
Received April 23, 2019, accepted May 19, 2019, date of publication May 27, 2019, date of current version June 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919296

iTM-Net: Deep Inverse Tone Mapping Using
Novel Loss Function Considering Tone
Mapping Operator

YUMA KINOSHITA , (Student Member, IEEE), AND HITOSHI KIYA , (Fellow, IEEE)
Department of Computer Science, Tokyo Metropolitan University, Tokyo 191-0065, Japan

Corresponding author: Hitoshi Kiya (kiya@ tmu.ac.jp)

This work was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows under JSPS KAKENHI

Grant Number JP18J20326.

ABSTRACT In this paper, we propose a novel inverse tonemapping network, called ‘‘iTM-Net.’’ For training

iTM-Net, we also propose a novel loss function that considers the non-linear relation between low dynamic

range (LDR) and high dynamic range (HDR) images. For inverse tone mapping with convolutional neural

networks (CNNs), we first point out that training CNNs with a standard loss function causes a problem due to

the non-linear relation between the LDR and HDR images. To overcome the problem, the novel loss function

non-linearly tone-maps target HDR images into LDR ones on the basis of a tone mapping operator, and the

distance between the tone-mapped images and predicted ones are then calculated. The proposed loss function

enables us not only to normalize the HDR images but also to reduce the non-linear relation between LDR and

HDR ones. The experimental results show that the HDR images predicted by the proposed iTM-Net have

higher-quality than the HDR ones predicted by conventional inverse tone mapping methods, including the

state of the art, in terms of both HDR-VDP-2.2 and PU encoding + MS-SSIM. In addition, compared with

loss functions that do not consider the non-linear relation, the proposed loss function is shown to improve

the performance of CNNs.

INDEX TERMS Convolutional neural networks, deep learning, high dynamic range imaging, inverse tone

mapping, loss function.

I. INTRODUCTION

The low dynamic range (LDR) of modern digital cameras is

a major factor preventing cameras from capturing images as

well as human vision. This is due to the limited dynamic range

that imaging sensors have. For this reason, interest in high

dynamic range (HDR) imaging has been increasing.

The goal of HDR imaging is to obtain HDR images whose

pixel values describe absolute or relative luminance of scenes,

which is proportional to scene radiance. Since LDR images

are distorted by sensor saturation and a non-linear camera

response function (CRF), the objective of HDR imaging can

be separated into two goals: saturation recovery and lineariza-

tion. The most common approach to tackle the problems is

stack-based methods that use a stack of differently exposed

images, called ‘‘multi-exposure images,’’ for both saturation
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recovery and linearization [1]–[8]. Although these stack-

based methods work very well, they still have two limitations

due to the use of multi-exposure images: ghost-like artifacts

appear due to the motion of objects in a scene and a camera

during taking multi-exposure images, and they are inapplica-

ble to existing single images. For this reason, HDR imaging

methods without multi-exposure images are expected to be

developed.

With the aim of generating an HDR image from a single

LDR image, various research works on inverse tone map-

ping have so far been reported [9]–[18]. Traditional ways of

inverse tone mapping are based on expanding the dynamic

range of input LDR images by using a fixed function or a

specific parameterized function [9]–[15]. However, inverse

tone mapping without prior knowledge is generally an ill-

posed problem for two reasons: pixel values might be lost

by sensor saturation, and the CRF used for photographing is

unknown. Hence, HDR images produced by these methods
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have limited quality. To obtain high-quality HDR images,

inverse tone mapping methods based on deep learning have

recently attracted attention.

Several convolutional neural network (CNN) based inverse

tone mapping methods have so far been proposed [16]–[18].

These CNN-based methods significantly improve the per-

formance of inverse tone mapping. In [16] and [17], CNNs

are utilized for saturation recovery, but these methods

do not employ deep learning for linearization. Although

Marnerides et al. [18] tackled the linearization problem by

training a CNN with simply normalized HDR images under

the use of the min-max normalization, the performance was

still limited because most pixel values of the normalized

images were distributed in a narrow range. This is due to the

non-linear relation between LDR and HDR images.

Thus, in this paper, we propose a novel inverse tone map-

ping network, called ‘‘iTM-Net.’’ Similarly to [18], we aim to

obtain relative luminance by using iTM-Net for linearization.

To realize this, we also propose a novel loss function that

considers the non-linear relation between LDR and HDR

images. In the novel loss function, target HDR images are

tone-mapped into LDR ones by using an invertible tone

mapping operator, and the distance between the tone-mapped

images and predicted ones is then calculated. The proposed

loss function enables us not only to normalize HDR images

but also to widely distribute the pixel values of HDR images

like LDR ones. Our iTM-Net is implemented without using

generative adversarial networks in order to make iTM-Net

applicable to images having various resolutions.

In an experiment, the proposed method was compared with

state-of-the-art inverse tone mapping methods. Experimen-

tal results illustrate that the proposed method outperforms

the conventional methods in terms of two objective quality

metrics: HDR-VDP-2.2 and PU encoding + MS-SSIM. In

addition, the proposed loss function is shown to improve the

performance of CNNs compared with standard loss functions

that do not consider the non-linear relation.

II. RELATED WORK

Here, we summarize typical stack-based HDR imaging meth-

ods and inverse tone mapping methods. The term ‘‘HDR

imaging’’ has been used with two meanings depending on

contexts:
• recovering scene radiance (or intensity that is propor-

tional to scene radiance) [1]–[8],

• capturing wide-dynamic-range information of real scene

[19]–[30].

We use the term ‘‘HDR imaging’’ as the former meaning

throughout this paper.

A. HDR IMAGING

As mentioned, the goal of HDR imaging including inverse

tone mapping is to restore the absolute or relative lumi-

nance of a scene. This objective can be separated into two

goals: saturation recovery and linearization. The most com-

mon approach of HDR imaging is stack-based one [1]–[8]

that uses a stack of differently exposed images, called

‘‘multi-exposure images,’’ for both saturation recovery and

linearization. In the stack-basedmethods, a non-linear CRF is

estimated by using multi-exposure images, and linearization

is then done by applying the inverse CRF to the input multi-

exposure images. After that, these images are fused into a

single HDR image, in order to recover saturation.

The stack-based HDR imaging methods work very well

when a scene is static and the camera is tripod-mounted.

However, when scenes are dynamic or the camera moves

while multi-exposure images are being captured, the multi-

exposure images will not line up properly with one another.

This misalignment results in ghost-like artifacts in the final

HDR image. To deal with motion, Sen et al. [6] proposed a

method that aligns multi-exposure images with patch-based

optimization. Oh et al. [8] also proposed a robust HDR

imaging method on the basis of rank minimization. By these

research works, the problem of the ghost-like artifacts is

being solved. However, those stack-based methods cannot be

applied to existing single LDR images.

B. TRADITIONAL INVERSE TONE MAPPING

For generating an HDR image from a single LDR image,

many inverse tone mapping methods have already been stud-

ied. Traditional ways of inverse tone mapping are based on

expanding the dynamic range of input LDR images by using

a fixed function or a specific parameterized function [9]–[15].

Banterle et al. [9] employed the inverse function of Rein-

hard’s global operator [31] for expanding the dynamic range.

Similarly, Youngquing et al. [12] used an S-shaped curve

for the purpose. However, a fixed function or a specific

parameterized function cannot correctly linearize an input

LDR image because each camera has a different CRF and

changes in temperature additionally alter the CRF. Moreover,

saturation recovery without prior knowledge is also impossi-

ble since all saturated pixel values might be lost. Hence, HDR

images produced by traditional inverse tone mapping have

limited quality in terms of both linearization and saturation

recovery.

C. DEEP-LEARNING-BASED INVERSE TONE MAPPING

CNN-based inverse tone mapping methods [16]–[18] have

recently attracted attention because of their effectiveness.

Eilertsen et al. [17] aim to reconstruct saturated areas in input

LDR images via a CNN. Predicted pixel values are combined

with an input LDR image, which is linearized by using a fixed

function that does not consider CRFs, to produce an HDR

image. Endo et al. [16] proposed a CNN based method that

produces a stack of differently exposed images from a single

LDR image. The generated images are linearized and fused

by using an existing stack-based method such as Debevec’s

method [3]. These twomethods enable us to recover saturated

regions in images, but the linearization problem still remains.

In a work by Marnerides et al. [18], they tackled the

linearization problem and sought to directly produce HDR

images by using a CNN. To calculate prediction loss in train-
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FIGURE 1. Proposed inverse tone mapping. (a) Training. (b) Predicting.

ing a CNN, all HDR images are simply normalized into the

range of [0, 1] by using min-max normalization. However,

using normalized HDR images to calculate prediction loss

causes a problem in that most pixel values of the normalized

images are distributed in a narrow range. This is due to the

non-linear relation between LDR and HDR images, so the

image statistics of LDR and HDR images differ considerably

as pointed out in [17]. Therefore, we aim to improve the

performance of CNN-based inverse tone mapping, by using a

novel loss function that considers the non-linear relation for

learning HDR images.

III. PROPOSED INVERSE TONE MAPPING

A. NOTATION

The following notations are utilized throughout this paper.

• i and j are used to denote pixel indexes.

• E denotes an HDR image or scene irradiance which is

proportional to scene radiance.

• X denotes the integrated irradiance over the time the shutter

is open, commonly referred to as ‘‘exposure’’.

• Luminance of an image is denoted by L, where L is the

same as the Y -component in the CIE XYZ color space. For

example, Luminance of an HDR image E is written as LE .

• x and y denote input and output images of a CNN,

respectively.

B. OVERVIEW

Figure 1 shows an overview of our training procedure and

prediction procedure. In the training, all input LDR images

x are generated from target HDR images E by using var-

ious virtual cameras f̃ [17]. To calculate loss between a

predicted image, ŷ, and a target HDR one, E , a tone mapping

function, f̂ , which is generally a non-linear one, is applied

to E .

After the training, various LDR images are applied to the

proposed CNN as input images, where the CNN then predicts

tone-mapped versions of HDR images. The linearization is

done by mapping the predicted images ŷ by using an inverse

tone mapping function, f̂ −1. Detailed training conditions are

described in Section III-F.

C. LOSS FUNCTION

For training a CNN, an error between target images and

predicted images is calculated by using a loss function, and

parameters in the CNN are optimized so that the error will be

minimized.

In [18], a loss function for training a CNN is defined by

using the L1-distance L1 and the cosine similarity Lcos. L1

and Lcos are calculated as

L1(ŷ,E) =
1

P

∑

i,j

‖Ei,j − ŷi,j‖1, (1)

Lcos(ŷ,E) = 1 −
1

P

∑

i,j

Ei,j · ŷi,j

‖Ei,j‖2‖ŷi,j‖2
, (2)

where Ei,j and ŷi,j denote an RGB pixel vector at pixel (i, j) in

HDR image E and predicted image ŷ, respectively, and P is

the total number of pixels. By using eqs. (1) and (2), the loss

function utilized for ExpandNet [18] is given by

LExpand(ŷ,E) = L1(ŷ,m(E)) + λLcos(ŷ,m(E)), (3)

where λ is a constant factor that adjusts the contribution of the

cosine similarity and m(E) denotes min-max normalization

that simply normalizes E into the range of [0, 1] by

m(E) =
E − minE

maxE − minE
. (4)

However, min-max normalization is unsuitable for learning

HDR images because pixel values of HDR images are non-

uniformly distributed in an extremely wide range [17] unlike

LDR ones.

For this reason, we utilize an invertible tone mapping

operator, f̂ (·), which is designed to transform HDR images

into LDR ones, instead of min-max normalization m(·). For

example, the L1-distance with f̂ (·) is calculated by

LiTM(ŷ,E) = L1(ŷ, f̂ (E)). (5)

In this paper, Reinhard’s global operator [31] is utilized

as f̂ (·), where the operator transforms HDR images into high-

quality LDR ones, and it has an inverse function. By using

the luminance matrix LE of E , the operator is given by the

equations

f̂ (E) = (ĝ(LE ) ⊘ LE ) ⊙ E, (6)

ĝ(LE ) = LX ⊘ (1 + LX ), (7)

LX =
a

G(LE )
LE , (8)

where ⊙ and ⊘ mean pixel-wise multiplication and division,

respectively. The parameter a ∈ [0, 1] determines the bright-

ness of an output image f̂ (E), and G(LE ) is the geometric

mean of LE given by

G(LE ) = exp





1

P

∑

i,j

log
(

max
(

LE i,j, ǫ
))



, (9)

where ǫ is a small value for avoiding singularities at

LE i,j = 0. Eq. (8) enables us to calibrate HDR images by
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FIGURE 2. Network architecture. Architecture consists of local encoder, global encoder, and decoder. Each box denotes multi-channel feature map
produced by each layer. Number of channels is denoted above each box. Feature map resolutions are denoted to left of boxes.

adjusting the geometric mean of each HDR image to a, and

eq. (7) allows us to distribute pixel values of HDR images like

those of LDR ones. Since f̂ is invertible, HDR images can be

predicted by using the inverse tone mapping operator f̂ −1, as

shown in the next Section.

D. PREDICTION

The proposed CNN generates tone-mapped versions of HDR

images E because the CNN is trained by using the loss

function shown in eq. (5). Hence, HDR images are predicted

by applying the inverse tone mapping function f̂ −1 to image

ŷ as

Ê = f̂ −1(ŷ) = (ĝ−1(Lŷ) ⊘ Lŷ) ⊙ ŷ, (10)

ĝ−1(Lŷ) = Lŷ ⊘ (1 − Lŷ), (11)

where Lŷ is the luminance of ŷ. Note that eq. (8) can be

ignored in the inverse tone mapping since our goal is to obtain

relative luminance.

E. ITM-NET ARCHITECTURE

Figure 2 shows the overall network architecture of iTM-Net.

The architecture consists of three networks: a local encoder,

a global encoder, and a decoder. The input for the local

encoder is a P = H × W pixels, 24-bit color LDR image.

For the global encoder, the input image is resized to a fixed

size (128 × 128). iTM-Net has five types of layers as shown

in Fig. 2:

3 × 3 Conv. + BN + ReLU which calculates a 3 × 3 con-

volution with a stride of 1 and a padding of 1. After

convolution, batch normalization [32] and the rectified

linear unit activation function [33] (ReLU) are applied.

In the local encoder and the decoder, two adjacent 3× 3

Conv. + BN + ReLU layers will have the same number

K of filters. From the first two layers to the last ones, the

numbers of filters are K = 32, 64, 128, 256, 512, 256,

128, 64, and 32, respectively. In the global encoder, all

layers have 64 filters.

2 × 2Max pool which downsamples feature maps by max

pooling with a kernel size of 2 × 2 and a stride of 2.

4 × 4 Transposed Conv. + BN + ReLU which calculates

a 4×4 convolution with a stride of 1/2 and a padding of

1. After convolution, BN and ReLU are applied. From

the first layer to the last one, the numbers of filters are

K = 256, 128, 64, and 32, respectively.

1 × 1 Conv. + ReLU which calculates a 1 × 1 convolution

with a stride of 1 and a padding of 1. After convolution,

ReLU is applied. The number of filters in the layer is 3.

4 × 4 Conv. + BN + ReLU (w/o padding) which calcu-

lates a 4 × 4 convolution without padding. The number

of filters in the layer is 64.

The local encoder and the decoder in the proposed method

are almost the same as those used in U-Net [34]. Concate-

nated skip connections between the local encoder and the

decoder are also utilized like in U-Net.

The main difference between iTM-Net and U-Net is that

iTM-Net has an additional encoder, i.e., the global encoder,

for extracting global image information. In the most recent

work [18], Marnerides et al. claimed that U-Net causes

unwanted blocking artifacts in predicted HDR images. Our

preliminary experimental results showed that the blocking

artifacts are attributed to its network architecture that cannot

handle global image information. For this reason, we utilize

the global encoder and combine features extracted by both

encoders to prevent the distortions.

In addition to the novel network architecture, the use of

the novel loss function LiTM enables us to improve the per-

formance of inverse tone mapping.

F. TRAINING

Numerous LDR images taken under various conditions, x,

and corresponding HDR images, E , are needed to train
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iTM-Net. To prepare a sufficient amount of training data,

we utilize various virtual cameras to generate x from HDR

images E [17]. For training, 336 HDR images were collected

from databases online available [35]–[40].

The training procedure of our CNN is shown as follows.
(i) Select 16 HDR images from the 336 HDR images at

random.

(ii) Generate 16 pairs of an input image and its target one

(x, Ẽ) from each HDR image. Each pair is generated in

accordance with the following steps.

(a) Crop HDR image E to an image patch Ẽ at N × N

pixels. The size N is given as a product of a uniform

random number in the range [0.2, 0.6] and the length

of the short side of E . In addition, the position of the

patch in E is also determined at random.

(b) Resize Ẽ to 256 × 256 pixels.

(c) Flip Ẽ horizontally or vertically with a probability

of 0.5.

(d) Calculate exposure X from Ẽ with X = 1t(v) · Ẽ ,

where pixel values larger than 1 are clipped. Shutter

speed 1t is calculated as 1t(v) = 0.18 ·2v/G(LẼ ) as

in [31] by using a uniform random number, v, in the

range [−2, 2]. G(LẼ ) is the geometric mean of the

luminance of Ẽ .

(e) Generate an input LDR image x from X by using

virtual camera f̃ , as

x = f̃ (X ) = (g̃(LX ) ⊘ LX ) ⊙ X , (12)

g̃(LX ) = (1 + η)(L
γ

X ⊘ (L
γ

X + η)), (13)

where η and γ are random numbers that follow nor-

mal distributions with a mean of 0.6 and a variance

of 0.1 and with a mean of 0.9 and a variance of 0.1,

respectively. LX is the luminance of X , and exponen-

tiation L
γ

X is calculated as a pixel-wise operation.

iii Predict 16 LDR images ŷ from 16 input LDR images x

by using iTM-Net.

iv Evaluate the loss between predicted images ŷ and target

images Ẽ by using eq. (5) with Reinhard’s global oper-

ator f̂ . Here, a = 0.18 is used in (8).

v Update filter weightsω and biases b in the CNNby back-

propagation.

In our experiments, iTM-Netwas trainedwith 1000 epochs,

where the above procedure was repeated 42 times in each

epoch. In addition, each HDR image had only one chance to

be selected in Step i in each epoch. He’s method [41] was

used for initializing iTM-Net. In addition, the Adam opti-

mizer [42] was utilized for optimization, where parameters

in Adam were set as α = 0.002, β1 = 0.9, and β2 = 0.999.

We implemented iTM-Net with Tensorflow and Keras, and

the training was run on a single NVIDIA GeForce 1080Ti

GPU.

IV. SIMULATION

We evaluated the effectiveness of the proposed method by

using two objective quality metrics in addition to visual

evaluation.

FIGURE 3. HDR-VDP-2.2 scores. (a) ITMO [15], (b) PMET [13],
(c) ExpandNet [18], (d) iTM-Net with LiTM (Proposed), (e) iTM-Net with
L1, and (f) iTM-Net with LExpand. Boxes span from first to third quartile,
referred to as Q1 and Q3, and whiskers show maximum and minimum
values in range of [Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)]. Band and cross
inside boxes indicate median and average value, respectively.

FIGURE 4. PU-encoding + MS-SSIM scores (a) ITMO [15], (b) PMET [13],
(c) ExpandNet [18], (d) iTM-Net with LiTM (Proposed), (e) iTM-Net with
L1, and (f) iTM-Net with LExpand. Boxes span from first to third quartile,
referred to as Q1 and Q3, and whiskers show maximum and minimum
values in range of [Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)]. Band and cross
inside boxes indicate median and average value, respectively.

A. SIMULATION CONDITIONS

The quality of HDR images Ê generated by using iTM-Net

was evaluated by using two objective quality metrics: HDR-

VDP-2.2 [43] and PU encoding [44] with MS-SSIM [45],

which utilize an original HDR image, E , as a reference.

In [46], it was shown that these metrics are suitable for

evaluating the quality of HDR images.

The two metrics are designed for evaluating the dif-

ference between two HDR images that have the abso-

lute luminance of a scene. Such HDR images, namely

HDR images having absolute luminance, are only in the

dataset [37]. Hence, 44 HDR images randomly selected

from the dataset [37] were used for the experiment. Note

that they were not used for training. Input LDR images

x were generated in accordance with Steps ii(d) and

ii(e) in Section III-F. In addition, predicted HDR images
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FIGURE 5. Experimental results [for image ‘‘ElCapitan’’]. Zoom-ins of boxed regions are shown in right of each HDR image. HDR images
(b)–(h) were tone-mapped for visualization, where scaling to match range of predicted HDR images with that of original HDR one was not
performed. Proposed iTM-Net (f) provided most similar image to original one (b), in six methods. (a) Input x . (b) Ground truth Ẽ (c) Direct
ITMO [15]. HDR-VDP: 32.27, MS-SSIM: 0.0990. (d) PMET [13]. HDR-VDP: 32.27, MS-SSIM: 0.0990. (e) ExpandNet [18]. HDR-VDP: 40.12, MS-SSIM:
0.7534. (f) iTM-Net with LiTM (Proposed). HDR-VDP: 71.77, MS-SSIM: 0.9966. (g) iTM-Net with L1. HDR-VDP: 49.99, MS-SSIM: 0.9664.
(h) iTM-Net with LExpand. HDR-VDP: 43.39, MS-SSIM: 0.9660.

Ê were scaled to match the range of Ê with that of

the original HDR image E because inverse tone mapping

methods can predict only HDR images having relative

luminance.

The proposed method was compared with three exist-

ing methods including state-of-the-art ones: direct inverse

tone mapping operator (Direct ITMO) [15], pseudo-multi-

exposure-based tone fusion (PMET) [13], ExpandNet [18].

The third method is CNN-based one, but the other methods

are not based on deep learning. For ExpandNet, the predic-

tions from this method were generated by using the trained

network which was made available online by the authors.

Furthermore, to clarify the effectiveness of the proposed loss

function, iTM-Net trained by three different loss functions,

i.e., the proposed loss LiTM (iTM-Net with LiTM), the stan-

dard L1-loss L1(ŷ,m(E)) without tone mapping (iTM-Net

with L1), and ExpandNet’s loss LExpand(ŷ,E) without tone

mapping (iTM-Net with LExpand).
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FIGURE 6. Experimental results [for image ‘‘DelicateArch’’]. Zoom-ins of boxed regions are shown in bottom of each predicted HDR image. HDR
images (b)–(h) were tone-mapped for visualization, where scaling to match range of predicted HDR images with that of original HDR one was
not performed. Proposed iTM-Net (f) provided most similar image to original one (b), in six methods. (a) Input x . (b) Ground truth Ẽ (c) Direct
ITMO [15].HDR-VDP: 38.73, MS-SSIM: 0.6927. (d) PMET [13]. HDR-VDP: 38.71, MS-SSIM: 0.7183. (e) ExpandNet [18]. HDR-VDP: 57.72, MS-SSIM:
0.9442. (f) iTM-Net with LiTM (Proposed). HDR-VDP: 68,87, MS-SSIM: 0.9933. (g) iTM-Net with L1. HDR-VDP: 58.73, MS-SSIM: 0.9692. (h) iTM-Net
with LExpand. HDR-VDP: 57.73, MS-SSIM: 0.9522.
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B. RESULTS

Figures 3 and 4 summarize quantitative evaluation results as

box plots for the 44 images in terms of HDR-VDP and PU

encoding+MS-SSIM, respectively. The boxes span from the

first to the third quartile, referred to as Q1 and Q3, and the

whiskers show the maximum and the minimum values in the

range of [Q1 − 1.5(Q3 −Q1),Q3 + 1.5(Q3 −Q1)]. The band

inside boxes indicates the median, i.e., the second quartile

Q2, and the cross inside boxes denotes the average value.

A larger value for both metrics means higher similarity

between a predicted HDR image and its original HDR image.

As shown in Figures 3 and 4, all iTM-Nets provided

higher median and average scores in terms of the two met-

rics, than the three conventional methods including Expand-

Net. These results indicate that HDR images predicted by

iTM-Nets were more similar to the original HDR images than

those predicted by the conventional methods. Since all of

the predicted HDR images were scaled to match the original

HDR images, the results illustrate that the proposed method

can linearize images with high quality. Hence, it is confirmed

that the proposed architecture can predict better HDR images

than ExpandNet’s one.

By comparing with iTM-Net with L1 and iTM-Net with

LExpand, iTM-Net with the proposed loss LiTM produced

higher scores of both metrics. Hence, the proposed loss func-

tion is effective at training CNNs for inverse tone mapping.

Figures 5 and 6 show examples of HDR images generated

by the six methods. Here, these images were tone-mapped

from predicted HDR images because HDR images cannot

be displayed in commonly used LDR devices, where scaling

to match the range of predicted HDR images with that of

corresponding original HDR ones was not performed. From

Figs. 5 and 6, it is confirmed that the proposed method

produced higher-quality HDR images, which are similar to

corresponding original HDR ones Ẽ , than the other methods.

For these reasons, it is shown that the proposed method

is effective at generating high-quality HDR images from

single LDR images. In particular, the use of the proposed loss

function enables us to improve the performance of CNNs for

inverse tone mapping.

V. CONCLUSION

In this paper, a novel inverse tone mapping network, called

‘‘iTM-Net’’, was proposed. For training iTM-Net, a novel

loss function that considers the non-linear relation between

HDR and LDR images was also proposed. In the proposed

loss function, target HDR images are tone-mapped into LDR

images by an invertible tone mapping operator. The use of

the proposed loss function enables us not only to normalize

HDR images, but also to distribute the pixel values of HDR

images like those of LDR ones. As a result, the perfor-

mance of CNNs for inverse tone mapping can be improved.

Experimental results showed that HDR images predicted by

iTM-Net trained with the proposed loss function have higher

quality than HDR ones predicted by conventional methods

including the state-of-the-art in terms of HDR-VDP-2.2 and

PU encoding + MS-SSIM. In addition, it was also confirmed

that the proposed loss function improves the performance of

CNNs compared with loss functions that do not consider the

non-linear relation.
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