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Abstract—Document networks, i.e., networks associated with
text information, are becoming increasingly popular due to
the ubiquity of Web documents, blogs, and various kinds of
online data. In this paper, we propose a novel topic modeling
framework for document networks, which builds a unified
generative topic model that is able to consider both text and
structure information for documents. A graphical model is
proposed to describe the generative model. On the top layer of
this graphical model, we define a novel multivariate Markov
Random Field for topic distribution random variables for
each document, to model the dependency relationships among
documents over the network structure. On the bottom layer, we
follow the traditional topic model to model the generation of
text for each document. A joint distribution function for both
the text and structure of the documents is thus provided. A
solution to estimate this topic model is given, by maximizing the
log-likelihood of the joint probability. Some important practical
issues in real applications are also discussed, including how to
decide the topic number and how to choose a good network
structure. We apply the model on two real datasets, DBLP
and Cora, and the experiments show that this model is more
effective in comparison with the state-of-the-art topic modeling
algorithms.

Keywords-document networks; topic model; Markov Ran-
dom Field.

I. INTRODUCTION

Document networks, i.e., information networks associ-
ated with text information, are ubiquitous and indispens-
able nowadays due to the popular use of web, blogs, and
various kinds of online databases. Examples of document
networks are: co-author networks and citation networks with
text extracted from publications for each author/paper in
bibliographic databases like DBLP1; social network with
text extracted from blogs and posts for each user in social
network sites like Facebook2; actor cooperation network
with text as movie plots they have stared in movie databases
like IMDB3, and so on. In this paper, we study the problem
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of building topic models on arbitrary document networks,
either weighted or unweighted, directed or undirected.

Similar to traditional topic modeling methods, such as
PLSA [1] and LDA [2], topic modeling on document net-
works tries to soft clustering the documents into different
clusters with the meaning of topics, and each topic is
described using a multinomial distribution over words. Thus,
each topic can be easily understood by browsing only
several top probability words in the distribution. Moreover,
by presenting topic membership probabilities (referred as
topic distribution thereafter) for each document, people
may understand the general content of that document. In
traditional topic modeling methods, documents are assumed
independent with each other, and no links among them
will be considered in the modeling process. However, in
real life, two documents can be linked together through all
sorts of semantics. For example, two papers can be linked
together via citations, two webpages can be linked together
by their hyper links, and two authors can be linked together
according to the co-author relationship. More importantly,
intuitively, two closely related documents should have sim-
ilar text information, which can be utilized to improve the
topic modeling. For example, if two researchers co-author
a lot, we can infer that they share similar topics. A set of
ideal independent documents in traditional topic model, and
a set of mutually dependent (or connected) documents in
real case are illustrated in Figure 1 (a) and (b), respectively.

a. Independent Documents b. Document Network

Figure 1. Two views on documents sets: Traditional topic model vs.
iTopicModel.



In the studies of information networks, clustering on
networks [3] or graph partitioning [4], [5], has been a
popular topic for over a decade. Similar to our problem
setting, similar objects are grouped into clusters according
to links among them. Unfortunately, most of these studies
are unable to utilize the text information that each node
may contain. Thus, clusters so detected may not be quite
accurate, especially when the network structure is sparse,
which is often the case in real life. Moreover, since the
clusters can only be described using objects rather than text,
it is not easy for users to understand the semantic meaning
of clusters so obtained, especially when the network is large.
Another weak point for merely using link information of a
network in clustering is that, connectivity is often required
for the network, otherwise an outlier node or an outlier
node group is either partitioned into a separate cluster, or
randomly assigned to one cluster. However, for example, in
a co-author network, a small group of authors may never co-
author with other authors, but we would still be interested
in their research areas.

Obviously, if one can utilize both the link information
among documents and text information for each document,
the topic modeling will be significantly improved. Currently,
there are some approaches proposed to improving traditional
topic models by integrating the complex structural informa-
tion with text. One is to design complex generative model for
text considering the semantic meaning associated with links
[6], [7]. Another is to add a graph regularization constraint
to the original log-likelihood objective function [8]. For the
first approach, the complex generative model requires lots of
expert knowledge and may not be easy to migrate to other
datasets; whereas for the second, the combined objective
function requires a parameter to adjust the weight of two
original objective functions, and it lacks a unified generative
model explanation.

In this paper, we propose a unified generative model
considering both text and structure information in a doc-
ument network, i.e., an information network with each node
containing text information. According to this model, each
topic is modeled with a multinomial distribution over words,
and each document in the network is associated with a T
dimensional random variable Θi, representing a topic distri-
bution vector, and the dependency relationships among the
variables are modeled using a multivariate Markov Random
Field, given the network structure. Based on the generative
model for the text and the structure, we then give the
parameter estimations by maximizing the log-likelihood of
the joint distribution of the generative model. Moreover, we
propose a Q-function-based topic number selection method,
which can help users decide the best topic number T , given
the current network with text. Thus, the contributions of this
study can be summarized as follows.

• A unified generative topic model is proposed for docu-
ment networks which considers both text and structure

information, and an efficient solution is provided to
estimate its parameters;

• a method is proposed to determine the topic number by
utilizing the link information in the network; and

• experiments are conducted on two real datasets, and
the results show the effectiveness of our model in
comparison with the existing state-of-the-art models.

The remaining of the paper is organized as follows. In
Section 2, we give a brief introduction to the related work.
In Section 3, we introduce our unified generative model and
give the estimation formulas to its parameters. In Section
4, we discuss several related issues in building generative
model for different real datasets for practical applications.
Section 5 is the experiment study, which compares our
model with several state-of-the-art models in two real
datasets. Section 6 concludes this study.

II. RELATED WORK

Topic modeling over documents is to find T topics that
best describe the given corpus by assuming each document
is a mixture model of these topics, where T is given and
each topic is described using a multinomial distribution over
words. PLSA (Probabilistic Latent Semantic Analysis) [1]
and LDA (Latent Dirichlet Allocation) [2] are two most
well known topic modeling methods. However, both PLSA
and LDA treat documents in a given corpus as independent
to each other. For example, in LDA, the random variable
of topic distribution parameter for each document Θi is
assumed i.i.d from a Dirichlet distribution. However, the
independence assumption may not hold in real cases, es-
pecially when documents are linked to each other via links
in the networks.

In order to integrate the structure information of docu-
ments into topic modeling, there are three lines of studies.
The first is to build complex generative models for docu-
ments, given the additional structural information. For ex-
ample, in author-topic model [6], [7], a document is modeled
as first choosing an author, then selecting a topic according
to the specific author’s topic distribution, and then selecting
a word from the corresponding topic. Such methods require
expert knowledge on the semantic meanings of the links
and is difficult to migrate to other datasets. The second line
of study is to add a regularization constraint on networks
to the traditional topic models, such as in the recently
proposed NetPLSA [8]. This type of methods combines
two objective functions into a new objective function, but
lacks a generative explanation to such combinations. Also,
NetPLSA can only deal with undirected networks. A newly
proposed method called Relational Topic Model (RTM)
[9] proposes another view and tries to model nodes and
links separately. However, RTM can only model unweighted
networks, where a link is either observed or unobservable.
Different from the three methods, in this paper, we propose
a unified generative model integrating both text information



and structural information, which is able to be applied to any
document networks, either weighted or unweighted, directed
or undirected. Other related studies include document classi-
fication and clustering that integrate both text and structural
information, such as in [10], [11], however, they have not
addressed the topic modeling problem, but aim at extracting
good features for better clustering or classification.

Clustering on networks, which aims at clustering nodes
of the network into different groups, has been studied
extensively. The most well known family of such methods
could be spectral clustering methods [5], and NCut [4] is one
of the most popular criteria in such algorithms. However,
such algorithms do not consider text information associated
with each node to help clustering.

Markov Random Field (MRF) [12], [13], [14] provides
a way to model the dependency among random variables,
according to their structural information described in a
graph. MRF has many applications in image processing,
spatial data analysis, and so on. In this paper, we will define
a novel multivariate MRF over the random variables of topic
distribution for each document, and model their dependency
using the links in the document network.

III. MODELING FOR ITOPICMODEL

In this section, we build a unified generative model
by integrating both structural and text information in a
document network.

A. Preliminaries

We first define some terms and notations that will be used
in the following context.

Definition 1. Document. A document xi in a document
collection X = {x1, x2, . . . , xN} is comprised of a bag
of words from a vocabulary Y = {y1, y2, . . . , yM}, and is
represented with vector xi = (ci1, ci2, . . . , ciM ), where cil

denotes the occurrence number of word yl in document xi.

Definition 2. Document Network. A document network G =
〈X,E,W 〉 is a graph defined on a document set X . E is
the link set, and e = 〈xi, xj〉 ∈ E if there is a link from
document xi to xj . W is the adjacency matrix denoting the
weights of the links, wij > 0 if there is a link from node
xi to xj , and the value of wij is the strength of the link
e = 〈xi, xj〉; wij = 0, otherwise.

Definition 3. Neighborhood. The neighborhood of a given
document xi in the document network G, denoted as N(i),
is defined as N(i) = Nout(i) ∪ Nin(i), where Nout(i) =
{xj |〈xi, xj〉 ∈ E} and Nin(i) = {xj |〈xj , xi〉 ∈ E},
representing the out-neighborhood and in-neighborhood re-
spectively.

In this paper, we confine our study on document networks
with nonnegative weights on links. For undirected networks,
they will be transformed to directed networks by converting

each undirected link into two directed links. For unweighted
networks, the weights of links are defined either 1 or 0,
representing the status of observed and unobserved respec-
tively. An example of directed document network is given
in Example 3.1, which is a paper citation network.

Example 3.1 (Paper Citation Network) Let X =
{x1, x2, . . . , xN} be the collection of all the papers in
a bibliographic database, each paper xi is a document,
which is comprised of a bag of words from a vocabulary
Y = {y1, y2, . . . , yM}. The text information for each paper
can be from titles, abstracts, or even full text, according to
the information availability of the database. For example,
in DBLP, only titles are available for each paper, while
for ACM Digital Library4, abstracts can also be obtained.
We build a network among these papers according to their
citation relationship, i.e., if xi cites xj , a link e = 〈xi, xj〉
with the weight wij = 1 is then added to E.

For topic modeling, given the topic number T , each topic
is modeled as a multinomial distribution over words, with the
parameter βT×M = {βkl} and

∑M
l=1 βkl = 1, denoting the

probability of word yl in topic k. Each document then can be
viewed as a mixture model over the T topics, and θ = {θik}
denotes the probability that xi belongs to topic k, with the
constraints that

∑T
k=1 θik = 1. Our topic modeling is to

find the best β and θ that maximizes the joint distribution
of a document network given the current observation of text
information and structural information.

For the self containment of this paper, we give a brief
introduction to Markov Random Field, mainly following the
work of [14].

Definition 4. Markov Random Field. Given a graph G =
〈V,E〉, where V = {1, . . . , n}, with each number as the
label for each node. Let F = {Fi}n

i=1 be a family of random
variables defined on the node set V , i.e., each node i is
associated with a random variable Fi. F is said to be a
Markov Random Field on V with respect to graph G if
and only if the following two conditions are satisfied:

P (f) > 0, ∀f ∈ F (1)

P (fi|f−i) = P (fi|fN(i)) (2)

where f = {f1, . . . , fn} is a configuration of F = {Fi}n
i=1,

P (f) is the abbreviation of P (F = f), P (fi) is the abbre-
viation of P (Fi = fi), F is all the possible configuration
set for F , {−i} denotes the node set V − {i}, which is
shortened as −i, f−i = {fj |j �= i} denotes the configuration
of F−i = {Fj |j �= i} defined on the nodes V − {i}, and
N(i) denotes the neighbors of the node i.

When Fi is a multivariate variable, we call such MRF
multivariate Markov Random Fields. Eq. (2) is called the

4http://portal.acm.org/dl.cfm



Notations Meanings
Plain capital letter F random variables
Plain small letter f specific values for their random variables
Bold capital letters Θi multivariate random variable associating with document xi, indicating

document topic distribution
Bold capital letters Θ = {Θi}N

i=1 a random variable family, each of which is a multivariate random
variable

Bold small letters θi, θ
′
i a vector indicating topic distribution for document xi, which is a

specific value for random vector Θi

Bold small letters θ = {θi}N
i=1, θ

′ = {θ′
i}N

i=1 a configuration of Θ
Bold small letters β parameters indicating word distribution for topics
Plain capital Greek letter Ψ = (θ, β) parameter for topic generative model
Bold small letters αi, α

0
i Dirichlet distribution parameters and priors for Θi

Plain small letters i, j, k, l indices: i, j for documents, k for topics, and l for words
Plain small letters with subscripts θik, βkl, αik elements of matrix or vector

Table I
NOTATIONS

markovianity property of MRF, also called the local prop-
erty. According to Hammersley-Clifford theorem, an MRF
defined as above can be factorized into the form of P (f) =
1
Z exp{−U(f)}, where Z =

∑
f∈F exp{−U(f)}, is called

the partition function, and U(f) =
∑

c∈C Vc(f), is called the
energy function. Vc(f) is defined over cliques c in the graph
G, and is called clique potentials. Therefore, there are two
equivalent methods to define an MRF: one is using the local
property to specify conditional probabilities P (fi|fN(i)),
and the other is to directly give the joint probability P (f),
according to its global property. Some major notations are
summarized in Table I.

B. Model Set Up

To integrate structure information in the network into
topic modeling, we now propose a novel unified generative
model, iTopicModel, for generating documents, which has
considered the dependency relationships among documents
given by the document network. The graphical model of
iTopicModel is in Figure 2, which can be viewed as two
layers. The top layer has the same topology as the document
network G. Let Θi be the T dimensional multivariate
random variable associated with document node xi on G,
and Θi and Θj be linked if and only if documents xi

and xj are linked in network G. Let Θ be {Θ1, . . . ,ΘN},
the family of multivariate random variables of Θi, and
a multivariate Markov Random Field is defined on Θ to
model the dependency among documents, which will give
different probabilities to different configurations of θ for Θ.
The bottom layer is composed of the traditional document
generative models for each document, where each word is
generated by first choosing a topic z with probability θiz

according to θ, which is the current configuration of Θ, and
then choosing a word yl from the vocabulary following the
distribution of topic z with βzl. The joint probability for
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Figure 2. Graphical Model of iTopicModel

both text and structure of documents is then defined as:

p(X,θ|G,β) = p(θ|G)p(X|θ, β) = p(θ|G)
N∏

i=1

p(xi|θi,β)

(3)
where documents are conditional independent with each
other given current configuration of θ for MRF Θ. We
can see that the joint distribution for text and structure is
decomposed into two parts, structure part denoted as p(θ|G),
and text generative part for each document xi as p(xi|θi,β).
We will give definitions for each part in the following.

1) Structure Modeling: Now we will define Markov
Random Field Θ on network G, and thus give the definition
for the structure probability p(θ|G). Intuitively, for each
document, their topic distribution should be very similar
to their neighboring documents. Therefore, we now try to
model this similarity by specifying the probability of a con-
figuration of a document using its neighbors’ configurations.
The higher probability the configuration is, the more similar
the document and its neighbors are. For each variable Θi

associated with document xi given its neighborhood, we



define it as a Dirichlet distribution, with the parameters
derived from the out neighbor variables ΘNout(i) and the
weight of the links between them:

p(θi|θNout(i)) ∼ Dirichlet(αi) =
1

B(αi)

T∏
k=1

θαik−1
ik (4)

where αi = αi|Nout(i) = α0
i +

∑
j∈Nout(i)

wijθj , α0
i is a

prior vector, and B(αi) =
∏T

k=1 Γ(αik)

Γ
(∑ T

k=1 αik

) is a multinomial

beta function. We give such definition with the following
intuitions:

1) In this definition, we only consider the out-
neighborhood of a document, for the reasons: (1) for
undirected networks, out-neighborhood is the same as
the whole neighborhood; and (2) for directed networks,
out links are more trustable than in links. For example,
in a citation network, a document xi could be cited by
many documents with all sorts of reasons, but most of
its references should be similar to it. Also, if a network
is transformed to a top-k network, where only the top-k
highest weight links are preserved for each document,
it is also more reliable to use the out-neighbors, i.e., its
top-k most linked documents.

2) A document’s topic distribution configuration θi should
be very close to weighted mean of its neighbors’ topic
distribution configurations θNout(i). This is satisfied,
since E(Θi|ΘNout(i)) = αi

|αi| , where |.| is the 1-
norm of vector, according to the property of Dirichlet
distribution.

3) The precision ([15]) about how close a configuration
θi is around the mean, which is |αi| =

∑T
k=1(α

0
i,k +∑

j∈Nout(i)
wijθjk) = |α0

i | +
∑

j∈Nout(i)
wij , is de-

termined by the total out degree of this document
(
∑

j∈Nout(i)
wij). The more out degree of a document,

the more information we know about this document,
thus the more we can trust with its neighbors (Θi has
higher confidence around the mean of αi/|αi|).

The prior α0
i is the prior knowledge we know about doc-

ument xi. It can be viewed that, there are T additional
documents in the network, with each document purely from
one topic (say kth), i.e., the topic distribution having the
value 1 at the kth component and all zeros at the remaining
components. Document xi then has links to each of them,
with the weight of α0

ik. When setting all α0
i as �1, they can

be viewed as a smoothing prior over the graph structure, i.e.,
each document can be viewed as linking to the additional
T documents with the weight of 1. This smoothing is
especially useful if a document has no neighbors in the
network, otherwise there will be computational problems.
When setting all of α0

i as 0, it can be viewed as no prior on
the network structure at all. Other settings can be viewed as
a prior knowledge of topic distribution θi on each document.
In the following experiments, we set α0

i as �1.

Next, we will give an MRF definition over Θ, which is
able to give the probability to a configuration over all the
documents and reflect the intuitions stated above. According
to the global property of MRF, the density function of Θ
can be factorized into the form:

p(θ) =
1
Z

exp{−
∑
c∈C

Vc(θ)} (5)

where Z =
∑

θ exp{−∑
c∈C Vc(θ)} is the partition func-

tion5, and c stands for the clique in graph G. In the
following, we only consider the potential functions defined
on single nodes and single edges.

Theorem 1. Given the potential functions defined on nodes
and edges as:

Vi(θi) = −(α0
i −�1)T log(θi)

Vi→j(θi,θj) =
{ −(wijθj)T log(θi), if 〈xi, xj〉 ∈ E;

0, otherwise.

define joint distribution p(θ) over Θ using the form of Eq.
(5), then the joint distribution is

p(θ|G) =
1
Z

exp{
∑

i

[(α0
i +

∑
j∈N(i)

wijθj −�1)T log(θi)]}

(6)
and Θ is an MRF.

Proof: Joint distribution of Eq. (6) can be directly ob-
tained. To prove Θ is an MRF, two conditions of MRF need
to be validated. Eq. (1) is easy to check. Markovianity of
MRF denoted by Eq. (2) is also easy to check: p(θi|θ−i) =
p(θi|θN(i)) ∝ exp{−Vi(θi) −

∑
j∈Nout(i)

Vi→j(θi,θj) −∑
j∈Nin(i) Vj→i(θj ,θi)}.
From Eq. (6), we can see that the joint distribution of

Θ can be viewed as 1
Z

∏N
i=1 B(αi)p(θi|θNout(i)), where

αi and p(θi|θNout(i)) follow the definition in Eq. (4). This
means a high probability global configuration for all the
documents is the configuration with good agreements in the
local structures.

2) Text Modeling: Now, we will consider the text part
p(xi|θi,β) of the joint distribution in Eq. (3). By assuming
each document is a mixture model over T topics, i.e.,

p(yl|xi) =
T∑

k=1

p(z = k|xi)p(yl|z = k) =
T∑

k=1

θikβkl,

and each word is generated following multinomial dis-
tribution, the probability to generate document xi given
parameter θ and β is:

p(xi|θ,β) =
M∏
l=1

p(yl|xi,θ,β)cil =
M∏
l=1

[
T∑

k=1

θikβkj ]cil (7)

5We use sum (
∑

) instead of integration (
∫

) over all the configuration
of θ for better understanding, though θ is now in a continuous space.



Notice that p(xi|θi,β) = p(xi|θ,β), since xi is only
dependent on topic distribution of the same document θi.
In traditional topic modeling methods, documents are then
assumed to be independent to each other to derive the joint
distribution. In PLSA [1], the joint probability is equivalent
to the multiplication of probabilities of observing each doc-
ument

∏N
i=1 p(xi|θ,β). In LDA [2], the distributions over

topics for each document Θi = (Θi1, . . . ,ΘiT ) is assumed
to follow the Dirichlet distribution with parameter α, which
serves as a prior, independently, and the joint probability is
the multiplication of the probabilities of generating each of
the documents

∏N
i=1 p(xi|α,β).

C. Parameter Estimation

In Section III-B, a generative model for document network
called iTopicModel has been proposed and a joint probability
function of both text and structure is thus defined. In this
section, we will give the parameter estimation method by
maximizing the log-likelihood of the joint distribution.

log L = log p(X,θ|G,β) (replacing with Eqs. (6) and (7))

=
N∑

i=1

T∑
k=1

(
(α0

i,k − 1) log θik +
N∑

j=1

wijθjk log θik

)

+
N∑

i=1

M∑
l=1

cil log(
T∑

k=1

βklθik) − log Z

(8)

where Z is a constant and can be neglected for maximiza-
tion.

The parameters we are going to estimate are Ψ =
(θ{N×T},β{T×M}), which is the same as in PLSA and
NT + TM in total. We now use an approximate EM
algorithm to get the best estimators by maximizing the log-
likelihood in Eq. (8), with the constraints that

∑T
k=1 θik = 1

for all i and
∑M

l=1 βkl = 1 for all k. The hidden variable
in the likelihood function is the topic indicator variable z
for each word in each document, and p(z = k|xi, yl,Ψ) ∝
p(z = k, yl|xi,Ψ) = p(z|xi,Ψ)p(yl|z,Ψ), thus:

p(z = k|xi, yl,Ψ) =
βklθik∑T

k′=1 βk′lθik′
(9)

In the E-step, conditional expectation of log L given
current value of parameters and conditional distribution of
z is:

Q(Ψ|Ψ(t)) = Ez|X,Ψ(t)(log L)

=
N∑

i=1

T∑
k=1

(
(α0

i,k − 1) log θik +
N∑

j=1

wijθ
(t)
jk log θik

)

+
N∑

i=1

M∑
l=1

cil

T∑
k=1

p(z = k|xi, yl,Ψ(t)) log(βklθik)

In the M-step, find the best Ψ that maximizes Q function:
Ψ(t+1) = arg max

Ψ
Q(Ψ|Ψ(t)) , with the constrains on

the parameters. By standard calculation with the help of
Lagrange multipliers, the updated formulas for Ψ are:

θ
(t+1)
ik =

α0
i,k − 1 +

∑ N
j=1 wijθ

(t)
jk +

∑ M
l=1 cilp(z = k|xi, yl, Ψ

(t))∑ T
k=1 α0

i,k − T +
∑ N

j=1 wij +
∑ M

l=1 cil

(10)

β
(t+1)
kl =

∑ N
i=1 cilp(z = k|xi, yl, Ψ

t)∑ M
l′=1

∑ N
i=1 cil′p(z = k|xi, y′

l, Ψ
(t))

(11)

By iteratively applying Eqs. (9), (10) and (11), a local
maximum of Ψ will be achieved. By observing Eq. (10),
it is interesting to see that at each iteration, θi uses two
parts of information to update itself, one is from structural
information and the other is from text information. What is
more, the structural information used in the updating is just
the Dirichlet parameter αi for p(θi|θNout(i)), which means
at each iteration out neighboring topic distributions are used
as priors to derive posterior topic distribution for xi given
the observation of text in the document xi.

D. Discussions of MRF Modeling on Network Structure

In Section III-B, we have given a new topic model,
iTopicModel, that integrates both text information and struc-
tural information among documents. We decompose the
joint distribution of text and structure into two independent
components, one is the structure layer modeled with MRF,
and the other is the text layer given the current structure pa-
rameter modeled as traditional topic model. For the structure
layer, we define an MRF using Eq. (6). Actually, different
MRF models can be used in the structure layer of our
framework, with different intuitions.

Now we give another MRF definition over the structural
layer using both conditional probability and joint probability
definition, and then relate it with a newly proposed graph
regularization-based topic model method NetPLSA [8].

• Conditional probability definition (local property):

p(θi|θ−i) =
exp{− 1

2

∑
j∈N(i) wij ||θi − θj ||2}∑

θ′
i
exp{− 1

2

∑
j∈N(i) wij ||θ′

i − θj ||2}
where ||.|| is the L2 norm of vector. The intuition of
this definition is that the smaller the weighted sum
of distance between θi and its neighbors, the higher
probability it is, where the distance is evaluated by
square of Euclidean distance. Also, the larger strength
of a link of two nodes, the closer the two node variables
should be.

It can be proved that an equivalent joint distribution can
be defined in the following global definition.

• Joint probability definition (global property):

p(θ) =
1
Z

exp{−
∑

〈i,j〉∈E

V2(θi,θj)}

where V2(θi,θj) = 1
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From the definition, we can see that the direction of links
are not considered, and even directed networks will be con-
sidered as indirected networks. Under this joint distribution
of θ, the log-likelihood can be derived as (with constant
normalization part Z neglected):

log L = − 1
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wij
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+
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cil log(
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βklθik)

(12)

Comparing Eq. (12) with objective function that is to be
maximized given by Eq. (6) in NetPLSA [8], which we
rewrite using the notations in this paper in the following,

O(X, G) = − λ
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(13)

we then can find that this log-likelihood (Eq. (12)) is a
special case of Eq. (13) with a fixed parameter λ = 1

2 . It is
easy to see, we can multiply potential functions V2(θi,θj)
with constant c to get other λ in Eq. (13). Usually, this
constant is represented as 1

T in MRF, where T is the
temperature of the system. When temperature T is very
high, a higher energy state U(θ) is allowed, and in our
case a more irregular network structure is allowed. Notice
that, a similar parameter can be used in iTopicModel. As
we can see, NetPLSA can be integrated into the framework
of our model, with a different definition of Markov Random
Field, but with the limits that can only deal with undirected
networks. Other definitions may also be used under this
framework, but need careful reasoning and tests.

IV. DISCUSSIONS: PRACTICAL ISSUES

In this section, we discuss several practical issues in real
applications, such as how to decide the number of topics,
how to build a concept hierarchy, and how to choose among
several possible networks. Experiments are provided in the
later section to demonstrate these issues.

A. Deciding the Number of Topics

How to set the number of topics in topic modeling
is always a challenging problem. One possible method is
varying the topic number T and choosing the one that
maximizes the log-likelihood log(L|T ), such as in Griffiths’
work [16]. However, in our model, partition function Z is
usually intractable to calculate, and it is a function of T
as well. It is difficult to get the exact value of log(L|T ).
In network clustering, there is a well known modularity
function called Q-function [3], which provides a measure to
evaluate the goodness of a clustering on the network. In the
original work, they only considered the network with either
0 or 1 weights for edges. Now we extend it to networks
with non-negative weights of edges. In our method, topic
distribution for each document could be viewed as a soft
clustering result. Then we map it to a hard clustering by

assigning the cluster label with the highest probability to
each xi. Let CN×T denote the hard clustering indicator
matrix, we thus give the Q-function over network G given
θ as:

Q(C|G) =
T∑
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D
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2
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(14)

where Xk denotes the set of nodes belonging to cluster
k, w(Xk,Xk) denotes the total weights of links whose
both nodes are in cluster k, w(Xk,X) denotes the total
weights of links that contains at least one node in cluster
k, and D =

∑N
i=1

∑N
j=1 wij is the total weights of all

the edges. This formula calculates the difference between
within-cluster percentage of edges and the percentage of
edges in a random case. Q varies from 0, when the net-
work is totally random and has no clustering structure; to
approaching 1 (actually 1 − 1/T ), when there are no inter-
cluster edges at all. According to [3], Q lies in the range
of [0.3, 0.7] for networks with strong community structure.
By varying the number of topics, we can select the T that
maximizes Q-function defined in Eq. (14).

B. Building Concept Hierarchies

Concept hierarchies would be very useful for data analy-
sis. For example, concept hierarchies such as ACM Classifi-
cation System6, would help authors to classify their papers,
and help users index and search papers in a large collection
of bibliographic data. However, it requires a lot of human
labor to build such concept hierarchies manually, when
the dataset is large. Also, the concept hierarchies may be
changing along with time, e.g., ACM Classification System
has been changed several times since its first appearance.
Therefore, automatically building concept hierarchies that
are described using topics, would be very useful for data
analysis tasks, e.g., OLAP service.

A key problem in building concept hierarchy using topic
modeling in a heterogeneous network that contains multiple
types of objects is that, we should carefully select different
object types to be the documents in different scales. For
example, a conference network should be enough to find the
first level topics. While for finer level topics, conference will
be too coarse. In contrast, it may not be wise to use papers
to get the first level topics, since they contain too detailed
information and are not able to generate the overall view of
the data. We will illustrate how to build a concept hierarchy
using the DBLP data as an example in the experiment part.
It turns out that, by recursively applying iTopicModel on
the sub document network, with Q-function as the branch
selection measure, a concept hierarchy can be automatically
built.

6http://www.acm.org/about/class/



C. Effects of Network Structures

For the same document corpus, there are multiple ways
to construct networks among documents. For a collection
of papers in bibliographic database, paper citation network
introduced in Ex. 3.1 can be built. Similarly, networks can
also be constructed based on co-author relationships, or
through text similarity. Consider the following two extreme
cases of the relation between network and text information:

1) The links of the network among documents are ran-
domly formed, and in this case network structure will
not help topic modeling, and even deteriorate the per-
formance of results.

2) The links of the network among documents are built
exactly through the text information, and in this case
network structure will not improve the topic modeling
performance too much.

In order to measure how close a network over the documents
to the text information this document corpus contains, we
propose a correlation measure between network and text
information:

Corr(G, X) =

∑
〈xi,xj〉∈E wijsim(xi, xj)√∑

〈xi,xj〉∈E w2
ij

√∑
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(15)

where G,X, xi, xj are defined as in Section III-A.
sim(xi, xj) is the similarity measure for two documents,
and it is defined as cos(xi,xj), where xi is the word
count vector defined in Section III-A. We can also use
tfidf instead of word count in the representation vector.
How correlation between network and text impacts the topic
modeling performance will be studied in Section V-D.

Another question would be, shall we trust all the links
in the network? The answer will be no. According to our
experimental study, a network that has too many small
weight links will degrade the performance of iTopicModel,
since small weight links may happen occasionally, only link
with a larger weight shows a consistent, strong relation
among documents. So we transform our original networks
into a KNN network, which means a document only keeps
K most connected documents as neighbors, according to the
weight of links.

V. EXPERIMENTS

In this section, we apply our model to several real
datasets, and show its usefulness in real applications and
its effectiveness over several state-of-the-art models. Also,
we study the impacts of different network structures on the
topic modeling, which could be served as a hint to choose
network structures in real cases.

A. Datasets

We use two datasets in the experiments, the DBLP dataset
and the Cora Research Paper Classification dataset7. For the

7http://www.cs.umass.edu/∼mccallum/code-data.html

DBLP data, we extract two datasets: (i) the “all-area” data
set, which contains top 1000 conferences and top 50000
authors by their publication numbers, and all the publications
of these authors; and (ii) “four-area” dataset, which includes
20 major conferences from four related areas, i.e., database,
data mining, machine learning and information retrieval,
and all the 28702 authors and their publications in these
conferences. For the Cora dataset, after preprocessing, we
get 19396 papers with their citation lists, author lists and
title information. Each paper in Cora has a classification
label from total 70 classes. Notice that, for both datasets,
we only have titles as text information for papers.

B. Building Concept Hierarchies in DBLP

In this case study, we use the DBLP “all-area” dataset
to build concept hierarchies in Computer Science. Different
document networks can be obtained from the data. For
conferences, network is derived from shared author numbers
between conferences, and document for each conference is
the compacted titles of all the papers in that conference.
For authors, networks is formed by the co-authorship, i.e.,
the number of papers they co-authored, and the document
for each author is the grouped titles of all the papers that
author published. For papers, networks can be formed by
either the similarity of text between paper titles or the shared
author number between papers, and the title itself serves
as a document. As discussed in Section IV-B, for the first
level, we use conference network to generate the most coarse
topics. By using the modularity measure Q-function defined
as in Eq. (14), we found 7 is the best topic number. The
Q-function measure varying with different topic number T
is shown in Figure 3. The seven topics are summarized
in Table II by top-10 words in each topic. For further
modeling on a parent topic, we use conferences that have
max probabilities in that topic as a constraint to select top
1000 authors appearing in those conferences and build the
author network. The subtopics in the subarea of Topic 4 at
the first level is shown in Table III.
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Figure 3. Q-function vs. Topic Number T

C. Performance Study on Topic Modeling

How to judge whether a topic modeling is good? One
typical method is to print the top-ranked words and judge



Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
network network parallel system system graph image
system model design data software problem recognition

performance algorithm test model design algorithm base
distribute neural simulation database web set model
wireless fuzzy high language information bound 3d
protocol method architecture base computer tree video
control analysis power program model complexity detection
scheme learn circuit approach environment linear robot
channel problem memory query management order motion
mobile genetic fault knowledge development function segmentation

Table II
FIRST LEVEL TOPICS IN DBLP (BEST T = 7, TOP-10 WORDS FOR EACH TOPIC)

Topic 4.1 Topic 4.2 Topic 4.3 Topic 4.4 Topic 4.5 Topic 4.6
logic web data learn database agent

program information mine algorithm data system
reason retrieval efficient network system plan

constraint model cluster model query model
knowledge semantic query data object learn

set system index analysis xml multiagent
semantics language algorithm structure management knowledge

theory document network protein model problem
model knowledge search tree process approach

language base database sequence distribute robot

Table III
SUB TOPICS OF TOPIC 4 IN LEVEL 1 (BEST T = 6, TOP-10 WORDS FOR EACH TOPIC)

them by experience. We use two measures to compare
the results of different topic modeling methods: (i) NMI
(Normalized Mutual Information) [17] that measures the
goodness of document clustering results mapped from topic
distribution over documents θ by comparing them with
the human-labeled clustering results, and (ii) Q-function
measure as defined in Eq. (14) that measures the consistency
of the clustering results over the network. NMI is used
to compare two clustering results, say C and C′, without
knowing the mapping relation between them:

NMI(C, C′
) =

∑
i∈C

∑
j∈C′ p(i, j) log(

p(i,j)
pC(i)pC′ (j) )√∑

i∈C pC(i) log pC′ (j) × ∑
j∈C′ pC′ (j) log pC′ (j)

(16)

where i and j are cluster labels in C and C′, p(i, j) is the
percentage of shared common objects in both clusters i and
j, pC(i) the percentage of objects in i in clustering C, and
pC′(j) the percentage of objects in j in clustering C′. NMI
is in the range of [0, 1], and higher value means higher
agreement among two clusterings.

We use three different networks, conference net and
author net from DBLP, and paper citation net from Cora.
Conference net and author net (top 1000 authors used)
are extracted from the DBLP “four-area” dataset using the
methods described in Section V-B, named as “ConfNet”
and “AuthorNet” respectively. For the paper citation net, we
selected five classes in the level of whole computer science,
named as “PaperNet-Cite”. We labeled the 20 conferences
and 200 authors sampled from the 1000 authors to the
four areas for “ConfNet” and “AuthorNet”, and use the
classification labels for papers from Cora data.

Four topic modeling methods, PLSA, LDA, netPLSA, and
iTopicModel, are studied. We use topic modeling toolbox
[18] for the LDA method. The results are summarized in
Tables IV and V. All the results are based on 10 rounds
running of each algorithm. The experiments show that, in the
measure of NMI, iTopicModel outperforms or has compa-
rable performance in all the datasets, and especially good at
the document network that with very short text information
in each document, such as “PaperNet”. We can see that,
without the information of links among papers, PLSA and
LDA can rarely get the right clusters for each document
in “PaperNet”. But for NetPLSA and iTopicModel, since
they have considered the network structure, the clustering
results are much better; and the latter is even better than the
former in most datasets, since it has a better MRF definition
to model the dependency relation among documents. Notice
that, the NMI is not that high partly because the classification
data provided in Cora is not that accurate, warned by the
data provider. Also, we actually can pick the best result
among several runnings according to the final logL (the
larger the better). In our case for dataset “PaperNet-Cite”,
we can get results with NMI above 0.5. In the measure of
Q-function, iTopicModel consistently provides better topics
that are consistent with the network structure.

D. Network Structure Study

We build three different networks for papers using the
dataset of Cora, and study the relationship between their
correlations to the text and the topic modeling performance.
Besides the citation networks, we also construct networks for
papers using the co-author number, i.e., “PaperNet-Author”,



PLSA LDA NetPLSA iTopicModel

ConfNet 0.7959 0.7469 0.7291 0.8255
AuthorNet 0.4059 0.5639 0.4761 0.5360

PaperNet-Cite 0.1287 0.0674 0.4291 0.4424

Table IV
DOCUMENT CLUSTERING ACCURACY: NMI

PLSA LDA NetPLSA iTopicModel

ConfNet 0.4364 0.4370 0.4368 0.4440
AuthorNet 0.4059 0.4910 0.4760 0.4938

PaperNet-Cite 0.1703 0.0984 0.4760 0.5783

Table V
CLUSTERING CONSISTENCY: Q-FUNCTION

and co-text number, i.e., “PaperNet-Text’. Co-text number
means the co-occurrence word number for any two papers.
The results are summarized in Table VI. From the results we
can see that, for paper network built from text, the clustering
performance is very similar to topic modeling using only
text information (see NMI result in Table IV for PLSA).
Actually, “ConfNet” also has a high correlation between
network and text, and thus the performance for iTopicModel
has not improved too much from PLSA for this network.

PaperNet-Cite PaperNet-Author PaperNet-Text
NMI 0.4424 0.2329 0.1404

Q 0.5783 0.6310 0.3253
Corr 0.1719 0.1420 0.7658

Table VI
NETWORK STRUCTURE STUDY

VI. CONCLUSIONS

In this paper, a new framework of generative topic
model called iTopicModel is proposed that integrates both
network structure and text information for the popularly
encountered document networks. This model has a two-
layer graphical model structure. On the top, a reasonable
multivariate Markov Random Field is defined to model the
dependency relations among documents. On the bottom, a
traditional document generative model is used, which is
conditionally independent with each other given the current
topic distribution configurations. A joint probability function
is then defined based on the graphical model. We then
propose an EM-based iterative solution to estimate the set
of best parameters that maximizes the log-likelihood of the
joint distribution. Our experiments show that this model
is more effective than the state-of-the-art topic modeling
methods, in both aspects: following human intuition and
being consistent with the network structure. Also, we show
that this model, with the help of Q-function, can help us
automatically build concept hierarchy in online databases.
The future work could be on how to build topic models that
integrate different network structures with text information.
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