

COMPUTING
SCIENCE

ITL Semantics of Composite Petri Nets

Zhenhua Duan, Hanna Klaudel and Maciej Koutny

TECHNICAL REPORT SERIES

No. CS-TR-1296 November 2011

TECHNICAL REPORT SERIES

No. CS-TR-1296 November, 2011

ITL Semantics of Composite Petri Nets

Z. Duan, H. Klaudel and M. Koutny

Abstract

Interval Temporal Logic (ITL) and Petri nets are two well developed formalisms for
the specification and analysis of concurrent systems. ITL allows one to specify both
the system design and correctness requirements within the same logic based on
intervals (sequences of states). As a result, verification of system properties can be
carried out by checking that the formula describing a system implies the formula
describing a requirement. Petri nets, on the other hand, have state based semantics and
allow for a direct expression of causality aspects in system behaviour. As a result,
verification of system properties can be carried out using partial order reductions or
invariant based techniques. In this paper, we aim at providing a basic semantical link
between ITL and Petri nets so that, in particular, one would be able to use both kinds
of verification techniques of system properties.

© 2011 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

DUAN, Z., KLAUDEL, H., KOUTNY, M.

ITL Semantics of Composite Petri Nets
[By] Z. Duan, H. Klaudel, M. Koutny
Newcastle upon Tyne: Newcastle University: Computing Science, 2011.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1296)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1296

Abstract

Interval Temporal Logic (ITL) and Petri nets are two well developed formalisms for the specification and analysis
of concurrent systems. ITL allows one to specify both the system design and correctness requirements within the
same logic based on intervals (sequences of states). As a result, verification of system properties can be carried out
by checking that the formula describing a system implies the formula describing a requirement. Petri nets, on the
other hand, have state based semantics and allow for a direct expression of causality aspects in system behaviour.
As a result, verification of system properties can be carried out using partial order reductions or invariant based
techniques. In this paper, we aim at providing a basic semantical link between ITL and Petri nets so that, in
particular, one would be able to use both kinds of verification techniques of system properties.

About the authors

Zhenhua Duan is a Professor at the Xidian University, Xian, China.

Hanna Klaudel is a Professor at the University of Evry, France.

Maciej Koutny obtained his MSc (1982) and PhD (1984) from the Warsaw University of Technology. In 1985 he
joined the then Computing Laboratory of the University of Newcastle upon Tyne to work as a Research Associate.
In 1986 he became a Lecturer in Computing Science at Newcastle, and in 1994 was promoted to an established
Readership at Newcastle. In 2000 he became a Professor of Computing Science.

Suggested keywords

ITL
PETRI NET
BOX ALGEBRA
COMPOSITION
SEMANTICS

ITL Semantis of Composite Petri NetsZhenhua Duan1, Hanna Klaudel2, and Maiej Koutny3
1 Shool of Computer Siene and EngineeringXidian University, Xi'an, P.R.Chinazhenhua_d�yahoo.om
2 IBISC, Université d'Évry, 91000 Évry, Franeklaudel�ibis.univ-evry.fr

3 Shool of Computing Siene, University of NewastleNewastle upon Tyne, NE1 7RU, United Kingdommaiej.koutny�newastle.a.ukAbstrat. Interval Temporal Logi (itl) and Petri nets are two welldeveloped formalisms for the spei�ation and analysis of onurrentsystems. itl allows one to speify both the system design and orret-ness requirements within the same logi based on intervals (sequenesof states). As a result, veri�ation of system properties an be arriedout by heking that the formula desribing a system implies the for-mula desribing a requirement. Petri nets, on the other hand, have statebased semantis and allow for a diret expression of ausality aspets insystem behaviour. As a result, veri�ation of system properties an bearried out using partial order redutions or invariant based tehniques.In this paper, we aim at providing a basi semantial link between itland Petri nets so that, in partiular, one would be able to use both kindsof veri�ation tehniques of system properties.Keywords: itl, Petri net, box algebra, omposition, semantis.1 IntrodutionTemporal logis [8, 3℄ and Petri nets [13℄ are two di�erent but, in many yet om-plementary formalisms for the spei�ation and analysis of onurrent systems.A temporal logi, suh as Interval Temporal Logi (itl) [10, 12℄, allows one tospeify both the system design and orretness requirements within the samelogi framework based on sequenes of global states. As a result, veri�ation ofa requirement aptured by logi formula φ for a onurrent system expressedas logi formula ψ an be done by heking that the impliation ψ ⊃ φ holdstrue. Petri nets, on the other hand, whih are a graphial model with semantisbased on loal states allow, e.g., for a diret expression of ausality aspets insystem behavior. As a result, veri�ation of system properties an be done usingmodel heking tehniques based on partial order redutions [18℄, or invarianttehniques [17℄ based on graph struture of nets.In this paper, we aim at providing a basi semantial link between itl andPetri nets so that one would be able to use both kinds of veri�ation tehniques

2 Zhenhua Duan, Hanna Klaudel, and Maiej Koutnyof system properties. Finding suh a link is bound to be di�ult as temporallogis and Petri nets have strikingly di�erent nature. The �rst step, therefore,would be an identi�ation of a su�iently expressive temporal logi and lassof Petri nets whih ould be related in a lear and diret way. Intuitively, thedi�ulties enountered when mathing temporal logis and Petri nets stem fromthe fat that the former are strutured using omposition operators, whereas thelatter, in general, are not.A notable exeption is the Box Algebra (ba) [1℄ whih supports Petri netsbuilt using omposition operators inspired by ommon programming onstrutssuh as sequene, iteration, parallel omposition and hoie. Eah Petri net
box(E) is derived from a box expression E using a ompositional mapping box(.).It is, therefore, natural to seek a temporal logi mathing or supporting this par-tiular set of omposition operators.When looking at the existing temporal logisfrom this point of view, it was remarkable to realise that itl (Interval TemporalLogi) is based on almost exatly the same set of programming onstruts. Asa result, we set out to explore the possibility of building a semantial bridgebetween temporal logis and Petri nets using two onrete formalisms, viz. itland ba. In this way, one should ultimately be able to take advantage of the in-dividual strengths of these two formalisms, suh as the analysis of systems within�nite data domains and fairness-related properties [16℄ for itl, and unfoldingbased partial order model heking and invariant analysis for ba.In onrete terms, our aim is to solve the following problem:Given a ba expression E and a logi formula ψ expressed in itl syn-tax, provide a translation itl(E) into itl suh that box(E) satis�es ψ i�

itl(E) ⊃ ψ′ holds true, where ψ′ is a suitably adjusted ψ.In this paper, we provide a syntax-driven translation itl(.) for the ore ba [1℄syntax omprising parallel omposition, sequene, hoie, synhronisation anditeration, but without onsidering data variables. Whereas translating the otherontrol-�ow operators is relatively straightforward, doing the same for synhro-nisation is muh more involved and we rely here and adapt some ideas �rstformulated in [2℄ for the ase of interproess ommuniation. We �rst onsidera simpler ase of s-like binary synhronisation [9℄, and then extend this to ageneral multi-way synhronisation sheme [1℄. The main result is the soundnessof the proposed translation.Throughout the paper N denotes all positive integers, N0 = N ∪ {0} and
Nω = N0 ∪ {ω}, where ω denotes the �rst trans�nite ordinal. We extend to
Nω the standard arithmeti omparison operators, assuming that ω = ω and
n < ω, for all n ∈ N0. Moreover, we de�ne � as ≤ \{(ω, ω)}. The onatenationoperator for sequenes will be denoted by ◦, and we will denote ∅

ω = {∅∅ . . .}and ∅
∗ = {ǫ,∅,∅∅, . . .} (i.e., ∅ω omprises a single in�nite sequene, and ∅

∗an in�nite number of �nite sequenes).

ITL Semantis of Composite Petri Nets 32 Box algebra with one-to-one ommuniationWe �rst onsider sba whih is a simple sub-model of Box Algebra [1℄. In partiu-lar, we will allow only one-to-one ommuniation between onurrent sequentialproesses.We assume a set of ommuniation ations, eah suh ation a having aunique onjugate ation â satisfying â 6= a and ̂̂a = a. Moreover, we allowsynhronisation ations of the form τ{a,â} representing simultaneous exeutionof two onjugate ommuniation ations, a and â.The syntax of sba expressions E and sequential expressions S is as follows:
S ::= stop | a | S ;S′ | [S ⊛ S′

⊛ S′′] | S2S′

E ::= (S1 ‖S2 ‖ . . . ‖Sk) scoAwhere a is a ommuniation ation, and A is a set of ommuniation ationsinluding onjugates. We assume that in an sba expression
E = (S1 ‖S2 ‖ . . . ‖Sk) scoA (1)we have Ai ∩ Aj = ∅, for i 6= j, where eah Ai is the set of ommuniationations ourring in Si.In the above syntax, stop stands for a bloked proess, S2S′ for hoie om-position, S ;S′ for sequential omposition, [S⊛S′

⊛S′′] for a loop (with an initialpart S, iterated part S′, and terminal part S′′), and �nally (S1 ‖S2 ‖ . . . ‖Sk) scoAfor parallel omposition of k sequential proesses. The soping part, scoA, ofthe expression E in (1) synhronises onjugate ommuniation ations in A be-longing to di�erent sequential proesses, leaving the non-synhronised ations(i.e., those not belonging to A) intat.Figure 1 shows as sba expression (S1 ‖S2 ‖S3) scoA modelling a system on-sisting of two one-plae bu�er proesses, S1 and S2, and a merge proess, S3.Bu�ers S1 and S2 respetively use ations a and b to reeive signals whih arethen send o� to the merge proess using the c and d ations. The merge proessuses the onjugate ations, ĉ and d̂, to reeive forwarded signals whih are thenpassed on using the e signal. The soping part scoA e�ets interproess ommu-niation. (Note that the ations c, ĉ, d and d̂ annot be exeuted individually.)The three proesses are started up using the ations start i whih are exeutedone.Remark 1. The syntax of sba expression E in (1) inorporates two spei� re-stritions:� Only ommuniation ations are used within sequential sub-expressions.This is not a real problem as loal (non-synhronised) ations are basiallythose ommuniation ations whih do not appear in A, and silent ationsmay be simulated by fresh ommuniation ations.

4 Zhenhua Duan, Hanna Klaudel, and Maiej Koutny
S1 S2

S3

a b

c d

e

([start1 ⊛ (a ; c) ⊛ stop]
‖
[start2 ⊛ (b ; d) ⊛ stop]
‖

[start3 ⊛ ((ĉ ; e)2 (d̂ ; e)) ⊛ stop]) sco {c, ĉ, d, d̂}

Fig. 1. Two one-plae bu�ers and merge proesses.� No ation appears in more than one sequential expression Si.If this does not hold, we an take any ommuniation ation a ∈ Ai ∩A andthen replae:
• eah ourrene of a by stop2 ai,j1 2 . . . 2 ai,jl within Si, and
• a by ai,j1 , . . . , ai,jl within A,where {j1, . . . , jl} = {j | j 6= i ∧ â ∈ Aj}.Box algebra semantisThe semantis of sba expressions is given through a mapping into Petri netsalled boxes.A box is a tuple Σ = (P, T, F, ℓ,M0) where P and T are disjoint �nite setsof respetively plaes and transitions; F ⊆ (P × T) ∪ (T × P) is a �ow relation;

ℓ is a labelling funtion for plaes and transitions suh that ℓ(p) ∈ {e, i, x}, forevery plae p ∈ P , and ℓ(t) is an ation, for every transition t ∈ T ; and M0 ⊆ Pis an (initial) marking. In general, any subset of P is a marking.We adopt the standard rules about representing nets as direted graphs. Ifthe labelling of a plae p is e, i or x, then p is an entry, internal or exit plae,respetively.For every plae (transition) x, we use •x to denote its pre-set, i.e., the set of alltransitions (plaes) y suh that there is an ar from y to x, that is, (y, x) ∈ F . Thepost-set x• is de�ned in a similar way. The pre- and post-set notation extendsin the usual way to sets R of plaes and transitions, e.g., •R =
⋃

r∈R
•r. Byonvention, •Σ and Σ• denote respetively the sets of entry and exit plaes of

Σ. We now introdue operators on boxes orresponding to operators used in sbaexpressions. Let Σi (for i = 1, 2, 3) be boxes with disjoint sets of nodes satisfying
|•Σi| = |Σi

•| = 1 and M0i = ∅. Then we have the following (below p and p′ arefresh plaes):

ITL Semantis of Composite Petri Nets 5� Σ1 2Σ2 = (P, T, F, ℓ,∅) where:
P = P1 ∪ P2 \ (

•Σ1 ∪Σ1
• ∪ •Σ2 ∪Σ2

•) ∪ {p, p′}

T = T1 ∪ T2

F = (F1 ∪ F2)|(P×T)∪(T×P) ∪ {p} × (•Σ1 ∪
•Σ2)

•
∪

•(Σ1
• ∪Σ2

•)× {p′}

ℓ = (ℓ1 ∪ ℓ2)|P∪T ∪ {p 7→ e, p′ 7→ x} .� Σ1 ;Σ2 = (P, T, F, ℓ,∅) where:
P = P1 ∪ P2 \ (Σ1

• ∪ •Σ2) ∪ {p}

T = T1 ∪ T2

F = (F1 ∪ F2)|(P×T)∪(T×P) ∪ ({p} × (•Σ2)
•) ∪ (•(Σ1

•)× {p})

ℓ = (ℓ1 ∪ ℓ2)|P∪T ∪ {p 7→ i} .� [Σ1 ⊛ Σ2 ⊛ S3] = (P, T, F, ℓ,∅) where:
P = P1 ∪ P2 ∪ P3 \ (Σ1

• ∪ •Σ2 ∪Σ2
• ∪ •Σ3) ∪ {p}

T = T1 ∪ T2 ∪ T3

F = (F1 ∪ F2 ∪ F3)|(P×T)∪(T×P) ∪
•(Σ1

• ∪Σ2
•)× {p}∪

{p} × (•Σ2 ∪
•Σ3)

•

ℓ = (ℓ1 ∪ ℓ2 ∪ ℓ3)|P∪T ∪ {p 7→ i} .Moreover, for any box Σ, Σ is Σ with the initial marking set to •Σ.The semantis of a box Σ is given through its step sequenes. A set of tran-sitions U , alled a step, is enabled at a marking M if •U ⊆M and •u ∩ •t = ∅,for all distint t, u ∈ U . An enabled step U an be exeuted leading to a marking
M ′ given by M ′ =M \ •U ∪ U•. We denote this by M [U〉M ′.As far as a box Σ is onerned, only step sequenes whih start from itsdefault initial marking •Σ need to be onsidered. We will assume that eahsuh step sequenes is in�nite whih is a harmless requirement as any �nite stepsequene an be extended by an in�nite sequene of empty steps (note that
M [∅〉M for every markingM). In addition, we will single out a set of �nite stepsequenes whih lead from the default initial marking •Σ to the default �nalmarking Σ•. Intuitively, eah suh step sequene orresponds to a terminatedexeution of the box.A step sequene of a box Σ is any in�nite sequene of steps γ = U1U2 . . .suh that there are markings M1,M2 . . . satisfying

•Σ[U1〉M1[U2〉M2We denote this by γ ∈ step(Σ). Moreover, a terminated step sequene of Σ is a �-nite sequene of steps γ = U1 . . . Um suh that there are markingsM1, . . . ,Mm−1satisfying
•Σ[U1〉M1[U2〉 . . .Mm−1[Um〉Σ• .

6 Zhenhua Duan, Hanna Klaudel, and Maiej KoutnyWe denote this by γ ∈ tstep(Σ).Step sequenes built of sets of transitions are low-level desriptions of exe-uted behaviours. A more abstrat (and pratially relevant) view is providedby step sequenes built of steps of labels of exeuted transitions. Hene, for any�nite or in�nite step sequene γ as de�ned above, we will use ℓ(γ) to denote asequene of multisets of labels obtained from γ by replaing eah step Ui by themultiset Γi of labels of the transitions belonging to U . We then de�ne:
lstep(Σ) = ℓ(step(Σ)) and ltstep(Σ) = ℓ(tstep(Σ)) .From box expressions to boxesWe de�ne a mapping box from sba expressions to boxes ompositionally. First,for the bloked expression stop and any ommuniation ation a:

box(a) = ({p, p′}, {ta}, {(p, ta), (ta, p)}, {p 7→ e, ta 7→ a, p′ 7→ x},∅)

box(stop) = ({p, p′},∅,∅, {p 7→ e, p′ 7→ x},∅)and, for any sequential expressions S1, S2 and S3:
box(S1 ;S2) = box(S1) ; box(S2)
box(S1 2S2) = box(S1)2 box(S2)

box([S1 ⊛ S2 ⊛ S3]) = [box(S1) ⊛ box(S2) ⊛ box(S3)]Then, for an sba expression E as in (1), the net box(E) is obtained by:� reating Σ whih is a disjoint union of box(Si), for i = 1, . . . , k.� reating Σ′ from Σ by adding fresh transitions t = t{u,v}, where u is atransition in box(Si) and v is a transition in box(Sj) (i 6= j), ℓi(u) = a ∈ Aand ℓi(u) = â. The label of t is τ{a,â}, and it inherits the onnetivity of uand v, i.e., •t = •u ∪ •v and t• = u• ∪ v•.� deleting all transition labelled by the ommuniation ations in A.We also de�ne, for any sba expression F :
lstep(F) = lstep(box(F)) and ltstep(F) = ltstep(box(F)) .Behaviours of boxes obtained through the above translation from sba expres-sions exhibit lear ompositional properties [1℄. Figure 2 provides a full hara-terisation of the behaviours of sequential sba expressions whereas for onurrentsba expressions we have the following.Proposition 1. Let E be an sba expression as in (1). Then:� a �nite sequene γ = Γ1 . . . Γm belongs to ltstep(E) i� for j = 1, . . . , k:

Γ j
1 . . . Γ

j
m ∈ ltstep(Sj)where Γ j

i = Γi|Aj
+ {a ∈ Aj | τ{a,â} ∈ Γi}, for i = 1, . . . ,m.

ITL Semantis of Composite Petri Nets 7� an in�nite sequene γ = Γ1Γ2 . . . belongs to lstep(E) i� for j = 1, . . . , k:
Γ j
1Γ

j
2 . . . ∈ lstep(Sj)where Γ j

i = Γi|Aj
+ {a ∈ Aj | τ{a,â} ∈ Γi}, for i = 1, 2,Note: + and |Aj

respetively denote multiset sum and restrition. ⊓⊔Figure 3 illustrates the onstrution of a box representing an sba expressionof Figure 1.3 Interval Temporal LogiWe now provide the syntax and semantis of a small fragment of itl. The hosenfragment inludes only those onstruts (basi and derived) whih are used inthe subsequent translation of sba expressions.The formulas of the fragment of the itl logi we need are de�ned below,where V is a set of boolean variables, v ∈ V and V ′ ⊆ V :
φ ::= flip(v) | keep(V ′) | φ ∧ φ′ | φ ∨ φ′ | φ ;̂φ′ | φ∗ | infNote that flip(v) inverts the value of boolean variable v over a unit interval,

keep(V ′) keeps the value of variables in V ′ over a unit interval, ;̂ is a weak versionof the standard sequential omposition operator (denoted by ; and alled hop),and inf indiates an in�nite interval.A state is a mapping whih assigns values to the (boolean) variables V , andan interval σ is a possibly in�nite non-empty sequene of states. Its length, |σ|,is ω if σ is in�nite, and otherwise its number of states minus 1. To simplify
ltstep(stop) = ∅

ltstep(a) = ∅
∗ ◦ {{a}} ◦∅∗

ltstep(S1 ;S2) = ltstep(S1) ◦ ltstep(S2)

ltstep(S1 2S2) = ltstep(S1) ∪ ltstep(S2)

ltstep([S1 ⊛ S2 ⊛ S3]) = ltstep(S1) ◦ ltstep(S2)
∗ ◦ ltstep(S3)

lstep(stop) = ∅
ω

lstep(a) = ∅
ω ∪∅

∗ ◦ {{a}} ◦∅ω

lstep(S1 ;S2) = lstep(S1) ∪ ltstep(S1) ◦ lstep(S2)

lstep(S1 2S2) = lstep(S1) ∪ lstep(S2)

lstep([S1 ⊛ S2 ⊛ S3]) = lstep(S1)∪
ltstep(S1) ◦ ltstep(S2)

∗ ◦ (lstep(S2) ∪ lstep(S3))Fig. 2. Properties of behaviours of sequential sba expressions.

8 Zhenhua Duan, Hanna Klaudel, and Maiej Koutny
start1

a

c

e

x

start3

ĉ

e

d̂

e

e

x

start2

b

d

e

x

box(S1) box(S3) box(S2)

•

start1

a

τ{c,ĉ}

e

x

•

start3

e

τ{d,d̂}

e

e

x

•

start2

b

e

x

box

(
(S1 ‖S2 ‖S3) sco {c, ĉ, d, d̂}

)Fig. 3. Top: unsynhronised unmarked boxes for S1, S2 and S3; bottom: omplete boxsemantis of the three-proess system with the default initial marking. All the i labelsof internal plaes are omitted.de�nitions, we will denote σ as 〈σ0, σ1, . . . , σ|σ|〉, where σ|σ| is unde�ned if σ isin�nite. With suh a notation, for 0 ≤ i � j ≤ |σ|:
σi..j = 〈σi, . . . , σj〉 and σi = 〈σ0, . . . , σi〉 and σ(i) = 〈σi, . . . , σ|σ|〉The meaning of formulas is given by the satisfation relation de�ned as follows:� σ |= flip(v) i� |σ| = 1 and σ1(v) = ¬σ0(v).� σ |= keep({v1, . . . , vm}) i� |σ| = 1 and σ1(vi) = σ0(vi), for i = 1, . . . ,m.� σ |= φ ∨ φ′ i� σ |= φ or σ |= φ′.� σ |= φ ∧ φ′ i� σ |= φ and σ |= φ′.� σ |= φ ;̂φ′ i� one of the following holds:
• |σ| = ω and σ |= φ.
• there is r � |σ| and σr |= φ and σ(r) |= φ′.� σ |= φ∗ i� one of the following holds:
• |σ| = 0.
• there are 0 = r0 ≤ r1 ≤ . . . ≤ rn−1 � rn = |σ| suh that, for all
1 ≤ l ≤ n, σrl−1..rl |= φ.

ITL Semantis of Composite Petri Nets 9
• |σ| = ω and there are in�nitely many integers 0 = r0 ≤ r1 ≤ . . . suhthat lim

i→∞
ri = ω and for all l ≥ 1, σrl−1..rl |= φ.� σ |= inf i� |σ| = ω.Note that φ ;̂φ′ is equivalent to the formula φ ∧ inf ∨ φ ;φ′.4 From simple box algebra to itlWe now present a translation from an sba expression E de�ned as in (1) intosemantially equivalent itl formula.A key idea inspired by [2℄ is to represent eah of the ations a appearing in

E by a separate boolean variable va, and then to model an exeution of a by thehange of the value of va. In the ase of synhronisation between a and â, the twoorresponding variables, va and vâ, have to hange their values simultaneously.In what follows, the set of variables orresponding to eah Ai (ations o-urring within Si) are denoted by Vi, and no other variables are used. Thetranslation is then given by:
itl(E) = itl1(S1) ∧ . . . ∧ itlk(Sk)where we have the following (below i = 1, . . . , k, a ∈ Ai ∩ A and b ∈ Ai \A):

itl i(stop) = keep(Vi)
∗ ∧ inf

itl i(a) = keep(Vi)
∗
;̂

(
keep(Vi \ {va}) ∧ flip(va) ∧ flip(vâ)

)
;̂

keep(Vi)
∗

itl i(b) = keep(Vi)
∗
;̂

(
keep(Vi \ {vb}) ∧ flip(vb)

)
;̂ keep(Vi)

∗

itl i(S ;S′) = itl i(S) ;̂ itl i(S
′)

itl i(S2S′) = itl i(S) ∨ itl i(S
′)

itl i([S ⊛ S′
⊛ S′′]) = itl i(S) ;̂ itl i(S

′)∗ ;̂ itl i(S
′′)Intuitively, the value of a variable va is kept unhanged, unless we simulatean exeution of ation a whih results in �ipping the value of va. Moreover,synhronisation involving a and â �ips the values of both va and vâ. In this way,exeutions arried out in onurrent omponents are synhronised.With eah interval σ satisfying σ |= itl(E), we assoiate a sequene of mul-tisets γσ = Γ1 . . . Γ|σ|, were eah Γj is de�ned as follows:

Γj = {a | a /∈ A ∧ σj−1(va) 6= σj(va)}+ {τ{a,â} | a ∈ A ∧ σj−1(va) 6= σj(va)} .Similarly, with eah interval σ satisfying σ |= itl(Si), we assoiate a sequene ofmultisets γσ = Γ1 . . . Γ|σ|, were eah Γj is de�ned as follows:
Γj = {a ∈ Ai | σj−1(va) 6= σj(va)} .

10 Zhenhua Duan, Hanna Klaudel, and Maiej KoutnyWe then de�ne, for any itl formula φ appearing on the r.h.s. of the abovetranslation:
ltstep(φ) = {γσ | σ |= φ ∧ |σ| < ω} and lstep(φ) = {γσ | σ |= φ ∧ |σ| = ω} .Note that ltstep(φ) ◦∅ω ⊆ lstep(φ).Proposition 2. Let S be a sequential sba expression. Then:

lstep(itl(S)) = lstep(S) and ltstep(itl(S)) = ltstep(S) .Proof. The proof proeeds by indution on the struture of S, using Figure 2and the properties of the logi operators.Case 1: S = stop. Then:
ltstep(itl(stop)) = ∅ = ltstep(stop)

lstep(itl(stop)) = ∅
ω = lstep(stop) .Case 2: S = a. Then:

ltstep(itl(a)) = ∅
∗ ◦ {{a}} ◦∅∗ = ltstep(a)

lstep(itl(a)) = ∅
ω ∪∅

∗ ◦ {{a}} ◦∅ω = lstep(a) .Case 3: S = S1 ;S2. Then:
ltstep(itl(S1 ;S2)) = ltstep(itl(S1)) ◦ ltstep(itl(S2))

= ltstep(S1) ◦ ltstep(S2)
= ltstep(S1 ;S2)

lstep(itl(S1 ;S2)) = lstep(itl(S1)) ∪ ltstep(itl(S1)) ◦ lstep(itl(S2))
= lstep(S1) ∪ ltstep(S1) ◦ lstep(S2)
= lstep(S1 ;S2) .Case 4: S = S1 2S2. Then:

ltstep(itl(S1 2S2)) = ltstep(itl(S1)) ∪ ltstep(itl(S2))
= ltstep(S1) ∪ ltstep(S2)
= ltstep(S1 2S2)

lstep(itl(S1 2S2)) = lstep(itl(S1)) ∪ lstep(itl(S2))
= lstep(S1) ∪ lstep(S2)
= lstep(S1 2S2) .

ITL Semantis of Composite Petri Nets 11Case 5: S = [S1 ⊛ S2 ⊛ S3]. Then:
ltstep(itl([S1 ⊛ S2 ⊛ S3])) = ltstep(itl(S1)) ◦ ltstep(itl(S2))

∗◦
ltstep(itl(S3))

= ltstep(S1) ◦ ltstep(S2)
∗ ◦ ltstep(S3)

= ltstep([S1 ⊛ S2 ⊛ S3])

lstep(itl([S1 ⊛ S2 ⊛ S3])) = lstep(itl(S1))∪
ltstep(itl(S1)) ◦ ltstep(itl(S2))

∗◦
(lstep(itl(S2)) ∪ lstep(itl(S3)))

= lstep(S1)∪
ltstep(S1) ◦ ltstep(S2)

∗◦
(lstep(S2) ∪ lstep(S3))

= ltstep([S1 ⊛ S2 ⊛ S3]) .This ompletes the proof. ⊓⊔Theorem 1. Let E be an sba expression as in (1). Then:
lstep(itl(E)) = lstep(E) and ltstep(itl(E)) = ltstep(E) .Proof. Follows from Propositions 1 and 2, and the basi properties of the on-juntion operator in itl. Note that the assumption that no ommuniation ationours in more than one sequential expression Si is ruial to demonstrate theresult. ⊓⊔What we have just presented is one of possible ways of translating sba ex-pressions into equivalent itl formulas. Another possibility would be to enforesynhronisation between variables orresponding to onjugate ommuniationsglobally using the 2 operator of ITL:

itl(E) = itl1(S1) ∧ . . . ∧ itlk(Sk) ∧
∧

a∈A

2va = vâand then to simplify the rest of the translation (below b ∈ Ai):
itl i(stop) = keep(Vi)

∗ ∧ inf

itl i(b) = keep(Vi)
∗
;̂

(
keep(Vi \ {vb}) ∧ flip(vb)

)
;̂ keep(Vi)

∗

itl i(S ;S′) = itl i(S) ;̂ itl i(S
′)

itl i(S2S′) = itl i(S) ∨ itl i(S
′)

itl i([S ⊛ S′
⊛ S′′]) = itl i(S) ;̂ itl i(S

′)∗ ;̂ itl i(S
′′)

12 Zhenhua Duan, Hanna Klaudel, and Maiej KoutnyYet another possibility would be to use a single variable v{a,â} to represent both
a and â, leading to the following translation (below a ∈ Ai ∩A and b ∈ Ai \A):

itl(E) = itl1(S1) ∧ . . . ∧ itlk(Sk)

itl i(stop) = keep(Vi)
∗ ∧ inf

itl i(a) = keep(Vi)
∗
;̂(

keep(Vi \ {v{a,â}}) ∧ flip(v{a,â})
)
;̂ keep(Vi)

∗

itl i(b) = keep(Vi)
∗
;̂

(
keep(Vi \ {vb}) ∧ flip(vb)

)
;̂ keep(Vi)

∗

itl i(S ;S′) = itl i(S) ;̂ itl i(S
′)

itl i(S2S′) = itl i(S) ∨ itl i(S
′)

itl i([S ⊛ S′
⊛ S′′]) = itl i(S) ;̂ itl i(S

′)∗ ;̂ itl i(S
′′)The latter alternative will be adopted in the translation of more ompliated baexpressions desribed in the next setion.5 Box algebra with general synhronisationWe now onsider ba equipped with a powerful operator of general synhronisa-tion whih subsumes a majority of those usually employed by proess algebras.Let L be a set of ations. A synhronisation relation is ρ ⊆ L+×L suh that if

(a1, . . . , an, a) ∈ ρ then a1, . . . , an represents ations whih an be synhronisedto yield a new ation a. The general syntax of ba expressions E and sequentialba expressions S is as follows:
S ::= stop | a | S ;S′ | [S ⊛ S′

⊛ S′′] | S2S′

E ::= (S1 ‖S2 ‖ . . . ‖Sk)[ρ]where a ∈ L is an ation, and ρ is a synhronisation relation. There is no restri-tion on the presene of ations in di�erent sequential subexpressions of E as inthe ase of sba.The translation for a sequential expression S is the same as in the simplerase. Moreover, given a ba expression
E = (S1 ‖S2 ‖ . . . ‖Sk)[ρ] (2)we proeed as follows:� For every ξ = (a1, . . . , an, a) ∈ ρ we denote:

∆ξ = {k1 . . . kn | ∀i ≤ n : ai ∈ Aki
∧ ∀i 6= j : ki 6= kj} .Intuitively, ∆ξ denotes all ombinations of sequential proesses whih anpotentially generate synhronisations aptured by ξ.� box(E) is obtained by:

• reating Σ whih is a disjoint union of box(Si), for i = 1, . . . , k.

ITL Semantis of Composite Petri Nets 13
([start ⊛ (a ; c) ⊛ stop]‖ with ρ = { ({start , start , start}, start),
[start ⊛ (f ; e) ⊛ stop] ‖ ({c, f}, {c′, f}, g),
[start ⊛ (b ; c′) ⊛ stop]) [ρ] (a, a), (b, b), (e, e) }

• • •

start

a e bg g

e e e

x x xFig. 4. A system with many-to-one ommuniation.
• reating Σ′ from Σ by adding a transition t = tξt1...tn whenever:

ξ = (a1, . . . , an, a) ∈ ρ and k1 . . . kn ∈ ∆ξand, for all i ≤ n, ti belongs to box(Ski
) and has the label ai. The labelof t is a, •t = •t1 ∪ . . . ∪

•tn and t• = t1
• ∪ . . . ∪ tn

•.
• deleting all transitions oming from Σ.The translation from the ba expressions to boxes follows the same patternas in the ase of sba expressions, and its result is illustrated in Figure 4.From box algebra to itlIn the translation from ba expressions as in (2) to itl, for every synhronisationpattern ξ = (a1, . . . , an, a) ∈ ρ, we will use distint variables

Vξ = {vξk1,...,kn
| k1, . . . , kn ∈ ∆ξ}orresponding to di�erent ombinations of sequential sub-expressions whih mayrealise synhronisations aptured by ξ. Moreover, for every i ≤ k and b ∈ Ai,

V i
b = {v

(a1,...,an,a)
k1...kn

| ∃j ≤ n : kj = i ∧ aj = b}are all the variables orresponding to potential synhronisations in whih b o-urring in Si an partiipate. The translation of ba expressions is then de�ned

14 Zhenhua Duan, Hanna Klaudel, and Maiej Koutnyin the following way (below i = 1, . . . , k, b ∈ Ai and Vi = ⋃
b∈Ai

V i
b):

itl(E) = itl1(S1) ∧ . . . ∧ itlk(Sk)

itl i(stop) = keep(Vi)
∗ ∧ inf

itl i(b) = keep(Vi)
∗
;̂(∨

v∈V i
b
keep(Vi \ {v}) ∧ flip(v)

)
;̂ keep(Vi)

∗

itl i(S ;S′) = itl i(S) ;̂ itl i(S
′)

itl i(S2S′) = itl i(S) ∨ itl i(S
′)

itl i([S ⊛ S′
⊛ S′′]) = itl i(S) ;̂ itl i(S

′)∗ ;̂ itl i(S
′′)Note that a synhronisation an now involve more than two sequential sub-omponents and is realised by a single variable whih may appear in severaldi�erent sub-formulas. The interpretation of satisfying intervals in terms of stepsequenes of multisets of ations requires only a small modi�ation of the oneused previously.Properties of the newly de�ned translation are very muh the same as in thesimpler ase. Cruially, we have the following.Theorem 2. Let E be a ba expression as in (2). Then:

lstep(itl(E)) = lstep(E) and ltstep(itl(E)) = ltstep(E) .Proof. Similar as in the ase of sba expression. ⊓⊔6 ConlusionsIn the past, various kinds of logis have been used as formalism for expressingorretness properties of systems spei�ed using Petri nets. When it omes tothe relationship between logis and Petri net, we feel that the work on theonnetions between liner logi [5℄ and Plae Transition nets was the losest one.However, the main onern there was the handling of multiple token ourrenesin net plaes whereas boxes are safe nets. Another way in whih logis and Petrinets were disussed was reported in [14℄ whih provided a haraterisation ofPetri net languages in terms of seond-order logial formulas.The results presented in this paper demonstrate that one an develop a verylose strutural onnetion between ba and itl. It is therefore important to fur-ther investigate the extent to whih suh a onnetion ould be generalised andexploited. In partiular, we plan to investigate what is the subset of itl whihan be modelled by ba. A longer time goal is the development of a hybrid veri-�ation methodology ombining itl and ba tehniques. For example, sequentialalgorithms and data strutures ould be treated by itl tehniques [11℄, whileintensive parallel or ommuniating aspets of systems ould be treated by netunfoldings [4, 6℄ or other Petri net tehniques [15℄.

ITL Semantis of Composite Petri Nets 15AknowledgementThis researh is supported by the 973 Program Grant 2010CB328102, NSFCGrants 60910004 and 60873018, and Epsr Verdad projet.Referenes1. E.Best, R.Devillers and M. Koutny: Petri Net Algebra. Monographs in TheoretialComputer Siene, Springer (2001)2. A.Cau and H.Zedan: Re�ning Interval Temporal Logi Spei�ations. LetureNotes in Computer Siene 1231 (1997) 79�943. E.A.Emerson: Temporal and Modal Logi. In: Handbook of Theoretial ComputerSiene, Elsevier Siene (1990) 995�10724. J.Esparza: Model Cheking Using Net Unfoldings. Siene of Computer Program-ming 23 (1994) 151�1955. J.-Y.Girard: Linear Logi. Theoretial Computer Siene 50 (1987) 1�1026. V.Khomenko and M.Koutny: Towards An E�ient Algorithm for Unfolding PetriNets. Leture Notes in Computer Siene 2154 (2001) 366�3807. S.Kripke: Semantial Analysis of Modal Logi I: Normal Propositional Caluli. Z.Math. Logik Grund. Math. 9 (1963) 67�968. Z.Manna and A.Pnueli: Veri�ation of Conurrent Programs: The TemporalFramework. In: The Corretness Problem in Computer Siene, Aademi Press(1981) 215�2739. R.Milner: A Calulus of Communiating Systems. Springer Verlag (1980)10. B.Moszkowski: Compositional Reasoning About Projeted and In�nite Time. Pro-eedings of ICECCS (1995) 238�24511. B.Moszkowski: Exeuting Temporal Logi Programs. Cambridge University Press(1986)12. B.Moszkowski and Z.Manna: Reasoning in Interval Temporal Logi. Leture Notesin Computer Siene 164 (1984) 371�38213. T.Murata: Petri Nets: properties, Analysis and Appliations. Proeedings of theIEEE 77 (1989) 541�8014. M.Parigot and E.Pelz: A Logial Approah of Petri Net Languages. TheoretialComputer Siene 39 (1985) 155�16915. Petri net tools homepage:http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quik.html16. F.Siewe: A Compositional Framework for the Development of Seure Aess Con-trol Systems. PhD thesis, De Montfort University (2005)17. M.Silva, E.Teruel and J.-M.Colom: Linear Algebrai and Linear ProgrammingTehniques for the Analysis of Plae/Transition Net Systems. Leture Notes inComputer Siene 1491 (1998) 309�37318. A.Valmari: Stubborn Sets for Redued State Spae Generation. Leture Notes inComputer Siene 483 (1989) 491�515

	TRCover1296
	TRAbstract1296
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1296
	1296withoutcovers

