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Itineration of the Internet over nonequilibrium

stationary states in Tsallis statistics
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The cumulative probability distribution of sparseness time interval in the Internet is

studied by the method of data analysis. Round-trip time between a local host and a

destination host through ten odd routers is measured using the Ping Command, i.e.,

doing echo experiment. The data are found to be well described by the q-exponential

distributions, which maximize the Tsallis entropy indexed by q less or larger than unity,

showing a scale-invariant feature of the system. The network is observed to itinerate

over a series of the nonequilibrium stationary states characterized by Tsallis statistics.
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The Internet is a complex system, which has highly intricate tangle, cluster and

hierarchical structures, strong spatio-temporal correlation with feedback, self-

organization, and connection diversity. The structure emerging from the actions of a

large number of the users may efficiently be understood within the statistical

mechanical framework and its suitable generalizations. For example, a work in [1]

reports emergence of scaling behavior and the associated power-law distribution of

connectivity of nodes. These concepts are known to be essential for the network to be

resilient and robust to random errors, breakdown, and attack [2-4].

From the statistical and dynamical viewpoints of the network, of particular interest

are the stationary states under nonequilibrium conditions. Tsallis statistics [5] based on

a nonextensive entropy [6] aims to offer a theoretical basis for analyzing complex

systems at such states. It has successfully been applied to a variety of problems

including anomalous diffusion [7,8], Lévy flight [9-11], fractal random walk [12],

complex high-energy processes [13-17], cosmic rays [18], turbulence [19], earthquakes

[20], stock markets and incomes [21,22], nonlinear maps at the edge of chaos [23-29],

stochastic resonance [30], protein folding and biomolecules [31,32], citation networks

of scientific papers [33], urban agglomeration [34], and linguistics [35].

In this Letter, we present an experimental evidence that Tsallis statistics in fact

describes the scale-invariant stationary states of the Internet.

“Echo experiment” we have performed uses the Ping Command [36,37]. A Ping

signal is emitted from a local host computer, takes a round trip to a destination host (i.e.,

a site accessed), and returns to the local host through ten odd routers. The route of the
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signal emitted to the destination is fixed and traced. Each router is connected with the

whole network in a time-dependent manner. The next signal is sent immediately after

the previous one returns. Such a time interval is typically <130ms and is not included

in our data analysis. Using the whole collected data of the echo experiment, the

threshold value indicating congestion is appropriately defined (see the later discussion).

Actually, the result turned out to be not sensitive to the definition of the threshold. We

have calculated each time interval given by the amount of the round-trip time below the

threshold value between two successive thresholds. This interval is referred to here as

“sparseness time interval” denoted by τ . Observation shows that the Internet itinerates

over a series of the stationary states, which are all described by the Tsallis q-exponential

cumulative probability distribution of τ , indicating a scale-invariant feature of the

system. In particular, both the 0 1< <q  and q >1 cases occur and nothing is special in

the limit q → 1. Regarding sparseness time interval rescaled by its average, the more

congested the network is, the smaller value q  takes. In this sense, the entropic index

characterizes the degree of congestion.

Before presenting the experimental results, let us briefly summarize the basics of

Tsallis’ scale-invariant statistics. This theory aims to offer a framework for describing

statistical properties of complex systems at their stationary states based on principle of

maximum nonextensive entropy. In the present case, the fundamental random variable

is sparseness time interval, τ . p dτ τ( )  is the probability of finding the value of

sparseness time interval in the range, τ τ τ, +[ ]d . Then, p τ( ) is a stationary probability

distribution in Tsallis statistics if it optimizes the Tsallis entropy [6,38]
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S
q

d
pq

q=
−

( )[ ] −



∫1

1
1

τ
σ

σ τ (1)

under the constraints on normalization

d pτ τ( ) =∫ 1 (2)

and the normalized q-expectation value [39] of sparseness time interval

< > = ( )∫τ τ τ τq qd P . (3)

Here, q  and σ  in Eq. (1) are the positive entropic index and a scale factor of the

dimension of time, respectively. Pq τ( ) in Eq. (3) is the escort distribution [40] defined

by

P
p

d p
q

q

q
τ τ

τ τ
( ) = ( )

′ ′( )∫
. (4)

The optimal distribution is calculated to be

p
Z

e
cq

q qτ β τ τ( ) = − − < >( )





1
, (5)
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Z d e
cq q q= − − < >( )



∫ τ β τ τ

τ

0

max

, (6)

c
d

p
q= ( )[ ]∫ τ

σ
σ τ

τ

0

max

. (7)

β  in Eqs. (5) and (6) is the Lagrange multiplier associated with the constraint in Eq. (3).

e xq( ) stands for the “q-exponential function” defined by

e x

q x q x

q x
q

q

( ) =
+ − + − ≥

+ − <









−[ ( ) ] ( ( ) )

( ( ) )

/ ( )1 1 1 1 0

0 1 1 0

1 1

, (8)

whose inverse is the “q-logarithmic function”

ln q

q

x
x

q
( ) = −

−

−1 1
1

. (9)

Accordingly, τ max → ∞  if q ≥ 1, whereas τ τmax / ( )= −0 1 q  if 0 1< <q . Here,

τ β τ β0 1= + − < >[ ]c q q( ) / , which can be shown to be always positive [11]. p τ( ) is

recast into the following form:

p
e

d e

q

q

τ
τ τ

τ τ τ
τ( ) =

−( )
′ − ′( )∫

/

/
max

0

00

. (10)
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p τ( ) is seen to be the Zipf-Mandelbrot distribution with a heavy tail if q >1. Both the

normalizability condition and finiteness of < >τ q  in Eq. (3) require the entropic index

to satisfy q < 2.

In the limit q → 1, the Tsallis entropy converges to the Boltzmann-Shannon entropy,

S d p p= − ( ) ( )[ ]∫ τ τ σ τln , and correspondingly p τ( ) becomes the Boltzmann-type

exponential distribution since, in this limit, e xq( ) and ln q x( ) approach to the ordinary

exponential and logarithmic functions, respectively. However, such a limit does not

play any special roles in the present work.

An important point in Tsallis statistics is that the quantity to be compared with the

observed distribution is not p τ( ) in Eq. (10) itself but its associated escort distribution

[41]. Therefore, the cumulative probability distribution should be defined by

P d Pq>( ) = ′ ′( )∫τ τ τ
τ

τ max

. From Eq. (10), it is found to be given by

P eq>( ) = −( )τ τ τ/ 0 . (11)

Below, we discuss how the cumulative probability distributions of this form are realized

in the Internet.

In Fig. 1, we present an example of an observed time series of sparseness time

interval, τ . Three distinct stationary regimes, a, b, and c, may be recognized. (Strictly

speaking, identification of stationary state depends on time scale. Here, we are
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employing user’s typical time scale, i.e., 10 minutes ~ 1 hour.) In Fig. 2 a, b, and c, the

corresponding cumulative probability distributions of τ  are plotted on the log-log scale.

The threshold value indicating congestion is defined here by the mean value plus half of

the standard deviation. The experimental data are represented by the dots, whereas the

curves depict the q-exponential functions. In particular, the lower ones are drawn on the

“semi-q-log” scale with different values of q. The resultant straight lines imply that the

observed cumulative probability distributions are in fact the Tsallis q-exponential

distributions.

For comparison, we present Fig. 3 to show that there also exist stationary states, at

which the values of the entropic index are less than unity.

These results imply that the network undergoes a series of transition from one

stationary state to another: 
  
q q q1 0 1 2 0 2 3 0 3, , ,, , ,τ τ τ( ) → ( ) → ( ) →L . Each stationary

state is scale-invariant and maximizes the Tsallis entropy. The points of transition

correspond to a catastrophic changes in the time series of round-trip time (not

sparseness time), e.g., sudden heavy congestion.

In conclusion, we have found that the Internet itinerates over a series of the scale-

invariant nonequilibrium stationary states described by Tsallis statistics. We wish to

emphasize that the time series of sparseness time is highly nonstationary and non-

Gaussian. This fact makes it difficult to identify stationary regimes by power spectrum

analysis, in general. The present work indicates usefulness of Tsallis statistics for

defining stationary states in the time series exhibited by complex systems.
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Figure Captions

Fig. 1 Time series data of the sparseness time interval taken from 3.50 a.m. (initial

time) to 6.07 a.m. on 8 February, 2002. From the local host,

buffalo.matsudo-ap3.dti.ne.jp [203.181.67.200], to the destination host,

ring.so-net.ne.jp [202.238.95.103], through 11 routers. The curve is drawn

based on 31675 measured data points. Roughly, three different

nonequilibrium stationary states, a (3.50 a.m. – 4.15 a.m.), b (4.15 a.m.

– 5.06 a.m.), and c (5.06 a.m. – 6.07 a.m.), may be recognized.

Fig. 2 Log-log plots of the cumulative probability distributions associated with the

the states, a, b, and c. The observed data are represented by the dots, whereas

the Tsallis distribution by the solid lines. The lower ones are drawn on the

semi-q-log scale. a: q =1 07. , τ 0
32 50 10= ×. ms, and 4373 data points.

b: q =1 12. , τ 0
24 35 10= ×. ms, and 13587 data points. c: q =1 16. ,

τ 0
31 00 10= ×. ms, and 13715 data points.

Fig. 3 An example with the value of q less than unity. The hosts are the same as in

Fig. 1. Data was taken from 4.42 a.m. to 5.31 a.m. on 13 February, 2002.

q = 0 73. , τ 0
42 27 10= ×. ms, and 14897 data points.


