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Abstract 

Background: Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy repre-

sents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared 

with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor 

vaccines development and molecular function investigation. Although several machine learning predictors have 

been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing meth-

odology is still challenging.

Methods: In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 

tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an effi-

cient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and 

peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-

step feature selection technique to search for the optimal feature subset. The final prediction model was constructed 

using random forest algorithm.

Results: Finally, the top 263 informative features were selected to train the random forest classifier for detecting 

tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and 

sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% 

over independent tests, respectively. The online prediction server was freely accessible at http:// lab. malab. cn/ ~acy/ 

iTTCA.

Conclusions: We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will 

hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major 

histocompatibility complex class I.
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Introduction
According to a report from the International Agency 

for Research on Cancer (IARC), approximately 10 mil-

lion people die of cancer, and there were 19.3 million 

new cancer cases worldwide in 2020. Cancer has become 

the second leading cause of death [1, 2]. Tumor molec-

ular targeted therapy, radiotherapy and chemotherapy 

together constitute the main means of modern cancer 

drug therapy [3–6]. Classic broad-spectrum antican-

cer drugs and radiotherapy are lethal to tumor cells, 

but they can destroy normal cells in the body, produce 

large adverse reactions, and are prone to drug resist-

ance [7–11]. Advances in equipment and immuno-

oncology are driving a revolution in the field of cancer 

care. New cancer treatments are emerging, and targeted 
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immunotherapy is one of the most promising treatment 

options. Unlike the harmful side effects of chemother-

apy and radiotherapy, immunotherapy has been proven 

to be highly selective and effective, while also reduc-

ing side effects [12–15]. Immunotherapy provides new 

opportunities for the development of potential cancer 

treatments. T cells can recognize and kill tumor anti-

gens encountered on the surface, which are presented 

by major histocompatibility complex (MHC) class I and 

class II molecules on the antigen-presenting cell surface 

[16–18]. �erefore, T cells play an important role in the 

field of tumor rejection and immunotherapeutic cancer. 

Correctly identifying T cell antigens not only helps to 

understand their protective mechanism but also contrib-

utes to the development of highly efficient cancer peptide 

vaccines [19].

Although the experimental methods are considered 

to be the most reliable method to characterize the bio-

logical activity of T cell epitopes in tumor antigens, they 

are usually time-consuming and expensive. Due to their 

convenience and high efficiency, computational methods 

have attracted increasing attention in the field of bioin-

formatics [20–30]. In this study, we focused on the iden-

tification of tumor T cell antigens (TTCAs) represented 

by MHC class I. According to our research, only two 

machine learning prediction tools have been published 

to identify this type of TTCA. �e first prediction model 

was introduced by Lissabet et al. and is called TTAgP1.0 

[31]. TTAgP1.0 uses the relative frequency of amino 

acids and amino acid composition (AAC) to encode the 

peptide sequences and then employs random forest (RF) 

classifier to build the prediction model [32]. Regrettably, 

TTAgP1.0 neither provides a web-server nor the dataset 

used. �erefore, its usage for the related research com-

munity is quite limited, although it has its own advan-

tages and reasonable prediction accuracy. Very recently, 

Charoenkwan et  al. proposed another random forest 

based prediction model iTTCA-Hybrid [33]. Five fea-

ture extraction methods, namely, AAC, pseudo amino 

acid composition (PAAC), dipeptide composition (DPC), 

amino acid property distribution (CTDD) and phys-

icochemical (PCP), were investigated. �e final model 

was constructed using the hybrid features of PAAC and 

CTDD. In addition, the oversampling technique was also 

applied to address the problem of data imbalance.

In this paper, we present a new predictor, iTTCA-RF, 

to distinguish TTCA from non-TTCA more accurately. 

As shown in Fig. 1, the protein sequences were prelimi-

narily encoded using four kinds of feature extraction 

methods, namely global protein sequence descriptors 

(GPSD), grouped amino acid and peptide composition 

(GAAPC), PAAC and adaptive skip dipeptide composi-

tion (ASDC). We have investigated the performance of 

four single descriptors and their all possible combina-

tions on six commonly classifiers, where the imbalanced 

training samples were handled by the hybrid-sampling 

approach SMOTE-Tomek. �e results suggest that the 

hybrid feature composed of GPSD, GAAC and PAAC 

was the most informative for TTCA identification. �en, 

the maximum relevance maximum distance (MRMD) 

algorithm was used to analyze the feature importance of 

the involved vectors. With the application of the incre-

mental feature selection (IFS) strategy, different feature 

subsets are generated for optimization under consid-

eration of the classification algorithms. Ultimately, the 

best performance model was finally constructed using 

the top 263 selected features. �e tenfold cross-vali-

dation (CV) scores of iTTCA-RF were balanced accu-

racy (BACC) = 83.71%, MCC = 0.678, AUC = 0.894, 

Sn = 88.69% and Sp = 78.73%, while those of the latest 

iTTCA-Hybrid were BACC = 78.83%, MCC = 0.588, 

AUC = 0.840, Sn = 85.53%, Sp = 72.13%. �e iTTCA-RF 

achieved scores with BACC = 73.14%, MCC = 0.474 and 

Sp = 62.67% over the independent test, which means rel-

ative improvements of 2.4%, 4.6% and 4.0%, respectively, 

compared to the existing state-of-the-art model. We also 

established a user-friendly web server, which is expected 

to be an effective and useful tool for TTCA identification.

Materials and methods
Datasets

In this research, we directly used the benchmark data-

sets collected by Charoenkwan et  al. [33]. �e dataset 

was constructed as follows: (1) a total of 727 MHC class 

I peptides were collected as positive samples from TAN-

TIGEN [34] and TANTIGEN 2.0 [12]; (2) non-TTCA was 

collected from the IEDB database [35], in addition, sam-

ples with no relationship with any disease were chosen 

as negative samples; and (3) duplicate peptide sequences 

were eliminated. Ultimately, 592 positive and 393 nega-

tive samples were obtained. As shown in Table 1, 80% of 

the samples were randomly selected as the training data-

set and while the remaining 20% of samples as the inde-

pendent test datasets.

Feature representation

�e quality of extracted sample features will greatly affect 

the performance of the predictive model. Research-

ers have proposed various biological sequence encod-

ing strategies that can conveniently convert protein 

sequences into numerical vectors [22, 36–46]. In this 

paper, four feature encoding methods described below 

were adopted to represent the peptide sequences. In this 

work, we used the iLearn tool package [37] to generate 

the four type of sequence features.
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Global protein sequence descriptor (GPSD)

�is method (also called 188D features in many studies) 

describes the global composition of amino acid proper-

ties in a protein sequence and generates 188 features that 

integrate both sequence information and amino acid prop-

erties [47, 48]. In general, the GPSD descriptor contains 

two parts. �e first part is the amino acid composition. 

�e amino acid frequency in the peptide was calculated 

to obtain the first 20 features. �e second part is the 168 

features related to eight physicochemical properties of 

amino acids. Detailed information about the eight phys-

icochemical properties of amino acids is described in the 

References [49–51]. For each property, 20 amino acids 

were divided into three groups, and the CTD (C: composi-

tion, T: transition and D: distribution) pattern was applied 

to encode the peptide sequences to generate 21D features. 

C stands for the occurrence frequencies of each group 

(3D). T represents the transition frequencies between the 

three groups (3D). D refers to the first, 25%, 50%, 75% and 

last occurring positions of a certain group in the peptide 

Fig. 1 The whole framework of the proposed method iTTCT-RF to identify tumor T cell antigen

Table 1 Sample distribution in the training and independent 

test datasets

Dataset Training Testing

Positive 470 122

Negative 318 75
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sequence (5 × 3 = 15D). �us, the CTD model will produce 

8 * (3 + 3 + 15) = 168 features.

Grouped amino acid and peptide composition (GAAPC)

According to their physical–chemical properties (e.g. 

molecular size, hydrophobicity and charge), the 20 amino 

acids (AAs) are further divided into five categories. �e 

five categories are aliphatic group c1: GAVLMI, aromatic 

group c2: FYW, positively charged groups c3: KRH, nega-

tively charged group c4: DE, and uncharged group c5: 

STCPNQ. A protein sequence of length L, can be coded 

as follows.

�e grouped amino acid composition (GAAC) [37, 52] 

descriptor can be defined as:

where N(c) represents the number of AAs in group c, and 

N(i) is the number of AAs of type i.

�e grouped dipeptide composition (GDPC) [37, 52] 

encoding is also a variation of the dipeptide composition 

descriptor. It is defined as:

where  Nxy is the number of dipeptides represented by AA 

type groups x and y.

�e grouped tripeptide composition (GTPC) [37, 52]

encoding is a variation of the tripeptide composition 

descriptor. It is defined as:

where  Nxyz refers to the number of tripeptides repre-

sented by AA type groups x, y and z.

GAAPC is a combination of GAAC, GDPC and GTPC. 

�is method will produce 155D feature vectors.

Adaptive skip dipeptide composition (ASDC)

�e ASDC descriptor was first presented by Wei et  al. 

[53]. �is method is another variant dipeptide compo-

sition that considers not only the relevant information 

between adjacent residues, but also that of intervening 

residues [54, 55]. It is defined as:

(1)f(c) =
N(c)

L
; y ∈ {c1, c2, c3, c4, c5};

(2)N(ci) =

∑
N(i), i ∈ c

(3)f
(

x, y
)

=
Nxy

L − 1
, x, y ∈ {c1, c2, c3, c4, c5};

(4)f
(

x, y, z
)

=
Nxyz

L − 2
x, y, z ∈ {c1, c2, c3, c4, c5}

(5)ASDC = (FV1; FV2; . . . ; FV400)

(6)FVi =

∑N−1

k=1
f ki

∑
400

i=1

∑N−1

k=1
f ki

where FVi represents the occurrence frequency of all 

possible dipeptides with ≤ N-1 intervening amino acids. 

In the ASDC method, the sequence can be easily con-

verted to a 400-dimensional vector.

Pseudo‑amino acid composition (PAAC)

�e PAAC descriptor is a very effective feature extraction 

method and is widely used in protein attribute prediction, 

drug development and studies on drug target areas [56]. 

�e sequence order correlation factors in PAAC incor-

porate the sequence-order information to some extent. 

Additional details of the PAAC features are described in 

the References [56–59]. We used the default parameters 

in iLearn to obtained a 22-dimensional feature vector.

Classi�ers

Six widely used classifiers were investigated to search for 

the most suitable machine learning algorithm, including 

random forest (RF), support vector machine (SVM), ada-

boost (AB), logistic regression (LR), bagging and gradient 

boosting machine (GBM). �ese efficient classification 

models in the scikit-learn package [60] were applied for 

models implementation and feature importance analysis. 

�e hyper-parameters were optimized using grid search, 

and the search range was presented in Additional file 1: 

Table S1.

Feature selection

�e features extracted from a sequence in machine learn-

ing modeling always contain noise. To improve the fea-

ture representation ability, feature selection strategies are 

often adopted to solve the problems of redundant infor-

mation and overfitting. Various approaches have been 

developed to analyze the features, such as analysis of var-

iance (ANOVA) [61–65], minimal redundancy-maximal 

relevance (MRMR) [66–68] and MRMD [69–72]. �ese 

methods have been widely used in the field of RNA, DNA 

and protein prediction. In this work, MRMD was used to 

select optimal features for model training. �e MRMD 

feature selection method is mainly determined by two 

parts [73]. �e first part is the correlation between the 

feature and target class vector calculated by the Pearson 

correlation coefficient. �e second part is the redun-

dancy between features determined by three distance 

formulas (i.e., Euclidean distance, cosine distance and 

the Tanimoto coefficient). �e larger the Pearson correla-

tion coefficient is, the closer the relationship between the 

feature and the class label, and the larger the distance is, 

the lower the redundancy between the features. Finally, 

MRMD selects a subset of features that are strongly cor-

related with the class label and have low redundancy 

between features. We ranked the original features based 
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on the MRMD feature sorting algorithm and then applied 

the IFS strategy to search for the optimal feature subset.

Unbalanced strategy

Data imbalance has been encountered in multiple areas, 

such as bioinformatics, drug discovery, and disease diag-

nosis, and has been considered one of the top ten prob-

lems in pattern recognition and data mining [74–80]. 

Fortunately, several approaches have been specifically 

proposed by researchers to handle such datasets. �e 

data level strategy is a direct way to balance the data-

set by increasing/deleting the number of samples in the 

minority (majority) class. It can be divided into three 

categories, namely the over-sampling, under-sampling 

and hybrid-sampling methods [81–83]. In this research, 

we chose the hybrid-sampling method SMOTE-Tomek 

to balance the training dataset. �is approach is a com-

bination of over- and under-sampling methods: syn-

thetic minority over-sampling technique (SMOTE) [84] 

and Tomek’s links (Tomek) [85]. �is hybrid-sampling 

approach can simultaneously avoid the shortcomings of 

overfitting and loss of key information caused by SMOTE 

and Tomek, respectively.

Evaluation parameters and strategies

According to previous related studies, there are three 

commonly used methods to evaluate the models in the 

field of protein prediction: K-fold CV, independent test 

and jackknife test. In this study, we used tenfold CV and 

independent tests to evaluate and optimize the model. 

For the binary classification, the confusion-matrix-based 

metrics are usually applied to measure the predictor, 

including accuracy (ACC), true negative rate (TNR)/

specificity (Sp), true positive rate (TPR)/sensitivity (Sn), 

and matthew’s correlation coefficient (MCC) [86–101]. 

However, ACC does not perform well with imbalanced 

datasets, therefore, balanced accuracy (BACC) was used 

to measure how accurate is the overall performance of 

the models in this work. �e formulas for these metrics 

are presented below:

where TP, TN, FP and FN represent true positive sam-

ples, true negative samples, false positive samples and 

false negative samples, respectively. In addition, the area 

under the receiver operating characteristic (auROC, 

also called AUC) curve is also employed, which is used 

to illustrate the prediction performance of the proposed 

models.

Results and discussion
Performance of individual feature descriptor

First, we studied the performance of four feature repre-

sentation methods on six widely used machine learning 

classifiers. �e tenfold CV was used to evaluate all mod-

els for fair comparison. �e corresponding experimental 

results were summarized in Additional file  1: Table  S2 

and the BACC scores were shown in Table 2. As shown 

in Table  2, the random forest algorithm had the high-

est BACC on the three features of GPSD, ASDC and 

GAAPC. Although the BACC of RF on PAAC was not 

the highest, it was only slightly lower than the highest 

LR. For the performance of the four feature coding meth-

ods on the RF classifier, GPSD had the highest BACC 

of 69.62%, followed by GAAPC and ASDC, which had 

BACC of 67.71% and 66.88%, respectively, and PAAC had 

the lowest BACC of 62.45%.

As discussed earlier, in unbalanced prediction tasks, 

conventional classifiers usually show poor recognition 

ability on minority classes. To enhance the performance 

(7)



















Sn, TPR = TP
TP+FN

Sp, TNR = TN
TN+FP

BACC = 1
2

× (TPR + TNR)

MCC = (TP×TN )−(FP×FN )√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

Table 2 Preliminary results of different feature descriptors using different classifiers

The best performance value is highlighted in bold for clari�cation

a SMOTE-Tomek technique was applied to balance the data set

Features Classi�er (BACC%)

LR Bagging RF AB GBM SVM

GPSD 63.09 68.51 69.62 67.51 65.60 65.81

ASDC 58.53 63.13 66.88 62.96 64.03 64.51

GAAPC 58.91 66.75 67.71 64.44 67.56 61.75

PAAC 66.01 61.79 62.45 62.68 62.34 67.91

GPSD_Ba 67.12 75.23 79.62 73.54 76.91 76.13

ASDC_Ba 69.50 72.77 79.19 71.90 77.02 77.89

GAAPC_Ba 66.33 75.51 79.14 73.02 78.34 74.94

PAAC_Ba 66.63 71.77 77.46 69.91 74.29 73.09
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of these predictive models, we used integrated resam-

pling technique SMOTE-Tomek to balance the positive 

and negative samples and the results were Additional 

file 1: Table S3 and the BACC scores were also presented 

in Table  2. For a more intuitive comparison, the ROC 

curves before and after resampling were plotted in Addi-

tional file 1: Figure S1–4. �e performance of all models 

was significantly improved after using SMOTE-Tomek 

except for the PAAC on LR classifier. Obviously, RF clas-

sifier again top ranked for its high BACC and AUC values 

on all balanced data. Similar to the results before resa-

mpling, the GPSD on the RF classifier showed the best 

performance among all the feature descriptors with an 

BACC score of 79.62% and PAAC performed the worst 

with BACC of 77.46%.

Performance of hybrid features

By using a combination of various feature types, each 

can alleviate the others’ weaknesses and can integrate 

more sequence information, which helps predict TTCA. 

Based on these facts, comprehensive prediction perfor-

mances of hybrid features were further evaluated. We 

evaluated all possible 11 combinations of four single 

descriptors, where the imbalanced samples were han-

dled by the SMOTE-Tomek. Using the 11 hybrid features 

and 6 classifiers, we re-constructed 66 predictive mod-

els and the tenfold CV results on training set were pro-

vided in Additional file 1: Table S3. As shown in Table S4, 

almost all hybrid features performed best on RF except 

for the combination of ASDC + PAAC. �is confirmed 

once again that RF is the most suitable classifier to dis-

tinguish TTCA from non-TTCA. In order to find the 

best hybrid feature to construct the optimal prediction 

model, we presented the prediction results of RF classi-

fier in Table  3. It can be clearly seen from Table  3 that 

all hybrid features perform better than the individual 

features except for ASDC + PAAC combination. �ere 

seems no distinct regularity between the combination 

manner and the performance of corresponding model. 

�e GPSD + GAAPC + PAAC combination yield the 

best prediction capability among all features in four met-

rics, with BACC of 83.03%, Sn of 88.69%, Sp of 77.38% 

and MCC of 0.665. When further integrating ASDC, the 

overall performance of the model drops sharply, which 

may be caused by the redundant features introduced by 

ASDC. Combining the results in Table  2, we can con-

clude that those models containing GPSD information 

GPSD are better than those without GPSD information. 

�is indicates that GPSD descriptor is more predictive 

and discriminative than the others for TTCA predic-

tion. Altogether, the GPSD + GAAPC + PAAC combina-

tion outperforms all the features (including individual 

features and hybrid features), and was selected for the 

next feature analysis experiment.

Performance of optimal feature subset

To determine the optimal feature subset, we first 

sorted the original 365-dimensional hybrid feature (i.e. 

GPSD + GAAPC + PAAC obtained in “Performance of 

hybrid features” section) according to their importance 

measured by the MRMD algorithm. In the second step, 

the IFS strategy was applied to further determine the 

feature vector space for the RF classifier. A total of 365 

RF models were trained on 365 feature subsets with 1, 

2, 3…, 365 features. �e five metrics mentioned above 

were used to evaluate the models. As shown in Fig. 2A, 

the tenfold CV BACC scores increased sharply as fea-

tures were added when the dimension of the feature was 

less than 60, and then approached slowly fluctuating ris-

ing plateaus. When feature dimensions reached 263, the 

model achieved maximum tenfold CV BACC of 83.71% 

(Detailed results were presented in Table  4). To build a 

model with good robustness and generalization, the top 

263-dimensional feature subset was selected as the final 

optimal feature space (named F263).

Moreover, the extensively used data visualization 

method t-distributed stochastic neighbor embedding 

(t-SNE) [102]was utilized to validate the effective repre-

sentation ability of the optimal feature set. We compared 

our optimal feature F263 with the two best perform-

ing individual feature descriptors (GPSD and GAAPC). 

�e t-SNE were calculated for TTCA and non-TTCA of 

the three compared feature vectors and were plotted in 

Fig. 2B–D. For the original individual feature descriptors 

GPSD, the positive samples were randomly distributed in 

the feature space, while a small number of negative sam-

ples were concentrated in the upper and lower positions 

Table 3 The classification results of different hybrid features, (1): 

GPSD, (2): ASDC, (3): GAAPC, (4): PAAC 

The best performance value is highlighted in bold for clari�cation

feature BACC (%) AUC Sn (%) Sp (%) MCC

(1) + (2) 80.67 0.875 87.87 73.48 0.620

(1) + (3) 81.26 0.880 86.68 75.85 0.629

(1) + (4) 80.54 0.870 86.20 74.89 0.615

(2) + (3) 81.05 0.863 87.89 74.22 0.627

(2) + (4) 79.01 0.870 83.30 74.73 0.582

(3) + (4) 79.91 0.860 84.28 75.55 0.601

(1) + (2) + (3) 81.12 0.883 88.54 73.71 0.629

(1) + (2) + (4) 80.11 0.876 86.74 73.48 0.608

(1) + (3) + (4) 83.03 0.882 88.69 77.38 0.665

(2) + (3) + (4) 80.79 0.874 86.24 75.33 0.619

(1) + (2) + (3) + (4) 80.97 0.878 86.71 75.23 0.623
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of the graph. As for GAAPC, most of positive and nega-

tive samples were randomly distributed and overlap-

ping. For these two distribution maps, most samples 

overlap, and it was difficult to fit a boundary that dis-

tinguished the two types of samples. However, shown 

in Fig. 2D, although the distribution of positive samples 

and negative samples in the optimal F263 feature space 

still overlapped somewhat, it was simpler and clearer to 

find the dividing line that could distinguish most nega-

tive samples from positive samples. �is indicates that 

using the 263-dimensional feature subset obtained of 

hybrid features by MRMD is easier to identify TTCA and 

non-TTCA samples than when using the original individ-

ual feature descriptors. �erefore, the tenfold CV results 

of iTTCA-RF were improved.

Comparison with reported tools

Two classifiers to discriminate TTCA and non-TTCA 

have been published: TTAgP1.0 and iTTCA-Hybrid. 

Table 4 summarizes the tenfold CV and independent test 

scores of the three predictors. �e results of TTAgP1.0 

were from TTAgP1.0-MODI established by Charoen-

kwan et  al. using the same method on the new dataset. 

�us, all three tools were compared on the same training 

Fig. 2 A Optimal feature subset selected by the MRMD and IFS strategy, tenfold CV BACC of the RF classifier with the feature number varied; B 

t-SNE distribution of the individual feature descriptor GPSD; C t-SNE distribution of the individual feature descriptor GAAPC; D t-SNE distribution of 

the optimal feature subset F263

Table 4 Comparison of iTTCA-RF and state-of-the-art predictors

The best performance value is highlighted in bold for clari�cation

Tools Tenfold CV Independent test

BACC (%) AUC Sn (%) Sp (%) MCC BACC (%) AUC Sn (%) Sp (%) MCC

TTAgP1.0 63.68 0.838 70.85 56.50 0.838 68.68 0.747 78.69 58.67 0.379

iTTCA-Hybrid 78.83 0.840 85.53 72.13 0.588 70.73 0.783 82.79 58.67 0.428

iTTCA-RF 83.71 0.894 88.69 78.73 0.678 73.14 0.780 83.61 62.67 0.474
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and testing dataset. Since almost all the results metrics 

of iTTCA-Hybrid were better than TTAgP1.0, we mainly 

compared iTTCA-RF with iTTCA-Hybrid.

Figure 3A also visually demonstrates the comparison of 

evaluation metrics, and ROC curves were drawn (Fig. 3B) 

to depict the prediction efficiency. As shown in Fig.  3, 

the tenfold CV of iTTCA-RF scores was higher than 

that of the iTTCA-Hybrid scores in almost all metrics. 

�e BACC, AUC, Sn, Sp and MCC of our model on the 

training set were 4.9%, 5.4%, 3.2%, 6.6% and 9.0% higher 

than those of iTTCA-Hybrid, respectively. In terms of 

independent test scores, BACC, Sn, Sp and MCC outper-

formed iTTCA-Hybrid with improvement of 2.4%, 0.8%, 

4.0% and 4.6%, respectively. �ese results indicate that 

the prediction capacity on negative samples of iTTCA-

RF was greatly improved compared with the other pre-

dictors. Overall, iTTCA-RF significantly outperformed 

the other latest predictors, indicating that it can distin-

guish true TTCA from non-TTCA more accurately than 

existing tools. Although the developed predictor showed 

good performance, there is still much room for improve-

ment, especially in terms of the predictive ability on neg-

ative samples.

Web server implementation

For convenience, a user-friendly online server called 

iTTCA-RF was developed, which can be accessed freely 

at http:// lab. malab. cn/ ~acy/ iTTCA. Users can use the 

web-server to identify whether their protein sequences 

(in FASTA format) are TTCA or non-TTCA. �e first 

step is to enter or paste the FASTA format protein 

sequences in the left blank box and then click the Submit 

button. �e identification results will be displayed in the 

box on the right. If starting a new task, the user needs 

to click the Clear button or the Resubmit button to clear 

the input box. �e Submit button will be reactivated, 

and the user will be allowed to input new query protein 

sequences. �e homepage also provides links to down-

load relevant data and contact the author.

Conclusion
Accurate identification of TTCA will greatly promote 

cancer vaccine research and development. In this study, 

we constructed a new computational TTCA identifier 

named iTTCA-RF using the hybrid features of GPSD, 

GAAPC and PAAC. Combining the feature selection 

technique MRMD followed by IFS theory, the top 263 

important features were chosen to build the best per-

formance predictor. Here, the imbalance problem was 

addressed using the resampling method SMOTE-Tomek. 

iTTCA-RF achieves the best CV evaluation BACC value 

of 83.71%, which is 4.9% higher than the correspond-

ing value of the previously reported best predictor. �e 

independent test BACC score was 73.14%, an improve-

ment of 2.4%, and associated Sp and MCC values were 

also increased by 4.0% and 4.6%, respectively. Mean-

while, a user-friendly web-server was also established. 

It is expected that iTTCA-RF will be a robust, reliable, 

and useful computational tool for tumor T cell antigen 

identification. Although our proposed model is superior 

to other published predictors, the model requires fur-

ther development, especially the ability to identify nega-

tive samples. Future work will focus on exploring deep 

Fig. 3 A Comparison of our results and the iTTCA-Hybrid predictor and B ROC curves of training and testing datasets curves for iTTCA-RF and 

iTTCA-Hybrid, respectively

http://lab.malab.cn/~acy/iTTCA
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learning [103, 104] or more effective feature representa-

tion or computational intelligence strategies to improve 

the model’s performance.
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