knowledge is also no indicator of

learning ability. We need to support struggling students with little

knowledge whilst maintaining the enthusiasm of those who are

quick to learn, and trying not to demotivate the ones in the middle.

The aim of this working group was to explore the ways in which

academics around the world enthuse their high achieving students;

seeking things that work and things that don’t. This has been

achieved by a mixture of literature review and survey of current

practice. The synthesis of these forms the basis for the

recommendations we make.

Categories and Subject Descriptors

K.3.2 [Computers and education]: Computer and information

science education – computer science education

General Terms

Human Factors.

Keywords

Motivation, differentiation in the classroom, learning

programming.

1. INTRODUCTION
This paper draws together evidence based on practice in different

countries, which are in turn incorporate differing assumptions and

process structures. In the US it is normal for students’ first

experience of programming at university level to be as part of a

broad program of studies. In contrast, in the UK, Australasia and

Europe students typically embark on a specialized program of

study from the outset. Thus this latter group of students will

usually have already definitely fixed upon computer science or its

related disciplines as a future academic career path. Evidence

drawn from different countries needs to be considered in this

context, and findings of the research may be of differing value and
relevance accordingly.

In the UK in the 1960s only 5% of 17 to 30 year olds received a

university education. These were the top performing high school

students. Since then and some governments later, the UK

government’s aim has up to now been that there be a 50%

participation in Higher Education by 2010. Currently it stands at

43%. Universities have opened their doors to quite a sizable

proportion of the school leaver population. It is for this reason that

undergraduate courses are very much pitched at the majority of

the group; a similar story can be told in many countries.

Undergraduate Computer Science courses are also often aimed at

students who have no prior knowledge of programming or

computing, because it is not necessary to have done IT or CS at

pre-university level to gain entry to the course. Having designed

courses to suit the main body of such students we still have our

5% top performing students to teach, some of whom have
previously studied the subject.

These students begin their first year at university looking forward

to an opportunity to finally be challenged after possibly many

mundane years at school, comfortably sitting at the top of the

class. What a let down, after having entered the hallowed doors

of possibly a much respected university which has a stream of top

academic scholars, to its name only to be asked to type in ‘hello
world’ after the first week of lectures.

Pre university educators recognize that some students demonstrate

characteristics such as the extreme need to learn at a much faster

pace and process material to a much greater depth than others in

their class. Some children may be so far ahead of their peer-age

friends that they know more than half the curriculum before the

school year starts, and the resulting boredom can lead to low

achievement and poor grades; there are recognized mechanisms in

place to help such students and their educators. Unfortunately,

once these students reach higher education we are so busy

providing extra help for our struggling students that their needs
are often ignored.

Anecdotally there is an oft cited typical scenario involving

undergraduate students who are ahead of the curriculum before

they enroll. It involves them taking an entry-level course and

realizing that they already know much, if not all, of the material

covered. For some students their belief in both their own ability

and the level of the course they are taking will be reinforced by

scoring highly on the first few assignments, labs and tests without

much, or indeed any, studying. These students then stop attending

classes because they assume that all the material will be a
repetition of what they already know.

Educators are aware that for the majority of students in this

category it is common that shortly after they stop attending, the

course moves on to new material, with which they are not familiar

at all. The students finally receive a huge shock when they

discover, on a midterm or final test, that they cannot answer most

of the questions; often such students end up with failing grades.

A number of students arriving with the same level of previous

knowledge as the group cited here do attend everything and revel

in the fact that the work is easy and have their self-belief

confirmed. But how should we deal with the students we have

disappointed and disillusioned? We ‘lost’ them because we did

not impress them and failed to challenge them right from the

beginning. Once they have stopped attending it may be too late
for any kind of intervention.

2. BACKGROUND
A significant challenge that faces any teacher of introductory

programming is undoubtedly the diversity of the class. At one

extreme there will be students who have never programmed

before, while at the other there will be students who have many

years experience of programming. This diversity does not mean

that some of the students cannot benefit from a programming

course. Rather, it is simply that their needs are different. A novice

needs to understand the mysteries of loops, conditional statements

and all the usual programming minutiae. But the experienced

programmer can still learn; there is a chance for consolidation, to
pick up a new language, or to explore more advanced topics.

The challenge for the instructor is how to provide content suitable

for both these groups and, of course, all those who fall between.

Handling this diversity is difficult. The temptation for the

instructor is often to focus on the novice group and to assume that

the others will get by with minimal supervision. This is

understandable, but it can be risky. There is a very real risk that

the neglected group of experienced programmers becomes bored

and disengages from the course. At the worst, they can lose
motivation and fail or drop out altogether.

If students don’t engage with the material they are not going to

expend the effort required to learn [64, 65]; motivation is the key.

In 2001 Davis et al [38] observed that the majority of university

level courses offer a similar experience to all students. They

argued that in the teaching of introductory programming this

practice had become increasingly difficult to justify. There have

been several initiatives aimed at increasing student motivation and

engagement. The use of toys, such as robots [124, 125] has

successfully been tried on several occasions. Some less effective

strategies, such as musical composition [126] and Judo grading

[127], have experienced partial success but may be categorized as

gimmicks rather than something that seamlessly blends with the
topic being taught.

2.1 Helping Strugglers to Success
Much has been written about helping the students struggling with

learning to program [6, 18, 19, 36, 48, 54, 68, 72, 90, 91, 95, 96].

Ragonis and Ben-Ari [121] identified areas where students

struggle and suggested ways of helping them. Ala-Mutka [1]

identified ways in which automation can help.

2.2 Boring the Experienced?
Whilst much has been written about helping the students

struggling to learn the basics, there is much less literature

available about motivating / catering for the students who have

little difficulty mastering the techniques and can become bored

waiting for the others to catch up. Whilst it may be tempting to

state that these students should help their less able peers it hardly

seems fair; they haven’t enrolled on our courses to become unpaid

tutors. It is also not helpful to suggest that these students ware not

as good as they think they are. Jenkins and Davey [135] describe

an approach to segregating the class and allowing the students

who can to attempt more challenging tasks that fulfill the learning

outcomes whilst maintaining interest.

2.3 Changing approaches over time
Methods of instruction and classroom interaction have been

influenced by external expectations and changes across the

broader educational community. There has been a gradual shift

since the 1990s away from instructionalism towards creating

constructivist learning environments [128] and promoting active
learning [8, 10, 18, 32, 56, 59, 61, 62, 74, 94, 109].

At the same time many institutions have purposefully revised

curricular activities in a manner which they have described as

being ‘student centered’ as opposed to teacher centered (which by

association privileges covering curriculum content over pacing the

experience of the learner. This move away from teacher focused

to student focused has been made explicit through Biggs’ work on

the SOLO taxonomy [11] an educational framework which has

been applied in a number of contexts to the area of Computer
Science Education, see for example [22] .

2.3.1 External Initiatives and Accreditation
The work of external organizations such as the National Science

Foundation, national funding councils and professional and

statutory bodies reflect wider intellectual understandings and in

turn influence behaviors in university practice which is recorded
in the literature.

NSF funding on the research experience in universities has

stimulated initiatives which have provided opportunities for high

achieving students to engage in authentic activities where they can

apply their programming skills in a research context [4, 37, 71,
83, 85, 88, 89, 104].

Changes in the way courses are taught and assessed and in the

wider structure of degrees have been influenced by the work of

accreditation authorities on specifications such as the ACM

curriculum, ABET and the UK’s QAA subject benchmark

statements. These specifications tend to be expressed in terms of

expected outcomes in students’ understandings / behaviors /
competencies or knowledge, skills and understandings.

The Computer Science Education literature reflects the impact of

such external changes in what we do and how we do it

demonstrating that approaches to teaching and assessing

programming have evolved to incorporate response to demands

and expectations of external stakeholders such as accrediting
bodies and employers [50, 141].

2.4 Communities of Practice
The educational literature has given us the theory and vocabulary

to identify and discuss communities of practice [140].

Associations such as SIGCSE, ITiCSE and the HEA-ICS act as

foci for such communities for Computer Science Education. The

debate on approaches to the teaching of programming is well

documented with much effort being invested in addressing the

needs of learners who struggle to master programming and

overcome its associated conceptual challenges [140, 141]. In the

UK additional concern for the needs of the more able students has
emerged as a component of this discourse.

The HEA-ICS 1-day teaching of programming conferences began

in Leeds in 2001. The idea was to bring together like-minded

people who were struggling to come to terms with the fact that,

despite our best efforts, our attempts at teaching programming

were still leading to final year students graduating without being

able to write code. For example, in the UK the HEA-ICS [57] runs

between 25 and 30 workshops/conferences a year around the UK

with Computing Science academics. One of these is specific to
programming and has been running for 10 years.

This has created an environment which fosters collaboration and

innovation [139]. One example of an initiative that was born via

this mechanism is the Teaching Over-Performing Students
(TOPS) project.

2.4.1 What is TOPS?
There is no argument about students having a variety of learning

styles and requiring different approaches to teaching but we all

too often focus on the students who are less able. Discussion will

almost exclusively focus on ensuring students keep up, it is only

the TOPS research (Teaching Over-Performing Students) that

veers away from this scenario and focuses on over performing
students.

TOPS looks at motivating and engaging students through
competition and through enticing them to achieve.

Independent competitions, such as those run by the BCS,

Microsoft and IBM can be used to motivate students – winning

looks good on the CV – but the challenge may not fit well with

the local syllabus and student knowledge. Activities which are

designed in the specific context of an existing curriculum can

therefore have greater educational strengths. Furthermore,

students can be encouraged to learn new skills and extend those
that we consider important for their future educational career.

The competition had to be fun, but it also had to address our

departmental learning objectives. Peer observation facilitates the

sharing of existing practice within its natural context and also
enables a comparison of student cohorts.

The competition component is split into two sections: designing a

challenge for the other student teams to attempt in pairs;

attempting the challenges designed by students from the other

institutions.

Teams comprise five students, four of whom pair up to attempt

the coding challenges; this allows students with commitments or

who are reticent about competing in the programming stage of the
competition to join in, as well as allowing for drop-outs.

The teams are given the brief to design a challenge that could be

undertaken by a pair of students sharing a laptop within the

timeframe of 1-hour. The challenges must relate to a specific

scenario such as “something useful for a group of students
attending an event in London”.

Even the process of choosing teams is worthy of investigation.

Some students push themselves forward because they want to

achieve for themselves, others will nominate the strongest

students in their group in order for their own institution to have
the best chance of winning.

3. RESEARCH APPROACH
The working group set out to identify the broad set of literature

which underpins our existing understanding of the factors which

influence the design and delivery of the curriculum associated

with initial programming, and interventions which have been

crafted to address any specific additional needs of learners within

that curriculum. The review covered conference and journal

publications across the area of computer science education and

associated cognate areas which extend across the science,
technology, engineering and mathematics (STEM) disciplines.

A brief survey was designed to specifically elicit evidence of

current practice with respect to the initial teaching of

programming. The survey supported a mixed methods approach

by gathering quantitative and qualitative data. The qualitative data

was sought to illuminate detail of current practice and to provide

an opportunity to investigate attitudes and beliefs held by faculty

associated with their motivations and experience of classroom
practice.

The survey questions are included in this paper as an appendix.
The survey data has been analyzed across three broad sub sections

1. Demographic data

2. Current practice in introductory programming courses

3. Investigating key practices identified in the literature

The findings from the survey and the literature review are
presented together in the results and discussion sections below.

4. RESULTS
An online survey was created and responses were solicited. A

copy of the survey questionnaire forms the Appendix of this

paper. Over 80 people provided some kind of response, but only

41 were complete. The complete responses have been analyzed
here to provide an indication of current practice and issues.

4.1 Demographic Data
The majority of responses were from the USA, but other countries

were represented (question 1). Figure 1 shows the locations of the
respondents’ institutions.

Figure 1. Respondent location

Respondents were asked to identify the type of institution and the

level (undergraduate / postgraduate / etc) of the students being

taught their first programming course (question 2). The institution

type was predominantly university (32 out of 41) with seven

liberal arts colleges and 2 community colleges represented. 34 of

the respondents stated that the first programming course was

taught to undergraduate students, with 4 stating postgraduate and

a further 3 stating sub-degree level. There were no qualitative

differences between the responses from the different categories of

institution or course level so the data has been treated as a whole
for the remainder of the analysis.

4.2 Initial Teaching Patterns
Respondents were asked to indicate how they initially treated the

three major discernible categories of students; struggling from the

outset; new to programming but coping; experienced

programmers (question 3). Each of the textual responses was
classified and six discernibly different approaches emerged:

1. peer support

2. differentiated teaching

3. slow pace

4. novelty

5. external motivation

6. nothing (ie the usual mix of lectures, labs and TA support)

The frequency with which different intervention methods were

indicated was analyzed, as shown in table 1 (A = strugglers, B =

copers, C = experienced), and a number of common patterns
emerged.

The prevalence of different approaches was considered from a

number of different perspectives. Figure 2 shows the relative

distribution of the different methods which were adopted by
instructors.

Table 1. Initial intervention by student category

Intervention method A B C

1) Peer support 5 4 0

2) Differentiated teaching 7 10 17

3) Slow pace 6 1 0

4) Novelty 4 4 5

5) External motivation 5 5 5

6) Nothing 14 17 14

Figure 2. Distribution of Instruction Methods

this visualization was derived from the data in table 1, where the

innermost ring (a) represents struggling from the outset, the next

ring (b) represents new to programming but coping and the final
ring (c) represents experienced programmers.

The data was also visualized as a network diagram, figure 3,

where the different approaches adopted by instructors were

mapped as a vector. This analysis of this data is further recounted
below.

Figure 3. Network Diagram Mapping Approaches

4.2.1 Business as usual – 6,6,6 (11)
The most frequent response suggested a familiar mix of lectures,

labs and support from teaching assistants. In these responses

there was no indication of any special interventions for either the

strugglers or the highest achieving groups of students (total 11 out
of 41 responses).

"We do not have a formal support program. We have a few TAs,

and the professors provide what help they can, but students who
do not take the initiative to seek help slip through the cracks."

4.2.1.1 Business as usual – plus something for the

best 6,6,5 (1) 6,6,2 (2)
A further three respondents indicated whilst initially that they

made no special concessions for the strugglers, they did suggest
that they made additional effort for the higher achieving students

Further reflection - it might be worth looking at this in a different

way – Twenty seven of the respondents took an approach which
did not (at least) begin not business as usual.

"lots of hands-on exercises, some "challenge" or "bonus"
questions”

4.2.2 Active interventions
There are a number of active intervention patterns identified by

the responses. Altogether sixteen respondents indicated that they

began with an active intervention, and 13 of those respondents
took a predominantly active approach

4.2.2.1 Differentiated Teaching – 2,2,2 (6)
The proponents of differentiated teaching were mostly committed
to it throughout (six out of 41 respondents).

"We have three tracks through the intro sequence: one for those

interested in bio, one for those with some previous experience,
and one for those with no previous experience."

One respondent appeared to apply it for the strugglers (2,2,6)

while addressing the needs of the most advanced students with no
special interventions.

Lesser clusters – in a number of response patterns four out of 41
responded in the same ways

4.2.2.2 Peer support – 1,1,2 (4)
A number or respondents chose peer support initially and for the
strugglers, with differentiated teaching for the higher achievers.

[strugglers] "1. in-class activities and time to work on homework

with instructor assistance 2. encourage students to work with a

partner of similar ability 3. evening workshop run by experienced

student trained as a tutor 4. "fun" assignments, typically involving
graphics or simple games"

[high achievers] "open ended assignments where they can go
above and beyond core requirements"

An additional response which initially privileged peer support -
1,5,2 (1) also incorporated

4.2.2.3 Purposeful beginnings 3,2,2 (2) 3,3,6 (1)

3,6,2 (1) 3,6,4 (1) 3,6,6 (1)
Another active intervention of note was those who started out with

slow pace. They opted for a range of different strategies for the

strugglers and top students – 3,2,2 (2) 3,3,6 (1) 3,6,2 (1) 3,6,4 (1)
3,6,6 (1)

[strugglers] "I work with them slowly, repeating sections they do

not understand, and try to give assignments that are easy enough
to get them to understand those basics."

[everyone else] "I assign extra credit work that is beyond the nail-

the-basics assignments, to push students that are experienced, and
challenge those who find programming easy with just the basics."

4.2.3 Teacher sets context
A smaller group of respondents took approaches which might be

conceived as being dependent upon the individual teaching leader.

These colleagues emphasised approaches which tend towards

enhancing motivation, either through personal

leadership/guidance in the teaching style, or through the use of
novelty and technical challenge.

4.2.3.1 External motivation rules 5,5,5 (4)
Those who believed that external motivation is powerful, were

consistent in their use of this intervention across the piece. One

additional respondent used external motivation for openers, but

indicated that the most able students and the most able students

were later supported by differentiated teaching - 522 (1)

"job opportunities, make money, let them know practice is the key

(not talent)"

4.2.3.2 Novelty rules 4,4,4(4)
Those who believed that novelty is powerful, were consistent in

their use of this intervention. It may be that these interventions

are, in effect, led by the teacher’s personal beliefs (or perhaps
experience).

"I use an assignment with Origami to teach about proper syntax
and clarity in writing”

4.3 As the Course Progresses
Respondents were asked to describe how they deal with the

extremes of the class once the course has been running for a while

(question 4). It is possible that instructors wait until they know

the students well before tailoring their teaching to suit individuals,

so a snapshot of practice and a comparison of initial and later
responses was made.

The responses relating to how instructors adapt to teaching

strugglers and over-achievers were categorized and tabulated

(Table 2, A= strugglers, B = over-achievers) as previously and 4
distinct categories emerged:

1. peer tutoring

2. differentiated teaching

3. providing extra help

4. nothing

Table 2. Later interventions by student category

Intervention method A B

1) Peer support 5 0

2) Differentiated teaching 9 22

3) Extra help 3 0

4) Nothing 24 19

4.3.1 Changes with Time
Analysis of changes in approach throughout the course proved to
be interesting.

Many who initially practiced differentiated teaching continued to

do so. Whilst absolute numbers for doing nothing special remain

constant it is the case that the respondents’ answers varied with

time. Many who do nothing at the outset do adopt differentiated

teaching practices as time progresses.

4.3.1.1 Strugglers
One third of the respondents who do nothing special at the outset

do progress to differentiated teaching. On the negative side

however there are twice as many doing nothing special once the

course is well underway. It appears that many respondents begin

with good intentions but, whatever their initial stance, these
interactions/initiatives tail off with time.

4.3.1.2 Over achievers
Although actual numbers indicating no special interventions

remain constant it is the case that approx one third start to

differentiate teaching as time progresses, although many

beginning the course with external motivation to maintain

enthusiasm stop this after a while.

4.4 Rating Importance of Help
As well as being asked what teaching and support strategies are

used respondents were asked to rate the importance, on a scale of

1 (unimportant) to 10 (very important), such interventions and

strategies for the 3 groups of students (question 5). Table 3
summarizes the responses:

Table 3. Importance of Helping Students at Different Levels

 mean s.d. Mode (n)

Strugglers 8.6 1.7 10 (19)

Over-achievers 7.0 2.4 10 (11)

Rest of class 8.0 1.7 10 (13)

Correlating numerical ranking with actual interventions shows

that even instructors who provide no extra help or motivation for

students at the extremes of the cohort think it important to do so.

11 of the 19 responses rating help for strugglers as very important
(score of 10) admit to doing nothing extra to actually help them.

4.5 Pair Programming
Experience of collaborative work that students can achieve

through pair programming has been shown to benefit student
satisfaction and retention [7], [109], [115], [117], [118].

Pairing students together can be an important factor in improving

student success, particularly in introductory CS courses. In the

context of CS education, pair programming involves two students

using a single computer to work on an assignment or a project.

One student is the “driver” in charge of designing and typing up

the code, while the other, “navigator”, is responsible for

monitoring the driver’s work to detect errors and suggest ideas

how to solve the problem. The students would periodically switch
these roles [120].

Instructors using pair programming in CS courses expect students

to learn from one another as they cooperate to complete an

assignment. One of the problems here is that a single student can

often solve the assigned exercises or problems with no meaningful
or structured cooperation among students [8].

In our survey (question 7) 13 instructors indicated that they

always use pairing of students to work on assignments and

projects, while 22 other instructors said that they do so sometimes.

Only six respondents explicitly stated that then never use student

pairing.

When selecting which students to put in a pair, many factors must

be considered in order to ensure that the pair produces a

meaningful outcome, and most importantly, that both students

benefit from such an experience. Closely matching class schedule
is one of the most obvious factors in pairing students.

“Pairs are drawn from the same supporting class so that students

are timetabled together.” ”Students have such busy schedules that

they may have actually found the ONLY other student in the class
with overlapping study time.”

In addition to the schedule of classes and, possibly, a work

schedule, survey respondents indicated that a number of other

factors related to convenience and/or preference of students has to
be taken into account:

“I have students pair up, based on living location, work habits

(weekend vs evening), aggressiveness (like to work immediately
and finish early).”

“I try to put people with others they probably live near (based on

their "college" -- there are 6 undergrad colleges that make up our

campus). A woman student has reported to me that she was so

happy that she got paired with someone who lives in her dorm.”

Pairing students who can easily find a mutually convenient time

and place to work together is an important prerequisite for a

successful learning outcome. This is especially important because

from the student’s viewpoint, the single most important problem

with pair programming is finding time to work on the program
together with their partner [76].

Social interaction plays a major role in pair programming,

therefore, choosing a suitable partner is an important factor in

ensuring the success of a pair of students working on a

programming assignment or a project. Previous research indicates

that pairing incompatible students may result in student’s dislike
the collaborative work [131].

A large-scale empirical meta-study of pair programming

conducted by Salleh et al [120] indicates that pairing students with

different personalities (as determined using Myers-Briggs Type

Indicator) often produced better results compared to pairs of

students with similar personalities. This work also indicates that

student skill level (whether actual or perceived) also plays a major

role in determining the success of a student pair. The actual skill

level is determined by the academic background and performance

of the student, as well as their programming experience. Salleh et

al [120] indicate that the majority of pair programming teams

produce better results when the pair has a somewhat similar skill

level.

Many instructors prefer allowing students to select their own

partners. Out of 41 respondents, 10 indicated that they always

allow students to self-select their pair partners, while an additional

21 said that they sometimes allow that. Some instructors choose to

make suggestions to students as to how they should select their
partners:

“I allow students to self-select, but I tell them it works better if

they pair with someone of their own ability. Also they are not

required to continue with a pair, and are even expected to
switch.”

“At the start of the semester, I allow students to select their own

pairs for the first lab. Thereafter, I assign pairs randomly, with a

change every 2-3 class days (the class meets 4 times per week, so
students change partners more often than every week).”

Many instructors indicated that the rules (or lack thereof) for

selecting student pairs depend on the nature and level of the
course. For example:

“It depends on the class. It depends on many things. I don't put

students into boxes and I don't do it to myself either... so... it just
depends.”

In some circumstances it may be very difficult, or even impossible

for the instructor to manage the student pair selection process,

which may lead the instructor to abandon the entire idea of pair
programming:

“We use pair programming in our second courses. Our first

courses are between 300 and 1200 students per term, which is too
difficult to manage pairs in.”

Some instructors are not in favor of allowing students to self-

select their partners. In particular, one instructor said: “I have
found self-selected pairs to produce the least effective pairings.”

A small number of instructors use a random selection of student

pairs. Out of 41 responses, three indicated that they always select

student pairs at random, while 14 said that they do that

sometimes. Many instructors indicated that if they do resort to a

random pairing, this usually is not the first option for student

selection that they exercise. For example, student preference is

often taken into account: “Sometimes random. Sometimes self-

select. Sometimes a mixture ("if you have a preference, let me
know, otherwise I'll assign")”

On other occasions, instructors allow students to select their own

pairs first, but they may use a random selection later: “At the start

of the semester, I allow students to select their own pairs for the

first lab. Thereafter, I assign pairs randomly, with a change every

2-3 class days (the class meets 4 times per week, so students

change partners more often than every week).”

In our survey, a large number of respondents (20 out of 41)

indicated that they never use random pair assignment. As

illustrated in the quotations above, random pairing is often used as

a last resort measure because there are better and more effective

ways to maximize the benefits that students receive from pair

work. One approach is to pair students based on their abilities,
which is often determined using student self-assessment:

“I assign pairs randomly for the first couple of weeks, then I give

a questionnaire and assign based on ability/major and also
student requests.”

“[Students are paired] based on a rough estimate of self-
efficacy.”

Current or past academic performance is used by some instructors

to pair students together: “Sometimes I will pair students based on
their performance in the class.”

In many cases reported in our survey, students with similar
academic performance were assigned to work together:

“We pair students who have demonstrated similar performance in
the course (strong with strong and weak with weak).”

“[Students are paired to] balance average in-course
achievements of the groups.”

“[We] try to pair students who aren't both in trouble, but not with

huge gaps between them either.” “Sometimes due to personality
or skill levels I will pair students.”

On the other hand, some instructors deliberately choose to pair

students with disparate levels of academic performance, which

allows underachieving students to learn from stronger students:
“Sometimes I pair known good students with known strugglers.”

If students had worked together previously, chances are that they

will be successful again and this could be used as a good criterion

when assigning students to pairs: “Based on who has not worked

together recently, so students get to know new people in the
class.”

Katira et al [132] reports that gender is likely to determine the

compatibility of a student pair. This work suggests that student

pairs of different gender may be incompatible, while pairing
female students would likely lead to a compatible pair.

Werner et al [133] indicate that that pair programming is

particularly beneficial to female students, especially when they

are paired together. They argue that “it addresses factors that

potentially limit their participation in CS. The collaborative nature

of pair-programming teaches women students that software

development is not the competitive, socially isolating activity that

they imagined.” Pair programming, therefore, is one of the ways
to encourage female students to pursue studies and careers in CS.

Katira et al [132] report that when they are allowed to self-select

their pair partners, students belonging to a minority group tend to

pair up with other minorities, although not necessarily from the
same minority group.

Some instructors responding to our survey believe that pairing up

students from underrepresented groups can help them achieve
higher academic results:

“I always pair women with women.”

 “[We] keep minorities in the same group.”

In general education courses where there are many non-CS

majors, student major and their current level are the most

straightforward criteria for pairing students: “Also, I pair majors

with majors and try to put non majors with others in their own

major. Within THAT I pair by year in school (do not put a senior
with a freshman).”

A number of instructors, however, may be opposed to pair

programming because of added responsibilities for managing

student pairs and because of perceived increased risks of student

failure. Based on their work, Jacobson and Schefer [134] offer a
number of good suggestions how such risks can be alleviated .

From a cross-section of the survey responses we received, it

appears that using paired student work plays a prominent role in

many CS courses, although a small number of instructors seem to

be completely alien to this idea. There may be many factors

affecting this: staff workloads; local circumstances; nature of the
students.

Some instructors use random pairing, but often only as the last

resort, when other criteria, such as pairing based on the level of

student achievement, schedule, and/or interests, do not work well

enough to produce student pairs. The following quote can be used

to summarize the prevailing opinion of instructors with regards to

pairing students: “Sometimes I will pair students based on their

performance in the class. Other times, they are "randomly"

selected or self-selected. I have found self-selected pairs to
produce the least effective pairings.”

4.6 Getting to Know our Students
Just over half the respondents routinely collect previous

programming experience data from their incoming students

(question 10). (22/41) Of these, approximately one third use the

collected data to help plan their teaching, ahead of the course.

Such planning and preparation might take the form of streaming

the new students - guiding them into particular, more appropriate

courses based on their level of experience, tailoring the course

material, adjusting existing material to help student orientation to

the course, general administration purposes and establishing

instructor-student rapport. Half of the respondents collecting data

on level of current experience indicated that this was primarily for

streaming their students, though whether this was to produce an

intentional mix of abilities or align those with a similar level of

experience was not evident from the responses. Typical responses
included: “

We counsel students into [X] or [Y] depending on whether they

have experience programming recursive functions”, “In

placement into an appropriate [X]” (mentioned by three
respondents)

“...to enlist them into slightly more advanced projects, etc.”

The collected data informed instructors in several other ways,
including identifying those at risk;

“I take note ... to be sure that some students who do not have

previous programming background are able to excel in my class.”

“My primary concern is the students taking the course more than

once - how many there are, and is their fraction still decreasing
as during the past 4 years.”

The ability to offer a “heads-up” for changing patterns of student

experience was another motivation for the exercise, as evidenced
by the following responses:

“90% of our students have no previous programming
background. If that changes, we would adjust our instruction”

“To watch for significant changes in student preparation, which
we have not seen recently.”

Those wanting to tailor the course material to suit the declared
experience levels said:

[were we safe in] “assuming a lot of mathematical background or
[should] I ... review some algebra and geometry concepts.”

“In the unlikely event that an advanced student comes in I make a
point to establish a relationship with them.”

“The main audience is taken into account in lectures, level of
presentation.”

Tuning and tailoring instruction to help orientate the student,

making them more comfortable with the material, was another

useful outcome reported from the collection process reported on

within the survey responses. The purported benefits of this are

many, from reducing anxiety and the fear of the unknown, which

might be barriers to full engagement, to ensuring good
progression and continuity.

“This helps me in how I structure the progression of the course...”

“To customize explanations: if a student has already seen some

Java or C++, I'll use different terminology and analogies in
explaining things to that student.”

In contrast, one respondent made no such use, asserting,

“We only use it to get an idea of who is taking the course, and do
not use it to structure their learning.”

Several responses indicated either only relatively cursory use of

the data, or else labeled it for “administration purposes” only.
Responses in this category included:

“qualitatively, to understand student background”

“First day of class I collect information on 3x5 cards ...
[including] ... Why taking this class?”

“For initial identification”

“I collect it informally and the result is always the same for my

school” “[previously] we had a formal entrance test; now we just
remind them of the prerequisite and let them self-select.”

“For interest” “We only use it to get an idea of who is taking the
course ...”

“It's not retained, but students are asked at the beginning of the

course.”

Finally, two respondents, though currently not making use of the
collected data, had plans to use it in the future:

[The data will be] “Incorporated as baseline into longitudinal
outcomes study.”

“I administer a survey to [X]. In Spring 2011, I hope to analyze
four years' data.”

Traditionally, effort invested in enhancing student motivation has

gone into the under-achievers. Students who "cope" and meet

"satisfactory" levels of achievement have tended to find their way

through the tertiary learning experience because or in spite of the

efforts of instructors. High achievers have tended not to attract

extra attention, partly because their progress poses no threat to
pass/completion rates.

Perhaps also, their particular development requires a different

kind of extra effort. Producing additional material for students

working at the "satisfactory" level is relatively simple; however,

when trying to create additional material at an appropriately high

level in order to stretch high achievers, the task becomes much

more demanding. This opportunity, to provide some assistance to

those who find themselves with exceptional students by pointing

in the direction of effective resources, approaches or practices

should:

1. Initially, make the instructor’s life a little easier

2. Help the high achievers realize more of their potential.

4.7 Collaboration with Colleagues
From the survey (question 9) it is surprising how few teachers of

CS collaborate with other colleagues, just over 34% reported that

they did. Yet many CS teachers voice that they considered it most

important to provide help for both strugglers and over achievers.

The importance of providing help for strugglers was given a score

of 8 or higher by 85% of introductory CS teachers, and almost

50% gave the same score for high achievers. It would seem that

many teachers in CS use their own imagination and to some

degree ‘think on their feet’ when it comes to coming up with ideas

on how to deal with their range of students. Others have quite a

range of options/facilities in place such as providing a homework

club, extra support session groups and extra challenge session

groups, upper-level students acting as mentors and for over

achievers the availability of interesting assignments with

challenging extra parts. The range of students’ ability can vary

from year to year depending on the intake and therefore the onus

is on the teacher to possibly adapt his assignments or to have

contingency plans in place to provide extra projects or tasks

should they be required. From the 14 respondents who reported

that they did collaborate 50% said they got their ideas from

attending workshops at conferences such as SIGCSE, CCSC,

ITCSE and other institutional conferences. 36% said they

embarked on informal work with another colleague and only 7%

took part in a collaborative project specifically aimed at

addressing the needs of high achievers such as an organised inter

collegiate competition. Collaboration took the form of simply

enjoying an exchange of ideas with friends on the topic by 7% of

the respondents who responded positively. The benefits of

collaborative programming are described very aptly as, ‘To work

over time and distance..adds the dimensions of collaborative
technologies , language, and culture’ [137].

It would seem that depending on the personality and experience of

teachers that there is a wealth of ideas and approaches in dealing

with the problem of motivating both our struggling and over-

performing students and that it would be a welcome development

to provide a repository of these ideas for the benefit of others as

collaboration in this area would be considered helpful. “Educators

can share requirements, ideas for features, and experiences with a

particular project or technology” [138]. Like the open-source

movement itself, they would collaborate not only ideas, but on the
actual artefacts themselves’ [139].

It would then be possible for a teacher to choose an approach, a

set of assignments or simply make use of a colleague’s pertinent

quote which had previously got through a message of motivation

to their students. For example one CS teacher uses an analogy of

‘The Karate Kid’ to motivate his experienced students and another

anticipates his being comfortably over confident and warns them

‘that often their experience ends about 2 weeks before they realize

it does.’

International collaboration can prove to be a very useful method

of approaching an international problem. The Runestone project

was an example of collaborative work carried out which involved

two international universities. ‘The projects’ primary goal was to

provide international collaboration into Undergraduate Computer

Science Education in away that has value for all participants’
[123].

4.8 Competitions
Typically all first year classes will have students with varying

degrees of subject knowledge. Universities computing programs

rarely ask for previous experience of programming however we

invariably find that a small proportion of our first year students

are more than proficient in coding. These students can very

quickly become extremely bored in class whilst the novices start

from scratch. Programming competitions aimed at first year

students can be used as a tool to motivate these students (see
section 2.4.1).

There can be little doubt that access to suitable programming

competitions can motivate and inspire some of these students (and

not just the over achievers). It can be an opportunity for students

to test their ability in designing, understanding and implementing

code. Competition can also be the spur that pushes a very ordinary

student to achieve much more and it is a fact that a competition
win will greatly enhance a new graduates’ CV.

Both academics and students opinions of the competitions on

offer vary as does the type of students who volunteer themselves

for competitions – typically a very small proportion of a class. Of
those surveyed (question 8) one academic noted:

“I run one [competition] myself in project week. However it is

voluntary and only a very small number of students participate
(about 10 out of 160)”

another said

“... only a limited set of students tends to participate”

Pastor et al [129] looked at an international robot contest as a way

to develop professional skills in engineering Students "...with the

aim of strengthening a set of basic skills that would be useful for

the future professional lives of the participants..." Importantly

they asked the students what motivated them to "participate in the

competition, what they gained in their personal and professional

lives for having participated as well as positive and negative

aspects of the experience". The students cited social and personal

reasons. 19% wanted to have a good time against 13% being

interested in the competition. However we can include another

11% who were interested in the personal challenge, a further 16%

attracted by the desire to participate and the fact that they had

passed previous national competitions as a reason for going.

Another 7% of the participants participated in the competition in

order to learn and to gain experience. Clearly the students who
compete gain a great deal from the experience.

There is also concern from some that competition leads to bad
habits:

"... we have serious concerns that programming competitions

reward quick and dirty coding that is hard to maintain in the long
term ..."

O'Leary [130] discusses using poster competition to motivate
students (rather than programming competitions) and claims that:

"... that learning and interaction can be accelerated, through the

introduction of an additional incentive (for example prizes for
best entries and peer recognition)"

however the aim is for an

"effective method of communication with a group in a
nonthreatening and informal way".

This is a different objective and aims for inclusivity rather than

intense competition. The British Computer Society also runs an

annual one-day event (BCSWomen Lovelace Colloquium) that is

open to all undergraduate and taught postgraduate women in

computing and related disciplines across the UK, and beyond.

Again the competition is a in the form of a poster, do poster

competitions appeal more to female students and programming

ones to male students?

Results of our survey cite the ACM International Collegiate

Programming Contest (ICPC)as the most popular programming

competition however this could be influenced by the fact that of

the forty one responses thirty were from US academics. The ACM

competition started in 1970 and they note that "the idea quickly

gained popularity within the United States and Canada as an

innovative initiative to raise the aspirations, performance, and

opportunity of the top students in the emerging field of computer

science". The competition is now a global network of universities

hosting regional competitions that advance teams to the ACM-

ICPC World Finals. At the other end of the scale many individual

institutions run in-house and intercollegiate competitions. Carter

et al, established TOPS (Teaching our Over-Performing Students)

competition in 2005, a competition run between four UK

universities. The competition was one of the components of the
project and was to

"... be fun, but also had to address our departmental learning
objectives"

Carter [26, 27] shows that the students enjoyed the day and that
their comments were overwhelmingly positive:

"Working together was great. Everyone worked amazingly well in
teams"

"I liked that we were supposed to work at our own natural pace
and that we had to think"

On a smaller scale again Rosenbloom [92] suggests "Take [ing] a

break from the ordinary lecture, test, assignment routine and run

an in-class competition to motivate, challenge and boost student

self confidence." Rosenbloom concludes that "Students enjoyed

this exercise, debated the efficiency of their solutions and were

engaged in the followup lectures. The competition was a great,

motivational, educational and engaging break from their usual

routine."

Undoubtedly the students who choose or are selected to compete

in programming competitions enjoy the process and are enthused

by the challenge.

5. DISCUSSION
The evidence which we have drawn from the survey is based on

current practice. It is important to be conscious that this evidence,

and the evidence which we have drawn from the literature is the

product of individual or institutional compromises which must

balance workload represented by staff student ratio and individual

teaching commitments. It will be mediated by the prior experience

of the teaching faculty member and the availability and additional

support such as experience of graduate teaching assistants.

Individual departments or institutions may have local cultural

traditions and practices. The data reflects the balance of the

available evidence, but does not necessarily guarantee that any of

the recounted methods will provide a perfect solution for a

particular problem of introductory teaching of programming at

any given institution. Key findings which are discussed in the
subsequent sections cover the following key strategies

• Streamed teaching

• Meeting student expectations

• Research experiences

• Maximizing individual potential

• Interdisciplinary connections

5.1 Streaming
It is becoming increasingly apparent that we need to consider

offering students with different skill sets a variety of approaches

to learning the fundamental nuts and bolts of computer science.

Davis et al [38] notes "... we must find a way of enabling

complete beginners to learn the basics, while providing enough

interesting subject matter to keep the experienced programmers

enthused". Some universities use aptitude tests to categorize

students and at Leeds University students are classified as either

Rocket Scientists, Averages or Strugglers [135]. At Southampton,

where they use a student self-evaluation survey to calibrate prior
experience, Davis and his team embarked on a project to:

• find out whether student satisfaction would be improved by

providing differentiated experiences for the groups of

students at either extreme of the initial experience
continuum;

• find out whether students were capable of correctly deciding
for themselves which group they belonged in;

Davis's team discovered that the student experience was improved
by allowing students to study at their own pace.

There is much research on differentiated learning in higher

education and many approaches have been tried and written up

[12, 38, 39, 51, 100, 122]. It is also accepted that in order to

motivate our more gifted students we need to engage them in a

different way from the rest of the cohort, it seems the success of

these approaches is entirely dependant on the skill and enthusiasm
of the academic leading the initiative.

5.2 Meeting Student Expectations
Students’ expectations and what they actually encounter at the

beginning when they arrive at university is very important. If this

differs a lot it can lead to de-motivation. This tends to be the case

for both top students and less able students [25]. If we, the

teachers, get this right it can have a very positive affect on the

students’ success. Peer learning, active learning and collaborative

learning are beneficial for a whole range of students [87]. Some

institutions will give tests to students on entry to find out what

they know and what they don’t know [47]. Streaming and letting

students set pace of what they are aiming for can help keep

everyone on board. Industry wants colleges to produce

‘international life long learners’ and students who can apply their

learning to the real world [15]. The challenge is to design an

introductory programming course that addresses the fact that there

is diversity in the group of entry students who have very possibly
varied expectations [51].

5.3 Research experiences
One of the ways top students can be kept motivated and engaged

in their academic programs is to involve them into research

projects [85, 104]. A number of research works indicate that such

research experiences can be very effective to increase student

retention and encourage undergraduates to continue their studies

and enter graduate school. In the US, National Science

Foundation sponsors the Research Experiences for

Undergraduates (REU) program, which enables universities to

host small cohorts of undergraduate working on faculty-led

research projects during summer months [37, 71, 89]. Projects

conducted at REU sites hosted at each university typically are

centered on a particular unifying theme, e.g. visualization,

information security, or bioinformatics. These projects often lead

to collaborations between faculty and students extending well

beyond the summer projects. REUs frequently result in student-

authored or co-authored research papers, posters and

presentations. Finally, REU projects frequently serve as a

springboard for top students to gain useful research experience

prior to entering graduate school. Many REU programs are very

competitive with many top students across the country competing
for a spot in each program.

Although REU programs provide an excellent support for faculty

and students, they are not the only avenue for undergraduate

research [83, 88]. Many faculty often involve top-performing

undergraduate students into their ongoing research projects in the

form research assistantships, independent studies (in which

students receive academic credit), or by offering such students

more challenging course projects in the framework of a regular
course.

Successful outcome of a research project, such as attendance and

presentation at a research conference or a student research

competition, is always an exciting event for a student because it

not only provides them with an opportunity to showcase their

work, but also to compare it with the work of their peers. Finally,

engaging students research projects have been shown to be

especially successful to attract female students to study CS and
keep them motivated to continue their studies [4].

5.4 Maximising Students’ Potential
One of the tasks of the instructor is to deliver a course to meet the

appropriate educational needs and expectations of the student, for

the duration of the whole course. This requires supplying material

that will allow the average (coping) student to pass the course and

also to assist and recover strugglers wherever possible. Helping

along those not coping with the course has long been a

requirement of academic staff (e.g., [27, 60]); the situation has

been exacerbated in recent years, by the need to comply with the

institution’s student pass/completion rates – allowing students to

fail or drop out invariably leads to financial penalty in countries

such as the UK and New Zealand. It is argued here that instructors

should also provide intellectual stimulation sufficient to retain the

motivational levels of our high achievers – not only is it good for

their own sense of achievement, it is likely to repay the effort with

a reduction in drop-out rates that might in turn produce financial

penalties. A student lost from the roll costs the same whether or

not they are low-achievers or potentially high ones. Catering for

the high achievers, then, we maintain, occupies far less of our

time than it probably ought to do. Courses are understandably

built around the abilities of the average student. If we are prepared

to invest extra effort in the strugglers, why not the high-flyers?
We owe it to them to meet there needs too.

5.5 Interdisciplinary connections
One way to enthuse top-performing students who may have

already explored many areas of CS, is to expose them to other

disciplines by showing them how CS can be applied to solve

practical/research problems in these disciplines. Establishing such

interdisciplinary connections has been successfully used as a

technique to increase enrollments in CS programs and to attract

and retain female students [73]. In recent decades, it has become

evident that CS is having a profound and pervasive impact on a

range of other scientific disciplines, paving a way to

interdisciplinary courses offered within CS programs and research

projects, from which many CS students can reap tremendous

benefits [93, 111]. Students who have experienced such first-hand

connections between CS and other disciplines become more aware

of the breadth and richness of career and study opportunities,

which can be a significant factor in increasing their motivation

and interest in the discipline. Interdisciplinary research projects

have been shown to be especially successful and are very popular
among REU programs discussed above [5].

6. RECOMMENDATIONS

6.1 The Good

6.1.1 Challenge Tasks
One common theme that emerges from literature and survey

responses is that of setting graduated assessments. Students are

all presented with the same assessment, but they choose how

much they wish to attempt. Students struggling to master the

basics may opt to attempt only the baseline section of the work to

obtain a pass, whilst students who find everything easy may opt to

attempt everything in the hope of attaining top grades. This may

motivate the students who want to prove (to themselves or others)

that they do indeed understand the subject matter thoroughly.

Whilst challenge tasks may not motivate all, they are easy to
administer and may well help some.

6.1.2 Streaming
Students who struggle can be demoralized by the students who

don’t. They are unlikely to ask questions about initial basic

concepts in front of those asking questions that test the knowledge

of the instructor. Some of these questions are a mechanism for

top students to show the instructor that they understand, but also

serve to reinforce their ranking within the class. Yet other

students stop attending classes because they are bored and this

leads to disengagement. Streaming can help to alleviate this.

Students can be explicitly excused certain lectures about basics, or

even all lectures. Classes are streamed by ability and different

materials should be provided to students in classes at different

levels. Some suggest different assessments, but others like the

self-confessed top students to prove that they do indeed have the

knowledge they claim by attempting the same assessments as
others.

6.2 The Bad

6.2.1 Doing nothing
It is easy to treat everyone in the class the same, but it isn’t fair to

anybody – even the instructor suffers when students fail and drop
out.

6.2.2 Humiliating students
Don’t do it – EVER!

Telling students they aren’t as good as they think they are, or

constantly reminding them about a silly error they once made

(when they were having a bad day / ill / hungover / suffering a
bereavement) is not the way to motivate anybody.

7. WHAT NEXT?
The outcomes from this work may not address all the goals

identified at the outset, but they do form a solid basis for future

work in the area. We have identified recurrent themes and linked
current practice with current literature.

The working group initially aspired to investigate methods for

motivating our top students following on from work which

established an inter-university programming competition created
for that specific purpose in the UK.

In reviewing the literature and conducting the survey we have

identified and attempted to inter-relate a broad body of work

which spans teaching methods, student motivations, curriculum

design and some aspects of educational theory. In reviewing our

analysis we have identified places where our survey failed to

establish evidence, although we know it to exist (for example

there was no mention of the Imagine Cup or Lovelace events,

even though it is the experience of the authors that these events

are used as motivators by some academic colleagues). Further

work could usefully be established to make a more thorough

classification of available interventions, perhaps in some dynamic

form such as an information wiki. An associated area of

potentially useful investigation might be the consideration of

programming competitions and poster competitions. It would be

useful to derive some evidence of the impact and outcomes of

such events, and to gather associated attitudinal data from faculty

and students in order to evaluate their perceived use and value.

Are their impacts similar or different, are their effects which vary

by gender or other variables such as mode of study or prior
experience?

We have not been able to provide any indicative descriptions of

what constitutes a struggler or high achiever beyond the bald

calibration of such students against their performance/potential in

programming. It might be interesting to gather some ethnographic

data which documented the range of backgrounds and experiences

(prior and post their introductory computing course).

Our interest in competitions as a device or intervention for

enhancing motivation might usefully be explored; what is the

difference for such events between the group or individual

experience; is it the competition that drives the students or the

opportunity to work in a group with others of equal ability? Are

their any patterns which can be discerned across the students to

participate in competitions, does that vary according to the focus
of the competition?

We contend that students involved in competitions enjoy them

and greatly benefit from that experience – it might be useful

therefore to investigate those over-achieving students not involved
in competition.

These questions point to this area as being one with considerable

potential for future research in computer science education. We

hope that our readership find this paper a useful contribution to
this area and are motivated to join us in future research.

8. ACKNOWLEDGMENTS
Thanks are due to Tony Jenkins from the University of Leeds, UK

who has helped with the project but was unable to attend the
ITiCSE 2010 conference.

Also, many thanks to everybody who responded to the survey.

9. REFERENCES
[1] Ala-Mutka K, Uimonen T and Jarvinen HM, Supporting

Students in C++ Programming Courses with Automatic

Program Style Assessment, Journal of Information
Technology Education, Volume 3, pp245-262, 2004

[2] Alice – Learn to Program Interactive 3D
Graphics, http://www.alice.org/

[3] Aluísio S, Tomas de Aquino V, Pizzirani R and de Oliveira

Jr ON, Assessing High-Order Skills with Partial Knowledge

Evaluation: Lessons Learned from Using a Computer-based

Proficiency Test of English for Academic Purposes, Journal

of Information Technology Education, Volume 2, pp185-
202, 2003

[4] Alvarado C and Dodds Z, Women in CS: an evaluation of

three promising practices, proceedings of the 41st ACM

Technical Symposium on Computer Science Education,
Milwaukee, 2010

[5] Amoussou G, Boylan M and Peckham J, Interdisciplinary

computing education for the challenges of the future,

proceedings of the 41st ACM Technical Symposium on
Computer Science Education, Milwaukee, 2010

[6] Barker L, Student and Faculty Perceptions of Undergraduate

Research Experiences in Computing, Transactions on
Computing Education 9(1), March 2009

[7] Barker L, McDowell C and Kalahar K, Exploring factors

that influence computer science introductory course students

to persist in the major, proceedings of the 40th ACM

Technical Symposium on Computer Science Education,
Chattanooga, 2009

[8] Beck LL and Chizhik AW, An experimental study of

cooperative learning in cs1, proceedings of the 39th SIGCSE

Technical Symposium on Computer Science Education,
Portland, 2008

[9] Benaya T and Zur E, Advanced Programming in Java

Workshop-Teaching Methodology, proceedings of
ITiCSE’05, Lisbon, 2005

[10] Biggers M, Yilmaz T and Sweat M, Using collaborative,

modified peer led team learning to improve student success

and retention in intro cs, proceedings of the 40th ACM

Technical Symposium on Computer Science Education,

Chattanooga, 2009

[11] Biggs J, Teaching for Quality Learning at University,
Society for Research into Higher Education, 1999

[12] Birch M, McCormick F and Haddow J, Improving Student

Progression by a combination of Streaming, Close

Attendance and Target Setting, proceedings of 6th Annual
HEA-ICS conference, York, August 2005

[13] BlueJ – the interactive Java environment,

http://www.bluej.org/

[14] Bornat R, Programming from First Principles , Prentice Hall
International, 1987

[15] Bouslama F, Lansari A, Al-Rawi A and Abonamah A, A

Novel Outcome-Based Educational Model and its Effect on

Student Learning, Curriculum Development, and

Assessment, Journal of Information Technology Education,
Volume 2, pp203-214, 2003

[16] Bower M, A Taxonomy of Task Types in Computing,
proceedings of ITiCSE’08, Madrid, 2008

[17] Bowring JF, A new paradigm for programming competitions,

proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, Portland, 2008

[18] Boyer KE, Dwight RS, Miller CS, Raubenheimer CD,

Stallmann MF and Vouk MA, A case for smaller class size

with integrated lab for introductory computer science,

proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, Covington, 2007

[19] Boyer KE, Phillips R, Wallis MD, Vouk MA, and Lester JC,

The impact of instructor initiative on student learning: a

tutoring study, proceedings of the 40th ACM Technical

Symposium on Computer Science Education, Chattanooga,
2009

[20] Boyer KE, Thomas EN, Rorrer AS, Cooper D and Vouk MA,

Increasing technical excellence, leadership and commitment

of computing students through identity-based mentoring,

proceedings of the 41st ACM Technical Symposium on
Computer Science Education, Milwaukee, 2010

[21] Boyle R, Carter J and Clark M, What Makes Them Succeed?

Entry, progression and graduation in Computer Science,

Journal of Further and Higher Education, 26(1), 2002

[22] Braband C and Dahl B, Analyzing CS Competencies using
The Solo Taxonomy, proceedings of ITiCSE’09, Paris, 2009

[23] Burd L and Hodgson B, Attendance and Attainment

Revisited, proceedings of 6th Annual HEA-ICS conference,
York, August 2005

[24] Carter J, The Value of Guided Revision, proceedings of 5th
Annual HEA-ICS conference, Ulster, August 2004

[25] Carter J and Boyle R, Teaching Delivery issues: Lessons

from Computer Science, Journal of Information Technology
Education, Volume 1, pp77-90, 2002

[26] Carter J, Efford N, Jameison S, Jenkins T and White S, The

TOPS Project – Teaching our Over-Performing Students,

proceedings of 8th Annual HEA-ICS conference,
Southampton, August 2007

[27] Carter J, Efford N, Jamieson S, Jenkins T, and White S,
Taxing our best students, ITALICS, 7(1):120-127, June 2008

[28] Carter J, English J, Ala-Mutka K, Dick M, Fone W, Fuller U,

and Sheard J, How Shall We Assess This? ACM SIGCSE
Bulletin, vol. 35, pp. 107-123, 2003

[29] Chalk P, Boyle T, Pickard P, Bradley C, Jones R and Fisher

K, Improving Pass Rates in Introductory Programming,

proceedings of 4th Annual HEA-ICS conference, Galway,
August 2003

[30] Chan CK and Lee EY, Fostering knowledge building using

concurrent, embedded and transformative assessment for

high-and low-achieving students, proceedings of the 8th

International Conference on Computer Supported
Collaborative Learning, New Brunswick, 2007

[31] Chen TY, Lewandowski G, McCartney R, Sanders K and

Simon B, What do Beginning Students Know, and What can
they Do?, proceedings of ITiCSE’06, Bologna, 2006

[32] Chinn D, Martin K and Spencer C, Treisman workshops and

student performance in CS, proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education,
Covington, 2007

[33] Clark E, Hacking as a Form of "Self-Improvement",
proceedings of ITiCSE’05, Lisbon, 2005

[34] Colby J, Attendance and Attainment - A Comparative Study,

proceedings of 5th Annual HEA-ICS conference, Ulster,
August 2004

[35] Cowan J, On Becoming an Innovative University Teacher,
Society for Research into Higher Education, 1998

[36] Cutts Q, Cutts E, Draper S, O'Donnell P, and Saffrey P,

Manipulating mindset to positively influence introductory

programming performance, proceedings of the 41st ACM

Technical Symposium on Computer Science Education,
Milwaukee, 2010

[37] Dahlberg T, Barnes T, Rorrer A, Powell E and Cairco L,

Improving retention and graduate recruitment through

immersive research experiences for undergraduates,

proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, Portland, 2008

[38] Davis HC, Carr LA, Cooke EC and White SA, Managing

Diversity: Experiences Teaching Programming Principles,

presented at the 2nd LTSN-ICS Annual Conference, London,
2001

[39] Davy JR and Jenkins T, Research-led innovation in teaching

and learning programming, presented at ITiCSE’99,
Krakow, Poland, pages 5–8. ACM, 1999

[40] Dawson R and Newman I, Empowerment in IT Education,

Journal of Information Technology Education, Volume 1,
pp125-142, 2002

[41] Djordjevic M, Java Projects Motivated by Student Interests,
proceedings of ITiCSE’08, Madrid, 2008

[42] Eidelman L and Hazzan O, Eccles' model of achievement-

related choices: the case of computer science studies in

Israeli high schools, proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education,
Covington, 2007

[43] Eisikovits RA, Coping with high-achieving transnationalist

immigrant students: The experience of Israeli teachers,
Teaching and Teacher Education 24(2), February 2008

[44] Entwistle N, Motivation and approaches to learning:

Motivating and conceptions of teaching, in Brown S,

Armstrong S and Thompson G, editors, Motivating Students,
pages 15–23, Kogan Page, 1998

[45] Fallows S and Ahmet K, Inspiring Students: Case Studies in

Motivating the Learner, Kogan Page, 1999

[46] Fincher S, Barnes DJ, Bibby P, Bown J, Bush, V, Campbell

P, Cutts Q, Jamieson S, Jenkins T, Jones M, Kazakov D,

Lancaster T, Ratcliffe M, Seisenberger M, Shinners-Kennedy

D, Wagstaff C, White L, and Whyley C, Some Good Ideas

from the Disciplinary Commons, presented at the 7th Annual

Conference of the HE Academy Subject Centre for
Information and Computer Science, Dublin, 2006

[47] Ford M and Venema, Assessing the Success of an

Introductory Programming Course, Journal of Information
Technology Education, Volume 9, pp133-146, 2010

[48] Freudenthal EA, Roy MK, Ogrey AN, Magoc T and Siegel

A, MPCT: media propelled computational thinking,

proceedings of the 41st ACM Technical Symposium on
Computer Science Education, Milwaukee, 2010

[49] Fuller U, Johnson C, Ahoniemi T, Cukierman D, Hernan-

Losada I, Jackova J, Lahtinen E, Lewis T, McGee Thompson

D, Riedesel C and Thompson E, Developing a Computer

Science-specific Learning Taxonomy, INROADS 39(4),

pp.152-170, December 2007

[50] Gehringer EF and Miller CS, Student-generated active-

learning exercises, proceedings of the 40th ACM Technical

Symposium on Computer Science Education, Chattanooga,
2009

[51] Grandon Gill T and Holton C, A Self-Paced Introductory

Programming Course, Journal of Information Technology
Education, Volume 5, pp95-106, 2006

[52] Greenfoot, http://www.greenfoot.org

[53] Guerreiro P and Georgouli K, Combating Annonymousness

in Populous CS1 and CS2 Courses, proceedings of

ITiCSE’06, Bologna, 2006

[54] Hanks B, Murphy L, Simon B, McCauley R and Zander C,

CS1 students speak: advice for students by students,

proceedings of the 40th ACM Technical Symposium on
Computer Science Education, Chattanooga, 2009

[55] Hansen S and Eddy E, Engagement and frustration in

programming projects, proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education,
Covington, 2007

[56] Hendrix D, Myneni L, Narayanan H and Ross M,

Implementing studio-based learning in CS2, proceedings of

the 41st ACM Technical Symposium on Computer Science

Education, Milwaukee, 2010

[57] Higher Education Academy: Information and Computer
Sciences, (HEA ICS), http://www.ics.heacademy.ac.uk/

[58] Hill C, Vijayakumer and Miteva M, Agents Help Students

in ProgrammingLand, proceedings of ITiCSE’06, Bologna,
2006

[59] Horwitz S, Rodger SH, Biggers M, Binkley D, Frantz CK,

Gundermann D, Hambrusch S, Huss-Lederman S, Munson

E, Ryder B and Sweat M, Using peer-led team learning to

increase participation and success of under-represented

groups in introductory computer science, proceedings of the

40th ACM Technical Symposium on Computer Science
Education, Chattanooga, 2009

[60] Huang T and Briggs A, A Unified Approach to Introductory

Computer Science: Can One Size Fit All?, proceedings of
ITiCSE’09, Paris, 2009

[61] Hundhausen C, Agrawal A, Fairbrother D and Trevisan M,

Does studio-based instruction work in CS 1?: an empirical

comparison with a traditional approach, proceedings of the

41st ACM Technical Symposium on Computer Science
Education, Milwaukee, 2010

[62] Huss-Lederman S, Chinn D and Skrentny J, Serious fun:

peer-led team learning in CS, proceedings of the 39th

SIGCSE Technical Symposium on Computer Science
Education, Portland, 2008

[63] Jenkins T, A participative approach to teaching
programming, presented at ITiCSE’98, Dublin, 1998

[64] Jenkins T, The motivation of students of programming,
Master’s thesis, University of Kent, 2001

[65] Jenkins T, How do they think they're doing? proceedings of
6th Annual HEA-ICS conference, York, August 2005

[66] Johnston K, Anderson B, Davidge-Pitts J and Ostensen-

Saunders M, Identifying Student Potential for ICT

Entrepreneurship using Myers-Briggs Personality Type

Indicators, Journal of Information Technology Education,
Volume 8, pp29-44, 2009

[67] Katz S, Allbritton D, Aronis J, Wilson C and Soffa ML,

Gender, achievement, and persistence in an undergraduate

computer science program, SIGMIS Database 37(4),

November 2006

[68] Kearse IB and Hardnett CR, Computer science olympiad:

exploring computer science through competition,

proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, Portland, 2008

[69] Keenan F and Coleman G, Extreme Programming: Results of

an Educational Experiment, proceedings of 4th Annual
HEA-ICS conference, Galway, August 2003

[70] Kölling M, and Barnes DJ, Enhancing Apprentice-Based

Learning of Java, presented at 35th SIGCSE technical
symposium on computer science education, 2004

[71] Knox DL, DePasquale PJ and Pulimood SM, A model for

summer undergraduate research experiences in emerging

technologies, proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, Houston, 2006

[72] Lahtinen E, Ala-Mutka K and Jarvinen HM, A Study of the

Difficulties of Novice Programmers, proceedings of
ITiCSE’05, Lisbon, 2005

[73] LeBlanc MD, Armstrong T and Gousie MB, Connecting

across campus, proceedings of the 41st ACM Technical

Symposium on Computer Science Education, Milwaukee,

2010

[74] Lewandowski G, Johnson E and Goldweber M, Fostering a

creative interest in computer science, proceedings of the 36th

SIGCSE Technical Symposium on Computer Science
Education, St. Louis, 2005

[75] Lewis TL, Chase JD, Pérez-Quiñones MA and Rosson MB,

The effects of individual differences on CS2 course

performance across universities, proceedings of the 36th

SIGCSE Technical Symposium on Computer Science
Education, St. Louis, 2005

[76] Loftus C and Ratcliffe M, Extreme Programming Promotes
Extreme Learning?, proceedings of ITiCSE’05, Lisbon, 2005

[77] Machado R, Guerreiro P, Johnston E, Delimar M and Brito

M, IEEEXtreme: From a student competition to the

promotion of real-world programming education,

proceedings of 39th Frontiers in Education Conference, San
Antonio, 2009

[78] Matthiasdottir A, What Student find Difficult in learning

Programming, proceedings of 5th Annual HEA-ICS
conference, Ulster, August 2004

[79] Mead J, Gray S, Hamer J, James R, Sorva J, St.Clair C and

Thomas L, A Cognitive Approach to Identifying Measurable

Milestones for Programming Skill Acquisition, proceedings
of ITiCSE’06, Bologna, 2006

[80] Meneely A, Williams L and Gehringer GF, ROSE A

Repository of Education-Friendly Open-Source Projects,
proceedings of ITiCSE’08, Madrid, 2008

[81] Mogharreban N, Approximate Degrees of Similarity between

a User’s Knowledge and the Tutorial Systems’ Knowledge

Base, Journal of Information Technology Education, p219-

226, 2004

[82] Murphy L and Tenenberg J, Do Computer Science Students

Know What they Know?: A Calibration Study of Data

Structure Knowledge, proceedings of ITiCSE’05, Lisbon,
2005

[83] Musicant D, Kumar A, Baldwin D and Walker E, Mechanics

of undergraduate research at liberal arts colleges: lessons

learned, proceedings of the 38th SIGCSE Technical

Symposium on Computer Science Education, Covington,
2007

[84] Nosek JT, The case for collaborative programming,
Communications of the ACM, 41:105– 108, 1998

[85] Peckham J, Stephenson P, Hervé J, Hutt R and Encarnação

M, Increasing student retention in computer science through

research programs for undergraduates, proceedings of the

38th SIGCSE Technical Symposium on Computer Science
Education, Covington, 2007

[86] Perrenet JC, Levels of thinking in computer science:

Development in bachelor students’ conceptualization of

algorithm, Journal of Education and Information
Technologies, 2009

[87] Poindexter S, Assessing Active Alternatives for Teaching

Programming, Journal of Information Technology
Education, Volume 2, pp257-266, 2003

[88] Polack-Wahl JA and Anewalt K, Learning strategies and

undergraduate research, proceedings of the 37th SIGCSE

Technical Symposium on Computer Science Education,
Houston, 2006

[89] Raicu DS and Furst JD, Enhancing undergraduate

education: a REU model for interdisciplinary research,

proceedings of the 40th ACM Technical Symposium on
Computer Science Education, Chattanooga, 2009

[90] Riordan B and Traxler J, Supporting Computing Students at

Risk Using Blended Technologies, proceedings of 4th Annual
HEA-ICS conference, Galway, August 2003

[91] Rogerson C and Scott E, The Fear Factor: How It Affects

Students Learning to Program in a Tertiary Environment,

Journal of Information Technology Education, Volume 9,
pp147-171, 2010

[92] Rosenbloom A, Running a Programming Contest in an

Introductory Computer Science Course, proceedings of
ITiCSE’09, Paris, 2009

[93] Sahami M, Aiken A and Zelenski J, Expanding the frontiers

of computer science: designing a curriculum to reflect a

diverse field, proceedings of the 41st ACM Technical

Symposium on Computer Science Education, Milwaukee,
2010

[94] Soh L, Samal A, Person S, Nugent G and Lang J, Closed

laboratories with embedded instructional research design for

CS1, proceedings of the 36th SIGCSE Technical Symposium

on Computer Science Education, St. Louis, 2005

[95] Stamouli I, Begum M and Mancy R, ExploreCSEd:

Exploring Skills and Difficulties in Programming Education,
proceedings of ITiCSE’05, Lisbon, 2005

[96] Stubbings R, Franklin G, Boden D, Powis C and Bent M,

The SirLearnaLot Project, proceedings of 10th Annual HEA-
ICS conference, Canterbury, August 2009

[97] Sudol L, Forging connections between life and class using

reading assignments: a case study, proceedings of the 39th

SIGCSE Technical Symposium on Computer Science
Education, Portland, 2008

[98] SurveyMonkey http://www.surveymonkey.com/

[99] Talton JO, Peterson DL, Kamin S, Israel D and Al-Muhtadi

J, Scavenger hunt: computer science retention through

orientation, proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, Houston, 2006

[100] Tomlinson CA, The Differentiated Classroom:

Responding to the Needs of All Learners, Alexandria,

Virginia, Association for Supervision and Curriculum
Development, 1999

[101] Valenti S, Information Technology for Assessing

Student Learning, Journal of Information Technology
Education, Volume 2, pp181-184, 2003

[102] Van Der Vyver, The Search for the Adaptable ICT

Student, Journal of Information Technology Education,
Volume 8, pp19-28, 2009

[103] Venables A and Tan G, Thinking and Behaving

Scientifically in Computer Science: When Failure is an

Option! Journal of Information Technology Education,
Volume 5, pp121-132, 2006

[104] Way TP, A Virtual Laboratory Model for Encouraging

Undergraduate Research, proceedings of the 37th SIGCSE

Technical Symposium on Computer Science Education,
Houston, 2006

[105] Weir G, Vilner T, Mendes AJ and Nordstrom M,

Difficulties Teaching Java in CS1 and How We aim to Solve

them, proceedings of ITiCSE’05, Lisbon, 2005

[106] Whaley H and Grice S, Do Students Know Best?

Experiences of allowing students to become course

designers, proceedings of ITiCSE’07, Dundee, 2007

[107] White S, Carter J, Jamieson S, Efford N, and Jenkins T,

Tops - Collaboration and Competition to Stretch our Most

Able Programming Novices, presented at 37th Frontiers in
education Conference, Milwaukee, WI, October 2007

[108] Whitworth D, 'Who wants to learn Web-Design

Anyway?': Course Design for Student Diversity in an ICT

Sub-Discipline, proceedings of 5th Annual HEA-ICS
conference, Ulster, August 2004

[109] Williams L, Lessons learned from seven years of pair

programming at North Carolina State University, SIGCSE
Bulletin 39(4), December 2007

[110] Wills G, Davis H and Cooke E, Paired Programming

for Non-Computing Students, proceedings of 5th Annual
HEA-ICS conference, Ulster, August 2004

[111] Zhang M, Lundak E, Lin C, Gegg-Harrison T and

Francioni J, Interdisciplinary application tracks in an

undergraduate computer science curriculum, proceedings of

the 38th SIGCSE Technical Symposium on Computer
Science Education, Covington, 2007

[112] Zohar A and Peled B, The effects of explicit teaching of

metastrategic knowledge on low- and high-achieving
students, Learning and Instruction 18(4), August 2008

[113] McDowell C and Werner L, The Effects of Pair-

Programming on Performance in an Introductory

Programming Course, proceedings of 33rd SIGCSE

Technical Symposium on Computer Science Education,
Northern Kentucky, 2002

[114] Williams L, Wiebe E, Yang K, Ferzli M and Miller C,

In Support of Pair Programming in the Introductory

Computer Science Course, Computer Science Education
12(3), September 2002

[115] Nagappan N, Williams L, Ferzli M, Wiebe E, Yang K,

Miller C and Balik S, Improving the CS1 experience with
pair programming, SIGCSE Bulletin 35(1), January 2003

[116] McDowell C, Werner L, Bullock H and Fernald J, The

Impact of Pair Programming on Student Performance,

Perception and Persistence, proceedings of 25th International

Conference on Software Engineering (ICSE'03), Portland,
2003

[117] Mendes E, Al-Fakhri LB and Luxton-Reilly A,

Investigating pair-programming in a 2nd-year software

development and design computer science course,
proceedings of ITiCSE’05, Lisbon, 2005

[118] McDowell C, Werner L, Bullock HE and Fernald J,

Pair programming improves student retention, confidence,

and program quality, Communications of the ACM 49(8)
August 2006

[119] Han J and Beheshti M, Enhancement of computer

science introductory courses with Mentored Pair

Programming, Journal of Computing in Small Colleges
25(4), April 2010

[120] Salleh N, Mendes E and Grundy J, Empirical Studies of

Pair Programming for CS/SE Teaching in Higher Education:

A Systematic Literature Review, IEEE Transactions on
Software Engineering 99, 2010

[121] Ragonis N and Ben-Ari M, On understanding the statics

and dynamics of object-oriented programs, proceedings of

the 36th SIGCSE technical symposium on Computer Science
Education, St Louis, 2005

[122] Jenkins T and Davy J, Dealing With Diversity in

Introductory Programming, proceedings of 1st annual LTSN
conference, Edinburgh, 2000

[123] Last M, Daniels M, Almstrum V, Erickson C and Klein

B, An International student/faculty collaboration: the

Runestone project, ACM SIGCSE Bulletin 32(3), September
2000

[124] Lawhead P, Bland C, Barnes D, Duncan M, Goldweber

M, Hollingsworth R and Schep M, A Road Map for Teaching

Introductory Programming Using LEGO Mindstorms

Robots, ACM SIGCSE Bulletin, 35(2), 2003

[125] Jadud M, Toys + Motivation = Cool Stuff in Computer

Science, proceedings of 5th annual HEA ICS 1-day

conference on the teaching of programming, Oxford, 2005

[126] Hamer J, An Approach to Teaching Design Patterns

using Musical Composition, proceedings of 9th annual
ITiCSE conference, Leeds, 2004

[127] Jamieson S, Introductory Programming Meets The

Martial Arts, proceedings of 3rd Annual LTSN 1-day

conference on the teaching of programming, Huddersfield,
2003

[128] Ben-Ari M, Constructivism in Computer Science

Education, Journal of Computers in Mathematics and
Science Teaching 20(1), 2001

[129] Pastor J, Gonzalez I and Rodrigues FJ, Participating in

an International Robot Contest as a Way to Develop

Professional Skills In Engineering Students, proceedings of

the 38th Annual Frontiers in Education Conference, New
York, 2008

[130] O’Leary E, Fancy A Prize? Motivating Students Using

Competitions in Formative Assessment, proceedings of the

3rd annual ICEP conference, NUI Maynooth, 2010

[131] Thomas L, Ratcliffe M and Robertson A, Code

Warriors and Code-a-phobes: a Study in Attitude and Pair

Programming," ACM SIGCSE Bulletin 35(1), 2003.

[132] Katira N, Williams L and Osborne J, Towards

Increasing the Compatibility of Student Pair Programmers,

proceedings of 27th International Conference on Software
Engineering, ICSE'05, St Louis, 2005

[133] Werner L, Hanks B and McDowell C, Pair-

programming helps female computer science students,

Journal of Educational Resources in Computing 4(1), March
2004

[134] Jacobson N and Schaefer SK, Pair programming in

CS1: overcoming objections to its adoption, SIGCSE
Bulletin 40(2), June 2008

[135] Jenkins T and Davy T, Dealing With Diversity in

Introductory Programming, proceedings of 1
st
 annual LTSN-

ICS conference, Edinburgh, 2000

[136] Jenkins T and Efford N, And Now for Something

Completely Different: Learning Programming with Python,

proceedings of 9
th

 annual HEA ICS conference, Liverpool,
2008

[137] Last M, Daniels M, Hause M and Woodroffe M,

Learning from students: continuous improvement in

international collaboration, proceedings of ITiCSE '02,
Aarhus, 2002

[138] Layman L, Williams L and Slaten K, Note to self: make

assignments meaningful, proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education,
Covington, 2007

[139] Carter J and Jenkins T, The Problems of Teaching

Programming: Do They Change with Time?, proceedings of
11

th
 annual HEA ICS conference, Durham, 2010

[140] Wenger E, Communities of Practice: Learning,
Meaning and Identity, Cambridge University Press, 1998

[141] White S and Irons A, Informatics in the UK: Current

Perspectives, proceedings of Innovation in Teaching And
Learning in Information and Computer Sciences, 2007

10. APPENDIX
This appendix comprises the survey, which was advertised to academics via mailing lists that working group participants subscribe to. It

was administered through SurveyMonkey [98]. The free survey service allows for a maximum of ten questions with question types chosen
from a small selection of predetermined styles. It allows a maximum of 100 responses to be stored and analyzed.

1. In which country is your institution?
If you are willing to be contacted about your responses then please provide your email address.

Country: __________

Email Address: __________

2. About your institution.
Level of course taught:

 sub-degree

 undergraduate

 postgraduate

Type of institution (e.g. community college, university) _______________________________

3. At the start of the academic year how do you support / motivate the students who are:

a. Inexperienced and having difficulty mastering the basics ________________________

b. Inexperienced yet quick to learn __

c. Experienced? __

4. As the course progresses and differentiation within the classroom becomes more apparent, how do you support:

a. Strugglers __

b. Over-achievers? __

5. How important is it to provide help for:
(1-not important – 10-very important)

 1 2 3 4 5 6 7 8 9 10

Strugglers

Over-achievers 10 10 10 10 10 10 10 10 10

Rest of the class?

6. Do you employ students as tutors?

 yes

 no

7. Do you use pair programming with your students?

 always sometimes never

Do you allow pair programming sometimes sometimes

Do students self-select pairs

Are pairs randomly assigned

If pairs are not randomly assigned how do you allocate them? ________________________

8. Do your students enter competitions?

 yes no

At your institution yes

Nationally

Internationally

If your students do enter competitions, which ones? _______________________________

9. Have you collaborated with colleagues from other institutions to provide tasks to better motivate your students?
 yes

 no

If so, please provide brief details ___

10. Do you routinely collect data relating to the previous programming background of your students?
 yes

 no

If yes, how do you use it? ___

