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Cells spatially organize their molecular components to carry out fundamental biological
processes and guide proper development. The spatial organization of RNA within the cell
can both promote and result from gene expression regulatory control. Recent studies have
demonstrated diverse associations between RNA spatial patterning and translation
regulatory control. One form of patterning, compartmentalization in biomolecular
condensates, has been of particular interest. Generally, transcripts associated with
cytoplasmic biomolecular condensates—such as germ granules, stress granules, and
P-bodies—are linked with low translational status. However, recent studies have identified
new biomolecular condensates with diverse roles associated with active translation. This
review outlines RNA compartmentalization in various condensates that occur in
association with repressed or active translational states, highlights recent findings in
well-studied condensates, and explores novel condensate behaviors.

Keywords: mRNA localization, translation regulation, biomolecular condensates, phase separation, germ granules,
stress granules, P-bodies

1 INTRODUCTION

1.1 mRNAs can Concentrate in Biomolecular Condensates
The spatial organization of cells has fascinated scientists since the advent of the microscope.
Observations as early as the 1890s documented dyes concentrating within cytoplasmic aggregates of
insect germ cells, structures now known as germ granules (Die, 1890; Voronina et al., 2011). Even as
those structures remained mysterious, scientists found evidence of diverse patterns of mRNA
accumulation in embryogenesis, neurobiology, and yeast mating-type switching (Rebagliati et al.,
1985; Lehmann and Nüsslein-Volhard, 1986; Garner et al., 1988; Long et al., 1997). The mRNAs
localized in those studies are now classic models of mRNA transport and localization.

As dozens of large, micrometer-scale ribonucleoprotein (RNP) aggregates similar to those
described in the germline—were characterized, focus returned to these mysterious germline
granules. Seminal studies determined that germ granules and similar RNP structures are often
phase-separated organelles, coined biomolecular condensates (Brangwynne et al., 2009; Kroschwald
et al., 2015; Lin et al., 2015; Molliex et al., 2015; Nott et al., 2015). Biomolecular condensates are
membraneless organelles that phase separate from the surrounding substrate when weak, multivalent
interactions of their components create liquid-liquid, liquid-gel, or liquid-crystalline partitioning
(Gifford et al., 1982; Wolf et al., 1999; Han et al., 2012; Li et al., 2012; Hubstenberger et al., 2013;
Kroschwald et al., 2015; Olafson et al., 2015). This phase separation gives biomolecular condensates
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unique physical traits. Molecules can typically exchange between
the high concentration condensate and the surrounding low
concentration environment, promoting dynamic biological
processes (Nott et al., 2015). Due to the physical principles
underlying phase separation, condensates can also rapidly
buffer cellular concentrations of given components with little
to no energetic penalty, adjusting their size to maintain a constant
concentration of constituent components in the surroundings
(Alberti et al., 2019). Condensation can even segregate
components based on features such as electrostatic charge
distributions, binding partners, molecular valency, and more
(Brangwynne et al., 2009; Kroschwald et al., 2015; Lin et al.,
2015; Molliex et al., 2015; Nott et al., 2015). Because condensates
represent such a unique cellular environment, understanding
their composition is of great interest.

Biomolecular condensates typically contain RNA and protein.
As RNA detection methods improved, so have observations of
mRNA accumulated within condensates. Great efforts have been
made to identify the components of condensates through
unbiased and candidate-based screens as well as by isolating
condensates (Jain et al., 2016; Hubstenberger et al., 2017; Khong
et al., 2017; Youn et al., 2018; Lee et al., 2020a). However, the mere
presence of proteins and RNA concentrating in large clusters is
not sufficient to call them biomolecular condensates, as their
phase-separated state must be verified through experimentation.
These experiments typically test whether the RNA-protein
aggregates behave as liquids or gels based on their periodic
fusing or separation, are dissolvable under certain
concentrations of solvents, and that their components mix
freely with the surrounding environment (Alberti et al., 2019;
Ganser and Myong, 2020). Importantly, the interpretation of
these experiments takes careful consideration as other types of
interactions can appear deceptively similar to phase separation
(McSwiggen et al., 2019). For example, some diffraction-limited
RNP foci can appear spherical, have similar recovery dynamics
after photobleaching, and dissociate in the presence of aliphatic
solvents all while undergoing standard monophasic molecular
interactions (McSwiggen et al., 2019). Therefore, it is essential to
rigorously determine whether RNP foci are biomolecular
condensates using multiple carefully designed assays, as
described by McSwiggen et al. (2019). Even once condensate
behavior is established, determining the functional roles of
condensates is challenging.

1.2 The Functions of mRNA Condensation
Remain Ambiguous
In recent years, many biological fields have found biomolecular
condensates in their systems resulting in diverse posited
functional roles for these structures. Biomolecular condensates
of the nucleus—the nucleolus, Cajal bodies, and nuclear
speckles—are associated with coordination of ribosome
assembly, RNA processing, enhancing gene expression, or still
unresolved functions, respectively (Politz et al., 2006; Yao et al.,
2019; Liao and Regev, 2020; Alexander et al., 2021; Courchaine
et al., 2021). Those of the cytoplasm—P-bodies, stress granules,
germ granules, and Balbiani bodies—are sites of mRNA

metabolism, sequestration, regulatory control, or serve to bring
mRNAs, proteins, and organelles together, respectively (Kedersha
et al., 2005; Brangwynne et al., 2009; Voronina et al., 2011;
Kroschwald et al., 2015; Boke et al., 2016; Protter and Parker,
2016). Beyond these well-studied condensates, additional novel
condensates with diverse functional roles are being discovered
rapidly (Section 3).

Though experimental data can indicate the function of a
biomolecular condensate, it is rare to find experimental
evidence that definitively demonstrates condensation is
essential for a proposed functional role. One reason for the
challenge in definitively assigning functional consequences to
condensation is the difficulty in separating the effects of their
physical disruption from the perturbation of their
components. Often, the elements that promote condensate
formation are inseparable from elements proposed to perform
functions within them. For instance, depletion of the stress
granule proteins TIA-1 and TIAR-1 reduce stress granule
formation under many conditions, which correlates with
decreased cell viability after stress (Gilks et al., 2004;
Eisinger-Mathason et al., 2008; Huelgas-Morales et al.,
2016). However, it is difficult to delineate to what extent
this is due to the loss of stress granules or loss of TIA-1/
TIAR-1 functions directly. Furthermore, condensate
nucleation is typically promoted by multiple scaffolds
making it difficult to confidently ablate the condensate
(Gilks et al., 2004; Jain et al., 2016; Rao and Parker, 2017).
Even in conditions where it can be reasonably determined that
condensates are eliminated, it is possible that submicroscopic
assemblies can form and perform the function ascribed to the
condensate, as is the case with stress granules and P-bodies
(Rao and Parker, 2017; Youn et al., 2018). These complications
have made unambiguously determining the function of
condensates a problematic but tantalizing goal.

While it is tempting to hypothesize that RNA condensation
always occurs for some purpose, in many instances it remains a
formal possibility that condensation is a downstream
consequence of gene regulatory processes. For example,
mutations that perturb germ granule formation in C. elegans
often lead to sterility; however, circumstances exist where fertility
does not depend on germ granule formation (Gallo et al., 2010).
This possibility is supported by a growing body of evidence
demonstrating that RNA has a natural tendency to aggregate
or phase separate, both in the presence and absence of protein
(Tauber et al., 2020; Ripin and Parker, 2021). These findings have
given rise to the hypothesis that the functions ascribed to
condensates are evolutionary adaptations to the physical
tendency of RNA to condense.

The exact functions of RNA condensation itself continues to
remain ambiguous, though a large and growing number of
biomolecular condensates that concentrate RNA have been
studied. A picture emerges that some biomolecular
condensates are associated with lowly translated RNAs either
sequestered due to their low translational status, sequestered for
the purpose of repressing their translation, or a mix of both. In
contrast, other biomolecular condensates are associated with
active translation, sometimes for the purpose of pushing the
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nascent protein towards a desired fate. This review will explore
and contrast these two types of biomolecular condensates.

2 STRESS GRANULES, P-BODIES, AND
GERM GRANULES: BIOMOLECULAR
CONDENSATES LINKED TO TRANSLATION
REPRESSION

2.1 Stress Granules, P-Bodies, and Germ
Granules Function in RNA Metabolism
The three major cytoplasmic biomolecular condensates that
concentrate RNA and proteins are stress granules, P-bodies,
and germ granules.

Stress granules were first observed by microscopy and cell
fractionation, being described as membraneless, phase-dense
granules of heat shock proteins formed under stress, which
dissipated upon recovery (Nover et al., 1983; Collier and
Schlesinger, 1986; Collier et al., 1988). Over time, it was
discovered that stress granules form under conditions that
inhibit translation initiation throughout eukaryotes (Kedersha
et al., 1999). Detailed characterizations found stress granule
components vary with different stresses but generally contain
stalled 48s pre-initiation complex-associated RNAs, translation
regulatory RBPs, and various metabolic enzymes (Kedersha et al.,
1999; Jain et al., 2016; Khong et al., 2017). One response to stress
is a disruption of nucleocytoplasmic transport that occurs as
stress granules sequester key transport components. Upon stress
induction, mutants deficient in stress granule formation
inappropriately continue nucleocytopasmic transport as well as
increase in their abundance of stress-granule-associated RNAs.
Yang et al. (2014); Zhang et al. (2018a). Ultimately, these
behaviors suggest stress granules store and regulate
temporarily translationally repressed mRNA (Protter and
Parker, 2016; Youn et al., 2019; Riggs et al., 2020), leading to a
“triage” model of stress granule function. The triage model
suggests that stress induces coalescence of stress granule RNAs
and proteins, leading to intra- and intermolecular remodeling,
modification, transcription regulation, and in some instances, the
passage of RNAs to the cellular decay machinery. Ultimately, this
allows stress granules to reprogram cellular gene expression
under duress, as evidenced by the decreased recovery of stress
granule defective cells (Takahashi et al., 2013; Yang et al., 2014;
Huelgas-Morales et al., 2016; Orrù et al., 2016).

In contrast, Processing-bodies, or P-bodies (not to be confused
with P granules), were first observed as fluorescent foci of the
mouse 5′–3′ exonuclease, XRN-1 (Bashkirov et al., 1997). As
further RNA decay factors, such as the decapping factors and Lsm
proteins, were identified in foci, the hypothesis arose that
P-bodies are discrete RNA decay factories (Ingelfinger et al.,
2002; Fenger-Grøn et al., 2005). The simple model of P-bodies as
sites of RNA decay was complicated by the discovery that decay
may actually be slowed in P-bodies and can even occur normally
in mutants where microscopic P-bodies are not formed (Eulalio
et al., 2017; Hubstenberger et al., 2017; Wang et al., 2018).
Moreover, the presence of miRNA-mediated translational

silencing machinery, cell signaling components, and nonsense-
mediated decay inhibitors within P-bodies has suggested a
broader role in translation regulation and cellular metabolism
(Hubstenberger et al., 2017; D’Lima et al., 2017).While their exact
roles remain contested, the fact remains that P-bodies are
associated with translational repression, mRNA metabolism,
and mRNA decay (Toombs et al., 2017; Zhang et al., 2018b;
Suen et al., 2020).

Germ granules across the animal kingdom play widespread
roles in RNA regulation. As one of the earliest observed
membraneless organelles, the role of germ granules has been
intently explored (Die, 1890). Seminal studies in Drosophila
demonstrated that irradiation of the germ granule-containing
posterior pole plasm abolishes germline development but can be
rescued by injection of healthy pole plasm (Okada et al., 1974). In
contrast, injection of germplasm at the anterior is sufficient to
ectopically specify posterior structures in place of normal anterior
structures (Illmensee and Mahowald, 1974). Further
characterization demonstrated that germ granules play a role
in defining the germline transcriptome through multiple
mechanisms, including repression of the somatic
transcriptional program, suppression of mutagenic
transposable elements, and maintenance of germline-specific
small RNA surveillance (Voronina et al., 2011). Together,
these findings led to a model where germ granules promote
germline specification in early development through the
orchestration of a germline-specific transcriptome. Even so,
demonstrating the functional roles of germ granules has
remained challenging. Because germ granules are not strictly
required for germ cell specification and due to the challenges in
unambiguously demonstrating the modes of regulation occurring
within germ granules, tractable model systems for the study of
these condensates have proven indispensable.

2.2 P Granules: A Model Condensate
The P granules of Caenorhabditis elegans were among the first
membraneless organelles recognized as phase-separated
condensates (Brangwynne et al., 2009). P granules, the
nematode germ granules, concentrate through the progenitor
germ lineage contributing to gamete production and fertility in
adults (Kawasaki et al., 2004; Batista et al., 2008; Spike et al.,
2008). First observed through inadvertent cross-reactivity against
a mouse secondary antibody, they were termed “P granules” for
their progressive accumulation in the P (posterior) lineage
culminating its development in the germline (Figure 1A)
(Strome and Wood, 1982). Immediately after fertilization, P
granules exist as free-floating and cytoplasmic but later
amalgamate around the nucleus, where they extend the
nuclear pore complex environment into the cytoplasm and
branch into substructures hypothesized to contribute to RNA
interference (Strome and Wood, 1982; Hird et al., 1996; Wan
et al., 2018; Uebel et al., 2020).

Because the function of P granules has been mysterious,
researchers looked to their components for insight. P granules
contain proteins associated with RNA binding, degradation,
splicing, small RNA-mediated processing, and translational
control (Barbee et al., 2002; Shimada et al., 2002; Ogura et al.,
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2003; Kawasaki et al., 2004; Batista et al., 2008; Gallo et al., 2008;
Spike et al., 2008). Additionally, many P granule proteins form
multivalent interactions characteristic of condensate formation
(Kawasaki et al., 2004; Chen et al., 2020; Aoki et al., 2021). P
granules are comprised of at least two distinct phases: an internal
liquid-like core characterized by the PGL and GLH proteins and
an external, gel-like shell composed of the MEG proteins
(Figure 1B). The MEG-phase appears to allow P granules to
form a Pickering emulsion, a solid phase-stabilized emulsion, in
the cytoplasm (Yang et al., 2017; Putnam et al., 2019; Folkmann
et al., 2021).

It was first appreciated that P granules contain specific
mRNAs when hybridization experiments demonstrated P
granule enrichment of polyA RNA and a paucity of rRNA
(Seydoux and Fire, 1994; Pitt et al., 2000; Schisa et al., 2001).
Initial efforts identified six mRNAs associated with P granules
(Schisa et al., 2001). Of these, a homolog of Drosophila nanos,
nos-2, emerged as a model transcript illustrating how P granules
may function to sequester mRNA for germline-specific

translation (Subramaniam and Seydoux, 1999; D’Agostino
et al., 2006; Jadhav et al., 2008).

2.3 The P Granule Transcriptome is
Comprised of Translationally Quiescent
Transcripts With Distinct Functional
Categories
The model P granule transcript nos-2 (nanos-2) accumulates in P
granules early in embryogenesis (Subramaniam and Seydoux,
1999) when nos-2 is translationally repressed by a series of RNA
binding protein (RBP) interactions with its 3′UTR (Figure 1A)
(D’Agostino et al., 2006; Jadhav et al., 2008). Through its RBP
partners, nos-2 becomes specifically enriched in the posterior (P)
lineage as it concentrates within P granules (Subramaniam and
Seydoux, 1999; D’Agostino et al., 2006; Jadhav et al., 2008). Once
the primordial germ cell has been specified, nos-2mRNA emerges
from P granules coincident with relief of its translational
repression, resulting in NOS-2 protein production exclusively

FIGURE 1 | P granules are nematode germ granules. (A) C. elegans P granules successively concentrate in the posterior P cells that eventually giving rise to the
germline. nos-2 mRNA is found in the cytoplasm of 2-cell stage embryos in a translationally repressed state. From the 4-cell stage to the 28-cell stage, nos-2 mRNA
concentrates into P granules though many nos-2mRNA molecules also reside in the cytoplasm. nos-2mRNA in P cells is spared from the degradation seen in somatic
cells accounting for its concentration down the P lineage. At the 28-cell stage, nos-2 mRNA emerges from P granules and is translated. chs-1 mRNA also
accumulates in P granules in amanner similar to nos-2 but is rapidly degraded. (B) Three cytoplasmic biomolecular condensates—P granules (germ granules), P-bodies,
and stress granules—share key components and have some overlapping functions. Some proteins are distinct to each condensate. The components here represent
diverse organisms and are not exhaustive.
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in the germ lineage (Subramaniam and Seydoux, 1999;
D’Agostino et al., 2006; Jadhav et al., 2008). For these reasons,
the hypothesis emerged that RBPs usher nos-2 mRNA to P
granules for the purpose of restricting its protein production
in both space and time.

Initially, it was unclear how representative nos-2 was of P
granule transcripts generally (Lee et al., 2020a). However, Lee
et al. recently succeeded in characterizing the P granule
transcriptome using an iCLIP protocol to target the gel-phase
protein, MEG-3::GFP (Figure 2A). This approach was more
successful than earlier attempts targeting the liquid phase
proteins that failed to enrich RNAs Lee et al. (2020a).

Lee et al.’s expanded atlas of P granule transcripts afforded
exploration of their characteristics. The 3′UTRs of messenger
RNAs were enriched in the MEG-3 pull down consistent with
findings that 3′UTRs are sufficient to direct mRNAs to P granules
(Parker et al., 2020). To determine which types of genes associate
with MEG-3, we performed gene ontology (GO) on the list of
492 P granule mRNAs identified in Lee et al. (Figure 2B). We
found P granule mRNAs are associated with the terms: “P
granules,” “germ cell development,” “mRNA binding,” and
“negative regulation of translation.” Interestingly, “mitotic cell
cycle,” “cytokinesis,” “microtubule organizing center,” and
“chaperonin-containing T-complex” terms are also enriched in
the P granule transcriptome. Translational repression of these
mRNAs may play a role in timing the slow cell cycle of the P
lineage leading to their sequestration in P granules (Yokota et al.,
2001; Kipreos and van den Heuvel, 2019). P-body-related

transcripts were also prevalent, illustrating the similarity
between these RNP condensates (see below).

Both Lee et al. and a complementary study by Parker et al.
highlighted a key observation—mRNAs that concentrate in P
granules are associated with low translational status. Comparing
the P granule transcriptome with ribosome profiling data revealed
that low ribosome occupancy transcripts enrich in P granules in a
sequence-non-specificmanner. In contrast, high ribosome occupancy
transcripts were depleted from P granules (Lee et al., 2020a).

Whether P granules function to concentrate, asymmetrically
localize, surveil, or regulate the translation of their constituent
RNAs, they can achieve this function while containing only a
minority population of any transcript at any given time. While
lowly translated mRNAs are enriched in P granules, only 21–75%
of any transcript are within them at any given time (Lee et al.,
2020a; Parker et al., 2020). Curiously, many P granule-localized
transcripts decay and do not re-emerge for translation
representing a complex regulatory control that is not
understood. Nonetheless, these findings highlight a perennial
question: are mRNA brought to P granules for the purpose of
promoting translational repression, or does translational
repression promote recruitment to P granules?

2.4 Linking Translational Status to P
Granules—Repression Leads the Way
The hypothesis that transcripts are brought to P granules to
establish translational repression is logical given the paucity of

FIGURE 2 | The C. elegans P granule transcriptome has been characterized. (A) Lee et al. identified 492 transcripts enriched in P granules using an individual
nucleotide resolution UV-crosslinking and precipitation (iCLIP) Lee et al. (2020a). (B) GO terms enriched in the C. elegans P granule transcriptome. We used Lee et al.’s
expanded list of 492MEG-3-associated P granule transcripts to identify enriched categories using the GO: TermFinder (Boyle et al., 2004); Lee et al. (2020a). Transcripts
with greater than 10 transcripts per million at any embryonic stage from a previous single-cell resolution RNA-seq study (Hashimshony et al., 2015) were used as a
background gene set. The negative log10 of each p value is shown.
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ribosomes in P granules (Schisa et al., 2001). However,
observations from stress granules suggest transcripts only
maintain association with such condensates if their
translational state is already low (Moon et al., 2019).

Single-molecule observations illustrate several
circumstances where nos-2 translation repression occurs
independently of P granule accumulation, such as the 1-cell
and 2-cell stages of development (Parker et al., 2020). Further,
depletion of the RBP PIE-1 (Pharynx and Intestine in Excess)
prevents nos-2 from accumulating in P granules while
translation is repressed (Parker et al., 2020). Even when
nos-2 accumulates in P granules, only a fraction of
transcripts concentrate there while most remain repressed
but dispersed in the cytoplasm (Parker et al., 2020). These
findings illustrate that nos-2 translational repression is
independent of P granule accumulation and may occur
prior to it. At the transcriptome-wide scale, depletion of
MEG-3 and -4 results in P granule dissolution but fails to
increase ribosome occupancy of P granule transcripts (Lee
et al., 2020a), illustrating that P granule accumulation is not
generally required for translation repression. Finally,
translation inhibition ectopically promotes recruitment of
dispersed transcripts to P granules, implying mRNA
accumulation within P granules results from translation
regulatory control (Lee et al., 2020a; Parker et al., 2020).
Together, these lines of evidence demonstrate that
translational repression likely precedes and is sufficient to
direct mRNAs to P granules, not the reverse.

It is still possible that P granules reinforce or maintain
translational repression after transcripts localize, but that is yet
to be determined. This possibility is supported by the observation
that ectopic, BoxB-driven recruitment of a translational reporter
to P granules causes translational repression (Aoki et al., 2021)
when the interaction occurs within adult gonads.

P granules also regulate gene expression through two
additional major mechanisms. First, P granules concentrate
transcripts in the germ lineage (P lineage) during stages prior
to zygotic genome activation when transcription is paused
(Seydoux et al., 1996; Tenenhaus et al., 2001). Second, P
granules coordinate RNA interference pathways as their
disruption leads to aberrations in the pool of endo-siRNAs,
progressive loss of RNAi, and transgenerational sterility
(Dodson and Kennedy, 2019; Ouyang et al., 2019). Support
for the organizational role for P granules comes from similar
findings in Drosophila. In both C. elegans and Drosophila,
translation repression precedes germ granule accumulation
(Gavis and Lehmann, 1994; Rangan et al., 2009; Lee et al.,
2020a; Parker et al., 2020), the concentration of components in
the germplasm/germ granules is essential for germ cell
development (Ephrussi et al., 1991; Kawasaki et al., 1998;
Kawasaki et al., 2004; Kistler et al., 2018), and RNA
interference components concentrate in germ granules
(Huang et al., 2017; Zhang et al., 2018b; Shen et al., 2018).
These roles are conserved in germ granules of other organisms,
suggesting some germ granule functions are conserved
(Voronina et al., 2011).

2.5 Germ Granules Serve as Hubs of RNA
Regulatory Activity Across Animals
Though the specific names of germ granules, their individual
components, and their posited functions are diverse across the
animal kingdom, they share several features.

The role of germ granules as hubs of RNA regulatory activity
and organization is universal (Chen et al., 2009; Huang et al.,
2017; Toombs et al., 2017; Zhang et al., 2018b; Shen et al., 2018).
Many of their proteins and RNAs are conserved, with germ
granules from all species examined containing Vasa helicases,
Argonautes, Xrn1, Nanos protein and RNA, and piRNAs, among
others (Voronina et al., 2011). Germ granules also have a clear
structural organization. They assemble around nucleating
proteins and are typically near mitochondria (Mahowald,
1968; Pitt et al., 2000; Smith et al., 2016; Aoki et al., 2021).
Once germ granules nucleate, constituent proteins oligomerize,
and RNAs form homotypic clusters, which appear as distinct
“domains” within germ granules by microscopy; however, the
implications these germ granule domains have on gene regulation
are incompletely understood (Trcek et al., 2015; Niepielko et al.,
2018; Parker et al., 2020).

Differences do appear to exist. Germ granule nucleating
factors diverge quickly at the sequence level and are species-
specific (Kulkarni and Extavour, 2017). Moreover, while
Argonaute proteins are important for germ granule function,
their reported roles differ. In C. elegans, the Argonaute PRG-1 is
implicated in piRNA regulation and germ granule structure,
whereas the Drosophila homolog, Aubergine, has an additional
role in recruiting mRNA to germ granules through a piRNA-
dependent templating mechanism (Vourekas et al., 2016; Suen
et al., 2020; Quarato et al., 2021). Notably, in Drosophila, some
germ-granule-associated mRNAs are translationally repressed
outside the granules and only become translated in association
with the germplasm or germ granules (Gavis and Lehmann, 1994;
Rangan et al., 2009).

Further experimentation may reconcile some apparent
differences across species. While germ granule nucleator
sequences diverge rapidly over evolutionary time, their
functions are conserved. In fact, germ granule nucleators from
divergent species are functionally equivalent. When the Xenopus
germ granule nucleator, Bucky Ball, is replaced with Drosophila
Oskar, germ granules assemble, and germ cell specification occurs
normally (Krishnakumar et al., 2018). This functional
equivalence indicates that germ granule nucleators are
interchangeable though their primary sequence is not conserved.

Recent studies have demonstrated that germ granules in C.
elegans are composed of spatially separated condensates with
distinct functional roles, such as Z granules, mutator foci, and
SIMR foci, among others (Wan et al., 2018; Ouyang et al., 2019;
Manage et al., 2020; Uebel et al., 2020). RNA transit from P
granules through these different P granule-associated
condensates is correlated with distinct outcomes, including
inheritance of small RNAs or regulation of exogenous RNAi
(Wan et al., 2018; Ouyang et al., 2019; Manage et al., 2020; Uebel
et al., 2020). Genetically perturbing the functional organization of
P granule-associated condensates causes generational loss of P
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granules and corresponding sterility (Suen et al., 2020). Similarly,
when Drosophila Aubergine is lost, germ granules fail to form,
resulting in sterility (Sahin et al., 2016). Notably, Aubergine forms
a peripheral shell surrounding Tudor labeled germ granules
analogous to the various condensates coating P granules (Vo
et al., 2019). Thus, the generational loss of P granules when PRG-
1 association is lost may be due to a loss of piRNA templated
recruitment of mRNA to P granules.

Additionally, while C. elegans germ granules are associated
with translational repression, some transcripts are known to
translate only after a period of association with P granules is
relieved. For instance, translational repression of nos-2 and
Y51F10.2 occurs prior to and then during their association
with germ granules (Lee et al., 2020a; Parker et al., 2020).
They only undergo translation in later stages around the time
when their association with P granules and components of the
germ plasm ends. This is similar to the germplasm-associated
activation of transcripts in Drosophila89,90. Further experiments
will determine the degree of conservation among germ granule
regulation and organization and which functions are truly
distinct to specific animals.

2.6 Germ Granules Share Features With
Stress Granules and P-Bodies
Beyond the shared roles germ granules play between animals,
they also demonstrate similarity to two other cytoplasmic
biomolecular condensates, stress granules, and P-bodies.

Stress granules, P-bodies, and germ granules show similarities
in their behaviors and compositions while maintaining unique
functions (Figure 1B). These organelles are each condensates rich
in RNA. Within these condensates, the concentration and
conformation of RNAs modulates their formation and
dissolution (Teixeira et al., 2005; Schwartz et al., 2013; Lin
et al., 2015; Trcek et al., 2015; Saha et al., 2016). They also
share protein components. For example, each condensate
contains DEAD-box helicases, translation initiation factors,
and Argonaute proteins (Gallo et al., 2008; Voronina et al.,
2011; Jain et al., 2016; Hubstenberger et al., 2017) while also
housing unique proteins that differentiate their functions, such as
the PGL and MEG proteins (P granules), GW182 scaffolding
protein (P-bodies), or small ribosomal subunits (stress granules)
(Liu et al., 2005; Gallo et al., 2008; Buchan and Parker, 2009;
Voronina et al., 2011; Seydoux, 2018; Youn et al., 2019; Riggs
et al., 2020).

No specific mRNA attribute is known to result in stress
granule, P-body, or P granule compartmentalization, excluding
a slight bias for longer RNAs (Hubstenberger et al., 2017; Khong
et al., 2017; Lee et al., 2020a). These condensates seem only to
share the property that they are composed of RNAs that must be
post-transcriptionally regulated under various conditions (Chan
and Slack, 2006; Batista et al., 2008; Wang and Reinke, 2008;
Buchan and Parker, 2009; Protter and Parker, 2016). The primary
unifying trait of these condensates is their association with
predominantly lowly translated transcripts for either
temporary storage or eventual decay (Aizer et al., 2014;
Pitchiaya et al., 2019; Parker et al., 2020).

Some transcripts may transfer between germ granules, stress
granules, and P-bodies, further demonstrating their shared or
coordinated functions in gene regulation (Buchan and Parker,
2009; Protter and Parker, 2016; Hondele et al., 2019).
Experiments using purified proteins have demonstrated the
directional transfer of transcripts from Dhh1 condensates to
Ded1 condensates, the prototypical helicases of yeast P-bodies
and stress granules, respectively (Hondele et al., 2019). Similarly,
stress granule and germ granule components intermix in C.
elegans normally and grow concurrently under stress (Gallo
et al., 2008; Huelgas-Morales et al., 2016). Meanwhile,
P-bodies are known to physically associate and partially
overlap with both germ granules and stress granules (Kedersha
et al., 2005; Gallo et al., 2008).

Given that stress granules, P-bodies, and germ granules all
share components, are associated with low translational output,
and can interact and trade constituents, it is surprising that there
is no clear model for their coordinated action within cells. Several
fascinating questions stand in the way of a clear understanding of
their interplay. What is the evolutionary history of these
condensates? The existence of stress granules in chloroplast
suggests that they may have arisen in prokaryotes (Uniacke
and Zerges, 2008); however, it is unclear whether stress
granules or P-bodies arose first. Further, while germ granules
have significant overlap with stress granules, it is not known
whether they were co-opted from stress granules as germ cells
developed or if they evolved independently. How does each
condensate affect the cellular environment? Considering each
condensate contains signaling molecules capable of modulating
the intracellular environment, it will be important to explore how
each condensate component can impact the condensation,
dissolution, composition, and interactions of itself and one
another. What factors dictate which RNAs are associated with
each condensate? A better understanding of the RBP interactions,
post-transcriptional modifications, structures, and conditions
distinguishing the RNAs present in each condensate will reveal
whether shared RNAs are transferred in an organized, directional
manner—suggesting tight regulation of RNA states within each
condensate—or whether they are transferred in a stochastic
manner—suggesting that their accumulation within
condensates is predominantly a consequence of RNA states
created through other cellular processes.

3 BIOMOLECULAR CONDENSATES
MEDIATE DIVERSE
POST-TRANSCRIPTIONAL FUNCTIONS
ASSOCIATED WITH ACTIVE TRANSLATION

3.1 mRNA can Undergo Translation Within
Biomolecular Condensates
Excluding a few exceptions, the emerging theme posits that
mRNA within stress granules, P-bodies, and germ granules are
of low translation status suggesting that the condensate
environment may be refractory to active translation. However,
recent discoveries are revealing that translation within these
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FIGURE 3 | Condensates are associated with diverse forms of post-transcriptional regulation. (A) Saccharomyces cerevisiae translation factor granules are
polarized translation factory condensates associated with translation at regions of growth.When the SHE2 or SHE3 genes are removed from cells, these condensates no
longer polarize in lab or wild isolate strains. (B) Core Fermentation (CoFe) granules in S. cerevisiae are translation factory condensates associated with the translation of
glycolytic components under fermentative conditions. (C) TIS granules in human cell lines are mesh-like condensates interweaved with the ER. In these
condensates, TIS11B associates with AU rich elements present in the long 3′UTR isoform ofCD47 to facilitate interaction with its effector protein, SET, upon translation.
This condensate-associated interaction promotes increased association of CD47 protein with the cell membrane. (D) In human cells, the PCNT RNA is actively
transported towards the centromere while translating to facilitate rapid incorporation into transient pericentriolar condensates. These condensates support the
organization of the pericentriolar material and microtubules to allow mitosis to occur normally. (E) Dynein axonemal particles (DynAPs) spatially organize dynein proteins
within a condensate environment to promote their appropriate assembly in a “reaction crucible” mechanism. When the condensate environment is disrupted through
depletion of Heatr2, Dynein complex assembly is disrupted, axonemal Dynein organization is perturbed, and cilial beating is decreased. (F) The ß-catenin destruction
complex is a condensate which forms throughout the cell cycle to degrade the constitutively translated ß-catenin protein. Upon induction of Wnt signaling, the
components of the destruction complex are modified causing the complex to disassemble and become sequestered at the plasma membrane. When the destruction
complex is sequestered, nascent ß-catenin protein can translocate to the nucleus to perform its functions in Wnt signaling.
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structures occurs and sometimes plays a regulatory role in gene
expression.

Indeed, even within stress granules themselves, we now know
that some transcripts can be translated. Using the SunTag, an in
vivo single-molecule translation reporter, Mateju et al. explored
the effects of stress response on translation in G3BP1-labeled
stress granules. Counter to previous observations demonstrating
that transcripts are typically translationally inactive within stress
granules84, they discovered that the stress response gene, ATF4, is
readily translated within stress granules (Mateju et al. 2020).
Although it remains true that many RNAs in stress granules fit
the canonical model of stress granule association after translation
repression, this discovery illustrates that condensates are
permissive to diverse forms of post-transcriptional regulation.

Among the novel biomolecular condensates associated with
active translation are translation factories, locales within the cell
where translating ribosomes congregate (Figures 3A,B) (Pizzinga
et al., 2019; Morales-Polanco et al., 2021). Some novel
condensates serve more nuanced functions, beyond the
coordinated, local translational responses mediated by
translation factories. These condensates can promote RNA/
protein effector interactions (TIS granules, Figure 3C) (Ma
and Mayr, 2018), spatiotemporal regulation of organelle
assembly (pericentriolar material and axonemal dynein foci/
dynein axonemal particles, Figures 3D,E) (Huizar et al., 2018;
Sepulveda et al., 2018; Lee et al., 2020b; Fingerhut and Yamashita,
2020; Aprea et al., 2021), and even cell-cycle-dependent protein
turnover (ß-catenin destruction complexes, Figure 3F) (Chouaib
et al., 2020; Nong et al., 2021a). Here, each of these condensates is
discussed as a series of short vignettes to highlight the growing
breadth of biophysical behaviors and functional roles for
biomolecular condensates.

3.2 Translation-Associated “Translation
Factory” Condensates
Beyond the occasional translation of mRNA in stress granules,
distinct translation-associated mRNA condensates have been
reported (Figure 3). Observations have revealed the existence
of ribosome-rich, actively translating puncta, or “translation
factories,” (Dufourt et al., 2021) such as Glycolytic-bodies
(G-bodies) or Core Fermentation (CoFe) granules and
translation factor granules, among others (Huizar et al., 2018;
Pizzinga et al., 2019; Lee et al., 2020b; Chouaib et al., 2020;
Fingerhut and Yamashita, 2020; Fuller et al., 2020; Nong et al.,
2021a; Aprea et al., 2021; Morales-Polanco et al., 2021).

Early evidence suggests that many translation factories behave
as biomolecular condensates to promote specific regulatory
outcomes. In G-bodies, RNAs and intrinsically disordered
regions of glycolytic enzymes are required to form gel-like
condensates (Jin et al., 2017; Fuller et al., 2020). These RNPs
display the hallmark behaviors of condensates: exchange with the
surrounding cytoplasm and fusion of separate droplets (Fuller
et al., 2020). In CoFe granules, the TRICK assay demonstrated
that RNAs are translated in the granules while translation
inhibition assays demonstrated active translation is required
for glycolytic mRNAs to localize to CoFe granules (Halstead

et al., 2016;Morales-Polanco et al., 2021) (Figure 3A). Ultimately,
the organization of glycolytic enzymes in translation factory
condensates increases the competitive fitness of yeast under
hypoxic conditions compared to cells without the condensate
organization (Fuller et al., 2020). Notably, CoFe granules have
also been observed in HeLa cells, suggesting this may be a
conserved mechanism for regulating glycolysis pathways
(Morales-Polanco et al., 2021).

Similarly, translation factor RNAs translate in translation
factories in yeast (Pizzinga et al., 2019) (Figure 3B). These
translation factories, termed translation factor granules, are a
heterogeneous composition of initiation, elongation, and
termination factor RNAs, which polarize towards the budding
daughter cell under normal growth conditions. Supporting
condensate behavior, these translation factories disperse upon
treatment with aliphatic alcohol and fuse with P-bodies upon
glucose deprivation. As with G-bodies/CoFe granules, translation
factor granules contain actively translating RNAs as confirmed by
TRICK (Halstead et al., 2016). When the polarization of translation
factor granules is disrupted, as with impairment of the transport
factors She2p or She3p, yeast strains fail to undergo filamentous
growth. This demonstrates a role for these translation factories in
regulating cell polarization and competitive fitness in the wild.

The organization of RNAs into translation factory condensates
appears thematic in its capacity to promote competitive fitness and
promote cellular viability. Translation-associated condensates are
also being implicated in themisregulation of translation. Recent data
has provocatively suggested that solid-like amyloid condensates may
facilitate stress-response-induced translation in the nucleus to
preserve cell viability (Theodoridis et al., 2021). While more
comprehensive screening is needed to define the breadth and
functions of translation factory-associated RNAs, their regulation
is interesting nonetheless. Understanding what coordinates the
spatial organization of mRNAs and their relationship to the
translation state within these condensates will provide a deeper
understanding of the mechanisms regulating gene expression.

3.3 TIS Granule Condensates Mediate
Protein-Effector Interactions
The ER is associated with the local translation of secreted or
membrane proteins (Walter and Blobel, 1981; Walter and
Johnson, 1994; Ast et al., 2013). Recent discoveries have added
complexity to this model, however. A novel ER-associated
condensate called the TIS granule facilitates local translation
and protein-effector assembly adjacent to the ER (Ma and
Mayr, 2018; Ma et al., 2021).

TIS granules appear as an extraluminal, space-filling
condensate interleaved with the ER containing the RBP
TIS11B and its RNA targets. TIS granules form a mesh-like
rather than spherical structure and can only undergo partial
fusion events suggesting they behave as a gel-like condensate (Ma
et al., 2021). Even so, these structures behave with liquid-like
dynamics, demonstrating rapid recovery of TIS11B fluorescence
after photobleaching. This paradoxical behavior is mediated
through extensive RNA-RNA interactions. By forming RNA
interaction networks, TIS granules retain RNA while allowing
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interacting proteins such as TIS11B to dynamically flux through
the condensate environment (Ma et al., 2021).

Within TIS granules, TIS11B binds the transcript CD47 at
AU-rich elements present only in the longer of two alternatively-
spliced 3′UTR isoforms resulting in its localization to the TIGER
(TIs Granule ER) domain. This distinct environment promotes
CD47 protein interaction with the effector protein, SET, in a
splice-variant-specific manner. The extended mesh-like structure
of TIS granules may provide an expanded surface area for these
interactions to occur (Ma and Mayr, 2018). Ultimately, this
condensate-mediated complex formation promotes increased
membrane localization of the CD47 protein compared to
protein translated from the short, non-TIS granule localized
CD47 isoform. The TIS granule demonstrates how transcript
localization in condensates can mediate specific protein-protein
interactions and fate directed by untranslated mRNA elements.

3.4 Local Translation of PCNT RNA
Correlates Rapid Condensate-Like Growth
of the Pericentriolar Material
Post-transcriptional regulation in condensates can transcend the
protein-effector interactions observed in TIS granules and
support the organization of entire organelles. One example is
the cotranslational localization of PCNT mRNA to the
pericentriolar material (PCM).

At the onset of mitosis, the PCNT protein promotes
condensation of PCM surrounding the centrosome (Woodruff
et al., 2017; Sepulveda et al., 2018). This condensation is in part
organized by localization of PCNT mRNA to centrosomes in a
translation- and dynein-dependent manner during centrosome
maturation (Sepulveda et al., 2018). PCNT mRNA localization
combats the kinetic challenge of transporting and synthesizing
this large protein (3336 amino acids in humans) to direct PCM
and centrosome formation during the short period of early mitosis.

Upon localization, PCNT protein forms dynamic
pericentriolar granules. Supporting their condensate behavior,
these granules are sensitive to aliphatic alcohols in vivo.
Additionally, the N-terminal low complexity region of the
protein displays rapid recovery after photobleaching, has a
distinct phase boundary, and granules can coalesce and
deform (Jiang et al., 2021). The PCNT condensates can then
recruit other PCM components and ultimately promote
microtubule nucleation. Over a short time, the PCM appears
to “mature” into more solid-like structures, posited to withstand
the extensive forces of mitosis (Woodruff et al., 2015; Woodruff
et al., 2017). This dynamic but transient condensate behavior of
PCNT granules in organizing the PCM illustrates that
biomolecular condensates can support the formation of entire
organelles over brief periods.

3.5 Assembly of Axonemal Dynein Within
Condensates is Required for Cilial Beating
Dynein complexes comprising the primary minus-end-directed
microtubule motor are essential for the normal movement of
cilia. Axonemal dynein foci, otherwise known as Dynein

Axonemal Particles (DynAPs), are essential for assembling
these dynein complexes (Huizar et al., 2018; Lee et al., 2020b;
Fingerhut and Yamashita, 2020; Aprea et al., 2021). DynAPs
spatially organize inner and outer dynein arm components and
their partners to promote proper assembly and subsequent
axonemal distribution of dynein complexes in Xenopus
multiciliated cells.

These granules demonstrate standard condensate behaviors.
DynAPs components recover rapidly from photobleaching,
readily undergo fission and fusion, and even share some, but
not all, components with stress granules (Huizar et al., 2018). The
condensate behavior of DynAPs supports the assembly of
axonemal dynein complexes through a “reaction crucible”
mechanism. Dynein components are maintained stably within
the DynAPs, while dynein axonemal assembly factors and other
chaperones can flux through the condensate to promote
functional complex organization (Huizar et al., 2018). When
the condensates are made less mobile by depletion of the
DynAP protein Heatr2, ciliary beating decreases, suggesting
that the dynamic exchange of assembly factors in DynAPs is
essential for proper dynein complex assembly (Huizar et al.,
2018). In turn, loss of axonemal dynein causes defects in
ciliary beating, cell motility, and in some instances, sterility
(Fingerhut and Yamashita, 2020; Aprea et al., 2021). These
defects demonstrate the importance of condensates in
promoting proper complex assembly, preventing inappropriate
interactions between complexes, and the ultimate function of
organelles and the cell.

3.6 The ß-Catenin Destruction Complex
One particularly striking form of condensate-mediated post-
transcriptional regulation is the ß-catenin “destruction
complex.” The destruction complex is a condensate formed
through the multivalent interaction of Axin and APC proteins
(Nong et al., 2021a). In vivo Axin has been shown to have
condensate behavior as evidenced by its fusion and recovery
after photobleaching, while further support comes from its salt
sensitivity and concentration-dependent phase-separation (Nong
et al., 2021b).

The striking aspect of the destruction complex is that ß-
catenin mRNA perpetually translates throughout the cell cycle
within the destruction complex, but the ß-catenin protein is
rapidly degraded in these condensates. Within the destruction
complex, ß-catenin phosphorylation by Axin-recruited kinases
promotes subsequent proteasomal degradation. However, upon
the activation of Wnt signaling, destruction complex proteins are
recruited to the cell membrane (Chouaib et al., 2020). The
sequestration of destruction complex components dissolves the
condensate (Chouaib et al., 2020). At this point, ß-catenin safely
transits to the nucleus to perform its signaling functions. This
constant cycle of protein synthesis and degradation allows for the
rapid and specific response required for functional Wnt signaling
as the cell cycle progresses while preventing the dominant-
negative effects that occur in the presence of constitutive ß-
catenin protein (Nong et al., 2021a). This complex regulation
demonstrates how concentrating transcripts within condensates
can overcome kinetic challenges to meet the needs of the cell.
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Overall, cytoplasmic biomolecular condensates represent
dynamic environments. Germ granules, stress granules, and P
bodies are enriched for translationally inactive transcripts, but
newly discovered roles for condensates in post-transcriptional
regulation adds complexity to these models with many examples
of condensates that form in association with active translation or
for the purpose of regulating translational outcomes. Even
condensates long thought to house translationally repressed
RNAs, such as stress granules, can host the translation of a
subset of their constituents. As a result, the functional purpose
of organizing RNA and protein into biomolecular condensates is
an active field of research with many remaining questions.

4 CONCLUSION

Though the exact functions of many biomolecular condensates
remain elusive, the fact remains: mRNA localization,
transcript function, and translational control are intimately
linked to these phase-separated organelles. It is advantageous
to translate proteins when and where they are required and to
maintain translational repression when translation would be
hazardous to cell viability. It is increasingly apparent that
mRNA accumulation within biomolecular condensates is
integral to this regulation.

Many unanswered questions remain. A key challenge will be to
determine where RNA condensation itself is essential. In some
classic examples, such as the germ granule RNAs in Drosophila,
localization is clearly important in development as loss of germ
granules causes severe morphogenic phenotypes and lethality
(Voronina et al., 2011). However, the functional effects of
removing any particular transcript from a condensate are
challenging to study. Disruption of condensates can result in
the misregulation of the entire organelle. Even when
experimenting with one transcript, the localization and
translation regulatory elements are often difficult or impossible
to separate, causing pleiotropic effects when inducing their
mislocalization (D’Agostino et al., 2006; Jadhav et al., 2008;
Parker et al., 2020; Paquin et al., 2007; Chartrand et al., 2002;
Hüttelmaier et al., 2005). Thus, it is uncertain whether RNA
condensation is a causative, redundant, reinforcing, or
symptomatic effect of regulatory control in many instances.

Another challenge is understanding the relationships between
the cytoplasmic RNP condensates such as stress granules,
P-bodies, and germ granules given that many of their protein
and RNA components overlap (Figure 1B). Do they share an
evolutionary origin? Do they communicate with one another?
Are there pathways that transfer mRNAs from condensate to
condensate? How do these largely repressive condensates relate to
translation-associated condensates like translation factories?
Increased application of in vivo imaging will reveal which
mRNAs are true long-term residents of condensates, which are
merely migrating through them, and how this correlates with
their translational regulation.

Additionally, it will be interesting to continue exploring the
structural role of RNA itself in mediating phase separation.
Several studies have demonstrated that mRNA can scaffold

condensates, such as RPS28B, which recruits its own protein
to scaffold P-bodies, and the Ashbya gossypia mRNAs CLN3,
BNI1, and SPA2 that assist in determining the specificity of Whi3
droplets (Langdon et al., 2018a; Fernandes and Buchan, 2020).
Incredibly, some mRNA sequences appear to have intrinsic
localization cues. The BglG mRNA in E. coli may localize to
cell membranes through a PolyU tract, which can interact
electrostatically with membranes in vitro (Nevo-Dinur et al.,
2011; Kamat et al., 2015). Furthermore, some RNAs form
homotypic clusters in vivo or self-segregate in vitro (Little
et al., 2015; Trcek et al., 2015; Langdon et al., 2018b; Tauber
et al., 2020). Understanding the fundamental physics of RNA
interactions with cellular components will inevitably provide
insight into how condensates form, their internal dynamics,
and their ultimate functional effects.

Though a complete understanding of condensates remains
unclear, their defects can result in pronounced phenotypes and
human disease. Defects in mouse germ granule components
impair spermatogenesis (Lehtiniemi and Kotaja, 2018). In
Drosophila and Xenopus, defects in germ granules prevent
germline development, while in C. elegans, loss of P granules
causes germline transcriptomic changes and can result in
immediate, temperature-sensitive, or multi-generational
progressive sterility (Kawasaki et al., 1998; Wang and Reinke,
2008; Dodson and Kennedy, 2019; Ouyang et al., 2019). Stress
granules regulate nucleocytoplasmic transport, which
misfunctions in amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD) (Fan and Leung, 2016; Zhang
et al., 2018a). These transport defects are rescued by perturbing
stress granule components (Zhang et al., 2018a). Neurological
disorders are also associated with P-body dysregulation as
mutations in the DDX6 helicase prevent proper assembly of
P-bodies and ultimately result in intellectual disability in
humans (Balak et al., 2019). Further, mutants for the P-body
proteins DCP-1 and DCP-2 exhibit phenotypes in pattern-
triggered immunity resulting in pathogen susceptibility (Yu
et al., 2019).

By understanding the components and mechanisms cells use
to organize RNA and regulate local translation we can begin to
better design experiments. In the lab, developing nuanced genetic
tools to control the temporal availability of proteins in living cells
could provide new tunable or inducible expression systems.
Further, identifying cis-acting elements sufficient for
sequestration of transcripts away from their usual destination
will allow for dissecting the functions of RNA localization in vivo.
An improved understanding will also lead to advances in the
treatments of human diseases. In medicine, understanding the
mechanisms underlying misregulation of condensates implicated
in neurological disorders can impact human health by supporting
the search for treatments. Perhaps more importantly, it may
reveal the underlying genetics and environmental conditions that
contribute to the progression of these diseases allowing for more
preventative measures to be taken.

As this field matures, insights will continue to emerge. The
theme that multiple modes of mRNA regulation can occur
concurrently within condensates is likely to continue. The
interrelatedness between mRNA localization, translation
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regulation, decay, and small RNA-mediated regulation will
continue to come into focus. Discoveries of highly specialized
biomolecular condensates are likely to accelerate as we determine
how the biophysical properties of these structures impact the
biochemistry of mRNA regulatory control. Finally, the linkages
between coordinated translational control at each distinct level of
translation initiation, elongation, termination, and recycling are
all likely to be important. The field is rich for potential discoveries
as mRNA condensation and translation regulatory control
emerge from a niche field, studied in a few systems, to a
generalizable feature of cell biology.
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