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Abstract: Recently, many platforms have outsourced tasks to numerous smartphone devices known
as Mobile Crowd-sourcing System (MCS). The data is collected and transferred to the platform for
further analysis and processing. These data needs to maintain confidentiality while moving from
smartphones to the platform. Moreover, the limitations of computation resources in smartphones
need to be addressed to balance the confidentiality of the data and the capabilities of the devices.
For this reason, elliptic curve cryptography (ECC) is accepted, widespread, and suitable for use in
limited resources environments such as smartphone devices. ECC reduces energy consumption
and maximizes devices’ efficiency by using small crypto keys with the same strength of the
required cryptography of other cryptosystems. Thus, ECC is the preferred approach for many
environments, including the MCS, Internet of Things (IoT) and wireless sensor networks (WSNs).
Many implementations of ECC increase the process of encryption and/or increase the space overhead
by, for instance, incorrectly mapping points to EC with extra padding bits. Moreover, the wrong
mapping method used in ECC results in increasing the computation efforts. This study provides
comprehensive details about the mapping techniques used in the ECC mapping phase, and presents
performance results about widely used elliptic curves. In addition, it suggests an optimal enhanced
mapping method and size of padding bit to secure communications that guarantee the successful
mapping of points to EC and reduce the size of padding bits.

Keywords: concatenation method; elliptic curve cryptography; encoding phase; mapping phase;
mobile crowed-sourcing systems; probability method

1. Introduction

The rapid increase of smartphones that are equipped with many useful sensors [1,2], such as,
Global Positioning System (GPS), gyroscopes, meter sensors, etc., and their ability to connect to the
Internet using 3G/4G/5G connectivity, have increased the growth and the use of MCSs [3]. MCS is an
approach to outsource tasks to several smartphones to collect specific data into a centralized platform
to analyze and process these data in order to share it with specific users. There are many applications
behind MCSs, such as monitoring the environment, monitoring the road traffic, etc., as depicted in
Figure 1. For example, Alhogail, Areej, et al [4] developed an Umrah Electronic Guide system
that facilitated GPS Positioning and counting techniques to self-guide Pilgrims during Umrah
activities. However, MCSs transmitted these data over an insecure network (the Internet). Therefore,
the confidentiality of these data and the identity of the smartphone users need to be maintained.
In addition, the MCS uses low capability devices (i.e., smartphones) to collect and transmit these data;
thus, the cryptography system needs to address these limitations.
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Figure 1. Applications of a Mobile Crowd-sourcing System.

Lightweight encryption schemes such as elliptic curve cryptography (ECC) are becoming
increasingly desirable due to the growing interest surrounding the use of low computing power
devices, particularly those associated with the Internet of Things (IoT) and wireless sensor networks
(WSNs) [5–12]. Encryption schemes of this kind satisfy the need to maintain the confidentiality and
integrity of transmitted data without compromising performance. Schemes such as ECC consist
of many phases [13,14]. These phases are: initialising, encoding, mapping, encryption, signing,
verifying, decrypting, decoding, and —finally—converting to the message [15]. Given the multi-phase
nature of ECC and several other encryption schemes, it is possible that security flaws, vulnerabilities,
and performance overheads may increase [16]. For this reason, deriving value from the use of ECC
depends on the effective implementation of each phase, as well as robust and reliable performance
evaluation. Therefore, this study helps to address MCS and the expansion of cities and urbanization
for disseminating the services through efficient ECC and an enhanced mapping phase.

The mapping phase in ECC consists of a mathematical equation that represents the elliptic curve,
which is given as follows:

y2 ≡ x3 + a x + b mod p (1)

where a, b ∈ Zp and 4a3 + 27b2 6= 0 mod p. A given x is said to be mapped to the elliptic curve
if and only if there exists a corresponding y that satisfies Equation (1). If no such y exists, then x

is not mapped to the elliptic curve. The crucial advantage associated with mapping points to an
elliptic curve stems from an exploitation of the elliptic curve discrete logarithm problem (ECDLP) [17],
which constitutes the base of ECC. However, if a message M, encrypted using ECC, did not map to
an elliptic curve (i.e., the x value of M has no corresponding y), then it is necessary to increment x

and recalculate until y is found [18–20]. However, the increment to x changes M, thereby resulting
in the wrong decoding phase for the retrieval of M. Thus, to secure messages in the encoding and
decoding phases, certain bits should be concatenated to mapping points to avoid changing the original
message. In the decoding phase, these padding bits are removed from the mapped points in a safe and
secure manner.

Preliminary: Elliptic Curve Cryptography (ECC)

ECC is used widely in constrained environments, particularly those relying on low computing
power devices (e.g., IoT and WSNs) [21–23]. It provides the same level of cryptographic hardness
as do other asymmetric cryptography protocols, but it is marked by small key sizes and higher
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performance [24,25]. For instance, cryptography schemes relying on a 1024-bit key with the
Rivest-Shamir-Adleman (RSA) algorithm achieve the same level of cryptographic hardness that
is associated with ECC with a 160-bit key. The result of the difference in key sizes leads to the low
capabilities devices performing more effective computing [26,27]. The base of hardness in ECC is
the discrete logarithm structure of elliptic curves over finite fields [28,29], where the ECC is used to
exchange keys, and to encrypt transmitted message between two parties [30–32]. Additionally, ECC is
used to ensure the integrity of transmitted messages and non-repudiation using elliptic curve digital
signature algorithms (ECDSA) [33,34]. Many schemes use ECC to secure communications, and these
schemes vary depending on the type of ECC that used [35–37]. For instance, some schemes use ECC to
exchange a shared key between two parties, other schemes are applied to secure the confidentiality
and integrity of messages.

Two operations are defined on the elliptic curve. The first is addition ‘+’. Let P and Q be two points
on the elliptic curve, where P = (x1, y1) and Q = (x2, y2). Then the operation P + Q on the elliptic
curve is defined as = (x1, y1) + (x2, y2) = (x3, y3). Notably, (x3, y3) is the third point on the elliptic
curve that intersects with the line between P and Q. If P = Q, then P + P = (x1, y1) + (x1, y1) = 2P is
defined as point doubling.

The major operation in ECC is group multiplication [38,39]. It is the number of operations of
group point doubling. It consists of two variables: firstly, d, which is an integer known only to the
participants, and which serves as the private key; and secondly, G = (xi, yi), which is the base point
on the elliptic curve. The public key is the product of the operation dG, which is the d doubling
times for the base point G. This operation results in point (xj, yj). ECC’s security stems from the
computational hardness associated with finding d when the adversary has the base point G and the
public key [17]. The abovementioned ECDLP stipulates that there is no efficient algorithm that yields
d in polynomial time.

To secure communications, maintain data integrity, and exchange keys, ECC consists of several
phases [13,14]. Certain ECC applications use these phases to provide authenticated encryption (AE),
while others use the phases to offer integrity or confidentiality. The following are the phases involved
in ECC:

• Initialising and generating system parameters, which includes defining the elliptic curve and base
points, and calculating the private key Pr and the public key Pu.

• Encoding the plaintext message M to numerical values for use in the next phase.

• Mapping the numerical values to the elliptic curve to exploit the ECDLP.

• Encrypting the mapped values.

• Hashing the encrypted message (i.e., for signing).

• Verifying the received ciphertext.

• Decrypting the ciphertext.

• Decoding the decrypted ciphertext to convert it into numerical values.

• Converting numerical values into the plaintext message M.

In ECC, the initializing and generating phase requires the greatest effort in terms of computation.
This is because it is during this stage that the computation of the keys is completed. As previously
noted, the public key is obtained by calculating the d × G where the d is the private key known by
the sender only and G is the EC base point [40,41]. Several strategies are available for optimising this
phase, for instance, improving scalar multiplication on the elliptic curve. The encoding phase involves
techniques that convert the message characters into numerical values. This is necessary because the
ECC cryptosystem deals with numbers [42]. Similarly, the mapping phase facilitates the mapping of
the numerical values outputted from the previous phase to the elliptic curve, where its equation is used
to identify the elliptic curve’s pair points [43]. Next, the encryption phase involves it being represented
by the summation of the mapped points and the public key. Finally, the transmitted ciphertext is signed
to authenticate the sender and, in this way, secure it against tampering. The remaining phases invert
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the preceding phases, in which the recipient verifies the received ciphertext, decrypts the ciphertext,
decodes the numerical values, and converts it into plaintext.

This paper’s objective is to present an effective mapping phase performance in ECC. To achieve
this objective, several secondary goals must be addressed. In particular, it is necessary to gain
insight into the current techniques used to pad bits in the mapping phase. Additionally, for each
technique, this paper presents a performance analysis and evaluation. In turn, this paper provides a
comprehensive investigation of the mapping phase for several known and widely used elliptic curves.
For instance, secp192k1, NIST-224, and secp256k1 are examined [44–46]. Finally, this paper proposes
effective padding bit values and a method that guarantees successful mapping, as well as efficiency
using the least number of bits. A performance evaluation of the proposed method is given, comparing
its results against those of the schemes presented in the related work section. The rest of this paper is
organised as follows: the next section discusses related work on the mapping phase; the following
section presents the study of padding bits and the effective bit values for padding encoded messages;
the subsequent section describes the evaluation performance of the proposed method; and the last
section offers concluding remarks, as well as avenues for future work.

2. Related Works

Existing schemes use ECC to reduce the encryption processing overhead. This is valuable due to
the limitations of low computing power devices [47–49]. However, many of these schemes provide
scant details about how a message should be padded in order to map it successfully to the elliptic
curve [50–52]. Noteworthily, existing schemes have introduced significant enhancements in many areas
of the elliptic curve, including scalar multiplication on the elliptic curve, encoding phase processing,
and the mapping phase. To illustrate, MCS schemes in [53,54] and similar proposed schemes
in [55,56] use ECC without elaborating on the processing associated with each phase. For this reason,
these schemes provide reduction on the processing computation and power consumption. However,
many proposed schemes have enhanced the phases involved in ECC. For instance, refs. [57,58]
introduced efficient algorithms to increase scalar multiplication performance on the elliptic curve.
Equally important, other proposed schemes have described how the ECC phases can be performed,
but they neglect to use (or to elaborate on) the approach to padding bits used to secure the mapping
phase [59,60]. Moreover, many studies have provided details on the mapping phase, specifically
the padding bits step, where the mapped point requires additional bits to secure the ciphertext
mapped to the elliptic curve. The remainder of this review of related work focuses on these studies
and, in particular, addresses the process of how the padding bits step can improve the transmission
performance and reduce the size of the ciphertext.

Four decades ago, ECC was proposed by Koblitz and Miller [61], and it began to be widely used
in the beginning of this millennium [62–68]. The first curve used in ECC was introduced by Koblitz in
1987 [69]. Koblitz specified the steps needed to map plaintext to the suggested curve. More specifically,
the author proposed several methods to ensure the successful mapping of x1 to the elliptic curve.
Some of these methods necessitate a large computational overhead, which means they are unsuitable
for environments that rely on low computing power devices. However, Koblitz proposed one method
that was suitable for such environments, where x1 is assumed to be an integer value. Thus, in this
method, it is concatenated with 3 digits. In turn, the new x1 value is safely incremented until y1 is
obtained. Once (x1, y1) is mapped to the elliptic curve, the x1 is straightforwardly decoded by removing
the concatenated three digits. Resultantly, concatenating three digits is equivalent to padding 24 bits to
x1, which corresponds to 224 rounds to find the corresponding y1.

In 2018, Tiwari & Kim [70] introduced a novel approach using DNA-based ECC. In this approach,
genome sequences are used to assign different values to each character set in the message. In turn,
every m is mapped to the elliptic curve by multiplying it with a random integer r such that mr < p,
where p is a large prime. Furthermore, if the mapping of mr fails, then the value is incremented by 1
and the mapping method is repeated. Moreover, when the mapping process is completed, the authors
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described the reverse approach to represent the original value of m by taking the ceiling value after
dividing the mapped point by r. Using this approach, m can be secured when mapping it to the
elliptic curve for r rounds. However, a limitation of this approach is that the authors failed to specify
requirements regarding the acceptable size of r. Similarly, the authors did not describe the impact of
selecting an improper value of r.

Message mapping and reverse mapping in ECC was introduced by Sengupta & Ray in 2016 [71].
In their paper, the authors gathered the characters taken from a message into a group to map it to the
elliptic curve. Subsequently, the authors suggested concatenating N bits to this group of characters.
The authors stated that the value of N enables the counting of the number of rounds needed to map
the group, where the number of rounds amounts to 2N . In addition, the authors stated that no known
algorithm existed for finding the optimal value of N, and the only approach involved determining the
coordinates on the curve (i.e., solving the ECDLP). Thus, the authors used an 8-bit value of N as they
suggested that the maximum value of N is always less than a certain value. They observed that 8 bits
were adequate for use as the maximum of that value. Using this value, mapping to the EC gives 28

rounds for guaranteeing successful mapping to the elliptic curve.
In 2009, King [72] described an approach for mapping a message to an elliptic curve using a

probabilistic strategy. The author used the binary representation of a message M in the probabilistic
equation as the value of xi. Thus, to find the corresponding yi, the approach involves computing
x3

i + axi + b. If yi has a square root, then the xi has mapped to EC and it has a corresponding yi.
However, If yi mapped in the first round, then the mapping method continues to compute yi by
incrementing xi until yi is found. The number of rounds is defined by a random integer k, which is
used in xi = M × k. To derive the original value of xi, the floor value of xi

k is needed. In certain cases,
for a given k, it is not possible to map yi to the elliptic curve because k is too small. Similarly, an overly
large value of k increases of size overhead of xi, resulting in an increase in the data transmission
overhead. It is important to note that the author defined the probability of yi being mapped successfully
based on 1

2k .

3. The Proposed Scheme-Mapping and Padding Method to ECC

The proposed scheme consists of nine phases started by generating parameters; then encoding
messages to numerical values, followed by mapping these values to EC, the encrypting phase,
signing the encrypted message. The rest of the phases are the reverse operations of the previous
phases, beginning with verifying the signature of the received cipher text, then the decryption phase,
followed by decoding phase, and converting the received points into plaintext. The main goal of this
research is to study the padding methods in mapping phase where many proposed schemes did not
provide a comprehensive details about the used padding method. In addition, it is noteworthy that
the padding bits size is an important factor on mapping phase, where many of current studies neglect
to provide it more focus and as a result it may lead to increase the size of padding bits which increase
the size of mapped points or decrease the size of padding bits which result to increase the probability
mapping phase failure.

Padding phase is an important phase in the ECC to make sure that the mapping points to EC are
successfully restored in the decoded phase. To map a character to the EC, first it needs to convert to
numerical value to map it to EC. Afterward, the converted value needs the padding phase to make
sure that, if the first mapping operation to the EC failed, it is safe to increase it by one to try the
mapping operation again. Finally, the mapped point can restored easily to the original value in the
decoded phase. Padding phase can affect the performance of ECC schemes implemented on devices in
constrained environments in two ways. The first way results from the size of padding bits needed to
guarantee that the encoded points map successfully to the elliptic curve. The size of the padding bits
represents the number of rounds that the encoded points can increment without affecting the original
value. The second way relates to the fact that the padding bits can affect the ECC scheme in terms of
the process by which the encoded points are padded. Two methods are commonly employed to pad
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encoded points, namely the probability method and concatenating method. The first method pads bits
by multiplying the encoded points by a random integer k, where the results can increment k times to
map the encoded points to the elliptic curve safely. The original value is retrieved by taking the floor
value after dividing the mapped points by k. The second method involves directly concatenating n

bits to the encoded points. In this approach, 2n rounds can be safely incremented. After mapping the
encoded points, the original value is retrieved by removing the n concatenated bits.

3.1. Generating System Parameters

The main task of this phase is to generate the parameters and constructs the encryption key
between the two parties. Table 1 describes the symbols used in the proposed scheme.

Table 1. List of symbols used to generate scheme parameters.

Symbol Description

ds Sender private key
dr Recipient private key
G Base point on elliptic curve
PUs Sender public key = ds × G
PUr Recipient public key = dr × G
p Large prime number (192-bit)
a, b EC coefficients, s.t. 4a3 + 27b2 mod p 6= 0
H Hash function to sign the message CM

ksh Shared session key
M Total number of characters in the message
B Number of blocks for each message
N Number of characters on each block
IV Initial vector randomly selected (192-bit)
k Randomly securely selected from [1, p − 1]
CM The encrypted message

The key ksh that shared between two parties used to encrypt mapped points on the elliptic curve.
In order to create this key, the sender uses his/her private key ds, and multiply it to recipient’s public
key PUr, thus, the sender generates ksh. Benefiting from ECDLP, the recipient generates the ksh in the
same way by multiplying his/her private key dr to sender’s public key PUs. This process illustrated
in Figure 2.

Figure 2. Generate the shared key between two parties.

3.2. Encoding and Mapping the Message to EC

The EC encoding and mapping approaches steps are enhanced to increase the performance and
decrease the computation efforts. Each plaintext is divided into set of blocks notated by B, and each
block B has N characters. The calculation of N is the floor of the size of prime number generated from
Table 1 subtracted by 8 divided by 8. The following equation describes the process:
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N ≤

⌊

p − 8
8

⌋

(2)

Similarly, the count of blocks B needed is the division of the total number of characters in the
message M by the size of characters for each block N. The following equation describes the process:

B =

⌈

M

N

⌉

(3)

The encoding step for each block B is completed by converting its ASCII code to binary to
perform cipher block chaining (CBC) to secure the cipher texts against several encryption attacks.
Equally importantly, the mapping phase needs to append set of bits to each encoded blocks. This step
is an important process to secure and guarantee the successful mapping to EC. The details of padding
bits is described in subsection D.

3.3. Authenticated Encryption of the Mapped Points

Many proposed schemes consider the mapping phase is appropriate and enough to secure the
transmitted message. However, mapping points to an EC is the first step to secure the cipher text
and it is needed for the encryption step which is the addition of encryption key with the mapped
points as follows: CM = ksh + Mapped points. Following that, it is necessary to maintain the integrity
of the cipher text CM using the ECDSA. The first step is to obtain e = HASH(CM) and take the left
most p bits of e. Then, the second step is randomly select k and calculate (x, y) = kG, then calculate
r, where r = x mod p and r 6= 0. Finally, the signed cipher text is the pair of (r, s) where s =

(z + ds × r) k−1.

3.4. Mapping Phase and Padding Encoded Points

The hardiness of ECDLP resides in the mapping phase and the correctness of the steps of mapping
points to EC. Failing of mapping point to EC means that the encrypted data using ECC is weak.
Several security issues are raised by failing to map points to EC, for instance, ignore the padding
bits that result in failing to map points to EC by 50%. Equally importantly, pad encoded points with
a small size of bits raise the percentage of the fail of the mapping phase. Similarly, the increase of
the size of padding bits leads to an increase in the computation and transition overhead, particularly
for low computation devices (such IoT) that need to deal with a huge amount of data (such as big
data processing).

In the review of related work, one of two padding methods was used in all of the proposed
schemes: the probability method, which relies on integer multiplication, and the concatenation
method, which combines the encoded points with a specific number of padding bits. Hence, it is
worth evaluating the performance of both methods to identify viable ways in which minimise
the computational overhead, particularly for devices operating in constrained environments.
This performance evaluation constitutes the focus of the next two subsections.

3.4.1. Probability Method

The main computational overhead associated with the probability method arises from the need to
multiply the encoded points by a random integer k. The value of k represents the number of rounds
needed to map the encoded points. For instance, if the number of rounds needed to map the encoded
points is 25, then k = 25. However, the value of 25 increases the number of padding bits that must be
added to the encoded points by ⌈log 25⌉ = 5. Moreover, padding with 5 bits provides 25 = 32 rounds.
Resultantly, 32 − 25 = 7 rounds remain unused when multiplying the encoded points by 25. Figure 3
illustrates the maximum number of unused rounds for padding bit sizes ranging from 0 to 6.
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Figure 3. Maximum number of unused rounds for various padding bit sizes.

3.4.2. Concatenation Method

The main computational overhead associated with the concatenation method arises from the
need to append padding bits to the encoded points. In this method, the number of appended bits is
selected based on the number of rounds needed to secure the mapping phase of the encoded points.
The appended bits of size 5 is 00000, thereby providing up to 25 = 32 rounds to secure the padding
phase. In the concatenation phase, no rounds are unused because every appended bit is used. However,
the concatenation method is an expensive approach, especially for low computing power devices.
The complexity of string concatenation is computed as O(n2) [73], where n is the number of padding
bits. Contrastingly, the complexity of integer multiplication is computed as O(n log n) [74], where n is
the size of the multiplication value. Figure 4 compares the complexity of the two methods.

Figure 4. Complexity of probability and concatenation padding methods.

3.5. Our proposed Padding Method

Many ECC schemes have proposed several sizes for the padding bits that are used to secure the
mapping phase to the elliptic curve. However, there is no comprehensive study of the suitable size
of such bits. Certain schemes have proposed that 8 bits should be padded to each character mapped
to the elliptic curve, while other schemes have proposed adding 8 padding bits to a set of aggregate
characters. Similarly, schemes that use the probability method typically fail to specify the value of k,
thereby leading either to an increase in the size of the transmitted data overhead or to an increase in
the probability of a failed mapping. Based on King’s [72] research, the successful mapping occurs in
the 8th round, as illustrated in Figure 5.
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Figure 5. King’s [72] probability value of successful mapping.

In this research, several experiments were conducted to evaluate the size of the padding bits
required to increment xi safely and to find the corresponding yi value. Similarly, this research also
aims to maximized the performance of the padding bits method and overcome the weakness of both
methods mentioned in the previous sections. The experiment addressed the following cases:

• Case 1: Random 192-bit integer based on the requirements of secp192k1.

• Case 2: Random 224-bit integer based on the requirements of nistP224.

• Case 3: Random 256-bit integer based on the requirements of secp256k1.

• Case 4: Random 384-bit integer based on the requirements of secp384r1.

• Case 5: Random 512-bit integer based on the requirements of secp512r1.

For each case, the experiment was repeated 10 million times for each curve to evaluate the
maximum number of rounds needed to successfully map the random number to the curve. The results
show that, for certain random numbers, the maximum number of rounds was less than 25.

Figures 6–10 present the results of the experiments for each of the cases. The figures show the
percentages and numbers of successfully mapped points for each round (the orange curves and blue
columns, respectively).

Figure 6. Case 1—Successfully mapped points count to secp192k1.
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Figure 7. Case 2—Successfully mapped points count to nistP224.

Figure 8. Case 3—Successfully mapped points count to secp256k1.

Figure 9. Case 4—Successfully mapped points count to secp384r1.
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Figure 10. Case 5—Successfully mapped points count to secp512r1.

The experiments presented showed that, for every case, the number of rounds did not exceed 25.
Thus, the size of padding bits that are needed to secure the mapping phase should not exceed
⌈log2 25⌉ = 5. Thus, it is possible to overcome the weakness in the probability method where
the unused rounds may increase based on the value of k. In addition, there is a weakness in
the concatenation method, which increases the computation overhead. This research provides the
enhancement of the probability method by adding one step to choose k = 2⌈log k⌉. The Algorithm 1
describes this process:

Algorithm 1: The proposed enhanced probability method algorithm.

Input: Mapping points M

Output: Padded mapping points x

1 Randomly select value k;

2 let k = 2⌈log k⌉;

3 f or j = 0 to k − 1 do;

4 let x = M × K + j mod p;

5 i f x mapped to EC then break;

6 i f j < k return x else return f ailed;

The enhanced probability method gains the strength of the concatenation and probability methods.
In addition, it overcomes the weakness of both methods to increase the performance of the proposed
system. What we mean by the strength of concatenation method is the number of rounds for the
size of appended bits as depicted in Figure 3. Similarly, the strength of probability method means
the redaction of the complexity that offered by concatenation method as depicted in Figure 4. In the
following section, we provide the performance evaluation for the enhanced probability method. It is
worth mentioning that, for computation evaluation, both the enhanced probability and probability
methods provide the same result. However, the enhanced probability method overcomes the weakness
of the probability method in terms of unused rounds in comparison with the size of appended bits.

4. Performance Evaluation

The probability and concatenation methods each have strengths and weaknesses in terms of
their performance. Thus, in order to compare these methods, we simulated both approaches by
writing Java code to compute the evaluation of both methods’ performance on several elliptic curves,
namely secp192k1, nistP224, secp256k1, secp384r1, and secp512r1. Figures 11–15 illustrate the results
of this performance evaluation, indicating that, for all evaluated elliptic curves, the concatenation
method (depicted in blue) required greater computational effort when compared to the enhanced
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probability method. Specifically, the computational requirement for the concatenation method was 35
times greater compared to the enhanced probability method for secp192k1, and it was 10–20 times
greater for the other elliptic curves. The probability methods provide the same results as the enhanced
probability method in terms of the computation evaluation test.

Figure 11. Performance evaluation for padding methods on secp192k1.

Figure 12. Performance evaluation for padding methods on nistP224.

Figure 13. Performance evaluation for padding methods on secp256k1.
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Figure 14. Performance evaluation for padding methods on secp3841.

Figure 15. Performance evaluation for padding methods on secp512r1.

The previous findings motivated a direct comparison of the computational overhead associated
with each of the elliptic curves for every padding method. For instance, we were interested in
quantifying the increase in computational requirements based on the elliptic curve used. Figure 16
shows the variation between the computation on all elliptic curves for the enhanced probability
method, indicating differences of less than 3 times between the highest and lowest loads. Similarly,
Figure 17 shows the variation between the computation on all elliptic curves for the concatenation
method. As the figures indicate, the differences increased in comparison with the enhanced probability
method, and the variation between the highest and lowest loads reached 8 times.

Similarly, a comparison between Enhanced probability method and Concatenation method on
term of Memory usage. As in the previous evaluation test, we measure the memory space utilized
for using both methods on the same set of EC. As a result, the enhanced probability method uses less
memory space than concatenation method. This result is depicted in Figure 18.
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Figure 16. The variation between the set of Elliptic Curves (ECs) in the enhanced probability method.

Figure 17. The variation between the set of ECs in the concatenation method.

Figure 18. The Memory usage on padding methods using the set of ECs.

In the other hand, the evaluation of the enhanced probability method in terms of minimum rounds
to the size of appended bits is depicted in Figure 19. In this comparison, the enhanced probability
method provides more rounds than the probability for each padding bit. For instance, for 5 bits
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appended to encoded points, the enhanced probability offers minimum 32 rounds. However, for the
same same size, the probability method offers minimum 17 rounds. Thus, the enhanced probability
method provides a better chance to map encoding points to EC than the the probability method.

Figure 19. Number of minimum rounds for each size of appended bits.

To illustrate the overall comparison of the mapping methods, we summarize our findings in
Table 2. In this table we show the detailed performance evaluation between our proposed method,
(the enhanced probability method), the probability method and the concatenation method. It is
clear that our proposed method is better than the other methods by gaining the strength features of
those methods.

Table 2. The comparison between mapping methods.

Criteria 1 2 3

Number of rounds to value k k 2⌈log k⌉ 2⌈log k⌉

Provide max number of rounds N Y Y
RAM usage per operation Less High Less
Variation between different ECCs Less High Less
CPU utilization per operation Less High Less
Complexity of the method O(n log n) O(n2) O(n log n)

1: Probability method, 2: Concatenation method and 3: our proposed method (Enhanced probability method)

It is worth mentioning that, in our experiments, we used the Bluej Java Development Environment
to code the mapping and padding phase. The environment used to test the code is based on Windows
10, and, in terms of hardware, Intel Core i7-4510U, 128GB SSD, and 8GB RAM.

5. Conclusions

This paper examined considerations relating to the optimal use of padding bits in the ECC
mapping phase. It emphasised the importance of padding bits, particularly in terms of their
performance implications. Additionally, the consequences arising from the improper addition of
padding bits to encoded points were illustrated. Many proposed schemes choose a padding method
without a clear explanation. Furthermore, most schemes tend not to provide details about the chosen
sizes of padding bits. Therefore, this research sought to determine the optimal size of padding bits for
the secure mapping of encoded points to an elliptic curve. It identified and enhanced a padding method
that increases device performance and reduces the computational overhead without undermining
security. Moreover, an evaluation of simulation performance was provided to illuminate and support
the research findings.
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In future work, the implications of implementing the suggested padding bits and enhanced
mapping method in a real-world environment will be studied. The authors will also compare
the computation results obtained in a real-world environment against those reported in this
study’s simulation.
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