

# IUPAC-NIST Solubility Data Series. 99. Solubility of Benzoic Acid and Substituted Benzoic Acids in Both Neat Organic Solvents and Organic Solvent Mixtures

# William E. Acree, Jr. a)

Department of Chemistry, University of North Texas, Denton, Texas 76203, USA

(Received 10 June 2013; accepted 17 June 2013; published online 30 August 2013)

Solubility data are compiled and reviewed for benzoic acid and 63 substituted benzoic acids dissolved in neat organic solvents and well-defined binary and ternary organic solvent mixtures. The compiled solubility data were retrieved from the published chemical and pharmaceutical literature covering the period from 1900 to the beginning of 2013. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816161]

Key words: alcohols; alkanes; alkanenitriles; alkoxyalcohols; alkyl ethanoates; benzoic acid; chloroalkanes; dialkyl ethers; solubility; solvents; substituted benzoic acids.

| CC    | CONTENTS                                                                                                                            |          |    | 3.4. 2-Acetoxybenzoic acid solubility data in ethers                                                                                                                                     |            |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| 1.    | Preface 1.1. Scope of this volume 1.2. Concentration units for nonelectrolyte solutions 1.3. Procedures used in critical evaluation | 10<br>10 |    | <ul><li>3.5. 2-Acetoxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons.</li><li>3.6. 2-Acetoxybenzoic acid solubility data in alcohols.</li></ul> | 91<br>91   |  |
|       | of published solubility data                                                                                                        | 11       |    | 3.7. 2-Acetoxybenzoic acid solubility data in ketones                                                                                                                                    | 102        |  |
| 2.    | Solubility of Benzoic Acid in Organic Solvents.  2.1. Critical evaluation of experimental                                           | 16       |    | 3.8. 2-Acetoxybenzoic acid solubility data in                                                                                                                                            |            |  |
|       | solubility data                                                                                                                     | 16       | 4. | miscellaneous organic solvents Solubility of 4-Acetoxybenzoic Acid in Organic                                                                                                            | 103        |  |
|       | 2.2. Benzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)                                                | 19       |    | Solvents                                                                                                                                                                                 | 104        |  |
|       | 2.3. Benzoic acid solubility data in aromatic                                                                                       | 1)       |    | 4.1. Critical evaluation of experimental solubility data                                                                                                                                 | 104        |  |
|       | hydrocarbons                                                                                                                        | 26<br>31 |    | 4.2. 4-Acetoxybenzoic acid solubility data                                                                                                                                               | 404        |  |
|       | 2.5. Benzoic acid solubility data in ethers                                                                                         | 34       | 5. | in alcohols                                                                                                                                                                              | 104        |  |
|       | 2.6. Benzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons                                        | 37       |    | Solvents                                                                                                                                                                                 | 105        |  |
|       | 2.7. Benzoic acid solubility data in alcohols                                                                                       | 44       |    | 5.1. Critical evaluation of experimental solubility data                                                                                                                                 | 105        |  |
|       | 2.8. Benzoic acid solubility data in alkoxyalcohols                                                                                 | 63       |    | 5.2. 4-Acetylbenzoic acid solubility data in                                                                                                                                             |            |  |
|       | 2.9. Benzoic acid solubility data in ketones                                                                                        | 64       |    | aromatic hydrocarbons                                                                                                                                                                    | 105        |  |
|       | 2.10. Benzoic acid solubility data in miscellaneous organic solvents                                                                | 66       | (  | miscellaneous organic solvents                                                                                                                                                           | 106        |  |
|       | 2.11. Benzoic acid solubility data in binary                                                                                        |          | 6. | Solubility of 2-Aminobenzoic Acid in Organic Solvents                                                                                                                                    | 107        |  |
| 3.    | organic solvent mixtures  Solubility of 2-Acetoxybenzoic Acid in Organic                                                            | 79       |    | 6.1. Critical evaluation of experimental solubility data                                                                                                                                 | 107        |  |
|       | Solvents                                                                                                                            | 84       |    | 6.2. 2-Aminobenzoic acid solubility data in                                                                                                                                              | 107        |  |
|       | 3.1. Critical evaluation of experimental solubility data                                                                            | 84       |    | aromatic hydrocarbons                                                                                                                                                                    | 107<br>107 |  |
|       | 3.2. 2-Acetoxybenzoic acid solubility data in                                                                                       |          |    | 6.4. 2-Aminobenzoic acid solubility data in                                                                                                                                              | 107        |  |
|       | aromatic hydrocarbons                                                                                                               | 85       |    | haloalkanes, haloalkenes, and haloaromatic hydrocarbons                                                                                                                                  | 108        |  |
|       | esters                                                                                                                              | 86       |    | 6.5. 2-Aminobenzoic acid solubility data                                                                                                                                                 |            |  |
| a)171 | ectronic mail: acree@unt.edu.                                                                                                       |          | 7. | in alcohols                                                                                                                                                                              | 108        |  |
|       | octronic mail: acree@unt.edu.  13 AIP Publishing LLC.                                                                               |          | ,. | Solvents                                                                                                                                                                                 | 110        |  |

|     | 7.1. Critical evaluation of experimental                                    |      |     | 11.2. 1,2-Benzenedicarboxylic acid solubility                                         |      |
|-----|-----------------------------------------------------------------------------|------|-----|---------------------------------------------------------------------------------------|------|
|     | 7.2. 3-Aminobenzoic acid solubility data in                                 | 110  |     | data in aromatic hydrocarbons                                                         | 142  |
|     | saturated hydrocarbons (including                                           |      |     | data in esters                                                                        | 143  |
|     | cycloalkanes)                                                               | 111  |     | 11.4. 1,2-Benzenedicarboxylic acid solubility                                         | 1.13 |
|     | 7.3. 3-Aminobenzoic acid solubility data in                                 |      |     | data in ethers                                                                        | 144  |
|     | aromatic hydrocarbons                                                       | 111  |     | 11.5. 1,2-Benzenedicarboxylic acid solubility                                         |      |
|     | 7.4. 3-Aminobenzoic acid solubility data in esters                          | 112  |     | data in haloalkanes, haloalkenes, and                                                 |      |
|     | 7.5. 3-Aminobenzoic acid solubility data in                                 |      |     | haloaromatic hydrocarbons                                                             | 144  |
|     | haloalkanes, haloalkenes, and haloaromatic                                  |      |     | 11.6. 1,2-Benzenedicarboxylic acid solubility                                         |      |
|     | hydrocarbons                                                                | 113  |     | data in alcohols                                                                      | 145  |
|     | 7.6. 3-Aminobenzoic acid solubility data                                    |      |     | 11.7. 1,2-Benzenedicarboxylic acid solubility                                         |      |
|     | in alcohols                                                                 | 113  |     | data in ketones                                                                       | 148  |
|     | 7.7. 3-Aminobenzoic acid solubility data in                                 | 115  |     | 11.8. 1,2-Benzenedicarboxylic acid solubility                                         | 1.40 |
| 0   | miscellaneous organic solvents                                              | 115  |     | data in miscellaneous organic solvents                                                | 149  |
| 8.  | Solubility of 4-Aminobenzoic Acid in Organic                                | 115  |     | 11.9. 1,2-Benzenedicarboxylic acid solubility                                         | 150  |
|     | Solvents                                                                    | 115  | 12. | data in binary organic solvent mixtures Solubility of 1,3-Benzenedicarboxylic Acid in | 150  |
|     | solubility data                                                             | 115  | 12. | Organic Solvents                                                                      | 151  |
|     | 8.2. 4-Aminobenzoic acid solubility data in                                 | 113  |     | 12.1. Critical evaluation of experimental                                             | 131  |
|     | saturated hydrocarbons (including                                           |      |     | solubility data                                                                       | 151  |
|     | cycloalkanes)                                                               | 117  |     | 12.2. 1,3-Benzenedicarboxylic acid solubility                                         | 131  |
|     | 8.3. 4-Aminobenzoic acid solubility data in                                 |      |     | data in esters                                                                        | 152  |
|     | aromatic hydrocarbons                                                       | 118  |     | 12.3. 1,3-Benzenedicarboxylic acid solubilities                                       |      |
|     | 8.4. 4-Aminobenzoic acid solubility data in esters                          | 119  |     | in ethers                                                                             | 154  |
|     | 8.5. 4-Aminobenzoic acid solubility data in ethers                          | 121  |     | 12.4. 1,3-Benzenedicarboxylic acid solubility                                         |      |
|     | 8.6. 4-Aminobenzoic acid solubility data in                                 |      |     | data in alcohols                                                                      | 155  |
|     | haloalkanes, haloalkenes, and haloaromatic                                  |      |     | 12.5. 1,3-Benzenedicarboxylic acid solubility                                         |      |
|     | hydrocarbons                                                                | 124  |     | data in ketones                                                                       | 160  |
|     | 8.7. 4-Aminobenzoic acid solubility data                                    |      |     | 12.6. 1,3-Benzenedicarboxylic acid solubility                                         |      |
|     | in alcohols                                                                 | 126  |     | data in miscellaneous organic solvents                                                | 161  |
|     | 8.8. 4-Aminobenzoic acid solubility data in                                 |      | 13. | Solubility of 1,4-Benzenedicarboxylic Acid in                                         |      |
|     | alkoxyalcohols                                                              | 135  |     | Organic Solvents                                                                      | 163  |
|     | 8.9. 4-Aminobenzoic acid solubility data in                                 | 126  |     | 13.1. Critical evaluation of experimental                                             | 162  |
|     | ketones                                                                     | 136  |     | solubility data                                                                       | 163  |
|     | 8.10. 4-Aminobenzoic acid solubility data in miscellaneous organic solvents | 136  |     | 13.2. 1,4-Benzenedicarboxylic acid solubility data in aromatic hydrocarbons           | 164  |
| 9.  | Solubility of 4-Amino-2-hydroxybenzoic Acid in                              | 130  |     | 13.3. 1,4-Benzenedicarboxylic acid solubility                                         | 104  |
| J.  | Organic Solvents                                                            | 138  |     | data in esters                                                                        | 164  |
|     | 9.1. Critical evaluation of experimental                                    | 130  |     | 13.4. 1,4-Benzenedicarboxylic acid solubility                                         | 107  |
|     | solubility data                                                             | 138  |     | data in ethers                                                                        | 164  |
|     | 9.2. 4-Amino-2-hydroxybenzoic acid solubility                               |      |     | 13.5. 1,4-Benzenedicarboxylic acid solubility                                         |      |
|     | data in ethers                                                              | 139  |     | data in alcohols                                                                      | 166  |
| 10. | Solubility of 5-Amino-2-hydroxybenzoic Acid in                              |      |     | 13.6. 1,4-Benzenedicarboxylic acid solubility                                         |      |
|     | Organic Solvents                                                            | 139  |     | data in ketones                                                                       | 168  |
|     | 10.1. Critical evaluation of experimental                                   |      |     | 13.7. 1,4-Benzenedicarboxylic acid solubility                                         |      |
|     | solubility data                                                             | 139  |     | data in miscellaneous organic solvents                                                | 169  |
|     | 10.2. 5-Amino-2-hydroxybenzoic acid solubility                              |      | 14. | Solubility of 1,3,5-Benzenetricarboxylic Acid in                                      |      |
|     | data in ethers                                                              | 139  |     | Organic Solvents                                                                      | 176  |
|     | 10.3. 5-Amino-2-hydroxybenzoic acid solubility                              |      |     | 14.1. Critical evaluation of experimental                                             |      |
|     | data in haloalkanes, haloalkenes, and                                       |      |     | solubility data                                                                       | 176  |
|     | haloaromatic hydrocarbons                                                   | 140  |     | 14.2. 1,3,5-Benzenetricarboxylic acid solubility                                      |      |
|     | 10.4. 5-Amino-2-hydroxybenzoic acid solubility                              | 1.40 | 1.5 | data in miscellaneous organic solvents                                                | 177  |
| 11  | data in alcohols                                                            | 140  | 15. | Solubility of 2-Bromobenzoic Acid in Organic                                          | 177  |
| 11. | Solubility of 1,2-Benzenedicarboxylic Acid in Organic Solvents              | 141  |     | Solvents                                                                              | 177  |
|     | 11.1. Critical evaluation of experimental                                   | 141  |     | solubility data                                                                       | 177  |
|     | solubility data                                                             | 141  |     | solubility data                                                                       | 1//  |
|     | bornoury and                                                                |      |     |                                                                                       |      |

|     | 15.2. 2-Bromobenzoic acid solubility data in alcohols | 177 | 20. | Solubility of 4-Chlorobenzoic Acid in Organic Solvents | 199 |
|-----|-------------------------------------------------------|-----|-----|--------------------------------------------------------|-----|
| 16. | Solubility of 3-Bromobenzoic Acid in Organic          |     |     | 20.1. Critical evaluation of experimental              |     |
|     | Solvents                                              | 178 |     | solubility data                                        | 199 |
|     | 16.1. Critical evaluation of experimental             |     |     | 20.2. 4-Chlorobenzoic acid solubility data in          |     |
|     | solubility data                                       | 178 |     | saturated hydrocarbons (including                      |     |
|     | 16.2. 3-Bromobenzoic acid solubility data in          | 170 |     | cycloalkanes)                                          | 200 |
|     | saturated hydrocarbons (including                     |     |     | 20.3. 4-Chlorobenzoic acid solubility data             | 200 |
|     |                                                       | 178 |     | in aromatic hydrocarbons                               | 201 |
|     | cycloalkanes)                                         | 1/0 |     |                                                        | 201 |
|     | 16.3. 3-Bromobenzoic acid solubility data             | 170 |     | 20.4. 4-Chlorobenzoic acid solubility data in          | 202 |
|     | in aromatic hydrocarbons                              | 178 |     | esters                                                 | 202 |
|     | 16.4. 3-Bromobenzoic acid solubility data in          |     |     | 20.5. 4-Chlorobenzoic acid solubility data in          |     |
|     | ethers                                                | 179 |     | ethers                                                 | 204 |
|     | 16.5. 3-Bromobenzoic acid solubility data             |     |     | 20.6. 4-Chlorobenzoic acid solubility in               |     |
|     | in alcohols                                           | 180 |     | haloalkanes, haloalkenes, haloaromatic                 |     |
|     | 16.6. 3-Bromobenzoic acid solubility data             |     |     | hydrocarbons                                           | 206 |
|     | in miscellaneous organic solvents                     | 181 |     | 20.7. 4-Chlorobenzoic acid solubility data             |     |
| 17. | Solubility of 4-Bromobenzoic Acid in Organic          |     |     | in alcohols                                            | 207 |
|     | Solvents                                              | 182 |     | 20.8. 4-Chlorobenzoic acid solubility data in          |     |
|     | 17.1. Critical evaluation of experimental             |     |     | alkoxyalcohols                                         | 214 |
|     | solubility data                                       | 182 |     | 20.9. 4-Chlorobenzoic acid solubility data             | -1. |
|     | 17.2. 4-Bromobenzoic acid solubility data in          | 102 |     | in miscellaneous organic solvents                      | 216 |
|     | •                                                     |     | 21. |                                                        | 210 |
|     | saturated hydrocarbons (including                     | 100 | 21. | Solubility of 2-Chloro-5-nitrobenzoic Acid in          | 216 |
|     | cycloalkanes)                                         | 182 |     | Organic Solvents                                       | 216 |
|     | 17.3. 4-Bromobenzoic acid solubility data             | 400 |     | 21.1. Critical evaluation of experimental              | 211 |
|     | in aromatic hydrocarbons                              | 182 |     | solubility data                                        | 216 |
|     | 17.4. 4-Bromobenzoic acid solubility data             |     |     | 21.2. 2-Chloro-5-nitrobenzoic acid solubility data     |     |
|     | in alcohols                                           | 183 |     | in esters                                              | 217 |
|     | 17.5. 4-Bromobenzoic acid solubility data in          |     |     | 21.3. 2-Chloro-5-nitrobenzoic acid solubility data     |     |
|     | miscellaneous organic solvents                        | 185 |     | in ethers                                              | 219 |
| 18. | Solubility of 2-Chlorobenzoic Acid in Organic         |     |     | 21.4. 2-Chloro-5-nitrobenzoic acid solubility data     |     |
|     | Solvents                                              | 185 |     | in alcohols                                            | 220 |
|     | 18.1. Critical evaluation of experimental             |     | 22. | Solubility of 4-Chloro-3,5-dinitrobenzoic Acid         |     |
|     | solubility data                                       | 185 |     | in Organic Solvents                                    | 225 |
|     | 18.2. 2-Chlorobenzoic acid solubility data in         |     |     | 22.1. Critical evaluation of experimental              |     |
|     | saturated hydrocarbons (including                     |     |     | solubility data                                        | 225 |
|     | cycloalkanes)                                         | 186 |     | 22.2. 4-Chloro-3,5-dinitrobenzoic acid solubility      | 223 |
|     | 18.3. 2-Chlorobenzoic acid solubility data            | 100 |     | data in alcohols                                       | 225 |
|     | · · · · · · · · · · · · · · · · · · ·                 | 106 |     |                                                        | 223 |
|     | in aromatic hydrocarbons                              | 186 |     | 22.3. 4-Chloro-3,5-dinitrobenzoic acid solubility      | 225 |
|     | 18.4. 2-Chlorobenzoic acid solubility data            | 107 | 22  | data in miscellaneous organic solvents                 | 225 |
|     | in alcohols                                           | 187 | 23. | Solubility of 4-Chloro-3-nitrobenzoic Acid in          | 225 |
|     | 18.5. 2-Chlorobenzoic acid solubility data            |     |     | Organic Solvents                                       | 225 |
|     | in miscellaneous organic solvents                     | 188 |     | 23.1. Critical evaluation of experimental              |     |
| 19. | Solubility of 3-Chlorobenzoic Acid in Organic         |     |     | solubility data                                        | 225 |
|     | Solvents                                              | 189 |     | 23.2. 4-Chloro-3-nitrobenzoic acid solubility data     |     |
|     | 19.1. Critical evaluation of experimental             |     |     | in saturated hydrocarbons (including                   |     |
|     | solubility data                                       | 189 |     | cycloalkanes)                                          | 226 |
|     | 19.2. 3-Chlorobenzoic acid solubility data in         |     |     | 23.3. 4-Chloro-3-nitrobenzoic acid solubility data     |     |
|     | saturated hydrocarbons (including                     |     |     | in aromatic hydrocarbons                               | 227 |
|     | cycloalkanes)                                         | 190 |     | 23.4. 4-Chloro-3-nitrobenzoic acid solubility data     |     |
|     | 19.3. 3-Chlorobenzoic acid solubility data            |     |     | in esters                                              | 227 |
|     | in aromatic hydrocarbons                              | 191 |     | 23.5. 4-Chloro-3-nitrobenzoic acid solubility data     |     |
|     | 19.4. 3-Chlorobenzoic acid solubility data in         | -/- |     | in ethers                                              | 230 |
|     | esters                                                | 191 |     | 23.6. 4-Chloro-3-nitrobenzoic acid solubility data     | 250 |
|     |                                                       | 171 |     |                                                        | 222 |
|     | 19.5. 3-Chlorobenzoic acid solubility data in         | 102 |     | in alcohols                                            | 232 |
|     | ethers                                                | 193 |     | 23.7. 4-Chloro-3-nitrobenzoic acid solubility data     | 220 |
|     | 19.6. 3-Chlorobenzoic acid solubility data            | 107 |     | in miscellaneous organic solvents                      | 239 |
|     | in alcohols                                           | 195 |     |                                                        |     |

| 24. | Solubility of 4-Cyanobenzoic Acid in Organic Solvents                               | 240                               |     | 29.4. 2,4-Dihydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and                                                                   |     |
|-----|-------------------------------------------------------------------------------------|-----------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 24.1. Critical evaluation of experimental solubility data                           | 240                               | 30. | haloaromatic hydrocarbons                                                                                                                          | 261 |
|     | 24.2. 4-Cyanobenzoic acid solubility data in alcohols                               | 240                               | 20. | Organic Solvents                                                                                                                                   | 262 |
| 25. | Solubility of 3,5-Diaminobenzoic Acid                                               |                                   |     | solubility data                                                                                                                                    | 262 |
|     | in Organic Solvents                                                                 | <ul><li>241</li><li>241</li></ul> |     | <ul><li>30.2. 2,5-Dihydroxybenzoic acid solubility data in aromatic hydrocarbons</li><li>30.3. 2,5-Dihydroxybenzoic acid solubility data</li></ul> | 262 |
|     | 25.2. 3,5-Diaminobenzoic acid solubility data in alcohols                           | 241                               |     | in haloalkanes, haloalkenes, and haloaromatic hydrocarbons                                                                                         | 262 |
| 26. | Solubility of 2,4-Dichlorobenzoic Acid in Organic Solvents                          | 242                               |     | 30.4. 2,5-Dihydroxybenzoic acid solubility data in alcohols                                                                                        | 263 |
|     | 26.1. Critical evaluation of experimental                                           | 242                               | 31. | Solubility of 2,6-Dihydroxybenzoic Acid in                                                                                                         |     |
|     | solubility data                                                                     | 242                               |     | Organic Solvents                                                                                                                                   | 263 |
|     | in alcohols                                                                         | 242                               |     | solubility data                                                                                                                                    | 263 |
| 27. | miscellaneous organic solvents Solubility of 3,4-Dichlorobenzoic Acid in            | 243                               |     | in saturated hydrocarbons (including                                                                                                               | 263 |
| 21. | Organic Solvents                                                                    | 243                               |     | cycloalkanes)                                                                                                                                      | 203 |
|     | 27.1. Critical evaluation of experimental solubility data                           | 243                               |     | in aromatic hydrocarbons                                                                                                                           | 263 |
|     | 27.2. 3,4-Dichlorobenzoic acid solubility data in saturated hydrocarbons (including |                                   |     | in haloalkanes, haloalkenes, and haloaromatic hydrocarbons                                                                                         | 264 |
|     | cycloalkanes)                                                                       | 245                               | 32. | Solubility of 3,4-Dihydroxybenzoic Acid in Organic Solvents                                                                                        | 264 |
|     | in aromatic hydrocarbons                                                            | 245                               |     | 32.1. Critical evaluation of experimental solubility data                                                                                          | 264 |
|     | in esters                                                                           | 245                               |     | 32.2. 3,4-Dihydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and                                                                   |     |
|     | ethers                                                                              | 247                               | 33. | haloaromatic hydrocarbons                                                                                                                          | 264 |
|     | in alcohols                                                                         | 250                               |     | Organic Solvents                                                                                                                                   | 265 |
|     | alkoxyalcohols                                                                      | 257                               |     | solubility data                                                                                                                                    | 265 |
|     | miscellaneous organic solvents                                                      | 259                               |     | in saturated hydrocarbons (including                                                                                                               |     |
| 28. | Solubility of 3,5-Dichlorobenzoic Acid in Organic Solvents                          | 260                               |     | cycloalkanes)                                                                                                                                      | 265 |
|     | 28.1. Critical evaluation of experimental solubility data                           | 260                               |     | in aromatic hydrocarbons                                                                                                                           | 265 |
|     | 28.2. 3,5-Dichlorobenzoic acid solubility data in alcohols                          | 260                               |     | in haloalkanes, haloalkenes, and haloaromatic hydrocarbons                                                                                         | 266 |
|     | 28.3. 3,5-Dichlorobenzoic acid solubility data in                                   | 260                               | 34. | Solubility of 3,4-Dimethoxybenzoic Acid in                                                                                                         | 266 |
| 29. | miscellaneous organic solvents Solubility of 2,4-Dihydroxybenzoic Acid in           |                                   |     | Organic Solvents                                                                                                                                   | 266 |
|     | Organic Solvents                                                                    | 260                               |     | solubility data                                                                                                                                    | 266 |
|     | solubility data                                                                     | 260                               |     | in esters                                                                                                                                          | 267 |
|     | in saturated hydrocarbons (including                                                | 261                               |     | in ethers                                                                                                                                          | 270 |
|     | cycloalkanes)                                                                       | 261                               |     | 34.4. 3,4-Dimethoxybenzoic acid solubility data in alcohols                                                                                        | 272 |
|     | in aromatic hydrocarbons                                                            | 261                               |     | 34.5. 3,4-Dimethoxybenzoic acid solubility in alkoxyalcohols                                                                                       | 280 |
|     |                                                                                     |                                   |     | umon juronom                                                                                                                                       | 200 |

|     | 34.6. 3,4-Dimethoxybenzoic acid solubility data   |      |     | 40.3. 3,5-Dinitrobenzoic acid solubility data in  |     |
|-----|---------------------------------------------------|------|-----|---------------------------------------------------|-----|
|     | in alkanones                                      | 281  |     | aromatic hydrocarbons                             | 292 |
|     | 34.7. 3,4-Dimethoxybenzoic acid solubility data   |      |     | 40.4. 3,5-Dinitrobenzoic acid solubility data in  |     |
|     | in miscellaneous organic solvents                 | 282  |     | esters                                            | 293 |
|     | 34.8. 3,4-Dimethoxybenzoic acid solubility data   |      |     | 40.5. 3,5-Dinitrobenzoic acid solubility data in  |     |
|     | in binary organic solvent mixtures                | 282  |     | ethers                                            | 294 |
| 35. | Solubility of 3,5-Dimethoxybenzoic Acid in        |      |     | 40.6. 3,5-Dinitrobenzoic acid solubility data     |     |
|     | Organic Solvents                                  | 284  |     | in alcohols                                       | 296 |
|     | 35.1. Critical evaluation of experimental         |      |     | 40.7. 3,5-Dinitrobenzoic acid solubility data in  |     |
|     | solubility data                                   | 284  |     | miscellaneous organic solvents                    | 302 |
|     | 35.2. 3,5-Dimethoxybenzoic acid solubility data   |      | 41. | Solubility of 3,5-Dinitro-2-methylbenzoic Acid    |     |
|     | in alcohols                                       | 284  |     | in Organic Solvents                               | 302 |
| 36. | Solubility of 3-(Dimethylamino)benzoic Acid in    |      |     | 41.1. Critical evaluation of experimental         |     |
|     | Organic Solvents                                  | 285  |     | solubility data                                   | 302 |
|     | 36.1. Critical evaluation of experimental         |      |     | 41.2. 3,5-Dinitro-2-methylbenzoic acid solubility |     |
|     | solubility data                                   | 285  |     | data in esters                                    | 303 |
|     | 36.2. 3-(Dimethylamino)benzoic acid solubility    |      |     | 41.3. 3,5-Dinitro-2-methylbenzoic acid solubility |     |
|     | data in saturated hydrocarbons (including         |      |     | data in ethers                                    | 305 |
|     | cycloalkanes)                                     | 285  |     | 41.4. 3,5-Dinitro-2-methylbenzoic acid solubility |     |
|     | 36.3. 3-(Dimethylamino)benzoic acid solubility    |      |     | data in alcohols                                  | 306 |
|     | data in aromatic hydrocarbons                     | 285  | 42. | Solubility of 2-Fluorobenzoic Acid in Organic     |     |
| 37. | Solubility of 4-(Dimethylamino)benzoic Acid in    |      |     | Solvents                                          | 310 |
|     | Organic Solvents                                  | 286  |     | 42.1. Critical evaluation of experimental         |     |
|     | 37.1. Critical evaluation of experimental         |      |     | solubility data                                   | 310 |
|     | solubility data                                   | 286  |     | 42.2. 2-Fluorobenzoic acid solubility data        |     |
|     | 37.2. 4-(Dimethylamino)benzoic acid solubility    |      |     | in alcohols                                       | 310 |
|     | data in saturated hydrocarbons (including         |      | 43. | Solubility of 3-Fluorobenzoic Acid in Organic     |     |
|     | cycloalkanes)                                     | 286  |     | Solvents                                          | 311 |
|     | 37.3. 4-(Dimethylamino)benzoic acid solubility    |      |     | 43.1. Critical evaluation of experimental         |     |
|     | data in aromatic hydrocarbons                     | 286  |     | solubility data                                   | 311 |
|     | 37.4. 4-(Dimethylamino)benzoic acid solubility    |      |     | 43.2. 3-Fluorobenzoic acid solubility data        |     |
|     | data in alcohols                                  | 287  |     | in alcohols                                       | 311 |
|     | 37.5. 4-(Dimethylamino)benzoic acid solubility    |      | 44. | Solubility of 4-Fluorobenzoic Acid in Organic     |     |
|     | data in miscellaneous organic solvents            | 287  |     | Solvents                                          | 311 |
| 38. | Solubility of 3,4-Dimethylbenzoic Acid in         |      |     | 44.1. Critical evaluation of experimental         |     |
|     | Organic Solvents                                  | 288  |     | solubility data                                   | 311 |
|     | 38.1. Critical evaluation of experimental         |      |     | 44.2. 4-Fluorobenzoic acid solubility data in     |     |
|     | solubility data                                   | 288  |     | ethers                                            | 311 |
|     | 38.2. 3,4-Dimethylbenzoic acid solubility data    |      |     | 44.3. 4-Fluorobenzoic acid solubility data        |     |
|     | in alcohols                                       | 288  |     | in alcohols                                       | 312 |
|     | 38.3. 3,4-Dimethylbenzoic acid solubility data in |      | 45. | Solubility of 4-Formylbenzoic Acid in Organic     |     |
|     | miscellaneous organic solvents                    | 289  |     | Solvents                                          | 312 |
| 39. | Solubility of 2,4-Dinitrobenzoic Acid in Organic  |      |     | 45.1. Critical evaluation of experimental         |     |
|     | Solvents                                          | 290  |     | solubility data                                   | 312 |
|     | 39.1. Critical evaluation of experimental         |      |     | 45.2. 4-Formylbenzoic acid solubility data in     |     |
|     | solubility data                                   | 290  |     | miscellaneous organic solvents                    | 313 |
|     | 39.2. 2,4-Dinitrobenzoic acid solubility data     |      | 46. | Solubility of 2-Hydroxybenzoic Acid in Organic    |     |
|     | in alcohols                                       | 290  |     | Solvents                                          | 314 |
|     | 39.3. 2,4-Dinitrobenzoic acid solubility data     |      |     | 46.1. Critical evaluation of experimental         |     |
|     | in miscellaneous organic solvents                 | 291  |     | solubility data                                   | 314 |
| 40. | Solubility of 3,5-Dinitrobenzoic Acid in Organic  |      |     | 46.2. 2-Hydroxybenzoic acid solubility data in    |     |
|     | Solvents                                          | 291  |     | saturated hydrocarbons (including                 | _   |
|     | 40.1. Critical evaluation of experimental         |      |     | cycloalkanes)                                     | 317 |
|     | solubility data                                   | 291  |     | 46.3. 2-Hydroxybenzoic acid solubility data in    |     |
|     | 40.2. 3,5-Dinitrobenzoic acid solubility data in  |      |     | aromatic hydrocarbons                             | 321 |
|     | saturated hydrocarbons (including                 | 20.5 |     | 46.4. 2-Hydroxybenzoic acid solubility data in    |     |
|     | cycloalkanes)                                     | 292  |     | esters                                            | 324 |

|     | 46.5. | 2-Hydroxybenzoic acid solubility data in ethers                                     | 328        |     | 48.9. 4-Hydroxybenzoic acid solubility data in miscellaneous organic solvents                    | 401 |
|-----|-------|-------------------------------------------------------------------------------------|------------|-----|--------------------------------------------------------------------------------------------------|-----|
|     | 46.6. | 2-Hydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic |            | 49. | Solubility of 2-Hydroxy-3-methylbenzoic Acid in Organic Solvents                                 | 404 |
|     | 46.7. | hydrocarbons                                                                        | 332        |     | 49.1. Critical evaluation of experimental solubility data                                        | 404 |
|     | 46.8. | in alcohols                                                                         | 337        |     | 49.2. 2-Hydroxy-3-methylbenzoic acid solubility data in saturated hydrocarbons (including        |     |
|     | 46.9. | in alkoxyalcohols                                                                   | 357        |     | cycloalkanes)                                                                                    | 404 |
|     | 46.10 | in ketones                                                                          | 357        | 50. | data in aromatic hydrocarbons Solubility of 2-Hydroxy-4-methylbenzoic Acid                       | 405 |
|     | 46.11 | in miscellaneous organic solvents  1. 2-Hydroxybenzoic acid solubility data         | 361        |     | in Organic Solvents                                                                              | 405 |
| 17. |       | in binary organic solvent mixtures<br>ubility of 3-Hydroxybenzoic Acid in Organic   | 367        |     | solubility data                                                                                  | 405 |
|     |       | vents Critical evaluation of experimental                                           | 370        |     | data in saturated hydrocarbons (including cycloalkanes)                                          | 405 |
|     | 47.2. | solubility data3-Hydroxybenzoic acid solubility data in                             | 370        |     | 50.3. 2-Hydroxy-4-methylbenzoic acid solubility data in aromatic hydrocarbons                    | 406 |
|     |       | saturated hydrocarbons (including cycloalkanes)                                     | 370        | 51. | Solubility of 2-Hydroxy-5-methylbenzoic Acid in Organic Solvents                                 | 406 |
|     |       | 3-Hydroxybenzoic acid solubility data in aromatic hydrocarbons                      | 371        |     | 51.1. Critical evaluation of experimental solubility data                                        | 406 |
|     |       | 3-Hydroxybenzoic acid solubility data in esters                                     | 373        |     | 51.2. 2-Hydroxy-5-methylbenzoic acid solubility data in saturated hydrocarbons (including        | 407 |
|     |       | 3-Hydroxybenzoic acid solubility data in ethers                                     | 373        |     | cycloalkanes)                                                                                    | 407 |
|     | 47.6. | 3-Hydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic | 272        | 52. | data in aromatic hydrocarbons  Solubility of 3-Hydroxy-4-methylbenzoic Acid                      | 407 |
|     | 47.7. | hydrocarbons                                                                        | 373        |     | in Organic Solvents                                                                              | 407 |
|     | 47.8. | in alcohols                                                                         | 374        |     | solubility data                                                                                  | 407 |
|     | 47.9. | 3-Hydroxybenzoic acid solubility data in                                            | 376<br>378 | 53. | data in aromatic hydrocarbons  Solubility of 4-Hydroxy-3-methoxybenzoic Acid in Organic Solvents | 408 |
| 18. |       | miscellaneous organic solventsubility of 4-Hydroxybenzoic Acid in Organic vents     | 379        |     | in Organic Solvents                                                                              | 408 |
|     |       | Critical evaluation of experimental solubility data                                 | 379        |     | 53.2. 4-Hydroxy-3- methoxybenzoic acid solubility data in miscellaneous organic                  | 400 |
|     | 48.2. | 4-Hydroxybenzoic acid solubility data in saturated hydrocarbons (including          | 31)        | 54. | solvents                                                                                         | 408 |
|     | 48 3  | cycloalkanes)                                                                       | 381        | 51. | in Organic Solvents                                                                              | 409 |
|     |       | aromatic hydrocarbons                                                               | 382        |     | solubility data                                                                                  | 409 |
|     |       | esters                                                                              | 384        | 55. | data in aromatic hydrocarbons  Solubility of 4-Iodobenzoic Acid in Organic                       | 409 |
|     |       | ethers4-Hydroxybenzoic acid solubility data in                                      | 386        |     | Solvents                                                                                         | 409 |
|     | •     | haloalkanes, haloalkenes, and haloaromatic hydrocarbons                             | 388        |     | solubility data                                                                                  | 409 |
|     | 48.7. | 4-Hydroxybenzoic acid solubility data in alcohols                                   | 389        |     | in alcohols                                                                                      | 410 |
|     | 48.8. | 4-Hydroxybenzoic acid solubility data in ketones                                    | 398        | 56. | miscellaneous organic solvents Solubility of 2-Methoxybenzoic Acid in Organic                    | 410 |
|     |       |                                                                                     |            |     | Solvents                                                                                         | 411 |

|     | 56.1. Critical evaluation of experimental                                  |       |            | 59.1. Critical evaluation of experimental                                     |     |
|-----|----------------------------------------------------------------------------|-------|------------|-------------------------------------------------------------------------------|-----|
|     | solubility data                                                            |       |            | solubility data                                                               | 441 |
|     | saturated hydrocarbons (including                                          |       |            | saturated hydrocarbons (including                                             |     |
|     | cycloalkanes)                                                              |       |            | •                                                                             | 442 |
|     | 56.3. 2-Methoxybenzoic acid solubility data                                |       |            | 59.3. 2-Methylbenzoic acid solubility data in                                 | 443 |
|     | aromatic hydrocarbons                                                      |       |            | aromatic hydrocarbons                                                         | 443 |
|     | esters                                                                     |       |            |                                                                               | 444 |
|     | 56.5. 2-Methoxybenzoic acid solubility data                                |       |            | 59.5. 2-Methylbenzoic acid solubility data in                                 | •   |
|     | ethers                                                                     |       |            |                                                                               | 445 |
|     | 56.6. 2-Methoxybenzoic acid solubility data                                | a in  |            | 59.6. 2-Methylbenzoic acid solubility data in                                 |     |
|     | haloalkanes, haloalkenes, and haloaro                                      |       |            | haloalkanes, haloalkenes, and haloaromatic                                    |     |
|     | hydrocarbons                                                               |       |            |                                                                               | 447 |
|     | 56.7. 2-Methoxybenzoic acid solubility data                                |       |            | 59.7. 2-Methylbenzoic acid solubility data                                    |     |
|     | in alcohols                                                                |       |            |                                                                               | 449 |
|     | 56.8. 2-Methoxybenzoic acid solubility data                                |       |            | 59.8. 2-Methylbenzoic acid solubility data in                                 | 150 |
|     | alkoxyalcohols                                                             |       |            | E                                                                             | 456 |
|     | 56.9. 2-Methoxybenzoic acid solubility data miscellaneous organic solvents |       |            | 59.9. 2-Methylbenzoic acid solubility data in binary organic solvent mixtures | 456 |
| 57. | Solubility of 3-Methoxybenzoic Acid in Or                                  |       | 60.        | Solubility of 3-Methylbenzoic Acid in Organic                                 | 450 |
| ٥,, | Solvents                                                                   | -     | 00.        |                                                                               | 460 |
|     | 57.1. Critical evaluation of experimental                                  |       |            | 60.1. Critical evaluation of experimental                                     |     |
|     | solubility data                                                            | 425   |            | *                                                                             | 460 |
|     | 57.2. 3-Methoxybenzoic acid solubility data                                |       |            | 60.2. 3-Methylbenzoic acid solubility data in                                 |     |
|     | saturated hydrocarbons (including                                          |       |            | saturated hydrocarbons (including                                             |     |
|     | cycloalkanes)                                                              |       |            |                                                                               | 461 |
|     | 57.3. 3-Methoxybenzoic acid solubility data                                |       |            | 60.3. 3-Methylbenzoic acid solubility data in                                 |     |
|     | aromatic hydrocarbons                                                      |       |            | •                                                                             | 462 |
|     | 57.4. 3-Methoxybenzoic acid solubility data                                |       |            | 60.4. 3-Methylbenzoic acid solubility data in                                 | 160 |
|     | ethers                                                                     |       |            | esters                                                                        | 462 |
|     | haloalkanes, haloalkenes, and haloaro                                      |       |            | · · · · · · · · · · · · · · · · · · ·                                         | 464 |
|     | hydrocarbons                                                               |       |            | 60.6. 3-Methylbenzoic acid solubility data                                    | 40- |
|     | 57.6. 3-Methoxybenzoic acid solubility data                                |       |            |                                                                               | 465 |
|     | in alcohols                                                                | 428   |            | 60.7. 3-Methylbenzoic acid solubility data in                                 |     |
| 58. | Solubility of 4-Methoxybenzoic Acid in Or                                  | ganic |            |                                                                               | 472 |
|     | Colvents                                                                   | 428   |            | 60.8. 3-Methylbenzoic acid solubility data in                                 |     |
|     | 58.1. Critical evaluation of experimental                                  |       |            | E                                                                             | 474 |
|     | solubility data                                                            |       |            | 60.9. 3-Methylbenzoic acid solubility data in                                 |     |
|     | 58.2. 4-Methoxybenzoic acid solubility data                                | ı in  | <i>c</i> 1 | , ,                                                                           | 474 |
|     | saturated hydrocarbons (including                                          | 420   | 61.        | Solubility of 4-Methylbenzoic Acid in Organic                                 | 175 |
|     | cycloalkanes)                                                              |       |            | Solvents                                                                      | 475 |
|     | aromatic hydrocarbons                                                      |       |            | <u>*</u>                                                                      | 475 |
|     | 58.4. 4-Methoxybenzoic acid solubility data                                |       |            | 61.2. 4-Methylbenzoic acid solubility data in                                 | т/. |
|     | esters                                                                     |       |            | saturated hydrocarbons (including                                             |     |
|     | 58.5. 4-Methoxybenzoic acid solubility data                                |       |            |                                                                               | 475 |
|     | ethers                                                                     |       |            | 61.3. 4-Methylbenzoic acid solubility data in                                 |     |
|     | 58.6. 4-Methoxybenzoic acid solubility data                                | ı in  |            | •                                                                             | 476 |
|     | haloalkanes, haloalkenes, and haloaro                                      |       |            | 61.4. 4-Methylbenzoic acid solubility data in                                 |     |
|     | hydrocarbons                                                               |       |            |                                                                               | 477 |
|     | 58.7. 4-Methoxybenzoic acid solubility data                                |       |            | 61.5. 4-Methylbenzoic acid solubility data in                                 | 477 |
|     | in alcohols                                                                |       |            |                                                                               | 477 |
|     | 58.8. 4-Methoxybenzoic acid solubility data alkoxyalcohols                 |       |            | 61.6. 4-Methylbenzoic acid solubility data in alcohols                        | 478 |
| 59. | Solubility of 2-Methylbenzoic Acid in Or                                   |       |            | 61.7. 4-Methylbenzoic acid solubility data in                                 | т/С |
|     | Solvents                                                                   | -     |            |                                                                               | 479 |
|     |                                                                            |       |            |                                                                               |     |

| 62. | Solubility of 2-Nitrobenzoic Acid in Organic Solvents     | 481         | 65. | Solubility of 3-Nitro-1,2-benzenedicarboxylic Acid in Organic Solvents                       | 520         |
|-----|-----------------------------------------------------------|-------------|-----|----------------------------------------------------------------------------------------------|-------------|
|     | 62.1. Critical evaluation of experimental solubility data | 481         |     | 65.1. Critical evaluation of experimental solubility data                                    | 520         |
|     | 62.2. 2-Nitrobenzoic acid solubility data in              |             |     | 65.2. 3-Nitro-1,2-benzenedicarboxylic acid                                                   |             |
|     | aromatic hydrocarbons                                     | 482         |     | solubility data in esters                                                                    | 520         |
|     | 62.3. 2-Nitrobenzoic acid solubility data in ethers       | 483         |     | 65.3. 3-Nitro-1,2-benzenedicarboxylic acid                                                   |             |
|     | 62.4. 2-Nitrobenzoic acid solubility data in              |             |     | solubility data in ethers                                                                    | 522         |
|     | haloalkanes, haloalkenes, and haloaromatic                | 40.0        |     | 65.4. 3-Nitro-1,2-benzenedicarboxylic acid                                                   | <b>7.00</b> |
|     | hydrocarbons                                              | 483         |     | solubility data in ketones                                                                   | 522         |
|     | 62.5. 2-Nitrobenzoic acid solubility data                 | 402         | 66. | References                                                                                   | 523         |
|     | in alcohols                                               | 483         |     |                                                                                              |             |
|     | 62.6. 2-Nitrobenzoic acid solubility data in              | 405         |     |                                                                                              |             |
|     | ketones                                                   | 485         |     |                                                                                              |             |
|     | miscellaneous organic solvents                            | 485         |     |                                                                                              |             |
| 63. | Solubility of 3-Nitrobenzoic Acid in Organic              | 463         |     | List of Tables                                                                               |             |
| 05. | Solvents                                                  | 485         |     |                                                                                              |             |
|     | 63.1. Critical evaluation of experimental                 | 703         | 1.  | Abraham model equation coefficients describing                                               |             |
|     | solubility data                                           | 485         |     | solute transfer to an organic solvent from water                                             |             |
|     | 63.2. 3-Nitrobenzoic acid solubility data in              | 105         |     | [Eq. (10)]                                                                                   | 13          |
|     | saturated hydrocarbons (including                         |             | 2.  | Abraham model equation coefficients describing                                               |             |
|     | cycloalkanes)                                             | 487         |     | solute transfer to an organic solvent from gas                                               |             |
|     | 63.3. 3-Nitrobenzoic acid solubility data in              |             |     | phase [Eq. (11)]                                                                             | 14          |
|     | aromatic hydrocarbons                                     | 487         | 3.  | Comparison between observed and predicted                                                    |             |
|     | 63.4. 3-Nitrobenzoic acid solubility data in esters       | 488         |     | molar solubilities of benzoic acid based on the                                              |             |
|     | 63.5. 3-Nitrobenzoic acid solubility data in ethers       | 490         |     | Abraham model, Eq. (20)                                                                      | 17          |
|     | 63.6. 3-Nitrobenzoic acid solubility data in              |             | 4.  | Recommended mole fraction solubilities for                                                   |             |
|     | haloalkanes, haloalkenes, and haloaromatic                |             |     | benzoic acid in select solvents                                                              | 18          |
|     | hydrocarbons                                              | 492         | 5.  | Parameters of Eq. (22) for describing the solubility                                         |             |
|     | 63.7. 3-Nitrobenzoic acid solubility data                 |             |     | of benzoic acid in various organic solvents                                                  | 18          |
|     | in alcohols                                               | 493         | 6.  | Parameters of the Van't Hoff-type equation for                                               |             |
|     | 63.8. 3-Nitrobenzoic acid solubility data in              |             |     | describing the solubility of benzoic acid in various                                         |             |
|     | ketones                                                   | 499         | _   | organic solvents                                                                             | 19          |
|     | 63.9. 3-Nitrobenzoic acid solubility data in              |             | 7.  | Parameters of the Buchowski \( \lambda \) equation for                                       |             |
|     | miscellaneous organic solvents                            | 500         |     | describing the solubility of benzoic acid in various                                         | 10          |
| 64. | Solubility of 4-Nitrobenzoic Acid in Organic              | <b>704</b>  | 0   | organic solvents                                                                             | 19          |
|     | Solvents                                                  | 501         | 0.  | Comparison between observed and calculated molar solubilities of 2-acetoxybenzoic acid based |             |
|     | 64.1. Critical evaluation of experimental                 | <b>5</b> 01 |     | on the Abraham model, Eqs. (20) and (21)                                                     | 85          |
|     | solubility data                                           | 501         | 9.  | Parameters of the Modified Apelblat equation for                                             | 0.5         |
|     | 64.2. 4-Nitrobenzoic acid solubility data in              |             | ٠.  | describing the solubility of 2-acetoxybenzoic acid                                           |             |
|     | saturated hydrocarbons (including cycloalkanes)           | 502         |     | in various organic solvents                                                                  | 85          |
|     | 64.3. 4-Nitrobenzoic acid solubility data in              | 302         | 10. |                                                                                              | 00          |
|     | aromatic hydrocarbons                                     | 502         |     | describing the solubility of 4-acetoxybenzoic acid                                           |             |
|     | 64.4. 4-Nitrobenzoic acid solubility data in esters       | 503         |     | in ethanol                                                                                   | 104         |
|     | 64.5. 4-Nitrobenzoic acid solubility data in ethers       | 505         | 11. |                                                                                              |             |
|     | 64.6. 4-Nitrobenzoic acid solubility data in              | 202         |     | describing the solubility of 4-acetylbenzoic acid in                                         |             |
|     | haloalkanes, haloalkenes, and haloaromatic                |             |     | various organic solvents                                                                     | 105         |
|     | hydrocarbons                                              | 508         | 12. | Parameters of the Buchowski λh equation for                                                  |             |
|     | 64.7. 4-Nitrobenzoic acid solubility data                 |             |     | describing the solubility of 4-acetylbenzoic acid in                                         |             |
|     | in alcohols                                               | 508         |     | various organic solvents                                                                     | 105         |
|     | 64.8. 4-Nitrobenzoic acid solubility data in              |             | 13. |                                                                                              |             |
|     | alkoxyalcohols                                            | 516         |     | 3-aminobenzoic acid in ethyl ethanoate, ethaneni-                                            |             |
|     | 64.9. 4-Nitrobenzoic acid solubility data in              |             |     | trile, and methanol                                                                          | 110         |
|     | ketones                                                   | 519         | 14. | 1                                                                                            |             |
|     | 64.10. 4-Nitrobenzoic acid solubility data in             |             |     | molar solubilities of 4-aminobenzoic acid based                                              | 446         |
|     | miscellaneous organic solvents                            | 519         |     | on the Abraham model, Eq. (20)                                                               | 116         |

| 15. | Parameters of the Modified Apelblat equation for       |     | 33. | Comparison between observed and calculated           |     |
|-----|--------------------------------------------------------|-----|-----|------------------------------------------------------|-----|
|     | describing the solubility of 5-amino-2-hydroxy-        |     |     | molar solubilities of 3,5-dinitro-2-methylbenzoic    |     |
|     | benzoic acid in various organic solvents               | 139 |     | acid based on the Abraham model, Eqs. (20)           |     |
| 16. | Parameters of the Modified Apelblat equation for       |     |     | and (21)                                             | 303 |
|     | describing the solubility of 1,2-benzenedicar-         |     | 34. | Comparison between observed and predicted            |     |
|     | boxylic acid in various organic solvents               | 142 |     | molar solubilities of 2-hydroxybenzoic acid based    |     |
| 17. | Parameters of the Modified Apelblat equation for       |     |     | on the Abraham model, Eq. (20)                       | 315 |
|     | describing the solubility of 1,3-benzenedicar-         |     | 35. | Recommended mole fraction solubilites for 2-         |     |
|     | boxylic acid in various organic solvents               | 152 |     | hydroxybenzoic acid in selected solvents             | 316 |
| 18. | Parameters of the Buchowski λh equation for            |     | 36. | Parameters of Eq. (49) for describing the solubility |     |
|     | describing the solubility of 1,3-benzenedicar-         |     |     | of 2-hydroxybenzoic acid in various organic          |     |
|     | boxylic acid in several organic solvents               | 152 |     | solvents                                             | 316 |
| 19. | Parameters of the Modified Apelblat equation for       |     | 37. | Parameters of the Modified Apelblat-type equa-       |     |
|     | describing the solubility of 1,4-benzenedicar-         |     |     | tion for describing the solubility of 2-hydroxyben-  |     |
|     | boxylic acid in various organic solvents               | 163 |     | zoic acid in various organic solvents                | 316 |
| 20. | Parameters of the Buchowski \( \lambda \) equation for |     | 38. | _                                                    |     |
|     | describing the solubility of 1,4-benzenedicar-         |     |     | molar solubilities of 4-hydroxybenzoic acid based    |     |
|     | boxylic acid in organic solvents                       | 163 |     | on the Abraham model, Eqs. (20) and (21)             | 380 |
| 21. | Comparison between observed and calculated             |     | 39. | Parameters of Eq. (53) for describing the solubility |     |
|     | molar solubilities of 3-chlorobenzoic acid based       |     |     | of 4-hydroxybenzoic acid in various organic          |     |
|     | on the Abraham model, Eqs. (20) and (21)               | 189 |     | solvents                                             | 381 |
| 22. | Comparison between observed and calculated             |     | 40. | Comparison between observed and calculated           |     |
|     | molar solubilities of 4-chlorobenzoic acid based       |     |     | molar solubilities of 2-methoxybenzoic acid based    |     |
|     | on the Abraham model, Eqs. (20) and (21)               | 200 |     | on the Abraham model, Eqs. (20) and (21)             | 411 |
| 23. | Comparison between observed and calculated             |     | 41. |                                                      |     |
|     | molar solubilities of 2-chloro-5-nitrobenzoic acid     |     |     | molar solubilities of 4-methoxybenzoic acid based    |     |
|     | based on the Abraham model, Eqs. (20) and (21)         | 217 |     | on the Abraham model, Eqs. (20) and (21)             | 428 |
| 24. | Comparison between observed and calculated             |     | 42. | Comparison between observed and calculated           |     |
|     | molar solubilities of 4-chloro-3-nitrobenzoic acid     |     |     | molar solubilities of 2-methylbenzoic acid based     |     |
|     | based on the Abraham model, Eqs. (20) and (21)         | 226 |     | on the Abraham model, Eqs. (20) and (21)             | 441 |
| 25. | Parameters of the Modified Apelblat equation for       |     | 43. | Parameters of the Buchowski λh model for             |     |
|     | describing the solubility of 4-cyanobenzoic acid in    |     |     | describing the solubility of 2-methylbenzoic acid    |     |
|     | ethanol                                                | 240 |     | in various organic solvents                          | 442 |
| 26. | Parameters of the Modified Apelblat equation for       |     | 44. | Comparison between observed and calculated           |     |
|     | describing the solubility of 3,5-diaminobenzoic        |     |     | molar solubilities of 3-methylbenzoic acid based     |     |
|     | acid in ethanol                                        | 241 |     | on the Abraham model, Eqs. (20) and (21)             | 460 |
| 27. | Parameters of the Modified Apelblat equation for       |     | 45. | Parameters of the Modified Apelblat equation for     |     |
|     | describing the solubility of 2,4-dichlorobenzoic       |     |     | describing the solubility of 2-nitrobenzoic acid in  |     |
|     | acid in ethanol                                        | 242 |     | various organic solvents                             | 482 |
| 28. | Comparison between observed and predicted              |     | 46. | Comparison between observed and calculated           |     |
|     | molar solubilities of 3,4-dichlorobenzoic acid         |     |     | molar solubilities of 3-nitrobenzoic acid based on   |     |
|     | based on the Abraham model, Eqs. (20) and (21)         | 244 |     | the Abraham model, Eqs. (20) and (21)                | 486 |
| 29. | Comparison between observed and calculated             |     | 47. | Parameters of the Modified Apelblat equation for     |     |
|     | molar solubilities of 3,4-dimethoxybenzoic acid        |     |     | describing the solubility of 3-nitrobenzoic acid in  |     |
|     | based on the Abraham model, Eqs. (20) and (21)         | 267 |     | various organic solvents                             | 486 |
| 30. | Parameters of the Modified Apelblat equation for       |     | 48. | Comparison between observed and calculated           |     |
|     | describing the solubility of 3,4-dimethoxybenzoic      |     |     | molar solubilities of 4-nitrobenzoic acid based on   |     |
|     | acid in various organic solvents                       | 267 |     | the Abraham model, Eqs. (20) and (21)                | 501 |
| 31. | Parameters of the Modified Apelblat equation for       |     | 49. | Parameters of the Modified Apelblat equation for     |     |
|     | describing the solubility of 3,5-dimethoxybenzoic      |     |     | describing the solubility of 4-nitrobenzoic acid in  |     |
|     | acid in ethanol                                        | 284 |     | various organic solvents                             | 502 |
| 32. | Comparison between observed and calculated             |     | 50. | Parameters of the Modified Apelblat equation for     |     |
|     | molar solubilities of 3,5-dinitrobenzoic acid based    |     |     | describing the solubility of 3-nitro-1,2-benzene-    | _   |
|     | on the Abraham model, Eqs. (20) and (21)               | 291 |     | dicarboxylic acid in various organic solvents        | 520 |

# 1. Preface

# 1.1. Scope of this volume

This volume reviews experimentally determined solubility data for benzoic acid and 63 substituted benzoic acids dissolved in neat organic solvents and well-defined binary and ternary organic solvent mixtures retrieved from the published chemical and pharmaceutical literature covering the period from 1900 to the end of 2012. Solubility data are compiled and critically reviewed for benzoic acid, 2-acetoxybenzoic acid, 4-acetoxybenzoic acid, 4-acetylbenzoic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-amino-2-hydroxybenzoic acid, 5-amino-2hydroxybenzoic acid, 1,2-benzenedicarboxylic acid, 1,3benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1,3,5-benzenetricarboxylic acid, 2-bromobenzic acid, 3-bromobenzoic acid, 4-bromobenzoic acid, 2-chlorobenzoic acid, 3-chlorobenzoic acid, 4-chlorobenzoic acid, 2chloro-5-nitrobenzoic acid, 4-chloro-3,5-dinitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 4-cyanobenzoic acid, 3,5-diaminobenzoic acid, 2,4-dichlorobenzoic acid, 3,5dichlorobenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2,6-dimethoxybenzoic acid, 3,4dimethoxybenzoic acid, 3,5-dimethoxybenzoic acid, 3-(dimethylamino)benzoic acid, 4-(dimethylamino)benzoic acid, 3,4-dimethylbenzoic acid, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzoic acid, 3,5-dinitro-2-methylbenzoic acid, 2-fluorobenzoic acid, 3-fluorobenzoic acid, 4-fluorobenzoic acid, 4-formylbenzoic acid, 2-hydroxybenzoic acid, 3hydroxybenzoic acid, 4-hydroxybenzoic acid, 2-hydroxy-3-methylbenzoic acid, 2-hydroxy-4-methylbenzoic acid, 2hydroxy-5-methylbenzoic acid, 3-hydroxy-4-methylbenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxy-3methylbenzoic acid, 4-iodobenzoic acid, 2-methoxybenzoic acid, 3-methoxybenzoic acid, 4-methoxybenzoic acid, 2methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, 2-nitrobenzoic acid, 3-nitrobenzoic acid, 4-nitrobenzoic acid, and 3-nitro-1,2-benzenedicarboxylic acid. Aqueous systems and inorganic systems (namely supercritical carbon dioxide) are not included in this volume. Readers wishing solubility data for aqueous and inorganic systems are referred to Vol. 90 in the IUPAC-NIST Solubility Data Series, 1,2 which dealt with the solubility of hydroxybenzoic acid derivatives in binary, ternary and multicomponent systems. Here one will find solubility data for 2-hydroxybenzoic acid, 3-hydroxybenzoic acid and 4hydroxybenzoic acid, as well as solubility data for several 4hydroxybenzoate alkyl esters (parabens) and hydroxybenzoic acid salts. As an informational note, Vol. 90 contains solubility data for the three hydroxybenzoic acids dissolved in organic solvents. The solubility data reported in the current volume for organic solvents are slightly more extensive and include references that were either published after or overlooked in the preparation of the earlier volume.

Several substituted benzoic acids and benzoic acid derivatives exhibit therapeutic properties. For example, 2-hydroxybenzoic acid (commonly known as salicylic acid) is a nonsteroidal anti-inflammatory drug (NSAID) used to alleviate aches and pains, and is a key ingredient in many "overthe-counter" and prescription skin-care products for the treatment of acne, psoriasis, corns, warts, calluses, and seborrhoeic dermatitis. Salicylic acid is also an ingredient in shampoos added to control dandruff and dry scalp. Its methyl ester, methyl salicylate, can be applied topically as a liniment to relieve joint and muscle pains. 2-Acetoxybenzoic acid (aspirin) is widely used and prescribed in the treatment of a number of medical conditions, including fever, muscle aches and pains, rheumatoid arthritis, and pericarditis. 2-Acetoxybenzoic acid has also been used long-term, at low doses, to help prevent heart attacks, strokes, and blood clot formation in individuals at high risk of developing blood clots. 4-Aminobenzoic acid is one of the components of the folic acid molecule, and is an effective chemical sunscreen (absorbs ultraviolet and visible sun light) when applied topically. 4-Aminosalicylic acid is an antibiotic, prescribed alone or in combination with other drugs, in the treatment of tuberculosis. 5-Amino-2-hydroxybenzoic acid is a drug used for treating ulcerative colitis, which is a chronic inflammation of the large intestine. 4-Hydroxy-3-methoxybenzoic acid has been used as a flavoring agent for many years, and is known for its anthelmintic properties.

# 1.2. Concentration units for nonelectrolyte solutions

Composition of a liquid nonelectrolyte solution can be expressed in a variety of ways, as (1) the ratio of the number of moles of one component to the number of moles of a second component,  $n_1/n_2$ , etc., (2) molar concentration

$$c_i = [i] = \frac{n_i}{V}$$
 SI base units:  $\operatorname{moldm}^{-3}$ , (1)

(3) mole fraction

$$x_i = \frac{n_i}{n_1 + n_2 + \dots + n_i + \dots},$$
 (2)

or (4) volume fraction

$$\phi_i = \frac{n_i V_i}{n_1 V_1 + n_2 V_2 + \dots + n_i V_i + \dots}.$$
 (3)

Strictly speaking, the true volume of a real solution is not equal to the sum of the volumes of the individual components but is the mole-fraction sum of partial volumes, which for a ternary solution is  $V = x_1V_1 + x_2V_2 + x_3V_3$ . For purposes of this study, volume fractions are defined in terms of the molar volumes of the pure unmixed components,  $V_{\text{m},i}$  (molar mass of component i divided by density of component i)

$$\varphi_i = \frac{n_i V_{m,i}}{n_1 V_{m,1} + n_2 V_{m,2} + \dots + n_i V_{m,i} + \dots}, \quad (4)$$

as this quantity serves as an input parameter in expressions for estimating solubilities in mixed solvents since it requires no *a priori* knowledge concerning volumetric behavior. Solute solubilities can be found in the chemical literature in terms

of any of the aforementioned concentration variables, or as molality,  $m_i$ , which is the number of moles of solute i divided by the mass of the solvent

$$m_i = \frac{n_i}{n_{\text{solvent}} M_{\text{solvent}}}$$
 SI base units: mol kg<sup>-1</sup>, (5)

where  $M_{\text{solvent}}$  is the molar mass of the solvent.

# 1.3. Procedures used in critical evaluation of published solubility data

Procedures used in the critical evaluation of published solubility data for crystalline nonelectrolytes dissolved in organic monosolvents and organic solvent mixtures depend to a large extent on the quantity and type of data to be evaluated. In those instances where independent experimental measurements exist, one can compute the mean value and standard deviation for each set of replicate values (or set of values) differing from the rest. This type of analysis will be limited primarily to the neat mono-solvents as published data for binary and ternary solvent mixtures are relatively scarce compared to solubility data for solutes dissolved in single solvent systems. Given the scarcity of binary solvent and ternary solvent solubility data, researchers have tended to perform measurements on new mixtures as opposed to repeating measurements on already studied mixtures, even if measured at different temperatures.

Published solubility data may be found for a given solutesolvent system measured at several different temperatures. The temperature variation can be critically evaluated using standard thermodynamic relationships based on the ideal mole fraction solubility of a solid solute,  $x_1^{\text{ideal soly}}$  in a liquid solvent<sup>3</sup>

$$-\ln x_1^{\text{ideal soly}} = \frac{\Delta H_1^{\text{fus}}}{RT} \left[ 1 - \frac{T}{T_{\text{mp}}} \right] + \frac{\Delta C_{p,1}}{R} \left( \frac{T_{\text{mp}} - T}{T} \right) + \frac{\Delta C_{p,1}}{R} \ln \left( \frac{T_{\text{mp}}}{T} \right),$$

$$(6)$$

where  $\Delta H_1^{\rm fus}$  is the standard molar enthalpy of fusion of the solute at its normal melting point temperature,  $T_{\rm mp}$ ,  $\Delta C_{p,1}$  is the difference in the molar heat capacities of the liquid and crystalline forms of the solute (i.e.,  $\Delta C_{p,1} = C_{p,{\rm liquid}} - C_{p,{\rm solid}}$ ) and R is the universal gas constant. Through suitable algebraic manipulations, Eq. (6) can be rearranged to give

$$\ln x_1^{\text{ideal soly}} = \left[ \frac{\Delta H_1^{\text{fus}}}{R T_{\text{mp}}} + \frac{\Delta C_{p,1}}{R} (1 + \ln T_{\text{mp}}) \right] - \left( \frac{\Delta H_1^{\text{fus}}}{R} + \frac{\Delta C_{p,1} T_{\text{mp}}}{R} \right) \frac{1}{T} + \frac{\Delta C_{p,1}}{R} \ln T, \quad (7)$$

which has the generalized mathematical form of

$$\ln x_1 = A + \frac{B}{T} + C \ln T. \tag{8}$$

Though derived for an ideal solution, Eq. (8) has been used successfully to describe solute solubility in many nonideal solutions. The equation is commonly referred to as the Modified Apelblat equation in the published literature.

The λh model, developed by Buchowski et al., 4,5 is

$$\ln\left[1 + \frac{\lambda(1 - x_1)}{x_1}\right] = \lambda h\left(\frac{1}{T} - \frac{1}{T_{\text{mp}}}\right),\tag{9}$$

a second popular mathematical representation for describing how the mole-fraction solubility varies with solution temperature. In Eq. (9), T and  $T_{\rm mp}$  refer to the solution temperature and melting-point temperature of the solute, respectively. The two model parameters,  $\lambda$  and h, are determined by least-squares analyses using the measured mole-fraction solubilities. Experimental solubility data are considered to be internally consistent if the measured  $x_i$  values can be accurately described by Eqs. (8) and/or (9).

Solution models have been used with success to rationalize the solubility behavior of a given solute molecule in a series of organic solvents. Of the models developed in recent years, the general solvation parameter developed by Abraham and coworkers<sup>6–14</sup> is probably the most widely used approach in correlating the solubilities of substituted benzoic acids. The model is based on two linear free energy relationships describing solute transfer between two immiscible phases. The first expression quantifies solute transfer between two condensed phases

$$\log_{10}(SR \text{ or } P) = c_{p} + e_{p} \cdot E + s_{p} \cdot S + a_{p} \cdot A + b_{p} \cdot B + v_{p} \cdot V,$$

$$(10)$$

and the second expression involves solute transfer from the gas phase

$$\log_{10}(GSR \text{ or } K) = c_k + e_k \cdot E + s_k \cdot S + a_k \cdot A$$
  
+  $b_k \cdot B + l_k \cdot L$ , (11)

where P is the water-to-organic solvent partition coefficient or nonpolar organic solvent-to-polar organic solvent partition coefficient, and K is the gas-to-organic solvent partition coefficient. For solubility predictions, the Abraham model uses the solubility ratio which is given by the ratio of the molar solubilities of the solute in the organic solvent,  $c_{1,\rm S}^{\rm sat}$ , and in water,  $c_{1,\rm W}^{\rm sat}$  (i.e.,  $SR = c_{1,\rm S}^{\rm sat}/c_{1,\rm W}^{\rm sat}$ ). The gas phase solubility ratio is similarly calculated as the molar solubility in the organic solvent divided by the solute gas phase concentration (i.e.,  $GSR = c_{1,\rm S}^{\rm sat}/c_{1,\rm G}$ ), the latter value calculable from the solute vapor pressure above the solid at the solution temperature.

The dependent variables in Eqs. (10) and (11) are solute descriptors as follows: E is the solute excess molar refraction (in units of cm³ mol⁻¹/10), S refers to the solute dipolarity/polarizability, A and B represent the overall solute hydrogen bond acidity and basicity, V denotes the solute's McGowan characteristic molecular volume (in units of cm³ mol⁻¹/100), and E is the logarithm of the gas-to-hexadecane partition coefficient measured at 298 K. The lower-case regression coefficients and constants ( $e_p$ ,  $e_p$ ,  $s_p$ ,  $a_p$ ,  $b_p$ ,  $v_p$ ,  $e_k$ ,  $s_k$ ,  $a_k$ ,  $b_k$ , and  $e_k$  in Eqs. (10) and (11) are obtained by multiple linear regression analysis of experimental partition coefficient data and solubility ratios for a specific biphasic system. To date Abraham model correlations have been developed for predicting the solubility of crystalline nonelectrolytes in more than 70 different organic solvents,  $e_k$  for predicting the

water-to-organic solvent and gas-to-organic solvent partition coefficient for more than 70 different biphasic systems, <sup>15–24</sup> and for predicting the partition coefficients of organic vapors and gaseous solutes into aqueous micellar solvent media, <sup>25,26</sup> into humic acid, <sup>27</sup> and into various body tissues and fluids. <sup>28–34</sup> Each of the aforementioned predictions requires *a priori* knowledge of the compound's solute descriptors as input parameters.

Equation (10) correlates experimental partition coefficients and/or solubility ratios, and for select organic solvents both "dry" and "wet" equation coefficients have been reported. For solvents that are partially miscible with water, such as 1pentanol and butyl ethanoate, solubility ratios calculated as the molar solute solubility in the organic solvent divided by the solute's aqueous molar solubility are not the same as those obtained from direct partition between water (saturated with the organic solvent) and organic solvent (saturated with water). Care must be taken not to confuse the two sets of transfer process. There should be no confusion in the case of solvents that are fully miscible with water, such as ethanol. Only one set of equation coefficients has been published, and the dependent variable is the logarithm of the solubility ratio. And for solvents that are "almost" completely immiscible with water, such as alkylbenzenes (benzene, toluene, etc.) and chloroalkanes (1,2-dichloroethane, chloroform), there should be no confusion because the solubility ratio [see Eq. (3)] will be nearly identical to the practical partition coefficient.

Applicability of the Abraham solvation parameter model is fairly straightforward. One starts with the set of equations that have been obtained for the ratio of the molar solubilities of the solute in the organic solvent and in water (i.e.,  $SR = c_{1,S}^{\text{sat}} / c_{1,W}^{\text{sat}}$ ). Table 1 lists the coefficients in Eq. (10) for transfer processes that shall be considered in the present volume. It is noted that coefficients are periodically revised when additional experimental data become available. Thus, if  $c_{1,W}^{\text{sat}}$  is known, predicted  $\log_{10} SR$  values based upon Eq. (10) will lead to predicted molar solubilities in organic solvents through  $SR = c_{1,S}^{\text{sat}} / c_{1,W}^{\text{sat}}$ .

Solubilities in organic solvents can also be predicted and correlated with Eq. (11). Listed in Table 2 are the equation coefficients that have been previously determined for the gas phase solubility ratio,  $GSR = c_{1,S}^{\rm sat}/c_{1,G}$ . Predicted  $\log_{10} GSR$  values can also be converted to saturation molar solubilities, provided that the saturated vapor pressure above the crystalline solute at 298.15 K, VP°, is known. VP° is transformed into the solute's gas phase molar concentration,  $c_{1,G}$ , which is then used to calculate the respective gas-to-water and gas-to-solvent partition coefficients,  $GSR_{\rm W}$  and  $GSR_{\rm S}$ :

$$GSR_{\rm W} = c_{1,{\rm W}}^{\rm sat}/c_{1,{\rm G}}^{\rm sat}$$
 or  $\log_{10}GSR_{\rm W} = \log_{10}c_{1,{\rm W}}^{\rm sat} - \log_{10}c_{1,{\rm G}},$  (12)

$$GSR_{\rm S} = K_{\rm S} = c_{1,\rm S}^{\rm sat}/c_{1,\rm G}$$
 or  $\log_{10}GSR_{\rm S} = \log_{10}c_{1,\rm S}^{\rm sat} - \log_{10}c_{1,\rm G}$ . (13)

An estimated value of  $c_{1,G}$  can be assumed in the preliminary calculations if an experimental vapor pressure cannot be

located in the published literature for the solute at 298.15 K. The value can be adjusted if necessary in order to reduce the  $\log_{10} GSR$  deviations, and to make the  $\log_{10} SR$  and  $\log_{10} GSR$  computations internally consistent as discussed in several previous publications.

Three specific conditions must be met in order to use the Abraham solvation parameter model to predict saturation solubilities. First, the same solid phase must be in equilibrium with the saturated solutions in the organic solvent and in water (i.e., there should be no solvate or hydrate formation). Second, the secondary medium activity coefficient of the solid in the saturated solutions must be unity (or near unity). This condition generally restricts the method to those solutes that are sparingly soluble in water and nonaqueous solvents. Finally, for solutes that are ionized in aqueous solution,  $c_{A,water}$  refers to the solubility of the neutral monomeric form. In the case of substituted benzoic acids, this will limit the model to solvents such as alcohols, short alkyl chain ethers, alkyl alkanoates and propylene carbonate. Carboxylic acids are known to dimerize in alkane and nonpolar aromatic solvents, and the solute descriptors that have been calculated for the benzoic acid derivatives pertain to the monomeric form. The second restriction involving the secondary medium activity coefficient may not be as important as initially believed. The Abraham solvation parameter model has shown remarkable success in correlating the solubility of several very soluble crystalline solutes. For example, Eqs. (10) and (11) described the molar solubility of benzil in 24 organic solvents to within overall standard deviations of 0.124 and 0.109  $\log_{10}$  units, respectively.<sup>35</sup> Standard deviations for acetylsalicylic acid dissolved in 13 alcohols, 4 ethers, and ethyl ethanoate were 0.123 and 0.138 log<sub>10</sub> units. 12 Benzil 35 and acetylsalicylic acid 12 exhibited solubilities exceeding 1 molar in several of the organic solvents studied. In the case of acetylsalicylic acid, it could be argued that the model's success relates back to when the equation coefficients were originally calculated for the dry solvents. The databases used in the regression analyses contained very few carboxylic acid solutes (benzoic acid, 2-hydroxybenzoic acid, and 4-hydroxybenzoic acid). Most of the experimental data for carboxylic acids and other very acidic solutes was in the form of saturation solubilities, which were also in the 1-3 molar range. Such arguments do not explain why Eqs. (10) and (11) described the measured benzil solubility data. The benzil solubilities were measured after most of the equation coefficients were first determined.

Numerical values of solute descriptors exist for more than 5000 different organic and organometallic compounds, and if not readily available are easily calculable from measured partition coefficient and solubility data.<sup>7,15,36,37</sup> The McGowan volume solute descriptor, *V*, is calculated from the molecular formula and the number of chemical bonds in the solute as follows:<sup>38</sup>

$$V = \sum_{i}^{\text{atoms}} n_i A V_i - 6.56 \ n_{\text{bonds}}, \tag{14}$$

where  $n_i$  and  $AV_i$  denote the number of atoms and atomic volume of element i in the solute molecule, respectively, and

Table 1. Abraham model equation coefficients describing solute transfer to an organic solvent from water [Eq. (10)]

| Organic solvent                      | $c_{ m p}$     | $e_{ m p}$     | $s_{\rm p}$      | $a_{\rm p}$      | $b_{ m p}$       | $v_{\rm p}$    |
|--------------------------------------|----------------|----------------|------------------|------------------|------------------|----------------|
| Dichloromethane                      | 0.319          | 0.102          | -0.187           | -3.058           | -4.090           | 4.324          |
| Trichloromethane                     | 0.191          | 0.105          | -0.403           | -3.112           | -3.514           | 4.395          |
| Tetrachloromethane                   | 0.199          | 0.523          | -1.159           | -3.560           | -4.594           | 4.618          |
| 1,2-Dichloroethane                   | 0.183          | 0.294          | -0.134           | -2.801           | -4.291           | 4.180          |
| 1-Chlorobutane                       | 0.222          | 0.273          | -0.569           | -2.918           | -4.883           | 4.456          |
| Hexane                               | 0.333          | 0.560          | -1.710           | -3.578           | -4.939           | 4.463          |
| Heptane                              | 0.297          | 0.634          | -1.755           | -3.571           | -4.946           | 4.488          |
| Octane                               | 0.241          | 0.690          | -1.769           | -3.545           | -5.011           | 4.511          |
| Decane                               | 0.172          | 0.726          | -1.750           | -3.446           | -4.496<br>5.120  | 4.489          |
| Undecane                             | 0.058          | 0.603          | -1.661           | -3.421           | -5.120<br>5.006  | 4.619          |
| Dodecane<br>Hexadecane               | 0.114<br>0.087 | 0.668<br>0.667 | -1.644 $-1.617$  | -3.545 $-3.587$  | -5.006<br>-4.869 | 4.459<br>4.433 |
| Cyclohexane                          | 0.087          | 0.784          | -1.617<br>-1.678 | -3.740           | -4.869<br>-4.929 | 4.433          |
| Methylcyclohexane                    | 0.139          | 0.784          | -1.678 $-1.982$  | -3.740<br>-3.517 | -4.929<br>-4.293 | 4.577          |
| 2,2,4-Trimethylpentane               | 0.318          | 0.782          | -1.737           | -3.677           | -4.293<br>-4.864 | 4.328          |
| Benzene                              | 0.318          | 0.464          | -0.588           | -3.099           | -4.625           | 4.417          |
| Toluene                              | 0.142          | 0.431          | -0.644           | -3.009           | -4.748           | 4.524          |
| Ethylbenzene                         | 0.093          | 0.467          | -0.723           | -3.002 $-3.001$  | -4.844           | 5.514          |
| 1,2-Dimethylbenzene                  | 0.083          | 0.518          | -0.723 $-0.813$  | -2.884           | -4.821           | 4.559          |
| 1,3-Dimethylbenzene                  | 0.122          | 0.377          | -0.603           | -2.981           | -4.961           | 4.535          |
| 1,4-Dimethylbenzene                  | 0.166          | 0.477          | -0.812           | -2.939           | -4.874           | 4.532          |
| Fluorobenzene                        | 0.139          | 0.152          | -0.374           | -3.030           | -4.601           | 4.540          |
| Chlorobenzene                        | 0.065          | 0.381          | -0.521           | -3.183           | -4.700           | 4.614          |
| Bromobenzene                         | -0.017         | 0.436          | -0.424           | -3.174           | -4.558           | 4.445          |
| Iodobenzene                          | -0.192         | 0.298          | -0.308           | -3.213           | -4.653           | 4.588          |
| Nitrobenzene                         | -0.152         | 0.525          | 0.081            | -2.332           | -4.494           | 4.187          |
| Benzonitrile                         | 0.097          | 0.285          | 0.059            | -1.605           | -4.562           | 4.028          |
| Olive oil                            | -0.035         | 0.574          | -0.798           | -1.422           | -4.984           | 4.210          |
| Carbon disulfide                     | 0.047          | 0.686          | -0.943           | -3.603           | -5.818           | 4.921          |
| Isopropyl myristate                  | -0.605         | 0.930          | -1.153           | -1.682           | -4.093           | 4.249          |
| Triolein                             | 0.385          | 0.983          | -2.083           | -2.007           | -3.452           | 4.072          |
| Methanol                             | 0.276          | 0.334          | -0.714           | 0.243            | -3.320           | 3.549          |
| Ethanol                              | 0.222          | 0.471          | -1.035           | 0.326            | -3.596           | 3.857          |
| Propan-1-ol                          | 0.139          | 0.405          | -1.029           | 0.247            | -3.767           | 3.986          |
| Butan-1-ol                           | 0.165          | 0.401          | -1.011           | 0.056            | -3.958           | 4.044          |
| Pentan-1-ol                          | 0.150          | 0.536          | -1.229           | 0.141            | -3.864           | 4.077          |
| Hexan-1-ol                           | 0.115          | 0.492          | -1.164           | 0.054            | -3.978           | 4.131          |
| Heptan-1-ol                          | 0.035          | 0.398          | -1.063           | 0.002            | -4.342           | 4.317          |
| Octan-1-ol                           | -0.034         | 0.489          | -1.044           | -0.024           | -4.235           | 4.218          |
| Decan-1-ol                           | -0.058         | 0.616          | -1.319           | 0.026            | -4.153           | 4.279          |
| Propan-2-ol                          | 0.102          | 0.315          | -1.020           | 0.532            | -3.865           | 4.023          |
| 2-Methylpropan-1-ol                  | 0.161          | 0.310          | -1.069           | 0.183            | -3.774           | 4.040          |
| 2-Butanol                            | 0.194          | 0.383          | -0.956           | 0.134            | -3.606           | 3.829          |
| 2-Methylpropan-2-ol                  | 0.197          | 0.136          | -0.916           | 0.318            | -4.031           | 4.112          |
| 3-Methylbutan-1-ol                   | 0.123          | 0.370          | -1.243           | 0.074            | -3.781           | 4.208          |
| 2-Pentanol                           | 0.115          | 0.455          | -1.331           | 0.206            | -3.745           | 4.201          |
| Ethylene glycol                      | -0.270         | 0.578          | -0.511           | 0.715            | -2.619           | 2.729          |
| 2,2,2-Trifluoroethanol               | 0.395<br>0.330 | -0.094         | -0.594 $-0.814$  | -1.280           | -1.274<br>-4.959 | 3.088          |
| 1,1'-Oxybisethane<br>Tetrahydrofuran | 0.330          | 0.401<br>0.372 | -0.392           | -0.457 $-0.236$  | -4.934           | 4.320<br>4.447 |
| Dioxane                              | 0.207          | 0.372          | -0.392 $-0.083$  | -0.256 $-0.556$  | -4.934<br>-4.826 | 4.447          |
| 1,1'-Oxybisbutane                    | 0.203          | 0.369          | -0.063 $-0.954$  | -0.550<br>-1.488 | -4.826<br>-5.426 | 4.172          |
| 2-Methoxy-2-methylpropane            | 0.203          | 0.264          | -0.934 $-0.788$  | -1.488 $-1.078$  | -5.030           | 4.410          |
| Methyl ethanoate                     | 0.351          | 0.223          | -0.788 $-0.150$  | -1.078 $-1.035$  | -4.527           | 3.972          |
| Ethyl ethanoate                      | 0.328          | 0.369          | -0.130 $-0.446$  | -0.700           | -4.904           | 4.150          |
| Propyl ethanoate                     | 0.288          | 0.363          | -0.474           | -0.784           | -4.939           | 4.130          |
| Butyl ethanoate                      | 0.248          | 0.356          | -0.501           | -0.867           | -4.973           | 4.281          |
| Propanone                            | 0.313          | 0.312          | -0.301 $-0.121$  | -0.608           | -4.753<br>-4.753 | 3.942          |
| Butanone                             | 0.246          | 0.256          | -0.121 $-0.080$  | -0.767           | -4.855           | 4.148          |
| Cyclohexanone                        | 0.038          | 0.225          | 0.058            | -0.767 $-0.976$  | -4.842           | 4.146          |
| Propylene carbonate                  | 0.004          | 0.168          | 0.504            | -0.976<br>-1.283 | -4.407           | 3.421          |
| Dimethylformamide                    | -0.305         | -0.058         | 0.343            | 0.358            | -4.865           | 4.486          |
| Dimethylacetamide                    | -0.271         | 0.084          | 0.209            | 0.915            | -5.003           | 4.557          |
|                                      |                |                |                  |                  |                  |                |
| -                                    | 0.213          | 0.034          | 0.089            | 1.342            | -5.084           | 4.088          |
| Diethylacetamide Dibutylformamide    | 0.213<br>0.332 | 0.034<br>0.302 | 0.089 $-0.436$   | 1.342<br>0.358   | -5.084 $-4.902$  | 4.088<br>3.952 |

Table 1. Abraham model equation coefficients describing solute transfer to an organic solvent from water [Eq. (10)]—Continued

| Organic solvent       | $c_{ m p}$ | $e_{ m p}$ | $s_{\rm p}$ | $a_{\rm p}$ | $b_{ m p}$ | $v_{\rm p}$ |
|-----------------------|------------|------------|-------------|-------------|------------|-------------|
| N-Methyl-2-piperidone | 0.056      | 0.332      | 0.257       | 1.556       | -5.035     | 3.983       |
| N-Formylmorpholine    | -0.032     | 0.696      | -0.062      | 0.014       | -4.092     | 3.405       |
| N-Methylformamide     | 0.114      | 0.407      | -0.287      | 0.542       | -4.085     | 3.471       |
| N-Ethylformamide      | 0.220      | 0.034      | -0.166      | 0.935       | -4.589     | 3.730       |
| N-Methylacetamide     | 0.090      | 0.205      | -0.172      | 1.305       | -4.589     | 3.833       |
| N-Ethylacetamide      | 0.284      | 0.128      | -0.442      | 1.180       | -4.728     | 3.856       |
| Formamide             | -0.171     | 0.070      | 0.308       | 0.589       | -3.152     | 2.432       |
| Acetonitrile          | 0.413      | 0.077      | 0.326       | -1.566      | -4.391     | 3.364       |
| Nitromethane          | 0.023      | -0.091     | 0.793       | -1.463      | -4.364     | 3.460       |
| Dimethylsulfoxide     | -0.194     | 0.327      | 0.791       | 1.260       | -4.540     | 3.361       |
| Sulfolane (303 K)     | 0.000      | 0.147      | 0.601       | -0.318      | -4.541     | 3.290       |
| Tributylphosphate     | 0.327      | 0.570      | -0.837      | -1.069      | -4.333     | 3.919       |
| Gas-water             | -0.994     | 0.577      | 2.549       | 3.813       | 4.841      | -0.869      |

 $n_{\rm bonds}$  is the number of chemical bonds. The bond contribution is 6.56 cm<sup>3</sup> mol<sup>-1</sup> for each bond, no matter whether single, double, or triple, to be subtracted. In other words, double and triple bonds count as one bond. Numerical values of  $AV_i$  for elements present in substituted benzoic acids are:  $AV_{\rm C} = 16.35 \, {\rm cm^3 \, mol^{-1}}; AV_{\rm H} = 8.71 \, {\rm cm^3 \, mol^{-1}}; AV_{\rm N} = 14.39 \, {\rm cm^3 \, mol^{-1}}; AV_{\rm O} = 12.43 \, {\rm cm^3 \, mol^{-1}}; AV_{\rm F} = 10.48 \, {\rm cm^3 \, mol^{-1}};$ 

 $AV_{\rm Cl} = 20.95 \text{ cm}^3 \text{ mol}^{-1}; AV_{\rm Br} = 26.21 \text{ cm}^3 \text{ mol}^{-1}; AV_{\rm I} = 34.53 \text{ cm}^3 \text{ mol}^{-1}; AV_{\rm S} = 22.91 \text{ cm}^3 \text{ mol}^{-1}; \text{ and } AV_{\rm P} = 24.87 \text{ cm}^3 \text{ mol}^{-1}.$ 

The numerical value of the excess molar refraction solute descriptor, E, is also fairly easy to calculate. It is defined as the molar refraction of the solute using McGowan's volume,  $MR_X$ , minus the molar refraction of an alkane

Table 2. Abraham model equation coefficients describing solute transfer to an organic solvent from gas phase [Eq. (11)]

| Organic solvent        | $c_{\mathrm{k}}$ | $e_{ m k}$ | $s_{\mathbf{k}}$ | $a_{\rm k}$ | $b_{ m k}$ | $l_{\rm k}$ |
|------------------------|------------------|------------|------------------|-------------|------------|-------------|
| Oleyl alcohol          | -0.268           | -0.392     | 0.800            | 3.117       | 0.978      | 0.918       |
| Dichloromethane        | 0.192            | -0.572     | 1.492            | 0.460       | 0.847      | 0.965       |
| Trichloromethane       | 0.157            | -0.560     | 1.259            | 0.374       | 1.333      | 0.976       |
| Tetrachloromethane     | 0.217            | -0.435     | 0.554            | 0.000       | 0.000      | 1.069       |
| 1,2-Dichloroethane     | 0.017            | -0.337     | 1.600            | 0.774       | 0.637      | 0.921       |
| 1-Chlorobutane         | 0.130            | -0.581     | 1.114            | 0.724       | 0.000      | 1.016       |
| Hexane                 | 0.320            | 0.000      | 0.000            | 0.000       | 0.000      | 0.945       |
| Heptane                | 0.284            | 0.000      | 0.000            | 0.000       | 0.000      | 0.950       |
| Octane                 | 0.219            | 0.000      | 0.000            | 0.000       | 0.000      | 0.960       |
| Decane                 | 0.159            | 0.000      | 0.000            | 0.000       | 0.000      | 0.972       |
| Undecane               | 0.113            | 0.000      | 0.000            | 0.000       | 0.000      | 0.971       |
| Dodecane               | 0.053            | 0.000      | 0.000            | 0.000       | 0.000      | 0.986       |
| Hexadecane             | 0.000            | 0.000      | 0.000            | 0.000       | 0.000      | 1.000       |
| Cyclohexane            | 0.163            | -0.110     | 0.000            | 0.000       | 0.000      | 1.013       |
| Methylcyclohexane      | 0.318            | -0.215     | 0.000            | 0.000       | 0.000      | 1.012       |
| 2,2,4-Trimethylpentane | 0.264            | -0.230     | 0.000            | 0.000       | 0.000      | 0.975       |
| Benzene                | 0.107            | -0.313     | 1.053            | 0.457       | 0.169      | 1.020       |
| Toluene                | 0.085            | -0.400     | 1.060            | 0.501       | 0.154      | 1.011       |
| Ethylbenzene           | 0.059            | -0.295     | 0.924            | 0.537       | 0.098      | 1.010       |
| 1,2-Dimethylbenzene    | 0.064            | -0.296     | 0.934            | 0.647       | 0.000      | 1.010       |
| 1,3-Dimethylbenzene    | 0.071            | -0.423     | 1.068            | 0.552       | 0.000      | 1.014       |
| 1,4-Dimethylbenzene    | 0.113            | -0.302     | 0.826            | 0.651       | 0.000      | 1.011       |
| Fluorobenzene          | 0.181            | -0.621     | 1.432            | 0.647       | 0.000      | 0.986       |
| Chlorobenzene          | 0.064            | -0.399     | 1.151            | 0.313       | 0.171      | 1.032       |
| Bromobenzene           | -0.064           | -0.326     | 1.261            | 0.323       | 0.292      | 1.002       |
| Iodobenzene            | -0.171           | -0.192     | 1.197            | 0.245       | 0.245      | 1.002       |
| Nitrobenzene           | -0.295           | 0.121      | 1.682            | 1.247       | 0.370      | 0.915       |
| Benzonitrile           | -0.075           | -0.341     | 1.798            | 2.030       | 0.291      | 0.880       |
| Olive oil              | -0.159           | -0.277     | 0.904            | 1.695       | -0.090     | 0.876       |
| Carbon disulfide       | 0.101            | 0.251      | 0.177            | 0.027       | 0.095      | 1.068       |
| Triolein               | 0.147            | 0.254      | -0.246           | 1.520       | 1.473      | 0.918       |
| Methanol               | -0.039           | -0.338     | 1.317            | 3.826       | 1.396      | 0.773       |
| Ethanol                | 0.017            | -0.232     | 0.867            | 3.894       | 1.192      | 0.846       |
| Propan-1-ol            | -0.042           | -0.246     | 0.749            | 3.888       | 1.076      | 0.874       |
| Butan-1-ol             | -0.004           | -0.285     | 0.768            | 3.705       | 0.879      | 0.890       |
| Pentan-1-ol            | -0.002           | -0.161     | 0.535            | 3.778       | 0.960      | 0.900       |

Table 2. Abraham model equation coefficients describing solute transfer to an organic solvent from gas phase [Eq. (11)]—Continued

| Organic solvent           | $c_{ m k}$ | $e_{\mathrm{k}}$ | $s_{\mathrm{k}}$ | $a_{\mathrm{k}}$ | $b_{ m k}$ | $l_{ m k}$ |
|---------------------------|------------|------------------|------------------|------------------|------------|------------|
| Hexan-1-ol                | -0.014     | -0.205           | 0.583            | 3.621            | 0.891      | 0.913      |
| Heptan-1-ol               | -0.056     | -0.216           | 0.554            | 3.596            | 0.803      | 0.933      |
| Octan-1-ol                | -0.147     | -0.214           | 0.561            | 3.507            | 0.749      | 0.943      |
| Decan-1-ol                | -0.139     | -0.090           | 0.356            | 3.547            | 0.727      | 0.958      |
| Propan-2-ol               | -0.062     | -0.327           | 0.707            | 4.024            | 1.072      | 0.886      |
| 2-Methylpropan-1-ol       | 0.012      | -0.407           | 0.670            | 3.645            | 1.283      | 0.895      |
| Butan-2-ol                | -0.017     | -0.376           | 0.852            | 3.740            | 1.161      | 0.867      |
| 2-Methylpropan-2-ol       | 0.071      | -0.538           | 0.818            | 3.951            | 0.823      | 0.905      |
| 3-Methylbutan-1-ol        | -0.014     | -0.341           | 0.525            | 3.666            | 1.096      | 0.925      |
| 2-Pentanol                | -0.031     | -0.325           | 0.496            | 3.792            | 1.024      | 0.934      |
| Ethylene glycol           | -0.887     | 0.132            | 1.657            | 4.457            | 2.325      | 0.565      |
| 2,2,2-Trifluoroethanol    | -0.092     | -0.547           | 1.339            | 2.213            | 3.807      | 0.645      |
| 1,1'-Oxybisethane         | 0.288      | -0.347           | 0.775            | 2.985            | 0.000      | 0.973      |
| Tetrahydrofuran           | 0.189      | -0.347           | 1.238            | 3.289            | 0.000      | 0.982      |
| Dioxane                   | -0.034     | -0.354           | 1.674            | 3.021            | 0.000      | 0.919      |
| 1,1'-Oxybisbutane         | 0.165      | -0.421           | 0.760            | 2.102            | -0.664     | 1.002      |
| 2-Methoxy-2-methylpropane | 0.278      | -0.489           | 0.801            | 2.495            | 0.000      | 0.993      |
| Methyl ethanoate          | 0.129      | -0.447           | 1.675            | 2.625            | 0.213      | 0.874      |
| Ethyl ethanoate           | 0.182      | -0.352           | 1.316            | 2.891            | 0.000      | 0.916      |
| Propyl ethanoate          | 0.165      | -0.383           | 1.264            | 2.757            | 0.000      | 0.954      |
| Butyl ethanoate           | 0.147      | -0.414           | 1.212            | 2.623            | 0.000      | 0.954      |
| Propanone                 | 0.127      | -0.387           | 1.733            | 3.060            | 0.000      | 0.866      |
| Butanone                  | 0.112      | -0.474           | 1.671            | 2.878            | 0.000      | 0.916      |
| Cyclohexanone             | -0.086     | -0.441           | 1.725            | 2.786            | 0.000      | 0.957      |
| Propylene carbonate       | -0.356     | -0.413           | 2.587            | 2.207            | 0.455      | 0.719      |
| Dimethylformamide         | -0.391     | -0.869           | 2.107            | 3.774            | 0.000      | 1.011      |
| Dimethylacetamide         | -0.308     | -0.736           | 1.802            | 4.361            | 0.000      | 1.028      |
| Diethylacetamide          | -0.075     | -0.434           | 1.911            | 4.801            | 0.000      | 0.899      |
| Dibutylformamide          | -0.002     | -0.239           | 1.402            | 4.029            | 0.000      | 0.900      |
| N-Methylpyrrolidinone     | -0.128     | -0.029           | 2.217            | 4.429            | 0.000      | 0.777      |
| N-Methyl-2-piperidone     | -0.264     | -0.171           | 2.086            | 5.056            | 0.000      | 0.883      |
| N-Formylmorpholine        | -0.437     | 0.024            | 2.631            | 4.318            | 0.000      | 0.712      |
| N-Methylformamide         | -0.249     | -0.142           | 1.661            | 4.147            | 0.817      | 0.739      |
| N-Ethylformamide          | -0.220     | -0.302           | 1.743            | 4.498            | 0.480      | 0.824      |
| N-Methylacetamide         | -0.197     | -0.175           | 1.608            | 4.867            | 0.375      | 0.837      |
| N-Ethylacetamide          | -0.018     | -0.157           | 1.352            | 4.588            | 0.357      | 0.824      |
| Formamide                 | -0.800     | 0.310            | 2.292            | 4.130            | 1.933      | 0.442      |
| Acetonitrile              | -0.007     | -0.595           | 2.461            | 2.085            | 0.418      | 0.738      |
| Nitromethane              | -0.340     | -0.297           | 2.689            | 2.193            | 0.514      | 0.728      |
| Dimethylsulfoxide         | -0.556     | -0.223           | 2.903            | 5.036            | 0.000      | 0.719      |
| Sulfolane (303 K)         | -0.414     | 0.084            | 2.396            | 3.144            | 0.420      | 0.684      |
| Tributylphosphate         | 0.097      | -0.098           | 1.103            | 2.411            | 0.588      | 0.844      |
| Gas-water                 | -1.271     | 0.822            | 2.743            | 3.904            | 4.814      | -0.213     |

having the same McGowan volume. The molar refraction is given by  $^7$ 

$$MR_X = 10 \left[ \frac{(\eta^2 - 1)}{(\eta^2 + 2)} \right] V,$$
 (15)

where  $\eta$  is the refractive index of the solute as a pure liquid at 293 K, and V is in units of (cm<sup>3</sup> mol<sup>-1</sup>)/100. For compounds that are solid at 293 K, a refractive index for the liquid at 293 K can be calculated by commercial software;<sup>39</sup> or alternatively E can be computed by summing fragment groups in the molecule<sup>40</sup> or by using the PharmaAlgorithm commercial software.<sup>41</sup> The molar refraction is one of the few properties that is very nearly the same for a given molecule in both the gaseous and liquid state, even for associated liquid molecules such as water. The numerical value of molar refraction of the alkane molecule needed in

the computation of E is given by  $^7$ 

$$(MR_X)_{\text{alkane}} = 2.83195 \ V - 0.52553,$$
 (16)

where V is the characteristic McGowan volume described above. The remaining four solute descriptors, S, A, B, and L, are calculated by solving a series of simultaneous  $\log_{10}P$  and  $\log_{10}K$  equations for which both experimental partition coefficient data and solvent equation coefficients ( $c_{\rm p}$ ,  $e_{\rm p}$ ,  $s_{\rm p}$ ,  $a_{\rm p}$ ,  $b_{\rm p}$ ,  $v_{\rm p}$ ,  $c_{\rm k}$ ,  $e_{\rm k}$ ,  $s_{\rm k}$ ,  $a_{\rm k}$ ,  $b_{\rm k}$ , and  $l_{\rm k}$ ) are known. The computation method is illustrated in several published papers and will not be repeated here.

The Abraham general solvation parameter model has been used successfully to correlate the solubility behavior of several substituted benzoic acids (namely, 2-acetoxybenzoic acid, 4-aminobenzoic acid, 3-chlorobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid, 4-chloro-3-nitrobenzoic

acid, 3,4-dichlorobenzoic acid, 3,5-dinitrobenzoic acid, 3,5dinitro-2-methylbenzoic acid, 2-methoxybenzoic acid, 4methoxybenzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 3-nitrobenzoic acid, 4-nitrobenzoic acid) dissolved in a series of alcohols, dialkyl ethers, and alkyl alkanoates. Equations (10) and (11) described the experimental solubility data to within a standard deviation of  $\pm 0.15 \log_{10}$  units. Past experience in using various solution models has been that the better solution will generally give predicted values that fall with  $\pm 40\%$  or so (about  $\pm 0.15 \log_{10}$  units) of the observed solute solubilities. The Abraham model will be used to assess the experimental solubility data for a few select substituted benzoic acids, and to identify possible values that need to be remeasured. More detailed information concerning the model will be given later in this work where actual experimental solubility is being evaluated.

The solvent composition dependence upon solubility is generally evaluated using semi-theoretical solution models. During the past 50 years, more than 100 solution models have developed for describing variation of solubility with solvent composition based on different assumptions regarding how molecules interact in solution. Predictive expressions derived from several of the proposed solution models have served as mathematical representations for isothermal solubility data in binary and ternary solvent mixtures, and for identifying experimental data points in need of redetermination. The Combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister equation 42,43

$$\ln x_1^{\text{sat}} = x_2^{(s)} \ln(x_1^{\text{sat}})_2 + x_3^{(s)} \ln(x_1^{\text{sat}})_3 + x_2^{(s)} x_3^{(s)} \sum_{j=0}^r S_{23,j} (x_2^{(s)} - x_3^{(s)})^j$$
(17)

is likely the most popular of the proposed mathematical representations. In the above equation,  $x_i^{(s)}$  refers to the initial mole fraction solvent composition of component i calculated as if the solute were not present, and  $(x_A^{\text{sat}})_i$  denotes the measured solute solubility in pure solvent i. The summation in the last term on the right-hand side of Eq. (17) includes as many curve-fit  $S_{23,j}$  parameters as are needed to accurately describe the observed solubility data. Generally no more than three parameters will be needed in a given mathematical representation. The various  $S_{23,j}$  parameters are determined by regression analysis.

The popularity of the Combined NIBS/Redlich-Kister model results from the fact that the computed  $S_{IJ,i}$  parameters can be used to predict solute solubility in ternary solvent systems:

$$\ln x_1^{\text{sat}} = x_2^{(s)} \ln(x_1^{\text{sat}})_2 + x_3^{(s)} \ln(x_1^{\text{sat}})_3 + x_4^{(s)} \ln(x_1^{\text{sat}})_4 
+ x_2^{(s)} x_3^{(s)} \sum_{j=0}^r S_{23,j} (x_2^{(s)} - x_3^{(s)})^j 
+ x_2^{(s)} x_4^{(s)} \sum_{k=0}^s S_{24,k} (x_2^{(s)} - x_4^{(s)})^k 
+ x_3^{(s)} x_4^{(s)} \sum_{l=0}^t S_{34,l} (x_3^{(s)} - x_4^{(s)})^l$$
(18)

and in higher-order multicomponent solvent systems:

$$\ln x_1^{\text{sat}} = \sum_{I}^{\text{Solvents}} \sum_{J>I}^{\text{Solvents}} \left[ x_I^{(s)} x_J^{(s)} \sum_{k=0}^n S_{IJ,k} (x_I^{(s)} - x_J^{(s)})^k \right].$$
(19)

Equation (18) is referred to as the Combined Nearly Ideal Ternary Solvent (NITS)/Redlich-Kister model. To date Eq. (18) has been shown to provide very accurate predictions for the solubility of anthracene and/or pyrene in 114 different ternary solvent mixtures including several alcohol + hydrocarbon + hydrocarbon, alcohol + alcohol + hydrocarbon, alkoxyalcohol + alcohol + hydrocarbon, alkoxyalcohol + alcohol + alcohol, and alkyl ether + alcohol + hydrocarbon solvent systems. 44-46

# 2. Solubility of Benzoic Acid in Organic Solvents

# 2.1. Critical evaluation of experimental solubility data

There have been numerous studies<sup>47–91</sup> involving the solubility of benzoic acid in organic solvents, particularly at 298 K. Most notably, Beerbower et al. 47 measured the solubility in 57 different organic solvents, including six saturated hydrocarbons (pentane, hexane, heptane, nonane, decane, and cyclohexane), two aromatic hydrocarbons (benzene and methylbenzene), one dialkyl ether (1,1'-oxybisethane) and one cyclic ether (1,4-dioxane), two alkyl alkanoates (ethyl ethanoate and butyl ethanoate), three chloroalkanes (trichloromethane, tetrachloromethane, and 1,2-dichloroethane) and one chlorinated aromatic hydrocarbon (chlorobenzene), 12 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-hexanol, 1-octanol, 1,2-ethanediol, 1,2,3-propanetriol, and benzenemethanol), one alkanone (propanone) and one aromatic ketone (acetophenone), and nine miscellaneous organic solvents (nitrobenzene, ethanoic acid, propanoic acid, dimethyl sulfoxide, pyridine, formamide, N-methylformamide, N,N-dimethylformamide, and N,N-dimethylacetamide). The experimental data were used to test the limitations and applications of the Expanded Solubility Parameter Approach. Restaino and Martin<sup>75</sup> published solubility data for benzoic acid in 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-octanol. Acree and Bertrand, 49 Perlovich and Bauer-Brandl,<sup>53</sup> Gomaa,<sup>64</sup> Ongley,<sup>56</sup> Thuaire,<sup>72</sup> Yurquina *et al.*,<sup>78</sup> and Chantooni and Kolthoff<sup>76</sup> have also performed benzoic acid solubility measurements at 298 K.

The Abraham solvation parameter model can provide an indication of the quality of experimental solubility data for benzoic acid dissolved in a series of organic solvents of varying polarity and hydrogen bonding character. As discussed above, the evaluation will be restricted to those solvents where dimerization is not likely to occur and to solvents where benzoic acid does not form a solid solvate. Expressions based on the Abraham model have been shown to provide reasonably accurate mathematical correlations for the solubility behavior of numerous crystalline nonelectrolyte solutes, with deviations between observed and calculated values on the order of

 $0.15 \log_{10}$  units or less. Several of the published studies have involved substituted benzoic acids. Results of these studies will be discussed later in the volume as the solubility data of the respective solutes are presented.

The Abraham model is based on two linear free energy relationships that describe solute transfer to organic solvents from water and from the gas phase. Expressed in terms of molar solubility, the linear free energy relationships take the following mathematical forms

$$\log_{10}(c_{1,S}^{\text{sat}}/c_{1,W}^{\text{sat}}) = c_{p} + e_{p} \cdot E + s_{p} \cdot S + a_{p} \cdot A + b_{p} \cdot B + v_{p} \cdot V,$$
(20)

$$\log_{10}(c_{1,S}^{\text{sat}}/c_{1,G}) = c_{k} + e_{k} \cdot E + s_{k} \cdot S + a_{k} \cdot A + b_{k} \cdot B + l_{k} \cdot L,$$
(21)

where  $c_{1,\mathrm{N}}^{\mathrm{sat}}$  and  $c_{1,\mathrm{W}}^{\mathrm{sat}}$  are the molar solubilities of the solute in the organic solvent and in water, respectively, and  $c_{1,\mathrm{G}}$  is the molar concentration of the solute in the gas phase. The molar concentrations are expressed in units of mol dm<sup>-3</sup>. For notational simplicity the "sat" superscript will be dropped in subsequent discussions, and the quantities simply denoted as  $c_1$  and  $c_{1,\mathrm{W}}$ . The Abraham model solvent equation coefficients that are given in Tables 1 and 2 pertain to 298 K unless otherwise noted. For a given solute-solvent system, Eqs. (20)

and (21) give calculated  $c_1$  values that differ from one another by only a few hundredths of a  $\log_{10}$  unit.

Numerical values of the solute descriptors for benzoic acid are known (E=0.730, S=0.900, A=0.590, B=0.400, and V=0.9317), so that combination of these descriptors with the coefficients listed in Table 1 permit the prediction of  $\log_{10}(c_{1,\mathrm{N}}^{\mathrm{sat}}/c_{1,\mathrm{W}}^{\mathrm{sat}})$ . The molar solubility of molecular benzoic acid in water,  $\log_{10}c_{1,\mathrm{W}}^{\mathrm{sat}}=-1.55$ , is available to convert the predicted  $(c_{1,\mathrm{S}}^{\mathrm{sat}}/c_{1,\mathrm{W}}^{\mathrm{sat}})$  solubility ratios to  $c_{1,\mathrm{S}}^{\mathrm{sat}}$  values. For carboxylic acid solutes,  $c_{1,\mathrm{W}}^{\mathrm{sat}}$  corresponds to the aqueous solubility of the molecular, nonionized form of the solute.

The predicted molar solubilities of benzoic acid in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-decanol, 2-propanol, 2-butanol, 2-pentanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 3-methyl-1-butanol, 1,2-ethanediol, 1,1'-oxybisethane, 2-methoxy-2-methylpropane, tetrahydrofuran, 1,4-dioxane, methyl ethanoate, ethyl ethanoate, propyl ethanoate, butyl ethanoate, and propanone based on Eq. (20) are listed in the second column of Table 3. Alkane and aromatic hydrocarbon solvents are excluded from consideration because of dimerization concerns. The numerical values represent outright solubility predictions in that none of the experimental data was used in the determination of the molecular solute descriptors. For comparison purposes, the measured mole fraction solubilities of benzoic acid,  $x_1$ , given

Table 3. Comparison between observed and predicted molar solubilities of benzoic acid based on the Abraham model, Eq. (20)

| Solvent             | $\log_{10} c_1^{\text{calc}}; \text{Eq. (20)}$ | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ |
|---------------------|------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Methanol            | 0.449                                          | 0.504 <sup>a</sup>           |                              | 0.228 <sup>b</sup>           |                              |
| Ethanol             | 0.432                                          | 0.427 <sup>a</sup>           |                              | $0.292^{b}$                  | 0.441°                       |
| 1-Propanol          | 0.311                                          | 0.348 <sup>a</sup>           | $0.366^{d}$                  |                              |                              |
| 2-Propanol          | 0.322                                          | 0.372 <sup>a</sup>           |                              |                              |                              |
| 1-Butanol           | 0.215                                          | 0.329 <sup>a</sup>           | 0.332 <sup>d</sup>           |                              |                              |
| 2-Butanol           | 0.257                                          |                              |                              |                              |                              |
| 2-Methyl-1-propanol | 0.178                                          | $0.209^{a}$                  |                              |                              |                              |
| 2-Methyl-2-propanol | 0.323                                          | 0.398 <sup>e</sup>           |                              |                              |                              |
| 1-Pentanol          | 0.221                                          | 0.232 <sup>a</sup>           | 0.322 <sup>d</sup>           |                              |                              |
| 2-Pentanol          | 0.237                                          |                              |                              |                              |                              |
| 3-Methyl-1-butanol  | 0.166                                          |                              |                              |                              |                              |
| 1-Hexanol           | 0.166                                          | 0.196 <sup>a</sup>           | $0.220^{d}$                  |                              |                              |
| 1-Heptanol          | 0.105                                          | $0.160^{\rm f}$              |                              |                              |                              |
| 1-Octanol           | 0.055                                          | 0.129 <sup>a</sup>           | $-0.070^{d}$                 |                              |                              |
| 1-Decanol           | -0.005                                         |                              |                              |                              |                              |
| 1,2-Ethanediol      | 0.068                                          | 0.167 <sup>a</sup>           | 0.176 <sup>h</sup>           |                              |                              |
| 1,1'-Oxybisethane   | 0.047                                          | 0.243 <sup>a</sup>           |                              |                              |                              |
| 2-Methoxy-2-        | -0.001                                         |                              |                              |                              |                              |
| methylpropane       |                                                |                              |                              |                              |                              |
| Tetrahydrofuran     | 0.625                                          |                              |                              |                              |                              |
| 1,4-Dioxane         | 0.359                                          | $0.496^{a}$                  |                              | 0.371 <sup>b</sup>           |                              |
| Methyl ethanoate    | 0.108                                          |                              |                              |                              |                              |
| Ethyl ethanoate     | 0.138                                          | $0.220^{a}$                  |                              |                              |                              |
| Propyl ethanoate    | 0.067                                          |                              |                              |                              |                              |
| Butyl ethanoate     | -0.005                                         | $0.124^{a}$                  |                              |                              |                              |
| Propanone           | 0.295                                          | $0.368^{a}$                  | $0.382^{g}$                  |                              |                              |

<sup>&</sup>lt;sup>a</sup>Experimental value is taken from Beerbower et al. <sup>47</sup>

<sup>&</sup>lt;sup>b</sup>Experimental value is taken from Gomaa.<sup>64</sup>

<sup>&</sup>lt;sup>c</sup>Experimental value is taken from Thuaire.<sup>72</sup>

dExperimental value is taken from Restaino and Martin. 75

<sup>&</sup>lt;sup>e</sup>Experimental value is from Chantooni and Kolthoff.<sup>76</sup>

<sup>&</sup>lt;sup>f</sup>Experimental value is from Perlovich and Bauer-Brandl.<sup>53</sup>

gExperimental value is from Long et al.55

<sup>&</sup>lt;sup>h</sup>Experimental value is from Yurquina et al. <sup>78</sup>

TABLE 4. Recommended mole fraction solubilities for benzoic acid in select solvents

| Solvent               | Recommended value | Individual values                                                                   | Outliers         |
|-----------------------|-------------------|-------------------------------------------------------------------------------------|------------------|
| Cyclohexane           | 0.0107            | 0.0102, <sup>47</sup> 0.01095, <sup>55</sup> 0.0100, <sup>56</sup> 0.0115 (Ref. 49) |                  |
| Benzene               | 0.0731            | 0.073, <sup>59</sup> 0.0728, <sup>58</sup> 0.0734 (Ref. 47)                         |                  |
| Methylbenzene         | 0.0728            | 0.0734, <sup>47</sup> 0.071, <sup>48</sup> 0.0741 (Ref. 58)                         |                  |
| Tetrachloromethane    | 0.0495            | 0.0494, 47 0.0500, 67 0.0492 (Ref. 49)                                              |                  |
| Methanol              | 0.163             | 0.1632, <sup>47</sup> 0.1569, <sup>51</sup> 0.1693 (Ref. 68)                        | 0.0771 (Ref. 64) |
| Ethanol               | 0.183             | 0.1789, <sup>47</sup> 0.1808, <sup>71</sup> 0.1855, <sup>72</sup> 0.1882 (Ref. 50)  | 0.1264 (Ref. 64) |
| 1-Propanol            | 0.180             | 0.1791, <sup>47</sup> 0.1743, <sup>51</sup> 0.187, <sup>75</sup> 0.1810 (Ref. 50)   |                  |
| Propanone             | 0.196             | 0.1857, <sup>47</sup> 0.1925, <sup>55</sup> 0.209 (Ref. 79)                         |                  |
| Ethanoic acid         | 0.156             | 0.1675, <sup>47</sup> 0.148, <sup>55</sup> 0.151 (Ref. 80)                          | 0.1097 (Ref. 79) |
| N,N-Dimethylformamide | 0.478             | 0.4909, <sup>47</sup> 0.4724, <sup>80</sup> 0.470 (Ref. 82)                         | 0.2228 (Ref. 64) |

in Secs. 2.2–2.10 were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid benzoic acid is taken to be  $V_{\text{solute}} = 104.38 \, \text{cm}^3 \, \text{mol}^{-1}$ . Any errors resulting from the estimation of benzoic acid's hypothetical subcooled liquid molar volume,  $V_{\text{solute}}$ , or the ideal molar volume approximation will have negligible effect of the calculated  $c_1$  values because benzoic acid is not overly soluble in many of the solvents considered. From a mathematical standpoint, the  $x_1^{\text{exp}}V_{\text{solute}}$  term contributes very little to the molar volumes of the saturated solutions.

Examination of the numerical entries in Table 3 reveals that expressions based on the Abraham model provide a very reasonable estimate of the solubility behavior of benzoic acid in 1,1'-oxybisethane, 1,4-dioxane, propanone and in 12 alcohol and two alkyl ethanoate solvents. Standard deviations between predicted and observed values were on the order of 0.12 log<sub>10</sub> units or less for most solvents. Differences in chemical purities and experimental methodologies can account for differences of several percent between values determined by different research groups.

Solution models, such as the Abraham solvation parameter model, prove useful in screening datasets for obvious outliers, particularly in cases where there are only one or two experimental data points for a given solute-solvent system. Readers are reminded that such models are only able to identify those outliers that fall outside of the model's expected predictive applicability. There is a sufficient number of data points for several of the solvents in Secs. 2.2–2.11 to compute a recommended value. The criterion that is used here to give a recommended value is that there must be at least three independent solubility measurements that differ from each other by no more than approximately 15 relative percent. Moreover, there must not be too many data points that fall outside of this range. The recommended mole fraction solubilities were calculated as an arithmetic average and are given in Table 4 for the solvents that had three or more close solubility measurements. Included in the table are the individual mole fraction solubilities that went into the calculation, and any suspected outlier values. There are a couple of instances were two independent experimental values are close and a third value differs by more than 30 relative percent. For example, in the case of ethyl ethanoate there are two close values  $x_1 = 0.1649$  (Ref. 47) and  $x_1 = 0.1637$  (Ref. 31) which differ significantly from a third value of  $x_1 = 0.229$ ,<sup>57</sup> in the case of trichloromethane there are two close values of  $x_1 = 0.1283$  (Ref. 47) and  $x_1 = 0.132$  (Ref. 48)

which differ significantly from a third value of  $x_1 = 0.273$ , <sup>57</sup> and in the case of 1-octanol there are two close values of  $x_1 = 0.1987$  (Ref. 47) and  $x_1 = 0.185$  (Ref. 77) which differ significantly from a third value of  $x_1 = 0.129$ . <sup>75</sup> The latter value in each of the three listings is believed to be an outlier.

There have been several experimental studies examining the solubility of benzoic acid in different organic solvents as a function of temperature. Thati *et al.* <sup>48</sup> determined benzoic acid solubilities in pentane, heptane, cyclohexane, methylbenzene, ethanol, and trichloromethane, and in binary heptane + ethanol and methylbenzene + ethanol solvent mixtures, in the approximate temperature range from 278 to 323 K. The authors described the variation of  $\ln x_1$  with temperature in terms of

$$\ln x_1 = A + \frac{B}{T} + CT, \tag{22}$$

a relatively simple nonlinear equation. The calculated regression coefficients (A, B, and C) are listed in Table 5, along with the actual temperature range for each of the six monosolvents. The authors noted that the squared correlation coefficient,  $R^2$ , exceeded 0.9996. The graphical comparison provided in the paper indicated very good agreement between the experimental  $x_1$  data and back-calculated values based on Eq. (22).

Zhao *et al.*<sup>60</sup> measured the solubility of benzoic acid in isobutyl ethanoate at 18 temperatures between 300 and 343 K. The experimental data were correlated with the Wilson and UNIQUAC models. Interaction coefficients calculated from the experimental solid-liquid equilibrium data provided a reasonably accurate mathematical description of the measured values. The mean absolute relative deviation between calculated and observed values was 0.85% (Wilson model) and 1.06% (UNIQUAC model).

Table 5. Parameters of Eq. (22) for describing the solubility of benzoic acid in various organic solvents<sup>a</sup>

| Solvent          | T/K     | A        | В        | С        |
|------------------|---------|----------|----------|----------|
| Pentane          | 278-303 | -20.9245 | 444.93   | 0.04932  |
| Heptane          | 278-323 | -8.4537  | -3803.41 | -0.00032 |
| Cyclohexane      | 283-323 | -7.9394  | -1683.88 | 0.03071  |
| Methylbenzene    | 278-323 | -0.4993  | -1927.02 | 0.01466  |
| Trichloromethane | 278-323 | -0.2008  | -1492.75 | 0.01066  |
| Ethanol          | 278-323 | -6.1372  | -102.31  | 0.01599  |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients were taken from Thati et al. <sup>48</sup>

Table 6. Parameters of the Van't Hoff-type equation for describing the solubility of benzoic acid in various organic solvents

| Solvent                 | T/K     | A       | В        | С         | MRD (%) |
|-------------------------|---------|---------|----------|-----------|---------|
| Cyclohexanea            | 283-343 | -8.5248 | 8766.1   | 2 259 000 | 2.75    |
| 2-Propanol <sup>a</sup> | 278-343 | 3.9085  | -11624.0 | -9250     | 0.54    |
| Propanone <sup>a</sup>  | 278-323 | 6.0996  | -2925.6  | 184 060   | 0.63    |
| Ethanoic acida          | 293-346 | 4.8518  | -1721.8  | -88300    | 0.62    |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and mean relative deviation were taken from Long et al.<sup>55</sup>

Long *et al.*<sup>55</sup> published experimental solubility data for benzoic acid in cyclohexane, 2-propanol, propanone, and ethanoic acid over the approximate temperature range between 277 and 346 K at 5 K intervals using a gravimetric method. Experimental measurements showed that the benzoic acid solubility was greatest in propanone, followed by 2-propanol, ethanoic acid, and cyclohexane in descending order. The authors correlated the temperature dependence with a Van't Hoff-type relation:

$$\ln x_1 = A + \frac{B}{T} + \frac{C}{T^2},\tag{23}$$

where A, B, and C represent the empirical curve-fit parameters determined by regression analysis of  $\ln x_1$  data in accordance with Eq. (23). The calculated equation coefficients and the mean relative deviation (MRD) defined by Eq. (24) below

MRD (%) = 
$$\frac{100}{N} \sum \left| \frac{(x_1^{\text{exp}} - x_1^{\text{calc}})}{x_1^{\text{exp}}} \right|$$
 (24)

are tabulated in Table 6. In Eq. (24), N denotes the number of experimental solubility measurements in an individual solute-solvent dataset. Examination of the numerical values in the last column of Table 6 indicates that Eq. (23) does provide a reasonably accurate mathematical description of how the solubility varies with temperature. The small mean relative deviations suggest that the experimental values in each solvent dataset are internally consistent.

Ma and Xia<sup>80</sup> determined the solubility of benzoic acid in both ethanoic acid and N,N-dimethylformamide. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to the Buchowski  $\lambda$ h model [Eq. (9)]. The values of the equation coefficients ( $\lambda$  and h) are given in Table 7, along with the mean relative

Table 7. Parameters of the Buchowski λh equation for describing the solubility of benzoic acid in various organic solvents

| Solvent                                             | T/K     | λ       | h       | MRD (%) |
|-----------------------------------------------------|---------|---------|---------|---------|
| Ethanoic acid <sup>a</sup>                          | 291-334 | 0.7767  | 2614.61 | 0.67    |
| Ethanoic acid <sup>b</sup>                          | 291-356 | 0.8061  | 2594.9  | 0.58    |
| <i>N</i> , <i>N</i> -Dimethylformamide <sup>a</sup> | 299-343 | -0.6448 | 2379.67 | 0.13    |
| Benzene <sup>b</sup>                                | 291-356 | 1.5203  | 2438.3  | 0.36    |
| Ethyl ethanoate <sup>b</sup>                        | 291-356 | 0.6058  | 2656.9  | 0.31    |
| Ethanol <sup>b</sup>                                | 291-356 | 0.3918  | 3212.2  | 0.28    |

 $<sup>^{\</sup>overline{a}}Values$  of the coefficients and mean relative deviation were taken from Ma and Xia.  $^{80}$ 

deviation. Also included in Table 7 are the equation coefficients reported by Cheng et al. 90 for the solubility of benzoic acid in ethanol, benzene, ethanoic acid, and ethyl ethanoate. The authors performed solubility measurements over the temperature range of 291-356 K and reported their results only in the form of curve-fit equation coefficients. The actual mole fraction solubility data was not given in the published paper. The small mean relative deviations suggest that the experimental values in each solvent dataset are internally consistent. Readers are reminded that Eq. (9) can only check data points for internal consistency with respect to temperature. The fact that one can accurately describe the experimental data does not mean that the data are accurate. In the case of ethanoic acid, there are three sets of independent solubility data in the published literature. A point-by-point comparison will not be performed here; however, one does note that the experimental solubilities reported by Long et al. 55 and Ma and Xia<sup>80</sup> are in reasonably good agreement with each other at 298 K [ $x_1 = 0.1481$  (Ref. 55) versus  $x_1 = 0.1448$  (Ref. 80)] and 318 K [ $x_1 = 0.2367$  (Ref. 55) and  $x_1 = 0.2384$  (Ref. 80)], and both sets of values differ from those reported by Wang et al., <sup>79</sup> which are  $x_1 = 0.1097$  at 298 K and  $x_1 = 0.1576$  at 318 K.

Li *et al.*<sup>84</sup> determined the solubility of benzoic acid in *N*-methyl-2-pyrrolidone from 296 to 371 K using a synthetic method with laser monitoring to determine when the last amount of solid solute dissolved. The authors employed a polynomial expression in temperature,

$$x_1 = -6.0581 + 0.06480 T - 2.17813 \times 10^{-4} T + 2.49784 \times 10^{-7} T^2,$$
 (25)

to represent the measured mole fraction solubility data. The root-mean-square deviation between the observed  $x_1$  and calculated values from Eq. (25) was on the order of 0.0012 mole fraction.

The experimental solubility data for benzoic acid in organic solvents are in Secs. 2.2–2.11.

# 2.2. Benzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) Pentane; C <sub>5</sub> H <sub>12</sub> ; [109-66-0] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9941  | 0.0059    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{\</sup>mathrm{b}}$ Values of the coefficients and mean relative deviation were taken from Cheng et al. $^{\mathrm{90}}$ 

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Pentane; C <sub>5</sub> H <sub>12</sub> ; [109-66-0] | <b>Original Measurements:</b> <sup>48</sup> J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data <b>55</b> , 5124 (2010). |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                      | Prepared by:                                                                                                                           |
| Temperature                                                                                                                                     | W. E. Acree, Jr.                                                                                                                       |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.15 | 0.996              | 0.004     |
| 283.15 | 0.995              | 0.005     |
| 293.15 | 0.991              | 0.009     |
| 303.15 | 0.989              | 0.011     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

# **Source and Purity of Chemicals:**

(1) 99.7%, Merck Chemical Company, Germany, was used as received. (2) 95+%, VWR Scientific, USA, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                                                                       |
| T/K = 298.15                                                                                                                                   | W. E. Acree, Jr.                                                                                                   |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9905  | 0.0095    |

 $<sup>^{\</sup>mathrm{a}}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                      | Original Measurements:                                |
|------------------------------------------------------------------|-------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>49</sup> W. E. Acree, Jr. and G. L. Bertrand, J. |
| [65-85-0]                                                        | Pharm. Sci. 70, 1033 (1981).                          |
| (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3]          |                                                       |
| Variables:                                                       | Prepared by:                                          |
| Temperature                                                      | W. E. Acree, Jr.                                      |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------|--------------------|---------|
| 298.15 | 0.9900             | 0.0100  |
| 303.15 | 0.9874             | 0.0126  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### Source and Purity of Chemicals:

(1) 99%, Chemical source not given, was dried at 333 K for several hours before use.

(2) 99%, Chemical source not given, stored over molecular sieves and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements: 50P. G. Desai and A. M. Patel, J. Indian<br>Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                         | Prepared by: W. E. Acree, Jr.                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9860  | 0.01399   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                                                |
| T/K = 298.15                                                                                                                                          | W. E. Acree, Jr.                                                                                            |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9870  | 0.0130  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | <b>Original Measurements:</b> <sup>52</sup> A. Ksiazczak, Fluid Phase Equilib. <b>28</b> , 57 (1986). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                          |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                      |

| <i>T</i> /K | $x_2^a$ | $x_1^{b}$ |
|-------------|---------|-----------|
| 312.55      | 0.9812  | 0.0188    |
| 316.30      | 0.9773  | 0.0227    |
| 319.57      | 0.9737  | 0.0263    |
| 319.85      | 0.9734  | 0.0264    |
| 321.48      | 0.9711  | 0.0289    |
| 321.52      | 0.9709  | 0.0291    |
| 322.85      | 0.9698  | 0.0302    |
| 323.48      | 0.9685  | 0.0315    |
| 325.50      | 0.9660  | 0.0340    |
| 325.80      | 0.9652  | 0.0348    |
| 327.49      | 0.9630  | 0.0370    |
| 327.50      | 0.9630  | 0.0370    |
| 329.47      | 0.9595  | 0.0405    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 331.45 | 0.9564             | 0.0436    |
| 333.48 | 0.9530             | 0.0470    |
| 333.50 | 0.9525             | 0.0475    |
| 335.48 | 0.9476             | 0.0524    |
| 336.10 | 0.9454             | 0.0546    |
| 336.15 | 0.9445             | 0.0555    |
| 338.47 | 0.9395             | 0.0605    |
| 339.50 | 0.9363             | 0.0637    |
| 341.55 | 0.9299             | 0.0701    |
| 341.65 | 0.9291             | 0.0709    |
| 343.52 | 0.9230             | 0.0770    |
| 344.50 | 0.9198             | 0.0802    |
| 344.60 | 0.9186             | 0.0814    |
| 345.48 | 0.9152             | 0.0848    |
| 347.40 | 0.9065             | 0.0935    |
| 347.46 | 0.9067             | 0.0933    |
| 349.30 | 0.899              | 0.101     |
| 350.30 | 0.893              | 0.107     |
| 351.41 | 0.888              | 0.112     |
| 353.50 | 0.876              | 0.124     |
| 356.45 | 0.855              | 0.145     |
| 359.40 | 0.832              | 0.168     |
| 362.60 | 0.798              | 0.202     |

 $\bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubilities were determined using a dynamic method. Known amounts of solute and solvent were placed in a container which was then sealed. The temperature of the solution was slowly increased until the last amount of solid dissolved. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, POCh Gliwice, Poland, was dried over phosphorous pentoxide and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  47A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                      | Prepared by:                                                                                            |
| T/K = 298.15                                                                                                                                    | W. E. Acree, Jr.                                                                                        |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9883  | 0.0117    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  48 J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data 55, 5124 (2010). |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Variables:                                                                                                                                      | Prepared by: W. E. Acree, Ir                                                                                  |  |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 278.15 | 0.995              | 0.005              |
| 283.15 | 0.994              | 0.006              |
| 293.15 | 0.990              | 0.010              |
| 303.15 | 0.985              | 0.015              |
| 313.15 | 0.978              | 0.022              |
| 323.15 | 0.967              | 0.033              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

# **Source and Purity of Chemicals:**

- (1) 99.7%, Merck Chemical Company, Germany, was used as received.
- (2) 99%, VWR Scientific, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | <b>Original Measurements:</b> <sup>49</sup> W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. <b>70</b> , 1033 (1981). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                                                                             |
| Temperature                                                                                                                                            | W. E. Acree, Jr.                                                                                                         |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 298.15 | 0.9886             | 0.0114    |
| 303.15 | 0.9853             | 0.0147    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### **Source and Purity of Chemicals:**

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99+%, Chemical source not given, stored over molecular sieves and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Octane; C <sub>8</sub> H <sub>18</sub> ; [111-65-9] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                   | W. E. Acree, Jr.                                                                                                     |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9871  | 0.0129  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and analytical balance. Very little experimental details were given in the paper. The solubility of the solute was by a weighing method.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Sigma Chemical Company, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 3.0\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Nonane; C <sub>9</sub> H <sub>20</sub> ; [111-84-2] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                                                       |
| T/K = 298.15                                                                                                                                          | W. E. Acree, Jr.                                                                                                   |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9859  | 0.0141  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Decane; C <sub>10</sub> H <sub>22</sub> ; [124-18-5] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                      | Prepared by:                                                                                                       |
| T/K = 298.15                                                                                                                                    | W. E. Acree, Jr.                                                                                                   |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9898  | 0.0102    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9898  | 0.0102  |

 $<sup>\</sup>overline{}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9857           | 0.0143  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> 55B. Long, J. Li, R. Zhang, and L. Wan, Fluid Phase Equilib. <b>297</b> , 113 (2010). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                                        |
| Temperature                                                                                                                                         | W. E. Acree, Jr.                                                                                                    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 283.15 | 0.9968             | 0.003179  |
| 287.95 | 0.9953             | 0.004724  |
| 293.16 | 0.9926             | 0.007413  |
| 298.00 | 0.9890             | 0.01095   |
| 303.30 | 0.9847             | 0.01528   |
| 308.02 | 0.9795             | 0.02052   |
| 313.18 | 0.9698             | 0.03023   |
| 317.75 | 0.9630             | 0.03701   |
| 322.91 | 0.9532             | 0.04678   |
| 328.18 | 0.9434             | 0.05656   |
| 333.11 | 0.9275             | 0.07254   |
| 337.98 | 0.9066             | 0.09341   |
| 342.80 | 0.8777             | 0.1223    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Double layer jacketed glass equilibrium cell, circulating water bath, analytical balance, and drying oven.

Excess solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was allowed to equilibrate at constant temperature with stirring for 3 h. The stirring was discontinued and the solution was allowed to stand for 1 h to allow the undissolved solid to settle to the bottom portion of the equilibrium vessel. An aliquot of the clear solution was transferred to a preweighed vial by a warm syringe. The vial was tightly closed and reweighed to determine the mass of the sample transferred. The vial was then put into a drying oven with the cap half-closed to permit complete evaporation of the solvent. The vial was covered with a piece of stainless steel filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was removed from the drying oven and placed in a desiccator with silica gel for another 2 h to reach ambient room temperature. The vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.5%, Analytical grade, Shantou Xilong Chemical Company, China, was used as received.

(2) 99.5%, Analytical grade, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements: <sup>52</sup> A. Ksiazczak, Fluid Phase Equilib. <b>28</b> , 57 (1986). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                   |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 309.65 | 0.9802             | 0.0198    |
| 315.45 | 0.9745             | 0.0255    |
| 318.20 | 0.9700             | 0.0300    |
| 320.95 | 0.9654             | 0.0346    |
| 325.35 | 0.9564             | 0.0436    |
| 329.00 | 0.9494             | 0.0506    |
| 332.60 | 0.9366             | 0.0634    |
| 334.45 | 0.9302             | 0.0698    |
| 338.80 | 0.9118             | 0.0882    |
| 339.00 | 0.9110             | 0.0890    |
| 341.35 | 0.9005             | 0.0995    |
| 342.95 | 0.890              | 0.110     |
| 343.55 | 0.888              | 0.112     |
| 345.55 | 0.873              | 0.127     |
| 346.55 | 0.867              | 0.133     |
| 347.30 | 0.863              | 0.137     |
| 349.35 | 0.846              | 0.154     |
| 349.50 | 0.841              | 0.159     |
| 351.15 | 0.830              | 0.170     |
| 351.55 | 0.823              | 0.177     |
| 354.50 | 0.786              | 0.214     |
| 360.65 | 0.695              | 0.305     |
| 366.35 | 0.574              | 0.426     |
| 369.40 | 0.514              | 0.486     |
| 372.35 | 0.448              | 0.552     |
| 375.50 | 0.391              | 0.609     |
| 379.40 | 0.305              | 0.695     |
| 383.80 | 0.235              | 0.765     |
| 389.85 | 0.115              | 0.885     |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubilities were determined using a dynamic method. Known amounts of solute and solvent were placed in a container which was then sealed. The temperature of the solution was slowly increased until the last amount of solid dissolved. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, POCh Gliwice, Poland, was dried over phosphorous pentoxide and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  49W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. <b>70</b> , 1033 (1981). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                           |
| Temperature                                                                                                                                         | W. E. Acree, Jr.                                                                                       |

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 298.15 | 0.9885  | 0.0115    |
| 303.15 | 0.9854  | 0.0146    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### Source and Purity of Chemicals:

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99+%, Chemical source not given, stored over molecular sieves and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  48 J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data 55, 5124 (2010). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                                  |

#### **Experimental Values**

| T/K    | $x_2^{\rm a}$ | $x_1^{b}$ |
|--------|---------------|-----------|
| 283.15 | 0.994         | 0.006     |
| 293.15 | 0.991         | 0.009     |
| 303.15 | 0.985         | 0.015     |
| 313.15 | 0.975         | 0.025     |
| 323.15 | 0.961         | 0.039     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and

the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99.7%, Merck Chemical Company, Germany, was used as received.
- (2) 99.5%, VWR Scientific, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                     | Prepared by: W. E. Acree. Jr.                                                               |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.038$ , which corresponds to a solubility of  $c_1 = 0.0916$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### Estimated Error:

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 2.3. Benzoic acid solubility data in aromatic hydrocarbons

| Components:                                                      | Original Measurements:                       |
|------------------------------------------------------------------|----------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>47</sup> A. Beerbower, P. L. Wu, and A. |
| [65-85-0]                                                        | Martin, J. Pharm. Sci. 73, 179 (1984).       |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]           |                                              |
| Variables:                                                       | Prepared by:                                 |
| T/K = 298.15                                                     | W. E. Acree, Jr.                             |

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9311  | 0.0689             |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                                                                                          | Original Measurements:                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <ul> <li>5<sup>4</sup>C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966).</li> </ul> |
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9168  | 0.0832  |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance. Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.118$ , which corresponds to a solubility of  $c_1 = 0.762 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>57</sup> J. W. Marden and M. V. Dover, J.<br>Am. Chem. Soc. <b>38</b> , 1235 (1916). |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.931   | 0.069     |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 ${}^bx_1$ : mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                    | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                   | W. E. Acree, Jr.                                                                                                      |

# **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.9181    | 0.08191   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>58</sup> J. Chipman, J. Am. Chem. Soc. <b>46</b> , 2445 (1924). |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                   |

#### **Experimental Values (Interpolated Values)**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 277.5 | 0.967              | 0.0332    |
| 283.2 | 0.966              | 0.0339    |
| 293.2 | 0.941              | 0.0594    |
| 298.2 | 0.927              | 0.0728    |
| 303.2 | 0.912              | 0.0879    |
| 313.2 | 0.874              | 0.1261    |
| 323.2 | 0.821              | 0.1794    |
| 333.2 | 0.751              | 0.249     |
| 343.2 | 0.663              | 0.337     |
| 353.2 | 0.556              | 0.444     |
| 363.2 | 0.432              | 0.568     |
| 373.2 | 0.302              | 0.698     |
| 383.2 | 0.165              | 0.835     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Water bath, glycerol bath, and stirrer.

Solubilities were determined in a  $2.5 \times 15$  cm air-jacketed test-tubes using short-stemmed thermometers. The tube, together with the thermometer, cork stopper, and stirrer were weighed, benzoic acid was then added, and the entire assembly reweighed again. The total weight of the mixture was determined again after the solid-liquid equilibrium temperature had been recorded in order to avoid errors due to solvent evaporation. The mixture of benzoic acid and solvent was heated in a water bath or glycerol bath until entirely homogeneous. The mixture cooled with rapid stirring to form a suspension of minute crystals, and then warmed slowly (about  $0.5 \ \text{K/min}$ ) with continuous stirring until all of the crystals dissolved. The temperature at which the solution became clear was recorded as the solid-liquid equilibrium temperature.

The experimental solubilities at the three lower temperatures were determined by titration. Glass-stoppered bottles containing excess solute and solvent were allowed to equilibrate at constant temperature in a thermostat. An aliquot of the clear saturated solution was removed and transferred into a glass-stoppered Erlenmeyer flask and weighed. A measured amount of slight excess sodium hydroxide solution was added, and the excess sodium hydroxide was determined by back titration with a standardized acetic acid solution with phenolphthalein being used to detect the endpoint. The solvent was evaporated in a current of carbon dioxide-free air.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized successively from 50% aqueous-acetic acid solution, benzene, three times from 30% aqueous-alcohol, and twice from pure benzene. The melting point of the purified sample was  $394.9\,$  K.
- (2) Purity not given, Chemical source not given, was shaken repeatedly with sulfuric acid, and then successively with water, dilute aqueous sodium hydroxide solution, water, and saturated calcium chloride solution. The sample was then fractionally distilled over solid calcium chloride, then frozen out and finally distilled from metallic sodium.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solid-liquid equilibrium temperatures and mole fraction compositions represent interpolated values obtained from the actual experimental data. The actual experimental data were not given in the paper.

#### **Estimated Error:**

Temperature: Unable to determine.

 $x_1$ : Unable to determine.

| Components:                                                      | Original Measurements:                                    |
|------------------------------------------------------------------|-----------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>59</sup> H. Buchowski, J. Solution Chem. <b>20</b> , |
| [65-85-0]                                                        | 139 (1991).                                               |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]           |                                                           |
| Variables:                                                       | Prepared by:                                              |
| Temperature                                                      | W.E. Acree, Ir                                            |

#### **Experimental Values (Interpolated Values)**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 298.15 | 0.927              | 0.073              |
| 300.15 | 0.921              | 0.079              |
| 302.15 | 0.915              | 0.085              |
| 313.15 | 0.874              | 0.126              |
| 318.15 | 0.850              | 0.150              |
| 323.15 | 0.821              | 0.179              |
| 328.15 | 0.790              | 0.210              |
| 333.15 | 0.751              | 0.249              |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided in the paper. In the author's earlier studies, solubilities were determined using a dynamic solubility method where known amounts of solute and solvent were placed in containers which were then sealed. The temperature was then slowly increased until all of the solid solute dissolved. The compiler believes that the benzoic acid solubilities in the present study may have been determined by a similar method. The tabulated numerical values might be interpolated values obtained from a smooth mole fraction versus temperature curve.

#### **Source and Purity of Chemicals:**

(1) 99.5%, Argon, Lodz, Poland, purified by at least two vacuum sublimations. (2) 99.5%, POCh, Gliwice, Poland, was dried over phosphorous pentoxide and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9266  | 0.0734    |

 $<sup>^{4}</sup>x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                          | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9145  | 0.08553 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <b>Original Measurements:</b> <sup>48</sup> J. Thati, F. L. Nordström, and A. C |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| [65-85-0]<br>(2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ;<br>[108-88-3]       | Rasmuson, J. Chem. Eng. Data <b>55</b> , 5124 (2010).                           |
| Variables: Temperature                                                              | Prepared by:<br>W. E. Acree, Jr.                                                |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.15 | 0.965              | 0.035     |
| 283.15 | 0.957              | 0.043     |
| 293.15 | 0.938              | 0.062     |
| 303.15 | 0.911              | 0.089     |
| 313.15 | 0.872              | 0.128     |
| 323.15 | 0.822              | 0.178     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.7%, Merck Chemical Company, Germany, was used as received.

(2) 99+%, Merck Chemical Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3] | <b>Original Measurements:</b> 58 J. Chipman, J. Am. Chem. Soc. <b>46</b> , 2445 (1924). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                        |

#### **Experimental Values (Interpolated Values)**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 273.2 | 0.964              | 0.0339    |
| 283.2 | 0.958              | 0.0423    |
| 293.2 | 0.938              | 0.0618    |
| 298.2 | 0.926              | 0.0741    |
| 303.2 | 0.911              | 0.0891    |
| 313.2 | 0.873              | 0.1270    |
| 323.2 | 0.821              | 0.1790    |
| 333.2 | 0.753              | 0.247     |
| 343.2 | 0.667              | 0.333     |
| 353.2 | 0.561              | 0.439     |
| 363.2 | 0.439              | 0.561     |
| 373.2 | 0.304              | 0.696     |
| 383.2 | 0.166              | 0.834     |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Water bath, glycerol bath, and stirrer.

Solubilities were determined in a  $2.5 \times 15$  cm air-jacketed test-tubes using short-stemmed thermometers. The tube, together with the thermometer, cork stopper, and stirrer were weighed, benzoic acid was then added, and the entire assembly reweighed again. The total weight of the mixture was determined again after the solid-liquid equilibrium temperature had been recorded in order to avoid errors due to solvent evaporation. The mixture of benzoic acid and solvent was heated in a water bath or glycerol bath until entirely homogeneous. The mixture cooled with rapid stirring to form a suspension of minute crystals, and then warmed slowly (about 0.5 K/min) with continuous stirring until all of the crystals dissolved. The temperature at which the solution became clear was recorded as the solid-liquid equilibrium temperature.

The experimental solubilities at the three lower temperatures were determined by titration. Glass-stoppered bottles containing excess solute and solvent were allowed to equilibrate at constant temperature in a thermostat. An aliquot of the clear saturated solution was removed and transferred into a glass-stoppered Erlenmeyer flask and weighed. A measured amount of slight excess sodium hydroxide solution was added, and the excess sodium hydroxide was determined by back titration with a standardized acetic acid solution with phenolphthalein being used to detect the endpoint. The solvent was evaporated in a current of carbon dioxide-free air.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized successively from 50% aqueous-acetic acid solution, benzene, three times from 30% aqueous-alcohol, and twice from pure benzene. The melting point of the purified sample was  $394.9~\rm K$ .
- (2) Purity not given, Chemical source not given, was shaken repeatedly with sulfuric acid, and then successively with water, dilute aqueous sodium hydroxide solution, water, and saturated calcium chloride solution. The sample was then fractionally distilled over solid calcium chloride, and then distilled from metallic sodium.

# **Estimated Error:**

Temperature: Unable to determine.

 $x_1$ : Unable to determine.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solid-liquid equilibrium temperatures and mole fraction compositions represent interpolated values obtained from the actual experimental data. The actual experimental data were not given in the paper.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,3-Dimethylbenzene; C <sub>8</sub> H <sub>10</sub> ; [108-38-3] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                               |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9111  | 0.0889  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 2.4. Benzoic acid solubility data in esters

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.8351           | 0.1649  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements: <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8363  | 0.1637  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

# Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | <b>Original Measurements:</b> <sup>57</sup> J. W. Marden and M. V. Dover, J. Am. Chem. Soc. <b>38</b> , 1235 (1916). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                     |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.771   | 0.229     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | <b>Original Measurements:</b> <sup>89</sup> S. J. Lloyd, J. Phys. Chem. <b>22</b> , 300 (1918). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                    |
| Temperature                                                                                                                                                           | W. E. Acree, Jr.                                                                                |

# **Experimental Values**

| T/K   | $c_1^{a}$ |
|-------|-----------|
| 266.7 | 0.0655    |
| 294.7 | 0.309     |
| 348.2 | 0.784     |

 $<sup>{}^{</sup>a}c_{1}$ : molar solubility of the solute expressed in units of mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided in the paper. Solubility measurements were performed as part of a study of the electrolytic decomposition of benzoic acid in ethyl ethanoate.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification details were not provided.
- (2) Purity not given, Chemical source not given, purification details were not provided.

#### **Estimated Error:**

Temperature: Insufficient information to estimate.

 $c_1$ : Insufficient information to estimate.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8301  | 0.1699  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | <b>Original Measurements:</b> <sup>87</sup> M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                              |
| T/K = 305.2                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                          |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured solubility was reported to be 197.80 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.620 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Aldrich Chemical Company, UK, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.27$ .

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Isobutyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [110-19-0] | Original Measurements: <sup>60</sup> S. Zhao, X. Chen, Q. Dai, and L. Wang, J. Chem. Eng. Data <b>56</b> , 2399 (2011). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                                            |
| Temperature                                                                                                                                                               | W. E. Acree, Jr.                                                                                                        |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 299.73 | 0.860              | 0.140              |
| 302.46 | 0.851              | 0.149              |
| 307.34 | 0.822              | 0.178              |
| 313.61 | 0.792              | 0.208              |
| 322.93 | 0.746              | 0.254              |
| 328.98 | 0.707              | 0.293              |
| 332.24 | 0.689              | 0.311              |
| 334.34 | 0.675              | 0.325              |
| 335.58 | 0.663              | 0.337              |
| 336.03 | 0.662              | 0.338              |
| 337.33 | 0.651              | 0.349              |
| 337.67 | 0.649              | 0.351              |
| 338.76 | 0.642              | 0.358              |
| 339.37 | 0.638              | 0.362              |
| 339.86 | 0.631              | 0.369              |
| 341.48 | 0.621              | 0.379              |
| 342.69 | 0.610              | 0.390              |
| 343.67 | 0.601              | 0.399              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermoelectric circulating water temperature controller, electromagnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate 1-2 K/h (0.5–1.0 K/h or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.
- (2) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.001$ .

| Components:<br>(1) Benzoic acid; $C_7H_6O_2$ ;<br>[65-85-0]<br>(2) 1-Methylethyl tetradecanoate;<br>$C_{17}H_{34}O_2$ ; [110-27-0] | Original Measurements:  61 E. R. Cooper, J. Controlled Release 1, 153 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Variables: T/K = 295                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.896   | 0.104              |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

# **Source and Purity of Chemicals:**

- (1) Reagent grade, Matheson, Coleman, and Bell, Cincinnati, OH, USA, no purification details provided.
- (2) Reagent grade, Wickhen Corporation, Huguenot, NJ, USA, no purification details provided.

#### **Estimated Error:**

Temperature: No information given.  $x_1$ : No information given.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Methylethyl tetradecanoate; C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> ; [110-27-0] | Original Measurements:  87 M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 305.2$                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                         |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x₁: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

The measured solubility was reported to be 41.30 mg/ml, which corresponds to a molar solubility of  $c_1 = 0.338$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Croda Universal Ltd., no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.0066$ .

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,2,3-Triacetoxypropane;<br>C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                                                |
| T/K = 298.15                                                                                                                                                                               | W. E. Acree, Jr.                                                                                            |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8588  | 0.1412             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

# Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Purity not given, Unichema International, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 2.5. Benzoic acid solubility data in ethers

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8163  | 0.1837  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1~\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements: <sup>57</sup> J. W. Marden and M. V. Dover, J. Am. Chem. Soc. <b>38</b> , 1235 (1916). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                  |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                              |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.917   | 0.083     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2-Dimethoxyethane; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-71-4] | Original Measurements:  62 S. H. Ghosh and D. K. Hazra, J. Chem. Soc., Perkin Trans. 2 1989, 1021. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                       |
| T/K = 298.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

The measured solubility was reported to be  $c_1 = 3.2025$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Mechanical shaker and a constant-temperature thermostat.

Excess solute and solvent were placed in a Campbell solubility apparatus and allowed to equilibrate at 298 K for 24 h. An aliquot of the saturated solution was then removed and filtered. The concentration of the dissolved solute was determined by titration with standard caustic soda using phenolphthalein as indicator. Solubility was also determined spectrophotometrically from absorbance measurements made at an analysis wavelength of 272 nm.

#### Source and Purity of Chemicals:

- (1) G.R.E, Merck Chemical Company, was recrystallized from alcohol and then dried.
- (2) Purum, Fluka, was shaken with ferrous sulfate and then distilled. The distillate was further purified by refluxing for 12 h and distilling over metallic sodium.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $c_1$ :  $\pm .5\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.620   | 0.380              |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  51HM. Lin and R. A. Nash, J. Pharm. Sci. 82, 1018 (1993). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                      |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                  |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.6652  | 0.3348  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | <b>Prepared by:</b> W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7147  | 0.2853  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements: <sup>64</sup> E. A. Gomaa, Phys. Chem. Liq. <b>50</b> , 279 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7893  | 0.2107  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.
- (2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.701   | 0.299     |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components:                                                      | Original Measurements:                             |
|------------------------------------------------------------------|----------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>65</sup> A. F. Lagalante, A. Abdulagatov, and |
| [65-85-0]                                                        | T. J. Bruno, J. Chem. Eng. Data 47, 47             |
| (2) Methyl nonafluorobutyl ether;                                | (2002).                                            |
| C <sub>5</sub> H <sub>3</sub> F <sub>9</sub> O; [163702-07-6]    |                                                    |

| Variables:  | Prepared by:     |
|-------------|------------------|
| Temperature | W. E. Acree, Jr. |

# **Experimental Values (Interpolated Values)**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 259.7 | 0.9999             | 0.000138  |
| 268.2 | 0.9998             | 0.000172  |
| 283.2 | 0.9997             | 0.000272  |
| 298.2 | 0.9994             | 0.000560  |
| 313.3 | 0.9989             | 0.00110   |
| 328.2 | 0.9976             | 0.00235   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

UV/visible spectrophotometer.

Solubilities were determined by supersaturating the solvent with naphthalene and measuring the amount of dissolved solute using a spectroscopic method. Aliquots of the saturated solution were pipetted into a volumetric flask, and diluted with acetonitrile. If necessary, the sample was further diluted to bring the measured absorbance to within the linear range of the absorbance versus calibration curve obtained from absorbance measurements on solutions of known naphthalene concentration. Absorbance measurements recorded at 272 nm.

### Source and Purity of Chemicals:

- (1) Purity and Chemical source were not given, was used as received.
- (2) 99%, Name of commercial supplier was not given, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ : 1.0% (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethyl nonafluorobutyl ether; C <sub>6</sub> H <sub>5</sub> F <sub>9</sub> O; [163702-05-4] | <b>Original Measurements:</b> <sup>65</sup> A. F. Lagalante, A. Abdulagatov, and T. J. Bruno, J. Chem. Eng. Data <b>47</b> , 47 (2002). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                            | Prepared by:                                                                                                                            |
| Temperature                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                                        |

### **Experimental Values (Interpolated)**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 259.7 | 0.9997  | 0.000282  |
| 268.2 | 0.9997  | 0.000297  |
| 283.2 | 0.9995  | 0.000459  |
| 298.2 | 0.9991  | 0.000857  |
| 313.3 | 0.9987  | 0.00133   |
| 328.2 | 0.9976  | 0.00242   |
| 343.2 | 0.9954  | 0.00463   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

UV/visible spectrophotometer.

Solubilities were determined by supersaturating the solvent with naphthalene and measuring the amount of dissolved solute using a spectroscopic method. Aliquots of the saturated solution were pipetted into a volumetric flask, and diluted with acetonitrile. If necessary, the sample was further diluted to bring the measured absorbance to within the linear range of the absorbance versus calibration curve obtained from absorbance measurements on solutions of known naphthalene concentration. Absorbance measurements recorded at 272 nm.

### **Source and Purity of Chemicals:**

- (1) Purity and Chemical source were not given, used as received.
- (2) 99%, Name of commercial supplier was not given, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ : 1.0% (relative error).

# 2.6. Benzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|---------------------------------------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree, Jr.                                                                                          |
|                                                                                                                           |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8717  | 0.1283    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

Components:

(1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>;
[65-85-0]
(2) Trichloromethane; CHCl<sub>3</sub>;
[67-66-3]

Variables:

Original Measurements:

48J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data 55,
5124 (2010).

# **Experimental Values**

W. E. Acree, Jr.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.15 | 0.926              | 0.074     |
| 283.15 | 0.914              | 0.086     |
| 293.15 | 0.886              | 0.114     |
| 303.15 | 0.849              | 0.151     |
| 313.15 | 0.804              | 0.196     |
| 323.15 | 0.747              | 0.253     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then

weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### Source and Purity of Chemicals:

- (1) 99.7%, Merck Chemical Company, Germany, was used as received.
- (2) 99+%, Merck Chemical Company, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                            |

### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = -0.188$ , which corresponds to a solubility of  $c_1 = 1.542$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8505  | 0.1495    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                             |

### **Experimental Values**

The measured molar solubility was  $c_1 = 1.477 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.

 $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>57</sup> J. W. Marden and M. V. Dover, J. Am. Chem. Soc. <b>38</b> , 1235 (1916). |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                                     |

### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.727              | 0.273     |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

<sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components:                                                                   | Original Measurements:                                                                      |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0] | <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
| (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5]                          |                                                                                             |
| Variables:<br>T/K = 298.15                                                    | Prepared by:<br>W. E. Acree, Jr.                                                            |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9506  | 0.0494  |

 $\bar{x}_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>67</sup> M. Davies and D. M. L. Griffiths, J. Chem. Soc. <b>1955</b> , 132. |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                               |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9500  | 0.0500    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Experimental solubility was determined by percolating the solvent at an adjustable rate through a column of solute in one limb of an U-shaped tube, a plug of cotton wool serving as support and filter. The saturated solution collects in the parallel arm and the whole is assembly is immersed in a thermostat bath except for the stoppered ends. Samples of the saturated solutions were removed and titrated with standardized carbonate-free alkali using phenolphthalein as the indicator.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements:  49 W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. 70, 1033 (1981). |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                  | Prepared by:                                                                                    |
| Temperature                                                                                                                                 | W. E. Acree, Jr.                                                                                |

### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 298.15 | 0.9508  | 0.0492    |
| 303.15 | 0.9402  | 0.0598    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

### **Source and Purity of Chemicals:**

- (1) 99%, Chemical Source not given, was dried at 333 K for several h before use.
- (2) 99+%, Chemical source not given, refluxed for 11 h over an aqueous solution 10% in potassium permanganate and 10% in sodium hydroxide. The tetrachloromethane was distilled off and dried with calcium hydroxide, stored in contact with mercury under an argon atmosphere, and then distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                            |

# **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.291$ , which corresponds to a solubility of  $c_1 = 0.512$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                               |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9407  | 0.0593  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                  | Prepared by:                                                                                          |
| T/K = 298.15                                                                                                                                | W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.549 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.

 $\underline{c_1}$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2-Dichloroethane; C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> ; [107-06-2] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9305  | 0.0695    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,1,2,2-Tetrachloroethane;<br>C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub> ; [79-34-5] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                  | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                                                | W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

The measured molar solubility was  $c_1 = 1.243 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,1,1,2,2-Pentachloroethane; C <sub>2</sub> HCl <sub>5</sub> ; [76-01-7] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.893 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Dichloroethene; C <sub>2</sub> H <sub>2</sub> Cl <sub>2</sub> ; isomer was not given | <b>Original Measurements:</b> <sup>86</sup> D. H. Wester and A. Bruins, Pharm. Weekbl. <b>51</b> , 1443 (1914). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                    |
| T/K = 288.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9218  | 0.0782    |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Excess solute and solvent were continuously shaken in a water bath at  $303\,\mathrm{K}$  for  $1\,\mathrm{h}$ . The solution was then transferred to a cellar which was maintained at a constant temperature of  $288\,\mathrm{K}$ . The solution was allowed to equilibrate in the cellar for at least two days with repeated shaking. The concentration of the dissolved solute was determined; however, the analytical method was not described.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ : Not enough information in paper to estimate an uncertainty.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Trichloroethene; C <sub>2</sub> HCl <sub>3</sub> ; [79-06-1] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

The measured molar solubility was  $c_1 = 1.116 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Trichloroethene; C <sub>2</sub> HCl <sub>3</sub> ; [79-06-1] | <b>Original Measurements:</b> <sup>86</sup> D. H. Wester and A. Bruins, Pharm. Weekbl. <b>51</b> , 1443 (1914). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                    |
| T/K = 288.15                                                                                                                                            | W. E. Acree, Jr.                                                                                                |

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9307  | 0.0693             |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were continuously shaken in a water bath at 303 K for 1 h. The solution was then transferred to a cellar which was maintained at a constant temperature of 288 K. The solution was allowed to equilibrate in the cellar for at least two days with repeated shaking. The concentration of the dissolved solute was determined; however, the analytical method was not described.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ : Not enough information in paper to estimate an uncertainty.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Tetrachloroethene; C <sub>2</sub> Cl <sub>4</sub> ; [127-18-4] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                                                             |

### **Experimental Values**

The measured molar solubility was  $c_1 = 0.660 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9138  | 0.0862  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8953  | 0.1047  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 2.7. Benzoic acid solubility data in alcohols

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.8368           | 0.1632    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                 |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8431  | 0.1569  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  68 K. K. Kundu, A. L. De, and M. N. Das, J. Chem. Soc. Dalton Trans. 1972, 386. |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                        |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8307  | 0.1693    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details are given in paper. Authors state that a saturated solution can be obtained by mild shaking for approximately 24 h. Concentrations determined by titration with standard aqueous alkali.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Source and Purity of Chemicals:

- (1) G.R. grade, Merck Chemical Company, was used as received.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  64E. A. Gomaa, Phys. Chem. Liq. <b>50</b> , 279 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9229  | 0.0771  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

# Source and Purity of Chemicals:

- (1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.
- (2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>69</sup> C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. <b>134</b> , 40 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 293$ and 333                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                    |

### **Experimental Values**

The measured solubility was reported to be 650 and 1200 g/l at 293 and 333 K, respectively. The authors did not specify whether the values were per liter of solvent or per liter of saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by adding  $0.50\pm0.1$  g amounts of the powdered solute to  $100\pm1$  ml of solvent until a saturated solution was obtained. The mass of the powder was recorded.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma-Aldrich, Poole, England, UK, no purification details were provided.
- (2) Purity not given, Sigma-Aldrich, no purification details were provided.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

Solubility:  $\pm 5$  g/l (estimated by compiler assuming solute added in increments of 0.50 g).

| Components:                                                      | Original Measurements:                               |
|------------------------------------------------------------------|------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian |
| [65-85-0]                                                        | Chem. Soc. 12, 131 (1935).                           |
| (2) Methanol; CH <sub>4</sub> O; [67-56-1]                       |                                                      |
| Variables:                                                       | Prepared by:                                         |
| T/K = 301.2                                                      | W. E. Acree, Jr.                                     |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8311  | 0.1689  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Variables: T/K = 308.15                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                               |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured molar solubility was  $c_1 = 0.2223 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm$  0.2 (estimated by compiler).  $c_1$ :  $\pm$ 4% (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  64E. A. Gomaa, Phys. Chem. Liq. 50, 279 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                            |
| T/K = 298.15                                                                                                                                   | W. E. Acree. Jr.                                                        |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8736  | 0.1264  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.
- (2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8211  | 0.1789  |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  71 A. Seidell, Trans. Am. Electrochem. Soc. 13, 319 (1908). |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                    |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8192  | 0.1808  |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a test tube and sealed with a rubber stopper. The test tube was attached to a rotating frame immersed in a constant-temperature water bath and revolved upon the axis parallel to the diameter of the test tube at the rate of approximately six revolutions per minute. The duration of the rotation was between four and seven days. At the end of the rotation period the test tube was placed in an upright position in the bath with the stopper and a very small part of the test tube protruding from the bath, until the undissolved solid settled to the bottom of the test tube. A portion of the clear supernatant solution was withdrawn into a pipette having a cotton plug attached. The cotton plug served as a coarse filter. The concentration of the solution was determined by titration with standard alkali solution. The author determined the solubility of benzoic acid in several aqueous-alcohol solvent mixtures having ethanol concentrations between 0.00% and 99.8% by mass. The value for 100% ethanol was obtained from the curve of solubility versus alcohol concentration.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>48</sup> J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data <b>55</b> , 5124 (2010). |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 278.15 | 0.872              | 0.128              |
| 283.15 | 0.861              | 0.139              |
| 293.15 | 0.634              | 0.166              |
| 303.15 | 0.804              | 0.196              |
| 313.15 | 0.766              | 0.234              |
| 323.15 | 0.724              | 0.276              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### Source and Purity of Chemicals:

- (1) 99.7%, Merck Chemical Company, Germany, used as received.
- (2) 99+%, Solveco Chemicals, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                   | W. E. Acree, Jr.                                                                          |

### **Experimental Values**

The measured solubility was reported to be 4.945 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1855$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  69 C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. <b>134</b> , 40 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 293$ and 333                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

# **Experimental Values**

The measured solubility was reported to be 750 and 1600 g/l at 293 and 333 K, respectively. The authors did not specify whether the values were per liter of solvent or per liter of saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by adding  $0.50\pm0.1$  g amounts of the powdered solute to  $100\pm1$  ml of solvent until a saturated solution was obtained. The mass of the powder was recorded.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma-Aldrich, Poole, England, UK, no purification details were provided.
- (2) Purity not given, Sigma-Aldrich, no purification details were provided.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

Solubility:  $\pm 5$  g/l (estimated by compiler assuming solute added in increments of 0.50 g).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] | Original Measurements: <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                                |                                                                                                                       |
| Variables:<br>T/K = 305.2                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

The measured solubility was reported to be 340.1 mg/ml, which corresponds to a molar solubility of  $c_1 = 2.785$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, UK, no purification details were provided.

# **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

 $c_1$ :  $\pm 0.13$ .

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                               |

### **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8118  | 0.1882      |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>74</sup> A. Pal and S. C. Lahiri, Indian J. Chem. <b>28A</b> , 276 (1989). |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| T/K | $c_1^{\ a}$ |
|-----|-------------|
| 288 | 2.2439      |
| 293 | 2.5042      |
| 298 | 2.7481      |

 $<sup>{}^{\</sup>mathrm{a}}c_{1}$ : mole fraction solubility of the solute.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

A clear solution of benzoic acid, saturated at a slightly higher temperature (about 1 K higher than that of the experimental temperature) was placed in a Campbell solubility apparatus, which was then put in the experimental thermostat. The solution was allowed to equilibrate at constant temperature for approximately 4 h. An aliquot of the solution was removed and filtered. The concentration of the solute in the saturated solution was determined by titration with standardized sodium hydroxide solution.

# **Source and Purity of Chemicals:**

(1) G.R. grade, Merck Chemical Company, Germany, was used as received. (2) Purity not given, Chemical source not given, was purified by the standard procedure. The authors did not specify what was the standard procedure nor did was any literature method referenced.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $c_1$ :  $\pm 1\%$  (relative error).

# Components: Original Measurements: (1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>; <sup>48</sup>J. Thati, F. L. Nordström, and A. C. [65-85-0] Rasmuson, J. Chem. Eng. Data 55, (2) Ethanol; C<sub>2</sub>H<sub>6</sub>O; [64-17-5] 5124 (2010). Variables: Prepared by: Temperature W. E. Acree, Jr.

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 278.15 | 0.872              | 0.128              |
| 283.15 | 0.861              | 0.139              |
| 293.15 | 0.834              | 0.166              |
| 303.15 | 0.804              | 0.196              |
| 313.15 | 0.766              | 0.234              |
| 323.15 | 0.724              | 0.276              |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### **Source and Purity of Chemicals:**

(1) 99.7%, Merck Chemical Company, Germany, was used as received.

(2) 99+%, Solveco Chemicals, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                                                          |
| T/K = 308.15                                                                                                                                   | W. E. Acree, Jr.                                                                                      |

### **Experimental Values**

The measured molar solubility was  $c_1 = 0.2566 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm$  0.2 (estimated by compiler).  $x_1$ :  $\pm$ 4% (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                       |
|------------------------------------------------------------------|----------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>47</sup> A. Beerbower, P. L. Wu, and A. |
| [65-85-0]                                                        | Martin, J. Pharm. Sci. 73, 179 (1984).       |
| (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8]       |                                              |
| Variables:                                                       | Prepared by:                                 |
| T/K = 298.15                                                     | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | x <sub>1</sub> <sup>b</sup> |
|---------|-----------------------------|
| 0.8209  | 0.1791                      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                      | Original Measurements:                          |
|------------------------------------------------------------------|-------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. |
| [65-85-0]                                                        | Sci. 82, 1018 (1993).                           |
| (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8]       |                                                 |
| Variables:                                                       | Prepared by:                                    |
| T/K = 298.15                                                     | W. E. Acree, Jr.                                |

### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.8257             | 0.1743    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

# Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>75</sup> F. A. Restaino and A. N. Martin, J. Pharm. Sci. <b>53</b> , 636 (1964). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                      | W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.813   | 0.187     |

 $x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, shaker, analytical balance, constant-temperature bath, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in screw-capped vials and allowed to equilibrate in a constant-temperature bath with shaking for 48 h. An aliquot of the equilibrated sample was removed and filtered. Concentration of the dissolved solute was determined gravimetrically and/or

spectrophotometrically. The authors did not specify which of the two methods was used for the different solutes studied.

### Source and Purity of Chemicals:

- (1) Certified Reagent grade, Fisher Scientific, USA, was recrsytallized from trichloromethane.
- (2) Certified Reagent grade, Fisher Scientific, was used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                               |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8190  | 0.1810    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O;<br>[71-23-8] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: T/K = 308.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                      |

The measured molar solubility was  $c_1 = 0.2838 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical Source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].

# **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                       |
|------------------------------------------------------------------|----------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>47</sup> A. Beerbower, P. L. Wu, and A. |
| [65-85-0]                                                        | Martin, J. Pharm. Sci. 73, 179 (1984).       |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O;                 |                                              |
| [67-63-0]                                                        |                                              |
| Variables:                                                       | Prepared by:                                 |
| T/K = 298.15                                                     | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8063  | 0.1937    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                                | Original Measurements:                                                                               |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] | <sup>55</sup> B. Long, J. Li, R. Zhang, and L. Wan,<br>Fluid Phase Equilib. <b>297</b> , 113 (2010). |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0]                 |                                                                                                      |
| Variables:                                                                 | Prepared by:                                                                                         |
| Temperature                                                                | W. E. Acree, Jr.                                                                                     |

### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.06 | 0.8714             | 0.1286    |
| 282.96 | 0.8571             | 0.1429    |
| 288.15 | 0.8405             | 0.1595    |
| 293.11 | 0.8262             | 0.1738    |
| 297.79 | 0.8078             | 0.1922    |
| 303.45 | 0.7854             | 0.2146    |
| 308.09 | 0.7679             | 0.2321    |
| 312.80 | 0.7475             | 0.2525    |
| 317.85 | 0.7220             | 0.2780    |
| 322.78 | 0.7041             | 0.2959    |
| 328.20 | 0.6749             | 0.3251    |
| 333.20 | 0.6535             | 0.3465    |
| 338.15 | 0.6265             | 0.3735    |
| 343.10 | 0.5893             | 0.4107    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Double layer jacketed glass equilibrium cell, circulating water bath, analytical balance, and drying oven.

Excess solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was allowed to equilibrate at constant temperature with stirring for 3 h. The stirring was discontinued and the solution was allowed to stand for 1 h to allow the undissolved solid to settle to the bottom portion of the equilibrium vessel. An aliquot of the clear solution was transferred to a preweighed vial by a warm syringe. The vial was tightly closed and reweighed to determine the mass of the sample transferred. The vial was then put into a drying oven with the cap half-closed to permit complete evaporation of the solvent. The vial was covered with a piece of stainless steel filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was removed from the drying oven and placed in a desiccator with silica gel for another 2 h to reach ambient room temperature. The vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### Source and Purity of Chemicals:

(1) 99.5%, Analytical grade, Shantou Xilong Chemical Company, China, used as received.

(2) 99.5%, Analytical grade, Beijing Chemical Reagent Company, China, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                   |
| T/K = 308.15                                                                                                                                      | W F Acree Ir                                                                                   |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.2873 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical Source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].
- (2) Purity not given, Chemical Source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O;<br>[71-36-3] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: <i>T</i> /K = 298.15                                                                                                                               | Prepared by:<br>W. E. Acree. Jr.                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7984  | 0.2016  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O;<br>[71-36-3] | <b>Original Measurements:</b> <sup>75</sup> F. A. Restaino and A. N. Martin, J. Pharm. Sci. <b>53</b> , 636 (1964). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                                  | W. E. Acree, Jr.                                                                                                    |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.797   | 0.203     |

 $\overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# Method/Apparatus/Procedure:

Constant-temperature bath, shaker, analytical balance, constant-temperature bath, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in screw-capped vials and allowed to equilibrate in a constant-temperature bath with shaking for 48 h. An aliquot of the equilibrated sample was removed and filtered. Concentration of the dissolved solute was determined gravimetrically and/or

spectrophotometrically. The authors did not specify which of the two methods was used for the different solutes studied.

### Source and Purity of Chemicals:

- (1) Certified Reagent grade, Fisher Scientific, USA, was recrsytallized from trichloromethane.
- (2) Certified Reagent grade, Fisher Scientific, was used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O;<br>[71-36-3] | <b>Original Measurements:</b> <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                                 |
| T/K = 305.2                                                                                                                                                   | W. E. Acree, Jr.                                                                                                             |

### **Experimental Values**

The measured solubility was reported to be 239.7 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.963$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, UK, no purification details were provided.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm$  0.097.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  50 P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                         |
| T/K = 301.2                                                                                                                                       | W. E. Acree, Jr.                                                                                     |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8032  | 0.1968    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                          |
| T/K = 308.15                                                                                                                                      | W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.2529 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  91 J. Bradil, J. Malek, and V. Bazant, Chem. Prumysl <b>20</b> , 117 (1970). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                         |
| Temperature                                                                                                                                       | W. E. Acree, Jr.                                                                                     |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 273.2 | 0.9355  | 0.0645    |
| 290.2 | 0.8915  | 0.1085    |
| 298.2 | 0.8596  | 0.1404    |
| 323.6 | 0.7545  | 0.2455    |
| 333.9 | 0.6824  | 0.3176    |
| 348.4 | 0.6147  | 0.3853    |
| 363.2 | 0.3878  | 0.6122    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent and were placed in a flask and equilibrated at constant temperature with stirring. After 90 min the stirring was discontinued, and the solution was allowed to stand for 30 min to allow the undissolved solid to settle to the bottom of the flask. An aliquot of the saturated solution was removed by pipette fitted with a filtering device. The mass of the aliquot was determined by weighing. The concentration of the dissolved solute was determined by titration using sodium hydroxide, with phenolphthalein being the endpoint indicator.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Argon, Lodz, Poland, no purification details were provided.
- (2) Purity not given, Spolana, Neratovice, Czechoslovakia, was distilled before use

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                              |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                          |

### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.8476    | 0.1524      |

 $^{4}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | <b>Original Measurements:</b> <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                    |

# **Experimental Values**

The measured solubility was reported to be 2.50 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### **Source and Purity of Chemicals:**

- (1) High Purity, National Bureau of Standards, USA, was dried in vacuo at 383 K before use.
- (2) White Label, Eastman Kodak Chemical Company, Rochester, USA, shaken with calcium hydride and distilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data were reported in terms of grams of dissolved solute per 100 g of solution. Mole fraction solubilities calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 2-Methyl-2-propanol;<br>C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Variables: T/K = 308.15                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                               |

The measured molar solubility was  $c_1 = 0.3092 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].

# **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                       |
|------------------------------------------------------------------|----------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>47</sup> A. Beerbower, P. L. Wu, and A. |
| [65-85-0]                                                        | Martin, J. Pharm. Sci. 73, 179 (1984)        |
| (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O;                |                                              |
| [71-41-0]                                                        |                                              |
| Variables:                                                       | Prepared by:                                 |
| T/K = 298.15                                                     | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8161  | 0.1839    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0]<br>(2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | <sup>75</sup> F. A. Restaino and A. N. Martin, J. Pharm. Sci. <b>53</b> , 636 (1964). |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                      |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.774   | 0.226   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, shaker, analytical balance, constant-temperature bath, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in screw-capped vials and allowed to equilibrate in a constant-temperature bath with shaking for 48 h. An aliquot of the equilibrated sample was removed and filtered. Concentration of the dissolved solute was determined gravimetrically and/or

spectrophotometrically. The authors did not specify which of the two methods was used for the different solutes studied.

### Source and Purity of Chemicals:

- (1) Certified Reagent grade, Fisher Scientific, USA, was recrsytallized from trichloromethane.
- (2) Certified Reagent grade, Fisher Scientific, was used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                          |
| T/K = 308.15                                                                                                                                       | W. E. Acree, Jr.                                                                                      |

The measured molar solubility was  $c_1 = 0.2919 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

# **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  47 A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                         |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8095  | 0.1905    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred

to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | <b>Original Measurements:</b> <sup>75</sup> F. A. Restaino and A. N. Martin, J. Pharm. Sci. <b>53</b> , 636 (1964). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                       | W. E. Acree, Jr.                                                                                                    |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.799   | 0.201     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, shaker, analytical balance, constant-temperature bath, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in screw-capped vials and allowed to equilibrate in a constant-temperature bath with shaking for 48 h. An aliquot of the equilibrated sample was removed and filtered. Concentration of the dissolved solute was determined gravimetrically and/or

spectrophotometrically. The authors did not specify which of the two methods was used for the different solutes studied.

# Source and Purity of Chemicals:

- (1) Certified Reagent grade, Fisher Scientific, USA, was recrsytallized from trichloromethane.
- (2) Purity not given, Eastman Organic Chemicals, USA, was redistilled before use.

# **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                                      |  |
|------------------------------------------------------------------|-------------------------------------------------------------|--|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , |  |
| [65-85-0]                                                        | 352 (1998).                                                 |  |
| (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O;                 |                                                             |  |
| [111-27-3]                                                       |                                                             |  |
| Variables:                                                       | Prepared by:                                                |  |
| T/K = 308.15                                                     | W. E. Acree, Jr.                                            |  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured molar solubility was  $c_1 = 0.2301 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                          |
|------------------------------------------------------------------|-------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. |
| [65-85-0]                                                        | Sci. 82, 1018 (1993).                           |
| (2) 3-Methyl-3-pentanol;                                         |                                                 |
| C <sub>6</sub> H <sub>14</sub> O; [77-74-3]                      |                                                 |
| Variables:                                                       | Prepared by:                                    |
| T/K = 298.15                                                     | W. E. Acree, Jr.                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7284  | 0.2716  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements: <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8054  | 0.1946  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and analytical balance. Very little experimental details were given in the paper. The solubility of the solute was by a weighing method.

### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Sigma Chemical Company, USA, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 3.0\%$  (relative error).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> 352 (1998). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                        |
| T/K = 308.15                                                                                                                                               | W. E. Acree, Jr.                                                                                    |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.2542 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                          | Prepared by:<br>W. E. Acree. Jr.                                                                                          |

### **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.8013    | 0.1987    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | <b>Original Measurements:</b> <sup>75</sup> F. A. Restaino and A. N. Martin, J. Pharm. Sci. <b>53</b> , 636 (1964). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                       | W. E. Acree, Jr.                                                                                                    |

### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.871   | 0.129              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, shaker, analytical balance, constant-temperature bath, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in screw-capped vials and allowed to equilibrate in a constant-temperature bath with shaking for 48 h. An aliquot of the equilibrated sample was removed and filtered. Concentration of the dissolved solute was determined gravimetrically and/or

spectrophotometrically. The authors did not specify which of the two methods was used for the different solutes studied.

### Source and Purity of Chemicals:

- (1) Certified Reagent grade, Fisher Scientific, USA, was recrsytallized from trichloromethane.
- (2) Purity not given, Eastman Organic Chemicals, USA, was redistilled before use

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $\underline{x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                             |
|------------------------------------------------------------------|----------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>77</sup> J. Qingzhu, M. Peisheng, Y. Shouzhi, |
| [65-85-0]                                                        | W. Qiang, W. Chang, and L. Guiju, J.               |
| (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5]      | Chem. Eng. Data 53, 1278 (2008).                   |
| Variables:                                                       | Prepared by:                                       |
| Temperature                                                      | W. E. Acree, Jr.                                   |

### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^b$ |
|--------|---------|---------|
| 295.30 | 0.8335  | 0.1665  |
| 297.65 | 0.8199  | 0.1801  |
| 300.15 | 0.8078  | 0.1922  |
| 301.85 | 0.7967  | 0.2033  |
| 304.25 | 0.7886  | 0.2114  |
| 305.25 | 0.7806  | 0.2194  |
| 307.75 | 0.7726  | 0.2274  |
| 309.35 | 0.7650  | 0.2350  |
| 312.30 | 0.7501  | 0.2499  |
| 313.95 | 0.7345  | 0.2655  |
| 317.15 | 0.7207  | 0.2793  |
| 320.85 | 0.7103  | 0.2897  |
| 322.15 | 0.7000  | 0.3000  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Circulating water bath, analytical balance, laser monitoring system. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate  $0.5\ K/20\ min\ (0.2\ K/20\ min\ or$  slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

# **Source and Purity of Chemicals:**

- (1) <99%, Chemical source not specified, used as received.
- (2) <99%, Chemical source not specified, used as received.

### Estimated Error: Temperature: ±0.05 K.

 $x_1$ :  $\pm 0.0005$ .

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 305.2                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

### **Experimental Values**

The measured solubility was reported to be 152.6 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.250$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, UK, no purification details were provided.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm$  0.078.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 308.15$                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                      |

### **Experimental Values**

The measured molar solubility was  $c_1 = 0.2674 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1-Nonanol; C <sub>9</sub> H <sub>20</sub> O;<br>[143-08-8] | <b>Original Measurements:</b> <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 308.15$                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                      |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.2439 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, *A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis* (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | <b>Original Measurements:</b> <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 305.2                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

### **Experimental Values**

The measured solubility was reported to be 123.8 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.014 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, UK, no purification details were provided.

# **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm$  0.18.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements: <sup>70</sup> J. M. Jessy, J. Indian Chem. Soc. <b>75</b> , 352 (1998). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Variables: T/K = 308.15                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                               |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.2420 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. A convenient amount of benzoic acid in the form of fine powder was placed in a conical flask. Alcohol was added such that the volume was approximately half of that required to make the saturated solution. The flask was tightly stoppered and thermostated at 308 K for 15 min. Then, keeping the flask still partially immersed in the temperature bath, more alcohol was added dropwise with vigorous shaking by rotary motion until the last speck of solid dissolved. Repeated trials showed that the endpoint was quite reproducible. The experiment was performed a minimum of three times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].
- (2) Purity not given, Chemical source not given, purification method was referenced to a published method [A. I. Vogel, A Text Book of Practical Organic Chemistry Including Qualitative Organic Analysis (Longmans, London, 1968)].

### **Estimated Error:**

Temperature:  $\pm 0.2$  (estimated by compiler).  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Benzenemethanol; C <sub>7</sub> H <sub>8</sub> O; [100-51-6] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8559  | 0.1441    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,2-Ethanediol; C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[107-21-1] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9116             | 0.0884    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2-Ethanediol; C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> ; [107-21-1] | Original Measurements:  78 A. Yurquina, M. E. Manzur, P. Brito, R. Manzo, and M. A. A. Molina, J. Mol. Liq. 108, 119 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                             |

# **Experimental Values**

The measured solubility was reported to be  $1.501 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and an ultraviolet/visible spectrophotometer. Very little experimental details were provided. Authors state that after equilibrium is obtained, the solution was filtered through Millipore filters having a porous size of 1  $\mu m$ . Concentrations of the saturated solution were determined from spectroscopic measurements at an analysis wavelength of 227 nm.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided
- (2) Purity not given, Merck Chemical Company, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm$  2% (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | <b>Original Measurements:</b> <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 305.2                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

### **Experimental Values**

The measured solubility was reported to be 240.8 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.972$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, UK, no purification details were provided.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.077$ .

| Components:                                                                   | Original Measurements:                                                                      |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0]    | <sup>88</sup> B. J. Aungst, J. A. Blake, and A. Hussain, Pharm. Res. <b>7</b> , 712 (1990). |
| (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | Tussam, Tharm. Res. 1, 712 (1996).                                                          |
| Variables: T/K = Not given                                                    | Prepared by:<br>W. E. Acree, Jr.                                                            |

# **Experimental Values**

The measured solubility was reported to be 250 mg/ml, which corresponds to a molar solubility of  $c_1 = 2.047 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

### Method/Apparatus/Procedure:

The solubility measurements were performed as part of a study involving drug solubility, partitioning and skin permeation. There were very little experimental details given in regards to the solubility measurement. The authors simply state "Drug solubilities in the vehicles were determined after filtration and dilution or extraction." For the skin permeation measurements the reservoir was maintained at 310 K. The solubility measurement may have been performed at 310 K as well.

### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific, USA, no purification details were provided.
- (2) U.S.P. grade, Fisher Scientific, USA, no purification details were provided.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

 $c_1$ : Insufficient experimental details to estimate.

| Components:<br>(1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[65-85-0]<br>(2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[57-55-6] | Original Measurements: <sup>61</sup> E. R. Cooper, J. Controlled Release 1, 153 (1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Variables: T/K = 295                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                        |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8652  | 0.1348  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

### **Source and Purity of Chemicals:**

- (1) Reagent grade, Matheson, Coleman, and Bell, Cincinnati, OH, USA, no purification details provided.
- (2) Reagent grade, J.T. Baker Chemical Company, Phillipsburg, NJ, USA, no purification details provided.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ : No information given.

| Components:                                                         | Original Measurements:                          |
|---------------------------------------------------------------------|-------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;    | <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. |
| [65-85-0]                                                           | Sci. 82, 1018 (1993).                           |
| (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; |                                                 |
| [57-55-6]                                                           |                                                 |
| Variables:                                                          | Prepared by:                                    |
| T/K = 298.15                                                        | W. E. Acree, Jr.                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8464  | 0.1536      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | Original Measurements:  68 K. K. Kundu, A. L. De, and M. N. Das, J. Chem. Soc. Dalton Trans. 1972, 386. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                        |

# **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.8300    | 0.1700    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details are given in paper. Authors state that a saturated solution can be obtained by mild shaking for approximately 24 h. Concentrations determined by titration with standard aqueous alkali.

### **Source and Purity of Chemicals:**

- (1) G.R. grade, Merck Chemical Company, was used as received.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,3-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [504-63-2] | Original Measurements: <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                         |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                     |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8826  | 0.1174  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2,3-Propanetriol (Glycerol); C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [56-81-5] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                       |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9836  | 0.0164             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1,2,3-Propanetriol (Glycerol); C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [56-81-5] | Original Measurements:  87 M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                             |
| T/K = 305.2                                                                                                                                                                        | W. E. Acree, Jr.                                                                                         |

### **Experimental Values**

The measured solubility was reported to be 22.60 mg/ml, which corresponds to a molar solubility of  $c_1 = 0.185$  mol dm<sup>-3</sup>.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

# Source and Purity of Chemicals:

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, ICN Biochemicals, no purification details were provided.

# **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.0041$ .

# 2.8. Benzoic acid solubility data in alkoxyalcohols

| Components:                                                                        | Original Measurements:                                                                  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0]         | <sup>62</sup> S. H. Ghosh and D. K. Hazra, J. Chem. Soc., Perkin Trans. 2 <b>1989</b> , |
| (2) 2-Methoxyethanol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[109-86-4] | 1021.                                                                                   |
| Variables:<br>T/K = 298.15                                                         | Prepared by:<br>W. E. Acree, Jr.                                                        |

# Experimental Values

The measured solubility was reported to be  $c_1 = 3.0535 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Mechanical shaker and a constant-temperature thermostat.

Excess solute and solvent were placed in a Campbell solubility apparatus and allowed to equilibrate at 298 K for 24 h. An aliquot of the saturated solution was then removed and filtered. The concentration of the dissolved solute was determined by titration with standard caustic soda using phenolphthalein as indicator. Solubility was also determined spectrophotometrically from absorbance measurements made at an analysis wavelength of 272 nm.

### **Source and Purity of Chemicals:**

- (1) G.R.E, Merck Chemical Company, was recrystallized from alcohol and then dried.
- (2) Purity not given, Merck Chemical Company, was distilled twice before use.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-80-5] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                               |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                                           |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7164  | 0.2836  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 2.9. Benzoic acid solubility data in ketones

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8143  | 0.1857    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements: <sup>69</sup> C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. <b>134</b> , 40 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 293                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                    |

# **Experimental Values**

The measured solubility was reported to be 550 g/l. The authors did not specify whether the values were per liter of solvent or per liter of saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by adding (0.50  $\pm$  0.1) g amounts of the powdered solute to (100  $\pm$  1) ml of solvent until a saturated solution was obtained. The mass of the powder was recorded.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma-Aldrich, Poole, England, UK, no purification details were provided.
- (2) Purity not given, Sigma-Aldrich, no purification details were provided.

### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

Solubility:  $\pm 5$  g/l (estimated by compiler assuming solute added in increments of 0.50 g).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> 55B. Long, J. Li, R. Zhang, and L. Wan, Fluid Phase Equilib. <b>297</b> , 113 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 277.59 | 0.8733  | 0.1267    |
| 282.21 | 0.8570  | 0.1430    |
| 287.03 | 0.8424  | 0.1576    |
| 287.19 | 0.8649  | 0.1571    |
| 293.20 | 0.8247  | 0.1753    |
| 298.15 | 0.8075  | 0.1925    |
| 302.95 | 0.7889  | 0.2111    |
| 307.75 | 0.7688  | 0.2312    |
| 313.05 | 0.7469  | 0.2531    |
| 317.63 | 0.7235  | 0.2765    |
| 322.72 | 0.6967  | 0.3033    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Double layer jacketed glass equilibrium cell, circulating water bath, analytical balance, and drying oven.

Excess solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was allowed to equilibrate at constant temperature with stirring for 3 h. The stirring was discontinued and the solution was allowed to stand for 1 h to allow the undissolved solid to settle to the bottom portion of the equilibrium vessel. An aliquot of the clear solution was transferred to a preweighed vial by a warm syringe. The vial was tightly closed and reweighed to determine the mass of the sample transferred. The vial was then put into a drying oven with the cap half-closed to permit complete evaporation of the solvent. The vial was covered with a piece of stainless steel filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was removed from the drying oven and placed in a desiccator with silica gel for another 2 h to reach ambient room temperature. The vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### Source and Purity of Chemicals:

- (1) 99.5%, Analytical grade, Shantou Xilong Chemical Company, China, used as received.
- (2) 99.5%, Analytical grade, Beijing Chemical Reagent Company, China, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> <sup>57</sup> J. W. Marden and M. V. Dover, J. Am. Chem. Soc. <b>38</b> , 1235 (1916). |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                     |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.791   | 0.209   |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                             | W. E. Acree, Jr.                                                                                                      |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

| $x_2^{\mathrm{a}}$ | $x_1^{\ b}$ |
|--------------------|-------------|
| 0.7859             | 0.2141      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O; [98-86-2] | Original Measurements: <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8122  | 0.1878    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 2.10. Benzoic acid solubility data in miscellaneous organic solvents

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Nitrobenzene; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; | Original Measurements:  47 A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| [98-95-3]<br><b>Variables:</b><br><i>T</i> /K = 298.15                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                         |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9103  | 0.0897  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1 µm pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Nitrobenzene; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [98-95-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                      |
|                                                                                                                                                                    |                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8919  | 0.1081    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                       |
|------------------------------------------------------------------|----------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>47</sup> A. Beerbower, P. L. Wu, and A. |
| [65-85-0]                                                        | Martin, J. Pharm. Sci. 73, 179 (1984)        |
| (2) Pyridine; C <sub>5</sub> H <sub>5</sub> N;                   |                                              |
| [110-86-1]                                                       |                                              |
| Variables:                                                       | Prepared by:                                 |
| T/K = 298.15                                                     | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.4652  | 0.5348  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8325  | 0.1675  |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | <b>Original Measurements:</b> <sup>55</sup> B. Long, J. Li, R. Zhang, and L. Wan, Fluid Phase Equilib. <b>297</b> , 113 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

# **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------|
| 0.8715    | 0.1285                                                                                                     |
| 0.8519    | 0.1481                                                                                                     |
| 0.8345    | 0.1655                                                                                                     |
| 0.8345    | 0.1877                                                                                                     |
| 0.7893    | 0.2107                                                                                                     |
| 0.7633    | 0.2367                                                                                                     |
| 0.7338    | 0.2662                                                                                                     |
| 0.7033    | 0.2967                                                                                                     |
| 0.6719    | 0.3281                                                                                                     |
| 0.6464    | 0.3536                                                                                                     |
| 0.5992    | 0.4008                                                                                                     |
| 0.5750    | 0.4250                                                                                                     |
|           | 0.8715<br>0.8519<br>0.8345<br>0.8345<br>0.7893<br>0.7633<br>0.7338<br>0.7033<br>0.6719<br>0.6464<br>0.5992 |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Method/Apparatus/Procedure:

Double layer jacketed glass equilibrium cell, circulating water bath, analytical balance, and drying oven.

Excess solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was allowed to equilibrate at constant temperature with stirring for 3 h. The stirring was discontinued and the solution was allowed to stand for 1 h to allow the undissolved solid to settle to the bottom portion of the equilibrium vessel. An aliquot of the clear solution was transferred to a preweighed vial by a warm syringe. The vial was tightly closed and reweighed to determine the mass of the sample transferred. The vial was then put into a drying oven with the cap half-closed to permit complete evaporation of the solvent. The vial was covered with a piece of stainless steel filter cloth to prevent dust contamination. After the solvent had evaporated the vial was removed from the drying oven and placed in a desiccator with silica gel for another 2 h to reach ambient room temperature. The vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### **Source and Purity of Chemicals:**

(1) 99.5%, Analytical grade, Shantou Xilong Chemical Company, China, was used as received.

(2) 99.5%, Analytical grade, Beijing Chemical Reagent Company, China, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements: <sup>79</sup> Q. Wang, L. Hou, Y. Cheng, and X. Li, J. Chem. Eng. Data <b>52</b> , 936 (2007). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 298.3 | 0.8903             | 0.1097      |
| 308.4 | 0.8689             | 0.1311      |
| 318.4 | 0.8424             | 0.1576      |
| 328.2 | 0.8199             | 0.1801      |
| 338.0 | 0.7928             | 0.2072      |
| 348.3 | 0.7753             | 0.2247      |
| 358.6 | 0.7446             | 0.2554      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and analytical balance.

Solubilities were determined by a static method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h. An aliquot of the clear solution was removed by syringe and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was evaporated in *in vacuo* at 323 K for more than 3 h. Once the solvent had evaporated, the vial with solid residue was weighed. The

solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### **Source and Purity of Chemicals:**

- (1) 99%, Shanghai Fine Chemical Reagent Company, China, no purification details provided.
- (2) Analytical Reagent grade, Hangzhou Chemical Reagent Company, China, no purification details provided.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                       | Original Measurements:                         |
|-------------------------------------------------------------------|------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;  | <sup>80</sup> P. Ma and Q. Xia, Chin. J. Chem. |
| [65-85-0]                                                         | Eng. 9, 39 (2001).                             |
| (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; |                                                |
| [64-19-7]                                                         |                                                |
| Variables:                                                        | Prepared by:                                   |
| Temperature                                                       | W. E. Acree, Jr.                               |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 291.4 | 0.8709             | 0.1291    |
| 296.1 | 0.8559             | 0.1441    |
| 299.0 | 0.8456             | 0.1544    |
| 302.1 | 0.8336             | 0.1664    |
| 305.3 | 0.8252             | 0.1748    |
| 306.3 | 0.8191             | 0.1809    |
| 308.1 | 0.8130             | 0.1870    |
| 310.5 | 0.8005             | 0.1995    |
| 313.5 | 0.7874             | 0.2126    |
| 316.2 | 0.7753             | 0.2247    |
| 318.2 | 0.7616             | 0.2384    |
| 320.7 | 0.7494             | 0.2506    |
| 322.8 | 0.7359             | 0.2641    |
| 325.5 | 0.7226             | 0.2774    |
| 328.2 | 0.7061             | 0.2939    |
| 330.3 | 0.6923             | 0.3077    |
| 332.1 | 0.6806             | 0.3194    |
| 333.9 | 0.6684             | 0.3316    |
|       |                    |           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K/10 min. The disappearance of the solid solute was detected by a laser monitoring system.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility data were given in units of grams per 100 g of solvent. Mole fraction solubilities were calculated by compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Propanoic acid; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-09-4] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8113  | 0.1887    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0]<br>(2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984) |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.4898  | 0.5102    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements:  81 A. G. Zakharov, M. I. Voronova, D. V. Batov, and K. V. Smirnova, Russ. J. Phys. Chem. 85, 408 (2011). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                     |
| T/K = 298                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                 |

### **Experimental Values**

The authors reported the solubility data graphically. The compiler estimated a solubility of 14 molal (14 mol/kg of solvent) from the graph, which would correspond to a mole fraction solubility of  $x_1 = 0.522$ .

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. The authors stated that the solubility was determined at 298 K gravimetrically, and referenced a paper by Shalmashi and Eliassi [J. Chem. Eng. Data 53, 199 (2008)].

### **Source and Purity of Chemicals:**

- (1) 99%, Sigma Aldrich Chemical Company, no purification details were provided.
- (2) 99.5%, Lab-Scan, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 5$  to 6% (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements: <sup>64</sup> E. A. Gomaa, Phys. Chem. Liq. <b>50</b> , 279 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                               |
| T/K = 298.15                                                                                                                                               | W. F. Acree Ir                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7165  | 0.2835  |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.
- (2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 Components:
 Original Measurements:

 (1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>;
 <sup>47</sup>A. Beerbower, P. L. Wu, and A.

 [65-85-0]
 Martin, J. Pharm. Sci. 73, 179 (1984).

 (2) Formamide; CH<sub>3</sub>NO; [75-12-7]

 Variables:
 Prepared by:

 T/K = 298.15
 W. E. Acree, Jr.

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8475  | 0.1525    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) <i>N</i> -Methylformamide; C <sub>2</sub> H <sub>5</sub> NO; [123-39-7] | <b>Original Measurements:</b> <sup>47</sup> A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                              |
| T/K = 298.15                                                                                                                                                       | W. E. Acree, Jr.                                                                                                          |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.6572  | 0.3428  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) <i>N,N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  47 A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. <b>73</b> , 179 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.5091  | 0.4909    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements: <sup>64</sup> E. A. Gomaa, Phys. Chem. Liq. <b>50</b> , 279 (2012). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                           |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7772  | 0.2228    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.
- (2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  80 P. Ma and Q. Xia, Chin. J. Chem. Eng. 9, 39 (2001). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                   |
| Temperature                                                                                                                                                                    | W. E. Acree, Jr.                                                               |

### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{\mathbf{b}}$ |
|-------|-----------|--------------------|
| 298.8 | 0.5276    | 0.4724             |
| 300.7 | 0.5227    | 0.4773             |
| 301.1 | 0.5224    | 0.4776             |
| 302.7 | 0.5190    | 0.4810             |
| 304.6 | 0.5161    | 0.4839             |
| 306.3 | 0.5119    | 0.4881             |
| 308.2 | 0.5088    | 0.4912             |
| 310.1 | 0.5043    | 0.4957             |
| 312.2 | 0.4996    | 0.5004             |
| 316.5 | 0.4896    | 0.5104             |
| 319.4 | 0.4824    | 0.5176             |
| 321.8 | 0.4762    | 0.5238             |
| 323.4 | 0.4719    | 0.5281             |
| 325.7 | 0.4662    | 0.5338             |
| 329.1 | 0.4572    | 0.5428             |
| 331.6 | 0.4480    | 0.5520             |
| 334.3 | 0.4416    | 0.5584             |
| 336.4 | 0.4358    | 0.5642             |
| 340.1 | 0.4226    | 0.5774             |
| 343.1 | 0.4098    | 0.5902             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K per 10 min. The disappearance of the solid solute was detected by a laser monitoring system.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) <i>N,N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  82 L. Dian-Qing, L. Jiang-Chu, L. Da-Zhuang, and W. Fu-An, Fluid Phase Equilib. <b>200</b> , 69 (2002). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 294.75 | 0.5357  | 0.4643    |
| 298.75 | 0.5273  | 0.4727    |
| 301.05 | 0.5224  | 0.4776    |
| 302.15 | 0.5186  | 0.4814    |
| 306.35 | 0.5119  | 0.4881    |
| 310.05 | 0.5043  | 0.4957    |
| 312.15 | 0.4996  | 0.5004    |
| 316.55 | 0.4896  | 0.5104    |
| 319.35 | 0.4824  | 0.5176    |
| 323.35 | 0.4719  | 0.5281    |
| 325.65 | 0.4662  | 0.5338    |
| 329.05 | 0.4572  | 0.5428    |
| 331.85 | 0.4480  | 0.5520    |
| 336.45 | 0.4336  | 0.5664    |
| 340.05 | 0.4226  | 0.5774    |
| 343.35 | 0.4098  | 0.5902    |
| 346.05 | 0.3985  | 0.6015    |
| 348.75 | 0.3865  | 0.6135    |
| 351.25 | 0.3757  | 0.6243    |
| 355.55 | 0.3528  | 0.6472    |
| 358.05 | 0.3395  | 0.6605    |
| 362.85 | 0.3129  | 0.6871    |
| 366.85 | 0.2874  | 0.7126    |
| 369.65 | 0.2665  | 0.7335    |
|        |         |           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

# **Source and Purity of Chemicals:**

- (1) Analytical Reagent, Shanghai Chemical Reagent Company, China, used as received.
- (2) Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

| epared by:<br>E. Acree, Jr. |
|-----------------------------|
|                             |

### **Experimental Values**

The measured solubility was reported to be 5.35 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### **Source and Purity of Chemicals:**

- (1) High purity, National Bureau of Standards, USA, no purification details given.
- (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:                                                      | Original Measurements:                       |
|------------------------------------------------------------------|----------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>47</sup> A. Beerbower, P. L. Wu, and A. |
| [65-85-0]                                                        | Martin, J. Pharm. Sci. 73, 179 (1984).       |
| (2) N,N-Dimethylacetamide;                                       |                                              |
| C <sub>4</sub> H <sub>9</sub> NO; [127-19-5]                     |                                              |
| Variables:                                                       | Prepared by:                                 |
| T/K = 298.15                                                     | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.4755  | 0.5245    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9461  | 0.0539    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and analytical balance. Very little experimental details were given in the paper. The solubility of the solute was by a weighing method.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) HPLC grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 3.0\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  64E. A. Gomaa, Phys. Chem. Liq. <b>50</b> , 279 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                    |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9577  | 0.0423  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.
- (2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | <b>Original Measurements:</b> <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. <b>77</b> , 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                           |
| T/K = 298.15 K                                                                                                                                              | W. E. Acree, Jr.                                                                                                       |

#### **Experimental Values**

The measured solubility was reported to be  $0.85~\text{mol}~\text{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- $(1)\,\mathrm{High}\,\mathrm{Purity},$  National Bureau of Standards, USA, was dried at 383 K before use.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  81 A. G. Zakharov, M. I. Voronova, D. V. Batov, and K. V. Smirnova, Russ. J. Phys. Chem. <b>85</b> , 408 (2011). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

The authors reported the solubility data graphically. The compiler estimated a solubility of 1 molal (1 mol/kg of solvent) from the graph, which would correspond to a mole fraction solubility of  $x_1 = 0.0394$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. The authors stated that the solubility was determined at 298 K gravimetrically, and referenced a paper by Shalmashi and Eliassi [J. Chem. Eng. Data 53, 199 (2008)].

#### **Source and Purity of Chemicals:**

- (1) 99%, Sigma Aldrich Chemical Company, no purification details were provided.
- (2) 99.9%, Lab-Scan, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).

 $x_1$ :  $\pm$  5 to 6% (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Hexamethylphosphortriamide; C <sub>6</sub> H <sub>18</sub> N <sub>3</sub> OP; [680-31-9] | Original Measurements:  64 E. A. Gomaa, Phys. Chem. Liq. <b>50</b> , 279 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9857  | 0.0143  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature shaker bath and analytical balance.

Excess solute and solvent were placed in closed test tubes and allowed to equilibrate in a constant-temperature shaker bath for several days. The solubility was determined gravimetrically by transferring 1 ml of the saturated solution to an aluminum disk. The solvent was removed by heating with an infrared lamp. The solubility was calculated from the mass of the solid residue and amount of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

(2) Purity not given, Merck Chemicals, Germany, no information provided concerning purification.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | Original Measurements:  84DQ. Li, DZ. Liu, and FA. Wang, |
|------------------------------------------------------------------------------|----------------------------------------------------------|
| [65-85-0]                                                                    | J. Chem. Eng. Data <b>46</b> , 172 (2001).               |
| (2) <i>N</i> -Methyl-2-pyrrolidone;                                          |                                                          |
| C <sub>5</sub> H <sub>9</sub> NO; [872-50-4]                                 |                                                          |
| Variables:                                                                   | Prepared by:                                             |
| Temperature                                                                  | W. E. Acree, Jr.                                         |

#### **Experimental Values**

| T/K    | $x_2^{a}$ | $x_1^{b}$ |
|--------|-----------|-----------|
| 296.35 | 0.4838    | 0.5162    |
| 301.15 | 0.4765    | 0.5235    |
| 305.05 | 0.4698    | 0.5302    |
| 307.95 | 0.4647    | 0.5353    |
| 311.05 | 0.4591    | 0.5409    |
| 314.25 | 0.4530    | 0.5470    |
| 318.35 | 0.4465    | 0.5535    |
| 321.95 | 0.4393    | 0.5607    |
| 327.35 | 0.4256    | 0.5744    |
| 333.55 | 0.4087    | 0.5913    |
| 338.85 | 0.3918    | 0.6082    |
| 343.25 | 0.3772    | 0.6228    |
| 347.75 | 0.3605    | 0.6395    |
| 351.15 | 0.3465    | 0.6535    |
| 355.05 | 0.3309    | 0.6691    |
| 359.85 | 0.3067    | 0.6933    |
| 364.55 | 0.2819    | 0.7181    |
| 369.05 | 0.2553    | 0.7447    |
| 371.35 | 0.2408    | 0.7592    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### Source and Purity of Chemicals:

(1) 99.5%, Analytical Reagent, Shanghai Chemical Reagent Company, China, used as received.

(2) 99.0%, Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute, computed by the compiler. The original solubility data were given in units of moles per kilogram of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Ethyl 2-hydroxypropanoate; C <sub>5</sub> H <sub>10</sub> O <sub>3</sub> ; [97-64-3] | Original Measurements:  87 M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                             |
| T/K = 305.2                                                                                                                                                                     | W. E. Acree, Jr.                                                                                         |

The measured solubility was reported to be 164.70 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.349$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Purac Biochem, Gorinchem, Netherlands, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.20$ .

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 1-Methylethyl 2- hydroxypropanoate; C <sub>6</sub> H <sub>12</sub> O <sub>3</sub> ; [617-64-3] | Original Measurements:  87 M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. 336, 108 (2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                     |
| T/K = 305.2                                                                                                                                                                               | W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

The measured solubility was reported to be 239.70 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.963$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.

(2) Purity not given, Purac Biochem, Gorinchem, Netherlands, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.095$ .

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;                              | Original Measurements:  87M. Dias, J. Hadgraft, and M. E. Lane, |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| [65-85-0]<br>(2) Butyl 2-hydroxypropanoate;<br>C <sub>7</sub> H <sub>14</sub> O <sub>3</sub> ; [138-22-7] | Int. J. Pharm. <b>336</b> , 108 (2007).                         |
| Variables:<br>T/K = 305.2                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                |

#### **Experimental Values**

The measured solubility was reported to be 135.80 mg/ml, which corresponds to a molar solubility of  $c_1=1.112~\rm mol~dm^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Purac Biochem, Gorinchem, Netherlands, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm$  0.038.

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Butyl 2-hydroxypropanoate; C <sub>7</sub> H <sub>14</sub> O <sub>3</sub> ; [128-22-7] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7987  | 0.2013    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Purity not given, Purac Inc., no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) γ-Butyrolactone; C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> ; [96-48-0] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8434  | 0.1566  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Dimethyl isosorbide; C <sub>8</sub> H <sub>14</sub> O <sub>4</sub> ; [5306-85-4] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                                |
| T/K = 298.15                                                                                                                                                                | W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.6810  | 0.3190  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Amend Drug and Chemical Company, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                                               | Original Measurements:                              |
|---------------------------------------------------------------------------|-----------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ;          | <sup>87</sup> M. Dias, J. Hadgraft, and M. E. Lane, |
| [65-85-0]                                                                 | Int. J. Pharm. 336, 108 (2007).                     |
| (2) 9(Z)-Octadecenoic acid                                                |                                                     |
| (Oleic acid); C <sub>18</sub> H <sub>34</sub> O <sub>2</sub> ; [112-80-1] |                                                     |
| Variables:                                                                | Prepared by:                                        |
| T/K = 305.2                                                               | W. F. Acree, Ir                                     |

#### **Experimental Values**

The measured solubility was reported to be 245.50 mg/ml, which corresponds to a molar solubility of  $c_1 = 2.010$  mol dm<sup>-3</sup>.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisons Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

 $c_1$ : ± 0.16.

Temperature

| Components:                                                      | Original Measurements:                          |
|------------------------------------------------------------------|-------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>85</sup> K. Mislow, J. Phys. Colloid Chem. |
| [65-85-0]                                                        | <b>52</b> , 729 (1948).                         |
| (2) 2-Furancarboxylic acid;                                      |                                                 |
| C <sub>5</sub> H <sub>4</sub> O <sub>3</sub> ; [88-14-2]         |                                                 |
| Variables:                                                       | Prepared by:                                    |

#### **Experimental Values**

W. E. Acree, Jr.

| t/°C (thawing) | t/°C (melting) | $w_1^{\ a}$ |
|----------------|----------------|-------------|
| 132            | 133            | 0.000       |
| 85.6           | 127.2          | 0.104       |
| 85.1           | 124.0          | 0.217       |
| 85.0           | 121.5          | 0.289       |
| 85.3           | 114.5          | 0.420       |
| 85.5           | 100.2          | 0.486       |
| 85.0           | 95.2           | 0.570       |
| 85.0           | 96.0           | 0.669       |
| 85.1           | 105.5          | 0.775       |
| 85.1           | 110.8          | 0.865       |
| 121            | 122            | 1.000       |

 $a_{w_1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.600$  and t = 85 °C.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries, and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)\,^{\circ}\text{C/min}$ . The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm\,2\,^{\circ}\text{C}$  for thawing and melting temperatures.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, Chemical source not given, recrystallized from aqueous solution.

#### **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 2-Pyridinecarboxylic acid; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [98-98-6] | <b>Original Measurements:</b> <sup>85</sup> K. Mislow, J. Phys. Colloid Chem. <b>52</b> , 729 (1948). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                          |
| Temperature                                                                                                                                                                     | W. E. Acree, Ir.                                                                                      |

#### **Experimental Values**

| t/°C (thawing) | <i>t</i> /°C (melting) | $w_1^{\ a}$ |
|----------------|------------------------|-------------|
| 136            | 137                    | 0.000       |
| 88.4           | 134.2                  | 0.116       |
| 87.6           | 131.0                  | 0.186       |
| 86.4           | 123.8                  | 0.303       |
| 87.0           | 116.0                  | 0.383       |
| 87.2           | 107.4                  | 0.465       |
| 87.4           | 102.4                  | 0.588       |
| 87.0           | 107.4                  | 0.672       |
| 87.6           | 111.4                  | 0.755       |
| 87.6           | 116.2                  | 0.866       |
| 121            | 122                    | 1.000       |

 $a_{w_1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.530$  and t = 115 °C.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries, and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)$  °C/min. The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm$  2 °C for thawing and melting temperatures.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, Chemical source not given, recrystallized from aqueous solution.

#### **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 3-Pyridinecarboxylic acid; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [59-67-6] | <b>Original Measurements:</b> <sup>85</sup> K. Mislow, J. Phys. Colloid Chem. <b>52</b> , 729 (1948). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                      |

| t/°C (thawing) | <i>t</i> /°C (melting) | $w_1^{\ a}$ |
|----------------|------------------------|-------------|
| 233            | 233                    | 0.000       |
| 115.0          | 227.6                  | 0.090       |
| 115.4          | 217.6                  | 0.200       |
| 115.4          | 211.2                  | 0.286       |
| 114.2          | 195.8                  | 0.454       |
| 115.0          | 184.0                  | 0.505       |
| 114.6          | 169.8                  | 0.666       |
| 114.0          | 142.2                  | 0.708       |
| 113.6          | 117.8                  | 0.890       |
| 114.0          | 120.4                  | 0.968       |
| 121            | 122                    | 1.000       |

 $<sup>{}^{</sup>a}w_{1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.900$  and t = 115 °C.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries, and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)\,^{\circ}\text{C/min}$ . The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm$  2  $^{\circ}\text{C}$  for thawing and melting temperatures.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, Chemical source not given, recrystallized from aqueous solution.

#### **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 4-Pyridinecarboxylic acid; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [55-22-1] | <b>Original Measurements:</b> <sup>85</sup> K. Mislow, J. Phys. Colloid Chem. <b>52</b> , 729 (1948). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                          |
| Temperature                                                                                                                                                                     | W. E. Acree, Jr.                                                                                      |

#### **Experimental Values**

| t/°C (thawing) | t/°C (melting)   | $w_1^{\ a}$ |
|----------------|------------------|-------------|
| 312            | 314 (decomposed) | 0.000       |
| 11.6           | 304 (decomposed) | 0.081       |
| 115.4          | 282.8            | 0.368       |
| 115.0          | 265.4            | 0.539       |
| 115.0          | 264.2            | 0.618       |
| 115.0          | 255.4            | 0.684       |
| 114.8          | 225.2            | 0.818       |
| 115.4          | 199.4            | 0.894       |
| 115.4          | 158.8            | 0.961       |
| 121            | 122              | 1.000       |

 $a_{w_1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.990$  and t = 115 °C.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries, and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)$  °C/min. The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm$  2 °C for thawing and melting temperatures.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, Chemical source not given, recrystallized from aqueous solution.

#### **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) 2-Thiophenecarboxylic acid; C <sub>5</sub> H <sub>4</sub> O <sub>2</sub> S; [527-72-0] | <b>Original Measurements:</b> <sup>85</sup> K. Mislow, J. Phys. Colloid Chem. <b>52</b> , 729 (1948). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                        | Prepared by:                                                                                          |
| Temperature                                                                                                                                                                       | W. E. Acree, Jr.                                                                                      |

| t/°C (thawing) | t/°C (melting) | $w_1^a$ |
|----------------|----------------|---------|
| 127            | 128            | 0.000   |
| 94.6           | 123.8          | 0.084   |
| 94.8           | 120.4          | 0.171   |
| 94.8           | 118.6          | 0.207   |
| 95.4           | 115.2          | 0.308   |
| 94.8           | 112.0          | 0.383   |
| 95.8           | 110.2          | 0.415   |
| 95.2           | 109.2          | 0.445   |
| 95.4           | 104.8          | 0.555   |
| 94.4           | 109.2          | 0.710   |
| 94.8           | 111.6          | 0.767   |
| 95.6           | 116.2          | 0.835   |
| 95.6           | 117.0          | 0.860   |
| 97.8           | 120.6          | 0.903   |
| 121            | 122            | 1.000   |

 $a_{w_1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.630$  and t = 95 °C, with an indication of solid solution formation at  $w_1 > 0.90$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries, and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)\,^{\circ}\text{C/min}$ . The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm2\,^{\circ}\text{C}$  for thawing and melting temperatures.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, prepared by the authors, synthesized by iodinating thiophene, and then converting the resulting 2-iodothiophene into the desired acid by the Grignard synthesis. The sample was purified by successive recrystallizations from aqueous solution and from ligroin-benzene mixture.

#### **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

### 2.11. Benzoic acid solubility data in binary organic solvent mixtures

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] (3) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements: <sup>49</sup> W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. <b>70</b> , 1033 (1981). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 77 • 11                                                                                                                                                                                                     |                                                                                                                   |

### Variables: Prepared by: Temperature; Solvent Composition W. E. Acree, Jr.

#### **Experimental Values**

| T/K    | $x_2^{(s)a}$ | $x_1^{b}$ |
|--------|--------------|-----------|
| 298.15 | 0.0000       | 0.0100    |
| 298.15 | 0.2573       | 0.0108    |
| 298.15 | 0.4699       | 0.0113    |
| 298.15 | 0.5342       | 0.0115    |
| 298.15 | 0.6566       | 0.0118    |
| 298.15 | 0.8044       | 0.0117    |
| 298.15 | 1.0000       | 0.0115    |
| 303.15 | 0.0000       | 0.0126    |
| 303.15 | 0.2341       | 0.0136    |
| 303.15 | 0.2845       | 0.0138    |
| 303.15 | 0.5059       | 0.0146    |
| 303.15 | 0.6670       | 0.0150    |
| 303.15 | 0.7821       | 0.0151    |
| 303.15 | 1.0000       | 0.0146    |

 $<sup>\</sup>bar{a}_{x_2}$ <sup>(s)</sup>: initial mole fraction of component 2 in the binary solvent mixture.  $\bar{b}_{x_1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### **Source and Purity of Chemicals:**

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99+%, Chemical source not given, was dried over molecular sieves and distilled before use.
- (3) 99%, Chemical source not given, was dried over molecular sieves and distilled before use

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 1\%$  (relative error).

#### Components:

(1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>; [65-85-0]

(2) Cyclohexane; C<sub>6</sub>H<sub>12</sub>;

[110-82-7]

(3) Heptane; C<sub>7</sub>H<sub>16</sub>; [142-82-5]

#### **Original Measurements:**

<sup>49</sup>W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. **70**, 1033 (1081)

Pharm. Sci. 70, 1033 (1981).

Variables: Prepared by: T/K = 298.15; Solvent Composition W. E. Acree, Jr.

| $x_2^{(s)a}$ | $x_2^b$ | $x_1^{c}$ |
|--------------|---------|-----------|
| 0.0000       | 0.0000  | 0.0114    |
| 0.2781       | 0.2748  | 0.0119    |
| 0.4602       | 0.4546  | 0.0121    |
| 0.5713       | 0.5644  | 0.0121    |
| 0.6825       | 0.4742  | 0.0122    |
| 0.8142       | 0.4045  | 0.0119    |
| 1.0000       | 0.9885  | 0.0115    |

 ${}^{a}x_{2}^{(s)}$ : initial mole fraction of component 2 in the binary solvent mixture.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### **Source and Purity of Chemicals:**

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99+%, Chemical source not given, was dried over molecular sieves and distilled before use.
- (3) 99+%, Chemical source not given, was dried over molecular sieves and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

Variables:

Temperature; Solvent Composition

 $x_1$ :  $\pm 1\%$  (relative error).

| Components:                                                      | Original Measurements:                               |
|------------------------------------------------------------------|------------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>49</sup> W. E. Acree, Jr. and G. L. Bertrand, J |
| [65-85-0]                                                        | Pharm. Sci. 70, 1033 (1981).                         |
| (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3]          |                                                      |
| (3) Tetrachloromethane; CCl <sub>4</sub> ;                       |                                                      |
| [56-23-5]                                                        |                                                      |

#### **Experimental Values**

Prepared by: W. E. Acree, Jr.

| T/K    | $x_2^{(s)a}$ | $x_1^{\text{b}}$ |
|--------|--------------|------------------|
| 298.15 | 0.0000       | 0.0492           |
| 298.15 | 0.1550       | 0.0395           |
| 298.15 | 0.3419       | 0.0297           |
| 298.15 | 0.4408       | 0.0251           |
| 298.15 | 0.5951       | 0.0195           |
| 298.15 | 0.8028       | 0.0137           |
| 298.15 | 1.0000       | 0.0100           |
| 303.15 | 0.0000       | 0.0598           |
| 303.15 | 0.2255       | 0.0483           |

| T/K    | $x_2^{(s)a}$ | $x_1^{b}$ |
|--------|--------------|-----------|
| 303.15 | 0.3078       | 0.0391    |
| 303.15 | 0.4556       | 0.0304    |
| 303.15 | 0.6438       | 0.0226    |
| 303.15 | 0.7564       | 0.0185    |
| 303.15 | 1.0000       | 0.0126    |

 ${}^{a}x_{2}$  (s): initial mole fraction of component 2 in the binary solvent mixture.  ${}^{b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### Source and Purity of Chemicals:

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99%, Chemical source not given, was dried over molecular sieves and distilled before use.
- (3) 99+%, Chemical source not given, refluxed for 11 h over an aqueous solution 10% in potassium permanganate and 10% in sodium hydroxide. The tetrachloromethane was distilled off and dried with calcium hydroxide, stored in contact with mercury under an argon atmosphere, and then distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] (3) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements:  49W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. 70, 1033 (1981). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Variables: Temperature; Solvent Composition                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                               |

 $<sup>{}^{\</sup>mathrm{b}}x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{(s)a}$ | $x_1^{\mathrm{b}}$ |
|--------|--------------|--------------------|
| 298.15 | 0.0000       | 0.0492             |
| 298.15 | 0.1784       | 0.0375             |
| 298.15 | 0.2303       | 0.0347             |
| 298.15 | 0.3348       | 0.0295             |
| 298.15 | 0.3930       | 0.0270             |
| 298.15 | 0.3932       | 0.0269             |
| 298.15 | 0.4708       | 0.0240             |
| 298.15 | 0.5433       | 0.0214             |
| 298.15 | 0.7013       | 0.0170             |
| 298.15 | 1.0000       | 0.0114             |
| 303.15 | 0.0000       | 0.0598             |
| 303.15 | 0.2421       | 0.0423             |
| 303.15 | 0.4269       | 0.0322             |
| 303.15 | 0.6237       | 0.0241             |
| 303.15 | 0.7346       | 0.0206             |
| 303.15 | 1.0000       | 0.0147             |

 ${}^{a}x_{2}^{(s)}$ : initial mole fraction of component 2 in the binary solvent mixture.  ${}^{b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### **Source and Purity of Chemicals:**

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99+%, Chemical source not given, was dried over molecular sieves and distilled before use.
- (3) 99+%, Chemical source not given, refluxed for 11 h over an aqueous solution 10% in potassium permanganate and 10% in sodium hydroxide. The tetrachloromethane was distilled off and dried with calcium hydroxide, stored in contact with mercury under an argon atmosphere, and then distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 1\%$  (relative error).

#### **Components:**

(1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>;

[65-85-0]

(2) Cyclohexane; C<sub>6</sub>H<sub>12</sub>;

[110-82-7]

(3) Tetrachloromethane; CCl<sub>4</sub>;

[56-23-5]

#### Variables:

Prepared by:

**Original Measurements:** 

Pharm. Sci. 70, 1033 (1981).

<sup>49</sup>W. E. Acree, Jr. and G. L. Bertrand, J.

T/K = 298.15; Solvent Composition W. E. Acree, Jr.

#### **Experimental Values**

| $x_2^{(s)a}$ | $x_2^{\mathbf{b}}$ | $x_1^{\text{c}}$ |
|--------------|--------------------|------------------|
| 0.0000       | 0.0000             | 0.0492           |
| 0.1847       | 0.1775             | 0.0389           |
| 0.3681       | 0.3568             | 0.0307           |
| 0.5207       | 0.5079             | 0.0246           |
| 0.6226       | 0.6094             | 0.0212           |
| 0.8084       | 0.7958             | 0.0156           |
| 1.0000       | 0.9885             | 0.0115           |
|              |                    |                  |

 $\overline{x}_2^{(s)}$ : initial mole fraction of component 2 in the binary solvent mixture.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### Source and Purity of Chemicals:

- (1) 99%, Chemical source not given, was dried at 333 K for several hours before use.
- (2) 99+%, Chemical source not given, was dried over molecular sieves and distilled before use.
- (3) 99+%, Chemical source not given, refluxed for 11 h over an aqueous solution 10% in potassium permanganate and 10% in sodium hydroxide. The tetrachloromethane was distilled off and dried with calcium hydroxide, stored in contact with mercury under an argon atmosphere, and then distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 1\%$  (relative error).

# Components: (1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>; [65-85-0] (2) Heptane; C<sub>7</sub>H<sub>16</sub>; [142-82-5] (3) Ethanol; C<sub>2</sub>H<sub>6</sub>O; [64-17-5] Original Measurements: 48 J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data 55, 5124 (2010).

Variables: Prepared by:
Temperature; Solvent Composition W. E. Acree, Jr.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $m_2^{(\mathrm{s})\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------------------|-----------|
| 278.15 | 0.00                           | 0.128     |
| 278.15 | 0.10                           | 0.121     |
| 278.15 | 0.20                           | 0.112     |
| 278.15 | 0.30                           | 0.102     |
| 278.15 | 0.40                           | 0.092     |
| 278.15 | 0.50                           | 0.079     |
| 278.15 | 1.00                           | 0.005     |
| 283.15 | 0.00                           | 0.139     |
| 283.15 | 0.10                           | 0.132     |
| 283.15 | 0.20                           | 0.123     |
| 283.15 | 0.30                           | 0.111     |
| 283.15 | 0.40                           | 0.101     |
| 283.15 | 0.50                           | 0.087     |
| 283.15 | 1.00                           | 0.006     |
| 293.15 | 0.00                           | 0.166     |
| 293.15 | 0.10                           | 0.158     |
| 293.15 | 0.20                           | 0.147     |
| 293.15 | 0.30                           | 0.135     |
| 293.15 | 0.40                           | 0.124     |
| 293.15 | 0.50                           | 0.107     |
| 293.15 | 1.00                           | 0.010     |
| 303.15 | 0.00                           | 0.196     |
| 303.15 | 0.10                           | 0.188     |
| 303.15 | 0.20                           | 0.178     |
| 303.15 | 0.30                           | 0.164     |
| 303.15 | 0.40                           | 0.145     |
| 303.15 | 0.50                           | 0.132     |
| 303.15 | 1.00                           | 0.015     |
| 313.15 | 0.00                           | 0.234     |
| 313.15 | 0.10                           | 0.227     |
| 313.15 | 0.20                           | 0.216     |
| 313.15 | 0.30                           | 0.203     |
| 313.15 | 0.40                           | 0.187     |
| 313.15 | 0.50                           | 0.165     |
| 313.15 | 1.00                           | 0.022     |
| 323.15 | 0.00                           | 0.276     |
| 323.15 | 0.10                           | 0.271     |
| 323.15 | 0.20                           | 0.261     |
| 323.15 | 0.30                           | 0.246     |
| 323.15 | 0.40                           | 0.224     |
| 323.15 | 0.50                           | 0.203     |
| 323.15 | 1.00                           | 0.033     |

 $\overline{a}_{m_2}$ (s): initial mass fraction of component 2 in the binary solvent mixture.  $b_{x_1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Binary solvent mixtures were prepared by mass and allowed to equilibrate in sealed bottles in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.7%, Merck Chemical Company, Germany, was used as received.

- (2) 99%, VWR Scientific, USA, used as received.
- (3) 99+%, Solveco Chemicals, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $m_2^{(s)}$ :  $\pm 0.01$ .

 $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3] (3) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>48</sup> J. Thati, F. L. Nordström, and A. C Rasmuson, J. Chem. Eng. Data <b>55</b> , 5124 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                   | Prepared by:                                                                                                                          |
| Temperature; Solvent Composition                                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                      |

#### **Experimental Values**

| T/K    | $m_2^{(s)a}$ | $x_1^{b}$ |
|--------|--------------|-----------|
| 278.15 | 0.00         | 0.128     |
| 278.15 | 0.10         | 0.127     |
| 278.15 | 0.20         | 0.125     |
| 278.15 | 0.30         | 0.123     |
| 278.15 | 0.40         | 0.119     |
| 278.15 | 0.50         | 0.112     |
| 278.15 | 1.00         | 0.035     |
| 283.15 | 0.00         | 0.139     |
| 283.15 | 0.10         | 0.138     |
| 283.15 | 0.20         | 0.137     |
| 283.15 | 0.30         | 0.133     |
| 283.15 | 0.40         | 0.129     |
| 283.15 | 0.50         | 0.122     |
| 283.15 | 1.00         | 0.043     |
| 293.15 | 0.00         | 0.166     |
| 293.15 | 0.10         | 0.163     |
| 293.15 | 0.20         | 0.161     |
| 293.15 | 0.30         | 0.157     |
| 293.15 | 0.40         | 0.152     |
| 293.15 | 0.50         | 0.145     |
| 293.15 | 1.00         | 0.062     |
| 303.15 | 0.00         | 0.196     |
| 303.15 | 0.10         | 0.194     |
| 303.15 | 0.20         | 0.191     |
| 303.15 | 0.30         | 0.186     |
| 303.15 | 0.40         | 0.181     |
| 303.15 | 0.50         | 0.172     |
| 303.15 | 1.00         | 0.089     |
| 313.15 | 0.00         | 0.234     |
| 313.15 | 0.10         | 0.231     |
| 313.15 | 0.20         | 0.227     |
| 313.15 | 0.30         | 0.222     |
| 313.15 | 0.40         | 0.214     |
| 313.15 | 0.50         | 0.203     |
| 313.15 | 1.00         | 0.128     |
| 323.15 | 0.00         | 0.276     |
| 323.15 | 0.10         | 0.273     |
| 323.15 | 0.20         | 0.266     |
| 323.15 | 0.30         | 0.262     |
| 323.15 | 0.40         | 0.254     |
| 323.15 | 0.50         | 0.234     |
| 323.15 | 1.00         | 0.178     |
|        | 1.00         |           |

 ${}^{a}m_{2}{}^{(s)}$ : initial mass fraction of component 2 in the binary solvent mixture.

 ${}^{b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Binary solvent mixtures were prepared by mass and allowed to equilibrate in sealed bottles in a constant-temperature bath for 2 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. After 30 min, an aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99.7%, Merck Chemical Company, Germany, was used as received.
- (2) 99+%, Merck Chemical Company, used as received.
- (3) 99+%, Solveco Chemicals, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $m_2^{(s)}$ : ±0.01.

 $x_1$ :  $\pm 1\%$  (relative error).

| Components:                                                      | Original Measurements:                         |
|------------------------------------------------------------------|------------------------------------------------|
| (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; | <sup>57</sup> J. W. Marden and M. V. Dover, J. |
| [65-85-0]                                                        | Am. Chem. Soc. 38, 1235 (1917).                |
| (2) Trichloromethane; CHCl <sub>3</sub> ;                        |                                                |
| [67-66-3]                                                        |                                                |
| (3) $1,1'$ -Oxybisethane; $C_4H_{10}O$ ;                         |                                                |
| [60-29-7]                                                        |                                                |

| Variables:                        | Prepared by:     |
|-----------------------------------|------------------|
| T/K = 298.15; Solvent Composition | W. E. Acree, Jr. |

#### **Experimental Values**

| $w_2^{(s)a}$ | $s_1^{\ \mathrm{b}}$ | $m_1^{c}$ |
|--------------|----------------------|-----------|
| 0.00         | 15.0                 | 1.228     |
| 0.10         | 15.2                 | 1.245     |
| 0.20         | 15.6                 | 1.277     |
| 0.40         | 18.6                 | 1.523     |
| 0.60         | 23.2                 | 1.900     |
| 0.80         | 30.1                 | 2.465     |
| 0.90         | 34.0                 | 2.784     |
| 1.00         | 38.4                 | 3.144     |

 $a_{w_2}^{(s)}$ : initial mass fraction of component 2 in the binary solvent mixture.  $b_{s_1}$ : solubility of the solute given as grams of solute per 100 g of solvent.  $c_{m_1}$ : solubility of the solute given as moles of solute per kilogram of solvent.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Binary solvent mixtures were prepared by mass. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a

steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification details were not provided.
- (2) Purity not given, Chemical source not given, purification details were not provided.
- (3) Purity not given, Chemical source not given, purification details were not provided.

#### Estimated Error:

Temperature: ±0.1 K.

 $w_2^{(s)}$ :  $\pm 0.01$ .

 $m_1$ :  $\pm 10\%$  (relative error).

| Components: (1) Benzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> ; [65-85-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] (3) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> <sup>57</sup> J. W. Marden and M. V. Dover, J. Am. Chem. Soc. <b>38</b> , 1235 (1917). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                              | Prepared by:                                                                                                         |
| T/K = 298.15; Solvent Composition                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $w_2^{({ m s})_{ m a}}$ | <i>s</i> <sub>1</sub> <sup>b</sup> | $m_1^{\ \mathrm{c}}$ |
|-------------------------|------------------------------------|----------------------|
| 0.00                    | 55.6                               | 4.553                |
| 0.10                    | 51.3                               | 4.201                |
| 0.20                    | 49.2                               | 4.029                |
| 0.40                    | 42.2                               | 3.456                |
| 0.60                    | 33.5                               | 2.743                |
| 0.80                    | 24.1                               | 1.973                |
| 0.90                    | 18.3                               | 1.499                |
| 1.00                    | 11.6                               | 0.950                |

 $a_{w_{2}^{(s)}}$ : initial mass fraction of component 2 in the binary solvent mixture.  $b_{s_{1}}$ : solubility of the solute given as grams of solute per 100 g of solvent.  $c_{m_{1}}$ : solubility of the solute given as moles of solute per kilogram of solvent.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Binary solvent mixtures were prepared by mass. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification details were not provided.
- (2) Purity not given, Chemical source not given, purification details were not provided.
- (3) Purity not given, Chemical source not given, purification details were not provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $w_2^{(s)}$ :  $\pm 0.01$ .

 $m_1$ :  $\pm 10\%$  (relative error).

#### **Components:**

#### Original Measurements:

(1) Benzoic acid; C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>; [65-85-0]

<sup>57</sup>J. W. Marden and M. V. Dover, J. Am. Chem. Soc. **38**, 1235 (1917).

(2) Benzene; C<sub>6</sub>H<sub>6</sub>; [71-43-2]

 $(3) Ethyl \ ethanoate; \ C_4H_8O_2;$ 

[141-78-6]

Variables: Prepared by:

T/K = 298.15; Solvent Composition W. E. Acree, Jr.

#### **Experimental Values**

| $w_2^{(s)a}$ | $s_1^{\ \mathrm{b}}$ | $m_1^{\ c}$ |
|--------------|----------------------|-------------|
| 0.00         | 41.2                 | 3.374       |
| 0.10         | 28.1                 | 2.301       |
| 0.20         | 29.0                 | 2.375       |
| 0.40         | 23.9                 | 1.957       |
| 0.60         | 20.4                 | 1.670       |
| 0.80         | 16.5                 | 1.351       |
| 0.90         | 14.0                 | 1.146       |
| 1.00         | 11.6                 | 0.950       |

 $a_{w_2}^{(s)}$ : initial mass fraction of component 2 in the binary solvent mixture.  $b_{s_1}$ : solubility of the solute given as grams of solute per 100 g of solvent.  $c_{m_1}$ : solubility of the solute given as moles of solute per kilogram of solvent.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Binary solvent mixtures were prepared by mass. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, purification details were not provided.
- (2) Purity not given, Chemical source not given, purification details were not provided.
- (3) Purity not given, Chemical source not given, purification details were not provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $w_2^{(s)}$ :  $\pm 0.01$ .

 $m_1$ :  $\pm 10\%$  (relative error).

### 3. Solubility of 2-Acetoxybenzoic Acid in Organic Solvents

### 3.1. Critical evaluation of experimental solubility data

There have been several published studies 12,53,69,92-94 investigating the solubility behavior of 2-acetoxybenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Charlton et al. 12 measured the solubility of 2acetoxybenzoic acid in 19 alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-ethyl-1hexanol, 1-decanol, and 3,7-dimethyl-1-octanol), in four dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, 1,1'-oxybisbutane, and 2-methoxy-2-methylpropane (also called methyl tert-butyl ether) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), in five alkyl alkanoates (methyl ethanoate, ethyl ethanoate, butyl ethanoate, pentyl ethanoate and methyl butanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to update the existing Abraham solute descriptors that the authors had for 2-acetoxybenzoic acid. The authors were able to assemble a total of 44  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 2-acetoxybenzoic acid is  $\log_{10} c_{1,W} = -1.68$ . The McGowan volume of 2-acetoxybenzoic acid, V = 1.2879, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was B, and L) still to be determined. The 44 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.690, A = 0.710, B = 0.670, and L = 6.2789, that best described the $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -10.18$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$ predictions internally consistent. The calculated molecular solute descriptors reproduced the 44 combined log<sub>10</sub> (SR or P) and  $log_{10}$  (GSR or K) values to within an average standard deviation of 0.129 log<sub>10</sub> units. The authors excluded 2-methoxy-2-methylpropane from the standard deviation computations because of concerns that trace water in the solvent might adversely affect the measured solubility. Diaz and Drogos<sup>96</sup> reported that 2-methoxy-2-methylpropane has limited stability in water acidified with either mineral acids or organic acids. The authors noted that the reaction proceeds even in very dilute solutions with weak acids, such as acetylsalicylic acid. The reaction produces methanol, which would enhance the saturation solubility. Acetylsalicylic acid is more soluble in methanol than in 2-methoxy-2-methylpropane. Such chemical

Table 8. Comparison between observed and calculated molar solubilities of 2-acetoxybenzoic acid based on the Abraham model, Eqs. (20) and (21)

| Solvent             | $\log_{10} c_1^{\text{exp}}$ | log <sub>10</sub> c <sub>1</sub> <sup>calc</sup> ;<br>Eq. (20) | $\log_{10} c_1^{\text{calc}};$ Eq. (21) |
|---------------------|------------------------------|----------------------------------------------------------------|-----------------------------------------|
| Methanol            | 0.176 <sup>a</sup>           | 0.169                                                          | -0.248                                  |
| Ethanol             | 0.114 <sup>a</sup>           | -0.050                                                         | -0.004                                  |
| 1-Propanol          | -0.197                       | -0.179                                                         | -0.179                                  |
| 2-Propanol          | -0.186                       | -0.167                                                         | -0.153                                  |
| 1-Butanol           | -0.324                       | -0.314                                                         | -0.301                                  |
| 2-Butanol           | -0.256                       | -0.195                                                         | -0.237                                  |
| 2-Methyl-1-propanol | -0.471                       | -0.366                                                         | -0.361                                  |
| 2-Methyl-2-propanol | -0.154                       | -0.146                                                         | -0.147                                  |
| 1-Pentanol          | -0.443                       | -0.426                                                         | -0.427                                  |
| 2-Pentanol          | -0.404                       | -0.411                                                         | -0.384                                  |
| 3-Methyl-1-butanol  | -0.462                       | -0.436                                                         | -0.399                                  |
| 1-Hexanol           | -0.505                       | -0.455                                                         | -0.468                                  |
| 1-Heptanol          | -0.565                       | -0.478                                                         | -0.519                                  |
| 1-Octanol           | -0.665                       | -0.519                                                         | -0.633                                  |
| 1-Decanol           | -0.718                       | -0.739                                                         | -0.767                                  |
| 1,1'-Oxybisethane   | -0.478                       | -0.572                                                         | -0.503                                  |
| Tetrahydrofuran     | 0.312                        | 0.435                                                          | 0.363                                   |
| 1,4-Dioxane         | 0.134                        | 0.316                                                          | 0.307                                   |
| Methyl ethanoate    | -0.192                       | -0.061                                                         | -0.061                                  |
| Ethyl ethanoate     | -0.351                       | -0.255                                                         | -0.245                                  |
| Butyl ethanoate     | -0.597                       | -0.435                                                         | -0.456                                  |
| Propanone           | $0.017^{a}$                  | 0.133                                                          | 0.184                                   |
|                     |                              |                                                                |                                         |

<sup>&</sup>lt;sup>a</sup>Experimental solubility data taken from Perlovich and Bauer-Brandl. <sup>53</sup> All other experimental data were taken from Charlton *et al.* <sup>12</sup>

reaction effects are expected to be fairly small if water is needed for the reaction to proceed.

After the 2-acetoxybenzoic acid solubility study was published, Abraham model correlations have been developed for 3methyl-1-butanol, 2-pentanol, methyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 2acetoxybenzoic acid solubility data. Table 8 compares the experimental  $log_{10}$   $c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 2-acetoxybenzoic acid,  $x_1$ , determined by Charlton *et al.* <sup>12</sup> were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 2-acetoxybenzoic acid is  $V_{\text{solute}} = 126.89 \text{ cm}^3 \text{ mol}^{-1}$ . Examination of the numerical entries in Table 8 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Independent 2-acetoxybenzoic acid solubility measurements do exist for several solvents. Previously Perlovich and Bauer-Brandl<sup>53</sup> had measured the solubility of 2-acetoxybenzoic acid in eight 1-alkanols (methanol through 1-octanol), and in benzene, methylbenzene, ethyl ethanoate, 1,4-dioxane, trichloromethane, propanone, and ethanenitrile. Except for 1,4-dioxane, the two sets of solubility data are in reasonably good agreement for the most part,  $x_1 = 0.04976$  (Ref. 91)

Table 9. Parameters of the Modified Apelblat equation for describing the solubility of 2-acetoxybenzoic acid in various organic solvents<sup>a</sup>

| Solvent     | T/K     | A      | В        | C       | APLD (%) |
|-------------|---------|--------|----------|---------|----------|
| Ethanol     | 276–336 | 63.952 | -5759.6  | -8.323  | 0.679    |
| 2-Propanol  | 282-330 | 588.32 | -30787.7 | -85.663 | 3.372    |
| 1,2-        | 296-334 | 477.25 | -27072.7 | -68.500 | 0.674    |
| Propanediol |         |        |          |         |          |
| Propanone   | 282-326 | 588.32 | 257.07   | 8.125   | 0.550    |

<sup>a</sup>Values of the coefficients and average percent logarithmic deviation were taken from Maia and Giulietti. <sup>92</sup>

versus  $x_1 = 0.0418$  (Ref. 53) for 1-propanol,  $x_1 = 0.04616$  (Ref. 12) versus  $x_1 = 0.0453$  (Ref. 53) for 1-butanol,  $x_1 = 0.03966$  (Ref. 91) versus  $x_1 = 0.0395$  (Ref. 53) for 1-pentanol,  $x_1 = 0.03973$  (Ref. 12) versus  $x_1 = 0.0393$  (Ref. 53) for 1-hexanol,  $x_1 = 0.03892$  (Ref. 12) versus  $x_1 = 0.0386$  (Ref. 53) for 1-heptanol,  $x_1 = 0.03581$  (Ref. 12) versus  $x_1 = 0.0341$  (Ref. 53) for 1-octanol,  $x_1 = 0.04583$  (Ref. 12) versus  $x_1 = 0.0448$  (Ref. 53) for ethyl ethanoate, and  $x_1 = 0.1263$  (Ref. 12) versus  $x_1 = 0.0516$  (Ref. 53) for 1,4-dioxane. Differences in chemical purities and experimental methodologies can lead to differences of a few percent between values determined by two different research groups.

There has been one experimental study examining the solubility of 2-acetoxybenzoic acid as a function of temperature. Maina and Giulietti<sup>92</sup> measured the solubility of 2-acetoxybenzoic acid in ethanol, 2-propanol, 1,2-propanediol, and propanone at several temperatures in the range of about 280–330 K. The internal consistency of the datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (*A*, *B*, and *C*) are given in Table 9, along with the average percent logarithmic deviation (APLD) calculated according to

$$APLD = \frac{100}{N} \sum_{i=1}^{N} \left| \ln \left( \frac{x_i^{\text{exp}}}{x_i^{\text{calc}}} \right) \right|, \tag{26}$$

where N is the number of experimental solubility measurements in an individual solute-solvent dataset. Examination of the numerical entries in the last column of Table 9 reveals that the largest APLD between the back-calculated values based on Eq. (8) and experimental data is 3.5%. Results of the mathematical representation analyses indicate that the experimental data for all four 2-acetoxybenzoic acid – organic solvent systems are internally consistent.

The experimental solubility data for 2-acetoxybenzoic acid in organic solvents are in Secs. 3.2–3.8.

### 3.2. 2-Acetoxybenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2-Acetoxybenzoic acid; C <sub>0</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                     |

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9990             | 0.00101   |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated\ constant-temperature\ bath,\ centrifuge,\ and\ an\ ultraviolet/visible\ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3] | <b>Original Measurements:</b> 53 G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9987  | 0.00129 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

#### 3.3. 2-Acetoxybenzoic acid solubility data in esters

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9471  | 0.05287            |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9542  | 0.04583   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | <b>Original Measurements:</b> 53 G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                                              |
| T/K = 298.15                                                                                                                                                                               | W. E. Acree, Jr.                                                                                          |

#### **Experimental Values**

|         | L.        |
|---------|-----------|
| $x_2^a$ | $x_1^{b}$ |
| 0.9552  | 0.0448    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>$C_9H_8O_4$ ; [50-78-2]<br>(2) Butyl ethanoate; $C_6H_{12}O_2$ ;<br>[123-86-4] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9665  | 0.03345   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>$C_9H_8O_4$ ; [50-78-2]<br>(2) Pentyl ethanoate; $C_7H_{14}O_2$ ;<br>[628-63-7] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: <i>T</i> /K = 298.15                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9732  | 0.02677   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Methyl butanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [623-42-7] | Original Measurements:  12 A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9703  | 0.02970            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

#### 3.4. 2-Acetoxybenzoic acid solubility data in ethers

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements:  12 A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9647  | 0.03529   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components:                                                               | Original Measurements:                             |
|---------------------------------------------------------------------------|----------------------------------------------------|
| (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; | <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. |
| [50-78-2]                                                                 | Acree, Jr., and M. H. Abraham, J.                  |
| (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O;                 | Solution Chem. 32, 1087 (2003).                    |
| [108-20-3]                                                                |                                                    |
| Variables:                                                                | Prepared by:                                       |
| T/K = 298.15                                                              | W. E. Acree, Jr.                                   |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

|                    | L         |
|--------------------|-----------|
| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
| 0.9878             | 0.01224   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O;<br>[142-96-1] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9929             | 0.007095  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree. Jr.                                                                                             |
|                                                                                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9599  | 0.04013 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  12 A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                          |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------------------|--------------------|
| 0.8096             | 0.1904             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.8737             | 0.1263    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9484           | 0.0516  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Sigma Chemical Company, USA, no purification details were provided.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## 3.5. 2-Acetoxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl. Pharm. Res. <b>20</b> , 471 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                        | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.794              | 0.206     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

### 3.6. 2-Acetoxybenzoic acid solubility data in alcohols

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.9281    | 0.0719      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) HPLC grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>69</sup> C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. <b>134</b> , 40 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                                        |
| T/K = 293 and 333                                                                                                                          | W. E. Acree, Jr.                                                                                                                    |

#### **Experimental Values**

The measured solubility was reported to be 140 and 580 g/l at 293 and 333 K, respectively. The authors did not specify whether the values were per liter of solvent or per liter of saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by adding (0.50  $\pm$  0.1) g amounts of the powdered solute to (100  $\pm$  1) ml of solvent until a saturated solution was obtained. The mass of the powder was recorded.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Poole, England, UK, no purification details were provided.
- (2) Purity not given, Sigma-Aldrich, no purification details were provided.

#### **Estimated Error:**

 $Temperature:\ Insufficient\ experimental\ details\ to\ estimate.$ 

Solubility:  $\pm 5$  g/l (estimated by compiler assuming solute added in increments of 0.50 g).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                                     |

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.9145    | 0.0855    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- $(2)\ 99.6\%, Chemical\ source\ not\ given,\ no\ purification\ details\ were\ provided.$

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  69 C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. 134, 40 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 293$ and 333                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

The measured solubility was reported to be 240 and 720 g/l at 293 and 333 K, respectively. The authors did not specify whether the values were per liter of solvent or per liter of saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by adding (0.50  $\pm$  0.1) g amounts of the powdered solute to (100  $\pm$  1) ml of solvent until a saturated solution was obtained. The mass of the powder was recorded.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Poole, England, UK, no purification details were provided.
- (2) Purity not given, Sigma-Aldrich, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

Solubility:  $\pm 5$  g/l (estimated by compiler assuming solute added in increments of 0.50 g).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> 92G. D. Maia and M. Giulietti, J. Chem. Eng. Data <b>53</b> , 256 (2008). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                            |
| Temperature                                                                                                                                                      | W. E. Acree, Jr.                                                                                        |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 276.2 | 0.975              | 0.025              |
| 291.9 | 0.951              | 0.049              |
| 302.4 | 0.929              | 0.071              |
| 310.0 | 0.907              | 0.093              |
| 316.5 | 0.887              | 0.113              |
| 321.5 | 0.867              | 0.133              |
| 325.9 | 0.848              | 0.152              |
| 330.4 | 0.830              | 0.170              |
| 333.4 | 0.813              | 0.187              |
| 336.6 | 0.796              | 0.204              |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Circulating thermostated water bath, analytical balance, and drying oven. Known amounts of solute and solvent were placed in the equilibrium vessel which was connected to the thermostated water bath. The vessel was agitated at 750 rpm as temperature was increased and decreased. By regulating the bath temperature, the authors were able to determine the temperature at which complete dissolution occurred (heating mode) and the temperature at which the first crystals formed (cooling mode).

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Anidrol Quimica, Diadema, Brazil, no purification details were given.
- (2) 99.5%, Synthon Chemicals, no purification details were given.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                              | Original Measurements:                             |
|----------------------------------------------------------|----------------------------------------------------|
| (1) 2-Acetoxybenzoic acid;                               | <sup>93</sup> C. Lindenberg, M. Krättli, J. Cornel |
| C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] | M. Mazzotti, and J. Brozio, Cryst.                 |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]  | Growth Des. 9, 1124 (2009).                        |
| Variables:                                               | Prepared by:                                       |
| Temperature                                              | W. E. Acree, Jr.                                   |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K | $x_2^a$ | $x_1^{b}$ |
|-----|---------|-----------|
| 298 | 0.9427  | 0.0573    |
| 308 | 0.9118  | 0.0882    |
| 323 | 0.8578  | 0.1422    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute determined by *in situ* ATR-FTIR spectroscopic method. Experimental data are reported as grams of solute per kilogram of solvent. Mole fraction solubilities calculated by the compiler.

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-----|--------------------|-----------|
| 298 | 0.9425             | 0.0575    |
| 308 | 0.9124             | 0.0876    |
| 323 | 0.8549             | 0.1451    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed glass equilibrium cell equipped with a four-blade glass impeller and including blades, temperature controlling system, and an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) probe.

Very little experimental details are given. Excess solute and solvent were placed in the equilibrium cell. The concentration of the dissolved solute was determined by ATR-FTIR spectroscopic methods. Solubilities were also determined by a gravimetric method.

#### **Source and Purity of Chemicals:**

- (1) 99+%, Sigma-Aldrich, Switzerland, no purification details were given.
- (2) 99.9%, Merck KGaA, Germany, no purification details were given.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9502  | 0.04976   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | <b>Original Measurements:</b> 53 G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9582  | 0.0418  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) HPLC grade, Aldrich Chemical Company, Germany, no purification details were provided.

#### **Estimated Error:**

bx<sub>1</sub>: mole fraction solubility of the solute determined by a gravimetric method of analysis. Experimental data are reported as grams of solute per kilogram of solvent. Mole fraction solubilities calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9477  | 0.05232            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                | Original Measurements:                 |
|------------------------------------------------------------|----------------------------------------|
| (1) 2-Acetoxybenzoic acid;                                 | 92G. D. Maia and M. Giulietti, J. Chem |
| C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]   | Eng. Data 53, 256 (2008).              |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] |                                        |

| Variables:  | Prepared by:     |
|-------------|------------------|
| Temperature | W. E. Acree, Jr. |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 281.6 | 0.987              | 0.013     |
| 291.8 | 0.968              | 0.032     |
| 304.1 | 0.937              | 0.063     |
| 312.9 | 0.909              | 0.091     |
| 316.1 | 0.898              | 0.102     |
| 320.4 | 0.882              | 0.118     |
| 322.7 | 0.872              | 0.128     |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 325.8 | 0.857              | 0.143     |
| 327.7 | 0.847              | 0.153     |
| 330.2 | 0.833              | 0.167     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Circulating thermostated water bath, analytical balance, and drying oven. Known amounts of solute and solvent were placed in the equilibrium vessel which was connected to the thermostated water bath. The vessel was agitated at 750 rpm as temperature was increased and decreased. By regulating the bath temperature, the authors were able to determine the temperature at which complete dissolution occurred (heating mode) and the temperature at which the first crystals formed (cooling mode).

#### **Source and Purity of Chemicals:**

(1) 99.5%, Anidrol Quimica, Diadema, Brazil, no purification details were given.

(2) 99.9%, Synthon Chemicals, no purification details were given.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  12 A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                              |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9538  | 0.04616            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9547  | 0.0453    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

| Components:                                                | Original Measurements:                             |
|------------------------------------------------------------|----------------------------------------------------|
| (1) 2-Acetoxybenzoic acid;                                 | <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. |
| C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]   | Acree, Jr., and M. H. Abraham, J.                  |
| (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Solution Chem. <b>32</b> , 1087 (2003).            |
| Variables:                                                 | Prepared by:                                       |
| T/K = 298.15                                               | W. E. Acree, Jr.                                   |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{\ b}$ |
|------------------|-------------|
| 0.9464           | 0.05360     |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9681  | 0.03186 |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>$C_9H_8O_4$ ; [50-78-2]<br>(2) 2-Methyl-2-propanol;<br>$C_4H_{10}O$ ; [78-83-1] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9316  | 0.06844 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9603  | 0.03966   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>$C_9H_8O_4$ ; [50-78-2]<br>(2) 1-Pentanol; $C_5H_{12}O$ ;<br>[71-41-0] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                          | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                        | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9605           | 0.0395    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

(1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.

(2) Analytical Reagent grade, Aldrich Chemical Company, Germany, no purification details were provided.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                        |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                    |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9565  | 0.04345   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 2-Methyl-1-butanol;<br>C <sub>5</sub> H <sub>12</sub> O; [137-32-6] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                                                        |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree. Jr.                                                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9656  | 0.03444   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                            | Original Measurements:                                                               |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| (1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] | <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. |
| (2) 3-Methyl-1-butanol;<br>C <sub>5</sub> H <sub>12</sub> O; [123-51-3]                | Solution Chem. <b>32</b> , 1087 (2003).                                              |
| Variables:                                                                             | Prepared by:                                                                         |
| T/K = 298.15                                                                           | W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9619  | 0.03812   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>$C_9H_8O_4$ ; [50-78-2]<br>(2) 2-Methyl-2-butanol;<br>$C_5H_{12}O$ ; [75-85-4] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9182  | 0.08176   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O;<br>[111-27-3] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                                                                           |
| T/K = 298.15                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9603  | 0.03973   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                                | W.E. Acree, Ir                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9607  | 0.0393  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>$C_9H_8O_4$ ; [50-78-2]<br>(2) 2-Methyl-1-pentanol;<br>$C_6H_{14}O$ ; [105-30-6] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9679  | 0.03205   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9607  | 0.03931   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9611  | 0.03892   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Constant\text{-}temperature bath, calorimetric thermometer, and an ultraviolet/\ visible spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O;<br>[111-37-3] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                     |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9614  | 0.0386    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Sigma Chemical Company, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9642  | 0.03581     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                                         |
| T/K = 208.15                                                                                                                                                            | W E Acree Ir                                                                                                         |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9659           | 0.0341    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \, constant-temperature \, bath, \, centrifuge, \, and \, an \, ultraviolet/visible \, spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, Sigma Chemical Company, USA, no purification details were provided.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | Original Measurements:  94S. L. Cassidy, P. A. Lympany, and J. A. Henry, J. Pharm. Pharmacol. 40, 130 (1988). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                                  |
| T/K = 310                                                                                                                                                               | W. E. Acree, Jr.                                                                                              |

The measured solubility was reported to be 42.6 g/l of saturated solution, which corresponds to a solubility of  $c_1 = 0.24 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Saturated solution was prepared at 310 K, and the concentration of the dissolved solute determined spectrophotometrically by reference to an absorbance curve obtained from absorbance measurements of standard solutions of known concentration.

#### **Source and Purity of Chemicals:**

- (1) 98% to 100%, Eli Lilly Drug Company, USA, used as received. The authors studied the solubility of several drugs, and their only statement regarding purity was that all drugs were used as supplied at a purity of 90%–100%.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) 2-Ethyl-1-hexanol; C <sub>8</sub> H <sub>18</sub> O; [104-76-7] | Original Measurements: <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>32</b> , 1087 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                                                        |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9697  | 0.03033   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O;<br>[112-30-1] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9635  | 0.03652   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) 3,7-Dimethyl-1-octanol;<br>C <sub>10</sub> H <sub>22</sub> O; [106-21-8] | Original Measurements:<br><sup>12</sup> A. K. Charlton, C. R. Daniels, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Solution Chem. <b>32</b> , 1087 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                            | Prepared by:                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9696  | 0.03039 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Original Measurements:  92G. D. Maia and M. Giulietti, J. Chem. Eng. Data 53, 256 (2008). |
|-------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree. Jr.                                                          |
|                                                                                           |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 295.7 | 0.983              | 0.017              |
| 301.1 | 0.975              | 0.025              |
| 305.1 | 0.967              | 0.033              |
| 308.2 | 0.959              | 0.041              |
| 313.6 | 0.944              | 0.056              |
| 318.3 | 0.929              | 0.071              |
| 323.7 | 0.908              | 0.092              |
| 327.9 | 0.888              | 0.112              |
| 330.6 | 0.874              | 0.126              |
| 333.9 | 0.855              | 0.145              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Circulating thermostated water bath, analytical balance, and drying oven. Known amounts of solute and solvent were placed in the equilibrium vessel which was connected to the thermostated water bath. The vessel was agitated at 750 rpm as temperature was increased and decreased. By regulating the bath temperature, the authors were able to determine the temperature at which complete dissolution occurred (heating mode) and the temperature at which the first crystals formed (cooling mode).

#### Source and Purity of Chemicals:

- (1) 99.5%, Anidrol Quimica, Diadema, Brazil, no purification details were given.
- (2) 99.9%, Synthon Chemicals, no purification details were given.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

#### 3.7. 2-Acetoxybenzoic acid solubility data in ketones

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O;<br>[67-64-1] | <b>Original Measurements:</b> <sup>53</sup> G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. <b>20</b> , 471 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9172  | 0.0828    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.
- (2) Analytical Reagent grade, SDS, Peypin, France, no purification details were provided.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O;<br>[67-64-1] | Original Measurements: <sup>69</sup> C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. <b>134</b> , 40 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                        |
| T/K = 293                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                    |

The measured solubility was reported to be 250 g/l. The authors did not specify whether the value was per liter of solvent or per liter of saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by adding (0.50  $\pm$  0.1) g amounts of the powdered solute to (100  $\pm$  1) ml of solvent until a saturated solution was obtained. The mass of the powder was recorded

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Poole, England, UK, no purification details were provided.
- (2) Purity not given, Sigma-Aldrich, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

Solubility:  $\pm 5$  g/l (estimated by compiler assuming solute added in increments of 0.50 g).

| Components: (1) 2-Acetoxybenzoic acid; C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  91 G. D. Maia and M. Giulietti, J. Chem. Eng. Data 53, 256 (2008). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                           |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 281.9 | 0.939   | 0.061              |
| 290.6 | 0.925   | 0.075              |
| 297.9 | 0.912   | 0.088              |
| 304.4 | 0.899   | 0.101              |
| 310.6 | 0.886   | 0.114              |
| 315.3 | 0.873   | 0.127              |
| 319.8 | 0.861   | 0.139              |
| 323.3 | 0.849   | 0.151              |
| 326.3 | 0.838   | 0.162              |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Circulating thermostated water bath, analytical balance, and drying oven. Known amounts of solute and solvent were placed in the equilibrium vessel which was connected to the thermostated water bath. The vessel was agitated at 750 rpm as temperature was increased and decreased. By regulating the bath temperature, the authors were able to determine the temperature at which complete dissolution occurred (heating mode) and the temperature at which the first crystals formed (cooling mode).

#### Source and Purity of Chemicals:

- (1) 99.5%, Anidrol Quimica, Diadema, Brazil, no purification details were given.
- (2) 99.9%, Synthon Chemicals, no purification details were given.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

### 3.8. 2-Acetoxybenzoic acid solubility data in miscellaneous organic solvents

| Components:                                              | Original Measurements:                             |  |
|----------------------------------------------------------|----------------------------------------------------|--|
| (1) 2-Acetoxybenzoic acid;                               | <sup>12</sup> A. K. Charlton, C. R. Daniels, W. E. |  |
| C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] | Acree, Jr., and M. H. Abraham, J.                  |  |
| (2) Propylene carbonate;                                 | Solution Chem. 32, 1087 (2003).                    |  |
| $C_4H_6O_3$ ; [108-32-7]                                 |                                                    |  |
| Variables:                                               | Prepared by:                                       |  |
| T/K = 298.15                                             | W. E. Acree, Jr.                                   |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9687  | 0.03133   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Acetoxybenzoic acid; C <sub>0</sub> H <sub>8</sub> O <sub>4</sub> ; [50-78-2] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | <b>Original Measurements:</b> 53 G. L. Perlovich and A. Bauer-Brandl. Pharm. Res. <b>20</b> , 471 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                          |

| $x_2^{\mathrm{a}}$ | $x_1^{\ b}$ |
|--------------------|-------------|
| 0.9815             | 0.0185      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### **Source and Purity of Chemicals:**

(1) Analytical Reagent grade, Norsk Medisinaldepot, Oslo, Norway, no purification details were provided.

(2) HPLC grade, Merck Chemicals, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2.5\%$  (relative error).

### 4. Solubility of 4-Acetoxybenzoic Acid in Organic Solvents

### 4.1. Critical evaluation of experimental solubility data

There is only a single published study regarding the solubility behavior of 4-acetoxybenzoic acid in organic solvents. Wang and Zhang 97 measured the mole fraction solubilities in ethanol as a function of temperature using a static and dynamic method. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (*A*, *B*, and *C*) are given in Table 10, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 10 reveals that the static experimental method yielded the more consistent experimental values. Readers are reminded that Eq. (8) can only check data points for internal consistency with respect to temperature. The fact that one can accurately describe the experimental data does not

Table 10. Parameters of the Modified Apelblat equation for describing the solubility of 4-acetoxybenzoic acid in ethanol<sup>a</sup>

| Solvent                  | A      | В     | С      | MRD (%) |
|--------------------------|--------|-------|--------|---------|
| Ethanol (dynamic method) | 24.84  | -4110 | -1.781 | 5.599   |
| Ethanol (static method)  | -26.18 | -1737 | 5.776  | 0.674   |

 ${}^{\overline{a}}$ Values of the coefficients and the mean relative deviations were taken from Wang and Zhang.  ${}^{97}$ 

mean that the data are accurate. In the case of the 4-acetoxybenzoic acid solubility data, there is a noticeable difference between the two experimental methods. The relative difference can be fairly large at times. For example the static method gave a mole fraction solubility of  $x_1 = 0.002489$  for 4-acetoxybenzoic acid dissolved in ethanol at 298.15 K, versus a value of  $x_1 = 0.002193$  determined with the dynamic method. The calculated relative difference between the two reported values is more than 10%.

The experimental solubility data for 4-acetoxybenzoic acid in ethanol are in Sec. 4.2.

### 4.2. 4-Acetoxybenzoic acid solubility data in alcohols

| Components:<br>(1) 4-Acetoxybenzoic acid;<br>C <sub>9</sub> H <sub>8</sub> O <sub>4</sub> ; [2345-34-8]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O;<br>[64-17-5] | <b>Original Measurements:</b> <sup>97</sup> H. Wang and W. Zhang, J. Chem. Eng. Data <b>54</b> , 1942 (2009). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                  |
| Temperature                                                                                                                                                           | W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 298.2 | 0.9751             | 0.02489     |
| 303.2 | 0.9698             | 0.03018     |
| 308.2 | 0.9642             | 0.03584     |
| 313.2 | 0.9569             | 0.04315     |
| 318.2 | 0.9478             | 0.05217     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathrm{b,c}}$ |
|-------|---------|----------------------|
| 298.2 | 0.9781  | 0.02193              |
| 303.2 | 0.9685  | 0.03149              |
| 308.2 | 0.9612  | 0.03876              |
| 313.2 | 0.9549  | 0.04514              |
| 318.2 | 0.9488  | 0.05117              |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the static method.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the dynamic method.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water-jacketed glass vessel, thermometer, analytical balance, laser monitoring system.

Solubilities were determined using both a static and dynamic method. In the static method, excess solute and solvent were placed in a water-jacketed vessel allowed to equilibrate with stirring for three days at constant temperature. Samples of the saturated liquid phase were decanted into Petri dishes of known mass and weighed. The samples were then evaporated to dryness and the solubility determined from the mass of the solid residue and the mass of the sample analyzed. In the dynamic solid method, an excess of carboxylic acid was added to a known mass of ethanol. The resulting suspension was stirred in a water-jacketed vessel for 1 h at constant temperature. A known mass of ethanol to the vessel through a buret until the solute completely dissolved. The dissolution was monitored with a laser monitoring system. When the last portion of solid solute disappeared, the penetrated light intensity reached its maximum value. The mass of the added solvent was recorded. The solubility of the carboxylic acid was calculated from the known masses of solute and ethanol.

#### Source and Purity of Chemicals:

(1) 98%, Sigma-Aldrich Chemical Company, Milwaukee, WI, USA, no purification details provided.

(2) 99.55%, Tianjin Kewei Chemical Reagent, China, no information given regarding any further purification.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ : Authors report that the uncertainty in the solubility values is estimated to be  $\pm 0.5\%$ . The differences between the experimental values based on the static and dynamic solubility methods are considerably larger, and more on the order of  $\pm 5\%$  to 10% (relative error).

### 5. Solubility of 4-Acetylbenzoic Acid in Organic Solvents

### 5.1. Critical evaluation of experimental solubility data

Only a single published paper was found in the chemical and engineering literature regarding the solubility of 4-acetylbenzoic acid in organic solvents. Sunsandee  $et\ al.^{98}$  measured the solubility of 4-acetylbenzoic acid in 1-methyl-4-(1-methylethyl)benzene (also called p-cymene), tert-butylbenzene, and ethanoic acid from 303 to 473 K. The authors described the observed solubility data in terms of both the Modified Apelblat model [Eq. (8)] and Buchowski  $\lambda$ h-model [Eq. (9)]. The calculated curve-fit equation coefficients and squared correlation coefficients are given in Tables 11 and 12 for the Modified Apelblat and Buchowski  $\lambda$ h-models, respectively. The experimental solubility data are internally consistent as evidenced by the near unity values of the squared correlation coefficients.

The experimental solubility data for 4-acetylbenzoic acid in organic solvents are given in Secs. 5.2 and 5.3.

Table 11. Parameters of the Modified Apelblat equation for describing the solubility of 4-acetylbenzoic acid in various organic solvents

| Solvent                        | T/K     | A       | В       | С     | $R^2$  |
|--------------------------------|---------|---------|---------|-------|--------|
| p-Cymene <sup>a</sup>          | 303-453 | -125.42 | 3239.20 | 18.99 | 0.9990 |
| tert-Butylbenzene <sup>a</sup> | 303-453 | -116.93 | 2858.70 | 17.73 | 0.9990 |
| Ethanoic acida                 | 303-453 | -114.80 | 3288.30 | 17.12 | 0.9980 |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and squared correlation coefficients were taken from Sunsandee *et al.*<sup>98</sup>

Table 12. Parameters of the Buchowski λh equation for describing the solubility of 4-acetylbenzoic acid in various organic solvents

| Solvent                    | T/K     | λ        | h        | $R^2$  |
|----------------------------|---------|----------|----------|--------|
| p-Cymene <sup>a</sup>      | 303-453 | 0.045739 | 47820.72 | 0.9980 |
| tert-Butylbenzenea         | 303-453 | 0.042173 | 42168.65 | 0.9990 |
| Ethanoic acid <sup>a</sup> | 303-453 | 0.036581 | 70114.79 | 0.9990 |

<sup>a</sup>Values of the coefficients and squared correlation coefficients were taken from Sunsandee *et al.*<sup>98</sup>

### 5.2. 4-Acetylbenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 4-Acetylbenzoic acid;<br>$C_9H_7O_3$ ; [586-89-0]<br>(2) 1-Methyl-4-(1-methylethyl)<br>benzene; $C_{10}H_{14}$ ; [99-87-6] | Original Measurements:  98 N. Sunsandee, M. Hronec, M. Stolcova, N. Leepipatpiboon, and U. Pancharoen, J. Mol. Liq. <b>180</b> , 252 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                    | Prepared by:                                                                                                                                 |
| Temperature                                                                                                                                   | W. E. Acree, Jr.                                                                                                                             |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 303.15 | 0.9980             | 0.00199   |
| 313.15 | 0.9974             | 0.00260   |
| 323.15 | 0.9965             | 0.00346   |
| 333.15 | 0.9955             | 0.00451   |
| 343.15 | 0.9940             | 0.00602   |
| 353.15 | 0.9920             | 0.00802   |
| 363.15 | 0.9895             | 0.01050   |
| 373.15 | 0.9860             | 0.01398   |
| 383.15 | 0.9817             | 0.01828   |
| 393.15 | 0.9758             | 0.02417   |
| 403.15 | 0.9687             | 0.03134   |
| 413.15 | 0.9589             | 0.04114   |
| 423.15 | 0.9459             | 0.05413   |
| 433.15 | 0.9295             | 0.07046   |
| 443.15 | 0.9080             | 0.09202   |
| 453.15 | 0.8794             | 0.12063   |

 $<sup>\</sup>overline{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Stainless steel closed equilibrium vessel equipped with magnetic stirrer, analytical balance, high-performance liquid chromatographic system, thermostated silicone oil bath, and digital density meter.

Excess solute and solvent were allowed to equilibrate with stirring in a thermostated silicone oil bath for 90 min. The stirring was suspended and the suspended particles were allowed to settle to the bottom of the vessel for 120 min. An aliquot of the saturated solution was withdrawn, transferred to a tared volumetric flask, and then weighed to determine the amount of sample withdrawn. The concentration of the dissolved solute was determined by high-performance liquid chromatographic analysis. The density of the saturated was also measured to allow the measured solubilities in units of molarity to be converted to mole fraction solubilities.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction of the solute.

#### Source and Purity of Chemicals:

(1) 98%, Sigma-Aldrich Chemical Company, was used as received.(2) 99.9% (by HPLC analysis), Sigma-Aldrich Chemical Company, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Acetylbenzoic acid;                                                                                                                         | Original Measurements:  98 N. Sunsandee, M. Hronec, M.                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| (1) 4 Nectylenson deld,<br>C <sub>9</sub> H <sub>7</sub> O <sub>3</sub> ; [586-89-0]<br>(2) tert-Butylbenzene; C <sub>10</sub> H <sub>14</sub> ;<br>[98-06-6] | Stolcova, N. Leepipatpiboon, and U. Pancharoen, J. Mol. Liq. <b>180</b> , 252 (2013). |
| Variables:<br>Temperature                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                      |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 303.15 | 0.9979  | 0.00205   |
| 313.15 | 0.9973  | 0.00271   |
| 323.15 | 0.9964  | 0.00357   |
| 333.15 | 0.9953  | 0.00473   |
| 343.15 | 0.9938  | 0.00618   |
| 353.15 | 0.9918  | 0.00817   |
| 363.15 | 0.9894  | 0.01063   |
| 373.15 | 0.9862  | 0.01384   |
| 383.15 | 0.9818  | 0.01822   |
| 393.15 | 0.9761  | 0.02387   |
| 403.15 | 0.9690  | 0.03098   |
| 413.15 | 0.9600  | 0.03999   |
| 423.15 | 0.9480  | 0.05198   |
| 433.15 | 0.9321  | 0.06785   |
| 443.15 | 0.9123  | 0.08767   |
| 453.15 | 0.8860  | 0.11403   |
|        |         |           |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Stainless steel closed equilibrium vessel equipped with magnetic stirrer, analytical balance, high-performance liquid chromatographic system, thermostated silicone oil bath, and digital density meter.

Excess solute and solvent were allowed to equilibrate with stirring in a thermostated silicone oil bath for 90 min. The stirring was suspended and the suspended particles were allowed to settle to the bottom of the vessel for 120 min. An aliquot of the saturated solution was withdrawn, transferred to a tared volumetric flask, and then weighed to determine the amount of sample withdrawn. The concentration of the dissolved solute was determined by high-performance liquid chromatographic analysis. The density of the saturated was also measured to allow the measured solubilities in units of molarity to be converted to mole fraction solubilities.

#### **Source and Purity of Chemicals:**

(1) 98%, Sigma-Aldrich Chemical Company, was used as received. (2) 99.9% (by HPLC analysis), Sigma-Aldrich Chemical Company, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

### 5.3. 4-Acetylbenzoic acid solubility data in miscellaneous organic solvents

| Components:<br>(1) 4-Acetylbenzoic acid;<br>C <sub>9</sub> H <sub>7</sub> O <sub>3</sub> ; [586-89-0]<br>(2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ;<br>[64-19-7] | Original Measurements:  98 N. Sunsandee, M. Hronec, M. Stolcova, N. Leepipatpiboon, and U. Pancharoen, J. Mol. Liq. <b>180</b> , 252 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                              | Prepared by:                                                                                                                                 |
| Temperature                                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                             |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 303.15 | 0.9978             | 0.00218   |
| 313.15 | 0.9973             | 0.00269   |
| 323.15 | 0.9967             | 0.00332   |
| 333.15 | 0.9958             | 0.00416   |
| 343.15 | 0.9948             | 0.00515   |
| 353.15 | 0.9936             | 0.00644   |
| 363.15 | 0.9919             | 0.00807   |
| 373.15 | 0.9899             | 0.01005   |
| 383.15 | 0.9875             | 0.01253   |
| 393.15 | 0.9843             | 0.01567   |
| 403.15 | 0.9805             | 0.01953   |
| 413.15 | 0.9755             | 0.02453   |
| 423.15 | 0.9695             | 0.03047   |
| 433.15 | 0.9610             | 0.03896   |
| 443.15 | 0.9527             | 0.04731   |
| 453.15 | 0.9417             | 0.05833   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Stainless steel closed equilibrium vessel equipped with magnetic stirrer, analytical balance, high-performance liquid chromatographic system, thermostated silicone oil bath, and digital density meter.

Excess solute and solvent were allowed to equilibrate with stirring in a thermostated silicone oil bath for 90 min. The stirring was suspended and the suspended particles were allowed to settle to the bottom of the vessel for 120 min. An aliquot of the saturated solution was withdrawn, transferred to a tared volumetric flask, and then weighed to determine the amount of sample withdrawn. The concentration of the dissolved solute was determined by high-performance liquid chromatographic analysis. The density of the saturated was also measured to allow the measured solubilities in units of molarity to be converted to mole fraction solubilities.

#### **Source and Purity of Chemicals:**

(1) 98%, Sigma-Aldrich Chemical Company, was used as received.

(2) 99.8% (by HPLC analysis), Sigma-Aldrich Chemical Company, was used as received.

#### **Estimated Error:**

Temperature: ±0.1 K.

 $x_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction of the solute.

#### 6. Solubility of 2-Aminobenzoic Acid in Organic Solvents

### 6.1. Critical evaluation of experimental solubility data

Only two published papers were found in the chemical and engineering literature regarding the solubility of 2-aminobenzoic acid in organic solvents. Jia *et al.* <sup>99</sup> determined the solubility of 2-aminobenzoic acid in 1-octanol in the temperature range of 293–323 K. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [Eq. (9)] of  $\lambda$  = 0.4895 and h = 4520.42 described the observed solubility data to within a mean relative deviation of 0.9%.

Lazzell and Johnston 100 measured the solubility of 2-aminobenzoic acid in benzene, ethyl ethanoate, trichloromethane, methanol, ethanol, and 1-butanol as a function of temperature. Except for 1-butanol, the measurements went from 298 K to well above the normal boiling temperature of the solvent. The internal consistency of the benzene, trichloromethane, and ethanol datasets was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model to yield the following representations:

$$\ln x_1(\text{in benzene}) = -92.104 + \frac{113.71}{T} + 15.248 \ln T, (27)$$

$$\ln x_1(\text{in trichloromethane}) = -80.747 + \frac{113.94}{T} + 13.370 \ln T, \tag{28}$$

$$\ln x_1(\text{in ethanol}) = -48.945 + \frac{114.60}{T} + 8.074 \ln T. \quad (29)$$

There were too few data points in the ethyl ethanoate, methanol, and 1-butanol datasets to perform a meaningful regression analysis. The average absolute deviations between the observed experimental data and back-calculated values based on Eqs. (27)–(29) (of 5.36%, 3.61%, and 0.62%, respectively) are quite small given the range of mole fraction solubilities covered by each of the three datasets. In the case of benzene, the observed solubilities ranged from  $x_1 = 0.0081$  to  $x_1 = 0.8064$ . It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 2-aminobenzoic acid in organic solvents are given in Secs. 6.2–6.5.

### 6.2. 2-Aminobenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 2-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  100 C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                       |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathrm{b}}$ |
|-------|--------------------|--------------------|
| 298.2 | 0.9919             | 0.0081             |
| 348.9 | 0.9129             | 0.0871             |
| 362.7 | 0.8687             | 0.1313             |
| 366.5 | 0.8364             | 0.1636             |
| 374.8 | 0.7778             | 0.2222             |
| 381.5 | 0.7074             | 0.2926             |
| 383.5 | 0.6504             | 0.3496             |
| 392.8 | 0.4912             | 0.5088             |
| 392.5 | 0.4897             | 0.5103             |
| 398.3 | 0.3826             | 0.6174             |
| 399.5 | 0.3531             | 0.6469             |
| 403.1 | 0.2874             | 0.7126             |
| 408.4 | 0.1936             | 0.8064             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid

#### Source and Purity of Chemicals:

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot water, then from chloroform to give a sample having a melting point of 419.3 K.
- (2) Thiophene-free, Chemical source not given, was dried over sodium and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

#### 6.3. 2-Aminobenzoic acid solubility data in esters

| Components: (1) 2-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  100 C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                       |
| Temperature                                                                                                                                                                    | W. E. Acree, Jr.                                                                                   |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 298.2 | 0.8529             | 0.1471  |
| 350.0 | 0.7027             | 0.2973  |
| 381.2 | 0.4718             | 0.5282  |
| 394.0 | 0.3497             | 0.6503  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### **Source and Purity of Chemicals:**

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot water, then from chloroform to give a sample having a melting point of 419.3 K.
- (2) USP grade, Chemical source not given, washed several times with aqueous sodium carbonate, and then with water until the aqueous layer was neutral. The sample was further purified by drying over calcium chloride and then distilling two times before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

# 6.4. 2-Aminobenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements:  100 C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                       |
| Temperature                                                                                                                                         | W.E. Acree, Ir                                                                                     |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9843             | 0.0157    |
| 349.7 | 0.8876             | 0.1124    |
| 362.1 | 0.8117             | 0.1883    |
| 373.6 | 0.7093             | 0.2907    |
| 384.0 | 0.5686             | 0.4314    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid

#### **Source and Purity of Chemicals:**

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot water, then from chloroform to give a sample having a melting point of 419.3 K.
- (2) Certified Pure, Chemical source not given, was dried over calcium chloride and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

#### 6.5. 2-Aminobenzoic acid solubility data in alcohols

| Components:<br>(1) 2-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  100°C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                       |
| Temperature                                                                                                                                         | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9238             | 0.0762    |
| 323.9 | 0.8630             | 0.1370    |
| 350.3 | 0.7408             | 0.2592    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### Source and Purity of Chemicals:

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot water, then from chloroform to give a sample having a melting point of 419 3 K
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                        |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9225             | 0.0775    |
| 341.1 | 0.7781             | 0.2219    |
| 350.5 | 0.7306             | 0.2694    |
| 359.7 | 0.6697             | 0.3303    |
| 367.1 | 0.6181             | 0.3819    |
| 398.7 | 0.2608             | 0.7392    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### **Source and Purity of Chemicals:**

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot water, then from chloroform to give a sample having a melting point of 419.3 K.
- (2) 95%, Chemical source not given, was refluxed with lime and distilled. The sample was further purified by drying over sodium and distilling twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O;<br>[71-36-3] | Original Measurements: <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 353.3 | 0.7320             | 0.2680    |
| 377.8 | 0.5514             | 0.4486    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot water, then from chloroform to give a sample having a melting point of 419.3 K.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [118-92-3]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | <b>Original Measurements:</b> <sup>99</sup> Q. Jia, P. Ma, S. Ma, and C. Wang, Chin. J. Chem. Eng. <b>15</b> , 710 (2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                           |

 $<sup>{}^{</sup>b}x_{1}^{-}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 295.30 | 0.9444             | 0.05555   |
| 298.45 | 0.9384             | 0.06159   |
| 299.95 | 0.9352             | 0.06478   |
| 301.80 | 0.9318             | 0.06817   |
| 303.15 | 0.9288             | 0.07116   |
| 305.05 | 0.9214             | 0.07512   |
| 307.05 | 0.9214             | 0.07856   |
| 308.55 | 0.9185             | 0.08146   |
| 309.65 | 0.9161             | 0.08392   |
| 311.35 | 0.9124             | 0.08761   |
| 313.35 | 0.9081             | 0.09187   |
| 315.95 | 0.9026             | 0.09735   |
| 317.75 | 0.8987             | 0.1013    |
| 320.15 | 0.8924             | 0.1076    |
| 322.25 | 0.8891             | 0.1109    |
|        |                    |           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature circulating bath, stirrer, analytical balance, and laser monitoring system.

Solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent were placed in a stoppered equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and the temperature slowly increased until all of the solid dissolved. Near the dissolution temperature, the temperature was increased at a rate of 0.2 K per 20 min. Complete dissolution was determined using a laser monitoring system.

#### **Source and Purity of Chemicals:**

(1) 99+%, Chemical source not specified, no purification details were provided.

(2) 99+%, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

### 7. Solubility of 3-Aminobenzoic Acid in Organic Solvents

### 7.1. Critical evaluation of experimental solubility data

The have been only three published studies involving the solubility of 3-aminobenzoic acid in organic solvents. Hancock *et al.*<sup>54</sup> measured the solubility of 3-aminobenzoic acid in cyclohexane and benzene at 303 K based on a gravimetric method. Svärd *et al.*<sup>101</sup> determined the solubility of two polymorphic forms of 3-aminobenzoic acid in ethyl ethanoate, methanol, and ethanenitrile using a gravimetric method. Differential scanning calorimetry showed both polymorphs melting without any prior solid–solid transformations, with measured enthalpies of fusion and melting temperatures of

 $\Delta H_1^{\rm fus}=35.51~{\rm kJ\,mol}^{-1}$  and  $T_{\rm mp}=445.2~{\rm K}$ , and  $\Delta H_1^{\rm fus}=26.74~{\rm kJ\,mol}^{-1}$  and  $T_{\rm mp}=451.2~{\rm K}$  for the forms I and II, respectively. Form I was characterized by dendritic growth, forming small cascades of threads, possibly due to twinning. Form II, on the other hand, developed into needle-like crystals that can be grown to several millimeters in length. Form II was the more soluble of the two polymorphs as one might expect from its lower enthalpy of fusion. The authors fit the solubility data for each solvent and each polymorph to Eq. (22). The calculated equation coefficients (A, B, and C) are given in Table 13, along with the  $\chi^2$  "goodness-of-fit" calculated by the Origin 6.1 statistical software. Graphs of the mole fraction solubility versus temperature given in the paper fell on smooth curves, and did not indicate any obvious outlier data points.

Lazzell and Johnston<sup>100</sup> measured the solubility of 3-aminobenzoic acid in benzene, ethyl ethanoate, trichloromethane, methanol, ethanol, and 1-butanol as a function of temperature. Except for 1-butanol, the measurements went from 298 K to well above the normal boiling temperature of the solvent. The internal consistency of the benzene and ethanol datasets was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model to yield the following representations:

$$\ln x_1(\text{in benzene}) = -255.914 + \frac{110.95}{T} + 41.973 \ln T,$$
(30)

$$\ln x_1(\text{in ethanol}) = -65.997 + \frac{114.72}{T} + 10.772 \ln T. \quad (31)$$

The experimental value at 298 K had to be removed from the benzene dataset in order to obtain a reasonable correlation equation. There were too few data points in the ethyl ethanoate, trichloromethane, methanol, and 1-butanol datasets to perform a meaningful regression analysis. The average absolute deviations between the observed experimental data and back-calculated values based on Eqs. (30) and (31) of 18.36% and 7.88% are larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0423$  to  $x_1 = 0.6704$  for benzene and  $x_1 = 0.0152$  to  $x_1 = 0.7806$  for ethanol. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 3-aminobenzoic acid in organic solvents are given in Secs. 7.2–7.6.

Table 13. Parameters of Eq. (22) describing the solubility of 3-aminobenzoic acid in ethyl ethanoate, ethanenitrile, and methanol<sup>a</sup>

| Solvent                   | A      | В        | С        | $\chi^2$ |
|---------------------------|--------|----------|----------|----------|
| Ethyl ethanoate (Form I)  | -31.57 | 2471.76  | 0.06134  | 0.00048  |
| Ethyl ethanoate (Form II) | -8.55  | -242.26  | 0.01841  | 0.00014  |
| Methanol (Form I)         | -11.93 | -279.14  | 0.02891  | 0.00031  |
| Ethanenitrile (Form I)    | -36.07 | 2604.92  | 0.07192  | 0.00187  |
| Ethanenitrile (Form II)   | 16.47  | -4464.59 | -0.02117 | 0.00009  |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and goodness-of-fit were taken from Svärd et al. <sup>101</sup>

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### 7.2. 3-Aminobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000275 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

### 7.3. 3-Aminobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000771 |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

| <b>Components:</b> (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>100</sup> C. L. Lazzell and J. Johnston, J.<br>Phys. Chem. <b>32</b> , 1331 (1928). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                       |
| Temperature                                                                                                                                                  | W. E. Acree, Jr.                                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9992             | 0.0008    |
| 407.6 | 0.9577             | 0.0423    |
| 411.7 | 0.9447             | 0.0553    |
| 416.9 | 0.9246             | 0.0754    |
| 423.6 | 0.8740             | 0.1260    |
| 426.7 | 0.8046             | 0.1954    |
| 429.9 | 0.6508             | 0.3492    |
| 434.9 | 0.3296             | 0.6704    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $^{\text{b}}x_1$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### Source and Purity of Chemicals:

- (1) Certified Pure, was recrystallized several times from hot water, then from 95% ethanol, and finally from boiling water. The purified sample had a melting point temperature of  $451.1\,$  K.
- (2) Thiophene-free, Chemical Source not given, was dried over sodium and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

#### 7.4. 3-Aminobenzoic acid solubility data in esters

| Components: (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements: <sup>101</sup> M. Svärd, F. L. Nordström, and A. C. Rasmuson, Cryst. Growth Des. <b>10</b> , 195 (2010). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 283.2 | 0.9957    | 0.00429   |
| 288.2 | 0.9951    | 0.00490   |
| 293.3 | 0.9944    | 0.00561   |
| 298.2 | 0.9933    | 0.00670   |
| 303.2 | 0.9917    | 0.00830   |
| 308.2 | 0.9903    | 0.00972   |
| 313.2 | 0.9883    | 0.01170   |
| 318.2 | 0.9864    | 0.01362   |
| 323.2 | 0.9835    | 0.01654   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 273.2 | 0.9877             | 0.01227   |
| 278.2 | 0.9866             | 0.01338   |
| 283.2 | 0.9848             | 0.01522   |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 288.2 | 0.9832             | 0.01675            |
| 293.3 | 0.9813             | 0.01867            |
| 298.2 | 0.9789             | 0.02106            |
| 303.2 | 0.9771             | 0.02293            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.8%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8%, HiperSolv, VWR Scientific, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components:<br>(1) 3-Aminobenzoic acid;<br>$C_7H_7NO_2$ ; [99-05-8]<br>(2) Ethyl ethanoate; $C_4H_8O_2$ ;<br>[141-78-6] | <b>Original Measurements:</b> <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                              | Prepared by:                                                                                                        |
| Temperature                                                                                                             | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9870             | 0.0130    |
| 383.7 | 0.8824             | 0.1176    |
| 418.3 | 0.5281             | 0.4719    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph form I. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph form II. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### Source and Purity of Chemicals:

(1) Certified Pure, was recrystallized several times from hot water, then from 95% ethanol, and finally from boiling water. The purified sample had a melting point temperature of 451.1 K.

(2) USP grade, Chemical source not given, washed several times with aqueous sodium carbonate, and then with water until the aqueous layer was neutral. The sample was further purified by drying over calcium chloride and then distilling two times before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

# 7.5. 3-Aminobenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements:  100 C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                       |
| Temperature                                                                                                                                        | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9995             | 0.0005    |
| 398.0 | 0.9635             | 0.0365    |
| 406.1 | 0.9437             | 0.0563    |
| 425.9 | 0.6787             | 0.3213    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### Source and Purity of Chemicals:

(1) Certified Pure, was recrystallized several times from hot water, then from 95% ethanol, and finally from boiling water. The purified sample had a melting point temperature of 451.1 K.

(2) Certified Pure, Chemical source not given, was dried over calcium chloride and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

#### 7.6. 3-Aminobenzoic acid solubility data in alcohols

| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | C. Rasmuson, Cryst. Growth Des. <b>10</b> , 195 (2010).                        |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Components: (1) 3-Aminobenzoic acid;                                                                    | <b>Original Measurements:</b> <sup>101</sup> M. Svärd, F. L. Nordström, and A. |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 283.2 | 0.9911             | 0.00893            |
| 288.2 | 0.9897             | 0.01025            |
| 293.3 | 0.9881             | 0.01194            |
| 298.2 | 0.9860             | 0.01399            |
| 303.2 | 0.9831             | 0.01691            |
| 308.2 | 0.9798             | 0.02016            |
| 313.2 | 0.9771             | 0.02294            |
| 318.2 | 0.9731             | 0.02686            |
| 323.2 | 0.9686             | 0.03135            |

 $x_2$ : mole fraction of component 2 in the saturated solution.

<sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph form I. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a  $0.2\,\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.7%, Sigma-Aldrich Chemical Company, USA, used as received.

(2) 99.9+%, VWR Scientific, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

| Components:<br>(1) 3-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | <b>Original Measurements:</b> <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                                        |
| Temperature                                                                                                                                        | W. E. Acree, Jr.                                                                                                    |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 298.2 | 0.9830             | 0.0170             |
| 359.4 | 0.9027             | 0.0973             |
| 382.8 | 0.7993             | 0.2007             |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### **Source and Purity of Chemicals:**

- (1) Certified Pure, was recrystallized several times from hot water, then from 95% ethanol, and finally from boiling water. The purified sample had a melting point temperature of 451.1 K.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                        |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 298.2 | 0.9848             | 0.0152             |
| 371.8 | 0.8811             | 0.1189             |
| 388.7 | 0.7589             | 0.2411             |
| 413.7 | 0.5208             | 0.4792             |
| 436.8 | 0.2194             | 0.7806             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid

#### **Source and Purity of Chemicals:**

- (1) Certified Pure, was recrystallized several times from hot water, then from 95% ethanol, and finally from boiling water. The purified sample had a melting point temperature of  $451.1\,$  K.
- (2) 95%, Chemical source not given, was refluxed with lime and distilled. The sample was further purified by drying over sodium and distilling twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                | Original Measurements:                           |
|------------------------------------------------------------|--------------------------------------------------|
| (1) 3-Aminobenzoic acid;                                   | <sup>100</sup> C. L. Lazzell and J. Johnston, J. |
| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8]  | Phys. Chem. 32, 1331 (1928).                     |
| (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] |                                                  |
| Variables:                                                 | Prepared by:                                     |
| Temperature                                                | W. E. Acree, Jr.                                 |
|                                                            |                                                  |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 400.4 | 0.7928             | 0.2072             |
| 411.9 | 0.7065             | 0.2935             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Certified Pure, was recrystallized several times from hot water, then from 95% ethanol, and finally from boiling water. The purified sample had a melting point temperature of 451.1 K.

(2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

### 7.7. 3-Aminobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [99-05-8] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements: <sup>101</sup> M. Svärd, F. L. Nordström, and A. C. Rasmuson, Cryst. Growth Des. <b>10</b> , 195 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 283.2 | 0.9984  | 0.00157            |
| 288.2 | 0.9982  | 0.00177            |
| 293.3 | 0.9979  | 0.00214            |
| 298.2 | 0.9972  | 0.00282            |
| 303.2 | 0.9966  | 0.00337            |
| 308.2 | 0.9955  | 0.00447            |
| 313.2 | 0.9944  | 0.00561            |
| 318.2 | 0.9933  | 0.00673            |
| 323.2 | 0.9917  | 0.00830            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 283.2 | 0.9958  | 0.00423   |
| 288.2 | 0.9950  | 0.00501   |
| 293.3 | 0.9940  | 0.00603   |
| 298.2 | 0.9930  | 0.00695   |
| 303.2 | 0.9919  | 0.00813   |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

99.8%, Sigma-Aldrich Chemical Company, USA, was used as received.
 99.8%, LiChrosolv, VWR Scientific, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

#### 8. Solubility of 4-Aminobenzoic Acid in Organic Solvents

### 8.1. Critical evaluation of experimental solubility data

There have been several published studies<sup>51,102–105</sup> investigating the solubility behavior of 4-aminobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Daniels *et al.* 103 measured the solubility of 4aminobenzoic acid in 13 alcohols (ethanol, 1-propanol, 2propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol), and in one cyclic ether (1,4-dioxane) at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 4-aminobenzoic acid. The authors were able to assemble a total of 26  $log_{10}$  (SR or P) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 4-aminobenzoic acid is  $\log_{10} c_{1,W} = -1.37.^{106}$  The McGowan volume of 4aminobenzoic acid, V = 1.0315, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 1.075. This left three solute descriptors (S, A, and B) still to be determined. The 26 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.650, A = 0.940, and B = 0.600, that best described the  $\log_{10}$  (SR or P) values. The calculated molecular solute descriptors reproduced the log<sub>10</sub> (SR or P) values to within an average standard deviation of  $0.120 \log_{10}$  units.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph form I. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph form II. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

Table 14. Comparison between observed and calculated molar solubilities of 4-aminobenzoic acid based on the Abraham model, Eq. (20)

| Solvent             | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{calc}}; \text{Eq. (20)}$ |
|---------------------|------------------------------|------------------------------------------------|
| Ethanol             | -0.082                       | -0.222                                         |
| 1-Propanol          | -0.360                       | -0.410                                         |
| 2-Propanol          | -0.384                       | -0.387                                         |
| 1-Butanol           | -0.470                       | -0.593                                         |
| 2-Butanol           | -0.520                       | -0.519                                         |
| 2-Methyl-1-propanol | -0.724                       | -0.675                                         |
| 1-Pentanol          | -0.616                       | -0.652                                         |
| 2-Pentanol          | -0.673                       | -0.682                                         |
| 3-Methyl-1-butanol  | -0.742                       | -0.780                                         |
| 1-Hexanol           | -0.670                       | -0.722                                         |
| 1-Heptanol          | -0.792                       | -0.811                                         |
| 1-Octanol           | -0.877                       | -0.814                                         |
| 1-Decanol           | -1.040                       | -0.996                                         |
| 1,1'-Oxybisethane   | $-0.888^{a}$                 | -1.027                                         |
| 1,4-Dioxane         | -0.096                       | -0.122                                         |
| Propanone           | $-0.158^{a}$                 | -0.278                                         |

 $<sup>^{</sup>m a}$ Experimental data from a study by Barra  $et~al.^{102}$  All other experimental values are from Daniels  $et~al.^{103}$ 

After the 4-aminobenzoic acid solubility study was published, Abraham model correlations have been developed for 3-methyl-1-butanol and 2-pentanol, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Table 1) will be used in illustrating the ability of the Abraham model to correlate the experimental 4-aminobenzoic acid solubility data. Table 14 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eq. (20) of the Abraham model.

For comparison purposes, the measured mole fraction solubilities of 4-aminobenzoic acid,  $x_1$ , determined by Daniels  $et\ al.^{103}$  were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\rm sat} = x_1/[x_1V_1 + (1-x_1)V_{\rm solvent}]$ ). The molar volume of the hypothetical subcooled liquid 4-aminobenzoic acid is  $V_{\rm solute} = 106.49$  cm<sup>3</sup> mol<sup>-1</sup>. Examination of the numerical entries in Table 14 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset. Included in Table 14 are experimental solubility measurements for 4-aminobenzoic acid dissolved in 1,1'-oxybisethane and propanone from the solubility study of Barra  $et\ al.^{102}$ 

Barra *et al.*<sup>102</sup> published solubility data for 4-aminobenzoic acid in two saturated hydrocarbons (heptane and cyclohexane), in one aromatic hydrocarbon (benzene), in one alkyl alkanoate (ethyl ethanoate), in one alkyl ether (1,1'-oxybisethane) and one cyclic ether (1,4-dioxane), in two chloroalkanes (trichloromethane and 1,2-dichloroethane) and one chloroaromatic hydrocarbon (chlorobenzene), in seven alcohols [methanol, ethanol, 1-pentanol, 1-octanol, 1,2-ethanediol, 1,2-propanediol, and 1,2,3-propanetriol (also referred to as glycerol)], in one alkanone (propanone) and one aromatic ketone (acetophenone), and in four miscellaneous organic solvents (ethanoic acid, propanoic acid, formamide, and *N*, *N*-dimethylformamide) at 298 K. Lin and Nash<sup>51</sup> determined 4-aminobenzoic acid solubilities at 298 K in 16 different organic solvents, including hexane, ethyl ethanoate, tetrahy-

drofuran, methanol, 1-propanol, 3-methyl-3-pentanol, 1,2propanediol, 1,3-propanediol, butyl 2-hydroxypropanoate (also called butyl lactate), and 2-ethoxyethanol. Abraham model equation coefficients are available for several of the solvents studied by Barra et al. 102 and by Lin and Nash. 51 Several solvents were not included in the Table 13 comparison because of the likelihood of dimerization in the nonpolar alkane and aromatic hydrocarbon solvents, or concerns regarding the formation of possible solid solvates. The Abraham model requires that the solute exist in the same crystalline form in both water and the organic solvent. The measurements of Barra et al. 102 do provide independent experimental values for the solubility of 4-aminobenzoic acid in ethanol, 1-pentanol, 1-octanol, and 1,4-dioxane. The mole fraction solubilities reported by Barra et al. 102 are about 10% less than the published values of Daniels et al., <sup>103</sup> namely,  $x_1 = 0.0465$ versus  $x_1 = 0.0506$  for ethanol,  $x_1 = 0.0234$  versus  $x_1 = 0.0263$ for 1-pentanol,  $x_1 = 0.0181$  versus  $x_1 = 0.0209$  for 1-octanol, and  $x_1 = 0.0632$  versus  $x_1 = 0.0700$  for 1,4-dioxane.

There are three or more experimental data points in a few solvents listed in Secs. 8.2–8.10 to compute recommended values. The recommended mole fraction solubilities of 4-aminobenzoic acid at 298 K are as follows:  $x_1 = 0.0566$  for ethyl ethanoate [arithmetic average of  $x_1 = 0.0576$ ,  $^{102}$  0.0532,  $^{51}$  0.0574,  $^{104}$  and 0.0589 (Ref. 104)];  $x_1 = 0.0570$  for methanol [arithmetic average of  $x_1 = 0.0539$ ,  $^{102}$  0.0576,  $^{51}$  and 0.0594 (Ref. 100)]; and  $x_1 = 0.192$  for 1-octanol [arithmetic average of  $x_1 = 0.0187$ ,  $^{99}$  0.02088,  $^{103}$  and 0.01806 (Ref. 102)].

Jia *et al.*<sup>99</sup> determined the solubility of 4-aminobenzoic acid in 1-octanol in the temperature range of 293–323 K. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [Eq. (9)] of  $\lambda = 0.2257$  and h = 9393.6 described the observed solubility data to within a mean relative deviation of 0.9%.

Lazzell and Johnston 100 measured the solubility of 4-aminobenzoic acid in benzene, ethyl ethanoate, trichloromethane, methanol, ethanol, and 1-butanol as a function of temperature. Except for ethyl ethanoate and 1-butanol, the measurements went from 298 K to well above the normal boiling temperature of the solvent. The internal consistency of the benzene, ethyl ethanoate, and ethanol datasets was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model to yield the following representations:

$$\ln x_1(\text{in benzene}) = -185.559 + \frac{112.06}{T} + 30.304 \ln T,$$
 (32)

$$\ln x_1$$
 (in ethyl ethanoate) =  $-54.622 + \frac{114.72}{T} + 8.884 \ln T$ , (33)

$$\ln x_1(\text{in ethanol}) = -45.766 + \frac{114.89}{T} + 7.429 \ln T. \quad (34)$$

The experimental value at 298 K had to be removed from the benzene dataset in order to obtain a reasonable correlation equation. There were too few data points in the trichloromethane, methanol, and 1-butanol datasets to perform a

meaningful regression analysis. The average absolute deviations between the observed experimental data and back-calculated values based on Eqs. (32)–(34) of 15.00%, 3.07%, and 4.29% are larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0211$  to  $x_1 = 0.5342$  for benzene,  $x_1 = 0.1219$  to  $x_1 = 0.4840$  for ethyl ethanoate, and  $x_1 = 0.0497$  to  $x_1 = 0.6552$  for ethanol. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 4-aminobenzoic acid in the different organic solvents are in Secs. 8.2–8.10.

### 8.2. 4-Aminobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.000001  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $\overline{x_2}^a$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9999             | 0.0000061 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ;<br>[110-82-7] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                                      |
| T/K = 303.15                                                                                                                                                             | W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9999  | 0.0000116          |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.

(2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ;<br>[110-82-7] | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                                                    |
| T/K = 298.15                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\mathbf{b}}$ |
|-----------|--------------------|
| 0.9999    | 0.00000087         |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.

(2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

### 8.3. 4-Aminobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9996  | 0.000427  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

(1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.

(2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature: ±0.02 K.

 $x_1$ :  $\pm 5\%$  (relative error, by compiler).

| Components:                                                | Original Measurements:                          |
|------------------------------------------------------------|-------------------------------------------------|
| (1) 4-Aminobenzoic acid;                                   | <sup>102</sup> J. Barra, MA. Peña, and P.       |
| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] | Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]     | (2000).                                         |
| Variables: T/K = 298.15                                    | Prepared by:<br>W. E. Acree, Jr.                |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9998  | 0.000210  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  100 C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                                                       |
| Temperature                                                                                                                                            | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 298.2 | 0.9996             | 0.0004             |
| 394.9 | 0.9789             | 0.0211             |
| 413.1 | 0.9502             | 0.0498             |
| 428.0 | 0.8586             | 0.1414             |
| 428.4 | 0.8434             | 0.1566             |
| 429.7 | 0.8176             | 0.1824             |
| 433.0 | 0.7150             | 0.2850             |
| 433.4 | 0.6763             | 0.3237             |
| 438.2 | 0.4658             | 0.5342             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### Source and Purity of Chemicals:

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot aqueous solution, then from 95% ethanol, and finally from hot water. The purified solute had a melting point temperature of  $460.2~\rm K$ .
- (2) Thiophene-free, Chemical source not given, was dried over sodium and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

#### 8.4. 4-Aminobenzoic acid solubility data in esters

| Components:                                                                                                                                                                 | Original Measurements:                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| (1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
| Variables: T/K = 298.15                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9424  | 0.0576    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm Sci. <b>82</b> , 1018 (1993). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                                               |
| T/K = 298.15                                                                                                                                                                               | W. E. Acree, Jr.                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9468  | 0.0532    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | <b>Original Measurements:</b> <sup>104</sup> S. Gracin and A. C. Rasmuson, Cryst. Growth Des. <b>4</b> , 1013 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                          |
| Temperature                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 268.2 | 0.9554             | 0.0446    |
| 273.2 | 0.9554             | 0.0446    |
| 278.2 | 0.9541             | 0.0459    |
| 283.2 | 0.9522             | 0.0478    |
| 288.2 | 0.9491             | 0.0509    |
| 293.2 | 0.9459             | 0.0541    |
| 297.2 | 0.9431             | 0.0569    |
| 301.2 | 0.9411             | 0.0589    |
| 305.2 | 0.9383             | 0.0617    |
| 309.2 | 0.9360             | 0.0640    |
| 315.2 | 0.9282             | 0.0718    |
| 323.2 | 0.9235             | 0.0765    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 262.2 | 0.9608  | 0.0392    |
| 268.2 | 0.9608  | 0.0392    |
| 273.2 | 0.9608  | 0.0392    |
| 278.2 | 0.9581  | 0.0419    |
| 283.2 | 0.9551  | 0.0449    |
| 288.2 | 0.9508  | 0.0492    |
| 293.2 | 0.9470  | 0.0530    |
| 297.2 | 0.9428  | 0.0572    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, oven, and a heating and refrigeration circulator.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu$ m PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in an oven. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

(1) 99.8%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8%, HiperSolv, VWR Scientific, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph  $\alpha$  (needles). Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for polymorph form  $\beta$  (prisms). Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | <b>Original Measurements:</b> <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                                                        |
| Temperature                                                                                                                                                                                | W. E. Acree, Jr.                                                                                                    |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 355.3 | 0.8781             | 0.1219             |
| 385.3 | 0.7693             | 0.2307             |
| 404.4 | 0.6525             | 0.3475             |
| 409.8 | 0.5805             | 0.4195             |
| 417.2 | 0.5160             | 0.4840             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### **Source and Purity of Chemicals:**

(1) Certified Pure, Chemical source not given, was recrystallized several times from hot aqueous solution, then from 95% ethanol, and finally from hot water. The purified solute had a melting point temperature of 460.2 K.

(2) USP grade, Chemical source not given, washed several times with aqueous sodium carbonate, and then with water until the aqueous layer was neutral. The sample was further purified by drying over calcium chloride and then distilling two times before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,2,3-Triacetoxypropane;<br>C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                          | Prepared by:                                                                                     |
| T/K = 298.15                                                                                                                                                                                        | W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------------------|---------|
| 0.9224             | 0.0776  |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Purity not given, Unichema International, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

#### 8.5. 4-Aminobenzoic acid solubility data in ethers

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,1'-Oxybisethane;<br>C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                      |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9864  | 0.0136    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Constant-temperature\ bath,\ analytical\ balance,\ and\ an\ ultraviolet/visible\ spectrophotometer.$ 

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,1'-Oxybisethane;<br>C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | <b>Original Measurements:</b> <sup>105</sup> P. K. Takayama, N. Nambu, and T. Nagai, Chem. Pharm. Bull. <b>25</b> , 879 (1977). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                    |
| T/K = 283                                                                                                                                                                      | W. E. Acree, Jr.                                                                                                                |

The solubility was given graphically in the paper as a plot of molar concentration of the solute versus the concentration of ligand added. From the graph the compiler estimated a molar solubility of  $c_1 = 0.102 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were sealed in vials and incubated for 48 h at 283 K. A 1 ml sample of the supernatant was withdrawn and the solvent evaporated at 323 K. The residue was dissolved in water or ethanol, and the concentration of the solute determined from spectroscopic absorbance measurements.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from water before use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                      |
| T/K = 303.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.767   | 0.233     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask

suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                         |
| T/K = 298.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7830  | 0.2170  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                                                                                               |
| T/K = 298.15                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                                                           |

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9300  | 0.06998            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| [123-91-1]  Variables:  T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9368  | 0.0632  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:                                                     | Original Measurements:                              |
|-----------------------------------------------------------------|-----------------------------------------------------|
| (1) 4-Aminobenzoic acid;                                        | <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. |
| $C_7H_7NO_2$ ; [150-13-0]                                       | P. Idoux, J. Org. Chem. <b>32</b> , 1931            |
| (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; | (1967).                                             |
| [123-91-1]                                                      |                                                     |
| Variables:                                                      | Prepared by:                                        |
| T/K = 303.15                                                    | W. E. Acree, Jr.                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.922   | 0.078     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1,2-Dimethoxyethane; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-71-4] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                    |
| T/K = 298.15                                                                                                                                                                        | W. E. Acree, Jr.                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7872  | 0.2128    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Purity not given, Hoechst Chemikalien, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 2,5,8,11-Tetraoxadodecane; C <sub>8</sub> H <sub>18</sub> O <sub>4</sub> ; [112-49-2] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.6435  | 0.3565    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

## 8.6. 4-Aminobenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components:                                                | Original Measurements:                    |
|------------------------------------------------------------|-------------------------------------------|
| (1) 4-Aminobenzoic acid;                                   | <sup>102</sup> J. Barra, MA. Peña, and P. |
| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] | Bustamante, Eur. J. Pharm. Sci. 10, 153   |
| (2) Trichloromethane; CHCl <sub>3</sub> ;                  | (2000).                                   |
| [67-66-3]                                                  |                                           |
| Variables:                                                 | Prepared by:                              |
| T/K = 298.15                                               | W. E. Acree, Jr.                          |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9984           | 0.001558  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- $\label{eq:company} \mbox{(1) Purity not given, Sigma Chemical Company, USA, no purification details} \mbox{were provided.}$
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:                                                | Original Measurements:                           |
|------------------------------------------------------------|--------------------------------------------------|
| (1) 4-Aminobenzoic acid;                                   | <sup>100</sup> C. L. Lazzell and J. Johnston, J. |
| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] | Phys. Chem. 32, 1331 (1928).                     |
| (2) Trichloromethane; CHCl <sub>3</sub> ;                  |                                                  |
| [67-66-3]                                                  |                                                  |

Variables: Prepared by:
Temperature W. E. Acree, Jr.

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 298.2 | 0.9987             | 0.0013             |
| 409.9 | 0.9475             | 0.0525             |
| 429.6 | 0.7010             | 0.2990             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### **Source and Purity of Chemicals:**

- (1) Certified Pure, Chemical source not given, was recrystallized several times from hot aqueous solution, then from 95% ethanol, and finally from hot water. The purified solute had a melting point temperature of  $460.2~\rm K$ .
- (2) Certified Pure, Chemical source not given, was dried over calcium chloride and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1,2-Dichloroethane; C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> ; [107-06-2] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                                                      |
| T/K = 298.15                                                                                                                                                                              | W. E. Acree, Jr.                                                                                                                  |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.9971    | 0.00292   |

 $^{4}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9995  | 0.000485  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

#### 8.7. 4-Aminobenzoic acid solubility data in alcohols

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9461  | 0.0539    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                 |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9424           | 0.0576  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>100</sup> C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 298.2 | 0.9406    | 0.0594    |
| 359.7 | 0.8225    | 0.1775    |
| 381.5 | 0.7313    | 0.2687    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### Source and Purity of Chemicals:

(1) Certified Pure, Chemical source not given, was recrystallized several times from hot aqueous solution, then from 95% ethanol, and finally from hot water. The purified solute had a melting point temperature of 460.2 K.

(2) Purity not given, Chemical source not given, purification details were not provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

# Components: Original Measurements: (1) 4-Aminobenzoic acid; 103 C. R. Daniels, A. K. Charlton, R. M. C<sub>7</sub>H<sub>7</sub>NO<sub>2</sub>; [150-13-0] Wold, R. J. Moreno, W. E. Acree, Jr., (2) Ethanol; C<sub>2</sub>H<sub>6</sub>O; [64-17-5] and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). Variables: Prepared by: T/K = 298.15 W. E. Acree, Jr.

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9494  | 0.05062   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                        | Original Measurements:                          |
|------------------------------------|-------------------------------------------------|
| (1) 4-Aminobenzoic acid;           | <sup>102</sup> J. Barra, MA. Peña, and P.       |
| $C_7H_7NO_2$ ; [150-13-0]          | Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 |
| (2) Ethanol; $C_2H_6O$ ; [64-17-5] | (2000).                                         |
| Variables:<br>T/K = 298.15         | Prepared by: W. E. Acree, Jr.                   |

#### **Experimental Values**

| a       | h      |
|---------|--------|
| $x_2$ " | $x_1$  |
| 0.9535  | 0.0465 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

(1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.

(2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:<br><sup>100</sup> C. L. Lazzell and J. Johnston, J.<br>Phys. Chem. <b>32</b> , 1331 (1928). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                       |
| Temperature                                                                                                                                                      | W. E. Acree, Jr.                                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.9503             | 0.0497    |
| 349.0 | 0.8644             | 0.1356    |
| 354.5 | 0.8471             | 0.1529    |
| 361.9 | 0.7996             | 0.2004    |
| 372.2 | 0.7796             | 0.2204    |
| 388.2 | 0.7000             | 0.3000    |
| 413.3 | 0.5199             | 0.4801    |
| 428.4 | 0.3448             | 0.6552    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

 ${}^{b}x_{1}^{-}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid.

#### Source and Purity of Chemicals:

(1) Certified Pure, Chemical source not given, was recrystallized several times from hot aqueous solution, then from 95% ethanol, and finally from hot water. The purified solute had a melting point temperature of  $460.2~\rm K$ .

(2) 95%, Chemical source not given, was refluxed with lime and distilled. The sample was further purified by drying over sodium and distilling twice before use

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9668  | 0.03316   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  51HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:<br>T/K = 298 15                                                                                                                                 | Prepared by: W. E. Acree, Ir                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9671  | 0.0329  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

(1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.

(2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O;<br>[67-63-0] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                             | Prepared by:                                                                                                                                               |
| T/K = 298.15                                                                                                                                                           | W. E. Acree, Jr.                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9678  | 0.03218 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9686           | 0.03139   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  100 C. L. Lazzell and J. Johnston, J. Phys. Chem. <b>32</b> , 1331 (1928). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                       |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 407.7 | 0.6664             | 0.3336    |
| 426.4 | 0.4490             | 0.5510    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a solution of sodium hydroxide standardized against the pure acid

#### **Source and Purity of Chemicals:**

(1) Certified Pure, Chemical source not given, was recrystallized several times from hot aqueous solution, then from 95% ethanol, and finally from hot water. The purified solute had a melting point temperature of 460.2 K.

(2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                                                                                                          | Original Measurements:                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| (1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | <sup>103</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. |
| (2) 2 Battanon, C411 <sub>[10</sub> C, [70 72 2]                                                                                                     | <b>42</b> , 633 (2004).                                                                                                       |
| Variables:                                                                                                                                           | Prepared by:                                                                                                                  |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9719  | 0.02808   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9825  | 0.01751 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                               |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9737  | 0.02630   |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                           |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9766  | 0.02338 |

 $x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O;<br>[6032-29-7] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9767  | 0.02325            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9801  | 0.01989   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O;<br>[111-27-3] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9734  | 0.02664   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>$C_7H_7NO_2$ ; [150-13-0]<br>(2) 3-Methyl-3-pentanol;<br>$C_6H_{14}O$ ; [77-74-3] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                 |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.9639    | 0.0361      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O;<br>[111-70-6] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9772  | 0.02277            |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9791  | 0.02088   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | Original Measurements:  102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                           |
| T/K = 298.15                                                                                                                                                            | W. E. Acree, Jr.                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9819  | 0.01806   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.

(2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | <b>Original Measurements:</b> <sup>99</sup> Q. Jia, P. Ma, S. Ma, and C. Wang, Chin. J. Chem. Eng. <b>15</b> , 710 (2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                                               |
| Temperature                                                                                                                                                             | W. E. Acree, Jr.                                                                                                           |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 297.95 | 0.9815  | 0.01849   |
| 300.85 | 0.9798  | 0.02076   |
| 303.55 | 0.9781  | 0.02186   |
| 303.45 | 0.9774  | 0.02257   |
| 305.80 | 0.9769  | 0.02307   |
| 307.65 | 0.9751  | 0.02493   |
| 308.85 | 0.9745  | 0.02550   |
| 309.90 | 0.9739  | 0.02605   |
| 310.85 | 0.9734  | 0.02659   |
| 311.75 | 0.9729  | 0.02710   |
| 313.35 | 0.9719  | 0.02814   |
| 315.15 | 0.9707  | 0.02926   |
| 318.35 | 0.9683  | 0.03165   |
| 320.05 | 0.9672  | 0.03276   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature circulating bath, stirrer, analytical balance, and laser monitoring system.

Solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent were placed in a stoppered equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and the temperature slowly increased until all of the solid dissolved. Near the dissolution temperature, the temperature was increased at a rate of 0.2 K/20 min. Complete dissolution was determined using a laser monitoring system.

#### **Source and Purity of Chemicals:**

(1) 99+%, Chemical source not specified, no purification details were provided.

(2) 99+%, Chemical source not specified, no purification details were provided.

#### Estimated Error:

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O;<br>[112-30-1] | Original Measurements:  103 C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 633 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                | Prepared by: W. E. Acree, Jr.                                                                                                                              |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

|         | L         |
|---------|-----------|
| $x_2^a$ | $x_1^{b}$ |
| 0.9826  | 0.01736   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 289 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,2-Ethanediol; C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[107-21-1] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                                                      |
| T/K = 298.15                                                                                                                                                                              | W. E. Acree, Jr.                                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9307  | 0.06932   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[57-55-6] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9173           | 0.08266 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Original Measurements:  51HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree, Jr.                                                          |
|                                                                                           |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9207           | 0.0793  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0  $\mu m$  filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) 1,3-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[504-63-2] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9331           | 0.0669  |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 1,2,3-Propanetriol (Glycerol); C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [60-29-7] | Original Measurements: <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9282  | 0.07179   |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

### 8.8. 4-Aminobenzoic acid solubility data in alkoxyalcohols

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-85-5] | <b>Original Measurements:</b> <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                |
| T/K = 298.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                            |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\mathrm{a}}$ | $x_1^{\ b}$ |
|--------------------|-------------|
| 0.8169             | 0.1831      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0  $\mu$ m filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

#### 8.9. 4-Aminobenzoic acid solubility data in ketones

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O;<br>[67-64-1] | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9474  | 0.05265   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O; [98-86-2] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153<br>(2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9957  | 0.004335 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

### 8.10. 4-Aminobenzoic acid solubility data in miscellaneous organic solvents

| Components:                                                       | Original Measurements:                    |
|-------------------------------------------------------------------|-------------------------------------------|
| (1) 4-Aminobenzoic acid;                                          | <sup>102</sup> J. Barra, MA. Peña, and P. |
| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]        | Bustamante, Eur. J. Pharm. Sci. 10, 153   |
| (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; | (2000).                                   |
| [64-19-7]                                                         |                                           |
| Variables:                                                        | Prepared by:                              |
| T/K = 298.15                                                      | W. E. Acree, Jr.                          |
|                                                                   |                                           |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9229  | 0.0771  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Aminobenzoic acid;<br>C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0]<br>(2) Propanoic acid; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[79-09-4] | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9510  | 0.0490  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Formamide; CH <sub>3</sub> NO; [75-12-7] | Original Measurements: 102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9878  | 0.01223   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- $\label{eq:continuous} (2) \, Spectrophotometric \, or \, Analytical \, grade, Chemical \, source \, not \, specified, \, no \, purification \, details \, were \, provided.$

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:                                                | Original Measurements:                    |  |
|------------------------------------------------------------|-------------------------------------------|--|
| (1) 4-Aminobenzoic acid;                                   | <sup>102</sup> J. Barra, MA. Peña, and P. |  |
| C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] | Bustamante, Eur. J. Pharm. Sci. 10, 153   |  |
| (2) N,N-Dimethylformamide;                                 | (2000).                                   |  |
| C <sub>3</sub> H <sub>7</sub> NO; [68-12-2]                |                                           |  |
| Variables:                                                 | Prepared by:                              |  |
| T/K = 298.15                                               | W. E. Acree, Jr.                          |  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9991  | 0.000904 |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) Butyl 2-hydroxypropanoate; C <sub>7</sub> H <sub>14</sub> O <sub>3</sub> ; [128-22-7] | <b>Original Measurements:</b> 51 HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                     |
| T/K = 298.15                                                                                                                                                                              | W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9015  | 0.0985    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Purity not given, Purac Inc., no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Aminobenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub> ; [150-13-0] (2) γ-Butyrolactone; C <sub>4</sub> H <sub>6</sub> O <sub>2</sub> ; [96-48-0] | Original Measurements: <sup>51</sup> HM. Lin and R. A. Nash, J. Pharm. Sci. <b>82</b> , 1018 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                         |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                                     |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.8335           | 0.1665  |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, and high-performance liquid chromatograph. Excess solute and solvent were placed in screw-capped vials. The vials were sealed with several turns of electrical tape, warmed to about 323 K, and then shaken in a constant-temperature bath for at least 24 h at 298 K. After equilibrium was reached, the sample was filtered through a 0.45 or 1.0 µm filter, and an aliquot was diluted appropriately for chromatographic analysis. Concentrations were determined by a high-performance liquid chromatographic method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Eastman Kodak Chemical Company, Rochester, NY, USA, no information provided concerning purification.
- (2) Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

### 9. Solubility of 4-Amino-2-hydroxybenzoic Acid in Organic Solvents

### 9.1. Critical evaluation of experimental solubility data

There has been only a single publication that has reported solubility data for 4-amino-2-hydroxybenzoic acid. Takayama *et al.* <sup>105</sup> measured the solubility of 4-amino-2-hydroxybenzoic acid in 1,1'-oxybisethane as part of an experimental study aimed at studying the interactions between *N*-methyl-2-pyrrolidone and 4-aminobenzoic acids. Solubilities were measured as a function of *N*-methyl-2-pyrrolidone with 1,1'-oxybisethane serving as the solvent in the complexation study. 4-Amino-2-hydroxybenzoic acid and *N*-methyl-2-pyrrolidone

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

were found to form a slightly soluble 1:1 association complex having a calculated stability constant of  $K = 24.44 \, \mathrm{dm^3 \ mol^{-1}}$ . It is not possible to perform a critical evaluation of the experimental data as measurements were made at only a single temperature, and there is no independent experimental 4-amino-2-hydroxybenzoic acid solubility data in 1,1'-oxybisethane.

The experimental solubility data for 4-amino-2-hydroxy-benzoic acid in 1,1'-oxybisethane is given in Sec. 9.2.

### 9.2. 4-Amino-2-hydroxybenzoic acid solubility data in ethers

| Components: (1) 4-Amino-2-hydroxybenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> ; [65-49-6] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:  105 P. K. Takayama, N. Nambu, and T. Nagai, Chem. Pharm. Bull. 25, 879 (1977). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables: T/K = 283                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                       |

#### **Experimental Values**

The solubility was given graphically as a plot of molar concentration of the solute versus the concentration of ligand added. From the graph, the compiler estimated a molar solubility of  $c_1 = 0.076 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were sealed in vials and incubated for 48 h at 283 K. A 1 ml sample of the supernatant was withdrawn and the solvent evaporated at 323 K. The residue was dissolved in water or ethanol, and the concentration of the solute determined from spectroscopic absorbance measurements.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from water before use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

### 10. Solubility of 5-Amino-2-hydroxybenzoic Acid in Organic Solvents

### 10.1. Critical evaluation of experimental solubility data

There has been only a single publication that has reported solubility data for 5-amino-2-hydroxybenzoic acid. Patel *et al.*<sup>107</sup> measured the solubility of 5-amino-2-hydroxybenzoic acid in tetrahydrofuran, tetrachloromethane, methanol, and ethanol at 11 temperatures between 293 and 313 K. The internal consistency of the dataset was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (*A*, *B*, and *C*) are given in Table 15, along with the root-mean-square deviation (RMSD) defined by

RMSD = 
$$\left[ \sum_{i=1}^{N} \frac{(x_1^{\text{exp}} - x_1^{\text{calc}})^2}{N - 1} \right]^{1/2},$$
 (35)

and the MRD given by Eq. (24). In Eq. (35), N is the number of experimental solubility measurements in an individual solute-solvent data set. Examination of the entries in the last column of Table 15 reveals that the largest average relative deviation between the back-calculated values based on Eq. (8) and experimental data is less than 4%. Results of the mathematical representation analyses indicate that the experimental data for all four 5-amino-2-hydroxybenzoic acid – organic solvent systems are internally consistent.

The experimental solubility data for 5-amino-2-hydroxy-benzoic acid in the different organic solvents are in Secs. 10.2–10.4.

### 10.2. 5-Amino-2-hydroxybenzoic acid solubility data in ethers

| Components: (1) 5-Amino-2-hydroxybenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> ; [89-57-6] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>107</sup> A. Patel, A. Vaghasiya, R. Gajera, and S. Baluja, J. Chem. Eng. Data <b>55</b> , 1453 (2010). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                                                        |
| Temperature                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                    |

Table 15. Parameters of the Modified Apelblat equation for describing the solubility of 5-amino-2-hydroxybenzoic acid in various organic solvents

| Solvent                         | A       | В      | С       | 10 <sup>6</sup> RMSD | MRD (%) |
|---------------------------------|---------|--------|---------|----------------------|---------|
| Tetrahydrofuran <sup>a</sup>    | -0.9140 | 0.0024 | -0.1237 | 17.9244              | -3.86   |
| Tetrachloromethane <sup>a</sup> | -9.3301 | 0.0118 | 0       | 0.2812               | -0.14   |
| Methanol <sup>a</sup>           | -18.053 | 0.0399 | 0       | 0.1036               | 2.80    |
| Ethanol <sup>a</sup>            | -15.354 | 0.0313 | 0       | 0.0613               | 1.90    |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients, root-mean-square deviation, and mean relative deviation were taken from Patel et al. <sup>10</sup>

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 293.15 | 0.1845             | 0.8155    |
| 295.15 | 0.1803             | 0.8197    |
| 297.15 | 0.1764             | 0.8236    |
| 299.15 | 0.1724             | 0.8276    |
| 301.15 | 0.1683             | 0.8317    |
| 303.15 | 0.1643             | 0.8357    |
| 305.15 | 0.1603             | 0.8397    |
| 307.15 | 0.1562             | 0.8438    |
| 309.15 | 0.1521             | 0.8479    |
| 311.15 | 0.1480             | 0.8520    |
| 313.15 | 0.1440             | 0.8560    |
|        |                    |           |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 293.15 | 0.9971  | 0.002902           |
| 295.15 | 0.9970  | 0.003027           |
| 297.15 | 0.9969  | 0.003098           |
| 299.15 | 0.9969  | 0.003116           |
| 301.15 | 0.9968  | 0.003159           |
| 303.15 | 0.9968  | 0.003187           |
| 305.15 | 0.9967  | 0.003313           |
| 307.15 | 0.9966  | 0.003446           |
| 309.15 | 0.9964  | 0.003619           |
| 311.15 | 0.9963  | 0.003705           |
| 313.15 | 0.9962  | 0.003827           |
|        |         |                    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath, stirrer, and analytical balance. Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in an equilibrium cell and allowed to equilibrate in a constant-temperature water bath with continuous stirring for at least 3 h. The stirring was then stopped and the solution was allowed to equilibrate an additional 2 h to allow suspended solid to settle to the bottom of the container. An aliquot of the saturated solution was removed, filtered, and transferred to a tared vial. The vial was tightly closed and quickly weighed to determine the amount of sample transferred. The vial was then opened and the solvent allowed to evaporate at ambient room temperature. After the solvent had evaporated, the vial was dried and reweighed. The solubility was calculated from the mass of the solid residue and mass of sample transferred.

#### Source and Purity of Chemicals:

- (1) 99.5%, Hiran Orgochem Ltd., Ankleshwar, India, was recrystallized before
- (2) Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm < 1.0\%$  (relative error).

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath, stirrer, and analytical balance. Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in an equilibrium cell and allowed to equilibrate in a constant-temperature water bath with continuous stirring for at least 3 h. The stirring was then stopped and the solution was allowed to equilibrate an additional 2 h to allow suspended solid to settle to the bottom of the container. An aliquot of the saturated solution was removed, filtered, and transferred to a tared vial. The vial was tightly closed and quickly weighed to determine the amount of sample transferred. The vial was then opened and the solvent allowed to evaporate at ambient room temperature. After the solvent had evaporated, the vial was dried and reweighed. The solubility was calculated from the mass of the solid residue and mass of sample transferred.

#### Source and Purity of Chemicals:

- (1) 99.5%, Hiran Orgochem Ltd., Ankleshwar, India, was recrystallized before
- (2) Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm < 3.0\%$  (relative error).

# 10.3. 5-Amino-2-hydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 5-Amino-2-hydroxybenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> ; [89-57-6] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>107</sup> A. Patel, A. Vaghasiya, R. Gajera, and S. Baluja, J. Chem. Eng. Data <b>55</b> 1453 (2010). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                                      |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                  |

### 10.4. 5-Amino-2-hydroxybenzoic acid solubility data in alcohols

| Components:<br>(1) 5-Amino-2-hydroxybenzoic<br>acid; C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> ; [89-57-6]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>107</sup> A. Patel, A. Vaghasiya, R. Gajera, and S. Baluja, J. Chem. Eng. Data <b>55</b> , 1453 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                        |
| Temperature                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^b$  |
|--------|--------------------|----------|
| 293.15 | 0.9986             | 0.001408 |
| 295.15 | 0.9984             | 0.001551 |
| 297.15 | 0.9983             | 0.001705 |
| 299.15 | 0.9981             | 0.001876 |
| 301.15 | 0.9980             | 0.002018 |
| 303.15 | 0.9978             | 0.002154 |
| 305.15 | 0.9976             | 0.002401 |
| 307.15 | 0.9974             | 0.002642 |
| 309.15 | 0.9922             | 0.002837 |
| 311.15 | 0.9970             | 0.003021 |
| 313.15 | 0.9968             | 0.003162 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath, stirrer, and analytical balance. Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in an equilibrium cell and allowed to equilibrate in a constant-temperature water bath with continuous stirring for at least 3 h. The stirring was then stopped and the solution was allowed to equilibrate an additional 2 h to allow suspended solid to settle to the bottom of the container. An aliquot of the saturated solution was removed, filtered, and transferred to a tared vial. The vial was tightly closed and quickly weighed to determine the amount of sample transferred. The vial was then opened and the solvent allowed to evaporate at ambient room temperature. After the solvent had evaporated, the vial was dried and reweighed. The solubility was calculated from the mass of the solid residue and mass of sample transferred.

#### Source and Purity of Chemicals:

(1) 99.5%, Hiran Orgochem Ltd., Ankleshwar, India, was recrystallized before

(2) Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm < 3.0\%$  (relative error).

| <b>Components:</b> (1) 5-Amino-2-hydroxybenzoic acid; C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> ; [89-57-6] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>107</sup> A. Patel, A. Vaghasiya, R. Gajera, and S. Baluja, J. Chem. Eng. Data <b>55</b> 1453 (2010). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                                                      |
| Temperature                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                  |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 293.15 | 0.9982  | 0.001765           |
| 295.15 | 0.9981  | 0.001931           |
| 297.15 | 0.9979  | 0.002117           |
| 299.15 | 0.9977  | 0.002254           |
| 301.15 | 0.9977  | 0.002334           |
| 303.15 | 0.9975  | 0.002491           |
| 305.15 | 0.9973  | 0.002738           |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 307.15 | 0.9971             | 0.002946  |
| 309.15 | 0.9969             | 0.003087  |
| 311.15 | 0.9968             | 0.003227  |
| 313.15 | 0.9965             | 0.003454  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath, stirrer, and analytical balance. Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in an equilibrium cell and allowed to equilibrate in a constant-temperature water bath with continuous stirring for at least 3 h. The stirring was then stopped and the solution was allowed to equilibrate an additional 2 h to allow suspended solid to settle to the bottom of the container. An aliquot of the saturated solution was removed, filtered, and transferred to a tared vial. The vial was tightly closed and quickly weighed to determine the amount of sample transferred. The vial was then opened and the solvent allowed to evaporate at ambient room temperature. After the solvent had evaporated, the vial was dried and reweighed. The solubility was calculated from the mass of the solid residue and mass of sample transferred.

#### **Source and Purity of Chemicals:**

(1) 99.5%, Hiran Orgochem Ltd., Ankleshwar, India, was recrystallized before use

(2) Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm < 4.0\%$  (relative error).

### 11. Solubility of 1,2-Benzenedicarboxylic Acid in Organic Solvents

### 11.1. Critical evaluation of experimental solubility data

Several research groups<sup>50,60,76,79,108–111</sup> have investigated the solubility behavior of 1,2-benzenedicarboxylic acid as a function of temperature. Ren *et al.*<sup>108</sup> employed a dynamic method with laser monitoring to study the solubility of 1,2-benzenedicarboxylic acid in butyl ethanoate and methanol. Che *et al.*<sup>109</sup> determined the solubility of 1,2-benzenedicarboxylic acid in tetrahydrofuran, 1,2-diethoxyethane, cyclohexanone, and acetophenone at several temperatures.

The internal consistency of the six datasets of measured 1,2-benzenedicarboxylic acid solubilities was assessed by curvefitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (*A*, *B*, and *C*) are given in Table 16, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 16 reveals that the largest mean relative deviation between the back-calculated values based on Eq. (8) and experimental data is only 0.8%, which is less than the experimental uncertainties in the measured values. Results of the mathematical representation analyses indicate that the

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

Table 16. Parameters of the Modified Apelblat equation for describing the solubility of 1,2-benzenedicarboxylic acid in various organic solvents

| Solvent                         | A       | В       | С       | MRD (%) |
|---------------------------------|---------|---------|---------|---------|
| Butyl ethanoate <sup>a</sup>    | -146.09 | 4646.2  | 21.836  | 0.82    |
| Methanol <sup>a</sup>           | 15.381  | -2208.7 | -1.9198 | 0.03    |
| 1,2-Diethoxyethane <sup>b</sup> | -59.994 | 1482.7  | 8.9357  | 0.44    |
| Tetrahydrofuran <sup>b</sup>    | -78.560 | 2796.4  | 11.682  | 0.31    |
| Cyclohexanone <sup>b</sup>      | -78.708 | 1933.1  | 11.984  | 0.70    |
| Acetophenone <sup>b</sup>       | -78.865 | 1321.7  | 12.131  | 0.29    |

 $<sup>^{\</sup>overline{a}}$ Values of the coefficients and the mean relative deviations were taken from Ren *et al.*  $^{108}$ 

experimental data for all six 1,2-benzenedicarboxylic acid – organic solvent systems are internally consistent.

Zhao *et al.*<sup>60</sup> measured the solubility of 1,2-benzenedicarboxylic acid in isobutyl ethanoate at 12 temperatures between 301 and 349 K. The experimental data were correlated with the UNIQUAC model. Interaction coefficients calculated from the experimental solid-liquid equilibrium data provided a reasonably accurate mathematical description of the measured values. The mean absolute relative deviation between calculated and observed values was less than 6.4%.

The experimental solubility data for 1,2-benzenedicar-boxylic acid in the different organic solvents are in Secs. 11.2–11.9.

### 11.2. 1,2-Benzenedicarboxylic acid solubility data in aromatic hydrocarbons

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                                   | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000447 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-8] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000465 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                               | Original Measurements:                               |
|-----------------------------------------------------------|------------------------------------------------------|
| (1) 1,2-Benzenedicarboxylic acid;                         | <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3]  | Chem. Soc. 12, 131 (1935).                           |
| (2) 1,3-Dimethylbenzene; C <sub>8</sub> H <sub>10</sub> ; |                                                      |
| [108-38-3]                                                |                                                      |
| Variables:                                                | Prepared by:                                         |
| T/K = 301.2                                               | W. E. Acree, Jr.                                     |

 $<sup>^{\</sup>mathrm{b}}\mathrm{Values}$  of the coefficients and the mean relative deviations were taken from Che et~al.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000465 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

### 11.3. 1,2-Benzenedicarboxylic acid solubility data in esters

| Components:<br>(1) 1,2-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [88-99-3]<br>(2) Butyl ethanoate; $C_6H_{12}O_2$ ;<br>[123-86-4] | Original Measurements:<br><sup>108</sup> BZ. Ren, CH. Hou, HG. Chong,<br>WR. Li, and HJ. Song, J. Chem.<br>Eng. Data <b>51</b> , 2022 (2006). |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature; Solvent Composition                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                              |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 304.89 | 0.9972  | 0.002753  |
| 310.12 | 0.9970  | 0.002958  |
| 315.87 | 0.9967  | 0.003294  |
| 320.35 | 0.9964  | 0.003640  |
| 325.33 | 0.9959  | 0.004080  |
| 330.25 | 0.9954  | 0.004587  |
| 334.75 | 0.9949  | 0.005060  |
| 338.99 | 0.9944  | 0.005583  |
| 341.55 | 0.9939  | 0.006117  |
| 345.83 | 0.9933  | 0.006724  |
| 352.01 | 0.9922  | 0.007751  |
| 356.07 | 0.9915  | 0.008515  |
| 359.75 | 0.9906  | 0.009362  |
|        |         |           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermoelectric circulating water temperature controller, electromagnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) 99.8%, CP grade, Shanghai Chemical Reagent Research Institute, China, no purification details were provided.
- (2) 99.0%, Analytical Reagent grade, Tianjing Huadong Chemical Reagent Factory, distilled prior to use.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).

 $x_1$ :  $\pm 0.001$ .

| Components:<br>(1) 1,2-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [88-99-3]<br>(2) Isobutyl ethanoate; $C_6H_{12}O_2$ ;<br>[110-19-0] | <b>Original Measurements:</b> <sup>60</sup> S. Zhao, X. Chen, Q. Dai, and L. Wang, J. Chem. Eng. Data <b>56</b> , 2399 (2011). |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                               |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 300.68 | 0.9989             | 0.0011    |
| 302.37 | 0.9988             | 0.0012    |
| 304.42 | 0.9988             | 0.0012    |
| 309.58 | 0.9984             | 0.0016    |
| 312.72 | 0.9978             | 0.0022    |
| 317.36 | 0.9974             | 0.0026    |
| 326.85 | 0.9968             | 0.0032    |
| 331.86 | 0.9963             | 0.0037    |
| 335.27 | 0.9950             | 0.0050    |
| 340.04 | 0.9938             | 0.0062    |
| 342.69 | 0.9923             | 0.0077    |
| 348.70 | 0.9908             | 0.0092    |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermoelectric circulating water temperature controller, electromagnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate 1–2 K/h (0.5–1.0 K/h or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.
- (2) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 0.0002$ .

### 11.4. 1,2-Benzenedicarboxylic acid solubility data in ethers

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: 109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                         |
| Temperature                                                                                                                                                             | W. E. Acree, Jr.                                                                                     |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 293.25 | 0.9303             | 0.06973            |
| 303.15 | 0.9246             | 0.07543            |
| 313.45 | 0.9174             | 0.08263            |
| 323.15 | 0.9101             | 0.08991            |
| 329.05 | 0.9051             | 0.09493            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

- (1) 99.8%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99%, Kermel Chemical Reagents Development Centre, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

| Components:<br>(1) 1,2-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3]<br>(2) 1,2-Diethoxyethane; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ;<br>[629-14-1] | Original Measurements: 109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 293.15 | 0.9846             | 0.01544            |
| 303.25 | 0.9823             | 0.01767            |
| 313.20 | 0.9800             | 0.02003            |
| 323.05 | 0.9772             | 0.02283            |
| 333.15 | 0.9739             | 0.02613            |
| 343.05 | 0.9698             | 0.03017            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

# 11.5. 1,2-Benzenedicarboxylic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components:                                                                                                                                | Original Measurements:                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| (1) 1,2-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3]<br>(2) Trichloromethane; CHCl <sub>3</sub> ; | <sup>50</sup> P. G. Desai and A. M. Patel, J. India:<br>Chem. Soc. <b>12</b> , 131 (1935). |  |
| [67-66-3]                                                                                                                                  |                                                                                            |  |
| Variables:                                                                                                                                 | Prepared by:                                                                               |  |
| T/K = 301.2                                                                                                                                | W. E. Acree, Jr.                                                                           |  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9998  | 0.000184  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements:  50 P. G. Desai and A. M. Patel, J. Indian Chem. Soc. 12, 131 (1935). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                 |
| T/K = 301.2                                                                                                                                                 | W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000244 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$   |
|---------|-----------|
| 0.9999  | 0.0000577 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 11.6. 1,2-Benzenedicarboxylic acid solubility data in alcohols

| (1) 1,2-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | <ul> <li>108BZ. Ren, CH. Hou, HG. Chong,</li> <li>WR. Li, and HJ. Song, J. Chem.</li> <li>Eng. Data 51, 2022 (2006).</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature; Solvent Composition                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 302.67 | 0.9441  | 0.05591   |
| 305.75 | 0.9410  | 0.05902   |
| 308.63 | 0.9379  | 0.06209   |
| 311.55 | 0.9349  | 0.06513   |
| 314.35 | 0.9318  | 0.06817   |
| 317.03 | 0.9288  | 0.07121   |
| 319.71 | 0.9257  | 0.07427   |
| 322.29 | 0.9227  | 0.07730   |
| 324.85 | 0.9197  | 0.08034   |
| 327.35 | 0.9166  | 0.08342   |
| 329.83 | 0.9135  | 0.08650   |
| 332.25 | 0.9105  | 0.08953   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermoelectric circulating water temperature controller, electromagnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

# Source and Purity of Chemicals:

(1) 99.8%, CP grade, Shanghai Chemical Reagent Research Institute, China, no purification details were provided.

(2) 99.5%, Analytical Reagent grade, Tianjing Huadong Chemical Reagent Factory, China, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.05~\text{K}$  (estimated by compiler).

 $x_1$ :  $\pm 0.001$ .

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>110</sup> M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. <b>79</b> , 1176 (1975). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                       |

# **Experimental Values**

The measured solubility was reported to be 1.15 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Matheson Coleman and Bell, USA, was recrystallized from acetonitrile.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                       | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9487  | 0.05125   |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                     | Prepared by:                                                                                                   |
| T/K = 301.2                                                                                                                                                    | W. E. Acree, Jr.                                                                                               |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9573  | 0.04265   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                               |

# **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{\ b}$ |
|--------------------|-------------|
| 0.9727             | 0.02732     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Variables: $T/K = 301.2$                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                      |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9777  | 0.02231 |

 $x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 1,2-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [88-99-3]<br>(2) 2-Methyl-2-propanol; $C_4H_{10}O$ ;<br>[75-65-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                             |

# **Experimental Values**

The measured solubility was reported to be 0.354 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Matheson Coleman and Bell, USA, was recrystallized from acetonitrile.
- (2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| $\label{eq:components:} \begin{tabular}{ll} $C_8 & C_8 & C_9 & C_$ | Original Measurements:  111 B. K. Dolui, S. K. Bhattacharya, and K. K. Kundu, J. Solution Chem. 37, 987 (2008). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prepared by:                                                                                                    |
| T/K = 298.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9533  | 0.04669   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Mechanical shaker and a thermostated temperature control system. Excess solute and solvent were placed in a well-stoppered bottle and shaken in a mechanical shaker at low speed for 12 h at ambient room temperature. The bottle was then thermostated at 298 K for several days for the solution to reach equilibrium. Aliquots of the solution were withdrawn every two days by a specially constructed pipette fitted with G3-Gooch disk, and then weighed. The concentration in the saturated solution was determined by titrating with standardized potassium hydroxide solution using phenolphthalein as the endpoint indicator. The equilibration and analysis continued until successive readings agreed to within  $\pm 1\%$ .

# **Source and Purity of Chemicals:**

(1) G.R. grade, Merck Chemical Company, Germany, was used as received. (2) L.R. grade, BDH Chemicals, was purified by methods detailed in an earlier publication [B. K. Dolui, S. K. Bhattacharya, and S. S. Kundu, Indian J. Chem. Sect. A **45A**, 2607 (2006)].

#### **Estimated Error:**

Temperature:  $\pm$  0.01 K.  $x_1$ :  $\pm$ 1% (relative error).

# 11.7. 1,2-Benzenedicarboxylic acid solubility data in ketones

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9710  | 0.02896   |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                              | Original Measurements:                       |
|----------------------------------------------------------|----------------------------------------------|
| (1) 1,2-Benzenedicarboxylic acid;                        | <sup>109</sup> YK. Che, YX. Qu, and S. Wang, |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] | J. Chem. Eng. Data 54, 3130 (2009).          |
| (2) Cyclohexanone; C <sub>6</sub> H <sub>10</sub> O;     |                                              |
| [108-94-1]                                               |                                              |

| Variables:  | Prepared by:     |
|-------------|------------------|
| Temperature | W. E. Acree, Jr. |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 293.15 | 0.9824             | 0.01763   |
| 303.15 | 0.9788             | 0.02117   |
| 313.15 | 0.9743             | 0.02568   |
| 323.15 | 0.9690             | 0.03096   |
| 333.15 | 0.9630             | 0.03697   |
| 343.40 | 0.9541             | 0.04591   |

 $\bar{x}_2$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility was reported in the paper as 0.789 mol/kg of solvent. Mole fraction value calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

(1) 99.8%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.

(2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O; [98-86-2] | Original Measurements:  109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                          |
| Temperature                                                                                                                                                         | W. E. Acree, Jr.                                                                                      |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 303.35 | 0.9944             | 0.005601  |
| 313.35 | 0.9928             | 0.007236  |
| 323.35 | 0.9907             | 0.009333  |
| 332.95 | 0.9881             | 0.01186   |
| 343.55 | 0.9848             | 0.01525   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

# **Source and Purity of Chemicals:**

(1) 99.8%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.

(2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

# 11.8. 1,2-Benzenedicarboxylic acid solubility data in miscellaneous organic solvents

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements: <sup>79</sup> Q. Wang, L. Hou, Y. Cheng, and X. Li, J. Chem. Eng. Data <b>52</b> , 936 (2007). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                          |
| Temperature                                                                                                                                                                        | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 298.3 | 0.9894             | 0.0106      |
| 308.4 | 0.9850             | 0.0150      |
| 318.3 | 0.9778             | 0.0222      |
| 328.2 | 0.9692             | 0.0308      |
| 338.0 | 0.9583             | 0.0417      |
| 348.3 | 0.9443             | 0.0557      |
| 358.6 | 0.9278             | 0.0722      |
| 367.9 | 0.9095             | 0.0905      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and analytical balance.

Solubilities were determined by a static method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h. An aliquot of the clear solution was removed by syringe and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was evaporated in *in vacuo* at 323 K for more than 3 h. Once the solvent had evaporated, the vial with solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 98.5%, Shanghai Fine Chemical Reagent Company, China, no purification details provided.

(2) Analytical Reagent grade, Hangzhou Chemical Reagent Company, China, no purification details provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 3\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility data were given in units of grams per 100 g of solvent. Mole fraction solubilities were calculated by compiler.

| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  110 M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. <b>79</b> , 1176 (1975). |

solubility was reported to The measured 0.0245 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Matheson Coleman and Bell, USA, was recrystallized from acetonitrile.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements:  110 M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. <b>79</b> , 1176 (1975). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                             |

# **Experimental Values**

The measured solubility was reported to be  $3.77 \text{ mol dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Matheson Coleman and Bell, USA, was recrystallized from acetonitrile.
- (2) Purity not given, Chemical Source not given, was shaken with activated alumina and then distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Nitrobenzene; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [98-95-3] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Variables: $T/K = 301.2$                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                               |  |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$   |
|---------|-----------|
| 0.9999  | 0.0000898 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 11.9. 1,2-Benzenedicarboxylic acid solubility data in binary organic solvent mixtures

| Components: (1) 1,2-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [88-99-3] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  108BZ. Ren, CH. Hou, HG. Chong, WR. Li, and HJ. Song, J. Chem. Eng. Data <b>51</b> , 2022 (2006). |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| (3) Butyl ethanoate; $C_6H_{12}O_2$ ; [123-86-4]                                                                                                  |                                                                                                                           |  |  |
| Variables: Temperature; Solvent Composition                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                          |  |  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K              | $m_2^{(s)a}$     | $x_1^{b}$          |  |
|------------------|------------------|--------------------|--|
| 304.89           | 0.0000           | 0.002753           |  |
| 310.12           | 0.0000           | 0.002958           |  |
| 315.87           | 0.0000           | 0.003294           |  |
| 320.35           | 0.0000           | 0.003640           |  |
| 325.33           | 0.0000           | 0.004080           |  |
| 330.25           | 0.0000           | 0.004587           |  |
| 334.75           | 0.0000           | 0.005060           |  |
| 338.99           | 0.0000           | 0.005583           |  |
| 341.55           | 0.0000           | 0.006117           |  |
| 345.83           | 0.0000           | 0.006724           |  |
| 352.01           | 0.0000           | 0.007751           |  |
| 356.07           | 0.0000           | 0.008515           |  |
| 359.75           | 0.0000           | 0.009362           |  |
| 303.10           | 0.1997           | 0.01863            |  |
| 305.82           | 0.1997           | 0.01953            |  |
| 309.65           | 0.1997           | 0.02082            |  |
| 313.56           | 0.1997           | 0.02182            |  |
| 316.52           | 0.1997           | 0.02276            |  |
| 320.44           | 0.1997           | 0.02377            |  |
| 324.07           | 0.1997           | 0.02478            |  |
| 327.66           | 0.1997           | 0.02586            |  |
| 332.67<br>334.30 | 0.1997<br>0.1997 | 0.02704<br>0.02792 |  |
|                  |                  |                    |  |
| 304.57           | 0.3992           | 0.03555            |  |
| 307.20           | 0.3992           | 0.03711            |  |
| 310.62           | 0.3992           | 0.03879            |  |
| 314.04           | 0.3992           | 0.04053            |  |
| 317.66           | 0.3992           | 0.04230            |  |
| 320.77           | 0.3992           | 0.04409            |  |
| 324.25           | 0.3992           | 0.04592            |  |
| 327.82           | 0.3992           | 0.04783            |  |
| 330.86<br>334.26 | 0.3992<br>0.3992 | 0.04981<br>0.05187 |  |
| 200.46           | 0.6001           | 0.04255            |  |
| 300.46           | 0.6001           | 0.04255            |  |
| 303.37           | 0.6001           | 0.04471            |  |
| 306.50<br>309.74 | 0.6001<br>0.6001 | 0.04687<br>0.04906 |  |
| 312.88           | 0.6001           | 0.04906            |  |
| 315.77           | 0.6001           | 0.05123            |  |
| 318.86           | 0.6001           | 0.05573            |  |
| 321.70           | 0.6001           | 0.057792           |  |
| 324.82           | 0.6001           | 0.06020            |  |
| 327.74           | 0.6001           | 0.06248            |  |
| 330.77           | 0.6001           | 0.06480            |  |
| 333.94           | 0.6001           | 0.06717            |  |
| 303.62           | 0.8000           | 0.05167            |  |
| 306.24           | 0.8000           | 0.05412            |  |
| 309.46           | 0.8000           | 0.05662            |  |
| 312.13           | 0.8000           | 0.05002            |  |
| 315.22           | 0.8000           | 0.06168            |  |
| 317.91           | 0.8000           | 0.06429            |  |
| 320.96           | 0.8000           | 0.06696            |  |
| 324.22           | 0.8000           | 0.06975            |  |
| 326.24           | 0.8000           | 0.07268            |  |
| 328.99           | 0.8000           | 0.07208            |  |
| 332.06           | 0.8000           | 0.07901            |  |
| 335.20           | 0.8000           | 0.08247            |  |
| 202 67           | 1,0000           | 0.05501            |  |
| 302.67<br>305.75 | 1.0000<br>1.0000 | 0.05591<br>0.05902 |  |
| 308.63           |                  |                    |  |
| 300.03           | 1.0000           | 0.06209            |  |

|        | $m_2^{(s)a}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------|--------------------|
| 311.55 | 1.0000       | 0.06513            |
| 314.35 | 1.0000       | 0.06817            |
| 317.03 | 1.0000       | 0.07121            |
| 319.71 | 1.0000       | 0.07427            |
| 322.29 | 1.0000       | 0.07730            |
| 324.85 | 1.0000       | 0.08034            |
| 327.35 | 1.0000       | 0.08342            |
| 329.83 | 1.0000       | 0.08650            |
| 332.25 | 1.0000       | 0.08953            |

 ${}^{a}m_{2}{}^{(s)}$ : mass fraction of component 2 in the initial binary solvent mixture.  ${}^{b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermoelectric circulating water temperature controller, electromagnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, CP grade, Shanghai Chemical Reagent Research Institute, China, no purification details were provided.
- (2) 99.5%, Analytical Reagent grade, Tianjing Huadong Chemical Reagent Factory, China, no purification details were provided.
- (3) 99.0%, Analytical Reagent grade, Tianjing Huadong Chemical Reagent Factory, was distilled prior to use.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).  $m_2^{(s)}$ : 0.0001  $x_1$ :  $\pm 0.001$ .

# 12. Solubility of 1,3-Benzenedicarboxylic Acid in Organic Solvents

# 12.1. Critical evaluation of experimental solubility data

Several research groups <sup>60,63,82,84,91,109,112–117</sup> have investigated the solubility behavior of 1,3-benzenedicarboxylic acid as a function of temperature. Che *et al.* <sup>109</sup> determined the solubility of 1,3-benzenedicarboxylic acid in tetrahydrofuran, 1,2-diethoxyethane, cyclohexanone, and acetophenone at several temperatures. The internal consistency of the four sets of measured 1,3-benzenedicarboxylic acid solubilities were assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (*A, B,* and *C*) are given in Table 17, along with the MRD calculated according to Eq. (24). Examination of the entries in the last column of Table 17 reveals that the largest mean relative deviation between the back-calculated values based on Eq. (8) and experimental data is only 1.2%,which is less than the experimental uncertainties in the measured values. Results of

Table 17. Parameters of the Modified Apelblat equation for describing the solubility of 1,3-benzenedicarboxylic acid in various organic solvents

| Solvent                         | A       | В      | С      | MRD (%) |
|---------------------------------|---------|--------|--------|---------|
| 1,2-Diethoxyethane <sup>a</sup> | -139.95 | 5175.9 | 20.483 | 0.17    |
| Tetrahydrofuran <sup>a</sup>    | -79.312 | 2713.1 | 11.583 | 0.20    |
| Cyclohexanone <sup>a</sup>      | -58.711 | 679.31 | 8.8686 | 1.18    |
| Acetophenone <sup>a</sup>       | -272.87 | 10667  | 40.328 | 0.59    |

 $<sup>^{</sup>m a}$ Values of the coefficients and the mean relative deviations were taken from Che et~al.  $^{109}$ 

the mathematical representation analyses indicate that the experimental data for all four 1,3-benzenedicarboxylic acid – organic solvent systems are internally consistent.

Long et al. 112 used a gravimetric method to examine the solubility behavior of 1,3-benzenedicarboxylic acid in seven monobasic alcohols (methanol, 1-propanol, 2-propanol, 1butanol, 2-butanol, 1-pentanol, and 1-hexanol) in the temperature range of about 278-352 K. Long and Yang 116 had previously measured the solubility of 1,3-benzenedicarboxylic acid in ethanol, propanone, and ethyl ethanoate. For the alcohol solvents, solubilities were found to decrease with increasing number of carbon atoms, except for 1-pentanol where the solubility was comparable to that observed in 1butanol and higher than the measured solubility in 2-butanol. Methanol exhibited the highest ability to dissolve the dicarboxylic acid solute, whereas 1-hexanol showed the lowest solubility. The internal consistency of the ten datasets of measured 1,3-benzenedicarboxylic acid solubilities mentioned above, along with the measured values of Feng et al. 117 for 1,3-benzenedicarboxylic acid dissolved in ethanoic acid, were assessed by curve-fitting the measured mole fraction solubility data to Eq. (9). The values of the equation coefficients ( $\lambda$  and h) are given in Table 18, along with the MRD.

Table 18. Parameters of the Buchowski λh equation for describing the solubility of 1,3-benzenedicarboxylic acid in several organic solvents

| Solvent                      | T/K     | λ      | $10^{-4} h$ | MRD (%) |
|------------------------------|---------|--------|-------------|---------|
| Methanol <sup>a</sup>        | 278-337 | 0.1016 | 1.865       | 2.62    |
| Ethanol <sup>b</sup>         | 278-350 | 0.1696 | 1.223       | 1.57    |
| 1-Propanol <sup>a</sup>      | 278-358 | 0.3630 | 0.7471      | 4.05    |
| 2-Propanol <sup>a</sup>      | 278-353 | 0.4151 | 0.6431      | 2.01    |
| 1-Butanol <sup>a</sup>       | 278-358 | 0.2366 | 1.049       | 4.33    |
| 2-Butanol <sup>a</sup>       | 283-352 | 0.2356 | 1.124       | 3.80    |
| 1-Pentanol <sup>a</sup>      | 303-348 | 0.2362 | 1.000       | 3.03    |
| 1-Hexanol <sup>a</sup>       | 278-353 | 0.3793 | 0.7523      | 3.52    |
| Propanone <sup>b</sup>       | 278-328 | 1.2853 | 0.2840      | 2.62    |
| Ethyl ethanoate <sup>b</sup> | 278-338 | 0.0658 | 4.1360      | 9.87    |
| Ethanoic acid <sup>c</sup>   | 313-363 | 0.0434 | 6.7978      | 3.72    |
|                              |         |        |             |         |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and mean relative deviations were taken from Long *et al.*<sup>112</sup>

Zhao *et al.*<sup>60</sup> measured the solubility of 1,3-benzenedicar-boxylic acid in isobutyl ethanoate at ten temperatures between 308 and 353 K. The experimental data were correlated with both the UNIQUAC and Wilson models. Interaction coefficients calculated from the experimental solid-liquid equilibrium data provided a reasonably accurate mathematical description of the measured values. The mean absolute relative deviation between calculated and observed values was 11.56% (Wilson model) and 10.90% (UNIQUAC model).

Li *et al.*<sup>84</sup> determined the solubility of 1,3-benzenedicar-boxylic acid in *N*-methyl-2-pyrrolidone from 296 to 346 K using a synthetic method with laser monitoring to determine when the last amount of solid solute dissolved. The authors employed a polynomial expression in temperature

$$x_1 = -6.9703 + 0.06877 T - 2.29731 \times 10^{-4} T + 2.63346 \times 10^{-7} T^2$$
(36)

to represent the measured mole fraction solubility data. The root-mean-square deviation between the observed  $x_1$  data and calculated values from Eq. (36) was on the order of 0.0014 mole fraction.

Feng *et al.*<sup>113</sup> studied the water-to-propyl ethanoate partitioning behavior of 1,3-benzenedicarboxylic acid as well as the solute's solubility in propyl ethanoate from 303 to 363 K. The authors described the logarithm of the observed mole fraction solubilities with a simple linear relationship

$$\log_{10} x_1 = -5.2411 + 0.00705T. \tag{37}$$

The mean absolute deviation between the observed mole fraction solubilities and back-calculated values based on Eq. (37) was less than 2.6%.

The experimental solubility data for 1,3-benzenedicar-boxylic acid in the different organic solvents are in Secs. 12.2–12.6.

# 12.2. 1,3-Benzenedicarboxylic acid solubility data in esters

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  116B. Long and Z. Yang, Fluid Phase Equilib. <b>266</b> , 38 (2008). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                                 |
| Temperature                                                                                                                                                                            | W. E. Acree, Jr.                                                                             |

<sup>&</sup>lt;sup>b</sup>Values of the coefficients and mean relative deviations were taken from Long and Yang. <sup>116</sup>

 $<sup>^{\</sup>mathrm{c}}$ Values of the coefficients and mean relative deviation were taken from Feng  $et~al.^{113}$ 

| T/K    | $100s_1^{\ a}$ |
|--------|----------------|
| 278.05 | 0.2754         |
| 282.95 | 0.3939         |
| 287.85 | 0.5311         |
| 293.05 | 0.6039         |
| 303.05 | 0.8864         |
| 307.75 | 1.0034         |
| 312.85 | 1.0819         |
| 323.65 | 1.3660         |
| 333.15 | 1.6203         |
| 338.15 | 1.7177         |

<sup>a</sup>s<sub>1</sub>: solubility of the solute in units of moles per kilogram. The authors description of how the solubilities are reported is contradictory. In the manuscript text, the authors state molarity, and moles per kilogram of solution. Compiler has assumed that the units are moles per kilogram, which would be consistent with the column heading of the table in the published paper.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant-temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet, and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# **Source and Purity of Chemicals:**

- (1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.
- (2) 99.5%, Beijing Chemical Reagent Company, China, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $s_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Propyl ethanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [109-60-4] | Original Measurements:  113 L. Feng, L. Wang, G. Peng, X. Guo, and X. Li, J. Chem. Eng. Data 55, 500 (2010). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                               | Prepared by:                                                                                                 |
| Temperature                                                                                                                                                                              | W. E. Acree, Jr.                                                                                             |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 303.2 | 0.9992  | 0.000791           |
| 313.2 | 0.9991  | 0.000934           |
| 323.2 | 0.9989  | 0.001082           |
| 333.2 | 0.9987  | 0.001321           |
| 343.2 | 0.9986  | 0.001379           |

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 353.2 | 0.9982    | 0.001797  |
| 363.2 | 0.9979    | 0.002145  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermoelectric temperature controlling system and a high-performance liquid chromatograph.

Experimental solubilities were determined by a static method. A sealed bottle containing excess solute and solvent was allowed to equilibrate at constant temperature for at least 24 h. A 3 ml aliquot of the saturated solution was removed with a preheated syringe, and injected into a test tube which contained 3 ml of dimethyl sulfoxide. The concentration of the solute was determined by high-performance liquid chromatographic method.

#### **Source and Purity of Chemicals:**

- (1) 98%, Tokyo Kasei Kogyo Company, Ltd., Japan, used as received.
- (2) 99%, Hangzhou Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [121-91-5]<br>(2) Isobutyl ethanoate; $C_6H_{12}O_2$ ;<br>[110-19-0] | Original Measurements: <sup>60</sup> S. Zhao, X. Chen, Q. Dai, and L. Wang, J. Chem. Eng. Data <b>56</b> , 2399 (2011). |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                             | Prepared by:                                                                                                            |
| Temperature                                                                                                                            | W. E. Acree, Jr.                                                                                                        |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 308.15 | 0.9996             | 0.000352           |
| 313.15 | 0.9996             | 0.000388           |
| 318.15 | 0.9996             | 0.000438           |
| 323.15 | 0.9995             | 0.000507           |
| 328.15 | 0.9993             | 0.000691           |
| 333.15 | 0.9991             | 0.000917           |
| 338.15 | 0.9987             | 0.001300           |
| 343.15 | 0.9983             | 0.001663           |
| 348.15 | 0.9980             | 0.002009           |
| 353.15 | 0.9978             | 0.002209           |
|        |                    |                    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# Method/Apparatus/Procedure:

Thermostated temperature controller, electromagnetic stirrer, analytical balance, an ultraviolet-visible spectrophotometer.

Experimental solubilities were determined by a static method. A sealed flask containing excess solute and solvent was allowed to equilibrate at constant temperature with continuous stirring for 2 h. The stirring was stopped and the excess solid was permitted to settle to the bottom of the flask. Aliquots of the saturated solution were removed, diluted quantitatively with isobutyl ethanoate, and the absorbance recorded at 280 nm. The solubility was calculated based on the Beer-Lambert law using measured absorbances for standard solutions of known concentration.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.
- (2) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.

#### **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 0.00005$ .

# 12.3. 1,3-Benzenedicarboxylic acid solubilities in ethers

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                                      |
| T/K = 303.15                                                                                                                                                             | W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.984   | 0.016     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.7\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: 109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                   | Prepared by:<br>W. E. Acree. Jr.                                                                     |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 293.35 | 0.9859  | 0.01414            |
| 303.15 | 0.9846  | 0.01541            |
| 313.45 | 0.9831  | 0.01693            |
| 322.85 | 0.9815  | 0.01849            |
| 328.75 | 0.9804  | 0.01956            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### **Source and Purity of Chemicals:**

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99%, Kermel Chemical Reagents Development Centre, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                     | Prepared by:                                                                                                      |
| T/K = 303.15                                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.994   | 0.006     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3.6\%$  (relative error).

| (1) 1,3-Benzenedicarboxylic acid; $C_8H_6O_4$ ; [121-91-5] (2) 1,2-Diethoxyethane; $C_6H_{14}O_2$ ; [629-14-1] | <ul><li><sup>109</sup>YK. Che, YX. Qu, and S. Wang,</li><li>J. Chem. Eng. Data <b>54</b>, 3130 (2009).</li></ul> |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                | -                                                                                                                |
| Components: (1) 1.3-Benzenedicarboxylic acid:                                                                  | Original Measurements:  109 YK. Che, YX. Ou, and S. Wang                                                         |

#### **Experimental Values**

W. E. Acree, Jr.

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 293.30 | 0.9973  | 0.002651           |
| 303.15 | 0.9971  | 0.002929           |
| 313.15 | 0.9967  | 0.003297           |
| 322.75 | 0.9962  | 0.003759           |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 332.65 | 0.9957             | 0.004331           |
| 342.45 | 0.9950             | 0.005017           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

# 12.4. 1,3-Benzenedicarboxylic acid solubility data in alcohols

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  114G. N. Friedlin and V. N. Davydov, Zh. Prikl. Khim. <b>35</b> , 2530 (1962). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                       |

#### **Experimental Values**

The authors report a solubility of 1.753 g of solute per 100 ml of solvent at 293 K, and a solubility of 3.990 g of solute per 100 ml of solvent at 338 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information given. Solubility:  $\pm$  1% (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  115G. N. Freidlin and V. N. Davydov, Dopov. Akad. Nauk Ukr. RSR 622 (1962). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                        |
| Temperature                                                                                                                                        | W. E. Acree, Ir.                                                                                    |

| T/K | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-----|---------|--------------------|
| 293 | 0.9957  | 0.00426            |
| 313 | 0.9937  | 0.00633            |
| 323 | 0.9924  | 0.00758            |
| 330 | 0.9917  | 0.00834            |
| 337 | 0.9895  | 0.01051            |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J. Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                                  |
| Temperature                                                                                                                                        | W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$                                                                     |
|---------|----------------------------------------------------------------------------------------|
| 0.9975  | 0.002530                                                                               |
| 0.9972  | 0.002755                                                                               |
| 0.9969  | 0.003142                                                                               |
| 0.9965  | 0.003455                                                                               |
| 0.9962  | 0.003787                                                                               |
| 0.9959  | 0.004110                                                                               |
| 0.9954  | 0.004555                                                                               |
| 0.9949  | 0.005118                                                                               |
| 0.9942  | 0.005784                                                                               |
| 0.9934  | 0.006589                                                                               |
| 0.9929  | 0.007144                                                                               |
|         | 0.9975<br>0.9972<br>0.9969<br>0.9965<br>0.9962<br>0.9959<br>0.9954<br>0.9949<br>0.9942 |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 333.15 | 0.9921             | 0.007913  |
| 337.25 | 0.9912             | 0.008823  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant-temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for 2 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.
- (2) 99+%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  116B. Long and Z. Yang, Fluid Phase Equilib. <b>266</b> , 38 (2008). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                 |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                             |

# **Experimental Values**

| T/K    | $100s_1^{\ a}$ |
|--------|----------------|
| 278.54 | 6.2361         |
| 283.33 | 6.9042         |
| 288.33 | 7.8402         |
| 293.05 | 8.9950         |
| 297.45 | 9.8858         |
| 302.66 | 10.6423        |
| 308.55 | 12.7611        |
| 313.15 | 13.9168        |
| 318.45 | 15.7286        |
| 323.45 | 16.8814        |
| 328.15 | 18.4253        |
| 333.05 | 20.9806        |
| 338.15 | 22.9459        |
| 343.65 | 25.9315        |
| 349.35 | 29.3565        |
|        |                |

as<sub>1</sub>: solubility of the solute in units of moles per kilogram. The authors' description of how the solubilities are reported is contradictory. In the manuscript text, the authors state molarity, and moles per kilogram of solution. Compiler has assumed that the units are moles per kilogram, which would be consistent with the column heading of the table in the published paper.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. Solubility data were expressed as grams of solute per 100 g of solvent. Mole fraction values calculated by compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.

(2) 99.5%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $s_1$ :  $\pm 2\%$  (relative error).

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5]<br>(2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J. Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                                  |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                                                              |

# **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 278.15 | 0.9983  | 0.001685  |
| 280.84 | 0.9981  | 0.001901  |
| 283.34 | 0.9978  | 0.002198  |
| 288.17 | 0.9975  | 0.002493  |
| 293.15 | 0.9973  | 0.002677  |
| 298.35 | 0.9968  | 0.003205  |
| 304.05 | 0.9962  | 0.003769  |
| 308.25 | 0.9958  | 0.004248  |
| 313.15 | 0.9953  | 0.004731  |
| 317.55 | 0.9947  | 0.005281  |
| 320.17 | 0.9944  | 0.005636  |
| 323.50 | 0.9933  | 0.006461  |
| 328.20 | 0.9929  | 0.007128  |
| 333.15 | 0.9914  | 0.008576  |
| 338.15 | 0.9903  | 0.009711  |
| 342.65 | 0.9895  | 0.01047   |
| 349.05 | 0.9878  | 0.01215   |
| 349.37 | 0.9875  | 0.01245   |
| 353.55 | 0.9852  | 0.01480   |
| 358.75 | 0.9826  | 0.01744   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for 2 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.

(2) 99+%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  115G. N. Freidlin and V. N. Davydov, Dopov. Akad. Nauk Ukr. RSR 622 (1962). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                        |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                    |

# Experimental Values

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-----|--------------------|--------------------|
| 293 | 0.9941             | 0.00590            |
| 323 | 0.9901             | 0.00994            |
| 343 | 0.9877             | 0.01234            |
| 370 | 0.9751             | 0.02492            |

 $x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 10\%$  for 293 K value, less than 2% at the other temperatures (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data were expressed as grams of solute per 100 g of solvent. Mole fraction values calculated by compiler.

| Variables:                                                                                                                                                         | Prepared by:                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                             |
| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |

| 278.55         0.9978         0.002           279.87         0.9977         0.002           283.25         0.9974         0.002           288.15         0.9991         0.002           293.15         0.9967         0.003           298.15         0.9960         0.003           303.05         0.9954         0.004           308.25         0.9947         0.005           313.15         0.9939         0.006           318.25         0.9932         0.006           319.56         0.9930         0.007           323.95         0.9919         0.008           328.15         0.9909         0.009           333.15         0.9898         0.010           338.35         0.9889         0.0116           343.25         0.9866         0.013           348.15         0.9852         0.014 | T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|--------------------|
| 283.25       0.9974       0.002         288.15       0.9991       0.002         293.15       0.9967       0.003         298.15       0.9960       0.003         303.05       0.9954       0.004         308.25       0.9947       0.005         313.15       0.9939       0.006         318.25       0.9932       0.006         319.56       0.9930       0.007         323.95       0.9919       0.008         328.15       0.9909       0.009         333.15       0.9898       0.010         338.35       0.9889       0.0116         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                     | 278.55 | 0.9978             | 0.002185           |
| 288.15       0.9991       0.002         293.15       0.9967       0.003         298.15       0.9960       0.003         303.05       0.9954       0.004         308.25       0.9947       0.005         313.15       0.9939       0.006         318.25       0.9932       0.006         319.56       0.9930       0.007         323.95       0.9919       0.008         328.15       0.9909       0.009         333.15       0.9898       0.010         338.35       0.9889       0.0116         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                                                             | 279.87 | 0.9977             | 0.002260           |
| 293.15     0.9967     0.003       298.15     0.9960     0.003       303.05     0.9954     0.004       308.25     0.9947     0.005       313.15     0.9939     0.006       318.25     0.9932     0.006       319.56     0.9930     0.007       323.95     0.9919     0.008       328.15     0.9909     0.009       333.15     0.9898     0.010       338.35     0.9889     0.0116       343.25     0.9866     0.013       348.15     0.9852     0.014                                                                                                                                                                                                                                                                                                                                                 | 283.25 | 0.9974             | 0.002550           |
| 298.15       0.9960       0.003         303.05       0.9954       0.004         308.25       0.9947       0.005         313.15       0.9939       0.006         318.25       0.9932       0.006         319.56       0.9930       0.007         323.95       0.9919       0.008         328.15       0.9909       0.009         333.15       0.9898       0.010         338.35       0.9889       0.0116         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                                                                                                                                             | 288.15 | 0.9991             | 0.002910           |
| 303.05       0.9954       0.004:         308.25       0.9947       0.005:         313.15       0.9939       0.006:         318.25       0.9932       0.006:         319.56       0.9930       0.007:         323.95       0.9919       0.008:         328.15       0.9909       0.009:         333.15       0.9898       0.010:         338.35       0.9889       0.0110:         343.25       0.9866       0.013:         348.15       0.9852       0.014:                                                                                                                                                                                                                                                                                                                                          | 293.15 | 0.9967             | 0.003253           |
| 308.25     0.9947     0.005       313.15     0.9939     0.006       318.25     0.9932     0.006       319.56     0.9930     0.007       323.95     0.9919     0.008       328.15     0.9909     0.009       333.15     0.9898     0.010       338.35     0.9889     0.0110       343.25     0.9866     0.013       348.15     0.9852     0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 298.15 | 0.9960             | 0.003961           |
| 313.15       0.9939       0.006         318.25       0.9932       0.006         319.56       0.9930       0.007         323.95       0.9919       0.008         328.15       0.9909       0.009         333.15       0.9898       0.010         338.35       0.9889       0.0110         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                                                                                                                                                                                                                                                                     | 303.05 | 0.9954             | 0.004594           |
| 318.25     0.9932     0.006       319.56     0.9930     0.007       323.95     0.9919     0.008       328.15     0.9909     0.009       333.15     0.9898     0.010       338.35     0.9889     0.0110       343.25     0.9866     0.013       348.15     0.9852     0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 308.25 | 0.9947             | 0.005346           |
| 319.56     0.9930     0.007       323.95     0.9919     0.008       328.15     0.9909     0.009       333.15     0.9898     0.010       338.35     0.9889     0.0110       343.25     0.9866     0.013       348.15     0.9852     0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 313.15 | 0.9939             | 0.006074           |
| 323.95       0.9919       0.008         328.15       0.9909       0.009         333.15       0.9898       0.010         338.35       0.9889       0.0110         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 318.25 | 0.9932             | 0.006754           |
| 328.15       0.9909       0.009         333.15       0.9898       0.010         338.35       0.9889       0.0110         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 319.56 | 0.9930             | 0.007035           |
| 333.15       0.9898       0.010         338.35       0.9889       0.0110         343.25       0.9866       0.013         348.15       0.9852       0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 323.95 | 0.9919             | 0.008105           |
| 338.35       0.9889       0.0110         343.25       0.9866       0.0134         348.15       0.9852       0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 328.15 | 0.9909             | 0.009110           |
| 343.25     0.9866     0.0134       348.15     0.9852     0.0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 333.15 | 0.9898             | 0.01020            |
| 348.15 0.9852 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 338.35 | 0.9889             | 0.01105            |
| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 343.25 | 0.9866             | 0.01343            |
| 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 348.15 | 0.9852             | 0.01477            |
| 349.85 0.9849 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 349.85 | 0.9849             | 0.01513            |
| 353.15 0.9828 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353.15 | 0.9828             | 0.01715            |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for 2 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# Source and Purity of Chemicals:

(1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.

(2) 99+%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J. Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                  |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.06 | 0.9981             | 0.001872  |
| 283.11 | 0.9978             | 0.002157  |
| 288.27 | 0.9977             | 0.002339  |
| 293.30 | 0.9974             | 0.002649  |
| 298.06 | 0.9969             | 0.003149  |
| 303.66 | 0.9963             | 0.003664  |
| 308.36 | 0.9961             | 0.003860  |
| 312.66 | 0.9953             | 0.004736  |
| 317.94 | 0.9948             | 0.005200  |
| 322.25 | 0.9943             | 0.005661  |
| 328.54 | 0.9939             | 0.006333  |
| 334.57 | 0.9923             | 0.007655  |
| 337.96 | 0.9918             | 0.008166  |
| 338.64 | 0.9911             | 0.008924  |
| 343.20 | 0.9905             | 0.009537  |
| 347.67 | 0.9889             | 0.01106   |
| 353.44 | 0.9870             | 0.01304   |
| 358.67 | 0.9856             | 0.01437   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# **Source and Purity of Chemicals:**

(1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.

(2) 99+%, Beijing Chemical Reagent Company, China, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  91 J. Bradil, J. Malek, and V. Bazant, Chem. Prumysl <b>20</b> , 117 (1970). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                         |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                                                     |

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 273.2 | 0.9977  | 0.00225   |
| 298.2 | 0.9942  | 0.00575   |
| 323.2 | 0.9921  | 0.00788   |
| 343.6 | 0.9877  | 0.01228   |
| 358.2 | 0.9823  | 0.01774   |
| 362.7 | 0.9785  | 0.02151   |

 $\bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $^{b}x_{1}$ : mole fraction solubility of the solute. Solubility data were reported in terms of grams of dissolved solute per 100 g of solution. Mole fraction solubilities calculated by the compiler.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent and were placed in a flask and equilibrated at constant temperature with stirring. After 90 min the stirring was discontinued, and the solution was allowed to stand for 30 min to allow the undissolved solid to settle to the bottom of the flask. An aliquot of the saturated solution was removed by pipette fitted with a filtering device. The mass of the aliquot was determined by weighing. The concentration of the dissolved solute was determined by titration using sodium hydroxide, with phenolphthalein being the endpoint indicator.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Amoco Chemical Corporation, Chicago, IL, USA, recrystallized three times from a mixture of methylbenzene and tetrachloromethane.

(2) Purity not given, Spolana, Neratovice, Czechoslovakia, was distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                 |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 283.05 | 0.9985             | 0.001455  |
| 288.05 | 0.9983             | 0.001721  |
| 293.15 | 0.9979             | 0.002085  |
| 298.25 | 0.9977             | 0.002349  |
| 303.45 | 0.9974             | 0.002625  |
| 308.25 | 0.9969             | 0.003113  |
| 313.25 | 0.9965             | 0.003457  |
| 318.15 | 0.9961             | 0.003910  |
| 322.95 | 0.9959             | 0.004134  |
| 327.95 | 0.9950             | 0.005035  |
| 332.65 | 0.9944             | 0.005634  |
| 337.55 | 0.9932             | 0.006785  |
| 342.25 | 0.9925             | 0.007479  |
|        |                    |           |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 347.35 | 0.9913             | 0.008695  |
| 350.65 | 0.9904             | 0.009585  |
| 352.65 | 0.9898             | 0.01023   |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

(1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.

(2) 99+%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J. Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                  |  |
| Temperature                                                                                                                                                         | W. E. Acree, Jr.                                                                                              |  |

# **Experimental Values**

| T/K    | $x_2^{a}$ | $x_1^{b}$ |
|--------|-----------|-----------|
| 303.05 | 0.9959    | 0.004081  |
| 308.05 | 0.9947    | 0.005323  |
| 313.15 | 0.9941    | 0.005935  |
| 318.15 | 0.9935    | 0.006513  |
| 323.05 | 0.9926    | 0.007402  |
| 328.15 | 0.9918    | 0.008232  |
| 334.95 | 0.9906    | 0.009400  |
| 340.35 | 0.9897    | 0.01028   |
| 344.25 | 0.9883    | 0.01173   |
| 348.85 | 0.9877    | 0.01232   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 ${}^{b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.

(2) 99+%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  112B. Long, Y. Wang, R. Zhang, and J. Xu, J. Chem. Eng. Data <b>54</b> , 1764 (2009). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                  |
| Temperature                                                                                                                                                         | W. E. Acree, Jr.                                                                                              |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 298.48 | 0.9976             | 0.002435  |
| 302.97 | 0.9968             | 0.003204  |
| 308.15 | 0.9964             | 0.003617  |
| 312.70 | 0.9958             | 0.004235  |
| 317.67 | 0.9952             | 0.004766  |
| 320.84 | 0.9946             | 0.005439  |
| 326.96 | 0.9941             | 0.005930  |
| 332.56 | 0.9926             | 0.007372  |
| 337.65 | 0.9914             | 0.008570  |
| 343.76 | 0.9906             | 0.009458  |
| 349.25 | 0.9896             | 0.01042   |
| 353.94 | 0.9884             | 0.01159   |
|        |                    |           |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the

solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.
- (2) 99+%, Beijing Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2\%$  (relative error).

# 12.5. 1,3-Benzenedicarboxylic acid solubility data in ketones

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  116B. Long and Z. Yang, Fluid Phase Equilib. <b>266</b> , 38 (2008). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                 |
| Temperature                                                                                                                                                                | W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

| T/K    | $100s_1^a$ |
|--------|------------|
| 278.25 | 1.7634     |
| 283.05 | 1.9788     |
| 288.05 | 2.4777     |
| 292.95 | 2.7495     |
| 297.65 | 3.5875     |
| 303.05 | 4.2633     |
| 308.05 | 5.3245     |
| 313.05 | 6.6758     |
| 318.05 | 8.0520     |
| 323.05 | 9.9103     |
| 327.85 | 12.3663    |

as<sub>1</sub>: solubility of the solute in units of moles per kilogram. The authors' description of how the solubilities are reported is contradictory. In the manuscript text, the authors state molarity, and moles per kilogram of solution. Compiler has assumed that the units are moles per kilogram, which would be consistent with the column heading of the table in the published paper.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed equilibrium cell, constant temperature circulating water bath, analytical balance, oven, and magnetic stirrer.

Excess solute and solvent were placed in a jacketed equilibrium cell and allowed to equilibrate with stirring at constant temperature for at least 5 h. After sufficient equilibration, the stirrer was stopped and the solution was kept still for at least 1 h to allow suspended solid to settle to the bottom of the cell. An aliquot of the clear upper saturated solution was removed with a warm pipet and transferred to a weighed vial. The vial was weighed, uncovered, and placed in an oven. The solvent was allowed to evaporate in the oven at 323 K. The vial was covered with a piece of filter cloth to prevent dust contamination. After the solvent had evaporated, the vial was reweighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) 99.8%, Beijing Yanshan Petrochemical Company, China, no purification details provided.
- (2) 99.5%, Beijing Chemical Reagent Company, China, used as received.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $s_1$ :  $\pm 2\%$  (relative error).

# Components: Original Measurements: (1) 1,3-Benzenedicarboxylic acid; 109 Y.-K. Che, Y.-X. Qu, and S. Wang, C<sub>8</sub>H<sub>6</sub>O<sub>4</sub>; [121-91-5] J. Chem. Eng. Data **54**, 3130 (2009). (2) Cyclohexanone; C<sub>6</sub>H<sub>10</sub>O; [108-94-1] Variables: Prepared by: Temperature W. E. Acree, Jr.

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 293.35 | 0.9976             | 0.002392           |
| 303.15 | 0.9970             | 0.003017           |
| 313.15 | 0.9962             | 0.003847           |
| 322.75 | 0.9953             | 0.004693           |
| 332.75 | 0.9943             | 0.005710           |
| 342.85 | 0.9930             | 0.006969           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

# **Source and Purity of Chemicals:**

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

| Components:                                               | Original Measurements:                       |
|-----------------------------------------------------------|----------------------------------------------|
| (1) 1,3-Benzenedicarboxylic acid;                         | <sup>109</sup> YK. Che, YX. Qu, and S. Wang, |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] | J. Chem. Eng. Data 54, 3130 (2009).          |
| (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O;        |                                              |
| [98-86-2]                                                 |                                              |
| Variables:                                                | Prepared by:                                 |
| Temperature                                               | W. E. Acree, Jr.                             |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 303.15 | 0.9993  | 0.0007249 |
| 313.15 | 0.9991  | 0.0008585 |
| 323.05 | 0.9989  | 0.001054  |
| 332.95 | 0.9986  | 0.001350  |
| 342.95 | 0.9982  | 0.001748  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### **Source and Purity of Chemicals:**

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

# 12.6. 1,3-Benzenedicarboxylic acid solubility data in miscellaneous organic solvents

| Components:<br>(1) 1,3-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [121-91-5]<br>(2) <i>N,N</i> -Dimethylformamide;<br>$C_3H_7NO$ ; [64-19-7] | <b>Original Measurements:</b> <sup>82</sup> L. Dian-Qing, L. Jiang-Chu, Liu Da-Zhuang, and W. Fu-An, Fluid Phase Equilib. <b>200</b> , 69 (2002). |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                  |

# **Experimental Values**

| $x_2^{a}$ | $x_1^{\mathbf{b}}$                                                           |
|-----------|------------------------------------------------------------------------------|
| 0.8482    | 0.1518                                                                       |
| 0.8477    | 0.1523                                                                       |
| 0.8471    | 0.1529                                                                       |
| 0.8461    | 0.1539                                                                       |
| 0.8454    | 0.1546                                                                       |
| 0.8446    | 0.1554                                                                       |
| 0.8434    | 0.1566                                                                       |
| 0.8419    | 0.1581                                                                       |
| 0.8410    | 0.1590                                                                       |
| 0.8397    | 0.1603                                                                       |
|           | 0.8482<br>0.8477<br>0.8471<br>0.8461<br>0.8454<br>0.8446<br>0.8434<br>0.8419 |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 341.35 | 0.8383             | 0.1617    |
| 345.75 | 0.8368             | 0.1632    |
| 349.75 | 0.8354             | 0.1646    |
| 351.95 | 0.8346             | 0.1654    |
| 354.55 | 0.8336             | 0.1664    |
| 357.95 | 0.8322             | 0.1678    |
| 362.75 | 0.8301             | 0.1699    |
| 365.05 | 0.8291             | 0.1709    |
| 370.25 | 0.8266             | 0.1734    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent, Shanghai Chemical Reagent Company, used as
- (2) Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) <i>N</i> -Methyl-2-pyrrolidone; C <sub>5</sub> H <sub>9</sub> NO; [872-50-4] | Original Measurements:  84DQ. Li, DZ. Liu, and FA. Wang, J. Chem. Eng. Data 46, 172 (2001). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                               | Prepared by:                                                                                |
| Temperature                                                                                                                                                                              | W. E. Acree, Jr.                                                                            |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------|--------------------|---------|
| 296.35 | 0.9107             | 0.0893  |
| 298.85 | 0.9057             | 0.0943  |
| 303.55 | 0.8963             | 0.1037  |
| 307.05 | 0.8885             | 0.1115  |
| 310.25 | 0.8817             | 0.1183  |
| 313.65 | 0.8732             | 0.1268  |
| 316.95 | 0.8654             | 0.1346  |
| 320.45 | 0.8563             | 0.1437  |
| 323.55 | 0.8482             | 0.1518  |
| 326.55 | 0.8392             | 0.1608  |
| 331.25 | 0.8244             | 0.1756  |
| 336.25 | 0.8075             | 0.1925  |
| 340.75 | 0.7905             | 0.2095  |
| 343.55 | 0.7787             | 0.2213  |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 345.25 | 0.7722             | 0.2278    |
| 346.55 | 0.7660             | 0.2340    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### Source and Purity of Chemicals:

(1) 99.5%, Analytical Reagent, Shanghai Chemical Reagent Company, China, used as received.

(2) 99.0%, Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

| Components: (1) 1,3-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [121-91-5] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  117L. Feng, Q. Wang, and X. Li, J. Chem. Eng. Data <b>53</b> , 2501 (2008). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                        |
| Temperature                                                                                                                                                                         | W. E. Acree, Jr.                                                                                    |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 313.2 | 0.9988  | 0.001181  |
| 323.2 | 0.9986  | 0.001436  |
| 333.2 | 0.9982  | 0.001849  |
| 343.2 | 0.9974  | 0.002550  |
| 353.2 | 0.9969  | 0.003145  |
| 363.2 | 0.9958  | 0.004225  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed equilibrium glass bottle, analytical balance, thermoelectric temperature controlling system, and high-performance liquid chromatographic system.

Solubilities were determined using a static method. Excess solute and solvent were sealed in a jacketed equilibrium bottle and allowed to equilibrate for at least 24 h at constant temperature. After equilibrium was obtained, an aliquot of the clear saturated solution was removed by syringe and deposited into a clear test tube that contained about 3 ml of dimethyl sulfoxide. The concentration of the solute was determined by high-performance liquid chromatographic analysis.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute. Solubility data were reported as grams of solute per kilogram of solvent. Mole fraction solubilities were calculated by the compiler.

#### Source and Purity of Chemicals:

(1) 99%, Tokyo Kasei Kogyo Company, Ltd., Japan, was used as received. (2) Purity not given, Hanzhou Chemical Reagent Company, China, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 13. Solubility of 1,4-Benzenedicarboxylic Acid in Organic Solvents

# 13.1. Critical evaluation of experimental solubility data

Several research groups 60,63,80,82,84,91,109,114,115,118–124 have investigated the solubility behavior of 1,4-benzenedicarboxylic acid as a function of temperature. Che et al. 109 determined the solubility of 1,4-benzenedicarboxylic acid in tetrahydrofuran, 1,2-diethoxyethane, cyclohexanone, and acetophenone at several temperatures. The internal consistency of the four datasets of measured 1,4-benzenedicarboxylic acid solubilities were assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, and C) are given in Table 19, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 19 reveals that the largest mean relative deviation between the back-calculated values based on Eq. (8) and experimental data is 2.63%. A significant part of the deviation results from the experimental solubility measurement at 303 K, which is about 10% larger than the calculated value. Results of the mathematical representation analyses indicate that the experimental data for all four 1,4-benzenedicarboxylic acid - organic solvent systems are internally consistent.

Zhao *et al.*<sup>60</sup> measured the solubility of 1,4-benzenedicarboxylic acid in isobutyl ethanoate at ten temperatures between 305 K and 348 K. The experimental data were correlated with the UNIQUAC model. Interaction coefficients calculated from the experimental solid-liquid equilibrium data provided a reasonably accurate mathematical description of the measured values. The mean absolute relative deviation between calculated and observed values was less than 6.5%.

Ma and Xia<sup>80</sup> and Ma and Chen<sup>121</sup> both determined the solubility of 1,4-benzenedicarboxylic acid in *N*,*N*-dimethylformamide, *N*,*N*-dimethylacetamide, and *N*-methyl-2-pyrrolidone. Ma and Xia<sup>80</sup> also performed solubility measurements in ethanoic acid, while Ma and Chen<sup>121</sup> also studied the

Table 19. Parameters of the Modified Apelblat equation for describing the solubility of 1,4-benzenedicarboxylic acid in various organic solvents

| Solvent                         | A       | В       | С       | MRD (%) |
|---------------------------------|---------|---------|---------|---------|
| 1,2-Diethoxyethane <sup>a</sup> | -61.352 | 1131.2  | 8.6320  | 0.46    |
| Tetrahydrofuran <sup>a</sup>    | -397.52 | 16627   | -58.757 | 0.80    |
| Cyclohexanone <sup>a</sup>      | -256.51 | 9662.9  | 37.813  | 2.50    |
| Acetophenone <sup>a</sup>       | -90.392 | -1694.1 | 14.774  | 2.63    |

 $<sup>^{\</sup>overline{a}}$ Values of the coefficients and the mean relative deviations were taken from Che et~al.  $^{109}$ 

Table 20. Parameters of the Buchowski λh equation for describing the solubility of 1,4-benzenedicarboxylic acid in organic solvents

| Solvent                                             | T/K     | λ      | h        | MRD (%) |
|-----------------------------------------------------|---------|--------|----------|---------|
| Ethanoic acid <sup>a</sup>                          | 306-353 | 0.1448 | 30 386.1 | 8.90    |
| N,N-Dimethylformamide <sup>a</sup>                  | 293-429 | 0.0046 | 16554.7  | 0.47    |
| N,N-Dimethylformamide <sup>b</sup>                  | 296-370 | 0.0336 | 11862.9  | 0.18    |
| <i>N,N</i> -Dimethylformamide <sup>c</sup>          | 298-363 | 0.1760 | 5379.87  | 0.51    |
| N,N-Dimethylacetamide <sup>a</sup>                  | 293-365 | 38.47  | 122.49   | 1.15    |
| <i>N</i> , <i>N</i> -Dimethylacetamide <sup>c</sup> | 293-364 | 20.06  | 203.78   | 1.60    |
| N-Methyl-2-pyrrolidone <sup>a</sup>                 | 298-363 | 14.13  | 212.27   | 1.50    |
| N-Methyl-2-pyrrolidone <sup>c</sup>                 | 296-363 | 12.94  | 232.83   | 1.35    |
| Dimethyl sulfoxide <sup>c</sup>                     | 304-362 | 0.3166 | 1926.48  | 1.35    |
|                                                     |         |        |          |         |

 $<sup>{}^{\</sup>overline{a}}$ Values of the coefficients and mean relative deviations were taken from Ma and Xia.  ${}^{80}$ 

solubility of 1,4-benzenedicarboxylic acid in dimethyl sulf-oxide. Dian-Qing *et al.* 82 conducted solubility measurements in *N*,*N*-dimethylformamide. The internal consistency of the nine datasets was assessed by curve-fitting the measured mole fraction solubility data to the Buchowski  $\lambda$ h model [Eq. (9)]. The values of the equation coefficients ( $\lambda$  and h) are given in Table 20, along with the mean relative deviation. The large deviation between observed and back-calculated values noted in the 1,4-benzenedicarboxylic acid—ethanoic acid system is likely due to the extremely small mole fraction solubilities.

Li *et al.*<sup>84</sup> also determined the solubility of 1,4-benzenedicarboxylic acid in *N*-methyl-2-pyrrolidone using a synthetic method with laser monitoring to determine when the last amount of solid solute dissolved. The authors employed a polynomial expression in temperature

$$x_1 = 0.8315 + 0.00602T + 0.09145 \times 10^{-4} T^2 + 0.06873 \times 10^{-7} T^3$$
(38)

to represent the measured mole fraction solubility data from 297 to 332 K. The root-mean-square deviation between the observed  $x_1$  data and calculated values from Eq. (38) was on the order of 0.0007 mole fraction. While there is no theoretical basis for this type of polynomial representation in temperature, expressions like Eq. (38) do provide a convenient means for researchers to describe the observed solubility behavior at different temperatures. Wang *et al.* <sup>122</sup> correlated the molar solubility of 1,4-benzenedicarboxylic acid in dimethyl sulfoxide (from 302 to 373 K) and in *N*,*N*-dimethylformamide (from 302 to 373 K) using

$$c_1(\text{in DMSO}) = -59.10 + 0.5414T - 1.648 \times 10^{-3} T^2 + 1.714 \times 10^{-6} T^3,$$
 (39)

$$c_1(\text{in DMF}) = -0.2047 + 0.002860T - 0.826 \times 10^{-5}T^2 + 1.740 \times 10^{-8} T^3,$$
(40)

and similar third-degree polynomial equations.

<sup>&</sup>lt;sup>b</sup>Values of the coefficients and mean relative deviation were taken from Dian-Qing *et al.*<sup>82</sup>

<sup>&</sup>lt;sup>c</sup>Values of the coefficients and mean relative deviations were taken from Ma and Chen. <sup>121</sup>

The experimental solubility data for 1,4-benzenedicar-boxylic acid in the different organic solvents are in Secs. 13.2–13.7.

# 13.2. 1,4-Benzenedicarboxylic acid solubility data in aromatic hydrocarbons

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-8] | Original Measurements:  118 J. J. Harper and P. Janik, J. Chem. Eng. Data 15, 439 (1970). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                              |
| Temperature                                                                                                                                                           | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 485.2 | 0.9998  | 0.000230           |
| 494.2 | 0.9997  | 0.000319           |
| 500.2 | 0.9996  | 0.000431           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubilities were determined by placing known amounts of solute and solvent into a glass tube, which was then sealed and submerged in a constant-temperature bath. The temperature of the bath was increased at a rate of 1 K/  $10 \, \mathrm{min}$ , and the tube was shaken until all of the solute dissolved. The temperature at which all of the solute dissolved was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

- (1) 99.8%, Chemical Source not specified, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 5\%$  (relative error).

# 13.3. 1,4-Benzenedicarboxylic acid solubility data in esters

| Components:<br>(1) 1,4-Benzenedicarboxylic acid; $C_8H_6O_4$ ; [100-21-0]<br>(2) Isobutyl ethanoate; $C_6H_{12}O_2$ ; [110-19-0] | Original Measurements: <sup>60</sup> S. Zhao, X. Chen, Q. Dai, and L. Wang, J. Chem. Eng. Data <b>56</b> , 2399 (2011). |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                       | Prepared by:                                                                                                            |
| Temperature                                                                                                                      | W. E. Acree, Jr.                                                                                                        |

#### **Experimental Values**

| T/K    | $x_2^{a}$ | $x_1^{b}$ |
|--------|-----------|-----------|
| 305.15 | 0.9999    | 0.0000238 |
| 308.15 | 0.9999    | 0.0000257 |
| 313.15 | 0.9999    | 0.0000322 |
| 318.15 | 0.9999    | 0.0000341 |
| 323.15 | 0.9999    | 0.0000386 |
| 328.15 | 0.9999    | 0.0000578 |
| 333.15 | 0.9999    | 0.0000707 |
| 338.15 | 0.9999    | 0.0000825 |
| 343.15 | 0.9999    | 0.0000891 |
| 348.15 | 0.9999    | 0.0001043 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Thermostated temperature controller, electromagnetic stirrer, analytical balance, an ultraviolet/visible spectrophotometer.

Experimental solubilities were determined by a static method. A sealed flask containing excess solute and solvent was allowed to equilibrate at constant temperature with continuous stirring for 2 h. The stirring was stopped and the excess solid was permitted to settle to the bottom of the flask. Aliquots of the saturated solution were removed, diluted quantitatively with isobutyl ethanoate, and the absorbance recorded at 252 nm. The solubility was calculated based on the Beer-Lambert law using measured absorbances for standard solutions of known concentration.

#### **Source and Purity of Chemicals:**

- (1) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.
- (2) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.000002$ .

# 13.4. 1,4-Benzenedicarboxylic acid solubility data in ethers

| Components:                                               | Original Measurements:                              |
|-----------------------------------------------------------|-----------------------------------------------------|
| (1) 1,4-Benzenedicarboxylic acid;                         | <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] | P. Idoux, J. Org. Chem. 32, 1931                    |
| (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O;     | (1967).                                             |
| [109-99-9]                                                |                                                     |
| Variables:                                                | Prepared by:                                        |
| T/K = 303.15                                              | W. E. Acree, Jr.                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9988  | 0.0012    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 7.8\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                          |
| Temperature                                                                                                                                                              | W. E. Acree, Jr.                                                                                      |

### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 293.15 | 0.9991             | 0.0008816          |
| 303.15 | 0.9990             | 0.0009952          |
| 313.45 | 0.9989             | 0.001143           |
| 323.35 | 0.9986             | 0.001398           |
| 329.35 | 0.9984             | 0.001640           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99%, Kermel Chemical Reagents Development Centre, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:<br><sup>63</sup> C. K. Hancock, J. N. Pawloski,<br>and J. P. Idoux, J. Org. Chem. <b>32</b> ,<br>1931 (1967). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                                         |
| T/K = 303.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9996  | 0.00042   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 4.5\%$  (relative error).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>118</sup> J. J. Harper and P. Janik, J. Chem. Eng. Data <b>15</b> , 439 (1970). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                  | Prepared by:                                                                                                |
| Temperature                                                                                                                                                                                 | W. E. Acree, Jr.                                                                                            |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 397.2 | 0.9966             | 0.00337 |
| 433.7 | 0.9933             | 0.00672 |
| 471.7 | 0.9869             | 0.0131  |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubilities were determined by placing known amounts of solute and solvent into a glass tube, which was then sealed and submerged in a constant-temperature bath. The temperature of the bath was increased at a rate of 1 K/10 min, and the tube was shaken until all of the solute dissolved. The temperature at which all of the solute dissolved was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

- (1) 99.8%, Chemical source not specified, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 5\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) 1,2-Diethoxyethane; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [629-14-1] | Original Measurements:  109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables                                                                                                                                                                                  | Prepared by                                                                                           |

# **Experimental Values**

W. E. Acree, Jr.

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 293.15 | 0.9998  | 0.0002137 |
| 303.30 | 0.9997  | 0.0002513 |
| 313.25 | 0.9997  | 0.0002936 |
| 323.35 | 0.9997  | 0.0003439 |
| 333.65 | 0.9996  | 0.0004034 |
| 343.55 | 0.9995  | 0.0004770 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### **Source and Purity of Chemicals:**

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Methoxybenzene; C <sub>7</sub> H <sub>8</sub> O; [100-66-3] | Original Measurements:  118 J. J. Harper and P. Janik, J. Chem. Eng. Data 15, 439 (1970). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                              |
| Temperature                                                                                                                                                             | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 488.2 | 0.9905             | 0.00947   |
| 513.2 | 0.9775             | 0.0225    |
| 518.7 | 0.9732             | 0.0268    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubilities were determined by placing known amounts of solute and solvent into a glass tube, which was then sealed and submerged in a constant-temperature bath. The temperature of the bath was increased at a rate of 1 K/10 min, and the tube was shaken until all of the solute dissolved. The temperature at which all of the solute dissolved was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

- (1) 99.8%, Chemical source not specified, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 5\%$  (relative error).

# 13.5. 1,4-Benzenedicarboxylic acid solubility data in alcohols

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  114G. N. Friedlin and V. N. Davydov, Zh. Prikl. Khim. <b>35</b> , 2530 (1962). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                           |
| Temperature                                                                                                                                                 | W. E. Acree, Jr.                                                                                       |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

Authors report a solubility of 0.141~g of solute per 100~ml of solvent at 293~K, and a solubility of 0.260~g of solute per 100~ml of solvent at 338~K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information given. Solubility:  $\pm 1\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  115 G. N. Freidlin and V. N. Davydov, Dopov. Akad. Nauk Ukr. RSR 622 (1962). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                         | Prepared by:                                                                                         |
| Temperature                                                                                                                                        | W. E. Acree, Jr.                                                                                     |

#### **Experimental Values**

| T/K | $x_2^a$ | $x_1^{b}$ |
|-----|---------|-----------|
| 293 | 0.9997  | 0.000343  |
| 313 | 0.9996  | 0.000438  |
| 323 | 0.9995  | 0.000480  |
| 330 | 0.9995  | 0.000532  |
| 337 | 0.9994  | 0.000634  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  115 G. N. Freidlin and V. N. Davydov, Dopov. Akad. Nauk Ukr. RSR 622 (1962). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

| T/K | $x_2^a$ | $x_1^b$  |
|-----|---------|----------|
| 293 | 0.9996  | 0.000401 |
| 323 | 0.9992  | 0.000813 |
| 343 | 0.9984  | 0.001571 |
| 370 | 0.9983  | 0.001734 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details were not provided.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 2\%$  for 293 K value, less than 2% at the other temperatures (relative error).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [100-21-0]<br>(2) 2-Propanol; $C_3H_8O$ ; [67-63-0] | <b>Original Measurements:</b> <sup>91</sup> J. Bradil, J. Malek, and V. Bazant, Chem. Prumysl <b>20</b> , 117 (1970). |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                            | Prepared by:                                                                                                          |
| Temperature                                                                                                           | W. E. Acree, Jr.                                                                                                      |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 273.2 | 0.9998  | 0.000172  |
| 298.2 | 0.9996  | 0.000398  |
| 323.2 | 0.9994  | 0.000561  |
| 343.2 | 0.9992  | 0.000844  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data were expressed as grams of solute per 100 g of solvent. Mole fraction values calculated by compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data were expressed as grams of solute per 100 g of solvent. Mole fraction values calculated by compiler

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Solubility data were reported in terms of grams of dissolved solute per 100 g of solution. Mole fraction solubilities calculated by the compiler.

#### Method/Apparatus/Procedure:

Excess solute and solvent and were placed in a flask and equilibrated at constant temperature with stirring. After 90 min the stirring was discontinued, and the solution was allowed to stand for 30 min to allow the undissolved solid to settle to the bottom of the flask. An aliquot of the saturated solution was removed by pipette fitted with a filtering device. The mass of the aliquot was determined by weighing. The concentration of the dissolved solute was determined by titration using sodium hydroxide, with phenolphthalein being the endpoint indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Synthesized in authors' laboratory, prepared from dimethyl-1,4-benzenedicarboxylate.
- (2) Purity not given, Lachema, Brono, Czechoslovakia, was distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1\%$  (relative error).

# 13.6. 1,4-Benzenedicarboxylic acid solubility data in ketones

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) 3-Pentanone; C <sub>5</sub> H <sub>10</sub> O; [99-22-0] | Original Measurements:  118 J. J. Harper and P. Janik, J. Chem. Eng. Data 15, 439 (1970). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                              |
| Temperature                                                                                                                                                          | W. E. Acree, Jr.                                                                          |

### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 417.2 | 0.9908             | 0.00919   |
| 448.2 | 0.9822             | 0.0178    |
| 458.7 | 0.9788             | 0.0212    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubilities were determined by placing known amounts of solute and solvent into a glass tube, which was then sealed and submerged in a constant-temperature bath. The temperature of the bath was increased at a rate of 1 K/10 min, and the tube was shaken until all of the solute dissolved. The temperature at which all of the solute dissolved was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, Chemical source not specified, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 5\%$  (relative error).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0]<br>(2) Cyclohexanone; C <sub>6</sub> H <sub>10</sub> O;<br>[108-94-1] | Original Measurements: 109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 293.15 | 0.9998             | 0.0001671 |
| 303.15 | 0.9998             | 0.0001834 |
| 313.15 | 0.9998             | 0.0002311 |
| 323.30 | 0.9997             | 0.0003019 |
| 333.40 | 0.9996             | 0.0003855 |
| 343.85 | 0.9995             | 0.0005302 |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O; [98-86-2] | Original Measurements:  109 YK. Che, YX. Qu, and S. Wang, J. Chem. Eng. Data <b>54</b> , 3130 (2009). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                          |
| Temperature                                                                                                                                                          | W. E. Acree, Jr.                                                                                      |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 303.15 | 0.9999             | 0.0000107 |
| 313.15 | 0.9999             | 0.0000187 |
| 323.15 | 0.9999             | 0.0000347 |
| 332.85 | 0.9999             | 0.0000617 |
| 343.30 | 0.9999             | 0.0001158 |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermostated circulating water bath, electromagnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### **Source and Purity of Chemicals:**

- (1) 99%, Sinopharm Chemical Reagent Company, Ltd., China, no purification details were provided.
- (2) 99+%, Tianjin Guangfu Fine Chemical Research Institute, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 0.5\%$  (relative error).

# 13.7. 1,4-Benzenedicarboxylic acid solubility data in miscellaneous organic solvents

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | <b>Original Measurements:</b> <sup>80</sup> P. Ma and Q. Xia, Chin. J. Chem. Eng. <b>9</b> , 39 (2001). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                            |
| Temperature                                                                                                                                                                         | W. E. Acree, Jr.                                                                                        |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$  |
|-------|--------------------|------------|
| 305.6 | 0.9999             | 0.00003904 |
| 310.3 | 0.9999             | 0.00004497 |
| 315.2 | 0.9999             | 0.00005495 |
| 319.4 | 0.9999             | 0.00006402 |
| 325.7 | 0.9999             | 0.00008026 |
| 329.3 | 0.9999             | 0.00008998 |
| 334.4 | 0.9999             | 0.0001053  |
| 339.3 | 0.9999             | 0.0001244  |
| 343.3 | 0.9999             | 0.0001433  |
| 348.3 | 0.9998             | 0.0001682  |

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 355.0 | 0.9998    | 0.0002071 |
| 357.3 | 0.9998    | 0.0002262 |
| 363.1 | 0.9997    | 0.0002700 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K/10 min. The disappearance of the solid solute was detected by a laser monitoring system.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  119 MM. Chen, PS. Ma, L. Wang, and F. Chen, Acta Phys. Chim. Sin. 20, 445 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$  |
|--------|--------------------|------------|
| 311.57 | 0.9999             | 0.00000470 |
| 315.15 | 0.9999             | 0.00000670 |
| 319.79 | 0.9999             | 0.0000110  |
| 327.95 | 0.9999             | 0.0000229  |
| 333.95 | 0.9999             | 0.0000402  |
| 336.55 | 0.9999             | 0.0000512  |
| 337.95 | 0.9999             | 0.0000582  |
| 342.25 | 0.9999             | 0.0000864  |
| 350.15 | 0.9999             | 0.0001370  |
| 367.75 | 0.9997             | 0.0002569  |
| 383.15 | 0.9996             | 0.0004287  |
| 395.55 | 0.9994             | 0.0006344  |
| 405.35 | 0.9992             | 0.0008559  |
| 421.95 | 0.9986             | 0.001396   |
| 435.75 | 0.9979             | 0.002073   |
| 444.85 | 0.9973             | 0.002673   |

 $\bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell with quartz windows enabling laser monitoring of the inside cell contents, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system.

#### Source and Purity of Chemicals:

- (1) 99.95%, Chemical source given only as the factory, no purification details were provided.
- (2) 99.9%, Chemical source not given, authors state that ethanoic acid was purified to 99.9%, but no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [100-21-0]<br>(2) Ethanoic acid; $C_2H_4O_2$ ;<br>[64-19-7] | Original Measurements:  120 Q. Wang, H. Xu, and X. Li, J. Chem. Eng. Data 50, 258 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                    | Prepared by:                                                                              |
| Temperature                                                                                                                   | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 433.2 | 0.9978  | 0.00220            |
| 443.2 | 0.9970  | 0.00296            |
| 453.2 | 0.9963  | 0.00367            |
| 463.2 | 0.9954  | 0.00457            |
| 473.2 | 0.9943  | 0.00571            |
| 483.2 | 0.9929  | 0.00711            |
| 493.2 | 0.9911  | 0.00888            |
| 503.2 | 0.9889  | 0.01105            |
| 513.2 | 0.9862  | 0.01376            |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, and a high-performance liquid chromatographic system.

Solubilities were determined using a steady-state method. Excess solute and solvent were sealed in a titanium solid-liquid equilibrium cell and the temperature slowly increased (rate of less than 1 K/min) until the desired temperature was reached. Stirring was continuous during the period of increasing temperature, but was stopped when the experiment temperature was reached in order to allow the suspended particles to settle to the bottom of the container. An aliquot of the saturated solution was removed, and quickly cooled to room temperature to prevent evaporation of the solvent. The concentration of the solute in the sample was determined by a high performance liquid chromatographic method. A more detailed description of experimental apparatus and experimental methodology is given in the paper.

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Shanghai Chemical Reagent Company, China, no purification details were provided.
- (2) 99%, Hangzhou Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) <i>N,N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [68-12-2] | Original Measurements:  80 P. Ma and Q. Xia, Chin. J. Chem. Eng. 9, 39 (2001). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                   |
| Temperature                                                                                                                                                                            | W. E. Acree, Jr.                                                               |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 293.0 | 0.9737             | 0.02633            |
| 298.1 | 0.9731             | 0.02685            |
| 304.2 | 0.9720             | 0.02803            |
| 308.1 | 0.9714             | 0.02861            |
| 319.0 | 0.9693             | 0.03066            |
| 329.8 | 0.9671             | 0.03293            |
| 344.2 | 0.9660             | 0.03403            |
| 355.3 | 0.9629             | 0.03711            |
| 359.2 | 0.9618             | 0.03818            |
| 363.7 | 0.9612             | 0.03884            |
| 368.8 | 0.9601             | 0.03994            |
| 376.0 | 0.9584             | 0.04156            |
| 382.1 | 0.9570             | 0.04297            |
| 387.0 | 0.9559             | 0.04414            |
| 393.4 | 0.9543             | 0.04571            |
| 398.5 | 0.9530             | 0.04703            |
| 406.6 | 0.9508             | 0.04917            |
| 413.8 | 0.9488             | 0.05115            |
| 417.9 | 0.9477             | 0.05232            |
| 420.4 | 0.9470             | 0.05304            |
| 423.4 | 0.9461             | 0.05392            |
| 427.4 | 0.9449             | 0.05512            |
| 429.3 | 0.9443             | 0.05571            |
|       |                    |                    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K/10 min. The disappearance of the solid solute was detected by a laser monitoring system.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. Solubility data are given as grams of dissolved solute per 100 g of solvent. Mole fraction solubilities calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

Temperature

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                               | Original Measurements:                          |
|-----------------------------------------------------------|-------------------------------------------------|
| (1) 1,4-Benzenedicarboxylic acid;                         | <sup>121</sup> P. Ma and M. Chen, Chin. J. Chem |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] | Eng. 11, 334 (2003).                            |
| (2) N,N-Dimethylformamide;                                |                                                 |
| C <sub>3</sub> H <sub>7</sub> NO; [68-12-2]               |                                                 |

| Variables:  | Prepared by:     |
|-------------|------------------|
| Temperature | W. E. Acree, Jr. |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 298.10 | 0.9737             | 0.02629            |
| 304.15 | 0.9716             | 0.02840            |
| 308.10 | 0.9708             | 0.02919            |
| 312.25 | 0.9700             | 0.03001            |
| 316.75 | 0.9679             | 0.03210            |
| 319.04 | 0.9675             | 0.03247            |
| 321.64 | 0.9665             | 0.03352            |
| 329.78 | 0.9643             | 0.03569            |
| 330.35 | 0.9643             | 0.03565            |
| 340.95 | 0.9613             | 0.03872            |
| 344.15 | 0.9600             | 0.04000            |
| 351.15 | 0.9580             | 0.04198            |
| 354.55 | 0.9570             | 0.04301            |
| 355.25 | 0.9567             | 0.04333            |
| 359.15 | 0.9555             | 0.04450            |
| 360.23 | 0.9550             | 0.04497            |
| 363.71 | 0.9536             | 0.04637            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a solubility cell, and the temperature slowly increased until the solid phase completely disappeared. The rate of temperature increase was 0.1 K/min. The disappearance of the solid solute was observed visually.

#### Source and Purity of Chemicals:

- (1) 99.8%, Chemical source not given, used as received.
- (2) 99.5%, Chemical source not given, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| C <sub>3</sub> H <sub>7</sub> NO; [64-19-7]  Variables:                                                  | Prepared by:                                                             |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0]<br>(2) <i>N</i> , <i>N</i> -Dimethylformamide; | Da-Zhuang, and W. Fu-An, Fluid<br>Phase Equilib. <b>200</b> , 69 (2002). |
| (1) 1,4-Benzenedicarboxylic acid;                                                                        | <sup>82</sup> L. Dian-Qing, L. Jiang-Chu, L.                             |
| Components:                                                                                              | Original Measurements:                                                   |

#### **Experimental Values**

W. E. Acree, Jr.

| T/K    | $x_2^{a}$ | $x_1^{b}$ |
|--------|-----------|-----------|
| 296.05 | 0.9722    | 0.0278    |
| 298.85 | 0.9717    | 0.0283    |
| 301.25 | 0.9711    | 0.0289    |
| 304.65 | 0.9704    | 0.0296    |
| 307.35 | 0.9697    | 0.0303    |
| 311.85 | 0.9684    | 0.0316    |
| 314.45 | 0.9680    | 0.0320    |
| 318.05 | 0.9671    | 0.0329    |
| 320.25 | 0.9667    | 0.0333    |
| 325.75 | 0.9652    | 0.0348    |
| 328.25 | 0.9644    | 0.0356    |
| 331.55 | 0.9635    | 0.0365    |
| 336.95 | 0.9621    | 0.0379    |
| 340.25 | 0.9611    | 0.0389    |
| 343.15 | 0.9603    | 0.0397    |
| 345.55 | 0.9596    | 0.0404    |
| 351.65 | 0.9579    | 0.0421    |
| 353.75 | 0.9571    | 0.0429    |
| 356.65 | 0.9562    | 0.0438    |
| 359.95 | 0.9553    | 0.0447    |
| 365.65 | 0.9534    | 0.0466    |
| 370.45 | 0.9517    | 0.0483    |
|        |           |           |

 $<sup>\</sup>overline{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

### **Source and Purity of Chemicals:**

- (1) Analytical Reagent, Shanghai Chemical Reagent Company, used as received.
- (2) Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05\ K$  (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  122Q. Wang, H. Xu, and X. Li, J. Chem. Eng. Data <b>50</b> , 719 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                 |

| T/K   | $c_1^{\ a}$ |
|-------|-------------|
| 301.9 | 0.381       |
| 307.5 | 0.392       |
| 315.0 | 0.418       |
| 323.0 | 0.440       |
| 328.6 | 0.452       |
| 334.7 | 0.474       |
| 340.4 | 0.490       |
| 344.2 | 0.520       |
| 351.5 | 0.539       |
| 357.9 | 0.552       |
| 363.6 | 0.575       |
| 369.4 | 0.611       |
| 373.5 | 0.621       |

 $<sup>{}^{</sup>a}c_{1}$ : molar solubility of the solute expressed in units of mol dm<sup>-3</sup>.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubilities were measured by the static analytical method. Excess solute and solvent were placed in a jacketed glass bottle. The solution was allowed to equilibrate at constant temperature with stirring for several hours. Attainment of equilibrium was verified by repetitive measurements until the results were reproducible to within  $\pm 0.5\%$ . Concentration of the dissolved solute was determined by titration with a standardized sodium hydroxide using phenolphthalein as the endpoint indicator.

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Shanghai Chemical Reagent Company, China, no purification details were provided.
- (2) 99+%, Hanzhou Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $c_1$ :  $\pm 1\%$  (relative error, estimated by compiler).

| Components:                                               | Original Measurements:                         |
|-----------------------------------------------------------|------------------------------------------------|
| (1) 1,4-Benzenedicarboxylic acid;                         | <sup>80</sup> P. Ma and Q. Xia, Chin. J. Chem. |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] | Eng. 9, 39 (2001).                             |
| (2) N,N-Dimethylacetamide;                                |                                                |
| C <sub>4</sub> H <sub>9</sub> NO; [127-19-5]              |                                                |
| Variables:                                                | Prepared by:                                   |
| Temperature                                               | W. E. Acree, Jr.                               |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 293.2 | 0.9951             | 0.004914  |
| 296.3 | 0.9942             | 0.005761  |
| 298.5 | 0.9937             | 0.006311  |
| 303.0 | 0.9921             | 0.007914  |
| 307.8 | 0.9904             | 0.009613  |
| 311.5 | 0.9884             | 0.01161   |
| 320.0 | 0.9834             | 0.01663   |
| 326.2 | 0.9779             | 0.02206   |
| 333.7 | 0.9710             | 0.02899   |
| 340.3 | 0.9638             | 0.03622   |
| 349.9 | 0.9501             | 0.04989   |
| 356.3 | 0.9362             | 0.06381   |
| 362.4 | 0.9239             | 0.07614   |
| 365.3 | 0.9116             | 0.08838   |
|       |                    |           |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K/10 min. The disappearance of the solid solute was detected by a laser monitoring system.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [100-21-0]<br>(2) $N$ , $N$ -Dimethylacetamide;<br>$C_4H_9NO$ ; [127-19-5] | <b>Original Measurements:</b> <sup>121</sup> P. Ma and M. Chen, Chin. J. Chem. Eng. <b>11</b> , 334 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                   | Prepared by:                                                                                                |
| Temperature                                                                                                                                  | W. E. Acree, Jr.                                                                                            |

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 293.19 | 0.9951             | 0.004910  |
| 296.30 | 0.9940             | 0.006000  |
| 299.07 | 0.9933             | 0.006700  |
| 301.76 | 0.9925             | 0.007450  |
| 305.23 | 0.9914             | 0.008590  |
| 310.61 | 0.9894             | 0.01060   |
| 317.42 | 0.9858             | 0.01420   |
| 326.22 | 0.9804             | 0.01960   |
| 334.29 | 0.9730             | 0.02700   |
| 341.70 | 0.9642             | 0.03580   |
| 348.57 | 0.9577             | 0.04230   |
| 357.98 | 0.9412             | 0.05880   |
| 361.75 | 0.9333             | 0.06670   |
| 364.44 | 0.9290             | 0.07100   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a solubility cell, and the temperature slowly increased until the solid phase completely disappeared. The rate of temperature increase was 0.1 K/min. The disappearance of the solid solute was observed visually.

#### Source and Purity of Chemicals:

- (1) 99.8%, Chemical source not given, used as received.
- (2) 99.5%, Chemical source not given, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,4-Benzenedicarboxylic acid; $C_8H_6O_4$ ; [100-21-0] (2) $N$ , $N$ -Dimethylacetamide; $C_4H_9NO$ ; [127-19-5] | Original Measurements: <sup>123</sup> X. Guo, YW. Cheng, LJ. Wang, and X. Li, J. Chem. Eng. Data <b>53</b> , 1421 (2008). |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                       | Prepared by:                                                                                                              |
| Temperature                                                                                                                      | W. E. Acree, Ir                                                                                                           |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 303.2 | 0.9840             | 0.01597   |
| 313.2 | 0.9789             | 0.02109   |
| 323.2 | 0.9731             | 0.02690   |
| 333.2 | 0.9669             | 0.03311   |
| 343.2 | 0.9615             | 0.03850   |
| 353.2 | 0.9548             | 0.04516   |
| 363.2 | 0.9476             | 0.05237   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance, magnetic stirring system, thermoelectric temperature controlling system, and a high-performance liquid chromatograph. Excess solute and solvent were placed in a sealed glass bottle and allowed to equilibrate at constant temperature with stirring for 48 h. Attainment of equilibrium was verified by repetitive measurements after an additional 48 h equilibration period and by approaching equilibrium from supersaturation by pre-equilibrating the solutions at a higher temperature. An aliquot of the clear saturated solution was transferred to a volumetric flask and diluted quantitatively with the solvent being studied. The concentration of the diluted solution was determined by high-performance liquid chromatographic analysis.

### Source and Purity of Chemicals:

- (1) 99.5%, Shanghai Chemical Reagent Company, China, no purification details were provided.
- (2) 99.5%, Analytical Reagent grade, Tianjin Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,4-Benzenedicarboxylic acid; $C_8H_6O_4$ ; [100-21-0] (2) <i>N</i> -Methyl-2-pyrrolidone; $C_5H_9NO$ ; [872-50-4] | Original Measurements: <sup>80</sup> P. Ma and Q. Xia, Chin. J. Chem. Eng. <b>9</b> , 39 (2001). |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                         | Prepared by:                                                                                     |
| Temperature                                                                                                                        | W. E. Acree, Jr.                                                                                 |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.1 | 0.9673             | 0.03266   |
| 310.4 | 0.9529             | 0.04705   |
| 314.2 | 0.9465             | 0.05347   |
| 318.7 | 0.9387             | 0.06130   |
| 324.9 | 0.9284             | 0.07157   |
| 331.1 | 0.9149             | 0.08510   |
| 337.2 | 0.9018             | 0.09824   |
| 343.3 | 0.8904             | 0.1096    |
| 349.7 | 0.8744             | 0.1256    |
| 355.7 | 0.8522             | 0.1478    |
| 363.7 | 0.8176             | 0.1824    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K/10 min. The disappearance of the solid solute was detected by a laser monitoring system.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [100-21-0]<br>(2) <i>N</i> -Methyl-2-pyrrolidone;<br>$C_5H_9NO$ ; [872-50-4] | Original Measurements:  121 P. Ma and M. Chen, Chin. J. Chem. Eng. 11, 334 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                                       |

#### **Experimental Values**

W. E. Acree, Jr.

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 295.60 | 0.9669  | 0.03307   |
| 302.86 | 0.9602  | 0.03977   |
| 310.79 | 0.9513  | 0.04865   |
| 317.54 | 0.9423  | 0.05774   |
| 325.18 | 0.9299  | 0.07011   |
| 332.82 | 0.9149  | 0.08513   |
| 339.35 | 0.8995  | 0.1005    |
| 346.72 | 0.8788  | 0.1212    |
| 351.49 | 0.8632  | 0.1368    |
| 357.76 | 0.8396  | 0.1604    |
| 363.28 | 0.8155  | 0.1845    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a solubility cell, and the temperature slowly increased until the solid phase completely disappeared. The rate of temperature increase was 0.1 K/min. The disappearance of the solid solute was observed visually.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, Chemical source not given, used as received.
- (2) 99.5%, Chemical source not given, used as received.

#### **Estimated Error:**

Temperature

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,4-Benzenedicarboxylic acid; C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] (2) <i>N</i> -Methyl-2-pyrrolidone; C <sub>5</sub> H <sub>9</sub> NO; [872-50-4] | Original Measurements:  84DQ. Li, DZ. Liu, and FA. Wang. J. Chem. Eng. Data 46, 172 (2001). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                               | Prepared by:                                                                                |

W. E. Acree, Jr.

### **Experimental Values**

| T/K    | $x_2^{a}$ | $x_1^{b}$ |
|--------|-----------|-----------|
| 296.35 | 0.9699    | 0.0301    |
| 299.55 | 0.9659    | 0.0341    |
| 303.75 | 0.9599    | 0.0401    |
| 307.05 | 0.9549    | 0.0451    |
| 309.75 | 0.9511    | 0.0489    |
| 312.75 | 0.9461    | 0.0539    |
| 316.25 | 0.9395    | 0.0605    |
| 319.65 | 0.9332    | 0.0668    |
| 324.05 | 0.9243    | 0.0757    |
| 328.45 | 0.9151    | 0.0849    |
| 331.55 | 0.9078    | 0.0922    |
| 332.65 | 0.9055    | 0.0945    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### Source and Purity of Chemicals:

(1) 99.5%, Analytical Reagent, Shanghai Chemical Reagent Company, China, used as received.

(2) 99.0%, Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05~\text{K}$  (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

| Components:<br>(1) 1,4-Benzenedicarboxylic acid;<br>$C_8H_6O_4$ ; [100-21-0]<br>(2) <i>N</i> -Methyl-2-pyrrolidone;<br>$C_5H_9NO$ ; [872-50-4] | Original Measurements:  123 X. Guo, YW. Cheng, LJ. Wang, and X. Li, J. Chem. Eng. Data 53, 1421 (2008). |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                     | Prepared by:                                                                                            |
| Temperature                                                                                                                                    | W. E. Acree, Jr.                                                                                        |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 303.2 | 0.9867             | 0.01334            |
| 313.2 | 0.9845             | 0.01552            |
| 323.2 | 0.9811             | 0.01885            |
| 333.2 | 0.9784             | 0.02165            |
| 343.2 | 0.9744             | 0.02559            |
| 353.2 | 0.9713             | 0.02869            |
| 363.2 | 0.9672             | 0.03276            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Analytical balance, magnetic stirring system, thermoelectric temperature controlling system, and a high-performance liquid chromatograph. Excess solute and solvent were placed in a sealed glass bottle and allowed to equilibrate at constant temperature with stirring for 48 h. Attainment of equilibrium was verified by repetitive measurements after an additional 48 h equilibration period and by approaching equilibrium from supersaturation by pre-equilibrating the solutions at a higher temperature. An aliquot of the clear saturated solution was transferred to a volumetric flask and diluted quantitatively with the solvent being studied. The concentration of the diluted solution was determined by high-performance liquid chromatographic analysis.

#### Source and Purity of Chemicals:

- (1) 99.5%, Shanghai Chemical Reagent Company, China, no purification details were provided.
- (2) 99.5%, Analytical Reagent grade, Tianjin Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 1,4-Benzenedicarboxylic acid; $C_8H_6O_4$ ; [100-21-0] (2) <i>N</i> -Methyl-2-pyrrolidone; $C_5H_9NO$ ; [872-50-4] | Original Measurements:  124 Q. Wang, H. Xu, and X. Li, J. Chem Eng. Data 50, 243 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Variables:                                                                                                                         | Prepared by:                                                                             |
| Temperature                                                                                                                        | W. E. Acree, Jr.                                                                         |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 343.2 | 0.9389    | 0.0611    |
| 348.2 | 0.9311    | 0.0689    |
| 353.2 | 0.9265    | 0.0735    |
| 358.2 | 0.9179    | 0.0821    |
| 363.2 | 0.9134    | 0.0866    |
| 368.2 | 0.9074    | 0.0926    |
| 373.2 | 0.9040    | 0.0960    |
| 378.2 | 0.8958    | 0.1042    |
| 383.2 | 0.8868    | 0.1132    |
| 388.2 | 0.8789    | 0.1211    |
| 393.2 | 0.8657    | 0.1343    |
| 398.2 | 0.8604    | 0.1396    |
| 403.2 | 0.8473    | 0.1527    |
| 408.2 | 0.8326    | 0.1674    |
| 413.2 | 0.8260    | 0.1740    |
| 418.2 | 0.8093    | 0.1907    |
| 423.2 | 0.7970    | 0.2030    |
| 428.2 | 0.7817    | 0.2183    |
| 433.2 | 0.7723    | 0.2277    |
| 438.2 | 0.7509    | 0.2491    |
| 443.2 | 0.7319    | 0.2681    |
| 448.2 | 0.7175    | 0.2825    |
| 453.2 | 0.6963    | 0.3037    |
| 458.2 | 0.6699    | 0.3301    |
| 463.2 | 0.6451    | 0.3549    |
| 468.2 | 0.6180    | 0.3820    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, and temperature controlling system.

Solubilities were determined using a steady-state method. Excess solute and solvent were placed in a titanium solid-liquid equilibrium cell and allowed to equilibrate at constant temperature. After equilibrium was reached, an aliquot of the saturated solution was removed and filtered through a porous stainless steel filter with an internal aperture size of 1  $\mu$ m. The mass of the transferred solution was determined by weighing. The solvent was removed by drying *in vacuo* at 323.2 K. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) 99.5%, Shanghai Chemical Reagent Company, China, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.5$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                               | Original Measurements:                 |
|-----------------------------------------------------------|----------------------------------------|
| (1) 1,4-Benzenedicarboxylic acid;                         | 122Q. Wang, H. Xu, and X. Li, J. Chem. |
| C <sub>8</sub> H <sub>6</sub> O <sub>4</sub> ; [100-21-0] | Eng. Data 50, 719 (2005).              |
| (2) Dimethyl sulfoxide;                                   |                                        |
| C <sub>2</sub> H <sub>6</sub> OS; [67-68-5]               |                                        |
| Variables:                                                | Prepared by:                           |
| Temperature                                               | W. E. Acree, Jr.                       |

### **Experimental Values**

| T/K   | $c_1^{\ a}$ |
|-------|-------------|
| 301.9 | 1.249       |
| 307.5 | 1.330       |
| 315.0 | 1.491       |
| 323.0 | 1.569       |
| 328.6 | 1.650       |
| 334.7 | 1.704       |
| 340.4 | 1.997       |
| 344.2 | 1.876       |
| 351.5 | 1.989       |
| 357.9 | 2.102       |
| 363.6 | 2.244       |
| 369.4 | 2.378       |
| 373.5 | 2.491       |

 $<sup>{}^{</sup>a}c_{1}$ : molar solubility of the solute expressed in units of mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubilities were measured by the static analytical method. Excess solute and solvent were placed in a jacketed glass bottle. The solution was allowed to equilibrate at constant temperature with stirring for several hours. Attainment of equilibrium was verified by repetitive measurements until the results were reproducible to within  $\pm 0.5\%$ . Concentration of the dissolved solute was determined by titration with a standardized sodium hydroxide using phenolphthalein as the endpoint indicator.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The numerical values were calculated by the compiler. The solubility data were given in the paper as grams of solute per 100 g of solvent.

#### Source and Purity of Chemicals:

(1) 99.5%, Shanghai Chemical Reagent Company, China, no purification details were provided.

(2) 99+%, Hanzhou Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $c_1$ :  $\pm 1\%$  (relative error, estimated by compiler).

| Components:<br>(1) 1,4-Benzenedicarboxylic acid; $C_8H_6O_4$ ; [100-21-0]<br>(2) Dimethyl sulfoxide; $C_2H_6OS$ ; [67-68-5] | Original Measurements: <sup>121</sup> P. Ma and M. Chen, Chin. J. Chem. Eng. 11, 334 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                  | Prepared by:                                                                                 |
| Temperature                                                                                                                 | W. E. Acree, Jr.                                                                             |

# **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 303.95 | 0.9154  | 0.08459   |
| 311.55 | 0.9069  | 0.09309   |
| 317.78 | 0.9032  | 0.09679   |
| 325.41 | 0.8980  | 0.1020    |
| 331.55 | 0.8958  | 0.1042    |
| 335.52 | 0.8919  | 0.1081    |
| 341.30 | 0.8884  | 0.1116    |
| 346.15 | 0.8863  | 0.1137    |
| 348.64 | 0.8856  | 0.1144    |
| 354.02 | 0.8845  | 0.1155    |
| 357.45 | 0.8834  | 0.1166    |
| 362.49 | 0.8822  | 0.1178    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a solubility cell, and the temperature slowly increased until the solid phase completely disappeared. The rate of temperature increase was 0.1 K/min. The disappearance of the solid solute was observed visually.

#### **Source and Purity of Chemicals:**

- (1) 99.8%, Chemical source not given, used as received.
- (2) 99.5%, Chemical source not given, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Original Measurements: <sup>91</sup> J. Bradil, J. Malek, and V. Bazant, Chem. Prumysl <b>20</b> , 117 (1970). |
|----------------------------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree, Jr.                                                                               |
|                                                                                                                |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 313.2 | 0.6607             | 0.3393             |
| 333.2 | 0.5574             | 0.4426             |
| 343.2 | 0.4340             | 0.5660             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent and were placed in a flask and equilibrated at constant temperature with stirring. After 90 min the stirring was discontinued, and the solution was allowed to stand for 30 min to allow the undissolved solid to settle to the bottom of the flask. An aliquot of the saturated solution was removed by a pipette fitted with a filtering device. The mass of the aliquot was determined by weighing. The concentration of the dissolved solute was determined by titration using sodium hydroxide, with phenolphthalein being the endpoint indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Synthesized in authors' laboratory, prepared from dimethyl-1,4-benzenedicarboxylate.
- (2) Purity not given, Sojuz Chemical Export, Moscow, Soviet Union, mixed with activated carbon and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1\%$  (relative error).

# 14. Solubility of 1,3,5-Benzenetricarboxylic Acid in Organic Solvents

# 14.1. Critical evaluation of experimental solubility data

There is only a single published study regarding the solubility behavior of 1,3,5-benzenetricarboxylic acid in organic solvents. Feng *et al.*<sup>117</sup> determined the solubility of 1,3,5-benzenetricarboxylic acid in ethanoic acid in the temperature range of 313–363 K. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [Eq. (9)] of  $\lambda = 0.0170$  and h = 131653.7 described the observed solubility data to within a mean relative deviation of 2.9%.

The experimental solubility data for 1,3,5-benzenetricar-boxylic acid in ethanoic acid are given in Sec. 14.2.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data were reported in terms of grams of dissolved solute per 100 g of solution. Mole fraction solubilities calculated by the compiler.

# 14.2. 1,3,5-Benzenetricarboxylic acid solubility data in miscellaneous organic solvents

| Components: (1) 1,3,5-Benzenetricarboxylic acid; C <sub>9</sub> H <sub>6</sub> O <sub>6</sub> ; [554-95-0] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  117L. Feng, Q. Wang, and X. Li, J. Chem. Eng. Data <b>53</b> , 2501 (2008). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                    |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 313.2 | 0.9988             | 0.001200           |
| 323.2 | 0.9987             | 0.001340           |
| 333.2 | 0.9983             | 0.001691           |
| 343.2 | 0.9980             | 0.002000           |
| 353.2 | 0.9975             | 0.002489           |
| 363.2 | 0.9968             | 0.003173           |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed equilibrium glass bottle, analytical balance, thermoelectric temperature controlling system, and high-performance liquid chromatographic system.

Solubilities were determined using a static method. Excess solute and solvent were sealed in a jacketed equilibrium bottle and allowed to equilibrate for at least 24 h at constant temperature. After equilibrium was obtained, an aliquot of the clear saturated solution was removed by syringe and deposited into a clear test tube that contained about 3 ml of dimethyl sulfoxide. The concentration of the solute was determined by high-performance liquid chromatographic analysis.

# **Source and Purity of Chemicals:**

- (1) 98%, Alfa Aesar, used as received.
- (2) Purity not given, Hanzhou Chemical Reagent Company, China, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 15.1. Critical evaluation of experimental solubility data

15. Solubility of 2-Bromobenzoic Acid in Organic Solvents

There have been only two publications<sup>72,125</sup> reporting the solubility of 2-bromobenzoic acid in organic solvents. Thuaire<sup>72</sup> determined the solubility of 2-bromobenzoic acid in ethanol at 298 K as part of study involving solubilities of

benzoic acids in binary aqueous-ethanol solvent mixtures. Pinsuwan *et al.* <sup>125</sup> measured the solubility of 2-bromobenzoic acid in 1-octanol to examine correlations between experimental octanol/water solubility ratios and measured water-to-1-octanol practical partition coefficients. It is not possible to perform a critical evaluation of the experimental data as measurements were made at only a single temperature, and there are no independent experimental 2-bromobenzoic acid solubility data in either ethanol or 1-octanol.

The experimental solubility data for 2-bromobenzoic acid in organic solvents are given in Sec. 15.2.

# 15.2. 2-Bromobenzoic acid solubility data in alcohols

| Components:<br>(1) 2-Bromobenzoic acid;<br>$C_7H_5BrO_2$ ; [88-65-3]<br>(2) Ethanol; $C_2H_6O$ ; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                          |

#### **Experimental Values**

The measured solubility was reported to be 3.250 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1302$ 

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>3</sub> BrO <sub>2</sub> ; [88-65-3]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  125 S. Pinsuwan, A. Li, and S. H. Yalkowsky, J. Chem. Eng. Data 40, 623 (1995). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                            |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                        |

# **Experimental Values**

The measured solubility was reported to be  $\log_{10} c_1 = -0.12$ , which corresponds to a molar solubility of  $c_1 = 0.759$ .

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Solubility data were reported as grams of dissolved solute per kilogram of solvent. Mole fraction solubilities were calculated by the compiler.

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, mechanical stirrer, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated at  $(298\pm2)$  K in a sealed vial for 48–72 h. The solution was mixed using an end-over-end mechanical stirrer. After equilibrium was obtained, the saturated sample was vacuum filtered through a 5.0  $\mu$ m fritted glass filter. An aliquot of the filtrate was diluted quantitatively with 2-propanol, and the absorbance of the diluted sample was recorded. The solubility was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) Purity not given, Chemical source not given, used as received.

#### **Estimated Error:**

Temperature:  $\pm 2$  K.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler given the large uncertainty in temperature).

# 16. Solubility of 3-Bromobenzoic Acid in Organic Solvents

# 16.1. Critical evaluation of experimental solubility data

There have been several publications 54,63,72,76,83,125 reporting the solubility of 3-bromobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> determined the solubility of 3bromobenzoic acid in methanol and ethanenitrile at 298 K. In a followup study,76 the authors extended their measurements to include 2-propanol, 2-methyl-2-propanol, and 1-hexanol. Hancock *et al.*<sup>54,63</sup> measured the solubility of 3bromobenzoic acid in cyclohexane, benzene, tetrahydrofuran, and 1,4-dioxane at 303 K based on a gravimetric method. Thuaire<sup>72</sup> determined the solubility of 3-bromobenzoic acid in ethanol at 298 K as part of study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. Pinsuwan *et al.* <sup>125</sup> measured the solubility of 3-bromobenzoic acid in 1-octanol to examine correlations between experimental octanol/water solubility ratios and measured water-to-1octanol practical partition coefficients. It is not possible to perform a critical evaluation of the experimental data as each of the research groups performed measurements at only a single temperature, and there are no independent experimental 3-bromobenzoic acid solubility data in any of the 11 aforementioned organic solvents.

The experimental solubility data for 3-bromobenzoic acid in organic solvents are given in Secs. 16.2–16.6.

# 16.2. 3-Bromobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| <b>Components:</b> (1) 3-Bromobenzoic acid; C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements: <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                |
| T/K = 303.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9984  | 0.00160 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 16.3. 3-Bromobenzoic acid solubility data in aromatic hydrocarbons

| Components:                                                 | Original Measurements:                              |
|-------------------------------------------------------------|-----------------------------------------------------|
| (1) 3-Bromobenzoic acid;                                    | <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. |
| C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2] | P. Idoux, J. Org. Chem. <b>31</b> , 3801            |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]      | (1966).                                             |
| Variables: $T/K = 303.15$                                   | Prepared by:<br>W. E. Acree, Jr.                    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9898  | 0.0102  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 16.4. 3-Bromobenzoic acid solubility data in ethers

| Components: (1) 3-Bromobenzoic acid; C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

# **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.751              | 0.249     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components:<br>(1) 3-Bromobenzoic acid;<br>$C_7H_5BrO_2$ ; [585-76-2]<br>(2) 1,4-Dioxane; $C_4H_8O_2$ ;<br>[123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                               | Prepared by:<br>W. E. Acree. Jr.                                                                                            |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.817            | 0.183     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 16.5. 3-Bromobenzoic acid solubility data in alcohols

| Components:                                                                                                                           | Original Measurements:                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| (1) 3-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | <ul><li>83 M. K. Chantooni and I. M. Kolthoff,</li><li>J. Phys. Chem. 77, 527 (1973).</li></ul> |  |
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                |  |

#### **Experimental Values**

The measured solubility was reported to be 1.51 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from acetone and dried *in vacuo* at 343 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]  Variables:  T/K = 298.15                      | Prepared by:<br>W. E. Acree, Jr.                                                          |

#### **Experimental Values**

The measured solubility was reported to be 1.955 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.0826$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2]<br>(2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

The measured solubility was reported to be  $1.20~\text{mol}~\text{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from acetone and dried *in vacuo* at 343 K.
- (2) No Purity given, Fisher Scientific, USA, shaken with calcium hydride and distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3-Bromobenzoic acid; C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                             |

The measured solubility was reported to be 1.35 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

(1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from acetone and dried *in vacuo* at 343 K.
(2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2]<br>(2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O;<br>[111-27-3] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: <i>T</i> /K = 298.15                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                             |

## **Experimental Values**

The measured solubility was reported to be 0.99 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### **Source and Purity of Chemicals:**

(1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from acetone and dried *in vacuo* at 343 K.

(2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [585-76-2]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5] | Original Measurements: <sup>125</sup> S. Pinsuwan, A. Li, and S. H. Yalkowsky, J. Chem. Eng. Data <b>40</b> , 623 (1995). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                                              |
| T/K = 298.15                                                                                                                                                             | W. E. Acree, Jr.                                                                                                          |

#### **Experimental Values**

The measured solubility was reported to be  $\log_{10} c_1 = -0.07$ , which corresponds to a molar solubility of  $c_1 = 0.851$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, mechanical stirrer, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated at  $(298\pm2)~K$  in a sealed vial for 48 to 72 h. The solution was mixed using an end-over-end mechanical stirrer. After equilibrium was obtained, the saturated sample was vacuum filtered through a 5.0  $\mu m$  fritted glass filter. An aliquot of the filtrate was diluted quantitatively with 2-propanol, and the absorbance of the diluted sample was recorded. The solubility was calculated from the measured absorbance.

## Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, used as received.
- (2) Purity not given, Chemical source not given, used as received.

## **Estimated Error:**

Temperature:  $\pm 2$  K.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler given the large uncertainty in temperature).

## 16.6. 3-Bromobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3-Bromobenzoic acid; C <sub>7</sub> H <sub>3</sub> BrO <sub>2</sub> ; [585-76-2] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 0.167 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson,

J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from acetone and dried *in vacuo* at 343 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 17. Solubility of 4-Bromobenzoic Acid in Organic Solvents

## 17.1. Critical evaluation of experimental solubility data

There have been several publications 54,72,76,83,125 reporting the solubility of 4-bromobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> determined the solubility of 4bromobenzoic acid in methanol, ethanenitrile, dimethyl sulfoxide, and N,N-dimethylformamide at 298 K. In a followup study, the authors <sup>76</sup> extended their measurements to include 2propanol, 2-methyl-2-propanol, and 1-hexanol. Hancock et al. 54 measured the solubility of 4-bromobenzoic acid in cyclohexane and benzene at 303 K based on a gravimetric method. Thuaire<sup>72</sup> determined the solubility of 4-bromobenzoic acid in ethanol at 298 K as part of a study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. Pinsuwan  $et\ al.^{125}$  measured the solubility of 4bromobenzoic acid in 1-octanol to examine correlations between experimental octanol/water solubility ratios and measured water-to-1-octanol practical partition coefficients. It is not possible to perform a critical evaluation of the experimental data as each of the research groups performed measurements at only a single temperature, and there are no independent experimental 4-bromobenzoic acid solubility data in any of the 11 organic solvents.

The experimental solubility data for 4-bromobenzoic acid in organic solvents are given in Secs. 17.2–17.5.

## 17.2. 4-Bromobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| (1966).                          |
|----------------------------------|
| Prepared by:<br>W. E. Acree, Jr. |
|                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000362 |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

## 17.3. 4-Bromobenzoic acid solubility data in aromatic hydrocarbons

| Components:                                                 | Original Measurements:                              |
|-------------------------------------------------------------|-----------------------------------------------------|
| (1) 4-Bromobenzoic acid;                                    | <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. |
| C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [586-76-5] | P. Idoux, J. Org. Chem. <b>31</b> , 3801            |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]      | (1966).                                             |
| Variables:                                                  | Prepared by:                                        |
| T/K = 303.15                                                | W. E. Acree, Jr.                                    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9997           | 0.000272  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 5\%$  (relative error, by compiler).

## 17.4. 4-Bromobenzoic acid solubility data in alcohols

| Components: (1) 4-Bromobenzoic acid; C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [586-76-5] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 0.12 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [586-76-5]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                                      | W. E. Acree, Jr.                                                                          |

## **Experimental Values**

The measured solubility was reported to be 0.164 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.00750$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>3</sub> BrO <sub>2</sub> ; [586-76-5]<br>(2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                             |

## **Experimental Values**

The measured solubility was reported to be 0.112 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson,

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) No Purity given, Fisher Scientific, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Bromobenzoic acid; C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [586-76-5] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                 |
| T/K = 298.15  K                                                                                                                                                       | W. E. Acree, Jr.                                                                                             |

#### **Experimental Values**

The measured solubility was reported to be  $0.125~\mathrm{mol~dm^{-3}}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried  $in\ vacuo$  at 333 K.
- (2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:                                                 | Original Measurements:                            |
|-------------------------------------------------------------|---------------------------------------------------|
| (1) 4-Bromobenzoic acid;                                    | <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, |
| C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [586-76-5] | Anal. Chem. 51, 133 (1979).                       |
| (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] |                                                   |
| Variables:                                                  | Prepared by:                                      |
| T/K = 298.15                                                | W. E. Acree, Jr.                                  |

### **Experimental Values**

The measured solubility was reported to be 0.103 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
(2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Bromobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> BrO <sub>2</sub> ; [586-76-5]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  125 S. Pinsuwan, A. Li, and S. H. Yalkowsky, J. Chem. Eng. Data 40, 623 (1995). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                        |

## **Experimental Values**

The measured solubility was reported to be  $\log_{10} c_1 = -1.11$ , which corresponds to a molar solubility of  $c_1 = 0.0776$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, mechanical stirrer, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated at  $(298\pm2)$  K in a sealed vial for 48 to 72 h. The solution was mixed using an end-over-end mechanical stirrer. After equilibrium was obtained, the saturated sample was vacuum filtered through a 5.0  $\mu$ m fritted glass filter. An aliquot of the filtrate was diluted quantitatively with 2-propanol, and the absorbance of the diluted sample was recorded. The solubility was calculated from the measured absorbance.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, used as received
- (2) Purity not given, Chemical source not given, used as received.

## **Estimated Error:**

Temperature:  $\pm 2$  K.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler given the large uncertainty in temperature).

## 17.5. 4-Bromobenzoic acid solubility data in miscellaneous organic solvents

| . Chem. <b>77</b> , 527 (1973). |
|---------------------------------|
| ed by:<br>Acree, Jr.            |
|                                 |

#### **Experimental Values**

The measured solubility was reported to be  $0.018 \, \mathrm{mol \ dm^{-3}}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

(1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
(2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Bromobenzoic acid; C <sub>7</sub> H <sub>3</sub> BrO <sub>2</sub> ; [586-76-5] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 2.45 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried  $in\ vacuo$  at 333 K.
- (2) Purity not given, Chemical source not given, was shaken with activated alumina and then distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Bromobenzoic acid; C <sub>7</sub> H <sub>3</sub> BrO <sub>2</sub> ; [586-76-5] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 0.93 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried  $\it in vacuo$  at 333 K.
- (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 18. Solubility of 2-Chlorobenzoic Acid in Organic Solvents

## 18.1. Critical evaluation of experimental solubility data

There have been several published studies <sup>54,72,83,99,126,127</sup> investigating the solubility behavior of 2-chlorobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Chantooni and Kolthoff<sup>83</sup> determined the solubility

of 2-chlorobenzoic acid in methanol, ethanenitrile, and N,Ndimethylformamide at 298 K. Hancock et al. 54 measured the solubility of 2-chlorobenzoic acid in cyclohexane and benzene at 303 K based on a gravimetric method. Thuaire <sup>72</sup> determined the solubility of 2-chlorobenzoic acid in ethanol at 298 K as part of study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. Biswas et al. 126 also measured the solubility of 2-chlorobenzoic acid in ethanol at 298 K. The two independent experimental determinations of the mole fraction solubility of 2-chlorobenzoic acid in ethanol differ significantly from one another,  $x_1 = 0.0708$  (Biswas value, Ref. 126) versus  $x_1 = 0.1424$  (Thuaire value, Ref. 72). Given only two independent measurements it is normally impossible to know of the two values is best. However, in the present case, both research groups have performed independent experimental measurements for other substituted benzoic acid derivatives in ethanol. For several of the other solutes (e.g., 3-chlorobenzoic acid, 4-chlorobenzoic acid, and 4-nitrobenzoic acid), there does exist at least one additional set of observed values. One finds that the measured values reported by Thuaire<sup>72</sup> are in better agreement with experimental data reported by other research groups than are the observed values reported by Biswas et al. 126

Sidgwick and Ewbank<sup>127</sup> measured the solubility of 2-chlorobenzoic acid in heptane and benzene as a function of temperature. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model to yield the following two representations:

$$\ln x_1 = -167.18 + \frac{112.27}{T} + 27.681 \ln T, \tag{41}$$

$$\ln x_1 = -93.217 + \frac{113.76}{T} + 15.491 \ln T, \qquad (42)$$

for solubilities in heptane and benzene, respectively. The average absolute deviations between the observed experimental data and back-calculated values based on Eqs. (41) and (42) of 26.1% and 8.3% are larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0166$  to  $x_1 = 0.834$  for heptane and  $x_1 = 0.0100$  to  $x_1 = 0.833$  for benzene. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

Jia *et al.* <sup>99</sup> determined the solubility of 2-chlorobenzoic acid in 1-octanol in the temperature range of 293–323 K. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [Eq. (9)] of  $\lambda = 1.885$  and h = 1567.8 described the observed solubility data to within a mean relative deviation of 1.7%.

The experimental solubility data for 2-chlorobenzoic acid in organic solvents are in Secs. 18.2–18.5.

## 18.2. 2-Chlorobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:<br>(1) 2-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [118-91-2]<br>(2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                   |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 352.2 | 0.983   | 0.0166    |
| 368.0 | 0.970   | 0.0300    |
| 382.0 | 0.931   | 0.0693    |
| 386.0 | 0.916   | 0.0841    |
| 399.2 | 0.728   | 0.272     |
| 401.2 | 0.591   | 0.409     |
| 403.0 | 0.415   | 0.585     |
| 407.9 | 0.166   | 0.834     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 413.5 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

## **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

## 18.3. 2-Chlorobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [118-91-2] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>127</sup> N. V. Sidgwick and E. K. Ewbank, J.<br>Chem. Soc. Trans. <b>119</b> , 979 (1921). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                                                               |
| Temperature                                                                                                                                              | W. E. Acree, Ir                                                                                                            |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 299.2 | 0.990              | 0.0100    |
| 318.0 | 0.974              | 0.0264    |
| 330.9 | 0.948              | 0.0520    |
| 355.9 | 0.825              | 0.175     |
| 372.8 | 0.666              | 0.334     |
| 387.1 | 0.457              | 0.543     |
| 402.7 | 0.167              | 0.833     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

## **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 413.5 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

## **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

## 18.4. 2-Chlorobenzoic acid solubility data in alcohols

| Components:                                                 | Original Measurements:                            |
|-------------------------------------------------------------|---------------------------------------------------|
| (1) 2-Chlorobenzoic acid;                                   | <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [118-91-2] | J. Phys. Chem. 77, 527 (1973).                    |
| (2) Methanol; CH <sub>4</sub> O; [67-56-1]                  |                                                   |
| Variables:                                                  | Prepared by:                                      |
| T/K = 298.15                                                | W. E. Acree, Jr.                                  |

## **Experimental Values**

The measured solubility was reported to be 2.53 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Chlorobenzoic acid;<br>$C_7H_5ClO_2$ ; [118-91-2]<br>(2) Ethanol; $C_2H_6O$ ; [64-17-5] | Original Measurements:  126 P. K. Biswas, S. C. Lahiri, and B. P. Dey, Bull. Chem. Soc. Jpn. 66, 2785 (1993). |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                              |

#### **Experimental Values**

| $c_1^{a}$ | $x_2^{b}$ | $x_1^{\text{c}}$ |
|-----------|-----------|------------------|
| 1.1275    | 0.9292    | 0.0708           |

 $<sup>^{</sup>a}c_{1}$ : solubility of the solute expressed in units of mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Analytical balance and an ultraviolet/visible spectrophotometer.

Solutions containing excess solute and solvent were allowed to equilibrate at constant temperature for at least 24 h. An aliquot of the saturated solution was removed, filtered, and the absorbance recorded. Solubility was calculated from the measured absorbance.

## Source and Purity of Chemicals:

- (1) Puris grade, Fluka Chemicals, recrystallized from aqueous ethanol mixture and dried in an air oven at 390 K. The purified compound was stored in vacuum desiccators.
- (2) Absolute, B.C.P.W., Calcutta, India, was distilled twice before use.

## **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 1.0\%$  (relative error, estimated by compiler).  $x_1$ :  $\pm 2.5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Chlorobenzoic acid;<br>$C_7H_5ClO_2$ ; [118-91-2]<br>(2) Ethanol; $C_2H_6O$ ; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                   | Prepared by:                                                                              |
| T/K = 298.15                                                                                                 | W. E. Acree, Jr.                                                                          |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute calculated by the compiler.

The measured solubility was reported to be 3.607 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1424$ .

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [118-91-2] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  99 Q. Jia, P. Ma, S. Ma, and C. Wang, Chin. J. Chem. Eng. 15, 710 (2007). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                      |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                                  |

## **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 297.65 | 0.8914             | 0.1086    |
| 298.55 | 0.8877             | 0.1123    |
| 298.90 | 0.8864             | 0.1136    |
| 299.10 | 0.8856             | 0.1144    |
| 304.75 | 0.8602             | 0.1398    |
| 306.40 | 0.8527             | 0.1473    |
| 308.00 | 0.8454             | 0.1546    |
| 309.55 | 0.8380             | 0.1620    |
| 311.15 | 0.8309             | 0.1691    |
| 313.05 | 0.8240             | 0.1760    |
| 315.10 | 0.8172             | 0.1828    |
| 316.70 | 0.8103             | 0.1897    |
| 318.65 | 0.8035             | 0.1965    |
| 319.95 | 0.7994             | 0.2006    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature circulating bath, stirrer, analytical balance, and laser monitoring system.

Solubilities were determined by a dynamic method. Preweighed amounts of solute and solvent were placed in a stoppered equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and the temperature slowly increased until all of the solid dissolved. Near the dissolution temperature, the temperature was increased at a rate of 0.2 K/20 min. Complete dissolution was determined using a laser monitoring system.

## Source and Purity of Chemicals:

- (1) 99+%, Chemical source not specified, no purification details were provided.
- (2) 99+%, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

## 18.5. 2-Chlorobenzoic acid solubility data in miscellaneous organic solvents

| Components:                                                 | Original Measurements:                            |
|-------------------------------------------------------------|---------------------------------------------------|
| (1) 2-Chlorobenzoic acid;                                   | <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [118-91-2] | J. Phys. Chem. 77, 527 (1973).                    |
| (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N;         |                                                   |
| [75-05-8]                                                   |                                                   |
| Variables:                                                  | Prepared by:                                      |
| T/K = 298.15                                                | W. E. Acree, Jr.                                  |

#### **Experimental Values**

The measured solubility was reported to be 0.53 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [118-91-2] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                                              | W. E. Acree, Jr.                                                                              |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured solubility was reported to be 4.74 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K
- (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 19. Solubility of 3-Chlorobenzoic Acid in Organic Solvents

## 19.1. Critical evaluation of experimental solubility data

There have been several published studies<sup>8,18,54,61,72,126,127</sup> investigating the solubility behavior of 3-chlorobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Hoover et al.8 measured the solubility of 3-chlorobenzoic acid in 11 alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 3-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'oxybisbutane) and one cyclic ether (tetrahydrofuran), and in three alkyl alkanoates (ethyl ethanoate, butyl ethanoate, and pentyl ethanoate) at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 3chlorobenzoic acid. The authors were able to assemble a total of 37  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham Model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 3-chlorobenzoic acid is  $\log_{10} c_{1,\mathrm{W}} = -2.65$ . The McGowan volume of 3-chlorobenzoic acid, V = 1.0541, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 0.840. This left four solute descriptors (S, A, B and L) still to be determined. The 37 equations were then solved using the Microsoft "solver" program to yield numerical values of the remaining four solute descriptors, S = 0.950, A = 0.630, B = 0.320, and L = 5.197, that best described the  $\log_{10} (SR \text{ or } P)$ 

Table 21. Comparison between observed and calculated molar solubilities of 3-chlorobenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                              | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{ calc}};$ |
|---------------------|------------------------------|--------------------------------|---------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp}}$ | Eq. (20)                       | Eq. (21)                        |
| Ethanol             | 0.073 <sup>a</sup>           | 0.105                          | 0.077                           |
| 1-Propanol          | $0.042^{b}$                  | 0.003                          | -0.001                          |
| 2-Propanol          | $0.054^{b}$                  | 0.024                          | -0.032                          |
| 1-Butanol           | $-0.009^{b}$                 | -0.077                         | -0.073                          |
| 2-Butanol           | $-0.018^{b}$                 | -0.044                         | -0.071                          |
| 2-Methyl-1-propanol | $-0.135^{b}$                 | -0.165                         | -0.196                          |
| 1-Pentanol          | $-0.035^{b}$                 | -0.067                         | -0.064                          |
| 3-Methyl-1-butanol  | $-0.098^{b}$                 | -0.129                         | -0.142                          |
| 1-Hexanol           | $-0.069^{b}$                 | -0.112                         | -0.121                          |
| 1-Heptanol          | $-0.127^{b}$                 | -0.128                         | -0.140                          |
| 1-Octanol           | $-0.146^{b}$                 | -0.189                         | -0.244                          |
| 1-Decanol           | $-0.220^{b}$                 | -0.246                         | -0.230                          |
| 1,1'-Oxybisethane   | $-0.121^{b}$                 | -0.149                         | -0.009                          |
| Tetrahydrofuran     | $0.400^{b}$                  | 0.476                          | 0.463                           |
| 1,4-Dioxane         | 0.215 <sup>c</sup>           | 0.160                          | 0.152                           |
| Ethyl ethanoate     | $-0.185^{b}$                 | -0.072                         | -0.082                          |
| Butyl ethanoate     | $-0.298^{b}$                 | -0.204                         | -0.239                          |

<sup>&</sup>lt;sup>a</sup>Experimental value is from the study of Thuaire.<sup>7</sup>

and  $\log_{10}(GSR \text{ or } K)$  values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -7.80$  for the logarithm of the gas-phase solute concentration that made the  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values to within an average standard deviation of 0.081 and 0.088  $\log_{10}$  units, respectively.

After the 3-chlorobenzoic acid solubility study was published, Abraham model correlations have been developed for 3-methyl-1-butanol and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 3-chlorobenzoic acid solubility data. Table 21 compares the experimental  $log_{10}$   $c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 3chlorobenzoic acid,  $x_1$ , determined by Hoover et al. were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1]$ +  $(1 - x_1)V_{\text{solvent}}$ ]). The molar volume of the hypothetical subcooled liquid 3-chlorobenzoic acid is  $V_{\text{solute}} = 117.08$ cm<sup>3</sup> mol<sup>-1</sup>. Examination of the numerical entries in Table 21 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the

Sidgwick and Ewbank<sup>127</sup> measured the solubility of 3-chlorobenzoic acid in heptane and benzene as a function of temperature. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility

<sup>&</sup>lt;sup>b</sup>Experimental values are from Hoover et al.<sup>8</sup>

<sup>&</sup>lt;sup>c</sup>Experimental value is from the study of Saifullah et al. <sup>18</sup>

data to the Modified Apelblat model to yield the following two representations:

$$\ln x_1 = -133.498 + \frac{112.89}{T} + 22.0061 \ln T, \tag{43}$$

$$\ln x_1 = -91.101 + \frac{113.72}{T} + 15.0631 \ln T, \tag{44}$$

for solubilities in heptane and benzene, respectively. The average absolute deviations between the observed experimental data and back-calculated values based on Eqs. (43) and (44) of 12.8% and 9.4% are larger than desired. The large deviations may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0124$  to  $x_1 = 0.850$  for heptane and  $x_1 = 0.0114$  to  $x_1 = 0.821$  for benzene. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 3-chlorobenzoic acid in organic solvents are in Secs. 19.2–19.6.

## 19.2. 3-Chlorobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                   |

## **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
|       | +                  |         |
| 345.4 | 0.988              | 0.0124  |
| 362.8 | 0.971              | 0.0291  |
| 379.0 | 0.934              | 0.0663  |
| 401.3 | 0.780              | 0.220   |
| 407.4 | 0.609              | 0.391   |
| 413.3 | 0.400              | 0.600   |
| 420.9 | 0.150              | 0.850   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. **117**, 40 (1920) for synthetic details]. Melting point of the purified solute was 427.7 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified

(2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.  $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:                                       | Original Measurements:                              |
|---------------------------------------------------|-----------------------------------------------------|
| (1) 3-Chlorobenzoic acid;                         | <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. |
| $C_7H_5ClO_2$ ; [535-80-8]                        | P. Idoux, J. Org. Chem. <b>31</b> , 3801            |
| (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; | (1966).                                             |
| [110-82-7]                                        |                                                     |
| Variables:                                        | Prepared by:                                        |
| T/K = 303.15                                      | W. E. Acree, Jr.                                    |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------------------|---------|
| 0.9985             | 0.00145 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

<sup>&</sup>lt;sup>b</sup>*x*<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## 19.3. 3-Chlorobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>54</sup> C. K. Hancock, J. N. Pawloski, and J.<br>P. Idoux, J. Org. Chem. <b>31</b> , 3801<br>(1966). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9905  | 0.00948   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> 127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. <b>119</b> , 979 (1921). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                     |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                                                 |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 309.0 | 0.989   | 0.0114    |
| 324.4 | 0.975   | 0.0254    |
| 338.7 | 0.949   | 0.0507    |
| 366.9 | 0.823   | 0.177     |
| 381.2 | 0.676   | 0.324     |
| 398.5 | 0.448   | 0.552     |
| 415.7 | 0.179   | 0.821     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

## Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 427.7 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

## **Estimated Error:**

Temperature: Not given in paper.  $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

## 19.4. 3-Chlorobenzoic acid solubility data in esters

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  SK. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. 58, 25 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9348  | 0.0652  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                        | Prepared by:                                                                                                                           |
| T/K = 298.15                                                                                                                                                                      | W. E. Acree, Jr.                                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9338  | 0.0662      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9368  | 0.0632  |

 $\bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1-Methylethyl tetradecanoate; C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> ; [110-27-0] | Original Measurements:  61 E. R. Cooper, J. Control. Release 1, 153 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Variables: $T/K = 295$                                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                            |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.956   | 0.044     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

#### **Source and Purity of Chemicals:**

- (1) Reagent grade, Aldrich Chemical Company, Metuchen, NJ, USA, no purification details provided.
- (2) Reagent grade, Wickhen Corporation, Huguenot, NJ, USA, no purification details provided.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ : No information given.

| Components:                                                             | Original Measurements:              |
|-------------------------------------------------------------------------|-------------------------------------|
| (1) 3-Chlorobenzoic acid;                                               | W. E. Acree, Jr., unpublished data. |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]             | -                                   |
| (2) 1,2,3-Triacetoxypropane                                             |                                     |
| (Triacetin); C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1] |                                     |

Variables: Prepared by: T/K = 298.15 W. E. Acree, Jr.

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9458  | 0.05424   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

## 19.5. 3-Chlorobenzoic acid solubility data in ethers

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                           |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9199  | 0.0801  |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O;<br>[108-20-3] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                                           |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                       |

## **Experimental Values**

| $x_2^{a}$ | $x_1^{\mathbf{b}}$ |
|-----------|--------------------|
| 0.9449    | 0.0551             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9621  | 0.0379      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

 $Constant-temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7755  | 0.2245    |

 $\bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements: <sup>18</sup> M. Saifullah, S. Ye, L. M. Grubbs, N. E. De La Rosa, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. <b>40</b> , 2082 (2011). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8515  | 0.1485      |

 $\bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

## 19.6. 3-Chlorobenzoic acid solubility data in alcohols

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>126</sup> P. K. Biswas, S. C. Lahiri, and B. P. Dey, Bull. Chem. Soc. Jpn. <b>66</b> , 2785 (1993). |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Variables: $T/K = 298.15$                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                |  |

## **Experimental Values**

| $c_1^{a}$ | $x_2^{\mathbf{b}}$ | $x_1^{c}$ |
|-----------|--------------------|-----------|
| 0.6480    | 0.9605             | 0.0395    |

 $<sup>{}^{</sup>a}c_{1}$ : solubility of the solute expressed in units of mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Analytical balance and an ultraviolet/visible spectrophotometer. Solutions containing excess solute and solvent were allowed to equilibrate at constant temperature for at least 24 h. An aliquot of the saturated solution was removed, filtered, and the absorbance recorded. Solubility was calculated from the measured absorbance.

### **Source and Purity of Chemicals:**

- (1) Puris grade, Fluka Chemicals, recrystallized from aqueous ethanol mixture and dried in an air oven at 390 K. The purified compound was stored in vacuum desiccators.
- (2) Absolute, B.C.P.W., Calcutta, India, was distilled twice before use.

## **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 1.0\%$  (relative error, estimated by compiler).  $x_1$ :  $\pm 2.5\%$  (relative error, estimated by compiler).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  72 R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                             |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                         |

## **Experimental Values**

The measured solubility was reported to be 1.750 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.0746$ .

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                           |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9133  | 0.0867    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9087  | 0.0913    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9075  | 0.0925  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                 | Original Measurements:                               |
|-------------------------------------------------------------|------------------------------------------------------|
| (1) 3-Chlorobenzoic acid;                                   | <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] | and M. H. Abraham, S. Afr. J. Chem.                  |
| (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2]  | <b>58</b> , 25 (2005).                               |
| Variables:                                                  | Prepared by:                                         |
| T/K = 298.15                                                | W. E. Acree, Ir.                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9093  | 0.0907    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9308  | 0.0692    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O;<br>[71-41-0] | Original Measurements:  8 K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. 58, 25 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                                              | W. E. Acree, Jr.                                                                                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8990  | 0.1010  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>10</sub> O; [123-51-3] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                             | Prepared by:                                                                                                                           |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9118  | 0.0882    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  8 K. R. Hoover, K. Pop, W. E. Acree, Jr. and M. H. Abraham, S. Afr. J. Chem. 58, 25 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8940  | 0.1060  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O;<br>[111-70-6] | Original Measurements:  8 K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. 58, 25 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                                         |
| T/K = 298.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8961  | 0.1039             |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Chlorobenzoic acid; C <sub>7</sub> H <sub>3</sub> ClO <sub>2</sub> ; [535-80-8] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  8 K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. 58, 25 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8901  | 0.1099    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O;<br>[112-30-1] | Original Measurements: <sup>8</sup> K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. <b>58</b> , 25 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                                                           |
| T/K = 298.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                       |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8896  | 0.1104  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [535-80-8]<br>(2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[57-55-6] | Original Measurements: <sup>61</sup> E. R. Cooper, J. Control. Release 1, 153 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                  | Prepared by:                                                                          |
| T/K = 295                                                                                                                                                                                   | W. E. Acree, Jr.                                                                      |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.949   | 0.051     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

#### Source and Purity of Chemicals:

- (1) Reagent grade, Aldrich Chemical Company, Metuchen, NJ, USA, no purification details provided.
- (2) Reagent grade, J.T. Baker Chemical Company, Phillipsburg, NJ, USA, no purification details provided.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ : No information given.

# 20. Solubility of 4-Chlorobenzoic Acid in Organic Solvents

## 20.1. Critical evaluation of experimental solubility data

There have been several published studies 14,54,61,127–130 investigating the solubility behavior of 4-chlorobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Daniels et al. 14 measured the solubility of 4-chlorobenzoic acid in 16 alcohols (methanol, ethanol, 1-propanol, 2propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, and 1decanol), in two dialkyl ethers (2,2'-oxybispropane and 1,1'oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4dioxane), and in three alkanoates (methyl ethanoate, ethyl ethanoate, and butyl ethanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 4-chlorobenzoic acid. The authors were able to assemble a total of 49  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 4-chlorobenzoic acid is  $\log_{10} c_{1,W} = -3.56.^{131-135}$  The McGowan volume of 4-chlorobenzoic acid, V = 1.0541, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 0.840. This left four solute descriptors (S, A, B, and L) still to be determined. The 49 equations were then solved using the Microsoft "solver" program to yield numerical values of the remaining four solute descriptors, S = 1.020, A = 0.630, B = 0.270, and L = 4.9474, that best described the $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -8.360$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  values to

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

Table 22. Comparison between observed and calculated molar solubilities of 4-chlorobenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                                | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|--------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp,a}}$ | Eq. (20)                       | Eq. (21)                       |
| Methanol            | -0.701                         | -0.734                         | -0.728                         |
| Ethanol             | -0.767                         | -0.698                         | -0.693                         |
| 1-Propanol          | -0.800                         | -0.790                         | -0.781                         |
| 2-Propanol          | -0.780                         | -0.768                         | -0.752                         |
| 1-Butanol           | -0.840                         | -0.860                         | -0.845                         |
| 2-Butanol           | -0.800                         | -0.828                         | -0.861                         |
| 2-Methyl-1-propanol | -0.990                         | -0.976                         | -0.990                         |
| 2-Methyl-2-propanol | -0.670                         | -0.734                         | -0.704                         |
| 1-Pentanol          | -0.860                         | -0.870                         | -0.860                         |
| 2-Pentanol          | -0.821                         | -0.874                         | -0.872                         |
| 3-Methyl-1-butanol  | -0.919                         | -0.940                         | -0.939                         |
| 1-Hexanol           | -0.880                         | -0.905                         | -0.913                         |
| 1-Heptanol          | -0.900                         | -0.895                         | -0.934                         |
| 1-Octanol           | -0.920                         | -0.960                         | -1.038                         |
| 1-Decanol           | -0.988                         | -1.040                         | -1.041                         |
| Tetrahydrofuran     | -0.153                         | -0.215                         | -0.258                         |
| 1,4-Dioxane         | -0.465                         | -0.512                         | -0.518                         |
| Methyl ethanoate    | -0.951                         | -0.862                         | -0.822                         |
| Ethyl ethanoate     | -0.950                         | -0.768                         | -0.780                         |
| Butyl ethanoate     | -1.155                         | -0.900                         | -0.952                         |

<sup>&</sup>lt;sup>a</sup>All experimental data were taken from Daniels et al. <sup>14</sup>

within an average standard deviation of 0.078 and 0.098  $\log_{10}$  units, respectively.

After the 4-chlorobenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 4-chlorobenzoic acid solubility data. Table 22 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 4-chlorobenzoic acid,  $x_1$ , determined by Daniel *et al.* <sup>14</sup> were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 +$  $(1 - x_1)V_{\text{solvent}}$ . The molar volume of the hypothetical subcooled liquid 4-chlorobenzoic acid is  $V_{\text{solute}} = 117.08 \text{ cm}^3$ mol<sup>-1</sup>. Examination of the numerical entries in Table 22 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Sidgwick and Ewbank<sup>127</sup> measured the solubility of 4-chlorobenzoic acid in heptane and benzene as a function of temperature. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model to yield the following representations:

$$\ln x_1 = -130.159 + \frac{113.10}{T} + 20.8141 \ln T, \tag{45}$$

$$\ln x_1 = -89.694 + \frac{113.78}{T} + 14.3691 \ln T, \qquad (46)$$

for solubilities in heptane and benzene, respectively. The average absolute deviations between the observed experimental data and back-calculated values based on Eqs. (45) and (46) of 12.4% and 6.7% are larger than desired. The large deviations may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0109$  to  $x_1 = 0.680$  for heptane and  $x_1 = 0.0100$  to  $x_1 = 0.855$  for benzene. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 4-chlorobenzoic acid in organic solvents are in Secs. 20.2–20.9.

## 20.2. 4-Chlorobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements: <sup>127</sup> N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. <b>119</b> , 979 (1921). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                     |

## **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 409.3 | 0.989              | 0.0109             |
| 438.5 | 0.968              | 0.0323             |
| 454.1 | 0.933              | 0.0670             |
| 480.4 | 0.775              | 0.225              |
| 491.5 | 0.597              | 0.403              |
| 500.8 | 0.320              | 0.680              |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

## Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 514.7 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ;<br>[110-82-7] | <b>Original Measurements:</b> <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                                                       |
| T/K = 303.15                                                                                                                                                              | W. E. Acree, Jr.                                                                                                                   |

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9999  | 0.0000719          |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

(1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.

(2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ;<br>[110-82-7] | Original Measurements: <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                                                          |
| T/K = 293                                                                                                                                                                 | W. E. Acree. Jr.                                                                                                                      |

## **Experimental Values**

The measured solubility was reported to be 0.1 g/l, which corresponds to a molar solubility of  $c_1 = 0.00064$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

No information given.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.  $c_1$ : No information given.

## 20.3. 4-Chlorobenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                             |
| T/K = 303.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9995  | 0.000489  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

Temperature: ±0.02 K.

 $x_1$ :  $\pm 3\%$  (relative error, by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                       |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                   |

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 366.8 | 0.990   | 0.0100    |
| 392.6 | 0.973   | 0.0272    |
| 410.6 | 0.946   | 0.0542    |
| 445.7 | 0.820   | 0.1796    |
| 467.2 | 0.645   | 0.355     |
| 485.9 | 0.427   | 0.573     |
| 505.7 | 0.145   | 0.855     |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

## Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 514.7 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

## **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  128 G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. 60, 2519 (1987). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                        |
| T/K = 293                                                                                                                                               | W. E. Acree, Jr.                                                                                                    |

## **Experimental Values**

The measured solubility was reported to be 0.5 g/l, which corresponds to a molar solubility of  $c_1 = 0.0032$ .

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

## 20.4. 4-Chlorobenzoic acid solubility data in esters

| Components:                                                                                                                                                                  | Original Measurements:                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| (1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[79-20-9] | <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
| Variables: T/K = 298.15                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9910  | 0.008963 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 4-Chlorobenzoic acid;<br>$C_7H_5ClO_2$ ; [74-11-3]<br>(2) Ethyl ethanoate; $C_4H_8O_2$ ;<br>[141-78-6] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                | Prepared by:                                                                                                                              |
| T/K = 298.15                                                                                                              | W. E. Acree, Jr.                                                                                                                          |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9889  | 0.01111 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, was used as received. (2) 99.9%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                          | Original Measurements:                             |
|----------------------------------------------------------------------|----------------------------------------------------|
| (1) 4-Chlorobenzoic acid;                                            | <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]           | Wold, W. E. Acree, Jr., and M. H.                  |
| (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; | Abraham, Can. J. Chem. 81, 1492                    |
| [123-86-4]                                                           | (2003).                                            |
| Variables:                                                           | Prepared by:                                       |
| T/K = 298.15                                                         | W. E. Acree, Jr.                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9907  | 0.00926   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                 | Original Measurements:                             |
|-------------------------------------------------------------|----------------------------------------------------|
| (1) 4-Chlorobenzoic acid;                                   | <sup>61</sup> E. R. Cooper, J. Control. Release 1, |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]  | 153 (1984).                                        |
| (2) 1-Methylethyl tetradecanoate;                           |                                                    |
| C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> ; [110-27-0] |                                                    |
| Variables:                                                  | Prepared by:                                       |
| T/K = 295                                                   | W F Acree Ir                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9914  | 0.0086    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

## **Source and Purity of Chemicals:**

(1) Reagent grade, Aldrich Chemical Company, Metuchen, NJ, USA, no purification details provided.

(2) Reagent grade, Wickhen Corporation, Huguenot, NJ, USA, no purification details provided.

## **Estimated Error:**

Temperature: No information given.  $x_1$ : No information given.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

| Components:                                                                                                                                                                                       | Original Measurements:             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| (1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1,2,3-Triacetoxypropane<br>(Triacetin); C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1] | W. E. Acree, Jr., unpublished data |
| Variables:                                                                                                                                                                                        | Prepared by:                       |
| T/K = 298.15                                                                                                                                                                                      | W. E. Acree, Jr.                   |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9894  | 0.01060   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

## 20.5. 4-Chlorobenzoic acid solubility data in ethers

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements: <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                                         |
| T/K = 293                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                     |

## **Experimental Values**

The measured solubility was reported to be 15.2 g/l, which corresponds to a molar solubility of  $c_1 = 0.097$ .

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information given.  $c_1$ : No information given.

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 2,2'-Oxybispropane;<br>C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                            |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9932  | 0.006780  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                         |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9942  | 0.005833  |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

### Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99.3%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| <b>Original Measurements:</b> 129 S. H. Ghosh and D. K. Hazra, J. Ind. Chem. Soc. <b>65</b> , 620 (1988). |
|-----------------------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree, Jr.                                                                          |
|                                                                                                           |

### **Experimental Values**

The measured solubility was reported to be  $c_1 = 1.0369 \text{ mol dm}^{-3}$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Mechanical shaker and a constant-temperature thermostat.

Excess solute and solvent were placed in a bottle and stoppered. The solution was shaken in a mechanical shaker for 24 h at ambient room temperature. The solution was then thermostated at 298 K for 24 h with occasional shaking. An aliquot of the saturated solution was then removed and filtered. The concentration of the dissolved solute was determined by titration with standard caustic soda using phenolphthalein as indicator.

## **Source and Purity of Chemicals:**

- (1) Puriss, Fluka, distilled from aqueous-ethanol mixture.
- (2) Purum, Fluka, was shaken with ferrous sulfate and then distilled. The distillate was further purified by refluxing for 12 h and distilling over metallic sodium.

## **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $c_1$ :  $\pm 1.5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                                                                              |
| T/K = 298.15                                                                                                                                                      | W. E. Acree, Jr.                                                                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9413  | 0.05874 |

 $\bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                              | Prepared by:                                                                                                                                                |
| T/K = 298.15                                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                                            |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9703  | 0.02974 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements: <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                              | Prepared by:                                                                                                                          |
| T/K = 293                                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                      |

## **Experimental Values**

The measured solubility was reported to be 53.0 g/l, which corresponds to a molar solubility of  $c_1 = 0.339$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.  $c_1$ : No information given.

## 20.6. 4-Chlorobenzoic acid solubility in haloalkanes, haloalkenes, haloaromatic hydrocarbons

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements:  128 G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. 60, 2519 (1987). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                                        |
| T/K = 293                                                                                                                                            | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

The measured solubility was reported to be 2.1 g/l, which corresponds to a molar solubility of  $c_1 = 0.0134$ .

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                                                                          |
| T/K = 293                                                                                                                                             | W. E. Acree, Jr.                                                                                                                      |

### **Experimental Values**

The measured solubility was reported to be 0.2 g/l, which corresponds to a molar solubility of  $c_1 = 0.0013$ .

### **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1,2-Dichloroethane; C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> ; [107-06-2] | Original Measurements: <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                                                          |
| T/K = 293                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                                      |

## **Experimental Values**

The measured solubility was reported to be 1.4 g/l, which corresponds to a molar solubility of  $c_1 = 0.0089$ .

## Method/Apparatus/Procedure:

No information given.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>3</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1,2-Dichloroethane; C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> ; [107-06-2] | Original Measurements:  128 G. S. Krasil'nikova, E. G. Freidlin and Y. N. Pirig, Zh. Prikl. Khim. 60, 2519 (1987). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                                       |
| T/K = 293                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                   |

## **Experimental Values**

The measured solubility was reported to be 1.4 g/l, which corresponds to a molar solubility of  $c_1 = 0.0089$ .

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | <b>Original Measurements:</b> <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                                                |
| T/K = 293                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                            |

## **Experimental Values**

The measured solubility was reported to be 0.7 g/l, which corresponds to a molar solubility of  $c_1 = 0.0045$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

No information given.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

## 20.7. 4-Chlorobenzoic acid solubility data in alcohols

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                  | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9918  | 0.00823 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

### **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 4-Chlorobenzoic acid;<br>$C_7H_5ClO_2$ ; [74-11-3]<br>(2) Ethanol; $C_2H_6O$ ; [64-17-5] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                            |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9899  | 0.01013   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  126 P. K. Biswas, S. C. Lahiri, and B. P. Dey, Bull. Chem. Soc. Jpn. 66, 2785 (1993). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                              |

## **Experimental Values**

| $c_1^a$ | $x_2^{b}$ | $x_1^{c}$ |
|---------|-----------|-----------|
| 0.2895  | 0.9827    | 0.0173    |

 $<sup>{}^{</sup>a}c_{1}$ : solubility of the solute expressed in units of mol dm<sup>-3</sup>.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Analytical balance and an ultraviolet/visible spectrophotometer.

Solutions containing excess solute and solvent were allowed to equilibrate at constant temperature for at least 24 h. An aliquot of the saturated solution was removed, filtered, and the absorbance recorded. Solubility was calculated from the measured absorbance.

## Source and Purity of Chemicals:

- (1) Puris grade, Fluka Chemicals, recrystallized from aqueous ethanol mixture and dried in an air oven at 390 K. The purified compound was stored in vacuum desiccators.
- (2) Absolute, B.C.P.W., Calcutta, India, was distilled twice before use.

## **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 1.0\%$  (relative error, estimated by compiler).  $x_1$ :  $\pm 2.5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                          |

## **Experimental Values**

The measured solubility was reported to be 0.270 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.01229$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:                                                | Original Measurements:                              |
|------------------------------------------------------------|-----------------------------------------------------|
| (1) 4-Chlorobenzoic acid;                                  | <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] | and Y. N. Pirig, Zh. Prikl. Khim. 60,               |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]    | 2519 (1987).                                        |
| Variables:                                                 | Prepared by:                                        |
| T/K = 293                                                  | W. E. Acree, Jr.                                    |

## **Experimental Values**

The measured solubility was reported to be 25.5 g/l, which corresponds to a molar solubility of  $c_1 = 0.163$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute calculated by the compiler.

## Method/Apparatus/Procedure:

No information given.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                            |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                        |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9881  | 0.01188 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                                                                              | Original Measurements:                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| (1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O;<br>[71-23-8] | <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
| Variables:                                                                                                                                               | Prepared by:                                                                                                   |

#### **Experimental Values**

The measured solubility was reported to be 23.8 g/l, which corresponds to a molar solubility of  $c_1 = 0.152$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information given.

 $c_1$ : No information given.

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O;<br>[71-23-8] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9873  | 0.01274   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                              |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9865  | 0.01350   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, was used as received.

(2) 99.8%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                | Original Measurements:                             |
|------------------------------------------------------------|----------------------------------------------------|
| (1) 4-Chlorobenzoic acid;                                  | <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] | Wold, W. E. Acree, Jr., and M. H.                  |
| (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O;           | Abraham, Can. J. Chem. 81, 1492                    |
| [78-92-2]                                                  | (2003).                                            |
| Variables:                                                 | Prepared by:                                       |
| T/K = 298.15                                               | W. E. Acree, Jr.                                   |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9852  | 0.01480 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| [78-83-1]<br>Variables:                                                                                                                                     | (2003).  Prepared by:                                                                                                            |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                 |

## **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9904           | 0.009578  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                            |

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9798  | 0.02021            |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>128</sup> G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. <b>60</b> , 2519 (1987). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                          |
| T/K = 293                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                      |

## **Experimental Values**

The measured solubility was reported to be 30.7 g/l, which corresponds to a molar solubility of  $c_1 = 0.196$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

No information given.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information given.  $c_1$ : No information given.

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>3</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

### **Experimental Values**

| a       | h       |
|---------|---------|
| $x_2$ " | $x_1$   |
| 0.9848  | 0.01517 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O;<br>[6032-29-7] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                                                                     |
| T/K = 298.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                 |

|         | L         |
|---------|-----------|
| $x_2^a$ | $x_1^{b}$ |
| 0.9835  | 0.01655   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [137-32-6] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9887  | 0.01133   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9868  | 0.01323   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O;<br>[111-27-3] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                            |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9835  | 0.01646   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>3</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                          |

## **Experimental Values**

| $x_2^{a}$ | $x_1^b$ |
|-----------|---------|
| 0.9822    | 0.01777 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                 |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9811  | 0.01885   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O;<br>[112-30-1] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                            |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9804  | 0.01956   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chlorobenzoic acid;<br>C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]<br>(2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[57-55-6] | Original Measurements:  61 E. R. Cooper, J. Control. Release 1, 153 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                |
| T/K = 295                                                                                                                                                                                  | W. E. Acree, Jr.                                                            |

## **Experimental Values**

| $x_2^a$ | $x_1^{\text{cb}}$ |
|---------|-------------------|
| 0.9902  | 0.0098            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

## **Source and Purity of Chemicals:**

- (1) Reagent grade, Aldrich Chemical Company, Metuchen, NJ, USA, no purification details provided.
- (2) Reagent grade, J.T. Baker Chemical Company, Phillipsburg, NJ, USA, no purification details provided.

## **Estimated Error:**

Temperature: No information given.  $x_1$ : No information given.

## 20.8. 4-Chlorobenzoic acid solubility data in alkoxyalcohols

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Methoxyethanol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [109-86-4] | Original Measurements: <sup>129</sup> S. H. Ghosh and D. K. Hazra, J. Indian Chem. Soc. <b>65</b> , 620 (1988). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                |

#### **Experimental Values**

The measured solubility was reported to be  $c_1 = 0.4031$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Mechanical shaker and a constant-temperature thermostat.

Excess solute and solvent were placed in a bottle and stoppered. The solution was shaken in a mechanical shaker for 24 h at ambient room temperature. The solution was then thermostated at 298 K for 24 h with occasional shaking. An aliquot of the saturated solution was then removed and filtered. The concentration of the dissolved solute was determined by titration with standard caustic soda using phenolphthalein as indicator.

#### Source and Purity of Chemicals:

- (1) Puriss, Fluka, distilled from aqueous-ethanol mixture.
- (2) G. R., Merck Chemical Company, was distilled twice before use.

## **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $c_1$ :  $\pm 1.5\%$  (relative error, estimated by compiler).

| Components:                                                          | Original Measurements:                              |
|----------------------------------------------------------------------|-----------------------------------------------------|
| (1) 4-Chlorobenzoic acid;                                            | <sup>130</sup> L. M. Grubbs, M. Saifullah, N. E. De |
| C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3]           | La Rosa, S. Ye, S. S. Achi, W. E. Acree,            |
| (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; | Jr., and M. H. Abraham, Fluid Phase                 |
| [110-80-5]                                                           | Equilib. <b>298</b> , 48 (2010).                    |
| Variables:                                                           | Prepared by:                                        |
| T/K = 298.15                                                         | W. E. Acree, Jr.                                    |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9663  | 0.0337    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Propoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2807-30-9] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9691  | 0.0309    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [109-59-1] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                           | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9646  | 0.0354  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree, Jr.                                                                                                                                                       |

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.9701    | 0.0299    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, was used as received.

(2) 99%, Acros Organics, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

## 20.9. 4-Chlorobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Chlorobenzoic acid; C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> ; [74-11-3] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements: <sup>14</sup> C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                            |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9967  | 0.003247  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 21. Solubility of 2-Chloro-5-nitrobenzoic Acid in Organic Solvents

## 21.1. Critical evaluation of experimental solubility data

There has been only one published study investigating the solubility behavior of 2-chloro-5-nitrobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Stovall et al. 13 measured the solubility of 2-chloro-5-nitrobenzoic acid in 14 alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'-oxybisbutane) and one cyclic ether (tetrahydrofuran), and in four alkyl alkanoates (methyl ethanoate, ethyl ethanoate, propyl ethanoate, and butyl ethanoate) at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 2-chloro-5-nitrobenzoic acid. The authors were able to assemble a total of 35  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham Model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 2-chloro-5-nitrobenzoic acid,  $\log_{10} c_{1,W} = -2.588$  (corrected for ionization), was determined by the authors as part of their experimental study. The McGowan volume of 2-chloro-5-nitrobenzoic acid, V =1.2283, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 1.250. This left four solute descriptors (S, A, B, and L) still to be determined. The 35 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.400, A = 0.670, B = 0.460, and L = 6.513, that best described the  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -9.538$  for the logarithm of the gas-phase solute concentration that made the  $log_{10}$  (SR or P) and  $log_{10}$ (GSR or K) predictions internally consistent. The calculated molecular solute descriptors reproduced the  $log_{10}$  (SR or P) and  $log_{10}$  (GSR or K) values to within an average standard deviation of 0.104 and 0.124  $\log_{10}$  units, respectively.

After the 2-chloro-5-nitrobenzoic acid solubility study was published, Abraham model correlations were developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, propyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 2-chloro-5-nitrobenzoic acid solubility data. Table 23 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 2-chloro-5-nitrobenzoic acid,  $x_1$ , determined by Stovall  $et\ al.$ ,  $^{13}$  were converted into molar

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

Table 23. Comparison between observed and calculated molar solubilities of 2-chloro-5-nitrobenzoic acid based on the Abraham model, Eqs. (20) and (21)

| Solvent             | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{ calc}};$ Eq. (20) | $\log_{10} c_1^{\text{ calc}};$ Eq. (21) |
|---------------------|------------------------------|------------------------------------------|------------------------------------------|
| Ethanol             | 0.146                        | 0.076                                    | 0.070                                    |
| 1-Propanol          | -0.022                       | -0.055                                   | -0.047                                   |
| 2-Propanol          | 0.045                        | -0.062                                   | -0.046                                   |
| 1-Butanol           | -0.111                       | -0.153                                   | -0.140                                   |
| 2-Butanol           | -0.134                       | -0.138                                   | -0.151                                   |
| 2-Methyl-1-propanol | -0.204                       | -0.207                                   | -0.288                                   |
| 2-Methyl-2-propanol | 0.070                        | -0.099                                   | -0.050                                   |
| 1-Pentanol          | -0.134                       | -0.164                                   | -0.158                                   |
| 2-Pentanol          | -0.125                       | -0.192                                   | -0.186                                   |
| 3-Methyl-1-butanol  | -0.173                       | -0.273                                   | -0.264                                   |
| 1-Hexanol           | -0.198                       | -0.207                                   | -0.210                                   |
| 1-Heptanol          | -0.269                       | -0.237                                   | -0.233                                   |
| 1-Octanol           | -0.324                       | -0.256                                   | -0.331                                   |
| 1-Decanol           | -0.411                       | -0.360                                   | -0.341                                   |
| 1,1'-Oxybisethane   | -0.171                       | -0.269                                   | -0.178                                   |
| Tetrahydrofuran     | 0.461                        | 0.589                                    | 0.563                                    |
| Methyl ethanoate    | -0.070                       | -0.065                                   | -0.052                                   |
| Ethyl ethanoate     | -0.126                       | -0.051                                   | -0.051                                   |
| Propyl ethanoate    | -0.289                       | -0.128                                   | -0.146                                   |
| Butyl ethanoate     | -0.410                       | -0.207                                   | -0.241                                   |
|                     |                              |                                          |                                          |

solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 2-chloro-5-nitrobenzoic acid is  $V_{\text{solute}} = 130.38 \text{ cm}^3 \text{ mol}^{-1}$ . Examination of the numerical entries in Table 23 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

The experimental solubility data for 2-chloro-5-nitrobenzoic acid in organic solvents are in Secs. 21.2–21.4.

## 21.2. 2-Chloro-5-nitrobenzoic acid solubility data in esters

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                                                                                                                                                |
| T/K = 298.15                                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9290  | 0.07096   |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                         | Original Measurements:                            |
|---------------------------------------------------------------------|---------------------------------------------------|
| (1) 2-Chloro-5-nitrobenzoic acid;                                   | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, |
| C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]       | K. R. Hoover, R. Barnes, C. Harris, J.            |
| (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; | Lozano, M. Nguyen, E. Rodriguez, W.               |
| [141-78-6]                                                          | E. Acree, Jr., and M. H. Abraham,                 |
|                                                                     | Phys. Chem. Liq. 43, 351 (2005).                  |
| Variables:                                                          | Prepared by:                                      |
| T/K = 298.15                                                        | W. E. Acree, Jr.                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9244  | 0.07561 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) Propyl ethanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [109-60-4] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown K. R. Hoover, R. Barnes, C. Harris, J Lozano, M. Nguyen, E. Rodriguez, W E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                            |

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9401  | 0.05988            |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.5%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                           | Original Measurements:                            |
|---------------------------------------|---------------------------------------------------|
| (1) 2-Chloro-5-nitrobenzoic acid;     | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, |
| $C_7H_4CINO_4$ ; [2516-96-3]          | K. R. Hoover, R. Barnes, C. Harris, J.            |
| (2) Butyl ethanoate; $C_6H_{12}O_2$ ; | Lozano, M. Nguyen, E. Rodriguez, W.               |
| [123-86-4]                            | E. Acree, Jr., and M. H. Abraham,                 |
|                                       | Phys. Chem. Liq. <b>43</b> , 351 (2005).          |
| Variables:                            | Prepared by:                                      |
| T/K = 298.15                          | W. E. Acree, Jr.                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9374  | 0.06260   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                                                                                                                                  | Original Measurements:              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| (1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 1,2,3-Triacetoxypropane<br>(Triacetin); C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1] | W. E. Acree, Jr., unpublished data. |
| Variables: $T/K = 298.15$                                                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9170  | 0.08295   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99%, Acros Organics, USA, stored over molecular sieves before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## 21.3. 2-Chloro-5-nitrobenzoic acid solubility data in ethers

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                                                                                                       |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9415           | 0.05852 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O;<br>[108-20-3] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                   | Prepared by:                                                                                                                                                                                                                   |
| T/K = 298.15                                                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                                                                                               |

## **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9738  | 0.02621            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O;<br>[142-96-1] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                     | Phys. Chem. Liq. <b>43</b> , 351 (2005).  Prepared by: W. E. Acree, Jr.                                                                                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9837  | 0.01630   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.3%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                       |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7256  | 0.2744  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 21.4. 2-Chloro-5-nitrobenzoic acid solubility data in alcohols

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                             |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9086  | 0.09140 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                                                                                      | Original Measurements:                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| (1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | <ul> <li>Lozano, M. Nguyen, E. Rodriguez, W.</li> <li>E. Acree, Jr., and M. H. Abraham,</li> </ul> |
|                                                                                                                                                                  | Phys. Chem. Liq. 43, 351 (2005).                                                                   |
| Variables:                                                                                                                                                       | Prepared by:                                                                                       |
| T/K = 298.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9245  | 0.07550   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

 $Constant\text{-}temperature bath, calorimetric thermometer, and an ultraviolet/\ visible spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                       |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9025  | 0.09750   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                                                                                             |

#### **Experimental Values**

|         | h       |
|---------|---------|
| $x_2^a$ | $x_1$   |
| 0.9265  | 0.07350 |

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                       |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9131           | 0.08685 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                             |

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9405             | 0.05947   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O;<br>[75-65-0] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown K. R. Hoover, R. Barnes, C. Harris, J Lozano, M. Nguyen, E. Rodriguez, W E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                         |

## **Experimental Values**

| $x_2^{a}$ | $x_1^b$ |
|-----------|---------|
| 0.8842    | 0.1158  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>$C_7H_4\text{ClNO}_4$ ; [2516-96-3]<br>(2) 1-Pentanol; $C_5H_{12}\text{O}$ ; [71-41-0] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                                                                                                                                   |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                                                                                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9189  | 0.08109   |

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O;<br>[6032-29-7] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                               |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9165  | 0.08349   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>$C_7H_4CINO_4$ ; [2516-96-3]<br>(2) 3-Methyl-1-butanol; $C_5H_{12}O$ ;<br>[123-51-3] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                             |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9252           | 0.07483 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3]                                                 | E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005).                                                                |
| Variables:                                                                                                  | Prepared by:                                                                                                                              |
| T/K = 298.15                                                                                                | W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9202  | 0.07980 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Chloro-5-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3]<br>(2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O;<br>[111-70-6] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                             |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9242  | 0.07584   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Chloro-5-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown K. R. Hoover, R. Barnes, C. Harris, J             |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O;<br>[111-87-5]                                              | Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |  |
| Variables:                                                                                                  | Prepared by:                                                                                                   |  |
| T/K = 298.15                                                                                                | W. E. Acree, Jr.                                                                                               |  |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9259  | 0.07409   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Chloro-5-nitrobenzoic acid;                 | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown |  |
|---------------------------------------------------------------|--------------------------------------------------------------|--|
| C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [2516-96-3] | K. R. Hoover, R. Barnes, C. Harris, J.                       |  |
| (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O;             | Lozano, M. Nguyen, E. Rodriguez, W.                          |  |
| [112-30-1]                                                    | E. Acree, Jr., and M. H. Abraham,                            |  |
|                                                               | Phys. Chem. Liq. <b>43</b> , 351 (2005).                     |  |
| Variables:                                                    | Prepared by:                                                 |  |
| T/K = 298.15                                                  | W. E. Acree, Jr.                                             |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9274  | 0.07261 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

## 22. Solubility of 4-Chloro-3,5dinitrobenzoic Acid in Organic Solvents

# 22.1. Critical evaluation of experimental solubility data

There has been only a single publication reporting the solubility of 4-chloro-3,5-dinitrobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> determined the solubility of 4-chloro-3,5-dinitrobenzoic acid in methanol and ethanenitrile at 298 K. It is not possible to perform a critical evaluation of the experimental data as measurements at only a single temperature, and there are no independent experimental solubility data for 4-chloro-3,5-dinitrobenzoic acid in either methanol or ethanenitrile.

The experimental solubility data for 4-chloro-3,5-dinitrobenzoic acid in organic solvents are in Secs. 22.2 and 22.3.

# 22.2. 4-Chloro-3,5-dinitrobenzoic acid solubility data in alcohols

| Components: (1) 4-Chloro-3,5-dinitrobenzoic acid; C <sub>7</sub> H <sub>3</sub> ClN <sub>2</sub> O <sub>6</sub> ; [118-97-8] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

The measured solubility was reported to be  $1.55~\text{mol}~\text{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### **Source and Purity of Chemicals:**

(1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
(2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 22.3. 4-Chloro-3,5-dinitrobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Chloro-3,5-dinitrobenzoic acid; C <sub>7</sub> H <sub>3</sub> ClN <sub>2</sub> O <sub>6</sub> ; [118-97-8] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 1.22 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from aqueous ethanol solution.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 23. Solubility of 4-Chloro-3-nitrobenzoic Acid in Organic Solvents

# 23.1. Critical evaluation of experimental solubility data

There have been several published studies <sup>13,54,63,76,83</sup> investigating the solubility behavior of 4-chloro-3-nitrobenzoic acid in organic solvents of varying polarity and hydrogenbonding capability. Stovall *et al.* <sup>13</sup> measured the solubility of 4-chloro-3-nitrobenzoic acid in 17 alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'-oxybisbutane), and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), in six alkyl alkanoates (methyl ethanoate, ethyl ethanoate, propyl ethanoate, butyl ethanoate, pentyl ethanoate, and methyl butanoate), and in propylene carbonate

at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 4-chloro-3nitrobenzoic acid. The authors were able to assemble a total of 37  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 4-chloro-3-nitrobenzoic acid is  $\log_{10} c_{1,W} = -3.00.^{136}$  The McGowan volume of 4-chloro-3-nitrobenzoic acid, V =1.2283, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 1.250. This left four solute descriptors (S, A, B, and L) still to be determined. The 37 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.470, A = 0.700, B = 0.440, and L = 6.685, that best described the $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -10.21$  for the logarithm of the gas-phase solute concentration that made the  $\log_{10}$  (SR or P) and  $\log_{10}$ (GSR or K) predictions internally consistent. The calculated molecular solute descriptors reproduced the  $log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) values to within an average standard deviation of 0.063 and 0.072  $\log_{10}$  units, respectively.

After the 4-chloro-3-nitrobenzoic acid solubility study was published, several additional Abraham model correlations have been developed, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 4-chloro-3-nitrobenzoic acid solubility data. Table 24 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 4-chloro-3-nitrobenzoic acid,  $x_1$ , determined by Stovall et al. 13 were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1 - x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 4-chloro-3-nitrobenzoic acid is  $V_{\text{solute}} = 130.38 \text{ cm}^3 \text{ mol}^{-1}$ . Examination of the numerical entries in Table 24 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Chantooni and Kolthoff<sup>76,83</sup> determined the solubility of 4-chloro-3-nitrobenzoic acid in methanol, 2-propanol, 2-methyl-2-propanol, 1-hexanol, and ethanenitrile by titrating an aliquot of the saturated solutions with a standardized base titrant. The molar solubilities reported by the authors for 4-chloro-3-nitrobenzoic acid dissolved in 2-propanol,  $c_1 = 0.436$  mol dm<sup>-3</sup>, in 2-methyl-2-propanol,  $c_1 = 0.511$  mol dm<sup>-3</sup>, and in 1-hexanol,  $c_1 = 0.283$  mol dm<sup>-3</sup>, are in reasonable agreement with the values of  $c_1 = 0.386$  mol dm<sup>-3</sup> (for 2-propanol),  $c_1 = 0.367$  mol dm<sup>-3</sup> (for 2-methyl-2-propanol), and  $c_1 = 0.265$  mol dm<sup>-3</sup> (for 1-hexanol) calculated from the mole fraction solubility data of Stovall  $et\ al.^{13}$  The deviations

Table 24. Comparison between observed and calculated molar solubilities of 4-chloro-3-nitrobenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                              | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp}}$ | Eq. (20)                       | Eq. (21)                       |
| Methanol            | $-0.152^{a}$                 | -0.288                         | -0.276                         |
| Ethanol             | -0.290                       | -0.327                         | -0.303                         |
| 1-Propanol          | -0.433                       | -0.456                         | -0.421                         |
| 2-Propanol          | -0.413                       | -0.459                         | -0.416                         |
| 1-Butanol           | -0.510                       | -0.555                         | -0.511                         |
| 2-Butanol           | -0.499                       | -0.536                         | -0.527                         |
| 2-Methyl-1-propanol | -0.728                       | -0.689                         | -0.657                         |
| 2-Methyl-2-propanol | -0.435                       | -0.486                         | -0.414                         |
| 1-Pentanol          | -0.561                       | -0.580                         | -0.543                         |
| 2-Pentanol          | -0.525                       | -0.616                         | -0.569                         |
| 3-Methyl-1-butanol  | -0.627                       | -0.696                         | -0.640                         |
| 1-Hexanol           | -0.577                       | -0.619                         | -0.593                         |
| 1-Heptanol          | -0.609                       | -0.637                         | -0.614                         |
| 1-Octanol           | -0.642                       | -0.657                         | -0.711                         |
| 1-Decanol           | -0.733                       | -0.780                         | -0.731                         |
| 1,1'-Oxybisethane   | -0.632                       | -0.657                         | -0.533                         |
| Tetrahydrofuran     | 0.280                        | 0.242                          | 0.247                          |
| 1,4-Dioxane         | 0.165                        | 0.033                          | 0.060                          |
| Methyl ethanoate    | -0.365                       | -0.428                         | -0.371                         |
| Ethyl ethanoate     | -0.450                       | -0.417                         | -0.386                         |
| Propyl ethanoate    | -0.592                       | -0.498                         | -0.486                         |
| Butyl ethanoate     | -0.641                       | -0.580                         | -0.585                         |

<sup>&</sup>lt;sup>a</sup>Experimental value is from Chantooni and Kolthoff. <sup>83</sup>

between the two sets of experimental measurements are attributed in part to differences in chemical purities and experimental methodologies.

The experimental solubility data for 4-chloro-3-nitrobenzoic acid in organic solvents are in Secs. 23.2–23.7.

# 23.2. 4-Chloro-3-nitrobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000218 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

# 23.3. 4-Chloro-3-nitrobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9993  | 0.000678  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask

plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 3\%$  (relative error, by compiler).

# 23.4. 4-Chloro-3-nitrobenzoic acid solubility data in esters

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                  | Prepared by: W. E. Acree, Jr.                                                                                                                                                                                          |

## **Experimental Values**

| $\overline{x_2}^a$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9648             | 0.03520   |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                               | Prepared by:                                                                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                                                                                             |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9647  | 0.03534   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Propyl ethanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [109-60-4] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Phys. Chem. Liq. <b>43</b> , 351 (2005). <b>Prepared by:</b>                                                                                                                |
| T/K = 298.15                                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                                            |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9703  | 0.02966 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99.5%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J.           |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| (2) Butyl ethanoate; $C_6H_{12}O_2$ ; [123-86-4]                                                          | Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
| Variables:                                                                                                | Prepared by:                                                                                                   |
| T/K = 298.15                                                                                              | W. E. Acree, Jr.                                                                                               |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------------------|---------|
| 0.9697             | 0.03029 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                            |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9758  | 0.02420   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Methyl butanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [623-42-7] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown K. R. Hoover, R. Barnes, C. Harris, J Lozano, M. Nguyen, E. Rodriguez, W E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                    |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9759           | 0.02410 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## Source and Purity of Chemicals:

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                      | Original Measurements:              |
|--------------------------------------------------------------------------------------------------|-------------------------------------|
| (1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] | W. E. Acree, Jr., unpublished data. |
| (2) 1,2,3-Triacetoxypropane                                                                      |                                     |
| (Triacetin); C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1]                          |                                     |
| Variables:                                                                                       | Prepared by:                        |
| T/K = 298.15                                                                                     | W. E. Acree, Jr.                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9637  | 0.03631 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 23.5. 4-Chloro-3-nitrobenzoic acid solubility data in ethers

| (1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown<br>K. R. Hoover, R. Barnes, C. Harris, J<br>Lozano, M. Nguyen, E. Rodriguez, W<br>E. Acree, Jr., and M. H. Abraham,<br>Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                 |

## **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9754           | 0.02459 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                 | Original Measurements:                            |
|-------------------------------------------------------------|---------------------------------------------------|
| (1) 4-Chloro-3-nitrobenzoic acid;                           | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, |
| C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] | K. R. Hoover, R. Barnes, C. Harris, J.            |
| (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O;   | Lozano, M. Nguyen, E. Rodriguez, W.               |
| [108-20-3]                                                  | E. Acree, Jr., and M. H. Abraham,                 |
|                                                             | Phys. Chem. Liq. 43, 351 (2005).                  |
| Variables:                                                  | Prepared by:                                      |
| T/K = 298.15                                                | W. E. Acree, Jr.                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9871  | 0.01289     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1]<br>(2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O;<br>[142-96-1] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                   | Phys. Chem. Liq. <b>43</b> , 351 (2005).  Prepared by: W. E. Acree, Jr.                                                                                                    |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9913  | 0.008711  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

### **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                             |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8290  | 0.1710    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                              |
| T/K = 303.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.802   | 0.198     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                              | Phys. Chem. Liq. <b>43</b> , 351 (2005).  Prepared by: W. E. Acree, Jr.                                                                                                    |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8661  | 0.1339  |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## Source and Purity of Chemicals:

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                          |

## **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.852              | 0.148     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 23.6. 4-Chloro-3-nitrobenzoic acid solubility data in alcohols

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                              |

### **Experimental Values**

The measured solubility was reported to be 0.705 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

(1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 343 K.
(2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## Estimated Error:

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [54-17-5] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                             |

## **Experimental Values**

| r <sub>o</sub> a | r. b    |
|------------------|---------|
| 0.9665           | 0.03348 |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                                                                                                   |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                                                                                               |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9719  | 0.02812 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1]<br>(2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9696  | 0.03036   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                             |

## **Experimental Values**

The measured solubility was reported to be 0.436 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K before use.
- (2) Purity not given, Fisher Scientific, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9713  | 0.02874 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1]<br>(2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                                                                                             |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9704  | 0.02962   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by: W. E. Acree, Jr.                                                                                                                                                                                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9825  | 0.01747   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                               |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9649  | 0.03509   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | <b>Original Measurements:</b> <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

The measured solubility was reported to be 0.511 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

(1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K before

(2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:                                                 | Original Measurements:                            |
|-------------------------------------------------------------|---------------------------------------------------|
| (1) 4-Chloro-3-nitrobenzoic acid;                           | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, |
| C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] | K. R. Hoover, R. Barnes, C. Harris, J.            |
| (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Lozano, M. Nguyen, E. Rodriguez, W.               |
| .,                                                          | E. Acree, Jr., and M. H. Abraham,                 |
|                                                             | Phys. Chem. Liq. 43, 351 (2005).                  |
| Variables:                                                  | Prepared by:                                      |
| T/K = 298.15                                                | W. E. Acree, Jr.                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9700  | 0.03001   |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                               |

## Experimental Values

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9671           | 0.03290 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                | Phys. Chem. Liq. 43, 351 (2005).                                                                                                                                                      |
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                                                                          |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                                                                      |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9739  | 0.02606   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                 | Original Measurements:                            |
|-------------------------------------------------------------|---------------------------------------------------|
| (1) 4-Chloro-3-nitrobenzoic acid;                           | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, |
| C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] | K. R. Hoover, R. Barnes, C. Harris, J.            |
| (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Lozano, M. Nguyen, E. Rodriguez, W.               |
|                                                             | E. Acree, Jr., and M. H. Abraham,                 |
|                                                             | Phys. Chem. Liq. 43, 351 (2005).                  |
| Variables:                                                  | Prepared by:                                      |
| T/K = 298.15                                                | W. E. Acree, Jr.                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9668  | 0.03320   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                             |

## **Experimental Values**

The measured solubility was reported to be 0.283 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K before use.
- (2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Chloro-3-nitrobenzoic acid;<br>$C_7H_4\text{ClNO}_4$ ; [96-99-1]<br>(2) 2-Methyl-1-pentanol; $C_6H_{14}O$ ;<br>[105-30-6] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                               |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9764  | 0.02356   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>43</b> , 351 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                               |

| r a       | , b            |
|-----------|----------------|
| <u>x2</u> | x <sub>1</sub> |
| 0.9711    | 0.02890        |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                       |

## **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{\mathrm{b}}$ |
|------------------|--------------------|
| 0.9652           | 0.03481            |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  13 D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                                                                                             |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9641  | 0.03589   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                      | Original Measurements:                                                                      |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| (1) 4-Chloro-3-nitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] | <sup>13</sup> D. M. Stovall, C. Givens, S. Keown,<br>K. R. Hoover, R. Barnes, C. Harris, J. |
| (2) 2-Ethyl-1-hexanol; $C_8H_{18}O$ ;                                                            | Lozano, M. Nguyen, E. Rodriguez, W.                                                         |
| [104-76-7]                                                                                       | E. Acree, Jr., and M. H. Abraham,<br>Phys. Chem. Liq. <b>43</b> , 351 (2005).               |
| Variables:                                                                                       | Prepared by:                                                                                |
| T/K = 298.15                                                                                     | W. E. Acree, Jr.                                                                            |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9760  | 0.02399   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

#### Source and Purity of Chemicals:

- (1) 99.5%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid;     | Original Measurements:  13D. M. Stovall, C. Givens, S. Keown,         |  |
|---------------------------------------------------|-----------------------------------------------------------------------|--|
| $C_7H_4CINO_4$ ; [96-99-1]                        | K. R. Hoover, R. Barnes, C. Harris, J.                                |  |
| (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; | Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, |  |
| [112-30-1]                                        | Phys. Chem. Liq. <b>43</b> , 351 (2005).                              |  |
| Variables:                                        | Prepared by:                                                          |  |
| T/K = 298.15                                      | W. E. Acree, Jr.                                                      |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9649  | 0.03507 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## **Source and Purity of Chemicals:**

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 23.7. 4-Chloro-3-nitrobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements: <sup>13</sup> D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9866  | 0.01343 |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 292 nm.

## Source and Purity of Chemicals:

(1) 99.5%, Acros Organics, USA, was used as received.

(2) 99.7%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Chloro-3-nitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> ClNO <sub>4</sub> ; [96-99-1] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be  $0.133~\rm mol~dm^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

(1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K before use.

(2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 24. Solubility of 4-Cyanobenzoic Acid in Organic Solvents

# 24.1. Critical evaluation of experimental solubility data

There is only a single published study regarding the solubility behavior of 4-cyanobenzoic acid in organic solvents. Wang and Zhang<sup>97</sup> measured the mole fraction solubilities in ethanol as a function of temperature using a static and dynamic method. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, B)and C) are given in Table 25, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 25 reveals that the static experimental method yielded slightly more consistent experimental values as evidenced by the smaller MRD. In the case of the 4cyanobenzoic acid solubility data, there is a noticeable difference between the two experimental methods. The relative difference can be fairly large at times. For example, the static method gave a mole fraction solubility of  $x_1 = 0.03533$  for 4cyanobenzoic acid dissolved in ethanol at 313.15 K, versus a value of  $x_1 = 0.03879$  determined with the dynamic method. The calculated relative difference between the two reported values is just under 10%.

The experimental solubility data for 4-cyanobenzoic acid in organic solvents are in Sec. 24.2.

Table 25. Parameters of the Modified Apelblat equation for describing the solubility of 4-cyanobenzoic acid in ethanol<sup>a</sup>

| Solvent                  | A      | В     | С     | MRD (%) |
|--------------------------|--------|-------|-------|---------|
| Ethanol (dynamic method) | -2.476 | -2523 | 2.062 | 3.794   |
| Ethanol (static method)  | -4.654 | -2487 | 2.420 | 2.992   |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and the mean relative deviations were taken from Wang and Zhang.<sup>97</sup>

## 24.2. 4-Cyanobenzoic acid solubility data in alcohols

| <b>Components:</b> (1) 4-Cyanobenzoic acid; C <sub>8</sub> H <sub>5</sub> NO <sub>2</sub> ; [619-65-8] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>97</sup> H. Wang and W. Zhang, J. Chem. Eng. Data <b>54</b> , 1942 (2009). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                              |

### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathrm{b,c}}$ |
|-------|--------------------|----------------------|
| 298.2 | 0.9786             | 0.02136              |
| 303.2 | 0.9734             | 0.02657              |
| 308.2 | 0.9669             | 0.03305              |
| 313.2 | 0.9647             | 0.03533              |
| 318.2 | 0.9560             | 0.04404              |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | <i>x</i> <sub>1</sub> <sup>b,c</sup> |
|-------|--------------------|--------------------------------------|
| 298.2 | 0.9764             | 0.02363                              |
| 303.2 | 0.9748             | 0.02518                              |
| 308.2 | 0.9693             | 0.03075                              |
| 313.2 | 0.9612             | 0.03879                              |
| 318.2 | 0.9569             | 0.04311                              |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Thermostated water-jacketed glass vessel, thermometer, analytical balance, laser monitoring system.

Solubilities were determined using both a static and dynamic method. In the static method, excess solute and solvent were placed in a water-jacketed vessel allowed to equilibrate with stirring for three days at constant temperature. Samples of the saturated liquid phase were decanted into Petri dishes of known mass and weighed. The samples were then evaporated to dryness and the solubility determined from the mass of the solid residue and the mass of the sample analyzed. In the dynamic method, an excess of carboxylic acid was added to a known mass of ethanol. The resulting suspension was stirred in a water-jacketed vessel for 1 h at constant temperature. A known mass of ethanol was added to the vessel through a buret until the solute completely dissolved. The dissolution was monitored with a laser monitoring system. When the last portion of solid solute disappeared, the penetrated light intensity reached its maximum value. The mass of the added solvent was recorded. The solubility of the carboxylic acid was calculated from the known masses of solute and ethanol.

## **Source and Purity of Chemicals:**

- (1) 98%, Sigma-Aldrich Chemical Company, Milwaukee, WI, USA, no purification details provided.
- (2) 99.55%, Tianjin Kewei Chemical Reagent, China, no information given regarding any further purification.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the static method.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the dynamic method.

**Estimated Error:** 

Temperature:  $\pm 0.1$  K.

 $x_1$ : Authors report that the uncertainty in the solubility values is estimated to be  $\pm 0.5\%$ . The differences between the experimental values based on the static and dynamic solubility methods are considerably larger, and more on the order of  $\pm 5\%$  to 10% (relative error).

# 25. Solubility of 3,5-Diaminobenzoic Acid in Organic Solvents

# 25.1. Critical evaluation of experimental solubility data

There is only a single published study regarding the solubility behavior of 3,5-diaminobenzoic acid in organic solvents. Wang and Zhang<sup>97</sup> measured the mole fraction solubilities in ethanol as a function of temperature using a static and dynamic method. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, B)and C) are given in Table 26, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 26 reveals that the static experimental method yielded more consistent experimental values as documented by the smaller MRD. In the case of the 3,5-diaminobenzoic acid solubility data, there is a noticeable difference between the two experimental methods. The relative difference can be fairly large at times. For example, the static method gave a mole fraction solubility of  $x_1 = 0.003336$  for 3,5-diaminobenzoic acid in ethanol at 298.15 K, versus a value of  $x_1 = 0.002112$  determined with the dynamic method. The calculated relative difference between the two reported values is more than 35%.

The experimental solubility data for 3,5-diaminobenzoic acid in organic solvents are in Sec. 25.2.

# 25.2. 3,5-Diaminobenzoic acid solubility data in alcohols

| Components:<br>(1) 3,5-Diaminobenzoic acid;<br>C <sub>7</sub> H <sub>8</sub> N <sub>2</sub> O <sub>2</sub> ; [535-87-5]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>97</sup> H. Wang and W. Zhang, J. Chem. Eng. Data <b>54</b> , 1942 (2009). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                  |
| Temperature                                                                                                                                                                        | W. E. Acree, Jr.                                                                                              |

Table 26. Parameters of the Modified Apelblat equation for describing the solubility of 3,5-diaminobenzoic acid in ethanol<sup>a</sup>

| Solvent                  | A      | В     | С      | MRD (%) |
|--------------------------|--------|-------|--------|---------|
| Ethanol (dynamic method) | 44.98  | -4433 | -5.516 | 10.43   |
| Ethanol (static method)  | -8.322 | -1580 | 2.188  | 3.305   |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and the mean relative deviations were taken from Wang and Zhang.<sup>97</sup>

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 298.2 | 0.9967             | 0.003336    |
| 303.2 | 0.9966             | 0.003419    |
| 308.2 | 0.9960             | 0.003999    |
| 313.2 | 0.9956             | 0.004405    |
| 318.2 | 0.9948             | 0.005192    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 298.2 | 0.9979             | 0.002112    |
| 303.2 | 0.9963             | 0.003737    |
| 308.2 | 0.9962             | 0.003776    |
| 313.2 | 0.9960             | 0.003994    |
| 318.2 | 0.9953             | 0.004716    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water-jacketed glass vessel, thermometer, analytical balance, laser monitoring system.

Solubilities were determined using both a static and dynamic method. In the static method, excess solute and solvent were placed in a water-jacketed vessel allowed to equilibrate with stirring for three days at constant temperature. Samples of the saturated liquid phase were decanted into Petri dishes of known mass and weighed. The samples were then evaporated to dryness and the solubility determined from the mass of the solid residue and the mass of the sample analyzed. In the dynamic method, an excess of carboxylic acid was added to a known mass of ethanol. The resulting suspension was stirred in a water-jacketed vessel for 1 h at constant temperature. A known mass of ethanol was added to the vessel through a buret until the solute completely dissolved. The dissolution was monitored with a laser monitoring system. When the last portion of solid solute disappeared, the penetrated light intensity reached its maximum value. The mass of the added solvent was recorded. The solubility of the carboxylic acid was calculated from the known masses of solute and ethanol.

## Source and Purity of Chemicals:

(1) 98%, Sigma-Aldrich Chemical Company, Milwaukee, WI, USA, no purification details provided.

(2) 99.55%, Tianjin Kewei Chemical Reagent, China, no information given regarding any further purification.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ : Authors report that the uncertainty in the solubility values is estimated to be  $\pm 0.5\%$ . The differences between the experimental values based on the static and dynamic solubility methods are considerably larger, and more on the order of  $\pm 10\%$  to 30% (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the static method.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the dynamic method.

# 26. Solubility of 2,4-Dichlorobenzoic Acid in Organic Solvents

# 26.1. Critical evaluation of experimental solubility data

There have been very few published solubility studies<sup>83,97</sup> involving 2,4-dichlorobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> determined the solubility of 2,4-dichlorobenzoic acid in methanol, ethanenitrile and N,Ndimethylformamide at 298.15 K. Wang and Zhang<sup>97</sup> measured the mole fraction solubilities in ethanol as a function of temperature using a static and dynamic method. The internal consistency of the ethanol datasets was assessed by curvefitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, and C) are given in Table 27, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 27 reveals that the static experimental method yielded more consistent experimental values. In the case of the 2,4-dichlorobenzoic acid solubility data, there is a noticeable difference between the two experimental methods. The relative difference can be fairly large at times. For example, the static method gave a mole fraction solubility of  $x_1 = 0.06087$ for 2,4-dichlorobenzoic acid in ethanol at 298.15 K, versus a value of  $x_1 = 0.05012$  determined with the dynamic method. The calculated relative difference between the two reported values is more than 15%.

The experimental solubility data for 2,4-dichlorobenzoic acid in organic solvents are in Secs. 26.2 and 26.3.

# 26.2. 2,4-Dichlorobenzoic acid solubility data in alcohols

| Components:<br>(1) 2,4-Dichlorobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [50-84-0]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                             | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                           | W. E. Acree, Jr.                                                                              |

## **Experimental Values**

The measured solubility was reported to be 1.34 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J.

Table 27. Parameters of the Modified Apelblat equation for describing the solubility of 2,4-dichlorobenzoic acid in ethanol<sup>a</sup>

| Solvent                  | A      | В     | С     | MRD (%) |
|--------------------------|--------|-------|-------|---------|
| Ethanol (dynamic method) | -1.902 | -2652 | 2.183 | 5.661   |
| Ethanol (static method)  | 3.819  | -2942 | 1.367 | 0.995   |

 $<sup>^{</sup>m a}$ Values of the coefficients and the mean relative deviations were taken from Wang and Zhang. $^{97}$ 

Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [50-84-0] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>97</sup> H. Wang and W. Zhang, J. Chem. Eng. Data <b>54</b> , 1942 (2009). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                              |

## **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b,c}$ |
|-------|---------|-------------|
| 298.2 | 0.9419  | 0.05812     |
| 303.2 | 0.9307  | 0.06933     |
| 308.2 | 0.9183  | 0.08166     |
| 313.2 | 0.9047  | 0.09534     |
| 318.2 | 0.8821  | 0.1179      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

| T/K   | $x_2^{\mathbf{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 298.2 | 0.9519             | 0.04814     |
| 303.2 | 0.9322             | 0.06785     |
| 308.2 | 0.9291             | 0.07093     |
| 313.2 | 0.9193             | 0.08072     |
| 318.2 | 0.8944             | 0.1056      |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the static method.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the dynamic method.

#### Method/Apparatus/Procedure:

Thermostated water-jacketed glass vessel, thermometer, analytical balance, laser monitoring system.

Solubilities were determined using both a static and dynamic method. In the static method, excess solute and solvent were placed in a water-jacketed vessel allowed to equilibrate with stirring for three days at constant temperature. Samples of the saturated liquid phase were decanted into Petri dishes of known mass and weighed. The samples were then evaporated to dryness and the solubility determined from the mass of the solid residue and the mass of the sample analyzed. In the dynamic method, an excess of carboxylic acid was added to a known mass of ethanol. The resulting suspension was stirred in a water-jacketed vessel for 1 h at constant temperature. A known mass of ethanol was added to the vessel through a buret until the solute completely dissolved. The dissolution was monitored with a laser monitoring system. When the last portion of solid solute disappeared, the penetrated light intensity reached its maximum value. The mass of the added solvent was recorded. The solubility of the carboxylic acid was calculated from the known masses of solute and ethanol.

#### Source and Purity of Chemicals:

- (1) 98%, Sigma-Aldrich Chemical Company, Milwaukee, WI, USA, no purification details provided.
- (2) 99.55%, Tianjin Kewei Chemical Reagent, China, no information given regarding any further purification.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ : Authors report that the uncertainty in the solubility values is estimated to be  $\pm 0.5\%$ . The differences between the experimental values based on the static and dynamic solubility methods are considerably larger, and more on the order of  $\pm 5\%$  to 15% (relative error).

# 26.3. 2,4-Dichlorobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 2,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [50-84-0] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff. J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree, Jr.                                                                              |

## **Experimental Values**

The measured solubility was reported to be 0.168 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2,4-Dichlorobenzoic acid;<br>$C_7H_4Cl_2O_2$ ; [50-84-0]<br>(2) <i>N</i> , <i>N</i> -Dimethylformamide;<br>$C_3H_7NO$ ; [64-19-7] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

The measured solubility was reported to be 2.93 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
  (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.
- **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 27. Solubility of 3,4-Dichlorobenzoic Acid in Organic Solvents

# 27.1. Critical evaluation of experimental solubility data

There have been several studies<sup>54,63,76,83,137</sup> that have reported the solubility of 3,4-dichlorobenzoic acid in organic solvents. Wilson *et al.*<sup>137</sup> determined the solubility of 3,4-dichlorobenzoic acid in 16 alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol,

4-methyl-2-pentanol, 1-heptanol and 1-octanol), in six alkyl alkanoates (methyl ethanoate, ethyl ethanoate, propyl ethanoate, butyl ethanoate, pentyl ethanoate and methyl butanoate), in four dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, 1,1'-oxybisbutane, and 2-methoxy-2-methylpropane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), and in five alkoxyalcohols (2-ethoxyethanol, 2-propoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol and 3-methoxy-1-butanol). The solubilities were measured at single temperature of 298 K. The authors determined the solubilities to check the numerical values of the solute descriptors of 3,4-dichlorobenzoic acid that had been calculated previously based on limited water-toorganic solvent partition coefficient data.

An indication of the consistency of the experimental data can be gained by comparing the measured solubility data to predicted values based on the Abraham model Eqs. (20) and (21).

Numerical values of the solute descriptors for 3,4-dichlor-obenzoic acid are known (E=0.950, S=0.920, A=0.670, B=0.260, V=1.1766 and L=5.623), so that combination of these descriptors with the coefficients listed in Tables 1 and 2 enables the prediction of  $\log_{10}\left(c_{1,\text{S}}/c_{1,\text{W}}\right)$  and  $\log_{10}\left(c_{1,\text{S}}/c_{1,\text{G}}\right)$ . The molar solubility of molecular 3,4-dichlorobenzoic acid in water,  $\log_{10}c_{1,\text{W}}=-3.98$ , is available to convert the predicted  $(c_{1,\text{S}}/c_{1,\text{W}})$  solubility ratios to  $c_{1,\text{S}}$  values. For carboxylic acid solutes,  $c_{1,\text{W}}$  corresponds to the aqueous solubility of the molecular, nonionized form of the solute. The aqueous solubility was determined by adding two drops of hydrochloric acid to suppress ionization. Similarly, the numerical value of  $\log_{10}c_{1,\text{G}}$  is known ( $\log_{10}c_{1,\text{G}}=-8.72$ ) for converting predicted ( $c_{1,\text{S}}/c_{1,\text{G}}$ ) solubility ratios to  $c_{1,\text{S}}$  values.

The predicted molar solubilities of 3,4-dichlorobenzoic acid in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1hexanol, 1-heptanol, 1-octanol, 2-propanol, 2-butanol, 2-pentanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 3-methyl-1-butanol, 1,1'-oxybisethane, 2-methoxy-2-methylpropane, tetrahydrofuran, 1,4-dioxane, methyl ethanoate, ethyl ethanoate, propyl ethanoate and butyl ethanoate are listed in the third and fourth columns of Table 28. The numerical values represent outright solubility predictions in that none of the experimental data was used in the determination of the molecular solute descriptors. For comparison purposes, the measured mole fraction solubilities of 3,4-dichlorobenzoic acid,  $x_1$ , determined by Wilson et al. 137 were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 3,4dichlorobenzoic acid,  $V_{\text{solute}} = 129.78 \text{ cm}^3 \text{ mol}^{-1}$ , was estimated as the molar volume of benzoic acid ( $V_{
m benzoic\ acid}$  = 104.38 cm<sup>3</sup> mol<sup>-1</sup>) plus two times the molar volume of chlorobenzene ( $V_{\text{chlorobenzene}} = 102.1 \text{ cm}^3 \text{ mol}^{-1}$ ) minus two times the molar volume of benzene ( $V_{\text{benzene}} = 89.40 \text{ cm}^3$ mol<sup>-1</sup>). Any errors resulting from the estimation of 3,4dichlorobenzoic acid's hypothetical subcooled liquid molar volume,  $V_{\text{Solute}}$ , or the ideal molar volume approximation will have negligible effect of the calculated  $c_1$  values because 3,4dichlorobenzoic acid is not overly soluble in many of the solvents considered. From a mathematical standpoint, the

Table 28. Comparison between observed and predicted molar solubilities of 3,4-dichlorobenzoic acid based on the Abraham model, Eqs. (20) and (21)

| Solvent             | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{calc}};$ Eq. (20) | $\log_{10} c_1^{\text{calc}};$ Eq. (21) |
|---------------------|------------------------------|-----------------------------------------|-----------------------------------------|
| Methanol            | -0.569                       | -0.568                                  | -0.596                                  |
| Ethanol             | -0.539                       | -0.441                                  | -0.450                                  |
| 1-Propanol          | -0.615                       | -0.527                                  | -0.507                                  |
| 2-Propanol          | -0.644                       | -0.497                                  | -0.471                                  |
| 1-Butanol           | -0.661                       | -0.598                                  | -0.573                                  |
| 2-Butanol           | -0.691                       | -0.573                                  | -0.588                                  |
| 2-Methyl-1-propanol | -0.826                       | -0.720                                  | -0.732                                  |
| 2-Methyl-2-propanol | -0.442                       | -0.483                                  | -0.418                                  |
| 1-Pentanol          | -0.699                       | -0.565                                  | -0.541                                  |
| 2-Pentanol          | -0.647                       | -0.550                                  | -0.545                                  |
| 3-Methyl-1-butanol  | -0.708                       | -0.628                                  | -0.639                                  |
| 1-Hexanol           | -0.722                       | -0.606                                  | -0.601                                  |
| 1-Heptanol          | -0.752                       | -0.593                                  | -0.607                                  |
| 1-Octanol           | -0.814                       | -0.664                                  | -0.707                                  |
| 1,1'-Oxybisethane   | -0.535                       | -0.609                                  | -0.547                                  |
| 2-Methoxy-2-        | -0.523                       | -0.632                                  | -0.805                                  |
| methylpropane       |                              |                                         |                                         |
| Tetrahydrofuran     | 0.067                        | 0.029                                   | 0.017                                   |
| 1,4-Dioxane         | -0.251                       | -0.362                                  | -0.350                                  |
| Methyl ethanoate    | -0.829                       | -0.752                                  | -0.710                                  |
| Ethyl ethanoate     | -0.781                       | -0.573                                  | -0.574                                  |
| Propyl ethanoate    | -0.818                       | -0.632                                  | -0.652                                  |
| Butyl ethanoate     | -0.809                       | -0.692                                  | -0.730                                  |

 $x_1^{\rm exp}V_{\rm Solute}$  term contributes very little to the molar volumes of the saturated solutions. The molar solubility of 3,4-dichlor-obenzoic acid,  $\log_{10}c_1=-0.569$ , in methanol in Table 28 was determined by Chantooni and Kolthoff. 83

Examination of the numerical entries in Table 28 reveals that expressions based on the Abraham model provide a very reasonable estimation of the solubility behavior of 3,4-dichlor-obenzoic acid in 1,1'-oxybisethane, 2-methoxy-2-methylpropane, tetrahydrofuran, 1,4-dioxane, and in 15 alcohol and four alkyl ethanoate solvents. Standard deviations between predicted and observed values were on the order of 0.12 and 0.13 log<sub>10</sub> units for Eqs. (20) and (21), respectively. 1,1'-Oxybisbutane was excluded from the comparison because of concerns regarding possible dimerization of 3,4-dichlorobenzoic acid due to the presence of the larger alkyl chains. Solubility predictions were not made for 2-methyl-1-butanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2,2'-oxybispropane, pentyl ethanoate, methyl butanoate, and the five alkoxyalcohols due to lack of Abraham model equation coefficients.

Hancock *et al.*<sup>54,63</sup> measured the solubility of 3,4-dichlor-obenzoic acid in cyclohexane, benzene, tetrahydrofuran and 1,4-dioxane at 303 K. Chantooni and Kolthoff<sup>76,83</sup> determined the solubility of 3,4-dichlorobenzoic acid in methanol, 2-propanol, 2-methyl-2-propanol, 1-hexanol, ethanenitrile, dimethyl sulfoxide, and *N*,*N*-dimethylformamide at 298 K. The solubility data of Chantooni and Kolthoff of  $\log_{10} c_1 = -0.499$  for 2-propanol,  $\log_{10} c_1 = -0.438$  for 2-methyl-2-propanol, and  $\log_{10} c_1 = -0.569$  for 1-hexanol are in reasonably good agreement with the experimental values of Wilson *et al.*<sup>137</sup> and predicted values based on Eqs. (20) and (21) which are given in Table 28. The deviations between the two sets of experimental measurements are attributed in part to differences in chemical purities and experimental methodologies.

The experimental solubility data for 3,4-dichlorobenzoic acid in organic solvents are in Secs. 27.2–27.8.

# 27.2. 3,4-Dichlorobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^b$   |
|---------|-----------|
| 0.9999  | 0.0000578 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

# 27.3. 3,4-Dichlorobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>54</sup> C. K. Hancock, J. N. Pawloski, and J.<br>P. Idoux, J. Org. Chem. <b>31</b> , 3801<br>(1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9993           | 0.000734  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 3\%$  (relative error, by compiler).

# 27.4. 3,4-Dichlorobenzoic acid solubility data in esters

| Components:<br>(1) 3,4-Dichlorobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5]<br>(2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[79-20-9] | Original Measurements:  137A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\mathbf{b}}$ | $x_1^{\text{c}}$ |
|--------------------|------------------|
| 0.9881             | 0.01192          |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                        | Prepared by:                                                                                                                                       |
| T/K = 298.15                                                                                                                                                                                      | W. E. Acree, Jr.                                                                                                                                   |

## **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.9836    | 0.01641   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Propyl ethanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [109-60-4] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9824  | 0.01761 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.5%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components:                                                                     | Original Measurements:                                                              |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| (1) 3,4-Dichlorobenzoic acid;                                                   | 137 A. Wilson, A. Tian, V. Chou, A. N.                                              |
| $C_7H_4Cl_2O_2$ ; [51-44-5]<br>(2) Butyl ethanoate; $C_6H_{12}O_2$ ; [123-86-4] | Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
| Variables: T/K = 298.15                                                         | Prepared by:<br>W. E. Acree, Jr.                                                    |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9794           | 0.02056   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9784  | 0.02156   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Methyl butanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [623-42-7] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

#### **Experimental Values**

|         | L .       |
|---------|-----------|
| $x_2^a$ | $x_1^{b}$ |
| 0.9857  | 0.01430   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 27.5. 3,4-Dichlorobenzoic acid solubility data in ethers

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9692  | 0.03077 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9874  | 0.01256 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9903  | 0.00969   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Methoxy-2-methylpropane; | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>5</sub> H <sub>12</sub> O; [1634-04-4]                                                                                                     | (2012).                                                                                                                                    |
| Variables:                                                                                                                                        | Prepared by:                                                                                                                               |
| T/K = 298.15                                                                                                                                      | W. E. Acree, Jr.                                                                                                                           |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9642  | 0.03583 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $\overline{x_2}^a$ | $x_1^b$ |
|--------------------|---------|
| 0.8993             | 0.1007  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.875   | 0.125   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9507  | 0.04931   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,4-Dichlorobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                | Prepared by:                                                                                                                |
| T/K = 303.15                                                                                                                                                                                              | W. E. Acree, Jr.                                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.943   | 0.057   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 27.6. 3,4-Dichlorobenzoic acid solubility data in alcohols

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                  | W. E. Acree, Jr.                                                                              |

## **Experimental Values**

The measured solubility was reported to be 0.27 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 3,4-Dichlorobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>137</sup> A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9827  | 0.01732   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>137</sup> A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                             |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9815  | 0.01846 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                            |
|--------------------------------------------------------------------------|---------------------------------------------------|
| (1) 3,4-Dichlorobenzoic acid;                                            | <sup>137</sup> A. Wilson, A. Tian, V. Chou, A. N. |
| C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] | Quay, W. E. Acree, Jr., and M. H.                 |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0]               | Abraham, Phys. Chem. Liq. 50, 324                 |
|                                                                          | (2012).                                           |
| Variables:                                                               | Prepared by:                                      |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9823  | 0.01767   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                           | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                                         | W. E. Acree, Jr.                                                                                             |

The measured solubility was reported to be 0.317 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Fisher Scientific, USA, shaken with calcium hydride and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements: <sup>137</sup> A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                                                                 |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                                             |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9797  | 0.02026   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                            |
|--------------------------------------------------------------------------|---------------------------------------------------|
| (1) 3,4-Dichlorobenzoic acid;                                            | <sup>137</sup> A. Wilson, A. Tian, V. Chou, A. N. |
| C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] | Quay, W. E. Acree, Jr., and M. H.                 |
| (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2]               | Abraham, Phys. Chem. Liq. 50, 324                 |
| (=) = = ===============================                                  | (2012).                                           |
| Variables:                                                               | Prepared by:                                      |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9810  | 0.01898 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                              | Prepared by:                                                                                                                                       |
| T/K = 298.15                                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                                   |

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9861  | 0.01389            |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                              | Prepared by:                                                                                                                                       |
| T/K = 298.15                                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                                   |

## **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9655           | 0.03449 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,4-Dichlorobenzoic acid;<br>$C_7H_4Cl_2O_2$ ; [51-44-5]<br>(2) 2-Methyl-2-propanol; $C_4H_{10}O$ ;<br>[75-65-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                          | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                        | W. E. Acree, Jr.                                                                                             |

## **Experimental Values**

The measured solubility was reported to be  $0.365~\text{mol}~\text{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

| $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------------------|---------|
| 0.9782             | 0.02180 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                               | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| (1) 3,4-Dichlorobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] | Quay, W. E. Acree, Jr., and M. H.                              |
| (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7]                                             | Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012).              |
| Variables:                                                                                                | Prepared by:                                                   |
| T/K = 298.15                                                                                              | W. E. Acree, Jr.                                               |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9752  | 0.02477 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [137-32-6] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9817  | 0.01834   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9784  | 0.02157            |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9762  | 0.02376 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                            |
|--------------------------------------------------------------------------|---------------------------------------------------|
| (1) 3,4-Dichlorobenzoic acid;                                            | <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, |
| C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] | Anal. Chem. 51, 133 (1979).                       |
| (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3]              |                                                   |
| Variables:                                                               | Prepared by:                                      |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                  |

## **Experimental Values**

The measured solubility was reported to be  $0.271\,\mathrm{mol}\,\mathrm{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Methyl-1-pentanol; C <sub>6</sub> H <sub>14</sub> O; [105-30-6] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9761  | 0.02388   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $\overline{x_2}^a$ | $x_1^b$ |
|--------------------|---------|
| 0.9744             | 0.02555 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                            |
|--------------------------------------------------------------------------|---------------------------------------------------|
| (1) 3,4-Dichlorobenzoic acid;                                            | <sup>137</sup> A. Wilson, A. Tian, V. Chou, A. N. |
| C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] | Quay, W. E. Acree, Jr., and M. H.                 |
| (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6]             | Abraham, Phys. Chem. Liq. 50, 324                 |
| (2) 1 Heptanoi, C/H <sub>16</sub> O, [111 70 0]                          | (2012).                                           |
| Variables:                                                               | Prepared by:                                      |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                  |

## **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9749  | 0.02506            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by: W. E. Acree, Jr.                                                                                                                      |

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9758             | 0.02419   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 27.7. 3,4-Dichlorobenzoic acid solubility data in alkoxyalcohols

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [111-80-5] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9554  | 0.04455   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Propoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2807-30-9] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                   |

## **Experimental Values**

| $\overline{x_2}^a$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9532             | 0.04677   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [109-59-1] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                             | Prepared by:                                                                                                                                       |
| T/K = 298.15                                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                                                   |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9517  | 0.04831   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                         | Prepared by:                                                                                                                                       |
| T/K = 298.15                                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9601  | 0.03991 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] | Original Measurements:  137 A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| (2) 3-Methoxy-1-butanol;<br>C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2517-43-3]                            | Abraham, Phys. Chem. Liq. <b>50</b> , 324 (2012).                                                |
| Variables:                                                                                                         | Prepared by:                                                                                     |
| T/K = 298.15                                                                                                       | W. E. Acree, Jr.                                                                                 |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9497  | 0.05033 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 27.8. 3,4-Dichlorobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be  $0.028~\rm mol~dm^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                                           | W. E. Acree, Jr.                                                                              |

## **Experimental Values**

The measured solubility was reported to be 2.14 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was shaken with activated alumina and then distilled before use.

#### Estimated Error:

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,4-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-44-5] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 2.86 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, synthesized by the authors by the oxidation of 3,4-dichlorobenzaldehyde with hydrogen peroxide in dilute aqueous sodium hydroxide solution. The sample was further purified by recrystallization from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 28. Solubility of 3,5-Dichlorobenzoic Acid in Organic Solvents

# 28.1. Critical evaluation of experimental solubility data

Only one laboratory has reported solubility data for 3,5-dichlorobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83,136</sup> determined the solubility of 3,5-dichlorobenzoic acid in methanol and ethanenitrile at 298.15 K. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility data for 3,5-dichlorobenzoic acid in either methanol or ethanenitrile.

The experimental solubility data for 3,5-dichlorobenzoic acid in organic solvents are in Secs. 28.2 and 28.3.

## 28.2. 3,5-Dichlorobenzoic acid solubility data in alcohols

| Components: (1) 3,5-Dichlorobenzoic acid; C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-36-5] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 1.25 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 28.3. 3,5-Dichlorobenzoic acid solubility data in miscellaneous organic solvents

| Components:<br>(1) 3,5-Dichlorobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> Cl <sub>2</sub> O <sub>2</sub> ; [51-36-5]<br>(2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements: 136M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. <b>78</b> , 839 (1974). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                              |
| T/K = 298.15                                                                                                                                                                              | W. E. Acree, Jr.                                                                                          |

## **Experimental Values**

The measured solubility was reported to be 0.085 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 29. Solubility of 2,4-Dihydroxybenzoic Acid in Organic Solvents

# 29.1. Critical evaluation of experimental solubility data

There is only a single study reporting solubility data for 2,4-dihydroxybenzoic acid in organic solvents. Ongley<sup>56</sup> determined the solubility of 2,4-dihydroxybenzoic acid in cyclohexane, benzene, trichloromethane and tetrachloromethane at 298.15 K. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility data for 2,4-dihydroxybenzoic acid in the aforementioned four solvents.

The experimental solubility data for 2,4-dihydroxybenzoic acid dissolved in organic solvents are in Secs. 29.2–29.4.

# 29.2. 2,4-Dihydroxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:<br>(1) 2,4-Dihydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [89-86-1]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                     |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 5.000$ , which corresponds to a solubility of  $c_1 = 0.0000100 \text{ mol dm}^{-3}$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 29.3. 2,4-Dihydroxybenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 2,4-Dihydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [89-86-1]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 2.412$ , which corresponds to a solubility of  $c_1 = 0.00387$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 29.4. 2,4-Dihydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2,4-Dihydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [89-86-1] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.897$ , which corresponds to a solubility of  $c_1 = 0.0127$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2,4-Dihydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [89-86-1] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 5.301$ , which corresponds to a solubility of  $c_1 = 0.00000500$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 30. Solubility of 2,5-Dihydroxybenzoic Acid in Organic Solvents

# 30.1. Critical evaluation of experimental solubility data

There are only two studies<sup>56,125</sup> reporting solubility data for 2,5-dihydroxybenzoic acid in organic solvents. Ongley<sup>56</sup> determined the solubility of 2,5-dihydroxybenzoic acid in benzene and trichloromethane at 298.15 K. Pinsuwan *et al.*<sup>125</sup> measured the solubility of 2,5-dihydroxybenzoic acid in 1-octanol to examine correlations between experimental octanol/water solubility ratios and measured water-to-1-octanol practical partition coefficients. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility data for 2,5-dihydroxybenzoic acid in either benzene, trichloromethane or 1-octanol.

The experimental solubility data for 2,5-dihydroxybenzoic acid in organic solvents are in Secs. 30.2–30.4.

# 30.2. 2,5-Dihydroxybenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2,5-Dihydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [470-79-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 3.403$ , which corresponds to a solubility of  $c_1 = 0.000395$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 30.3. 2,5-Dihydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components:                               | Original Measurements:                                  |
|-------------------------------------------|---------------------------------------------------------|
| (1) 2,5-Dihydroxybenzoic acid;            | <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , |
| $C_7H_6O_4$ ; [470-79-9]                  | 3634.                                                   |
| (2) Trichloromethane; CHCl <sub>3</sub> ; |                                                         |
| [67-66-3]                                 |                                                         |
| Variables:                                | Prepared by:                                            |
| T/K = 298.15                              | W. E. Acree, Jr.                                        |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.900$ , which corresponds to a solubility of  $c_1 = 0.0126$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

## 30.4. 2,5-Dihydroxybenzoic acid solubility data in alcohols

| Components: (1) 2,5-Dihydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [470-79-9] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  125 S. Pinsuwan, A. Li, and S. H. Yalkowsky, J. Chem. Eng. Data 40, 623 (1995). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                        |

## **Experimental Values**

The measured solubility was reported to be  $\log_{10} c_1 = -0.13$ , which corresponds to a molar solubility of  $c_1 = 0.741$ .

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, mechanical stirrer, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated at  $298\pm2~K$  in a sealed vial for 48-72~h. The solution was mixed using an end-over-end mechanical stirrer. After equilibrium was obtained, the saturated sample was vacuum filtered through a 5.0  $\mu m$  fritted glass filter. An aliquot of the filtrate was diluted quantitatively with 2-propanol, and the absorbance of the diluted sample was recorded. The solubility was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, St. Louis, MO, USA, used as received.
- (2) Purity not given, Chemical source not given, used as received.

## **Estimated Error:**

Temperature:  $\pm 2$  K.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler given the large uncertainty in temperature).

# 31. Solubility of 2,6-Dihydroxybenzoic Acid in Organic Solvents

# 31.1. Critical evaluation of experimental solubility data

There is only a single study reporting solubility data for 2,6-dihydroxybenzoic acid in organic solvents. Ongley<sup>56</sup> determined the solubility of 2,6-dihydroxybenzoic acid in cyclohexane, benzene, trichloromethane, and tetrachloromethane at 298.15 K. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility data for 2,6-dihydroxybenzoic acid in any of the four solvents listed above.

The experimental solubility data for 2,6-dihydroxybenzoic acid in organic solvents are in Secs. 31.2–31.4.

# 31.2. 2,6-Dihydroxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:<br>(1) 2,6-Dihydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [303-07-1]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/K</i> = 298.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 3.627$ , which corresponds to a solubility of  $c_1 = 0.000236$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 31.3. 2,6-Dihydroxybenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 2,6-Dihydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [303-07-1]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.896$ , which corresponds to a solubility of  $c_1 = 0.0127$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 31.4. 2,6-Dihydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2,6-Dihydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> ; [303-07-1] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                             | W. E. Acree, Jr.                                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.539$ , which corresponds to a solubility of  $c_1 = 0.289 \text{ mol dm}^{-3}$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2,6-Dihydroxybenzoic acid;<br>$C_7H_6O_4$ ; [303-07-1]<br>(2) Tetrachloromethane; $CCl_4$ ;<br>[56-23-5] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                  | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                | W. E. Acree, Jr.                                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 2.556$ , which corresponds to a solubility of  $c_1 = 0.00278 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 32. Solubility of 3,4-Dihydroxybenzoic Acid in Organic Solvents

# 32.1. Critical evaluation of experimental solubility data

There is only a single study reporting solubility data for 3,4-dihydroxybenzoic acid in organic solvents. Ongley<sup>56</sup> determined the solubility of 3,4-dihydroxybenzoic acid in trichloromethane and tetrachloromethane at 298.15 K. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility data for 3,4-dihydroxybenzoic acid in either trichloromethane or tetrachloromethane.

The experimental solubility data for 3,4-dihydroxybenzoic acid in organic solvents are in Sec. 32.2.

# 32.2. 3,4-Dihydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components:                               | Original Measurements:                                  |
|-------------------------------------------|---------------------------------------------------------|
| (1) 3,4-Dihydroxybenzoic acid;            | <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , |
| $C_7H_6O_4$ ; [99-50-3]                   | 3634.                                                   |
| (2) Trichloromethane; CHCl <sub>3</sub> ; |                                                         |
| [67-66-3]                                 |                                                         |
| Variables:                                | Prepared by:                                            |
| T/K = 298.15                              | W. E. Acree, Jr.                                        |
|                                           |                                                         |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 3.311$ , which corresponds to a solubility of  $c_1 = 0.000489 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3,4-Dihydroxybenzoic acid;<br>$C_7H_6O_4$ ; [99-50-3]<br>(2) Tetrachloromethane; $CCl_4$ ;<br>[56-23-5] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                 | Prepared by:                                                                                |
| T/K = 298.15                                                                                                               | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 4.398$ , which corresponds to a solubility of  $c_1 = 0.0000400$  mol dm<sup>-3</sup>.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue  $\pm$  neutral red) indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 33. Solubility of 2,6-Dimethoxybenzoic Acid in Organic Solvents

# 33.1. Critical evaluation of experimental solubility data

There is only a single study reporting solubility data for 2,6-dimethoxybenzoic acid in organic solvents. Ongley<sup>56</sup> determined the solubility of 2,6-dimethoxybenzoic acid in cyclohexane, benzene, and trichloromethane at 298.15 K. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility

data for 2,6-dimethoxybenzoic acid in the aforementioned three solvents.

The experimental solubility data for 2,6-dimethoxybenzoic acid in organic solvents are in Secs. 33.2–33.4.

# 33.2. 2,6-Dimethoxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 2,6-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [1466-76-8] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 4.000$ , which corresponds to a solubility of  $c_1 = 0.000100$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 33.3. 2,6-Dimethoxybenzoic acid solubility data in aromatic hydrocarbons

| Components:                                                 | Original Measurements:                                  |
|-------------------------------------------------------------|---------------------------------------------------------|
| (1) 2,6-Dimethoxybenzoic acid;                              | <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [1466-76-8] | 3634.                                                   |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]      |                                                         |
| Variables:                                                  | Prepared by:                                            |
| T/K = 298.15                                                | W. E. Acree, Jr.                                        |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.796$ , which corresponds to a solubility of  $c_1 = 0.0160 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 33.4. 2,6-Dimethoxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2,6-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [1466-76-8] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.697$ , which corresponds to a solubility of  $c_1 = 0.201 \text{ mol dm}^{-3}$ .

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

## **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 34. Solubility of 3,4-Dimethoxybenzoic Acid in Organic Solvents

# 34.1. Critical evaluation of experimental solubility data

There have been two published studies 138,139 investigating the solubility behavior of 3,4-dimethoxybenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Bowen et al. 138 measured the solubility of 3,4dimethoxybenzoic acid in 18 alcohols (methanol, ethanol, 1propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 2methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'oxybispropane, and 1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), and in six alkyl alkanoates (methyl ethanoate, ethyl ethanoate, propyl ethanoate, butyl ethanoate, pentyl ethanoate, and methyl butanoate), in two alkanones (propanone and butanone), in four alkoxyalcohols (2-ethoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, and 3-methoxy-1-butanol), and in propylene carbonate at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 3,4-dimethoxybenzoic acid. The authors were able to assemble a total of  $52 \log_{10}$ (SR or P) and  $\log_{10} (GSR \text{ or } K)$  equations for which experimental partition coefficient data, solubility ratios, Abraham Model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 3,4-dimethoxybenzoic acid is  $log_{10}$   $c_{1,W} = -2.495$  (measured by the authors as part of the experimental study). The McGowan volume of 3,5-dimethoxybenzoic acid, V = 1.3309, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 0.950. This left four solute descriptors (S, A, B and L) still to be determined. The 52 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.646, A = 0.570, B = 0.755, and L = 6.746, that best described the  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values. The computation treated  $log_{10}$   $c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -10.942$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$ predictions internally consistent. The calculated molecular solute descriptors reproduced the  $log_{10}$  (SR or P) and  $log_{10}$ (GSR or K) values to within an average standard deviation of 0.084 and  $0.082 \log_{10}$  units, respectively.

Table 29 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 3,4-dimethoxybenzoic acid,  $x_1$ , determined by Bowen *et al.* <sup>138</sup> were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 3,4-dimethoxybenzoic acid

Table 29. Comparison between observed and calculated molar solubilities of 3,4-dimethoxybenzoic acid based on the Abraham model, Eqs. (20) and (21)

| Solvent             | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{ calc}};$ Eq. (20) | $\log_{10} c_1^{\text{ calc}};$ Eq. (21) |
|---------------------|------------------------------|------------------------------------------|------------------------------------------|
| Methanol            | -0.735                       | -0.721                                   | -0.685                                   |
| Ethanol             | -0.916                       | -0.924                                   | -0.892                                   |
| 1-Propanol          | -1.070                       | -1.062                                   | -1.061                                   |
| 2-Propanol          | -1.097                       | -1.085                                   | -1.064                                   |
| 1-Butanol           | -1.169                       | -1.186                                   | -1.173                                   |
| 2-Butanol           | -1.154                       | -1.099                                   | -1.104                                   |
| 2-Methyl-1-propanol | -1.315                       | -1.204                                   | -1.200                                   |
| 2-Methyl-2-propanol | -1.001                       | -1.106                                   | -1.080                                   |
| 1-Pentanol          | -1.267                       | -1.269                                   | -1.267                                   |
| 2-Pentanol          | -1.267                       | -1.256                                   | -1.230                                   |
| 3-Methyl-1-butanol  | -1.293                       | -1.182                                   | -1.258                                   |
| 1-Hexanol           | -1.309                       | -1.302                                   | -1.296                                   |
| 1-Heptanol          | -1.362                       | -1.362                                   | -1.341                                   |
| 1-Octanol           | -1.410                       | -1.379                                   | -1.443                                   |
| 1-Decanol           | -1.501                       | -1.563                                   | -1.547                                   |
| 1,1'-Oxybisethane   | -1.525                       | -1.378                                   | -1.443                                   |
| Tetrahydrofuran     | -0.328                       | -0.520                                   | -0.546                                   |
| 1,4-Dioxane         | -0.480                       | -0.608                                   | -0.635                                   |
| Propylene carbonate | -1.029                       | -1.006                                   | -0.981                                   |
| Methyl ethanoate    | -0.973                       | -0.899                                   | -0.946                                   |
| Ethyl ethanoate     | -1.085                       | -1.128                                   | -1.101                                   |
| Propyl ethanoate    | -1.229                       | -1.205                                   | -1.182                                   |
| Butyl ethanoate     | -1.303                       | -1.283                                   | -1.263                                   |

is  $V_{\text{solute}} = 143.8 \text{ cm}^3 \text{ mol}^{-1}$ . Examination of the numerical entries in Table 29 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Li *et al.* <sup>139</sup> measured the solubility of 3,4-dimethoxybenzoic acid in five alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-methyl-1-propanol), two alkyl ethanoates (methyl ethanoate and ethyl ethanoates) and one alkanone (2-butanone) over the temperature range from 278 to 323 K. The internal consistency of the eight datasets was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model [Eq. (8)]. The values of the equation coefficients (*A*, *B*, and *C*) are given in Table 30, along with the mean relative deviation. Examination of the numerical values in the last column of Table 30 indicates that Eq. (8) provides a reasonably accurate mathematical description of how the solubility varies with temperature. The small mean relative

Table 30. Parameters of the Modified Apelblat equation for describing the solubility of 3,4-dimethoxybenzoic acid in various organic solvents

| Solvent             | T/K     | A        | В        | С      | MRD (%) |
|---------------------|---------|----------|----------|--------|---------|
| Ethanol             | 278-323 | -179.892 | 4830.140 | 27.872 | 0.43    |
| 1-Propanol          | 278-323 | -120.239 | 1951.116 | 19.067 | 0.35    |
| 2-Propanol          | 278-323 | -108.899 | 1184.711 | 17.518 | 1.10    |
| 1-Butanol           | 278-323 | -187.012 | 4848.020 | 29.062 | 1.00    |
| 2-Methyl-1-propanol | 278-323 | -69.072  | -831.534 | 11.649 | 0.77    |
| Methyl ethanoate    | 278-323 | -68.758  | 397.164  | 10.988 | 0.44    |
| Ethyl ethanoate     | 278-323 | -62.515  | 119.789  | 10.035 | 0.59    |
| 2-Butanone          | 279-323 | -78.009  | 1085.742 | 12.277 | 0.20    |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and mean relative deviations were taken from Li et al. <sup>139</sup>

deviations suggest that the experimental values in each solvent dataset are internally consistent.

The experimental solubility data for 3,4-dimethoxybenzoic acid in organic solvents are in Secs. 34.2–34.8.

## 34.2. 3,4-Dimethoxybenzoic acid solubility data in esters

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9915  | 0.00854   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

| Components:<br>(1) 3,4-Dimethoxybenzoic acid; $C_9H_{10}O_4$ ; [93-07-2]<br>(2) Methyl ethanoate; $C_3H_6O_2$ ; [79-20-9] | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013). |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                | Prepared by:                                                                                                          |
| Temperature                                                                                                               | W. E. Acree, Jr.                                                                                                      |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 278.30 | 0.9958  | 0.0042             |
| 283.01 | 0.9951  | 0.0049             |
| 288.05 | 0.9942  | 0.0058             |
| 293.15 | 0.9932  | 0.0068             |
| 298.00 | 0.9920  | 0.0080             |
| 303.13 | 0.9905  | 0.0095             |
| 308.07 | 0.9889  | 0.0111             |
| 313.15 | 0.9869  | 0.0131             |
| 318.06 | 0.9848  | 0.0152             |
| 323.37 | 0.9823  | 0.0177             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

## **Source and Purity of Chemicals:**

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.5+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                                          | Prepared by:<br>W. E. Acree. Jr.                                                                                      |

## **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.30 | 0.9963             | 0.0037    |
| 283.01 | 0.9956             | 0.0044    |
| 288.05 | 0.9948             | 0.0052    |
| 293.15 | 0.9939             | 0.0061    |
| 298.00 | 0.9928             | 0.0072    |
| 303.13 | 0.9917             | 0.0083    |
| 308.07 | 0.9901             | 0.0099    |
| 313.15 | 0.9884             | 0.0116    |
| 318.06 | 0.9867             | 0.0133    |
| 323.37 | 0.9863             | 0.0137    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

## Source and Purity of Chemicals:

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.5+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T/</i> K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9919  | 0.00813   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Propyl ethanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [109-60-4] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                            | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                         |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9932  | 0.00682   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.5%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                          | Original Measurements:                 |
|----------------------------------------------------------------------|----------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                                       | 138K. R. Bowen, T. W. Stephens, H. Lu, |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]            | K. Satish, D. Shan, W. E. Acree, Jr.,  |
| (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; | and M. H. Abraham, Eur. Chem. Bull.    |
| [123-86-4]                                                           | <b>2</b> , 577 (2013).                 |
| Variables:                                                           | Prepared by:                           |
| T/K = 298.15                                                         | W. E. Acree, Jr.                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9934  | 0.00660   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.7%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements: <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. <b>2</b> , 577 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                            | Prepared by:                                                                                                                                                               |
| T/K = 298 15                                                                                                                                                                          | W. E. Acree, Ir                                                                                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9935  | 0.00654   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Methyl butanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [623-42-7] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                            | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                         |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9932  | 0.00678   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

# 34.3. 3,4-Dimethoxybenzoic acid solubility data in ethers

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull <b>2</b> , 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                          | Prepared by:                                                                                                                                                   |
| T/K = 298.15                                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                               |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9969  | 0.00313   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9986  | 0.00143     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O;<br>[142-96-1] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                           | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                         |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9989  | 0.00112 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                                                 | Original Measurements:                                                                   |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;<br>C <sub>0</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] | <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., |
| (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9]                            | and M. H. Abraham, Eur. Chem. Bull. <b>2</b> , 577 (2013).                               |
| Variables:                                                                                  | Prepared by:                                                                             |
| T/K = 298.15                                                                                | W. E. Acree, Jr.                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9606  | 0.03937   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                   | Prepared by: W. E. Acree, Jr.                                                                                                                            |

## **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9710           | 0.02897   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## 34.4. 3,4-Dimethoxybenzoic acid solubility data in alcohols

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9924  | 0.00764   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9928  | 0.00720 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:<br><sup>139</sup> Q. Li, F. Lu, Y. Tian, S. Feng, Y.<br>Shen, and B. Wang, J. Chem. Eng. Data<br><b>58</b> , 1020 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                     |
| Temperature                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                                 |

## **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.15 | 0.9965             | 0.0035    |
| 282.93 | 0.9958             | 0.0042    |
| 288.21 | 0.9949             | 0.0051    |
| 293.08 | 0.9938             | 0.0062    |
| 298.00 | 0.9926             | 0.0074    |
| 303.33 | 0.9907             | 0.0093    |
| 307.90 | 0.9890             | 0.0110    |
| 313.30 | 0.9864             | 0.0136    |
| 317.15 | 0.9839             | 0.0161    |
| 323.30 | 0.9798             | 0.0202    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.7+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull 2, 577 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9936  | 0.00643   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                | Original Measurements:                            |
|------------------------------------------------------------|---------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                             | <sup>139</sup> Q. Li, F. Lu, Y. Tian, S. Feng, Y. |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]  | Shen, and B. Wang, J. Chem. Eng. Data             |
| (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | <b>58</b> , 1020 (2013).                          |
| Variables:                                                 | Prepared by:                                      |
| Temperature                                                | W. E. Acree, Ir                                   |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 278.37 | 0.9973  | 0.0027    |
| 283.05 | 0.9967  | 0.0033    |
| 288.39 | 0.9958  | 0.0042    |
| 293.30 | 0.9949  | 0.0051    |
| 299.00 | 0.9934  | 0.0066    |
| 303.17 | 0.9921  | 0.0079    |
| 308.27 | 0.9907  | 0.0097    |
| 313.13 | 0.9882  | 0.0118    |
| 318.15 | 0.9854  | 0.0146    |
| 323.28 | 0.9823  | 0.0177    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

## **Source and Purity of Chemicals:**

- (1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.
- (2) 99.8+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components:                                                | Original Measurements:                 |
|------------------------------------------------------------|----------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                             | 138K. R. Bowen, T. W. Stephens, H. Lu, |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]  | K. Satish, D. Shan, W. E. Acree, Jr.,  |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | and M. H. Abraham, Eur. Chem. Bull.    |
|                                                            | <b>2</b> , 577 (2013).                 |
| Variables:                                                 | Prepared by:                           |
| T/K = 298.15                                               | W. E. Acree, Jr.                       |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9938  | 0.00618   |

 $x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0]<br>Variables:                             | 58, 1020 (2013).  Prepared by:                                                                       |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>0</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data |

## **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 278.37 | 0.9976  | 0.0024             |
| 283.05 | 0.9970  | 0.0030             |
| 288.39 | 0.9961  | 0.0039             |
| 294.07 | 0.9949  | 0.0051             |
| 299.00 | 0.9937  | 0.0063             |
| 303.17 | 0.9926  | 0.0074             |
| 308.27 | 0.9905  | 0.0095             |
| 313.13 | 0.9882  | 0.0118             |
| 318.15 | 0.9850  | 0.0150             |
| 323.20 | 0.9817  | 0.0183             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.7+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                             | W. E. Acree, Jr.                                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9937  | 0.00625 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                          |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                                                      |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 277.90 | 0.9976             | 0.0024             |
| 283.25 | 0.9970             | 0.0030             |
| 288.15 | 0.9963             | 0.0037             |
| 293.04 | 0.9954             | 0.0046             |
| 298.15 | 0.9943             | 0.0057             |
| 302.94 | 0.9930             | 0.0070             |
| 308.10 | 0.9912             | 0.0088             |
| 313.15 | 0.9891             | 0.0109             |
| 318.01 | 0.9865             | 0.0135             |
| 323.33 | 0.9830             | 0.0170             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed

equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

#### Source and Purity of Chemicals:

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.5+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9935  | 0.00651   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>$C_9H_{10}O_4$ ; [93-07-2]<br>(2) 2-Methyl-1-propanol; $C_4H_{10}O$ ;<br>[78-83-1] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9955  | 0.00450   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                                          |
| Temperature                                                                                                                                                               | W. E. Acree, Jr.                                                                                                      |

| $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$                                                                     |
|--------------------|----------------------------------------------------------------------------------------|
| 0.9985             | 0.0015                                                                                 |
| 0.9980             | 0.0020                                                                                 |
| 0.9974             | 0.0026                                                                                 |
| 0.9968             | 0.0032                                                                                 |
| 0.9959             | 0.0041                                                                                 |
| 0.9948             | 0.0052                                                                                 |
| 0.9934             | 0.0066                                                                                 |
| 0.9917             | 0.0083                                                                                 |
| 0.9895             | 0.0105                                                                                 |
| 0.9868             | 0.0132                                                                                 |
|                    | 0.9985<br>0.9980<br>0.9974<br>0.9968<br>0.9959<br>0.9948<br>0.9934<br>0.9917<br>0.9895 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

## Source and Purity of Chemicals:

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.5+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

| Components:                                                | Original Measurements:                             |
|------------------------------------------------------------|----------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                             | <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]  | K. Satish, D. Shan, W. E. Acree, Jr.,              |
| (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; | and M. H. Abraham, Eur. Chem. Bull.                |
| [75-65-0]                                                  | <b>2</b> , 577 (2013).                             |
| Variables:                                                 | Prepared by:                                       |
| T/K = 298.15                                               | W. E. Acree, Jr.                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9905  | 0.00945   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| <b>Components:</b> (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements: <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. <b>2</b> , 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                              | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                                                           |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9938  | 0.00615 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 3,4-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9941  | 0.00593   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                               | Original Measurements:                             |
|-----------------------------------------------------------|----------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                            | <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] | K. Satish, D. Shan, W. E. Acree, Jr.,              |
| (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; | and M. H. Abraham, Eur. Chem. Bull.                |
| [123-51-3]                                                | <b>2</b> , 577 (2013).                             |
| Variables:                                                | Prepared by:                                       |
| T/K = 298.15                                              | W. E. Acree, Jr.                                   |

#### **Experimental Values**

| a                 | b         |
|-------------------|-----------|
| $\frac{x_2}{x_2}$ | $x_1^{-}$ |
| 0.9944            | 0.00560   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [137-32-6] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9946  | 0.00541   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9938  | 0.00615   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                | Original Measurements:                             |
|------------------------------------------------------------|----------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                             | <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]  | K. Satish, D. Shan, W. E. Acree, Jr.,              |
| (2) 2-Methyl-1-pentanol; C <sub>6</sub> H <sub>14</sub> O; | and M. H. Abraham, Eur. Chem. Bull.                |
| [105-30-6]                                                 | <b>2</b> , 577 (2013).                             |
| Variables:                                                 | Prepared by:                                       |
| T/K = 208.15                                               | W F Acree Ir                                       |

## **Experimental Values**

| a       | b       |
|---------|---------|
| $x_2$ " | $x_1$   |
| 0.9942  | 0.00573 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9935  | 0.00646   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree. Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9938  | 0.00617   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                                                 | Original Measurements:                                                                      |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;<br>C <sub>0</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] | <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu,<br>K. Satish, D. Shan, W. E. Acree, Jr., |
| (2) 1-Octanol; $C_8H_{18}O$ ; [111-87-5]                                                    | and M. H. Abraham, Eur. Chem. Bull. <b>2</b> , 577 (2013).                                  |
| Variables:                                                                                  | Prepared by:                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9938  | 0.00616   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                  | Original Measurements:                             |
|--------------------------------------------------------------|----------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                               | <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]    | K. Satish, D. Shan, W. E. Acree, Jr.,              |
| (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | and M. H. Abraham, Eur. Chem. Bull.                |
|                                                              | <b>2</b> , 577 (2013).                             |
| Variables:                                                   | Prepared by:                                       |
| T/K = 298.15                                                 | W. E. Acree, Jr.                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9942  | 0.00577   |

 $x_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

# 34.5. 3,4-Dimethoxybenzoic acid solubility in alkoxyalcohols

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-80-5] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9696  | 0.03037   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                                                                                                         | Original Measurements:                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| (1) 3,4-Dimethoxybenzoic acid;                                                                                                                      | 138K. R. Bowen, T. W. Stephens, H. Lu,                                                           |
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]<br>(2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ;<br>[109-59-1] | K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. <b>2</b> , 577 (2013). |
| Variables: $T/K = 298.15$                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                 |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9766  | 0.02335   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9851  | 0.01485   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Acros Organics, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>0</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 3-Methoxy-1-butanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2517-43-3] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                              | W. E. Acree, Jr.                                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9745  | 0.02547   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

## 34.6. 3,4-Dimethoxybenzoic acid solubility data in alkanones

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| r. a   | <sub>v.</sub> b |
|--------|-----------------|
| 0.9882 | 0.01177         |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Butanone; C <sub>4</sub> H <sub>8</sub> O; [78-93-3] | Original Measurements: <sup>138</sup> K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. <b>2</b> , 577 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                                                           |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9879  | 0.01206   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) 2-Butanone; C <sub>4</sub> H <sub>8</sub> O; [78-93-3] | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                          |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                                                      |

## **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$                                                                     |
|---------|----------------------------------------------------------------------------------------|
| 0.9932  | 0.0068                                                                                 |
| 0.9923  | 0.0077                                                                                 |
| 0.9911  | 0.0089                                                                                 |
| 0.9896  | 0.0104                                                                                 |
| 0.9880  | 0.0120                                                                                 |
| 0.9860  | 0.0140                                                                                 |
| 0.9838  | 0.0162                                                                                 |
| 0.9816  | 0.0184                                                                                 |
| 0.9788  | 0.0212                                                                                 |
| 0.9754  | 0.0246                                                                                 |
|         | 0.9932<br>0.9923<br>0.9911<br>0.9896<br>0.9880<br>0.9860<br>0.9838<br>0.9816<br>0.9788 |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

## **Source and Purity of Chemicals:**

(1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.

(2) 99.7%, Beijing Chemical Works, Beijing, China, no purification details were provided.

## **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 4\%$  (relative error).

# 34.7. 3,4-Dimethoxybenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3,4-Dimethoxybenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements:  138 K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9920  | 0.00799   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 286 nm.

## Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

# 34.8. 3,4-Dimethoxybenzoic acid solubility data in binary organic solvent mixtures

| Components: (1) 3,4-Dimethoxybenzoic acid;                 | Original Measurements:  139 Q. Li, F. Lu, Y. Tian, S. Feng, Y. |
|------------------------------------------------------------|----------------------------------------------------------------|
| C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [93-07-2]  | Shen, and B. Wang, J. Chem. Eng. Data                          |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]    | <b>58</b> , 1020 (2013).                                       |
| (3) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] |                                                                |
| Variables:                                                 | Prepared by:                                                   |
| Temperature: Solvent Composition                           | W F Acree Ir                                                   |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K              | $m_2^{(\mathrm{s})\mathrm{a}}$ | $x_1^{b}$        |
|------------------|--------------------------------|------------------|
| 277.90           | 0.0000                         | 0.0024           |
| 283.25           | 0.0000                         | 0.0030           |
| 288.15           | 0.0000                         | 0.0037           |
| 293.04           | 0.0000                         | 0.0046           |
| 298.15           | 0.0000                         | 0.0057           |
| 302.94           | 0.0000                         | 0.0070           |
| 308.10           | 0.0000<br>0.0000               | 0.0088           |
| 313.15<br>318.01 | 0.0000                         | 0.0109<br>0.0135 |
| 323.33           | 0.0000                         | 0.0133           |
| 278.75           | 0.1000                         | 0.0028           |
| 283.26           | 0.1000                         | 0.0036           |
| 288.15           | 0.1000                         | 0.0045           |
| 293.18           | 0.1000                         | 0.0054           |
| 298.41           | 0.1000                         | 0.0067           |
| 303.15           | 0.1000                         | 0.0083           |
| 308.01           | 0.1000                         | 0.0102           |
| 313.15           | 0.1000                         | 0.0125<br>0.0152 |
| 317.94<br>323.12 | 0.1000<br>0.1000               | 0.0132           |
| 278.65           | 0.2000                         | 0.0030           |
| 283.15           | 0.2000                         | 0.0037           |
| 288.21           | 0.2000                         | 0.0045           |
| 293.18           | 0.2000                         | 0.0055           |
| 298.41           | 0.2000                         | 0.0069           |
| 303.35           | 0.2000                         | 0.0085           |
| 308.01           | 0.2000                         | 0.0103           |
| 313.15           | 0.2000                         | 0.0126           |
| 317.94<br>323.10 | 0.2000<br>0.2000               | 0.0152<br>0.0186 |
| 277.94           | 0.3000                         | 0.0029           |
| 283.05           | 0.3000                         | 0.0036           |
| 288.38           | 0.3000                         | 0.0045           |
| 293.45           | 0.3000                         | 0.0055           |
| 298.25           | 0.3000                         | 0.0067           |
| 303.55           | 0.3000                         | 0.0083           |
| 308.13           | 0.3000                         | 0.0101           |
| 313.15<br>318.29 | 0.3000<br>0.3000               | 0.0123<br>0.0150 |
| 323.06           | 0.3000                         | 0.0130           |
| 279.20           | 0.4000                         | 0.0029           |
| 283.45           | 0.4000                         | 0.0034           |
| 288.03           | 0.4000                         | 0.0043           |
| 292.91           | 0.4000                         | 0.0052           |
| 298.02           | 0.4000                         | 0.0064           |
| 303.66           | 0.4000                         | 0.0080           |
| 307.94           | 0.4000                         | 0.0095           |
| 313.10<br>318.15 | 0.4000<br>0.4000               | 0.0118<br>0.0143 |
| 323.05           | 0.4000                         | 0.0143           |
| 279.20           | 0.5000                         | 0.0034           |
| 283.45           | 0.5000                         | 0.0040           |
| 288.03           | 0.5000                         | 0.0048           |
| 292.91           | 0.5000                         | 0.0058           |
| 298.02           | 0.5000                         | 0.0071           |
| 303.66           | 0.5000                         | 0.0090           |
| 307.94           | 0.5000                         | 0.0106           |
| 313.10<br>318.15 | 0.5000<br>0.5000               | 0.0129<br>0.0156 |
| 323.05           | 0.5000                         | 0.0136           |
| 278.04           | 0.6000                         | 0.0188           |
| 283.16           | 0.6000                         | 0.0040           |
| 288.15           | 0.6000                         | 0.0049           |
| 293.14           | 0.6000                         | 0.0060           |
| 298.08           | 0.6000                         | 0.0073           |
|                  |                                |                  |

| T/K    | $m_2^{(s)a}$ | $x_1^{b}$ |
|--------|--------------|-----------|
| 303.13 | 0.6000       | 0.0089    |
| 307.94 | 0.6000       | 0.0108    |
| 313.05 | 0.6000       | 0.0130    |
| 318.19 | 0.6000       | 0.0160    |
| 323.33 | 0.6000       | 0.0195    |
| 278.04 | 0.7000       | 0.0034    |
| 283.16 | 0.7000       | 0.0040    |
| 288.15 | 0.7000       | 0.0050    |
| 293.14 | 0.7000       | 0.0061    |
| 298.08 | 0.7000       | 0.0074    |
| 303.13 | 0.7000       | 0.0090    |
| 307.94 | 0.7000       | 0.0109    |
| 313.05 | 0.7000       | 0.0132    |
| 318.19 | 0.7000       | 0.0161    |
| 323.33 | 0.7000       | 0.0194    |
| 278.50 | 0.8000       | 0.0034    |
| 283.15 | 0.8000       | 0.0041    |
| 288.15 | 0.8000       | 0.0050    |
| 293.16 | 0.8000       | 0.0061    |
| 298.29 | 0.8000       | 0.0077    |
| 303.22 | 0.8000       | 0.0093    |
| 308.31 | 0.8000       | 0.0115    |
| 312.99 | 0.8000       | 0.0137    |
| 318.25 | 0.8000       | 0.0168    |
| 323.42 | 0.8000       | 0.0207    |
| 278.37 | 0.9000       | 0.0035    |
| 283.05 | 0.9000       | 0.0043    |
| 288.39 | 0.9000       | 0.0051    |
| 293.16 | 0.9000       | 0.0062    |
| 298.29 | 0.9000       | 0.0077    |
| 303.22 | 0.9000       | 0.0091    |
| 308.31 | 0.9000       | 0.0112    |
| 312.99 | 0.9000       | 0.0133    |
| 318.25 | 0.9000       | 0.0162    |
| 323.42 | 0.9000       | 0.0196    |
| 278.15 | 1.0000       | 0.0035    |
| 282.93 | 1.0000       | 0.0042    |
| 288.21 | 1.0000       | 0.0051    |
| 293.08 | 1.0000       | 0.0062    |
| 298.00 | 1.0000       | 0.0074    |
| 303.33 | 1.0000       | 0.0093    |
| 307.90 | 1.0000       | 0.0110    |
| 313.30 | 1.0000       | 0.0136    |
| 317.15 | 1.0000       | 0.0161    |
| 323.30 | 1.0000       | 0.0202    |

 ${}^{a}m_{2}{}^{(s)}$ : mass fraction of component 2 in the initial binary solvent mixture.  ${}^{b}x_{1}$ : mole fraction solubility of the solute.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Water-jacketed equilibrium glass vessel, thermostated circulating water bath, magnetic stirrer, analytical balance, laser monitoring system. Experimental solubilities were determined by a synthetic method. Preweighed amounts of solute and solvent and were placed in a water-jacketed equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and small amounts of solute were incrementally added until no further solid dissolved. The dissolution of the solid was determined using laser monitoring. The total amount of solute dissolved was recorded. Experimental measurement was repeated three times.

- (1) 99+%, Alfa Aesar China Co., Ltd., Tianjin, China, no purification details were provided.
- (2) 99.7+%, Beijing Chemical Works, Beijing, China, no purification details were provided.
- (3) 99.5+%, Beijing Chemical Works, Beijing, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $m_2^{(s)}$ : 0.0001

 $x_1$ :  $\pm 4\%$  (relative error).

# 35. Solubility of 3,5-Dimethoxybenzoic Acid in Organic Solvents

# 35.1. Critical evaluation of experimental solubility data

There is only a single published study regarding the solubility behavior of 3,5-dimethoxybenzoic acid in organic solvents. Wang and Zhang<sup>97</sup> measured the mole fraction solubilities in ethanol as a function of temperature using a static and dynamic method. The internal consistency of the two datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, and C) are given in Table 31, along with the MRD calculated according to Eq. (24). Examination of the numerical entries in the last column of Table 31 reveals that the static experimental method yielded slightly more consistent experimental values as evidenced by the smaller MRD. In the case of the 3,5-dimethoxybenzoic acid solubility data, there is a slight difference between the two experimental methods. The relative difference can be greater than the reproducibility at times. For example, the static method gave a mole fraction solubility of  $x_1 = 0.007464$  for 3,5-dimethoxybenzoic acid in ethanol at 308.15 K, versus a value of  $x_1 = 0.007934$  determined with the dynamic method. The calculated relative difference between the two reported values is about 6%. The authors estimated the reproducibility of the measurements at 0.5%.

The experimental solubility data for 3,5-dimethoxybenzoic acid in ethanol are in Sec. 33.2.

Table 31. Parameters of the Modified Apelblat equation for describing the solubility of 3,5-dimethoxybenzoic acid in ethanol<sup>a</sup>

| Solvent                                          | A               | В              | С               | MRD (%)        |
|--------------------------------------------------|-----------------|----------------|-----------------|----------------|
| Ethanol (dynamic method) Ethanol (static method) | -0.1742 $40.45$ | -3316<br>-5379 | 1.865<br>-4.060 | 2.160<br>0.947 |

 $<sup>\</sup>overline{^{\rm a}}{\rm Values}$  of the coefficients and the mean relative deviations were taken from Wang and Zhang.  $^{97}$ 

## 35.2. 3,5-Dimethoxybenzoic acid solubility data in alcohols

| Components:<br>(1) 3,5-Dimethoxybenzoic acid;<br>C <sub>9</sub> H <sub>10</sub> O <sub>4</sub> ; [1132-21-4]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>97</sup> H. Wang and W. Zhang, J. Chem. Eng. Data <b>54</b> , 1942 (2009). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                              |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b,c}$ |
|-------|-----------|-------------|
| 298.2 | 0.9951    | 0.004933    |
| 303.2 | 0.9939    | 0.006075    |
| 308.2 | 0.9925    | 0.007464    |
| 313.2 | 0.9907    | 0.009341    |
| 318.2 | 0.9884    | 0.01159     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b,c}$ |
|-------|---------|-------------|
| 298.2 | 0.9949  | 0.005137    |
| 303.2 | 0.9939  | 0.006056    |
| 308.2 | 0.9921  | 0.007934    |
| 313.2 | 0.9902  | 0.009776    |
| 318.2 | 0.9886  | 0.01143     |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Thermostated water-jacketed glass vessel, thermometer, analytical balance, laser monitoring system.

Solubilities were determined using both a static and dynamic method. In the static method, excess solute and solvent were placed in a water-jacketed vessel allowed to equilibrate with stirring for three days at constant temperature. Samples of the saturated liquid phase were decanted into Petri dishes of known mass and weighed. The samples were then evaporated to dryness and the solubility determined from the mass of the solid residue and the mass of the sample analyzed. In the dynamic method, an excess of carboxylic acid was added to a known mass of ethanol. The resulting suspension was stirred in a water-jacketed vessel for 1 h at constant temperature. A known mass of ethanol was added to the vessel through a buret until the solute completely dissolved. The dissolution was monitored with a laser monitoring system. When the last portion of solid solute disappeared, the penetrated light intensity reached its maximum value. The mass of the added solvent was recorded. The solubility of the carboxylic acid was calculated from the known masses of solute and ethanol.

## Source and Purity of Chemicals:

(1) 98%, Sigma-Aldrich Chemical Company, Milwaukee, WI, USA, no purification details provided.

(2) 99.55%, Tianjin Kewei Chemical Reagent, China, no information given regarding any further purification.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the static method.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>c</sup>Solubility determined by the dynamic method.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ : Authors report that the uncertainty in the solubility values is estimated to be  $\pm 0.5\%$ . The differences between the experimental values based on the static and dynamic solubility methods are considerably larger, and more on the order of  $\pm 3\%$  to 8% (relative error).

# 36. Solubility of 3-(Dimethylamino)benzoic Acid in Organic Solvents

# 36.1. Critical evaluation of experimental solubility data

There has been only a single study reporting the solubility of 3-(dimethylamino)benzoic acid in organic solvents. Hancock *et al.*<sup>54</sup> determined the solubility of 3-(dimethylamino)benzoic acid in cyclohexane and benzene at 303 K based on a gravimetric method. It is not possible to perform a critical evaluation of the experimental data as measurements were performed at only a single temperature, and there are no independent experimental solubility data for 3-(dimethylamino)benzoic acid in either cyclohexane or benzene.

The experimental solubility data for 3-(dimethylamino) benzoic acid in organic solvents are in Secs. 36.2 and 36.3.

# 36.2. 3-(Dimethylamino)benzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-(Dimethylamino)benzoic acid; C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [99-64-9] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | P. Idoux, J. Org. Chem. 31, 3801 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Variables: T/K = 303.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr. |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9996  | 0.000406  |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 36.3. 3-(Dimethylamino)benzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3-(Dimethylamino)benzoic acid; C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [99-64-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                 |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9894  | 0.0106    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 37. Solubility of 4-(Dimethylamino)benzoic Acid in Organic Solvents

# 37.1. Critical evaluation of experimental solubility data

There have been two studies<sup>54,83</sup> reporting the solubility of 4-(dimethylamino)benzoic acid in organic solvents. Hancock *et al.*<sup>54</sup> determined the solubility of 4-(dimethylamino)benzoic acid in cyclohexane and benzene at 303 K based on a gravimetric method. Chantooni and Kolthoff<sup>83</sup> measured the solubility of 4-(dimethylamino)benzoic acid in methanol, ethanenitrile, dimethyl sulfoxide, and *N,N*-dimethylformamide at 298 K. It is not possible to perform a critical evaluation of the experimental data as each research group performed measurements at only a single temperature, and there are no independent experimental solubility data for 4-(dimethylamino)benzoic acid in these six organic solvents.

The experimental solubility data for 4-(dimethylamino)-benzoic acid in organic solvents are in Secs. 37.2–37.5.

# 37.2. 4-(Dimethylamino)benzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Variables: $T/K = 303.15$                                                                                                   | Prepared by: W. E. Acree. Jr.                                  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [619-84-1]<br>(2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | P. Idoux, J. Org. Chem. 31, 3801                               |
| Components: (1) 4-(Dimethylamino)benzoic acid;                                                                              | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J |

## **Experimental Values**

| $x_2^a$ | x <sub>1</sub> <sup>b</sup> |
|---------|-----------------------------|
| 0.9996  | 0.000406                    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 37.3. 4-(Dimethylamino)benzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-(Dimethylamino)benzoic acid; C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [619-84-1] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                         |

## **Experimental Values**

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9994  | 0.000637 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

## **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 37.4. 4-(Dimethylamino)benzoic acid solubility data in alcohols

| Components: (1) 4-(Dimethylamino)benzoic acid; C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [619-84-1] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

The measured solubility was reported to be  $0.086~\rm mol~dm^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from aqueous ethanol solution.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 37.5. 4-(Dimethylamino)benzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-(Dimethylamino)benzoic acid; C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [619-84-1] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                               | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                             | W. E. Acree, Jr.                                                                              |

## **Experimental Values**

The measured solubility was reported to be 0.023 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from aqueous ethanol solution.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-(Dimethylamino)benzoic acid; C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub> ; [619-84-1] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| [67-68-5] Variables:                                                                                                                                                 | Dranavad by                                                                                   |
| T/K = 298.15                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                              |

## **Experimental Values**

The measured solubility was reported to be 1.95 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from aqueous ethanol solution.
- (2) Purity not given, Chemical source not given, was shaken with activated alumina and then distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| $\begin{split} &\textbf{Components:}\\ &(1) \ 4\text{-}(Dimethylamino)benzoic acid;}\\ &C_9H_{11}NO_2; \ [619\text{-}84\text{-}1]\\ &(2) \ \textit{N,N-}Dimethylformamide;}\\ &C_3H_7NO; \ [64\text{-}19\text{-}7] \end{split}$ | <b>Original Measurements:</b> <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. <b>77</b> , 527 (1973). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                                      | Prepared by:                                                                                                           |
| T/K = 298.15                                                                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                       |

The measured solubility was reported to be 1.10 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from aqueous ethanol solution.
- (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 38. Solubility of 3,4-Dimethylbenzoic Acid in Organic Solvents

# 38.1. Critical evaluation of experimental solubility data

There have been two studies<sup>76,83</sup> reporting the solubility of 3,4-dimethylbenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> measured the solubility of 3,4-dimethylbenzoic acid in methanol, ethanenitrile, dimethyl sulfoxide, and *N*, *N*-dimethylformamide at 298 K. In a followup study, the authors<sup>76</sup> determined the solubility in three additional alcohol solvents (2-propanol, 2-methyl-2-propanol, and 1-hexanol). It is not possible to perform a critical evaluation of the experimental data as measurements were made at only a single temperature, and there are no independent experimental solubility data for 3,4-dimethylbenzoic acid in these seven organic solvents.

The experimental solubility data for 3,4-dimethylbenzoic acid in organic solvents are in Secs. 38.2 and 38.3.

## 38.2. 3,4-Dimethylbenzoic acid solubility data in alcohols

| Components: (1) 3,4-Dimethylbenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>2</sub> ; [619-04-5] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

The measured solubility was reported to be 0.595 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:                                                | Original Measurements:                            |
|------------------------------------------------------------|---------------------------------------------------|
| (1) 3,4-Dimethylbenzoic acid;                              | <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, |
| C <sub>9</sub> H <sub>10</sub> O <sub>2</sub> ; [619-04-5] | Anal. Chem. 51, 133 (1979).                       |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] |                                                   |
| Variables:                                                 | Prepared by:                                      |
| T/K = 298.15                                               | W. E. Acree, Jr.                                  |

## **Experimental Values**

The measured solubility was reported to be 0.513 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Fisher Scientific, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,4-Dimethylbenzoic acid; C <sub>0</sub> H <sub>10</sub> O <sub>2</sub> ; [619-04-5] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                             |

The measured solubility was reported to be 0.616 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,4-Dimethylbenzoic acid; C <sub>9</sub> H <sub>10</sub> O <sub>2</sub> ; [619-04-5] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff Anal. Chem. <b>51</b> , 133 (1979). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                            |

# **Experimental Values**

The measured solubility was reported to be 0.408 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 38.3. 3,4-Dimethylbenzoic acid solubility data in miscellaneous organic solvents

| $\label{eq:components:} \begin{tabular}{ll} Components: \\ (1) 3,4-Dimethylbenzoic acid; \\ C_9H_{10}O_2; [619-04-5] \\ (2) Ethanenitrile; C_2H_3N; [75-05-8] \\ \end{tabular}$ | <b>Original Measurements:</b> <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. <b>77</b> , 527 (1973). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                           |
| T/K = 298.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                       |

#### **Experimental Values**

The measured solubility was reported to be 0.091 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3,4-Dimethylbenzoic acid;<br>$C_9H_{10}O_2$ ; [619-04-5]<br>(2) Dimethyl sulfoxide; $C_2H_6OS$ ;<br>[67-68-5] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                              |

The measured solubility was reported to be 3.07 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was shaken with activated alumina and then distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3,4-Dimethylbenzoic acid;<br>$C_9H_{10}O_2$ ; [619-04-5]<br>(2) <i>N,N</i> -Dimethylformamide;<br>$C_3H_7NO$ ; [64-19-7] | <b>Original Measurements:</b> <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. <b>77</b> , 527 (1973). |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                       |

## **Experimental Values**

The measured solubility was reported to be 1.19 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

(1) Purity not given, K and K Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 39. Solubility of 2,4-Dinitrobenzoic Acid in Organic Solvents

# 39.1. Critical evaluation of experimental solubility data

There has been one study reporting the solubility of 2,4-dinitrobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> determined the solubility of 2,4-dinitrobenzoic acid in methanol and ethanenitrile at 298 K. It is not possible to perform a critical evaluation of the experimental data as the authors performed measurements at only a single temperature, and there are no independent experimental solubility data for 2,4-dinitrobenzoic acid in either cyclohexane or benzene.

The experimental solubility data for 2,4-dinitrobenzoic acid in organic solvents are in Secs. 39.2 and 39.3.

# 39.2. 2,4-Dinitrobenzoic acid solubility data in alcohols

| Components:<br>(1) 2,4-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [610-30-0]<br>(2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                              |

# **Experimental Values**

The measured solubility was reported to be  $3.23~\mathrm{mol~dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 39.3. 2,4-Dinitrobenzoic acid solubility data in miscellaneous organic solvents

| Components:<br>(1) 2,4-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [610-30-0]<br>(2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

The measured solubility was reported to be 1.02 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)] the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* 333 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 40. Solubility of 3,5-Dinitrobenzoic Acid in Organic Solvents

# 40.1. Critical evaluation of experimental solubility data

There have been several published studies <sup>54,63,76,83,140</sup> investigating the solubility behavior of 3,5-dinitrobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Hoover *et al.*<sup>140</sup> measured the solubility of 3,5-dinitrobenzoic acid in 13 alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), and in three alkyl alkanoates (ethyl ethanoate, butyl ethanoate, and pentyl ethanoate) at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 3,5-dinitrobenzoic acid. The authors were able to assemble a

total of 38  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham Model equation coefficients, and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 3,5-dinitrobenzoic acid is  $log_{10}$   $c_{1,W}$  = -2.417. The McGowan volume of 3,5-dinitrobenzoic acid, V = 1.2801, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 1.250. This left four solute descriptors (S, A, B, and L) still to be determined. The 38 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.630, A = 0.700, B = 0.590, and L = 6.9837, that best described the  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -10.717$  for the gas-phase solute concentration that made the  $log_{10}$  (SR or P) and  $log_{10}$  (GSR or K) predictions internally consistent. The calculated molecular solute descriptors reproduced the log<sub>10</sub> (SR or P) and  $\log_{10} (GSR \text{ or } K)$  values to within an average standard deviation of 0.091 and 0.114 log<sub>10</sub> units, respectively.

After the 3,5-dinitrobenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 3,5-dinitrobenzoic acid solubility data. Table 32 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 3,5-dinitrobenzoic acid,  $x_1$ , determined by Hoover *et al.*<sup>140</sup> were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the

Table 32. Comparison between observed and calculated molar solubilities of 3,5-dinitrobenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                              | $\log_{10} c_1^{\text{ calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|------------------------------|---------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp}}$ | Eq. (20)                        | Eq. (21)                       |
| Ethanol             | -0.128                       | -0.249                          | -0.239                         |
| 1-Propanol          | -0.326                       | -0.396                          | -0.385                         |
| 2-Propanol          | -0.366                       | -0.409                          | -0.387                         |
| 1-Butanol           | -0.469                       | -0.518                          | -0.498                         |
| 2-Butanol           | -0.496                       | -0.478                          | -0.485                         |
| 2-Methyl-1-propanol | -0.655                       | -0.615                          | -0.622                         |
| 1-Pentanol          | -0.540                       | -0.562                          | -0.552                         |
| 2-Pentanol          | -0.523                       | -0.590                          | -0.564                         |
| 3-Methyl-1-butanol  | -0.574                       | -0.660                          | -0.627                         |
| 1-Hexanol           | -0.621                       | -0.605                          | -0.600                         |
| 1-Heptanol          | -0.653                       | -0.651                          | -0.633                         |
| 1-Octanol           | -0.683                       | -0.657                          | -0.735                         |
| 1-Decanol           | -0.746                       | -0.809                          | -0.786                         |
| 1,1'-Oxybisethane   | -0.555                       | -0.723                          | -0.608                         |
| Tetrahydrofuran     | 0.209                        | 0.254                           | 0.236                          |
| 1,4-Dioxane         | -0.005                       | 0.102                           | 0.104                          |
| Ethyl ethanoate     | -0.311                       | -0.426                          | -0.409                         |
| Butyl ethanoate     | -0.544                       | -0.601                          | -0.613                         |

saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 3,5-dinitrobenzoic acid is  $V_{\text{solute}} = 131.0 \text{ cm}^3 \text{ mol}^{-1}$ . Examination of the numerical entries in Table 32 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Hancock *et al.* <sup>54,63</sup> measured the solubility of 3,5-dinitro-

Hancock *et al.*<sup>54,63</sup> measured the solubility of 3,5-dinitrobenzoic acid in cyclohexane, benzene, tetrahydrofuran and 1,4-dioxane at 303.15 K, which is at a slightly higher temperature than solubility data of Hoover *et al.*<sup>140</sup> A direct comparison is not possible since the two sets of measurements were performed a different temperatures.

The experimental solubility data for 3,5-dinitrobenzoic acid in organic solvents are in Secs. 40.2–40.7.

# 40.2. 3,5-Dinitrobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:                                                             | Original Measurements:                           |
|-------------------------------------------------------------------------|--------------------------------------------------|
| (1) 3,5-Dinitrobenzoic acid;                                            | <sup>54</sup> C. K. Hancock, J. N. Pawloski, and |
| C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] | J. P. Idoux, J. Org. Chem. 31, 3801              |
| (2) Cyclohexane; $C_6H_{12}$ ; [110-82-7]                               | (1966).                                          |
| Variables:                                                              | Prepared by:                                     |
| T/V = 303.15                                                            | W E Acres Ir                                     |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$  |
|---------|------------|
| 0.9999  | 0.00000698 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

## **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature: ±0.02 K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

# 40.3. 3,5-Dinitrobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>54</sup> C. K. Hancock, J. N. Pawloski, and J.<br>P. Idoux, J. Org. Chem. <b>31</b> , 3801<br>(1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9995  | 0.000454  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 3\%$  (relative error, by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 40.4. 3,5-Dinitrobenzoic acid solubility data in esters

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                      | Prepared by:                                                                                                                               |
| T/K = 298.15                                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9511  | 0.04892   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ;<br>[123-86-4] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: <i>T</i> /K = 298.15                                                                                                                                                                              | Prepared by: W. E. Acree, Jr.                                                                                                              |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9621  | 0.03787   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>$C_7H_4N_2O_6$ ; [99-34-3]<br>(2) Pentyl ethanoate; $C_7H_{14}O_7$ ; | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42 |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| [628-63-7]<br>Variables:                                                                                            | 457 (2004).  Prepared by:                                                                                                     |
| T/K = 298.15                                                                                                        | W. E. Acree, Jr.                                                                                                              |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9691  | 0.03088            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

## Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>$C_7H_4N_2O_6$ ; [99-34-3]<br>(2) 1,2,3-Triacetoxypropane<br>(Triacetin); $C_0H_{14}O_6$ ; [102-76-1] | Original Measurements: W. E. Acree, Jr., unpublished data. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                           |

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9338  | 0.06616            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 40.5. 3,5-Dinitrobenzoic acid solubility data in ethers

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9706  | 0.02938 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid;                                                                                                                                           | Original Measurements:  140 K. R. Hoover, R. Coaxum, E.                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| (1) 3,3-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O;<br>[108-20-3] | Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
| Variables: T/K = 298.15                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                   |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9909  | 0.009087  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O;<br>[142-96-1] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9942  | 0.005787 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                        | Prepared by:                                                                                                                               |
| T/K = 298.15                                                                                                                                                                      | W. E. Acree, Jr.                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8569  | 0.1431    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.827   | 0.173     |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through 2  $\times$  70-cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9112  | 0.08878   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:                                                                | Original Measurements:                       |
|----------------------------------------------------------------------------|----------------------------------------------|
| (1) 3,5-Dinitrobenzoic acid;                                               | <sup>63</sup> C. K. Hancock, J. N. Pawloski, |
| C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]    | and J. P. Idoux, J. Org. Chem. 32,           |
| (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | 1931 (1967).                                 |
| Variables:                                                                 | Prepared by:                                 |
| T/K = 303.15                                                               | W. E. Acree, Jr.                             |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.900   | 0.100   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 40.6. 3,5-Dinitrobenzoic acid solubility data in alcohols

| Components:                                                             | Original Measurements:                            |
|-------------------------------------------------------------------------|---------------------------------------------------|
| (1) 3,5-Dinitrobenzoic acid;                                            | <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, |
| C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] | J. Phys. Chem. 77, 527 (1973).                    |
| (2) Methanol; CH <sub>4</sub> O; [67-56-1]                              |                                                   |
| Variables:                                                              | Prepared by:                                      |
| T/K = 298.15                                                            | W. E. Acree, Jr.                                  |

## **Experimental Values**

The measured solubility was reported to be 1.23 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous ethanol solution and dried *in vacuo* over barium oxide at 343 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-7] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9538  | 0.04620   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                                                               |
| T/K = 298.15                                                                                                                                                                | W. E. Acree, Jr.                                                                                                                           |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9636           | 0.03637 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9661  | 0.03390 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                                | W. E. Acree, Jr.                                                                                             |

The measured solubility was reported to be 0.451 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous ethanol solution and dried *in vacuo* over barium oxide at 343 K.
- (2) Purity not given, Fisher Scientific Chemical Company, USA, shaken with calcium hydride and distilled before use.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9683  | 0.03169   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9702  | 0.02984   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O;<br>[78-83-1] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9783  | 0.02169   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| red by: |
|---------|
| 1       |

# **Experimental Values**

The measured solubility was reported to be 0.625 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# Source and Purity of Chemicals:

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous ethanol solution and dried *in vacuo* over barium oxide at 343 K.
- (2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\text{b}}$ |
|---------|------------------|
| 0.9685  | 0.03153          |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>$C_7H_4N_2O_6$ ; [99-34-3]<br>(2) 2-Pentanol; $C_5H_{10}O$ ;<br>[6032-29-7] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ \mathrm{b}}$ |
|---------|----------------------|
| 0.9669  | 0.03308              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3]<br>(2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>10</sub> O;<br>[123-51-3] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9705             | 0.02948   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9700  | 0.02997   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

## **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; $C_7H_4N_2O_6$ ; [99-34-3] (2) 1-Hexanol; $C_6H_{14}O$ ; [111-27-3] | <b>Original Measurements:</b> <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                   | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                 | W. E. Acree, Jr.                                                                                                    |

# **Experimental Values**

The measured solubility was reported to be 0.357 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous ethanol solution and dried *in vacuo* over barium oxide at 343 K.
- (2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9685  | 0.03147   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# Estimated Error:

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>$C_7H_4N_2O_6$ ; [99-34-3]<br>(2) 1-Octanol; $C_8H_{18}O$ ;<br>[111-87-5] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9673  | 0.03267   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements:  140 K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9660  | 0.03402   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 267 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitrobenzoic acid;<br>$C_7H_4N_2O_6$ ; [99-34-3]<br>(2) 2,2,2-Trifluoroethanol;<br>$C_2H_3F_3O$ ; [75-89-8] | <b>Original Measurements:</b> <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                           | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                         | W. E. Acree, Jr.                                                                                                    |

### **Experimental Values**

The measured solubility was reported to be 0.0212~mol dm $^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## **Source and Purity of Chemicals:**

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous ethanol solution and dried *in vacuo* over barium oxide at 343 K.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 40.7. 3,5-Dinitrobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3,5-Dinitrobenzoic acid; C <sub>7</sub> H <sub>4</sub> N <sub>2</sub> O <sub>6</sub> ; [99-34-3] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                             |

#### **Experimental Values**

The measured solubility was reported to be 0.23 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

## Source and Purity of Chemicals:

- (1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous ethanol solution and dried *in vacuo* over barium oxide at 343 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 41. Solubility of 3,5-Dinitro-2methylbenzoic Acid in Organic Solvents

# 41.1. Critical evaluation of experimental solubility data

There have been two published studies <sup>18,143</sup> investigating the solubility behavior of 3,5-dinitro-2-methylbenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Saifullah *et al.* <sup>18</sup> measured the solubility of 3,5-dinitro-2-methylbenzoic acid in tetrahydrofuran and 1,4-dioxane at 298 K. Ye *et al.* <sup>143</sup> measured the solubility of 3,5-dinitro-2-methylbenzoic acid in 14 alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, and 1-decanol) and in five alkyl alkanoates (methyl ethanoate, ethyl ethanoate, propyl ethanoate, butyl ethanoate, and pentyl ethanoate) at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of

Table 33. Comparison between observed and calculated molar solubilities of 3,5-dinitro-2-methylbenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                              | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp}}$ | Eq. (20)                       | Eq. (21)                       |
| 1-Propanol          | -0.661                       | -0.711                         | -0.690                         |
| 2-Propanol          | -0.712                       | -0.726                         | -0.697                         |
| 1-Butanol           | -0.786                       | -0.837                         | -0.800                         |
| 2-Butanol           | -0.784                       | -0.769                         | -0.787                         |
| 2-Methyl-1-propanol | -1.054                       | -0.981                         | -0.955                         |
| 2-Methyl-2-propanol | -0.820                       | -0.741                         | -0.716                         |
| 1-Pentanol          | -0.823                       | -0.966                         | -0.941                         |
| 2-Pentanol          | -0.864                       | -1.003                         | -0.942                         |
| 3-Methyl-1-butanol  | -0.962                       | -1.065                         | -0.955                         |
| 1-Hexanol           | -0.969                       | -0.983                         | -0.967                         |
| 1-Heptanol          | -0.925                       | -0.984                         | -1.000                         |
| 1-Octanol           | -1.103                       | -0.984                         | -1.095                         |
| 1-Decanol           | -1.336                       | -1.243                         | -1.223                         |
| Methyl ethanoate    | -0.345                       | -0.349                         | -0.288                         |
| Ethyl ethanoate     | -0.498                       | -0.550                         | -0.512                         |
| Butyl ethanoate     | -0.703                       | -0.747                         | -0.703                         |

3,5-dinitro-2-methylbenzoic acid. The authors were able to assemble a total of 36  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients, and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 3,5-dinitro-2-methylbenzoic acid,  $\log_{10} c_{1,W} = -2.60$ , was determined by the authors as part of the experimental measurements. The McGowan volume of 3,5-dinitro-2-methylbenzoic acid, V = 1.4210, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E =1.310. This left four solute descriptors (S, A, B, and L) still to be determined. The 36 equations were then solved using the Microsoft "solver" program to yield numerical values of the remaining four solute descriptors, S = 2.120, A = 0.750, B = 0.650, and L = 8.040, that best described the  $\log_{10} (SR)$ or P) and  $\log_{10}$  (GSR or K) values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1.G} = -12.556$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values to within an average standard deviation of 0.081 and 0.064 log<sub>10</sub> units, respectively.

Table 33 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 3,5-dinitro-2-methylbenzoic acid,  $x_1$ , determined by Ye *et al.* <sup>143</sup> were converted into molar solubilities

by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1 - x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 3,5-dinitro-2-methylbenzoic acid is  $V_{\text{solute}} = 148.4 \, \text{cm}^3 \, \text{mol}^{-1}$ . Examination of the numerical entries in Table 33 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

The experimental solubility data for 3,5-dinitro-2-methylbenzoic acid in organic solvents are in Secs. 41.2–41.4.

# 41.2. 3,5-Dinitro-2-methylbenzoic acid solubility data in esters

| Components:                                                                | Original Measurements:                    |
|----------------------------------------------------------------------------|-------------------------------------------|
| (1) 3,5-Dinitro-2-methylbenzoic acid;                                      | <sup>143</sup> S. Ye, M. Saifullah, L. M. |
| C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] | Grubbs, M. C. McMillan-Wiggins,           |
| (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ;       | P. Acosta, D. Mejorado, I. Flores,        |
| [79-20-9]                                                                  | W. E. Acree, Jr., and M. H.               |
|                                                                            | Abraham, Phys. Chem. Liq. 49, 821         |
|                                                                            | (2011).                                   |
| Variables:                                                                 | Prepared by:                              |
| T/K = 298.15                                                               | W. E. Acree, Jr.                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9629  | 0.0371    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

# Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

### Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9683  | 0.0317  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) Propyl ethanoate; C <sub>5</sub> H <sub>10</sub> O <sub>2</sub> ; [109-60-4] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                                        | Prepared by: W. E. Acree, Jr.                                                                                                                                                                   |

## **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9707  | 0.0293  |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.5%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                              | Abraham, Phys. Chem. Liq. <b>49</b> , 821 (2011).                                                                                                     |
| Variables:                                                                                                                                                                                                   | Prepared by:                                                                                                                                          |
| T/K = 298.15                                                                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9737  | 0.0263    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 3,5-Dinitro-2-methylbenzoic acid;<br>$C_8H_6N_2O_6$ ; [28169-46-2]<br>(2) Pentyl ethanoate; $C_7H_{14}O_2$ ;<br>[628-63-7] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9748  | 0.0252    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 41.3. 3,5-Dinitro-2-methylbenzoic acid solubility data in ethers

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>18</sup> M. Saifullah, S. Ye, L. M. Grubbs N. E. De La Rosa, W. E. Acree, Jr and M. H. Abraham, J. Solution Chem. <b>40</b> , 2082 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8140  | 0.1860    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> : [28169-46-2] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  18 M. Saifullah, S. Ye, L. M. Grubbs, N. E. De La Rosa, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. 40, 2082 (2011). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                        |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8196  | 0.1804    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 41.4. 3,5-Dinitro-2-methylbenzoic acid solubility data in alcohols

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9834  | 0.0166    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| $\label{eq:components:} \begin{tabular}{ll} Components: \\ (1) 3,5-Dinitro-2-methylbenzoic acid; \\ C_8H_6N_2O_6; [28169-46-2] \\ (2) 2-Propanol; C_3H_8O; [67-63-0] \\ \end{tabular}$ | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.9849    | 0.0151      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9848  | 0.0152    |

 $<sup>\</sup>overline{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitro-2-methylbenzoic acid;<br>$C_8H_6N_2O_6$ ; [28169-46-2] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins,                           |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2]                            | P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>49</b> , 821 (2011). |
| Variables: T/K = 298.15                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                 |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9847  | 0.0153      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                | Original Measurements:                    |
|----------------------------------------------------------------------------|-------------------------------------------|
| (1) 3,5-Dinitro-2-methylbenzoic acid;                                      | <sup>143</sup> S. Ye, M. Saifullah, L. M. |
| C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] | Grubbs, M. C. McMillan-Wiggins,           |
| (2) 2-Methyl-1-propanol; $C_4H_{10}O$ ;                                    | P. Acosta, D. Mejorado, I. Flores,        |
| [78-83-1]                                                                  | W. E. Acree, Jr., and M. H.               |
| . ,                                                                        | Abraham, Phys. Chem. Liq. 49, 821         |
|                                                                            | (2011).                                   |
| Variables:                                                                 | Prepared by:                              |
| T/K = 298.15                                                               | W. E. Acree, Jr.                          |

## **Experimental Values**

| $x_2^a$ | $x_1^{D}$ |
|---------|-----------|
| 0.9918  | 0.00822   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; $C_8H_6N_2O_6$ ; [28169-46-2] (2) 2-Methyl-2-propanol; $C_4H_{10}O$ ; [75-65-0] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                        | Prepared by:                                                                                                                                                                                    |
| T/K = 298.15                                                                                                                      | W. E. Acree, Jr.                                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9856  | 0.0144    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                                                                                                        | Original Measurements:                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) 3,5-Dinitro-2-methylbenzoic acid;<br>C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2]<br>(2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | 143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 82 (2011). |
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9836  | 0.0164             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                | Original Measurements:                    |
|----------------------------------------------------------------------------|-------------------------------------------|
| (1) 3,5-Dinitro-2-methylbenzoic acid;                                      | <sup>143</sup> S. Ye, M. Saifullah, L. M. |
| C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] | Grubbs, M. C. McMillan-Wiggins,           |
| (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7]              | P. Acosta, D. Mejorado, I. Flores,        |
| , , , , , , , , , , , , , , , , , , , ,                                    | W. E. Acree, Jr., and M. H.               |
|                                                                            | Abraham, Phys. Chem. Liq. 49, 821         |
|                                                                            | (2011).                                   |
| Variables:                                                                 | Prepared by:                              |
| T/K = 298.15                                                               | W. E. Acree, Jr.                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9850  | 0.0150  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitro-2-methylbenzoic acid;<br>$C_8H_6N_2O_6$ ; [28169-46-2] | Original Measurements:  143S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins,                            |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| (2) 3-Methyl-1-butanol; $C_5H_{12}O$ ; [123-51-3]                                     | P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>49</b> , 821 (2011). |
| Variables: T/K = 298.15                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9880  | 0.0120    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; $C_8H_6N_2O_6$ ; [28169-46-2] (2) 1-Hexanol; $C_6H_{14}O$ ; [111-27-3] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| (2) 1-Hexanor, C <sub>6</sub> 11 <sub>[4</sub> 0, [111-27-3]                                                             | W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>49</b> , 821 (2011).                                             |
| Variables:<br>T/K = 298.15                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9865  | 0.0135    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                | Original Measurements:                    |
|----------------------------------------------------------------------------|-------------------------------------------|
| (1) 3,5-Dinitro-2-methylbenzoic acid;                                      | <sup>143</sup> S. Ye, M. Saifullah, L. M. |
| C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] | Grubbs, M. C. McMillan-Wiggins,           |
| (2) 4-Methyl-2-butanol; $C_6H_{14}O$ ;                                     | P. Acosta, D. Mejorado, I. Flores,        |
| [108-11-2]                                                                 | W. E. Acree, Jr., and M. H.               |
|                                                                            | Abraham, Phys. Chem. Liq. 49, 821         |
|                                                                            | (2011).                                   |
| Variables:                                                                 | Prepared by:                              |
| T/K = 298.15                                                               | W. E. Acree, Jr.                          |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{\ \mathrm{b}}$ |
|--------------------|----------------------|
| 0.9861             | 0.0139               |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3,5-Dinitro-2-methylbenzoic acid;<br>$C_8H_6N_2O_6$ ; [28169-46-2]<br>(2) 1-Heptanol; $C_7H_{16}O$ ; [111-70-6] | Original Measurements: 143S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9832  | 0.0168    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; C <sub>8</sub> H <sub>6</sub> N <sub>2</sub> O <sub>6</sub> ; [28169-46-2] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9875  | 0.0125    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

## **Source and Purity of Chemicals:**

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3,5-Dinitro-2-methylbenzoic acid; $C_8H_6N_2O_6$ ; [28169-46-2] (2) 1-Decanol; $C_{10}H_{22}O$ ; [112-30-1] | Original Measurements:  143 S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9917  | 0.00833   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 42. Solubility of 2-Fluorobenzoic Acid in Organic Solvents

# 42.1. Critical evaluation of experimental solubility data

There has been only a single publication reporting the solubility of 2-fluorobenzoic acid in organic solvents. Thuaire <sup>72</sup> determined the solubility of 2-fluorobenzoic acid in ethanol at 298 K as part of study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. It is not possible to perform a critical evaluation of the experimental data as measurements were made at only a single temperature, and there are no independent experimental 2-fluorobenzoic acid solubility data in ethanol.

The experimental solubility data for 2-fluorobenzoic acid in ethanol is given in Sec. 42.2.

# 42.2. 2-Fluorobenzoic acid solubility data in alcohols

| Components: (1) 2-Fluorobenzoic acid; C <sub>7</sub> H <sub>5</sub> FO <sub>2</sub> ; [445-29-4] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  72R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                        |

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured solubility was reported to be 2.994 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1212$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 43. Solubility of 3-Fluorobenzoic Acid in Organic Solvents

# 43.1. Critical evaluation of experimental solubility data

There has been only a single publication reporting the solubility of 3-fluorobenzoic acid in organic solvents. Thuaire <sup>72</sup> determined the solubility of 3-fluorobenzoic acid in ethanol at 298 K as part of study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. It is not possible to perform a critical evaluation of the experimental data as measurements were made at only a single temperature, and there are no independent experimental 3-fluorobenzoic acid solubility data in ethanol.

The experimental solubility data for 3-fluorobenzoic acid in ethanol is given in Sec. 43.2.

# 43.2. 3-Fluorobenzoic acid solubility data in alcohols

| Components: (1) 3-Fluorobenzoic acid; C <sub>7</sub> H <sub>5</sub> FO <sub>2</sub> ; [455-38-9] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                   |

# **Experimental Values**

The measured solubility was reported to be 4.746 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1794$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 44. Solubility of 4-Fluorobenzoic Acid in Organic Solvents

# 44.1. Critical evaluation of experimental solubility data

There have been only two publications<sup>63,72</sup> reporting the solubility of 4-fluorobenzoic acid in organic solvents. Hancock *et al.*<sup>63</sup> determined the solubility of 4-fluorobenzoic acid in tetrahydrofuran and 1,4-dioxane at 303 K based on a gravimetric method. Thuaire<sup>72</sup> determined the solubility in ethanol at 298 K as part of study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. It is not possible to perform a critical evaluation of the experimental data as measurements were made at only a single temperature, and there are no independent experimental 4-fluorobenzoic acid solubility data for these two organic solvents.

The experimental solubility data for 4-fluorobenzoic acid in organic solvents are given in Secs. 44.2 and 44.3.

# 44.2. 4-Fluorobenzoic acid solubility data in ethers

| Components: (1) 4-Fluorobenzoic acid; C <sub>7</sub> H <sub>5</sub> FO <sub>2</sub> ; [456-22-4] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.811   | 0.189     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Fluorobenzoic acid; C <sub>7</sub> H <sub>5</sub> FO <sub>2</sub> ; [456-22-4] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{\ b}$ |
|------------------|-------------|
| 0.872            | 0.128       |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 44.3. 4-Fluorobenzoic acid solubility data in alcohols

| <b>Components:</b> (1) 4-Fluorobenzoic acid; C <sub>7</sub> H <sub>5</sub> FO <sub>2</sub> ; [456-22-4] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                                    | W. E. Acree, Jr.                                                                          |

# **Experimental Values**

The measured solubility was reported to be 1.438 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.06213$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 45. Solubility of 4-Formylbenzoic Acid in Organic Solvents

# 45.1. Critical evaluation of experimental solubility data

There have been three publications<sup>82,84,144</sup> reporting solubility data for 4-formylbenzoic acid. Sun *et al.* <sup>144</sup> measured the solubility of 4-formylbenzoic acid in ethanoic acid at 14 temperatures covering the range of 303–473 K. The internal consistency of the dataset was assessed by curve-fitting the measured mole fraction solubilities according to the Modified

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

Apelblat model to yield the following correlation:

$$\ln x_1 = -42.006 + \frac{114.588}{T} + 6.266 \ln T. \tag{47}$$

Equation (47) provides a reasonably accurate mathematical description for how the solubility varies with temperature. The mean relative deviation between the observed and calculated values is 6.9%.

Dian-Qing *et al.*<sup>82</sup> determined the solubility of 4-formylbenzoic acid in *N,N*-dimethylformamide as a function of temperature using a dynamic method with laser monitoring to observe when dissolution was complete. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [Eq. (9)] of  $\lambda = 1.398 \times 10^{-7}$  and h = 2879.94 described the observed solubility data from 314 to 370 K to within a mean relative deviation of 2.4%.

Li *et al.*<sup>84</sup> determined the solubility of 4-formylbenzoic acid dissolved in *N*-methyl-2-pyrrolidone from 296 to 341 K using a synthetic method with laser monitoring to determine when the last amount of solid solute dissolved. The authors employed a polynomial expression in temperature,

$$x = -2.4515 + 0.02776 T - 1.10430 \times 10^{-4} T + 1.54936 \times 10^{-7} T^2,$$
(48)

to represent the measured mole fraction solubility data. The root-mean-square deviation between the observed  $x_1$  data and calculated values from Eq. (48) was on the order of 0.0005 mole fraction.

The experimental solubility data for 4-formylbenzoic acid in organic solvents are given in Sec. 45.2.

# 45.2. 4-Formylbenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Formylbenzoic acid; C <sub>8</sub> H <sub>6</sub> O <sub>3</sub> ; [619-66-9] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  144W. Sun, W. Qu, and L. Zhao, J. Chem. Eng. Data 55, 4476 (2010). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                           |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 303.2 | 0.9975             | 0.0025      |
| 323.2 | 0.9958             | 0.0042      |
| 333.2 | 0.9949             | 0.0051      |
| 343.2 | 0.9937             | 0.0063      |
| 353.2 | 0.9924             | 0.0076      |
| 363.2 | 0.9905             | 0.0095      |
| 373.2 | 0.9869             | 0.0131      |
| 403.2 | 0.9838             | 0.0162      |
| 423.2 | 0.9794             | 0.0206      |
| 433.2 | 0.9766             | 0.0234      |
| 443.2 | 0.9747             | 0.0253      |
| 453.3 | 0.9691             | 0.0309      |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b,c}$ |
|-------|--------------------|-------------|
| 463.3 | 0.9640             | 0.0360      |
| 473.2 | 0.9555             | 0.0445      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed vessel made from titanium, and a high-performance liquid chromatograph equipped with an ion-exchange column.

Experimental solubilities were determined by a static method. Excess solute and solvent were placed in a jacketed vessel constructed of titanium. The solution was allowed to equilibrate several hours at constant temperature. An aliquot of the clear saturated solution was filtered and transferred to a tared volumetric flask. The concentration of the dissolved solute was determined by high-performance liquid chromatography using an ion-exchange column.

# Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.
- (2) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.

## **Estimated Error:**

Temperature: ±0.1 K.

 $x_1$ :  $\pm 3\%$  (relative error, by compiler).

| Original Measurements:                                                      |
|-----------------------------------------------------------------------------|
| <sup>82</sup> L. Dian-Qing, L. Jiang-Chu, L. Da-Zhuang, and W. Fu-An, Fluid |
| Phase Equilib. <b>200</b> , 69 (2002).                                      |
| Prepared by:<br>W. E. Acree, Jr.                                            |
|                                                                             |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 313.45 | 0.7761             | 0.2239             |
| 316.55 | 0.7732             | 0.2268             |
| 319.35 | 0.7703             | 0.2297             |
| 322.55 | 0.7671             | 0.2329             |
| 327.55 | 0.7608             | 0.2392             |
| 330.85 | 0.7569             | 0.2431             |
| 334.05 | 0.7530             | 0.2470             |
| 336.35 | 0.7503             | 0.2497             |
| 338.95 | 0.7473             | 0.2527             |
| 344.55 | 0.7407             | 0.2593             |
| 349.45 | 0.7338             | 0.2662             |
| 351.25 | 0.7322             | 0.2678             |
| 354.75 | 0.7278             | 0.2722             |
| 358.25 | 0.2233             | 0.2767             |
| 359.85 | 0.7209             | 0.2791             |
| 364.35 | 0.7153             | 0.2847             |
| 367.75 | 0.7106             | 0.2894             |
| 370.35 | 0.7069             | 0.2931             |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute, calculated by the compiler.

<sup>&</sup>lt;sup>c</sup>Solubilities were given in units of grams of solute per 100 g of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### Source and Purity of Chemicals:

(1) 98% (starting purity), Chemical source not given, was an industrial product purified by dissolving in sodium hydroxide, followed by acidification, washing, and the recrystallized from water. Final purity was 99.8%.

(2) Analytical Reagent, Shanghai Chemical Reagent Company, used as received

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).

 $x_1$ :  $\pm 0.0005$  or less.

| Components: (1) 4-Formylbenzoic acid; C <sub>8</sub> H <sub>6</sub> O <sub>3</sub> ; [619-66-9] (2) <i>N</i> -Methyl-2-pyrrolidone; C <sub>5</sub> H <sub>9</sub> NO; [872-50-4] | Original Measurements:  84DQ. Li, DZ. Liu, and FA. Wang, J. Chem. Eng. Data 46, 172 (2001). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                |
| Temperature                                                                                                                                                                      | W. E. Acree, Jr.                                                                            |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 296.25 | 0.8909             | 0.1091             |
| 300.15 | 0.8781             | 0.1219             |
| 306.35 | 0.8575             | 0.1425             |
| 308.85 | 0.8461             | 0.1539             |
| 312.65 | 0.8321             | 0.1679             |
| 317.85 | 0.8086             | 0.1914             |
| 321.65 | 0.7914             | 0.2086             |
| 322.45 | 0.7882             | 0.2118             |
| 326.05 | 0.7688             | 0.2312             |
| 329.15 | 0.7531             | 0.2469             |
| 331.95 | 0.7379             | 0.2621             |
| 335.05 | 0.7196             | 0.2804             |
| 337.45 | 0.7056             | 0.2944             |
| 338.65 | 0.6979             | 0.3021             |
| 340.95 | 0.6825             | 0.3175             |
| 341.75 | 0.6777             | 0.3223             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### Source and Purity of Chemicals:

(1) 98% (starting purity), Chemical source not given, was an industrial product purified by dissolving in sodium hydroxide, followed by acidification, washing, and the recrystallized from water. Final purity was 99.8%. (2) 99.0%, Analytical Reagent, Shanghai Chemical Reagent Company, used as received

# **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).  $x_1$ :  $\pm 0.0005$  or less.

# 46. Solubility of 2-Hydroxybenzoic Acid in Organic Solvents

# 46.1. Critical evaluation of experimental solubility data

There have been numerous studies<sup>50,56,61,66,67,71,73,87,102,127,145–163</sup> involving the solubility of 2-hydroxybenzoic acid (commonly referred to as salicylic acid) in organic solvents, particularly at 298 K. Most notably, Barra et al. 102 published solubility data for 2-hydroxybenzoic acid in two alkanes (heptane and cyclohexane), in one aromatic hydrocarbon (benzene), in one alkyl alkanoate (ethyl ethanoate), in one dialkyl ether (1,1'-oxybisethane) and one cyclic ether (1,4-dioxane), in two chloroalkanes (trichloromethane and 1,2-dichloroethane) and one chloroaromatic hydrocarbon (chlorobenzene), in seven alcohols (methanol, ethanol, 1-pentanol, 1-octanol, 1,2-ethanediol, 1,2-propanediol, and 1,2,3-propanetriol), in one alkanone (propanone) and one aromatic ketone (acetophenone), and in four miscellaneous organic solvents (ethanoic acid, propanoic acid, formamide, and N,N-dimethylformamide) as part of study directed towards calculating partial solubility parameters of sodium salts. The authors measured the solubility of a series of acid/sodium salt pairs. Replacement of the acidic proton by sodium ion was found to increase the dipolar and basic partial solubility parameters, whereas the dispersion parameter remained unchanged by the sodium for hydrogen substitution. Solubility data for 2-hydroxybenzoic acid in several alkane solvents (hexane, heptane, decane, dodecane, hexadecane, cyclohexane, and 2,2,4-trimethylpentane) were also determined by Fung and Higuchi. 146 De Fina et al. 151 measured

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

solubilities of 2-hydroxybenzoic acid in two alkyl alkanoates (ethyl ethanoate and butyl ethanoate), in one dialkyl ether (1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), in eight alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, and 1-octanol), and three alkanones (propanone, butanone, and cyclohexanone). Matsuda *et al.*, <sup>152</sup> Shalmashi and Eliassi, <sup>153</sup> Gomaa *et al.*, <sup>161</sup> Ongley, <sup>56</sup> Lim *et al.*, <sup>159</sup> Fahkree *et al.*, <sup>162</sup> and Perlovich *et al.* <sup>145</sup> have also performed benzoic acid solubility measurements at 298 K.

The Abraham solvation parameter model can provide an indication of the quality of experimental solubility data for 2hydroxybenzoic acid in a series of organic solvents of varying polarity and hydrogen bonding character. As discussed above, the evaluation will be restricted to those solvents where dimerization is not likely to occur and to solvents where 2hydroxybenzoic acid does not form a solid solvate. This condition will limit the evaluation to primarily the alkyl alkanoates, dialkyl ethers, and alcohols. Numerical values of the solute descriptors for 2-hydroxybenzoic acid are known (E = 0.900, S = 0.850, A = 0.730, B = 0.370, and V = 0.9904), sothat combination of these descriptors with the coefficients listed in Table 1 allows the prediction of  $log_{10}$  ( $c_{1,S}/c_{1,W}$ ). The molar solubility of molecular 2-hydroxybenzoic acid in water,  $\log_{10} c_{1,W} = -1.92$ , is available to convert the predicted  $(c_{1.S}/c_{1.W})$  solubility ratios to  $c_{1.S}$  values. For carboxylic acid solutes,  $c_{1,W}$  corresponds to the aqueous solubility of the molecular, nonionized form of the solute.

The predicted molar solubilities of 2-hydroxybenzoic acid in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1octanol, 2-propanol, 2-butanol, 2-methyl-1-propanol, 2methyl-2-propanol, 1,2-ethanediol, 1,1'-oxybisethane, tetrahydrofuran, 1,4-dioxane, ethyl ethanoate, butyl ethanoate, propanone, butanone, and cyclohexanone based on Eq. (20) are listed in the second column of Table 34. The numerical values represent outright solubility predictions in that none of the experimental data was used in the determination of the molecular solute descriptors. For comparison purposes, the measured mole fraction solubilities of 2-hydroxybenzoic acid,  $x_1$ , given in Secs. 46.2–46.10 were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 2-hydroxybenzoic acid is taken to be  $V_{\text{solute}} = 104 \,\text{cm}^3 \,\text{mol}^{-1}$ , which is larger than the value that other researchers have used. Sloan et al. 156 assumed a molar volume of 2-hydroxybenzoic acid of  $V_1 = 93.9 \text{ cm}^3 \text{ mol}^{-1}$ . This latter value seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.1 \text{ cm}^3 \text{ mol}^{-1}$ , based on a molar mass of 106.12 g mol<sup>-1</sup> and an experimental density of 1.0499 g cm<sup>-3</sup> at 296 K. A molar volume on the order of  $V_1 \approx 104$  cm<sup>3</sup> mol<sup>-1</sup> would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde. To get an idea of how much error might be introduced in the mole fraction to molarity conversion, the mole fraction solubility of 2-hydroxybenzoic acid in ethyl ethanoate of  $x_1 = 0.1383$ (Ref. 152) is converted into molar solubilities using both  $V_1$ = 93.9 cm<sup>3</sup> mol<sup>-1</sup> ( $c_1 = 1.41 \text{ mol dm}^{-3}$ ) and  $V_1 \approx 104 \text{ cm}^3$ 

Table 34. Comparison between observed and predicted molar solubilities of 2-hydroxybenzoic acid based on the Abraham model, Eq. (20)

| Solvent            | $\log_{10} c_1^{\text{ calc}};$ Eq. (20) | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ |
|--------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Methanol           | 0.514                                    | 0.430 <sup>a</sup>           | -1                           | -1                           | 0.402 <sup>b</sup>           |
| Ethanol            | 0.574                                    | $0.237^{a}$                  |                              | $0.329^{c}$                  | 0.347 <sup>b</sup>           |
| 200000             | 0.07.                                    | 0.296 <sup>d</sup>           | 0.348 <sup>e</sup>           | 0.029                        | 010 17                       |
| 1-Propanol         | 0.443                                    | 0.256 <sup>e</sup>           | $0.312^{f}$                  | $0.262^{g}$                  |                              |
| 2-Propanol         | 0.472                                    |                              | $0.340^{\rm f}$              | $0.253^{g}$                  |                              |
| 1-Butanol          | 0.328                                    | $0.199^{e}$                  | $0.243^{f}$                  |                              |                              |
| 2-Butanol          | 0.359                                    |                              | $0.297^{f}$                  |                              |                              |
| 2-Methyl-1-        | 0.268                                    |                              | $0.180^{f}$                  |                              |                              |
| propanol           |                                          |                              |                              |                              |                              |
| 2-Methyl-2-        | 0.440                                    |                              | $0.357^{f}$                  |                              |                              |
| propanol           |                                          |                              |                              |                              |                              |
| 1-Pentanol         | 0.379                                    | 0.157 <sup>a</sup>           | $0.174^{f}$                  | 0.157 <sup>e</sup>           |                              |
| 2-Pentanol         | 0.399                                    |                              |                              |                              |                              |
| 3-Methyl-1-butanol | 0.298                                    |                              |                              |                              |                              |
| 1-Hexanol          | 0.307                                    | 0.114 <sup>e</sup>           |                              |                              |                              |
| 1-Heptanol         | 0.240                                    | $0.072^{e}$                  |                              |                              |                              |
| 1-Octanol          | 0.189                                    | $0.014^{a}$                  | $0.165^{f}$                  | $0.099^{h}$                  |                              |
| 1-Decanol          | 0.176                                    |                              |                              |                              |                              |
| 1,2-Ethanediol     | 0.180                                    | $0.152^{a}$                  |                              |                              |                              |
| 1,1'-Oxybisethane  | 0.100                                    | $0.165^{a}$                  |                              |                              |                              |
| Tetrahydrofuran    | 0.712                                    |                              | $0.609^{f}$                  |                              |                              |
| 1,4-Dioxane        | 0.353                                    | 0.514 <sup>a</sup>           | $0.509^{f}$                  | $0.460^{b}$                  | $0.566^{i}$                  |
| Methyl ethanoate   | 0.008                                    |                              |                              |                              |                              |
| Ethyl ethanoate    | 0.146                                    | 0.091 <sup>a</sup>           | $0.157^{f}$                  | 0.143 <sup>c</sup>           | $0.143^{b}$                  |
| Propyl ethanoate   | 0.068                                    |                              |                              |                              |                              |
| Butyl ethanoate    | -0.010                                   |                              | $0.025^{f}$                  |                              |                              |
| Propanone          | 0.270                                    | $0.229^{a}$                  | $0.359^{f}$                  | $0.244^{g}$                  | $0.376^{j}$                  |
| Butanone           | 0.240                                    |                              | $0.300^{f}$                  |                              |                              |
| Cyclohexanone      | 0.139                                    |                              | $0.343^{f}$                  |                              |                              |

<sup>&</sup>lt;sup>a</sup>Experimental value is taken from Barra et al. <sup>102</sup>

 $\mathrm{mol}^{-1}$  ( $c_1 = 1.39 \mathrm{\ mol\ dm}^{-3}$ ). Results of the computation suggest that any errors resulting from the estimation of 2-hydroxybenzoic acid's hypothetical subcooled liquid molar volume,  $V_{\mathrm{solute}}$ , or the ideal molar volume approximation will have negligible effect of the calculated  $c_1$  values because 2-hydroxybenzoic acid is not overly soluble in many of the solvents considered. From a mathematical standpoint, the  $x_1^{\mathrm{exp}}V_{\mathrm{solute}}$  term contributes very little to the molar volumes of the saturated solutions.

Solution models, like the Abraham solvation parameter model, prove useful in screening datasets for obvious outliers, particularly in cases where there are only one or two experimental data points for a given solute-solvent system. Such models are only able to identify those outliers, however, which fall outside of the model's expected predictive applicability. There is a sufficient number of data points for several of the solvents in Secs. 46.2–46.11 to compute a recommended value. The recommended mole fraction solubilities were calculated as an arithmetic average and are given in Table 35

<sup>&</sup>lt;sup>b</sup>Experimental value is taken from Matsuda *et al.*<sup>152</sup>

<sup>&</sup>lt;sup>c</sup>Experimental value is taken from Shalmashi and Eliassi. <sup>153</sup>

<sup>&</sup>lt;sup>d</sup>Experimental value is taken from Jouyban et al. <sup>160</sup>

<sup>&</sup>lt;sup>e</sup>Experimental value is taken from Lim *et al.*<sup>159</sup>

<sup>&</sup>lt;sup>f</sup>Experimental value is taken from De Fina et al. <sup>151</sup>

gExperimental value is taken from Fakhree et al. 162

<sup>&</sup>lt;sup>h</sup>Experimental value is taken from Perlovich et al. <sup>145</sup>

<sup>&</sup>lt;sup>i</sup>Experimental value is taken from Peña *et al.* <sup>157</sup>

<sup>&</sup>lt;sup>j</sup>Experimental value is taken from Marden and Dover. <sup>149</sup>

Table 35. Recommended mole fraction solubilites for 2-hydroxybenzoic acid in selected solvents

| Solvent            | Recommended Value | Individual Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outliers          |
|--------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1,4-Dioxane        | 0.291             | 0.2945, <sup>151</sup> 0.2610, <sup>152</sup> 0.2978, <sup>102</sup> 0.3117 (Ref. 155)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Tetrachloromethane | 0.00306           | 0.00293, <sup>67</sup> 0.00291, <sup>66</sup> 0.00333 (Ref. 153)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00220 (Ref. 56) |
| Ethanol            | 0.141             | $0.1450,^{152},^{152},^{153},^{153},^{154},^{159},^{159},^{155},^{159},^{155},^{154},^{154},^{154},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},^{156},$ | 0.1100 (Ref. 102) |
| 1-Butanol          | 0.155             | 0.1646, 151 0.152, 127 0.1484 (Ref. 159)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| 1-Pentanol         | 0.157             | 0.1611, <sup>151</sup> 0.1547, <sup>102</sup> 0.1550 (Ref. 159)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

for the solvents that had three or more close solubility measurements. Included in the table are the individual mole fraction solubilities that went into the calculation, and any suspected outlier values. In the case of ethyl ethanoate, there are two different sets of three experimental values each  $[x_1 = 0.1425,^{151} 0.1383,^{152}$ and 0.1381 (Ref. 153)] and  $[x_1 = 0.1152,^{154} 0.1223,^{102}$ and 0.1136 (Ref. 135)], and one clear outlier value of  $x_1 = 0.195.^{149}$  Since there is no way of knowing which of the two datasets is better, the recommended solubility in ethyl ethanoate of  $x_1 = 0.128$  is calculated as the arithmetic average of all six experimental values [excluding the outlier). A similar situation occurs with 2-propanol, two different datasets of two values each,  $(x_1 = 0.1320$  (Ref. 102) and 0.137 (Ref. 162)] and  $[x_1 = 0.1817$  (Ref. 151) and 0.1892 (Ref. 149)]. Situations like this is why the criterion for making a recommendation was set at three or more data points that differed from each other by no more than approximately 15 relative percent.

There have been a few experimental studies examining the solubility of 2-hydroxybenzoic acid in different organic solvents as a function of temperature. Shalmashi and Eliassi<sup>153</sup> measured the solubility of 2-hydroxybenzoic acid in ethyl ethanoate, tetrachloromethane, and ethanol at eleven temperatures between 298 and 348 K using a gravimetric method. The authors described the observed mass fraction solubilities,  $w_1$ , with a simple linear relationship

$$ln w_1 = A + B T,$$
(49)

where A and B are the intercept and slope of Eq. (49). The calculated values of A and B are tabulated in Table 36, along with the root-mean-square deviation defined by

$$RMSD = \sqrt{\frac{\sum_{i}^{N} \left(w_{i}^{exp} - w_{i}^{calc}\right)^{2}}{N - 1}}.$$
 (50)

Table 36. Parameters of Eq. (49) for describing the solubility of 2-hydroxybenzoic acid in various organic solvents

| Solvent                         | A      | В    | RMSD   |
|---------------------------------|--------|------|--------|
| Ethyl ethanoate <sup>a</sup>    | -5.14  | 0.02 | 0.0060 |
| Tetrachloromethane <sup>a</sup> | -18.59 | 0.04 | 0.0010 |
| Ethanol <sup>a</sup>            | -4.30  | 0.01 | 0.0082 |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and the mean relative deviations were taken from Shalmashi and Eliassi. <sup>153</sup>

In Eq. (50), *N* represents the number of experimental values in the given data set, which in the present case would be 11. The two larger RMSDs of 0.0060 and 0.0082 occur in the 2-hydroxybenzoic acid + ethyl ethanoate and 2-hydroxybenzoic acid + ethanol systems, and correspond to approximately a 3% to 4% mean relative deviation.

Fakhree *et al.*<sup>162</sup> measured the solubility of 2-hydroxybenzoic acid in water, 1-propanol, 2-propanol, and propanone at five temperatures between 298 and 338 K, and in the three binary solvent mixtures containing water with each of the three organic compounds at 298 K. The authors described the variation in the molar solubility with temperature with a Modified Apelblat equation

$$\log_{10} c_1 = A + \frac{B}{T} + C \log_{10} T. \tag{51}$$

The calculated equation coefficients (A, B, and C), along with the mean percent relative deviation in molar concentration, are given in Table 37. Examination of the numerical entries in the last column of Table 37 reveals that the Apelblat type equation provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Lim *et al.*<sup>159</sup> examined the solubility behavior of 2-hydroxybenzoic acid in six neat 1-alkanols (ethanol through 1-heptanol) at temperatures from 278 to 318 K. The experimental data were correlated with the Non-Random Two-Liquid (NRTL), UNIQUAC, and Wilson models. Interaction coefficients calculated from the experimental solid-liquid equilibrium data provided a reasonably accurate mathematical description of the measured values. The mean absolute relative deviation between calculated and observed values was 0.475% (NRTL), 0.588% (Wilson model), and 0.429% (UNIQUAC model).

The experimental solubility data for 2-hydroxybenzoic acid in organic solvents are given in Secs. 46.2–46.11.

Table 37. Parameters of the Modified Apelblat-type equation for describing the solubility of 2-hydroxybenzoic acid in various organic solvents

| Solvent                 | T/K     | A        | В        | С      | MRD (%) |
|-------------------------|---------|----------|----------|--------|---------|
| 1-Propanol <sup>a</sup> | 298-338 | 1.514    | -384.958 | 0      | 0.5     |
| 2-Propanol <sup>a</sup> | 298-338 | 1.578    | -396.006 | 0      | 0.8     |
| Propanone <sup>a</sup>  | 298-338 | -272.035 | 12249.4  | 93.438 | 0.1     |

<sup>a</sup>Values of the coefficients and mean relative deviation were taken from Fakhree *et al.*<sup>162</sup>

# 46.2. 2-Hydroxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements:<br><sup>145</sup> G. L. Perlovich, T. V. Volkova<br>and A. Bauer-Brandl, J. Pharm. Sc<br><b>95</b> , 1448 (2006). |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Variables: Temperature                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |  |

#### **Experimental Values**

| T/K | $x_2^a$ | $x_1^{b}$ |
|-----|---------|-----------|
| 293 | 0.9996  | 0.000390  |
| 298 | 0.9995  | 0.000491  |
| 303 | 0.9994  | 0.000643  |
| 310 | 0.9990  | 0.000959  |
| 315 | 0.9988  | 0.00123   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration, the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

# Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich Inc., Oslo, Norway, no purification details provided.(2) Analytical Reagent grade, SDS, Peypin, France, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2$ :  $\pm 2.5\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | <b>Original Measurements:</b> <sup>146</sup> HL. Fung and T. Higuchi, J. Pharm. Sci. <b>60</b> , 1782 (1971). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9995             | 0.00048   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with trichloromethane. Concentrations were determined by spectrophotometric measurements at 306 nm.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, used as received.

## **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:<br>T/K = 301.2                                                                                                                                        | Prepared by: W.E. Acree, Ir                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9989  | 0.00111 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | <b>Original Measurements:</b> <sup>146</sup> HL. Fung and T. Higuchi, J. Pharm. Sci. <b>60</b> , 1782 (1971). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                              |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9995  | 0.00048   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with trichloromethane. Concentrations were determined by spectrophotometric.

trichloromethane. Concentrations were determined by spectrophotometric measurements at 306 nm.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, was purified by passing the solvent through a column of silica gel and then distilled over sodium under reduced pressure.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5]<br>Variables:<br>T/K = 298.15 | 153 (2000).  Prepared by: W. E. Acree, Jr.                                    |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| (1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, |
| Components:                                                                            | Original Measurements:                                                        |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9989  | 0.001116  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

# Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:<br><sup>127</sup> N. V. Sidgwick and E. K.<br>Ewbank, J. Chem. Soc. Trans. <b>119</b> ,<br>979 (1921). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                                                                  |
| Temperature                                                                                                                                              | W. E. Acree, Jr.                                                                                                              |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 365.4 | 0.985              | 0.0152             |
| 385.6 | 0.960              | 0.0395             |
| 397.9 | 0.923              | 0.0765             |
| 407.5 | 0.845              | 0.155              |
| 415.2 | 0.659              | 0.341              |
| 418.7 | 0.477              | 0.523              |
| 422.7 | 0.240              | 0.760              |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 432.2 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) 2,2,4-Trimethylpentane;<br>$C_8H_{18}$ ; [540-84-1] | <b>Original Measurements:</b> <sup>146</sup> HL. Fung and T. Higuchi, J. Pharm. Sci. <b>60</b> , 1782 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                      | Prepared by:                                                                                                  |
| T/K = 298.15                                                                                                                    | W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9996  | 0.00038   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with trichloromethane. Concentrations were determined by spectrophotometric measurements at 306 nm.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, was distilled from sodium under reduced pressure shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Decane; C <sub>10</sub> H <sub>22</sub> ; [124-18-5] | <b>Original Measurements:</b> <sup>146</sup> HL. Fung and T. Higuchi, J. Pharm. Sci. <b>60</b> , 1782 (1971). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9994  | 0.00062 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with trichloromethane. Concentrations were determined by spectrophotometric measurements at 306 nm.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, was purified by passing the solvent through a column of silica gel and then distilled over sodium under reduced pressure.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Dodecane; C <sub>12</sub> H <sub>26</sub> ; [112-40-3] | Original Measurements:<br><sup>146</sup> HL. Fung and T. Higuchi, J.<br>Pharm. Sci. <b>60</b> , 1782 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9994  | 0.00064   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

# Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with trichloromethane. Concentrations were determined by spectrophotometric measurements at 306 nm.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, was purified by passing the solvent through a column of silica gel.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Hexadecane; C <sub>16</sub> H <sub>34</sub> ; [544-76-3] | <b>Original Measurements:</b> <sup>146</sup> HL. Fung and T. Higuchi, J. Pharm. Sci. <b>60</b> , 1782 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                  |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                              |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9990  | 0.00104   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with

trichloromethane. Concentrations were determined by spectrophotometric measurements at  $306\ \mathrm{nm}$ .

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, was purified by passing the solvent through a column of silica gel and then distilled over sodium under reduced pressure.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                                                            | Original Measurements:                                                          |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| (1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | <sup>146</sup> HL. Fung and T. Higuchi, J. Pharm. Sci. <b>60</b> , 1782 (1971). |  |
| (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7]                           | , , ,                                                                           |  |
| Variables:                                                                             | Prepared by:                                                                    |  |
| T/K = 298.15                                                                           | W. E. Acree, Jr.                                                                |  |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9996  | 0.00043   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Wrist-action shaker, constant-temperature bath, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a stoppered and sealed volumetric flask, which was continuously shaken (wrist-action shaken) for at least 24 h in a thermostated constant-temperature bath. An aliquot of saturated solution was transferred to a volumetric flask and diluted with trichloromethane. Concentrations were determined by spectrophotometric measurements at 306 nm.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from hot water before use.
- (2) Reagent grade, Chemical source not given, was distilled over phosphorous pentoxide shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                            |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 2.912$ , which corresponds to a solubility of  $c_1 = 0.00122$  mol dm<sup>-3</sup>.

# **Auxiliary Information**

## Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) Cyclohexane; $C_6H_{12}$ ;<br>[110-82-7] | Original Measurements: <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                           | Prepared by:                                                                                                             |
| T/K = 298.15                                                                                                         | W. E. Acree, Jr.                                                                                                         |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9994  | 0.000551           |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

# 46.3. 2-Hydroxybenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Variables:                                                                                                                                             | Prepared by:                                                                                       |  |
| Temperature                                                                                                                                            | W. E. Acree, Jr.                                                                                   |  |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 317.5 | 0.989   | 0.0109             |
| 338.2 | 0.969   | 0.0305             |
| 371.7 | 0.871   | 0.129              |
| 387.7 | 0.717   | 0.283              |
| 404.7 | 0.496   | 0.504              |
| 413.2 | 0.289   | 0.711              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 432.2 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>147</sup> J. Walker and J. K. Wood, J. Chem. Soc. Trans. <b>73</b> , 618 (1898). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                                                                        |
| Temperature                                                                                                                                            | W. E. Acree, Jr.                                                                                                    |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 284.9 | 0.9974             | 0.00259   |
| 291.4 | 0.9967             | 0.00326   |
| 303.7 | 0.9944             | 0.00557   |
| 307.8 | 0.9929             | 0.00708   |
| 309.8 | 0.9920             | 0.00802   |
| 322.6 | 0.9867             | 0.01328   |
| 337.4 | 0.9757             | 0.02428   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator. Prior to titration, the solvent was removed by evaporation under reduced pressure.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>^</sup>bx_1$ : mole fraction solubility of the solute. Solubility data reported as grams of solute per 100 g of solvent. Numerical values calculated by the compiler.

| Variables: Temperature                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                       |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| (2) Benzene; $C_6H_6$ ; [71-43-2]                                                      | (1956).                                                                                |
| (1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | <sup>148</sup> I. L. Krupatkin, J. Gen. Chem.<br>USSR (Engl. Transl.) <b>26</b> , 3609 |
| Components:                                                                            | Original Measurements:                                                                 |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 375.7 | 0.9711             | 0.0289             |
| 386.2 | 0.9501             | 0.0499             |
| 400.2 | 0.8832             | 0.1168             |
| 408.2 | 0.7963             | 0.2037             |
| 412.7 | 0.6670             | 0.3330             |
| 418.2 | 0.4311             | 0.5689             |
| 421.7 | 0.2383             | 0.7617             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined by a fusion method, which basically involves complete dissolution of the solid, followed by rapid solidification with vigorous stirring. The solid mass is then ground into smaller pieces. The melting point temperature of the mixture is then determined.

### **Source and Purity of Chemicals:**

- (1) Chemical Pure grade, Chemical source not given, no purification details were provided. Melting point temperature of sample is 428.2 K.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                           | W. E. Acree, Jr.                                                                            |

# **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.239$ , which corresponds to a solubility of  $c_1 = 0.0577 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.

 $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> ,<br>153 (2000). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9945  | 0.00545   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>149</sup> J. W. Marden and M. V. Dover, J.<br>Am. Chem. Soc. <b>39</b> , 1 (1917). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.995   | 0.00518 |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 ${}^bx_1$ : mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

| (1) 2-Hydroxybenzoic acid;                               | <sup>150</sup> A. N. Paruta, B. J. Sciarrone, and |
|----------------------------------------------------------|---------------------------------------------------|
| C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349      |
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]   | (1964).                                           |
| Variables:                                               | Prepared by:                                      |
| T/K = 303.8                                              | W. E. Acree, Jr.                                  |

#### **Experimental Values**

The measured solubility was reported to be 7 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.0507$  mol dm<sup>-3</sup>.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9946  | 0.005441           |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Methylbenzene; C <sub>7</sub> H <sub>8</sub> ; [108-88-8] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 301.2$                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

| r a                  | y b            |
|----------------------|----------------|
| <u>x<sub>2</sub></u> | λ <sub>1</sub> |
| 0.9939               | 0.006052       |

 $<sup>\</sup>overline{}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,3-Dimethylbenzene; C <sub>8</sub> H <sub>10</sub> ;<br>[108-38-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                                                      | W. E. Acree, Jr.                                                                                                      |

### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9934  | 0.006554           |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 46.4. 2-Hydroxybenzoic acid solubility data in esters

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8575  | 0.1425    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

### **Source and Purity of Chemicals:**

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  152 H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi, and K. Tomono, J. Chem. Eng. Data 54, 480 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                              |

## **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.8617           | 0.1383    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Thermostated constant-temperature water bath and high-performance liquid chromatograph with an uv detector.

Excess solute and solvent were allowed to equilibrate for 24 h in a constant-temperature thermostated water bath. Aliquots of saturated solutions were removed and filtered through a membrane filter of 0.45  $\mu m$  pore size (Millipore, USA). Concentrations were determined by high-performance liquid chromatography equipped with an uv detector (254 nm detection). Benzene was added to the sample as an internal standard.

#### Source and Purity of Chemicals:

- (1) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.
- (2) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 6.2\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | <b>Original Measurements:</b> <sup>153</sup> A. Shalmashi and A. Eliassi, J. Chem. Eng. Data <b>53</b> , 199 (2008). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                 | Prepared by:                                                                                                         |
| Temperature                                                                                                                                                                                | W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------|
| 0.8619             | 0.1381                                                                                           |
| 0.8491             | 0.1509                                                                                           |
| 0.8356             | 0.1644                                                                                           |
| 0.8227             | 0.1773                                                                                           |
| 0.8097             | 0.1903                                                                                           |
| 0.7965             | 0.2035                                                                                           |
| 0.7845             | 0.2155                                                                                           |
| 0.7707             | 0.2293                                                                                           |
| 0.7570             | 0.2430                                                                                           |
| 0.7431             | 0.2569                                                                                           |
| 0.7281             | 0.2719                                                                                           |
|                    | 0.8619<br>0.8491<br>0.8356<br>0.8227<br>0.8097<br>0.7965<br>0.7845<br>0.7707<br>0.7570<br>0.7431 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetically stirred jacketed equilibrium cell, constant-temperature circulating water bath, and an analytical balance.

Excess solute and solvent were placed in a magnetically stirred jacketed equilibrium cell and allowed to equilibrate at constant temperature for 2 h with continuous stirring. After 2 h the stirring was discontinued and the suspended solid was allowed to settle to the lower portion of the equilibrium cell. An aliquot of the saturated solution was withdrawn by a warmed pipet and transferred to a weighed vial. The vial was tightly closed and weighed to determine the mass of the sample analyzed. The vial was then placed in an oven and the solvent was allowed to evaporate. The vial was reweighed, and the solubility calculated from the mass of the solid residue and sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Synthesized in the authors' department, dried under vacuum at 323 K for 8 h and then stored in a desiccator.
- (2) Analytical grade, Merck Chemicals, Darmstadt, Germany, used as received

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) Ethyl ethanoate; $C_4H_8O_2$ ;<br>[141-78-6] | Original Measurements:  102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                       |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.8777           | 0.1223  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  154 M. A. Peña, B. Escalera, A. Reíllo, A. B. Sánchez, and P. Bustamante, J. Pharm. Sci. 98, 1129 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-----|--------------------|-----------|
| 293 | 0.8915             | 0.1085    |
| 303 | 0.8781             | 0.1219    |
| 308 | 0.8707             | 0.1293    |
| 313 | 0.8671             | 0.1329    |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for four days at 313 K, and then one day at the lower temperatures. The authors used the same samples for all temperatures. The authors started with 313 K, and once the solution was saturated at the higher temperature they lowered the temperature for the next set of measurements. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu m$  pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

# **Source and Purity of Chemicals:**

(1) Purity not given, Sigma-Aldrich, Munich, Germany, was used as received. (2) UV grade, Panreac, Monplet and Esteban, Barcelona, Spain, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$ .  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) Ethyl ethanoate; $C_4H_8O_2$ ;<br>[141-78-6] | <b>Original Measurements:</b> <sup>155</sup> M. A. Peña, A. Reíllo, B. Escalera, and P. Bustamante, Int. J. Pharm. <b>321</b> , 155 (2006). |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                               | Prepared by:                                                                                                                                |
| T/K = 298.15                                                                                                             | W. E. Acree, Jr.                                                                                                                            |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8864  | 0.1136    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for at least five days. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu$ m pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Germany, no purification details were provided.
- (2) Spectrophotometric grade, Panreac, Monplet and Esteban, Spain, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  149 J. W. Marden and M. V. Dover, J. Am. Chem. Soc. 39, 1 (1917). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:<br>T/K = 298.15                                                                                                                                                     | Prepared by: W. E. Acree. Jr.                                                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.805   | 0.195     |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1~\text{K}.$ 

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[141-78-6] | Original Measurements: <sup>150</sup> A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349 (1964). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.8                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                              |

The measured solubility was reported to be 23 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.167$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8637  | 0.1363    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.
- (2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) Butyl ethanoate; $C_6H_{12}O_2$ ;<br>[123-86-4] | <b>Original Measurements:</b> <sup>87</sup> M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                  | Prepared by:                                                                                                              |
| T/K = 305.2                                                                                                                 | W. E. Acree, Jr.                                                                                                          |

#### **Experimental Values**

The measured solubility was reported to be 218.0 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.578$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Aldrich Chemical Company, UK, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.054$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) 1-Methylethyl tetradecanoate;<br>$C_{17}H_{34}O_2$ ; [110-27-0] | <b>Original Measurements:</b> 156 K. B. Sloan, K. G. Siver, and S. A M. Koch, J. Pharm. Sci. <b>75</b> , 744 (1986). |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                  | Prepared by:                                                                                                         |
| T/K = 296                                                                                                                                   | W. E. Acree, Jr.                                                                                                     |

The measured solubility was reported to be 41.4 mg/ml, which corresponds to a solubility of  $c_1 = 0.300$  mol dm<sup>-3</sup>. The authors calculated a mole fraction solubility of  $x_1 = 0.089$ . The mole fraction solubility was calculated by the authors assuming a molar volume of 2-hydroxybenzoic acid of  $V_1 = 93.9$  cm<sup>3</sup> mol<sup>-1</sup>, which seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.1$  cm<sup>3</sup> mol<sup>-1</sup>, based on a molar mass of 106.12 g mol<sup>-1</sup> and an experimental density of 1.0499 g cm<sup>-3</sup> at 296 K. A molar volume on the order of  $V_1 \approx 104$  cm<sup>3</sup> mol<sup>-1</sup> would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetic stirrer and an ultraviolet/visible spectrophotometer. Solubility was determined by stirring an excess of solute in the solvent with a magnetic stirrer at ambient room temperature for 24 h in sealed flasks that were thermally insulated from the stirrer. The suspension was gravity filtered through Whatman #1 (qualitative) filter paper. The filtrate was then quantitatively diluted with methanol, and the absorbance of the diluted solution recorded at 306 nm.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.
- (2) Purity not given, Givauden Corporation, Clifton, NJ, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 1$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Methylethyl tetradecanoate; C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> ; [110-27-0] | <b>Original Measurements:</b> <sup>61</sup> E. R. Cooper, J. Controlled Release <b>1</b> , 153 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables: T/K = 295                                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.925   | 0.075     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

#### Source and Purity of Chemicals:

- (1) Reagent grade, Fisher Scientific, Cincinnati, OH, USA, no purification details provided.
- (2) Reagent grade, Wickhen Corporation, Huguenot, NJ, USA, no purification details provided.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ : No information given.

| Components:                                              | Original Measurements:                        |
|----------------------------------------------------------|-----------------------------------------------|
| (1) 2-Hydroxybenzoic acid;                               | <sup>87</sup> M. Dias, J. Hadgraft, and M. E. |
| C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | Lane, Int. J. Pharm. 336, 108 (2007).         |
| (2) 1-Methylethyl tetradecanoate;                        |                                               |
| $C_{17}H_{34}O_2$ ; [110-27-0]                           |                                               |
| Variables:                                               | Prepared by:                                  |
| T/K = 305.2                                              | W. E. Acree, Jr.                              |

#### **Experimental Values**

The measured solubility was reported to be 66.0 mg/ml, which corresponds to a molar solubility of  $c_1 = 0.478$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Croda Universal Ltd., no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.095$ .

# 46.5. 2-Hydroxybenzoic acid solubility data in ethers

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) 1,1'-Oxybisethane;<br>$C_4H_{10}O$ ; [60-29-7] | Original Measurements: 102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                      |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

| r a        | , b      |
|------------|----------|
| <u>x</u> 2 | <u> </u> |
| 0.8479     | 0.1521   |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

# **Source and Purity of Chemicals:**

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) 1,1'-Oxybisethane; $C_4H_{10}O$ ;<br>[60-29-7] | Original Measurements:<br><sup>147</sup> J. Walker and J. K. Wood, J.<br>Chem. Soc. Trans. <b>73</b> , 618 (1898). |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                 | Prepared by:                                                                                                       |
| T/K = 290                                                                                                                  | W. E. Acree, Jr.                                                                                                   |

# **Experimental Values**

The measured solubility was reported to be 23.4 g/100 ml of solution, which corresponds to a molar concentration of  $1.694 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>$C_7H_6O_3$ ; [69-72-7]<br>(2) 1,1'-Oxybisbutane; $C_8H_{18}O$ ;<br>[142-96-1] | Original Measurements:<br><sup>151</sup> K. M. De Fina, T. L. Sharp, L. E.<br>Roy, and W. E. Acree, Jr., J. Chem.<br>Eng. Data <b>44</b> , 1262 (1999). |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                        |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9081  | 0.09185   |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### Source and Purity of Chemicals:

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.6358  | 0.3642    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:<br>T/K = 298.15                                                                                                                                                             | Prepared by:                                                                                                                 |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7055  | 0.2945    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# Source and Purity of Chemicals:

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:  152H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi, and K. Tomono, J. Chem. Eng. Data <b>54</b> , 480 (2009). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                                                                                         |
| T/K = 298.15                                                                                                                                                                           | W. E. Acree, Jr.                                                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7390  | 0.2610    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature water bath and high-performance liquid chromatograph with uv detector.

Excess solute and solvent were allowed to equilibrate for 24 h in a constant-temperature thermostated water bath. Aliquots of saturated solutions were removed and filtered through a membrane filter of 0.45 µm pore size (Millipore, USA). Concentrations were determined by high-performance liquid chromatography equipped with an uv detector (254 nm detection). Benzene was added to the sample as an internal standard.

#### **Source and Purity of Chemicals:**

(1) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.

(2) 99%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 6.2\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7022  | 0.2978    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- $\label{eq:company} \mbox{(1) Purity not given, Sigma Chemical Company, USA, no purification details} \mbox{were provided.}$
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | <b>Original Measurements:</b> <sup>155</sup> M. A. Peña, A. Reíllo, B. Escalera, and P. Bustamante, Int. J. Pharm. <b>321</b> , 155 (2006). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                            |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.6883  | 0.3117  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for at least five days. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu$ m pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma-Aldrich, Germany, no purification details were provided.
- (2) Spectrophotometric grade, Panreac, Monplet and Esteban, Spain, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements: <sup>157</sup> M. A. Peña, P. Bustamante, B. Escalera, A. Reíllo, and J. M. Bosque-Sendra, J. Pharm. Biomed. Anal. <b>36</b> , 571 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                  |

#### **Experimental Values**

| T/K | ${c_1}^{\mathrm{a}}$ |
|-----|----------------------|
| 283 | 2.596                |
| 293 | 3.065                |
| 298 | 3.680                |
| 303 | 3.974                |
| 308 | 4.340                |
| 313 | 4.659                |

 $<sup>{}^{</sup>a}c_{1}$ : molar solubility of the solute expressed in units of mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Excess solute and solvent were allowed first to equilibrate in a constant temperature-controlled shaking bath at 313 K, and then at the lower temperatures. The authors used the same samples for all temperatures. The authors started with 313 K, and once the solution was saturated at the higher temperature they lowered the temperature for the next set of measurements. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu m$  pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 298 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Sigma Chemical Company, St. Louis, MO, USA, was used as received.
- (2) 99.5+%, anhydrous, Panreac, Monplet and Esteban, Barcelona, Spain, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$ .  $c_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid;<br>C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[123-91-1] | Original Measurements:<br><sup>150</sup> A. N. Paruta, B. J. Sciarrone, and<br>N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349<br>(1964). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                             | Prepared by:                                                                                                                           |
| T/K = 303.8                                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                       |

#### **Experimental Values**

The measured solubility was reported to be 40 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.290 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

# 46.6. 2-Hydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> 3634. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                        | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.680$ , which corresponds to a solubility of  $c_1 = 0.209 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

The measured molar solubility was  $c_1 = 0.157 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> ,<br>153 (2000). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

# **Experimental Values**

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9985  | 0.001458 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by

spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### Estimated Error: Temperature: ±0.2 K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements: <sup>150</sup> A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349 (1964). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                                                  |
| T/K = 303.8                                                                                                                                         | W. E. Acree, Jr.                                                                                                              |

#### **Experimental Values**

The measured solubility was reported to be 2 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.0145 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                         | W. E. Acree, Jr.                                                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9732  | 0.02679   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                              | Original Measurements:                         |
|----------------------------------------------------------|------------------------------------------------|
| (1) 2-Hydroxybenzoic acid;                               | <sup>153</sup> A. Shalmashi and A. Eliassi, J. |
| C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | Chem. Eng. Data 53, 199 (2008).                |
| (2) Tetrachloromethane; CCl <sub>4</sub> ;               |                                                |
| [56-23-5]                                                |                                                |
| Variables:                                               | Prepared by:                                   |
| Temperature                                              | W. E. Acree, Jr.                               |

# **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-----|--------------------|--------------------|
| 298 | 0.9967             | 0.00333            |
| 303 | 0.9958             | 0.00420            |
| 308 | 0.9946             | 0.00544            |
| 313 | 0.9930             | 0.00702            |
| 318 | 0.9914             | 0.00856            |
| 323 | 0.9887             | 0.01134            |
| 328 | 0.9860             | 0.01396            |
| 333 | 0.9832             | 0.01681            |
| 338 | 0.9798             | 0.02002            |
| 343 | 0.9764             | 0.02363            |
| 348 | 0.9722             | 0.02778            |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetically stirred jacketed equilibrium cell, constant-temperature circulating water bath, and an analytical balance.

Excess solute and solvent were placed in a magnetically stirred jacketed equilibrium cell and allowed to equilibrate at constant temperature for 2 h with continuous stirring. After 2 h the stirring was discontinued and the suspended solid was allowed to settle to the lower portion of the equilibrium cell. An aliquot of the saturated solution was withdrawn by a warmed pipet and transferred to a weighed vial. The vial was tightly closed and weighed to determine the mass of the sample analyzed. The vial was then placed in an oven and the solvent was allowed to evaporate. The vial was reweighed, and the solubility calculated from the mass of the solid residue and sample analyzed.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

#### Source and Purity of Chemicals:

- (1) Purity not given, Synthesized in the authors' department, dried under vacuum at 323 K for 8 h and then stored in a desiccator.
- (2) Analytical grade, Merck Chemicals, Darmstadt, Germany, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.644$ , which corresponds to a solubility of  $c_1 = 0.0227$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.

 $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>67</sup> M. Davies and D. M. L. Griffiths, J. Chem. Soc. <b>1955</b> , 132. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                               |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9971  | 0.00293   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental solubility was determined by percolating the solvent at an adjustable rate through a column of solute in one limb of a U-shaped tube, a plug of cotton wool serving as support and filter. The saturated solution collects in the parallel arm and the whole assembly is immersed in a thermostat bath except for the stoppered ends. Samples of the saturated solutions were removed and titrated with standardized carbonate-free alkali using phenolphthalein as the indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: ±0.02 K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                          | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9962  | 0.003803  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                                             |

The measured molar solubility was  $c_1 = 0.030 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| $\label{eq:components:} \begin{tabular}{ll} Components: \\ (1) 2-Hydroxybenzoic acid; $C_7H_6O_3$; \\ [69-72-7] \\ (2) 1,2-Dichloroethane; $C_2H_4Cl_2$; \\ [107-06-2] \end{tabular}$ | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> : 153 (2000). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                            | Prepared by:                                                                                                                    |
| T/K = 208.15                                                                                                                                                                          | W E Acree Ir                                                                                                                    |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9924           | 0.00758   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 5.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,1,2,2-Tetrachloroethane; C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub> ; [79-34-5] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

The measured molar solubility was  $c_1 = 0.131 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,1,1,2,2-Pentachloroethane; C <sub>2</sub> HCl <sub>5</sub> ; [76-01-7] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                   | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                                 | W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

The measured molar solubility was  $c_1 = 0.077 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Dichloroethene; C <sub>2</sub> H <sub>2</sub> Cl <sub>2</sub> ; isomer was not given | <b>Original Measurements:</b> <sup>86</sup> D. H. Wester and A. Bruins, Pharm. Weekbl. <b>51</b> , 1443 (1914). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                               | Prepared by:                                                                                                    |
| T/K = 288.15                                                                                                                                                                             | W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9947  | 0.00529            |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were continuously shaken in a water bath at  $303\,\mathrm{K}$  for  $1\,\mathrm{h}$ . The solution was then transferred to a cellar which was maintained at a constant temperature of  $288\,\mathrm{K}$ . The solution was allowed to equilibrate in the cellar for at least two days with repeated shaking. The concentration of the dissolved solute was determined; however, the analytical method was not described.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ : Not enough information in paper to estimate an uncertainty.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloroethene; C <sub>2</sub> HCl <sub>3</sub> ; [79-06-1] | Original Measurements:  66W. Herz and W. Rathmann, Z. Elektrochem. 19, 887 (1913). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                   |

#### **Experimental Values**

The measured molar solubility was  $c_1 = 0.110 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.

 $\underline{c_1}$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Trichloroethene; C <sub>2</sub> HCl <sub>3</sub> ; [79-06-1] | <b>Original Measurements:</b> <sup>86</sup> D. H. Wester and A. Bruins, Pharm. Weekbl. <b>51</b> , 1443 (1914). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                    |
| T/K = 288.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9973  | 0.00268   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were continuously shaken in a water bath at 303 K for 1 h. The solution was then transferred to a cellar which was maintained at a constant temperature of 288 K. The solution was allowed to equilibrate in the cellar for at least two days with repeated shaking. The concentration of the dissolved solute was determined; however, the analytical method was not described.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ : Not enough information in paper to estimate an uncertainty.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Tetrachloroethene; C <sub>2</sub> Cl <sub>4</sub> ; [127-18-4] | <b>Original Measurements:</b> <sup>66</sup> W. Herz and W. Rathmann, Z. Elektrochem. <b>19</b> , 887 (1913). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                 |
| T/K = 298.15                                                                                                                                                       | W. E. Acree, Jr.                                                                                             |

The measured molar solubility was  $c_1 = 0.080 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were shaken in a thermostat at 298 K. After equilibrium was reached and the solid phase settled to the bottom of the container, an aliquot of the saturated clear solution was removed by pipet. The concentration of the solute in the saturated solution was determined by titration.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | Original Measurements:  102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                           |
| T/K = 298.15                                                                                                                                                    | W. E. Acree, Jr.                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9933  | 0.00670 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 5.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9921  | 0.007903  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 46.7. 2-Hydroxybenzoic acid solubility data in alcohols

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  152 H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi, and K. Tomono, J. Chem. Eng. Data <b>54</b> , 480 (2009). |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                                                          |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                                                                      |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8777  | 0.1223    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature water bath and high-performance liquid chromatograph with uv detector.

Excess solute and solvent were allowed to equilibrate for 24 h in a constant-temperature thermostated water bath. Aliquots of saturated solutions were removed and filtered through a membrane filter of 0.45  $\mu m$  pore size (Millipore, USA). Concentrations were determined by high-performance liquid chromatography equipped with an uv detector (254 nm detection). Benzene was added to the sample as an internal standard.

#### Source and Purity of Chemicals:

- (1) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.
- (2) 99.8%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 6.2\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                           |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.8679  | 0.1321             |

<sup>&</sup>lt;sup>a</sup>x<sub>2</sub>: mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  158 E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                         |
| T/K = 293.15                                                                                                                               | W. E. Acree, Jr.                                                     |

#### **Experimental Values**

The measured solubility was reported to be 33.13 g/100 ml of solution, which corresponds to a molar concentration of 2.398 mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

# Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:<br><sup>150</sup> A. N. Paruta, B. J. Sciarrone, and<br>N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349<br>(1964). |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.8                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

#### **Experimental Values**

The measured solubility was reported to be 299 mg/ml of solution, which corresponds to a solubility of  $c_1 = 2.16$  mol dm<sup>-3</sup>.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| (2) Methanol; CH <sub>4</sub> O; [67-56-1]                                                      |                                                                                                                |
| Variables:                                                                                      | Prepared by:                                                                                                   |
| T/K = 301.2                                                                                     | W. E. Acree, Jr.                                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8748  | 0.1252    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  152H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi, and K. Tomono, J. Chem. Eng. Data <b>54</b> , 480 (2009). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8550  | 0.1450  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Thermostated constant-temperature water bath and high-performance liquid chromatograph with uv detector.

Excess solute and solvent were allowed to equilibrate for 24 h in a constant-temperature thermostated water bath. Aliquots of saturated solutions were removed and filtered through a membrane filter of 0.45 µm pore size (Millipore, USA). Concentrations were determined by high-performance liquid chromatography equipped with an uv detector (254 nm detection). Benzene was added to the sample as an internal standard.

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.
- (2) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 6.2\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  153 A. Shalmashi and A. Eliassi, J. Chem. Eng. Data 53, 199 (2008). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                            |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K | $x_2^{\ a}$ | $x_1^{b}$ |
|-----|-------------|-----------|
| 298 | 0.8614      | 0.1386    |
| 303 | 0.8438      | 0.1562    |
| 308 | 0.8272      | 0.1728    |
| 313 | 0.8146      | 0.1854    |
| 318 | 0.8007      | 0.1993    |
| 323 | 0.7717      | 0.2283    |
| 328 | 0.7661      | 0.2339    |
| 333 | 0.7502      | 0.2498    |
| 338 | 0.7291      | 0.2709    |
| 343 | 0.7143      | 0.2857    |
| 348 | 0.6936      | 0.3064    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetically stirred jacketed equilibrium cell, constant-temperature circulating water bath, and an analytical balance.

Excess solute and solvent were placed in a magnetically stirred jacketed equilibrium cell and allowed to equilibrate at constant temperature for 2 h with continuous stirring. After 2 h the stirring was discontinued and the suspended solid was allowed to settle to the lower portion of the equilibrium cell. An aliquot of the saturated solution was withdrawn by a warmed pipet and transferred to a weighed vial. The vial was tightly closed and weighed to determine the mass of the sample analyzed. The vial was then placed in an oven and the solvent was allowed to evaporate. The vial was reweighed, and the solubility calculated from the mass of the solid residue and sample analyzed.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Synthesized in the authors' department, dried under vacuum at 323 K for 8 h and then stored in a desiccator.
- (2) Analytical grade, Merck Chemicals, Darmstadt, Germany, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:<br><sup>159</sup> J. Lim, S. Jang, H. K. Cho, M. S.<br>Shin, and H. Kim, J. Chem.<br>Thermodyn. <b>57</b> , 295 (2013). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                               |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 278.15 | 0.8916  | 0.1084             |
| 283.15 | 0.8831  | 0.1169             |
| 288.15 | 0.8745  | 0.1255             |
| 293.15 | 0.8642  | 0.1358             |
| 298.15 | 0.8545  | 0.1455             |
| 303.15 | 0.8434  | 0.1566             |
| 308.15 | 0.8303  | 0.1697             |

| T/K    | $x_2^{a}$ | $x_1^b$ |
|--------|-----------|---------|
| 313.15 | 0.8179    | 0.1821  |
| 318.15 | 0.8031    | 0.1969  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetic stirrer, drying oven and an analytical balance.

Excess solute and solvent were placed in 50-ml glass tubes and agitated with a magnetic stirrer at constant temperature for at least 48 h. A clear aliquot of the saturated solution was withdrawn using a syringe through a filter. The mass of the filtered clear solution was recorded. The sample was dried in a vacuum oven for at least seven days, and the mass of the solid residue recorded. The solution was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99%, Samchen Pure Chemical Company, Seoul Korea, was used as received.
- (2) 99.9%, Sigma Aldrich, St. Louis, MO, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  160 A. Jouyban, V. Panahi-Azar, and F. Khonsari, J. Mol. Liq. <b>160</b> , 14 (2011). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                  |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                              |

# **Experimental Values**

| T/K   | $c_1^{\ a}$ |
|-------|-------------|
| 298.2 | 1.975       |
| 308.2 | 2.500       |
| 318.2 | 3.542       |
| 328.2 | 4.148       |

 $<sup>{}^{\</sup>mathrm{a}}c_1$ : molar solubility of the solute in units of moles per liter.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature incubator, temperature controlling system, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in sealed bottles and allowed to equilibrate at constant temperature in an incubator equipped with a temperature controlling system for at least two days. Solutions of the saturated solution were withdrawn and filtered using hydrophilic Durapore filters (0.45  $\mu m$ ). The filtered solutions were quantitatively diluted. Absorbances of the diluted solutions were measured. Concentrations of the diluted solutions were computed using a Beer-Law calibration curve based on measured absorbances for standard solutions of known concentration.

# **Source and Purity of Chemicals:**

(1) 98+%, Merck Chemical Company, Germany, was used as received. (2) 99.5%, Merck Chemical Company, no purification details were provided.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $c_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                       |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 314.2 | 0.814              | 0.186     |
| 358.4 | 0.663              | 0.337     |
| 398.4 | 0.410              | 0.590     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 432.2 K. (2) 99%, Chemical source not given, distilled over calcium oxide shortly before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  161 E. A. Gomaa, M. A. Mousa, an A. A. El-Khouly, Thermochim. Acta 86, 351 (1985). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                               |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                                           |

# **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is

given in terms of molality, in which case the solubility is 2.874 mol/kg of solvent.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

#### Source and Purity of Chemicals:

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  158 E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables: T/K = 293.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                     |

# **Experimental Values**

The measured solubility was reported to be 28.19 g/100 ml of solution, which corresponds to a molar concentration of 2.041 mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

| Components:                                                               | Original Measurements:                      |
|---------------------------------------------------------------------------|---------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>102</sup> J. Barra, MA. Peña, and P.   |
| [69-72-7]                                                                 | Bustamante, Eur. J. Pharm. Sci. <b>10</b> , |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                   | 153 (2000).                                 |
| Variables: T/K = 298.15                                                   | Prepared by:<br>W. E. Acree, Jr.            |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8900  | 0.1100    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  155 M. A. Peña, A. Reillo, B. Escalera, and P. Bustamante, Int. J. Pharm. <b>321</b> , 155 (2006). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                     | Prepared by:                                                                                                               |
| T/K = 298.15                                                                                                                                                   | W. E. Acree, Jr.                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8603  | 0.1397  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for at least five days. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu m$  pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Germany, no purification details were provided.
- (2) Spectrophotometric grade, Panreac, Monplet and Esteban, Spain, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | Original Measurements:  154 M. A. Peña, B. Escalera, A. Reíllo, A. B. Sánchez, and P. |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                                         | Bustamante, J. Pharm. Sci. <b>98</b> , 1129 (2009).                                   |
| Variables:                                                                                      | Prepared by:                                                                          |
| Temperature                                                                                     | W. E. Acree, Jr.                                                                      |

# **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-----|--------------------|-----------|
| 293 | 0.8652             | 0.1348    |
| 303 | 0.8595             | 0.1405    |
| 308 | 0.8515             | 0.1485    |
| 313 | 0.8395             | 0.1605    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for four days at 313 K, and then one day at the lower temperatures. The authors used the same samples for all temperatures. The authors started with 313 K, and once the solution was saturated at the higher temperature they lowered the temperature for the next set of measurements. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu m$  pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

# **Source and Purity of Chemicals:**

(1) Purity not given, Sigma-Aldrich, Munich, Germany, was used as received. (2) UV grade, Panreac, Monplet and Esteban, Barcelona, Spain, no purification details were provided.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.1$ .  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>71</sup> A. Seidell, Trans. Am. Electrochem. Soc. <b>13</b> , 319 (1908). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8631  | 0.1369    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a test tube and sealed with a rubber stopper. The test tube was attached to a rotating frame immersed in a constant-temperature water bath and revolved upon the axis parallel to the diameter of the test tube at the rate of approximately six revolutions per minute. The duration of the rotation was between four and seven days. At the end of the rotation period, the test tube was placed in an upright position in the bath with the stopper and a very small part of the test tube protruding from the bath, until the undissolved solid settled to the bottom of the test tube. A portion of the clear supernatant solution was withdrawn into a pipette having a cotton plug attached. The cotton plug served as a coarse filter. The concentration of the solution was determined by titration with standard alkali solution. The author determined the solubility of 2-hydroxybenzoic acid in several aqueous-alcohol solvent mixtures having ethanol concentrations between 0.00% and 99.8% by mass. The value for 100% ethanol was obtained from the curve of solubility versus alcohol concentration.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 305.2                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

#### **Experimental Values**

The measured solubility was reported to be 368.2 mg/ml, which corresponds to a molar solubility of  $c_1 = 2.666$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.033$ .

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.8                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be 377 mg/ml of solution, which corresponds to a solubility of  $c_1 = 2.73$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8521  | 0.1479  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  162 M. A. A. Fakhree, S. Ahmadian V. Panahi-Azar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 57, 3303 (2012). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                                    |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 298.2 | 0.868   | 0.132              |
| 308.2 | 0.850   | 0.150              |
| 318.2 | 0.837   | 0.163              |
| 328.2 | 0.821   | 0.179              |
| 338.2 | 0.805   | 0.195              |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant temperature oven, temperature controlling system, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in sealed bottles and allowed to equilibrate at constant temperature in an oven for three days. Samples were shaken manually three times per day to ensure that equilibrium had been achieved. Solutions of the saturated solution were withdrawn and filtered using hydrophilic Durapore filters (0.45  $\mu m$ ). The filtered solutions were quantitatively diluted with ethanol. Absorbances of the diluted solutions were measured at 304 nm. Concentrations of the diluted solutions were computed using a Beer-Law calibration curve based on measured absorbances for standard solutions of known concentration.

#### Source and Purity of Chemicals:

- (1) 99%, Merck Chemical Company, Germany, was used as received.
- (2) 99.9%, Scharlau Chemie, Spain, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.2~\text{K}$  to  $\pm 0.6~\text{K};$  the higher temperatures have greater uncertainty.

 $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8364  | 0.1636    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  158E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Variables: T/K = 293.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                    |

#### **Experimental Values**

The measured solubility was reported to be 22.25 g/100 ml of solution, which corresponds to a molar concentration of  $1.611 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                |
| T/K = 303.8                                                                                                                                                         | W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

The measured solubility was reported to be 287 mg/ml of solution, which corresponds to a solubility of  $c_1 = 2.08$  mol dm<sup>-3</sup>.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.2 K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>156</sup> K. B. Sloan, K. G. Siver, and S. A. M. Koch, J. Pharm. Sci. <b>75</b> , 744 (1986). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                                                              |
| T/K = 296                                                                                                                                                         | W. E. Acree, Jr.                                                                                                          |

#### **Experimental Values**

The measured solubility was reported to be 228 mg/ml, which corresponds to a solubility of  $c_1 = 1.651 \, \mathrm{mol \, dm^{-3}}$ . The authors calculated a mole fraction solubility of  $x_1 = 0.140$ . The mole fraction solubility was calculated by the authors assuming a molar volume of 2-hydroxybenzoic acid of  $V_1 = 93.9 \, \mathrm{cm^3 \, mol^{-1}}$ , which seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.1 \, \mathrm{cm^3 \, mol^{-1}}$ , based on a molar mass of  $106.12 \, \mathrm{g \, mol^{-1}}$  and an experimental density of  $1.0499 \, \mathrm{g \, cm^{-3}}$  at  $296 \, \mathrm{K}$ . A molar volume on the order of  $V_1 \approx 104 \, \mathrm{cm^3 \, mol^{-1}}$  would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetic stirrer and an ultraviolet/visible spectrophotometer. Solubility was determined by stirring an excess of solute in the solvent with a magnetic stirrer at ambient room temperature for 24 h in sealed flasks that were thermally insulated from the stirrer. The suspension was gravity filtered through Whatman #1 (qualitative) filter paper. The filtrate was then quantitatively diluted with methanol, and the absorbance of the diluted solution recorded at 306 nm.

#### Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.
- (2) 99+%, Aldrich Chemical Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 1$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8562  | 0.1438    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  159 J. Lim, S. Jang, H. K. Cho, M. S. Shin, and H. Kim, J. Chem. Thermodyn. 57, 295 (2013). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                        |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$                                                           |
|---------|------------------------------------------------------------------------------|
| 0.8983  | 0.1017                                                                       |
| 0.8892  | 0.1108                                                                       |
| 0.8796  | 0.1204                                                                       |
| 0.8686  | 0.1314                                                                       |
| 0.8572  | 0.1428                                                                       |
| 0.8457  | 0.1543                                                                       |
| 0.8320  | 0.1680                                                                       |
| 0.8194  | 0.1806                                                                       |
| 0.8040  | 0.1960                                                                       |
|         | 0.8983<br>0.8892<br>0.8796<br>0.8686<br>0.8572<br>0.8457<br>0.8320<br>0.8194 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetic stirrer, drying oven and an analytical balance.

Excess solute and solvent were placed in 50-ml glass tubes and agitated with a magnetic stirrer at constant temperature for at least 48 h. A clear aliquot of the saturated solution was withdrawn using a syringe through a filter. The mass of the filtered clear solution was recorded. The sample was dried in a vacuum oven for at least seven days, and the mass of the solid residue recorded. The solution was calculated from the mass of the solid residue and mass of sample analyzed.

# **Source and Purity of Chemicals:**

(1) 99%, Samchen Pure Chemical Company, Seoul Korea, was used as received

(2) 99.9%, Sigma Aldrich, St. Louis, MO, USA, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  162 M. A. A. Fakhree, S. Ahmadian, V. Panahi-Azar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 57, 3303 (2012). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                                                                                     |
| Temperature                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                 |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 298.2 | 0.856              | 0.144     |
| 308.2 | 0.839              | 0.161     |
| 318.2 | 0.827              | 0.173     |
| 328.2 | 0.805              | 0.195     |
| 338.2 | 0.786              | 0.214     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature oven, temperature controlling system, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in sealed bottles and allowed to equilibrate at constant temperature in an oven for three days. Samples were shaken manually three times per day to ensure that equilibrium had been achieved. Solutions of the saturated solution were withdrawn and filtered using hydrophilic Durapore filters (0.45  $\mu m$ ). The filtered solutions were quantitatively diluted with ethanol. Absorbances of the diluted solutions were measured at 304 nm. Concentrations of the diluted solutions were computed using a Beer-Law calibration curve based on measured absorbances for standard solutions of known concentration.

#### **Source and Purity of Chemicals:**

- (1) 99%, Merck Chemical Company, Germany, was used as received.
- (2) 99.9%, Scharlau Chemie, Spain, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.2~K$  to  $\pm 0.6~K;$  the higher temperatures have greater uncertainty.

 $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:<br><sup>151</sup> K. M. De Fina, T. L. Sharp, L. E.<br>Roy, and W. E. Acree, Jr., J. Chem.<br>Eng. Data <b>44</b> , 1262 (1999). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                        |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8211  | 0.1789    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E Roy, and W. E. Acree, Jr., J. Chem Eng. Data 44, 1262 (1999). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8354  | 0.1646    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:<br><sup>127</sup> N. V. Sidgwick and E. K.<br>Ewbank, J. Chem. Soc. Trans. <b>119</b> ,<br>979 (1921). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 297.2 | 0.852              | 0.148     |
| 311.2 | 0.821              | 0.179     |
| 358.8 | 0.661              | 0.339     |
| 394.8 | 0.329              | 0.671     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 432.2 K. (2) Purity not given, Chemical source not given, fractionated and distilled several times before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | <b>Original Measurements:</b> <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 305.2$                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

The measured solubility was reported to be 283.7 mg/ml, which corresponds to a molar solubility of  $c_1 = 2.053$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.

 $c_1$ :  $\pm 0.03$  (estimated by compiler, value in the paper seemed too small given the analytical method).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.8                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                            |

The measured solubility was reported to be 251 mg/ml of solution, which corresponds to a solubility of  $c_1 = 1.82$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Indian Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                          |
| T/K = 301.2                                                                                                                                                | W. E. Acree, Jr.                                                                                                      |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8412  | 0.1588    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  159 J. Lim, S. Jang, H. K. Cho, M. S. Shin, and H. Kim, J. Chem. Thermodyn. <b>57</b> , 295 (2013). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                                                            |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 278.15 | 0.8937  | 0.1063    |
| 283.15 | 0.8842  | 0.1158    |
| 288.15 | 0.8745  | 0.1255    |
| 293.15 | 0.8633  | 0.1367    |
| 298.15 | 0.8516  | 0.1484    |
| 303.15 | 0.8403  | 0.1597    |
| 308.15 | 0.8264  | 0.1736    |
| 313.15 | 0.8137  | 0.1863    |
| 318.15 | 0.7988  | 0.2012    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetic stirrer, drying oven and an analytical balance.

Excess solute and solvent were placed in 50-ml glass tubes and agitated with a magnetic stirrer at constant temperature for at least 48 h. A clear aliquot of the saturated solution was withdrawn using a syringe through a filter. The mass of the filtered clear solution was recorded. The sample was dried in a vacuum oven for at least seven days, and the mass of the solid residue recorded. The solution was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99%, Samchen Pure Chemical Company, Seoul Korea, was used as received.
- (2) 99.7%, Sigma Aldrich, St. Louis, MO, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8131  | 0.1869  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8570  | 0.1430    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                               | Original Measurements:                           |
|---------------------------------------------------------------------------|--------------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>151</sup> K. M. De Fina, T. L. Sharp, L. E. |
| [69-72-7]                                                                 | Roy, and W. E. Acree, Jr., J. Chem.              |
| (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O;                | Eng. Data 44, 1262 (1999).                       |
| [75-65-0]                                                                 |                                                  |
| Variables:                                                                | Prepared by:                                     |
| T/K = 298.15                                                              | W. E. Acree, Jr.                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7807  | 0.2193    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# Source and Purity of Chemicals:

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99+%, Arco Chemical Company, USA, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | <i>x</i> <sub>1</sub> <sup>b</sup> |
|---------|------------------------------------|
| 0.8389  | 0.1611                             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### **Source and Purity of Chemicals:**

- (1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> ,<br>153 (2000). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8453  | 0.1547    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  159 J. Lim, S. Jang, H. K. Cho, M. S. Shin, and H. Kim, J. Chem. Thermodyn. 57, 295 (2013). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.15 | 0.8872             | 0.1128    |
| 283.15 | 0.8773             | 0.1227    |
| 288.15 | 0.8677             | 0.1323    |
| 293.15 | 0.8560             | 0.1440    |
| 298.15 | 0.8450             | 0.1550    |
| 303.15 | 0.8337             | 0.1663    |
| 308.15 | 0.8198             | 0.1802    |
| 313.15 | 0.8081             | 0.1919    |
| 318.15 | 0.7941             | 0.2059    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetic stirrer, drying oven and an analytical balance.

Excess solute and solvent were placed in 50-ml glass tubes and agitated with a magnetic stirrer at constant temperature for at least 48 h. A clear aliquot of the saturated solution was withdrawn using a syringe through a filter. The mass of the filtered clear solution was recorded. The sample was dried in a vacuum oven for at least seven days, and the mass of the solid residue recorded. The solution was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99%, Samchen Pure Chemical Company, Seoul Korea, was used as received.
- (2) 99%, Sigma Aldrich, St. Louis, MO, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | <b>Original Measurements:</b> <sup>159</sup> J. Lim, S. Jang, H. K. Cho, M. S. Shin, and H. Kim, J. Chem. Thermodyn. <b>57</b> , 295 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                                                 |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.15 | 0.8837             | 0.1163    |
| 283.15 | 0.8731             | 0.1269    |
| 288.15 | 0.8633             | 0.1367    |
| 293.15 | 0.8542             | 0.1458    |
| 298.15 | 0.8416             | 0.1584    |
| 303.15 | 0.8309             | 0.1691    |
| 308.15 | 0.8180             | 0.1820    |
| 313.15 | 0.8050             | 0.1950    |
| 318.15 | 0.7911             | 0.2089    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetic stirrer, drying oven and an analytical balance.

Excess solute and solvent were placed in 50-ml glass tubes and agitated with a magnetic stirrer at constant temperature for at least 48 h. A clear aliquot of the saturated solution was withdrawn using a syringe through a filter. The mass of the filtered clear solution was recorded. The sample was dried in a vacuum oven for at least seven days, and the mass of the solid residue recorded. The solution was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

- (1) 99%, Samchen Pure Chemical Company, Seoul Korea, was used as received.
- (2) 99%, Sigma Aldrich, St. Louis, MO, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:  159 J. Lim, S. Jang, H. K. Cho, M. S. Shin, and H. Kim, J. Chem. Thermodyn. <b>57</b> , 295 (2013). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                |
| Temperature                                                                                                                                                  | W. E. Acree, Jr.                                                                                                            |

# **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 278.15 | 0.8828  | 0.1172             |
| 283.15 | 0.8720  | 0.1280             |
| 288.15 | 0.8623  | 0.1377             |
| 293.15 | 0.8515  | 0.1485             |
| 298.15 | 0.8396  | 0.1604             |
| 303.15 | 0.8286  | 0.1714             |
| 308.15 | 0.8154  | 0.1846             |
| 313.15 | 0.8031  | 0.1969             |
| 318.15 | 0.7898  | 0.2102             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetic stirrer, drying oven and an analytical balance.

Excess solute and solvent were placed in 50-ml glass tubes and agitated with a magnetic stirrer at constant temperature for at least 48 h. A clear aliquot of the saturated solution was withdrawn using a syringe through a filter. The mass of the filtered clear solution was recorded. The sample was dried in a vacuum oven for at least seven days, and the mass of the solid residue recorded. The solution was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99%, Samchen Pure Chemical Company, Seoul Korea, was used as received.
- (2) 98%, Tokyo Chemical Industry, Tokyo, Japan, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7857  | 0.2143    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

bx<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as mass fractions. The mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                  |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                              |

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.8452    | 0.1548    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  145 G. L. Perlovich, T. V. Volkova, and A. Bauer-Brandl, J. Pharm. Sci 95, 1448 (2006). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                    |
| Temperature                                                                                                                                                 | W. E. Acree, Jr.                                                                                                |

# **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-----|--------------------|-----------|
| 293 | 0.824              | 0.176     |
| 298 | 0.814              | 0.186     |
| 303 | 0.794              | 0.206     |
| 310 | 0.765              | 0.235     |
| 315 | 0.748              | 0.252     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration, the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich Inc., Oslo, Norway, no purification details provided. (2) Analytical Reagent grade, Sigma-Aldrich Inc., no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2$ :  $\pm 2.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                          |
| T/K = 305.2                                                                                                                                                 | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

The measured solubility was reported to be 186.1 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.347$  mol dm<sup>-3</sup>.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisher Scientific, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, no purification details were provided.

# **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.02$ .

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  156 K. B. Sloan, K. G. Siver, and S. A. M. Koch, J. Pharm. Sci. 75, 744 (1986). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables: T/K = 296                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                        |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured solubility was reported to be 145 mg/ml, which corresponds to a solubility of  $c_1 = 1.050 \, \mathrm{mol \, dm^{-3}}$ . The authors calculated a mole fraction solubility of  $x_1 = 0.157$ . The mole fraction solubility was calculated by the authors assuming a molar volume of 2-hydroxybenzoic acid of  $V_1 = 93.9 \, \mathrm{cm^3 \, mol^{-1}}$ , which seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.1 \, \mathrm{cm^3 \, mol^{-1}}$ , based on a molar mass of  $106.12 \, \mathrm{g \, mol^{-1}}$  and an experimental density of  $1.0499 \, \mathrm{g \, cm^{-3}}$  at  $296 \, \mathrm{K}$ . A molar volume on the order of  $V_1 \approx 104 \, \mathrm{cm^3 \, mol^{-1}}$  would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Magnetic stirrer and an ultraviolet/visible spectrophotometer. Solubility was determined by stirring an excess of solute in the solvent with a magnetic stirrer at ambient room temperature for 24 h in sealed flasks that were thermally insulated from the stirrer. The suspension was gravity filtered through Whatman #1 (qualitative) filter paper. The filtrate was then quantitatively diluted with methanol, and the absorbance of the diluted solution recorded at 306 nm.

#### Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.
- (2) 99+%, Aldrich Chemical Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 1$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements: <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 305.2                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

#### **Experimental Values**

The measured solubility was reported to be 136.9 mg/ml, which corresponds to a molar solubility of  $c_1 = 0.991$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- Purity not given, Fisher Scientific, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.02$ .

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Cyclohexanol; C <sub>6</sub> H <sub>12</sub> O; [108-93-0] | Original Measurements:<br><sup>150</sup> A. N. Paruta, B. J. Sciarrone, and<br>N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349<br>(1964). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.8$                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

# **Experimental Values**

The measured solubility was reported to be 217 mg/ml of solution, which corresponds to a solubility of  $c_1 = 1.571$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Benzenemethanol; C <sub>7</sub> H <sub>8</sub> O; [100-51-6] | Original Measurements:  150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                |
| T/K = 303.8                                                                                                                                                      | W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

The measured solubility was reported to be 203 mg/ml of solution, which corresponds to a solubility of  $c_1 = 1.47$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| $\label{eq:components:} \begin{tabular}{ll} Components: \\ (1) 2-Hydroxybenzoic acid; $C_7H_6O_3$; \\ [69-72-7] \\ (2) 1,2-Ethanediol; $C_2H_6O_2$; \\ [107-21-1] \end{tabular}$ | Original Measurements: <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> : 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                             |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9149  | 0.08509   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) 1,2-Ethanediol; C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> ;<br>[107-21-1] | Original Measurements:  150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                                |
| T/K = 303.8                                                                                                                                                                               | W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

The measured solubility was reported to be 42 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.304$  mol dm<sup>-3</sup>

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                               | Original Measurements:                    |
|---------------------------------------------------------------------------|-------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>102</sup> J. Barra, MA. Peña, and P. |
| [69-72-7]                                                                 | Bustamante, Eur. J. Pharm. Sci. 10,       |
| (2) 1,2-Propanediol; $C_3H_8O_2$ ; [57-55-6]                              | 153 (2000).                               |
| Variables:                                                                | Prepared by:                              |
| T/K = 298.15                                                              | W. E. Acree, Jr.                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8864  | 0.1136    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

# Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | Original Measurements: <sup>160</sup> A. Jouyban, V. Panahi-Azar and F. Khonsari, J. Mol. Liq. <b>160</b> , 14 (2011). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                           |
| Temperature                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                       |

| T/K   | $c_1^{\ a}$ |
|-------|-------------|
| 298.2 | 1.592       |
| 308.2 | 2.144       |
| 318.2 | 3.061       |
| 328.2 | 3.382       |

 $<sup>{}^{</sup>a}c_{1}$ : molar solubility of the solute in units of moles per liter.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature incubator, temperature controlling system, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in sealed bottles and allowed to equilibrate at constant temperature in an incubator equipped with a temperature controlling system for at least two days. Solutions of the saturated solution were withdrawn and filtered using hydrophilic Durapore filters (0.45  $\mu m$ ). The filtered solutions were quantitatively diluted. Absorbances of the diluted solutions were measured. Concentrations of the diluted solutions were computed using a Beer-Law calibration curve based on measured absorbances for standard solutions of known concentration.

# **Source and Purity of Chemicals:**

(1) 98+%, Merck Chemical Company, Germany, was used as received.

(2) 99.5%, Merck Chemical Company, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $c_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | Original Measurements: <sup>73</sup> M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. <b>216</b> , 51 (2001). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 305.2                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                      |

# **Experimental Values**

The measured solubility was reported to be 192.8 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.396 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific, UK, no purification details were provided.
- (2) Purity not given, Fisher Scientific, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.14$ .

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | Original Measurements: 150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                               |
| T/K = 303.8                                                                                                                                                                   | W. E. Acree, Jr.                                                                                           |

#### **Experimental Values**

The measured solubility was reported to be 118 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.854$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | Original Measurements:  156 K. B. Sloan, K. G. Siver, and S. A. M. Koch, J. Pharm. Sci. 75, 744 (1986). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables: T/K = 296                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                        |

#### **Experimental Values**

The measured solubility was reported to be 207 mg/ml, which corresponds to a solubility of  $c_1 = 1.499 \, \mathrm{mol \, dm^{-3}}$ . The authors calculated a mole fraction solubility of  $x_1 = 0.116$ . The mole fraction solubility was calculated by the authors assuming a molar volume of 2-hydroxybenzoic acid of  $V_1 = 93.9 \, \mathrm{cm^3 \, mol^{-1}}$ , which seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.1 \, \mathrm{cm^3 \, mol^{-1}}$ , based on a molar mass of  $106.12 \, \mathrm{g \, mol^{-1}}$  and an experimental

density of 1.0499 g cm<sup>-3</sup> at 296 K. A molar volume on the order of  $V_1 \approx 104~{\rm cm}^3\,{\rm mol}^{-1}$  would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetic stirrer and an ultraviolet/visible spectrophotometer. Solubility was determined by stirring an excess of solute in the solvent with a magnetic stirrer at ambient room temperature for 24 h in sealed flasks that were thermally insulated from the stirrer. The suspension was gravity filtered through Whatman #1 (qualitative) filter paper. The filtrate was then quantitatively diluted with methanol, and the absorbance of the diluted solution recorded at 306 nm.

# Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.
- (2) 99+%, Aldrich Chemical Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 1$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                                   | Original Measurements:                    |
|-------------------------------------------------------------------------------|-------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;     | <sup>61</sup> E. R. Cooper, J. Controlled |
| [69-72-7]                                                                     | Release 1, 153 (1984).                    |
| (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] |                                           |
| Variables                                                                     | Prepared by:                              |
| T/K = 295                                                                     | W. E. Acree, Jr.                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.872   | 0.128     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

# Source and Purity of Chemicals:

- (1) Reagent grade, Fisher Scientific, Cincinnati, OH, USA, no purification details provided.
- (2) Reagent grade, J.T. Baker Chemical Company, Phillipsburg, NJ, USA, no purification details provided.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ : No information given.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,2,3-Propanetriol (Glycerol); C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [60-29-7] | Original Measurements: <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                  | Prepared by:                                                                                                             |
| T/K = 298.15                                                                                                                                                                                | W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9253  | 0.07465   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.2 K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components:                                                               | Original Measurements:                            |
|---------------------------------------------------------------------------|---------------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>150</sup> A. N. Paruta, B. J. Sciarrone, and |
| [69-72-7]                                                                 | N. G. Lordi, J. Pharm. Sci. 53, 1349              |
| (2) 1,2,3-Propanetriol (Glycerol);                                        | (1964).                                           |
| C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [60-29-7]                  |                                                   |
| Variables:                                                                | Prepared by:                                      |
| T/K = 303.8                                                               | W. E. Acree, Jr.                                  |

#### **Experimental Values**

The measured solubility was reported to be 15 mg/ml of solution, which corresponds to a solubility of  $c_1 = 0.109$  mol dm<sup>-3</sup>.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 1,2,3-Propanetriol (Glycerol); C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [56-81-5] | Original Measurements:  87 M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                         | Prepared by:                                                                                             |
| T/K = 305.2                                                                                                                                                                                        | W. E. Acree, Jr.                                                                                         |

#### **Experimental Values**

The measured solubility was reported to be 24.99 mg/ml, which corresponds to a molar solubility of  $c_1 = 0.181$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, ICN Biochemicals, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.022$ .

# 46.8. 2-Hydroxybenzoic acid solubility data in alkoxyalcohols

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-80-5] | Original Measurements:<br><sup>150</sup> A. N. Paruta, B. J. Sciarrone, and<br>N. G. Lordi, J. Pharm. Sci. <b>53</b> , 1349<br>(1964). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.8$                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                       |

#### **Experimental Values**

The measured solubility was reported to be 425 mg/ml of solution, which corresponds to a solubility of  $c_1 = 3.08$  mol dm<sup>-3</sup>

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

# 46.9. 2-Hydroxybenzoic acid solubility data in ketones

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  162 M. A. A. Fakhree, S. Ahmadian, V. Panahi-Azar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 57, 3303 (2012). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                                                                     |
| Temperature                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                 |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 298.2 | 0.863   | 0.137              |
| 308.2 | 0.861   | 0.139              |
| 318.2 | 0.844   | 0.156              |
| 328.2 | 0.804   | 0.196              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant temperature oven, temperature controlling system, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in sealed bottles and allowed to equilibrate at constant temperature in an oven for three days. Samples were shaken manually three times per day to ensure that equilibrium had been achieved. Solutions of the saturated solution were withdrawn and filtered using hydrophilic Durapore filters (0.45  $\mu m$ ). The filtered solutions were quantitatively diluted with ethanol. Absorbances of the diluted solutions were measured at 304 nm. Concentrations of the diluted solutions were computed using a Beer-Law calibration curve based on measured absorbances for standard solutions of known concentration.

# **Source and Purity of Chemicals:**

(1) 99%, Merck Chemical Company, Germany, was used as received. (2) 99.5%, Scharlau Chemie, Spain, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K to  $\pm 0.6$  K, the higher temperatures have greater uncertainty.

 $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8183  | 0.1817  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99.9+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8680  | 0.1320  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> 158 E. Bergroth, Farm. Aikak. <b>70</b> , 91 (1961). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                       |
| T/K = 293.15                                                                                                                                              | W. E. Acree, Jr.                                                                   |

#### **Experimental Values**

The measured solubility was reported to be 29.44 g/100 ml of solution, which corresponds to a molar concentration of  $2.131 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  150 A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. 53, 1349 (1964). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                                |
| T/K = 303.8                                                                                                                                               | W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

The measured solubility was reported to be 381 mg/ml of solution, which corresponds to a solubility of  $c_1 = 2.76$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in 15-ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a constant-temperature water bath and allowed to equilibrate for 24 h. An aliquot of the saturated solution was withdrawn from the vial with a pipet fitted with a glass wool filtering plug. The solubility was determined by titration using a freshly prepared sodium hydroxide solution. The endpoint of the titration was detected with phenolphthalein.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> <sup>50</sup> P. G. Desai and A. M. Patel, J. Ind. Chem. Soc. <b>12</b> , 131 (1935). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8094  | 0.1906  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

# **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  149 J. W. Marden and M. V. Dover, J. Am. Chem. Soc. 39, 1 (1917). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8108  | 0.1892    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 10.0\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Experimental solubility data were given as grams of solute per 100 g of solvent. Mole fraction solubility was calculated by the compiler.

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  147 J. Walker and J. K. Wood, J. Chem. Soc. Trans. 73, 618 (1898). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                               |
| T/K = 296                                                                                                                                                 | W. E. Acree, Jr.                                                                           |

The measured solubility was reported to be 31.3 g/100 ml of solution, which corresponds to a molar concentration of  $2.266 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Butanone; C <sub>4</sub> H <sub>8</sub> O; [78-93-3] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8148  | 0.1852    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.
- (2) 99.5+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) Butanone; C <sub>4</sub> H <sub>8</sub> O; [78-93-3] | Original Measurements:  158E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Variables: T/K = 293.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                    |

#### **Experimental Values**

The measured solubility was reported to be 23.56 g/100 ml of solution, which corresponds to a molar concentration of  $1.706 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                                         | <b>Original Measurements:</b> <sup>158</sup> E. Bergroth, Farm. Aikak. <b>70</b> , 91 |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | (1961).                                                                               |
| (2) 2-Pentanone; C <sub>5</sub> H <sub>10</sub> O; [107-87-9]                       |                                                                                       |
| Variables:                                                                          | Prepared by:                                                                          |
| T/K = 293.15                                                                        | W. E. Acree, Jr.                                                                      |

#### **Experimental Values**

The measured solubility was reported to be 20.92 g/100 ml of solution, which corresponds to a molar concentration of  $1.515 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Cyclohexanone; C <sub>6</sub> H <sub>10</sub> O; [108-94-1] | Original Measurements:  151 K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                                    | W. E. Acree, Jr.                                                                                                             |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.7699           | 0.2301    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 304 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, ACS Reagent grade, Aldrich Chemical Company, Milwaukee, WI, USA, was dried for several hours at 353 K before use and used without further purification.

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O; [98-86-2] | Original Measurements:<br><sup>102</sup> J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. <b>10</b> ,<br>153 (2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                      |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8473  | 0.1527    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

# 46.10. 2-Hydroxybenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) <i>N</i> -Methyl-2-pyrrolidone; C <sub>5</sub> H <sub>9</sub> NO; [872-50-4] | Original Measurements: 160 A. Jouyban, V. Panahi-Azar, and F. Khonsari, J. Mol. Liq. 160, 14 (2011). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                         |
| Temperature                                                                                                                                                                      | W. E. Acree, Jr.                                                                                     |

| T/K   | $c_1^{\ a}$ |
|-------|-------------|
| 298.2 | 3.934       |
| 308.2 | 5.749       |
| 318.2 | 8.296       |
| 328.2 | 10.258      |

 $<sup>{}^{\</sup>mathrm{a}}c_1$ : molar solubility of the solute in units of moles per liter.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature incubator, temperature controlling system, and ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in sealed bottles and allowed to equilibrate at constant temperature in an incubator equipped with a temperature controlling system for at least two days. Solutions of the saturated solution were withdrawn and filtered using hydrophilic Durapore filters (0.45  $\mu m$ ). The filtered solutions were quantitatively diluted. Absorbances of the diluted solutions were measured. Concentrations of the diluted solutions were computed using a Beer-Law calibration curve based on measured absorbances for standard solutions of known concentration.

#### **Source and Purity of Chemicals:**

(1) 98+%, Merck Chemical Company, Germany, was used as received.(2) 99.5%, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $c_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) <i>N</i> -Methyl-2-pyrrolidone; C <sub>5</sub> H <sub>9</sub> NO; [872-50-4] | Original Measurements:  161 E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta <b>86</b> , 351 (1985). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is given in terms of molality, in which case the solubility is 5.526 mol/kg of solvent.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

# Source and Purity of Chemicals:

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements:  161 E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta <b>86</b> , 351 (1985). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is given in terms of molality, in which case the solubility is 0.283 mol/kg of solvent.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

#### **Source and Purity of Chemicals:**

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements:  161E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta <b>86</b> , 351 (1985). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is given in terms of molality, in which case the solubility is 4.911 mol/kg of solvent.

#### Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

#### Source and Purity of Chemicals:

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Formamide; CH <sub>3</sub> NO; [75-12-7] | Original Measurements:  102 J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000). |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                       |

### Experimental Values

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9574  | 0.04264   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Formamide; CH <sub>3</sub> NO; [75-12-7] | Original Measurements:  156 K. B. Sloan, K. G. Siver, and S. A. M. Koch, J. Pharm. Sci. 75, 744 (1986). |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                   | Prepared by:                                                                                            |
| T/K = 296                                                                                                                                    | W. E. Acree, Jr.                                                                                        |

#### **Experimental Values**

The measured solubility was reported to be 145 mg/ml, which corresponds to a solubility of  $c_1=1.050~\rm mol~dm^{-3}$ . The authors calculated a mole fraction solubility of  $x_1=0.045$ . The mole fraction solubility was calculated by the authors assuming a molar volume of 2-hydroxybenzoic acid of  $V_1=93.9~\rm cm^3~mol^{-1}$ , which seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1\approx 101.1~\rm cm^3~mol^{-1}$ , based on a molar mass of  $106.12~\rm g~mol^{-1}$  and an experimental density of  $1.0499~\rm g~cm^{-3}$  at  $296~\rm K$ . A molar volume on the order of  $V_1\approx 104~\rm cm^3~mol^{-1}$  would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetic stirrer and an ultraviolet/visible spectrophotometer. Solubility was determined by stirring an excess of solute in the solvent with a magnetic stirrer at ambient room temperature for 24 h in sealed flasks that were thermally insulated from the stirrer. The suspension was gravity filtered through Whatman #1 (qualitative) filter paper. The filtrate was then quantitatively diluted with methanol, and the absorbance of the diluted solution recorded at 306 nm.

# Source and Purity of Chemicals:

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.
- (2) 99+%, Aldrich Chemical Company, used as received.

#### **Estimated Error:**

Temperature:  $\pm 1$  K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) <i>N</i> -Methylformamide; C <sub>2</sub> H <sub>5</sub> NO; [123-39-7] | Original Measurements:  161 E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta <b>86</b> , 351 (1985). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is given in terms of molality, in which case the solubility is 3.807 mol/kg of solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

### **Source and Purity of Chemicals:**

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) <i>N,N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [68-12-2] | Original Measurements: <sup>161</sup> E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta <b>86</b> , 351 (1985). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is given in terms of molality, in which case the solubility is 4.459 mol/kg of solvent.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

#### **Source and Purity of Chemicals:**

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) <i>N,N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [68-12-2] | Original Measurements: <sup>102</sup> J. Barra, MA. Peña, and P. Bustamante, Eur. J. Pharm. Sci. <b>10</b> , 153 (2000). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                             |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.6160  | 0.3840    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  161 E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta 86, 351 (1985). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                            |

# **Experimental Values**

The authors' description regarding the experimental value is not clear. In the written text, the authors state that the concentration is in terms of the molal scale; however, in the footnote to Table 1 the unit is given as molal concentration/liter. The compiler has assumed that the numerical value is

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

given in terms of molality, in which case the solubility is 0.621 mol/kg of solvent.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental details are not definitive. Saturated solution was prepared by placing excess solute and solvent in test tubes. The sealed test tubes were allowed to equilibrate in a constant-temperature thermostated water bath for one week with shaking, followed by another day without shaking. Solubility was determined either gravimetrically or volumetrically. In the case of the gravimetric method, a 1 ml aliquot of saturated solution was evaporated to dryness in a small aluminum disk heated by an infrared lamp. In the volumetric method, 3–5 ml of the saturated solution was titrated with a standardized sodium hydroxide solution. The authors studied the solubility of three carboxylic acid solutes in seven different organic solvents, and did not specify which method was used for each solute-solvent pair.

#### **Source and Purity of Chemicals:**

- (1) Analytical grade, Merck Chemical Company, Germany, no purification details were provided.
- (2) Spectroscopic grade, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Nitrobenzene; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [98-95-3] | Original Measurements:<br><sup>50</sup> P. G. Desai and A. M. Patel, J<br>Indian Chem. Soc. <b>12</b> , 131<br>(1935). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 301.2                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9749  | 0.02509   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Excess solute and solvent were placed in a glass flask which was kept revolving on a wheel in an air thermostat for two days. After two days of equilibration, the solution was filtered. To minimize absorption of the solute onto the filter paper, a 100 ml portion of fresh saturated solution was first filtered through the paper before filtering the sample to be analyzed. An aliquot of the filtrate was titrated with barium hydroxide using phenolphthalein as the endpoint indictor. The barium hydroxide titrant was previously standardized against a solution of succinic acid.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, no information provided concerning purification.
- (2) Purity not given, Chemical source not specified, no information provided concerning purification.

#### **Estimated Error:**

Temperature: No information given.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Variables: $T/K = 298.15$                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]<br>(2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | <ul> <li>102J. Barra, MA. Peña, and P.</li> <li>Bustamante, Eur. J. Pharm. Sci. 10, 153 (2000).</li> </ul> |
| Components:                                                                                                                                                        | Original Measurements:                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9402  | 0.05979   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Sigma Chemical Company, USA, no purification details were provided.
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Propanoic acid; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-09-4] | Original Measurements:<br>102 J. Barra, MA. Peña, and P.<br>Bustamante, Eur. J. Pharm. Sci. 10,<br>153 (2000). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                               |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9339  | 0.06614   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, analytical balance, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a flask and allowed to equilibrate for several days at constant temperature. The solid phase was removed by filtration, and the clear solution was diluted quantitatively with 96% ethanol. The concentration of the diluted solution was determined by spectrophotometric measurement at the wavelength of maximum absorption. In instances where the solvent interfered with the spectrophotometric determination, the samples were evaporated to dryness and the residue diluted with 96% ethanol.

#### **Source and Purity of Chemicals:**

- $\label{eq:company} \mbox{(1) Purity not given, Sigma Chemical Company, USA, no purification details} \mbox{were provided.}$
- (2) Spectrophotometric or Analytical grade, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.

 $x_1$ :  $\pm 3.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) 9(Z)-Octadecenoic acid (Oleic acid); C <sub>18</sub> H <sub>34</sub> O <sub>2</sub> ; [112-80-1] | Original Measurements:  156 K. B. Sloan, K. G. Siver, and S. A. M. Koch, J. Pharm. Sci. 75 744 (1986). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                           | Prepared by:                                                                                           |
| T/K = 296                                                                                                                                                                                            | W. F. Acree, Ir                                                                                        |

### **Experimental Values**

The measured solubility was reported to be 30.3 mg/ml, which corresponds to a solubility of  $c_1 = 0.219 \, \mathrm{mol \ dm^{-3}}$ . The authors calculated a mole fraction solubility of  $x_1 = 0.066$ . The mole fraction solubility was calculated by the authors assuming a molar volume of 2-hydroxybenzoic acid of  $V_1 = 93.9 \, \mathrm{cm^3 \ mol^{-1}}$ , which seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.1 \, \mathrm{cm^3 \ mol^{-1}}$ , based on a molar mass of  $106.12 \, \mathrm{g \ mol^{-1}}$  and an experimental density of  $1.0499 \, \mathrm{g \ cm^{-3}}$  at  $296 \, \mathrm{K}$ . A molar volume on the order of  $V_1 \approx 104 \, \mathrm{cm^3 \ mol^{-1}}$  would seem more realistic given the molecular structures of 2-hydroxybenzoic acid compared to benzaldehyde.

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Magnetic stirrer and an ultraviolet/visible spectrophotometer. Solubility was determined by stirring an excess of solute in the solvent with a magnetic stirrer at ambient room temperature for 24 h in sealed flasks that were thermally insulated from the stirrer. The suspension was gravity filtered through Whatman #1 (qualitative) filter paper. The filtrate was then quantitatively diluted with methanol, and the absorbance of the diluted solution recorded at 306 nm.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Aldrich Chemical Company, Milwaukee, WI, USA, no purification details were provided.
- (2) Purity not given, Fisher Scientific, Orlando, FL, USA, used as received.

#### **Estimated Error:**

Temperature: ±1 K.

 $x_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                               | Original Measurements:                        |
|---------------------------------------------------------------------------|-----------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>87</sup> M. Dias, J. Hadgraft, and M. E. |
| [69-72-7]                                                                 | Lane, Int. J. Pharm. 336, 108 (2007).         |
| (2) Ethyl 2-hydroxypropanoate;                                            |                                               |
| C <sub>5</sub> H <sub>10</sub> O <sub>3</sub> ; [97-64-3]                 |                                               |
| Variables:                                                                | Prepared by:                                  |
| T/K = 305.2                                                               | W. E. Acree, Jr.                              |

#### **Experimental Values**

The measured solubility was reported to be 194.4 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.407$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Purac Biochem, Gorinchem, Netherlands, no purification details were provided.

# **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.046$ .

| Components:                                                               | Original Measurements:                        |
|---------------------------------------------------------------------------|-----------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>87</sup> M. Dias, J. Hadgraft, and M. E. |
| [69-72-7]                                                                 | Lane, Int. J. Pharm. 336, 108                 |
| (2) 1-Methylethyl 2-hydroxypropanoate;                                    | (2007).                                       |
| C <sub>6</sub> H <sub>12</sub> O <sub>3</sub> ; [617-64-3]                |                                               |
| Variables:                                                                | Prepared by:                                  |
| T/K = 305.2                                                               | W. E. Acree, Jr.                              |

#### **Experimental Values**

The measured solubility was reported to be 222.34 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.610$  mol dm<sup>-3</sup>

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Purac Biochem, Gorinchem, Netherlands, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.29$ .

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Butyl 2-hydroxypropanoate; C <sub>7</sub> H <sub>14</sub> O <sub>3</sub> ; [138-22-7] | Original Measurements:  87 M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. <b>336</b> , 108 (2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                             |
| T/K = 305.2                                                                                                                                                                               | W. E. Acree, Jr.                                                                                         |

#### **Experimental Values**

The measured solubility was reported to be 234.1 mg/ml, which corresponds to a molar solubility of  $c_1 = 1.695$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Purac Biochem, Gorinchem, Netherlands, no purification details were provided.

#### **Estimated Error:**

T/K = 305.2

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.11$ .

| Components:                                                                         | Original Measurements:                                                                           |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] | <ul><li><sup>87</sup>M. Dias, J. Hadgraft, and</li><li>M. E. Lane, Int. J. Pharm. 336.</li></ul> |
| (2) 9(Z)-Octadecenoic acid (Oleic acid); $C_{18}H_{34}O_2$ ; [112-80-1]             | 108 (2007).                                                                                      |
| Variables                                                                           | Prepared by                                                                                      |

W. E. Acree, Jr.

# **Experimental Values**

The measured solubility was reported to be 121.20 mg/ml, which corresponds to a molar solubility of  $c_1 = 0.877$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were equilibrated in a constant-temperature bath with stirring for 48 h. The saturated solution was then centrifuged for 10 min, and an aliquot of the supernatant solution was removed and diluted quantitatively for spectrophotometric analysis. The concentration of the dissolved solute was determined from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) Purity not given, Fisher Scientific Equipment, UK, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Insufficient experimental details to estimate.  $c_1$ :  $\pm 0.024$ .

# 46.11. 2-Hydroxybenzoic acid solubility data in binary organic solvent mixtures

| Components: (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] (3) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  152 H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi, and K. Tomono, J. Chem. Eng. Data <b>54</b> , 480 (2009). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$ ; Solvent Composition                                                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                      |

# **Experimental Values**

| $x_2^{(s)a}$ | $x_2^{b}$ | $x_1^{c}$ |
|--------------|-----------|-----------|
| 0.0000       | 0.0000    | 0.1383    |
| 0.1613       | 0.1346    | 0.1653    |
| 0.2991       | 0.2462    | 0.1767    |
| 0.4201       | 0.3441    | 0.1810    |
| 0.5262       | 0.4311    | 0.1808    |
| 0.6277       | 0.5123    | 0.1839    |
| 0.7134       | 0.5894    | 0.1738    |
| 0.7947       | 0.6553    | 0.1754    |
| 0.8701       | 0.7295    | 0.1616    |
| 0.9389       | 0.8031    | 0.1446    |
| 1.0000       | 0.8550    | 0.1450    |

 ${}^{a}x_{2}^{(s)}$ : initial mole fraction of component 2 in the binary solvent mixture.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Thermostated constant-temperature water bath and high-performance liquid chromatograph with an uv detector.

Excess solute and solvent were allowed to equilibrate for 24 h in a constant-temperature thermostated water bath. Aliquots of saturated solutions were removed and filtered through a membrane filter of 0.45  $\mu$ m pore size (Millipore, USA). Concentrations were determined by high-performance liquid chromatography equipped with an uv detector (254 nm detection). Benzene was added to the sample as an internal standard.

#### Source and Purity of Chemicals:

- (1) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.
- (2) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.
- (3) 99.5%, Wako Pure Chemical Industries, Ltd., Japan, was used without further purification.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 6.2\%$  (relative error).

| Original Measurements:                   |
|------------------------------------------|
| <sup>155</sup> M. A. Peña, A. Reíllo, B. |
| Escalera, and P. Bustamante,             |
| Int. J. Pharm. 321, 155 (2006).          |
|                                          |

| Vari | ab | ole | s:  |     |         |     | Prepared by: |
|------|----|-----|-----|-----|---------|-----|--------------|
| (- ) |    |     | . , | - 2 | 0 - 7 L | - 1 |              |

T/K = 298.15; Solvent Composition

# Experimental Values

W. E. Acree, Jr.

| T/K | $v_2^{(\mathrm{s})\mathrm{a}}$ | $x_1^{\text{c}}$ |
|-----|--------------------------------|------------------|
| 298 | 0.00                           | 0.1397           |
| 298 | 0.10                           | 0.1458           |
| 298 | 0.20                           | 0.1579           |
| 298 | 0.30                           | 0.1653           |
| 298 | 0.40                           | 0.1749           |
| 298 | 0.50                           | 0.1830           |
| 298 | 0.60                           | 0.1893           |
| 298 | 0.70                           | 0.1854           |
| 298 | 0.80                           | 0.1658           |
| 298 | 0.90                           | 0.1309           |
| 298 | 1.00                           | 0.1136           |

 $<sup>{}^{</sup>a}v_{2}^{(s)}$ : initial volume fraction of component 2 in the binary solvent mixture.  ${}^{b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for at least five days. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu m$  pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Munich, Germany, was used as received. (2) UV grade, anhydrous, Panreac, Monplet and Esteban, Barcelona, Spain, was used as received.
- (3) UV grade, anhydrous, Panreac, Monplet and Esteban, Barcelona, Spain, was used as received.

#### **Estimated Error:**

Temperature: ±0.1 K.

 $v_2^{(s)}$ : ±0.01.

 $x_1$ :  $\pm 3\%$  (relative error, most of the experimental values had uncertainties of 3% or less).

| Components:                                                               | Original Measurements:                     |
|---------------------------------------------------------------------------|--------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>154</sup> M. A. Peña, B. Escalera, A. |
| [69-72-7]                                                                 | Reíllo, A. B. Sánchez, and P.              |
| (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ;       | Bustamante, J. Pharm. Sci. 98, 1129        |
| [141-78-6]                                                                | (2009).                                    |
| (3) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                   |                                            |
| Variables:                                                                | Prepared by:                               |
| Temperature: Solvent Composition                                          | W. E. Acree, Jr.                           |

| T/K | $v_2^{(\mathrm{s})\mathrm{a}}$ | $x_1^c$ |
|-----|--------------------------------|---------|
| 293 | 0.00                           | 0.1348  |
| 293 | 0.10                           | 0.1408  |
| 293 | 0.20                           | 0.1529  |
| 293 | 0.30                           | 0.1602  |
| 293 | 0.40                           | 0.1697  |
| 293 | 0.50                           | 0.1780  |
| 293 | 0.60                           | 0.1844  |
| 293 | 0.70                           | 0.1784  |
| 293 | 0.80                           | 0.1608  |
| 293 | 0.90                           | 0.1259  |
| 293 | 1.00                           | 0.1085  |
| 303 | 0.00                           | 0.1405  |
| 303 | 0.10                           | 0.1550  |
| 303 | 0.20                           | 0.1673  |
| 303 | 0.30                           | 0.1750  |
| 303 | 0.40                           | 0.1859  |
| 303 | 0.50                           | 0.1948  |
| 303 | 0.60                           | 0.1984  |
| 303 | 0.70                           | 0.1950  |
| 303 | 0.80                           | 0.1750  |
| 303 | 0.90                           | 0.1435  |
| 303 | 1.00                           | 0.1219  |
| 308 | 0.00                           | 0.1485  |
| 308 | 0.10                           | 0.1655  |
| 308 | 0.20                           | 0.1747  |
| 308 | 0.30                           | 0.1851  |
| 308 | 0.40                           | 0.1948  |
| 308 | 0.50                           | 0.1980  |
| 308 | 0.60                           | 0.2031  |
| 308 | 0.70                           | 0.2019  |
| 308 | 0.80                           | 0.1807  |
| 308 | 0.90                           | 0.1554  |
| 308 | 1.00                           | 0.1293  |
| 313 | 0.00                           | 0.1605  |
| 313 | 0.10                           | 0.1726  |
| 313 | 0.20                           | 0.1873  |
|     |                                |         |

| T/K | $v_2^{(\mathrm{s})\mathrm{a}}$ | $x_1^{c}$ |
|-----|--------------------------------|-----------|
| 313 | 0.30                           | 0.1948    |
| 313 | 0.40                           | 0.2019    |
| 313 | 0.50                           | 0.2071    |
| 313 | 0.60                           | 0.2104    |
| 313 | 0.70                           | 0.2100    |
| 313 | 0.80                           | 0.1918    |
| 313 | 0.90                           | 0.1609    |
| 313 | 1.00                           | 0.1329    |

 $^{a}v_{2}^{(s)}$ : initial volume fraction of component 2 in the binary solvent mixture.  $^{b}x_{1}$ : mole fraction solubility of the solute.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant temperature-controlled shaking bath and an uv/visible spectrophotometer.

Binary solvent mixtures were prepared by volume. Excess solute and solvent were allowed to equilibrate in a constant temperature-controlled shaking bath for four days at 313 K, and then one day at the lower temperatures. The authors used the same samples for all temperatures. The authors started with 313 K, and once the solution was saturated at the higher temperature they lowered the temperature for the next set of measurements. Aliquots of the saturated solution were removed and filtered (Durapore membrane filter, 0.2  $\mu m$  pore size). The filtered aliquot was then diluted with ethanol (96% v/v), and the concentration of the dissolved solute determined by spectrophotometric analysis at a wavelength of 302 nm. The authors converted the molar solubilities to mole fractions using the measured densities of the saturated solutions.

#### Source and Purity of Chemicals:

- (1) Purity not given, Sigma-Aldrich, Munich, Germany, was used as received. (2) UV grade, anhydrous, Panreac, Monplet and Esteban, Barcelona, Spain,
- (3) UV grade, anhydrous, Panreac, Monplet and Esteban, Barcelona, Spain, was used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $v_2^{(s)}$ :  $\pm 0.01$ .

 $x_1$ :  $\pm 3\%$  (relative error, most of the experimental values had uncertainties of 3% or less).

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1]<br>(3) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  149 J. W. Marden and M. V. Dover, J. Am. Chem. Soc. 39, 1 (1917). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15; Solvent Composition                                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                          |

#### **Experimental Values**

| $w_2^{(\mathrm{s})_{\mathrm{a}}}$ | $s_1^{\ b}$ | $m_1^{\ \mathrm{c}}$ |
|-----------------------------------|-------------|----------------------|
| 0.00                              | 0.92        | 0.067                |
| 0.10                              | 7.1         | 0.514                |
| 0.20                              | 15.0        | 1.086                |
| 0.40                              | 25.3        | 1.832                |
| 0.60                              | 36.7        | 2.657                |

| $w_2^{(\mathrm{s})_{\mathbf{a}}}$ | $s_1^{\ \mathrm{b}}$ | $m_1^{\ c}$ |
|-----------------------------------|----------------------|-------------|
| 0.80                              | 46.4                 | 3.359       |
| 0.90                              | 51.1                 | 3.700       |
| 1.00                              | 55.5                 | 4.018       |

 ${}^{a}w_{2}^{(s)}$ : initial mass fraction of component 2 in the binary solvent mixture.  ${}^{b}s_{1}$ : solubility of the solute given as grams of solute per 100 g of solvent.  ${}^{c}m_{1}$ : solubility of the solute given as moles of solute per kilogram of solvent.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Binary solvent mixtures were prepared by mass. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification details were not provided.
- (2) Purity not given, Chemical source not given, purification details were not provided.
- (3) Purity not given, Chemical source not given, purification details were not provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $w_2^{(s)}$ : ±0.01.

 $m_1$ :  $\pm 10\%$  (relative error).

T/K = 298.15; Solvent Composition

| Components:                                                                                                                              | Original Measurements:                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| (1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [69-72-7]                                                      | <sup>149</sup> J. W. Marden and M. V. Dover, J. Am. Chem. Soc. <b>39</b> , 1 |
| (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6]<br>(3) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | (1917).                                                                      |
| Variables:                                                                                                                               | Prepared by:                                                                 |

# **Experimental Values**

W. E. Acree, Jr.

| $w_2^{(s)a}$ | $s_1^{\ b}$ | $m_1^{\text{c}}$ |
|--------------|-------------|------------------|
| 0.00         | 0.92        | 0.067            |
| 0.10         | 3.42        | 0.248            |
| 0.20         | 6.2         | 0.449            |
| 0.40         | 12.8        | 0.927            |
| 0.60         | 16.6        | 1.202            |
| 0.80         | 22.7        | 1.643            |
| 0.90         | 24.2        | 1.752            |
| 1.00         | 38.0        | 2.751            |

 $a_{w_2}^{(s)}$ : initial mass fraction of component 2 in the binary solvent mixture.  $b_{s_1}$ : solubility of the solute given as grams of solute per 100 g of solvent.  $c_{m_1}$ : solubility of the solute given as moles of solute per kilogram of solvent.

#### Method/Apparatus/Procedure:

Constant-temperature thermostat, analytical balance, and a steam bath. Binary solvent mixtures were prepared by mass. Excess solute and solvent were placed in a bottle with ground glass stopper which was protected by a coating of beeswax and rosin, over which was tied a piece of rubber sheeting. The sealed mixture was shaken in a constant-temperature thermostat for 8–20 h. An aliquot of the saturated solution was withdrawn through a glass wool filter into a weighing pipet from which the solutions were weighed directly into small glass evaporating dishes. The solvent was removed on a steam bath, and the sample further dried in a sulfuric acid desiccator. The solubility was calculated from the mass of the solid residue and the mass of the saturated solution removed for analysis.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, purification details were not provided.
- (2) Purity not given, Chemical source not given, purification details were not provided.
- (3) Purity not given, Chemical source not given, purification details were not provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $w_2^{(s)}$ :  $\pm 0.01$ .

 $m_1$ :  $\pm 10\%$  (relative error).

| Components:<br>(1) 2-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[69-72-7]<br>(2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5]<br>(3) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  163 B. Bouillot, S. Teychené, and B. Biscans, Ind. Eng. Chem. Res. <b>52</b> , 9276 (2013). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                                   | Prepared by:                                                                                                        |
| T/K = 293; Solvent Composition                                                                                                                                                                                               | W. E. Acree, Jr.                                                                                                    |

# **Experimental Values**

| T/K | $v_2^{ m (s)_a}$ | $x_1^{\text{c}}$ |
|-----|------------------|------------------|
| 293 | 0.20             | 0.128            |
| 293 | 0.40             | 0.116            |
| 293 | 0.60             | 0.101            |
| 293 | 0.80             | 0.0679           |
| 293 | 1.00             | 0.00168          |

 $<sup>{}^{</sup>a}v_{2}^{(s)}$ : initial volume fraction of component 2 in the binary solvent mixture.  ${}^{b}x_{1}$ : mole fraction solubility of the solute.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided in the manuscript. The authors simply state that the solubility measurements were carried out using the classical analytical shake flask method.

#### **Source and Purity of Chemicals:**

- (1) 99.5%, Fisher Scientific, used as received.
- (2) 99+%, Analytical Reagent, Fischer Scientific, used as received.
- (3) 99+%, Analytical Reagent, Fischer Scientific, used as received.

### **Estimated Error**

Temperature: Insufficient experimental detail provided in paper to estimate.  $v_2^{(s)}$ :  $\pm 0.01$ .

 $x_1$ : Insufficient experimental detail provided in paper to estimate.

# 47. Solubility of 3-Hydroxybenzoic Acid in Organic Solvents

# 47.1. Critical evaluation of experimental solubility data

There have been several publications<sup>54,56,127,145,147,158,165</sup> reporting the solubility of 3-hydroxybenzoic acid in organic solvents. Hancock *et al.*<sup>54</sup> measured the solubility of 3-hydroxybenzoic acid in cyclohexane and benzene at 303 K based on a gravimetric method. Ongley<sup>56</sup> measured the solubility of 3-hydroxybenzoic acid in benzene, trichloromethane and tetrachloromethane at 298 K. Bergroth<sup>158</sup> reported solubility data for 3-hydroxybenzoic acid dissolved in methanol, ethanol, 1-propanol, propanone, butanone, and 2-pentanone at 293 K. Benzene is the only solvent for which there are two independent experimental data points; however, it is not possible to directly compare the experimental values as the measurements were performed at different temperatures.

Sidgwick and Ewbank<sup>127</sup> measured the solubility of 3-hydroxybenzoic acid in benzene, ethanol, and 1-butanol as a function of temperature. The internal consistency of the benzene dataset was assessed by curve-fitting the measured mole fraction solubility data to the Modified Apelblat model to yield the following mathematical representation:

$$\ln x_1 = -208.672 + \frac{111.81}{T} + 33.861 \ln T.$$
 (52)

The first experimental solubility value of  $x_1 = 0.0070$  at 395.7 K was removed from the regression analysis in order to get a better curve-fit. There were too few data points in the ethanol and 1-butanol datasets to perform a meaningful regression analysis. The average absolute deviations between the observed experimental data and back-calculated values based on Eq. (52) of 15.9% is larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0169$  to  $x_1 = 0.738$ . It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 3-hydroxybenzoic acid in organic solvents are in Secs. 47.2–47.9.

# 47.2. 3-Hydroxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements:  145 G. L. Perlovich, T. V. Volkova, and A. Bauer-Brandl, J. Pharm. Sci. <b>95</b> , 1448 (2006). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                             |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-----|--------------------|--------------------|
| 293 | 0.9999             | 0.00000614         |
| 298 | 0.9999             | 0.00000917         |
| 303 | 0.9999             | 0.0000112          |
| 310 | 0.9999             | 0.0000174          |
| 315 | 0.9999             | 0.0000262          |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration, the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) 99%, Merck Chemicals, Darmstadt, Germany, no purification details provided.
- (2) Analytical Reagent grade, SDS, Peypin, France, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2$ :  $\pm 2.5\%$  (relative error).

| <b>Components:</b> (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements: <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 303.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

# **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$  |
|-----------|------------|
| 0.9999    | 0.00000973 |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, analytical balance. Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 33\%$  (relative error).

# 47.3. 3-Hydroxybenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-06-9]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000504 |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, analytical balance. Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

### **Estimated Error:**

Temperature: ±0.02 K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Variables: Temperature                                                              | Prepared by:<br>W. E. Acree, Jr.                                                     |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]                              | 979 (1921).                                                                          |
| (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] | <sup>127</sup> N. V. Sidgwick and E. K.<br>Ewbank, J. Chem. Soc. Trans. <b>119</b> , |
| Components:                                                                         | Original Measurements:                                                               |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 395.7 | 0.993   | 0.0070             |
| 414.2 | 0.983   | 0.0169             |
| 427.7 | 0.970   | 0.0299             |
| 435.2 | 0.938   | 0.0624             |
| 446.2 | 0.860   | 0.140              |
| 455.7 | 0.713   | 0.287              |
| 458.7 | 0.517   | 0.483              |
| 465.7 | 0.262   | 0.738              |
|       |         |                    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 474.5 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 3.198$ , which corresponds to a solubility of  $c_1 = 0.000634 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.

 $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>147</sup> J. Walker and J. K. Wood, J.<br>Chem. Soc. Trans. <b>73</b> , 618 (1898). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                       |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 298.2 | 0.9999  | 0.0000571 |
| 307.3 | 0.9999  | 0.0000797 |
| 319.2 | 0.9999  | 0.000132  |
| 331.2 | 0.9998  | 0.000245  |
| 337.2 | 0.9997  | 0.000335  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator. Prior to titration, the solvent was removed by evaporation under reduced pressure.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported as grams of solute per 100 g of solvent. Numerical values calculated by the compiler.

# 47.4. 3-Hydroxybenzoic acid solubility data in esters

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements: <sup>165</sup> F. L. Nordström and A. C. Rasmuson, Eur. J. Pharm. Sci. <b>28</b> , 377 (2006). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                          |
| Temperature                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                      |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 283.2 | 0.9604    | 0.0396    |
| 288.2 | 0.9569    | 0.0431    |
| 293.2 | 0.9532    | 0.0468    |
| 298.2 | 0.9493    | 0.0507    |
| 303.2 | 0.9444    | 0.0556    |
| 308.2 | 0.9398    | 0.0602    |
| 313.2 | 0.9342    | 0.0658    |
| 318.2 | 0.9283    | 0.0717    |
| 323.2 | 0.9227    | 0.0773    |
|       |           |           |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 283.2 | 0.9483             | 0.0517             |
| 288.2 | 0.9450             | 0.0550             |
| 293.2 | 0.9409             | 0.0591             |
| 298.2 | 0.9358             | 0.0642             |
| 303.2 | 0.9307             | 0.0693             |
| 308.2 | 0.9248             | 0.0752             |
| 313.2 | 0.9186             | 0.0814             |
| 318.2 | 0.9115             | 0.0885             |
| 323.2 | 0.9042             | 0.0958             |
|       |                    |                    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu$ m PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8+%, HiperSolv, VWR Scientific, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

# 47.5. 3-Hydroxybenzoic acid solubility data in ethers

| <b>Components:</b> (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements: 147 J. Walker and J. K. Wood, J. Chem. Soc. Trans. <b>73</b> , 618 (1898). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                | Prepared by:                                                                                      |
| T/K = 290                                                                                                                                                                 | W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

The measured solubility was reported to be 9.73 g/100 ml of solution, which corresponds to a molar concentration of  $0.704 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 47.6. 3-Hydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                        | W. E. Acree, Jr.                                                                            |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for monoclinic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the orthorhombic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 2.629$ , which corresponds to a solubility of  $c_1 = 0.00235$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                         |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 4.699$ , which corresponds to a solubility of  $c_1 = 0.0000200$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue  $\pm$  neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 47.7. 3-Hydroxybenzoic acid solubility data in alcohols

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  158 E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables: T/K = 293.15                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                     |

#### **Experimental Values**

The measured solubility was reported to be 27.86 g/100 ml of solution, which corresponds to a molar concentration of  $2.017 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  165 F. L. Nordström and A. C. Rasmuson, Eur. J. Pharm. Sci. 28, 377 (2006). |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                    |

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 283.2 | 0.9153  | 0.0847             |
| 288.2 | 0.9107  | 0.0893             |
| 293.2 | 0.9057  | 0.0943             |
| 298.2 | 0.9002  | 0.0998             |
| 303.2 | 0.8950  | 0.1050             |
| 308.2 | 0.8891  | 0.1109             |
| 313.2 | 0.8823  | 0.1177             |
| 318.2 | 0.8749  | 0.1251             |
| 323.2 | 0.8683  | 0.1317             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

bx<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for monoclinic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

(1) 99.8%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8%, HiperSolv, VWR Scientific, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                   |

### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 338.2 | 0.821              | 0.179     |
| 405.2 | 0.654              | 0.346     |
| 442.2 | 0.402              | 0.598     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 474.5 K. (2) 99%, Chemical source not given, distilled over calcium oxide shortly before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> 158 E. Bergroth, Farm. Aikak. <b>70</b> , 91 (1961). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 293.15                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                   |

#### **Experimental Values**

The measured solubility was reported to be 22.54 g/100 ml of solution, which corresponds to a molar concentration of  $1.632 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  158 E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                         |
| T/K = 293.15                                                                                                                                               | W. E. Acree, Jr.                                                     |

#### **Experimental Values**

The measured solubility was reported to be 16.34 g/100 ml of solution, which corresponds to a molar concentration of  $1.183 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

#### W. E. ACREE, JR.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-06-9]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                       |
| Temperature                                                                                                                                                         | W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 309.7 | 0.877              | 0.123     |
| 388.2 | 0.730              | 0.270     |
| 424.4 | 0.562              | 0.438     |
| 453.5 | 0.252              | 0.748     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 474.5 K. (2) Purity not given, Chemical source not given, fractionated and distilled several times before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  145 G. L. Perlovich, T. V. Volkova, and A. Bauer-Brandl, J. Pharm. Sci. 95, 1448 (2006). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                     |
| Temperature                                                                                                                                                 | W. E. Acree, Jr.                                                                                                 |

# **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-----|--------------------|--------------------|
| 293 | 0.9163             | 0.0837             |
| 298 | 0.9056             | 0.0944             |
| 303 | 0.9007             | 0.0993             |

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-----|--------------------|-----------|
| 310 | 0.887              | 0.113     |
| 315 | 0.878              | 0.122     |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

 $Thermostated \, constant-temperature \, bath, \, centrifuge, \, and \, an \, ultraviolet/visible \, spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration, the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) 99%, Merck Chemicals, Darmstadt, Germany, no purification details provided.
- (2) Analytical Reagent grade, Sigma-Aldrich, Inc., Oslo, Norway, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2$ :  $\pm 2.5\%$  (relative error).

# 47.8. 3-Hydroxybenzoic acid solubility data in ketones

| <b>Components:</b> (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> 158E. Bergroth, Farm. Aikak. <b>70</b> , 91 (1961). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                      |
| T/K = 293.15                                                                                                                                                     | W. E. Acree, Jr.                                                                  |

# **Experimental Values**

The measured solubility was reported to be 20.72 g/100 ml of solution, which corresponds to a molar concentration of  $1.500 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

# Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  147 J. Walker and J. K. Wood, J. Chem. Soc. Trans. 73, 618 (1898). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                               |
| T/K = 296                                                                                                                                                 | W. E. Acree, Jr.                                                                           |

#### **Experimental Values**

The measured solubility was reported to be 22.7 g/100 ml of solution, which corresponds to a molar concentration of  $1.643 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  165 F. L. Nordström and A. C. Rasmuson, Eur. J. Pharm. Sci. 28, 377 (2006). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                        |
| Temperature                                                                                                                                               | W. E. Acree, Jr.                                                                                    |

### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.8994             | 0.1006    |
| 288.2 | 0.8942             | 0.1058    |
| 293.2 | 0.8883             | 0.1117    |
| 298.2 | 0.8827             | 0.1173    |
| 303.2 | 0.8759             | 0.1241    |
| 308.2 | 0.8691             | 0.1309    |
| 313.2 | 0.8614             | 0.1386    |
| 318.2 | 0.8549             | 0.1451    |
| 323.2 | 0.8468             | 0.1532    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.8812             | 0.1188    |
| 288.2 | 0.8760             | 0.1240    |
| 293.2 | 0.8702             | 0.1298    |
| 298.2 | 0.8631             | 0.1369    |
| 303.2 | 0.8554             | 0.1446    |
| 308.2 | 0.8473             | 0.1527    |
| 313.2 | 0.8392             | 0.1608    |
| 318.2 | 0.8298             | 0.1702    |
| 323.2 | 0.8185             | 0.1815    |
|       |                    |           |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2 µm PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

# **Source and Purity of Chemicals:**

(1) 99%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8+%, HiperSolv, VWR Scientific, USA, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) 2-Butanone; C <sub>4</sub> H <sub>8</sub> O; [78-93-3] | Original Measurements:  158 E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                         |
| T/K = 293.15                                                                                                                                               | W. E. Acree, Jr.                                                     |

# **Experimental Values**

The measured solubility was reported to be 15.69 g/100 ml of solution, which corresponds to a molar concentration of  $1.136 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}^{r}$ : mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the monoclinic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the orthorhombic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) 2-Pentanone; C <sub>5</sub> H <sub>10</sub> O; [107-87-9] | Original Measurements:  158E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                        |
| T/K = 293.15                                                                                                                                                  | W. E. Acree, Jr.                                                    |

#### **Experimental Values**

The measured solubility was reported to be 12.63 g/100 ml of solution, which corresponds to a molar concentration of 0.914 mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

# 47.9. 3-Hydroxybenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  165 F. L. Nordström and A. C. Rasmuson, Eur. J. Pharm. Sci. 28, 377 (2006). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                        |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.9780             | 0.0220    |
| 288.2 | 0.9756             | 0.0244    |
| 293.2 | 0.9727             | 0.0273    |
| 298.2 | 0.9697             | 0.0303    |
| 303.2 | 0.9665             | 0.0335    |
| 308.2 | 0.9624             | 0.0376    |
| 313.2 | 0.9585             | 0.0415    |
| 318.2 | 0.9538             | 0.0462    |
| 323.2 | 0.9488             | 0.0512    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.9709             | 0.0291    |
| 288.2 | 0.9689             | 0.0311    |
| 293.2 | 0.9659             | 0.0341    |
| 298.2 | 0.9625             | 0.0375    |
| 303.2 | 0.9585             | 0.0415    |
| 308.2 | 0.9541             | 0.0459    |
| 313.2 | 0.9489             | 0.0511    |
| 318.2 | 0.9439             | 0.0561    |
| 323.2 | 0.9386             | 0.0614    |

 $\bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu$ m PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

bx<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the monoclinic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the orthorhombic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

#### Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 96%, Pro Analysis, Merck Chemical Company, Germany, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

| (1) 3-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-06-9]<br>(2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | <ul><li>165 F. L. Nordström and A. C.</li><li>Rasmuson, Eur. J. Pharm. Sci. 28, 377 (2006).</li></ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                          |
| Temperature                                                                                                                                          | W. E. Acree, Jr.                                                                                      |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 283.2 | 0.9929  | 0.0071             |
| 288.2 | 0.9918  | 0.0082             |
| 293.2 | 0.9904  | 0.0096             |
| 298.2 | 0.9889  | 0.0111             |
| 303.2 | 0.9870  | 0.0130             |
| 308.2 | 0.9846  | 0.0154             |
| 313.2 | 0.9821  | 0.0179             |
| 318.2 | 0.9799  | 0.0201             |
| 323.2 | 0.9766  | 0.0234             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 283.2 | 0.9910    | 0.0090    |
| 288.2 | 0.9897    | 0.0103    |
| 293.2 | 0.9881    | 0.0119    |
| 298.2 | 0.9861    | 0.0139    |
| 303.2 | 0.9839    | 0.0161    |
| 308.2 | 0.9811    | 0.0189    |
| 313.2 | 0.9781    | 0.0219    |
| 318.2 | 0.9745    | 0.0255    |
| 323.2 | 0.9706    | 0.0294    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath for at least 24 h with stirring. The stirring was discontinued and the solid was allowed to settle to the bottom of the container. An aliquot of the clear solution was removed by syringe, filtered through a 0.2 µm PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8+%, LiChroSolv, VWR Scientific, USA, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 2\%$  (relative error).

# 48. Solubility of 4-Hydroxybenzoic Acid in Organic Solvents

# 48.1. Critical evaluation of experimental solubility data

There have been several published studies 54,56,77,127,147,166– involving the solubility of 4-hydroxybenzoic acid in organic solvent mixtures. Most notably, Martin et al. 166 performed solubility measurements at 298 K for 4-hydroxybenzoic acid in two aromatic hydrocarbons (benzene and methylbenzene), in two alkyl alkanoates (ethyl ethanoate and butyl ethanoate) in one dialkyl ether (1,1'-oxybisethane) and one cyclic ether (1,4-dioxane), in two chloroalkanes (trichloromethane and 1,2-dichloroethane), in 13 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-hexanol, 1-octanol, benzenemethanol, 1,2-ethanediol, 1,2-propanediol, and 1,2,3-propanetriol), in one alkanone (propanone) and one aromatic ketone (acetophenone), and in eight miscellaneous organic solvents (ethanoic acid, propanoic acid, dimethyl sulfoxide, pyridine, formamide, N-methylformamide, N,N-dimethylformamide, and N,N-dimethylacetamide). Gracin and Rasmuson<sup>167</sup> determined the solubility of 4-hydroxybenzoic acid in ethyl ethanoate, methanol, ethanol, 2-propanol, 1-octanol, and propanone

The Abraham solvation parameter model can provide an indication of the quality of experimental solubility data for 4-hydroxybenzoic acid dissolved in a series of organic solvents of varying polarity and hydrogen bonding character. As discussed above, the evaluation will be restricted to those solvents where dimerization is not likely to occur and to solvents where 4-hydroxybenzoic acid does not form a solid solvate. This condition will limit the evaluation to primarily the alkyl alkanoates, dialkyl ethers, and alcohols.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the monoclinic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The authors noted that the solid existed in different polymorphic forms. The solubility data are for the orthorhombic form. Solubilities were reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

Table 38. Comparison between observed and predicted molar solubilities of 4-hydroxybenzoic acid based on the Abraham model, Eqs. (20) and (21)

| Calarant            | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ | 1 - exp                      | 1 exp                        |
|---------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|
| Solvent             | Eq. (20)                       | Eq. (21)                       | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{exp}}$ |
| Methanol            | 0.327                          | 0.225                          | $0.377^{a}$                  | $0.377^{b}$                  |
| Ethanol             | 0.329                          | 0.271                          | $0.276^{a}$                  | 0.292 <sup>b</sup>           |
| 1-Propanol          | 0.158                          | 0.159                          | $0.142^{a}$                  |                              |
| 2-Propanol          | 0.185                          | 0.205                          | $0.208^{a}$                  | $0.228^{b}$                  |
| 1-Butanol           | -0.008                         | -0.003                         | $0.092^{a}$                  |                              |
| 2-Butanol           | 0.042                          | 0.043                          |                              |                              |
| 2-Methyl-1-propanol | -0.004                         | -0.058                         | $-0.016^{a}$                 |                              |
| 2-Methyl-2-propanol | 0.098                          | 0.189                          |                              |                              |
| 1-Pentanol          | 0.061                          | 0.058                          | $0.025^{a}$                  |                              |
| 2-Pentanol          | 0.101                          | 0.054                          |                              |                              |
| 3-Methyl-1-butanol  | -0.014                         | -0.089                         |                              |                              |
| 1-Hexanol           | -0.038                         | -0.054                         | $-0.040^{a}$                 |                              |
| 1-Heptanol          | -0.214                         | -0.105                         |                              |                              |
| 1-Octanol           | -0.202                         | -0.241                         | $-0.170^{a}$                 | $-0.141^{b}$                 |
| 1-Decanol           | -0.209                         | -0.210                         |                              |                              |
| 1,2-Ethanediol      | 0.219                          | 0.263                          | $0.266^{a}$                  |                              |
| 1,1'-Oxybisethane   | -0.468                         | -0.405                         | $-0.300^{a}$                 |                              |
| Tetrahydrofuran     | 0.198                          | 0.174                          |                              |                              |
| 1,4-Dioxane         | -0.148                         | -0.186                         | $-0.014^{a}$                 |                              |
| Methyl ethanoate    | -0.486                         | -0.553                         |                              |                              |
| Ethyl ethanoate     | -0.403                         | -0.411                         | $-0.128^{a}$                 | $-0.151^{b}$                 |
| Propyl ethanoate    | -0.496                         | -0.520                         |                              |                              |
| Butyl ethanoate     | -0.589                         | -0.629                         | $-0.358^{a}$                 |                              |
| Propanone           | -0.226                         | -0.230                         | 0.184 <sup>a</sup>           | 0.187 <sup>b</sup>           |

<sup>&</sup>lt;sup>a</sup>Experimental value is taken from Martin et al. <sup>166</sup>

Numerical values of the solute descriptors for 4-hydroxy-benzoic acid are known (E=0.930, S=0.900, A=0.810, B=0.570, V=0.9904, and L=4.867), so that combination of these descriptors with the coefficients listed in Table 1 allows the prediction of  $\log_{10} \left(c_{1,\mathrm{S}}^{\mathrm{sat}} / c_{1,\mathrm{W}}^{\mathrm{sat}}\right)$ . The molar solubility of molecular 4-hydroxybenzoic acid in water,  $\log_{10} c_{1,\mathrm{W}}^{\mathrm{sat}} = -1.47$  (Ref. 164), is available to convert the predicted  $\left(c_{1,\mathrm{S}}^{\mathrm{sat}} / c_{1,\mathrm{W}}^{\mathrm{sat}}\right)$  solubility ratios to  $c_{1,\mathrm{S}}^{\mathrm{sat}}$  values. For carboxylic acid solutes,  $c_{1,\mathrm{W}}^{\mathrm{sat}}$  corresponds to the aqueous solubility of the molecular, nonionized form of the solute. A numerical value of  $\log_{10} c_{1,\mathrm{G}} = -8.25$  is used for the gas-phase molar concentration of 4-hydroxybenzoic acid.

The predicted molar solubilities of 4-hydroxybenzoic acid in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-octanol, 2-propanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1,2-ethanediol, 1,1'-oxybisethane, tetrahydrofuran, 1,4dioxane, ethyl ethanoate, butyl ethanoate, propanone, butanone, and cyclohexanone based on Eqs. (20) and (21) are listed in the second and third columns of Table 38. The numerical values represent outright solubility predictions in that none of the experimental data was used in the determination of the molecular solute descriptors. For comparison purposes, the measured mole fraction solubilities of 4-hydroxybenzoic acid,  $x_1$ , given in Secs. 48.2-48.9 were converted into molar solubilities by dividing  $x_1$ by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1$  $[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 4-hydroxybenzoic acid is taken to be  $V_{\rm solute}$ = 104 cm<sup>3</sup> mol<sup>-1</sup>, which is larger than the value that other researchers have used. Martin et al. 166 assumed a molar volume

of 4-hydroxybenzoic acid of  $V_1 = 94.3 \text{ cm}^3 \text{ mol}^{-1}$ . This latter value seems too small compared to the molar volume of benzaldehyde, which is estimated to be  $V_1 \approx 101.7 \text{ cm}^3 \text{ mol}^{-1}$ , based on a molar mass of 106.12 g mol<sup>-1</sup> and an experimental density of 1.0436 g cm<sup>-3</sup> at 298 K. A molar volume on the order of  $V_1 \approx$ 104 cm<sup>3</sup> mol<sup>-1</sup> would seem more realistic given the molecular structures of 4-hydroxybenzoic acid compared to benzaldehyde. To get an idea of how much error might be introduced in the mole fraction to molarity conversion, the mole fraction solubility of 4hydroxybenzoic acid in methanol of  $x_1 = 0.1142$  (value from Martin et al.  $^{166}$ ) is converted into molar solubilities using both  $V_1$ = 94.3 cm<sup>3</sup> mol<sup>-1</sup> ( $c_1 = 2.439 \text{ mol dm}^{-3}$ ) and  $V_1 \approx 104 \text{ cm}^3$  $\text{mol}^{-1}$  ( $c_1 = 2.383 \text{ mol dm}^{-3}$ ). Results of the computation suggest that any errors resulting from the estimation of 4hydroxybenzoic acid's hypothetical subcooled liquid molar volume,  $V_{\text{solute}}$ , or the ideal molar volume approximation will have negligible effect of the calculated  $c_1$  values because 4hydroxybenzoic acid is not overly soluble in many of the solvents considered. From a mathematical standpoint, the  $x_1^{\text{exp}}V_{\text{solute}}$  term contributes very little to the molar volumes of the saturated solutions.

There is a sufficient number of data points for several of the solvents in Secs. 48.2–48.9 to compute a recommended value. The recommended mole fraction solubilities at 298 K are:  $x_1 = 0.0719$  for ethyl ethanoate [arithmetic average of  $x_1 = 0.0737$ ,  $^{166}$  0.0698,  $^{167}$  and 0.0722 (Ref. 168)];  $x_1 = 0.114$  for methanol [arithmetic average of  $x_1 = 0.1142$ ,  $^{166}$  0.1142,  $^{167}$  and 0.1141 (Ref. 168)]; and  $x_1 = 0.106$  for 1-octanol [arithmetic average of 0.1031,  $^{166}$  0.1102,  $^{167}$  and 0.106,  $^{77}$  excluding a suspected outlier value of  $x_1 = 0.139$  (Ref. 145)].

Nordström and Rasmuson $^{168}$  measured the solubility of 4-hydroxybenzoic acid in ethyl ethanoate, methanol, propanone, ethanenitrile, and ethanoic acid at several temperatures between 283 K and 323 K in order to calculate thermodynamic data pertaining to the dissolution process. The authors computed the enthalpy of solution of 4-hydroxybenzoic acid in the five organic solvents through a Van't Hoff treatment of the measured solubility data. The natural logarithms of the mole fraction solubilities were curve-fit to a second degree polynomial in 1/T

$$\ln x_1 = A + \frac{B}{T} + \frac{C}{T^2},\tag{53}$$

with the enthalpy of solution calculated as the temperature derivative, i.e.,  $\Delta H_{\rm soln} = RT^2({\rm d} \ln x_1/{\rm d}T)$ . The equation coefficients (A, B, and C), along with the squared correlation coefficients,  $R^2$ , are given in Table 39. The authors did note in the discussion the morphologies of crystals obtained by evaporation crystallization from the different solvents, and some of the difficulties encountered in making reproducible solubility measurements. Solubility analyses and FTIR-ATR spectroscopic measurements, in combination with the solubility analyses and microscopic examinations, did suggest indications of an enantiotropic polymorphism in ethanenitrile and ethanoic acid. The transition point was estimated to fall between 298 and 303 K. An acetone solvate was found and

<sup>&</sup>lt;sup>b</sup>Gracin and Rasmuson. <sup>167</sup>

Table 39. Parameters of Eq. (53) for describing the solubility of 4-hydroxybenzoic acid in various organic solvents

| Solvent              | A      | В       | С      | $R^2$  |
|----------------------|--------|---------|--------|--------|
| Ansolvatea           |        |         |        |        |
| Methanol             | 5.3439 | -3688.6 | 432010 | 0.9981 |
| Ethanenitrile        | 8.1099 | -4864.5 | 351270 | 0.9993 |
| Ethanoic acid        | 6.7801 | -4499.5 | 466550 | 0.9999 |
| Propanone            | 13.414 | -8727.2 | 124350 | 0.9985 |
| Ethyl ethanoate      | 6.0428 | -4137.8 | 462870 | 0.9999 |
| Solvate <sup>a</sup> |        |         |        |        |
| Acetone solvate      | 10.286 | -5873.3 | 647790 | 0.9999 |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and squared correlation coefficients were taken from Nordström and Rasmuson. <sup>168</sup>

shown to be the stable phase up to approximately 323 K. The solubility of the ansolvate could be determined at higher temperature by dissolution up to equilibrium. Both propanone and 4-hydroxybenzoic acid had to be preheated to 323 K in order to inhibit phase conversion into the solvate. The authors were able to measure the solubility of the ansolvate down to 303 K. Indication of the presence of further solvates in ethanenitrile, ethyl ethanoate, and methanol was found but could not be verified.

Qingzhu *et al.*<sup>77</sup> measured the solubility of 4-hydroxybenzoic acid in 1-octanol as a function of temperature using a dynamic method with laser monitoring to observe when dissolution was complete. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [Eq. (9)] of  $\lambda$  = 0.0248 and h = 5861.21 described the observed solubility data to within a mean relative deviation of 0.2%.

The experimental solubility data for 4-hydroxybenzoic acid in organic solvents are in Secs. 48.2–48.9.

# 48.2. 4-Hydroxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements:  145 G. L. Perlovich, T. V. Volkova, and A. Bauer-Brandl, J. Pharm. Sci. 95, 1448 (2006). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                     |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                                 |

# **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-----|--------------------|--------------------|
| 293 | 0.9999             | 0.00000205         |
| 294 | 0.9999             | 0.00000245         |
| 298 | 0.9999             | 0.00000305         |
| 303 | 0.9999             | 0.00000376         |
| 310 | 0.9999             | 0.00000596         |
| 315 | 0.9999             | 0.00000714         |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated constant-temperature bath, centrifuge, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration, the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

#### Source and Purity of Chemicals:

- (1) 99%, Merck Chemicals, Darmstadt, Germany, no purification details provided.
- (2) Analytical Reagent grade, Sigma-Aldrich Inc., Oslo, Norway, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2$ :  $\pm 2.5\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> 54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                        |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000370 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                         |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                     |

# **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 4.398$ , which corresponds to a solubility of  $c_1 = 0.0000400$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 48.3. 4-Hydroxybenzoic acid solubility data in aromatic hydrocarbons

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>166</sup> A. Martin, P. L. Wu, and A.<br>Beerbower, J. Pharm. Sci. <b>73</b> , 188<br>(1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                                 |
| T/K = 298.15                                                                                                                                                  | W. E. Acree, Jr.                                                                                                             |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9999             | 0.000038  |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements: <sup>54</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000588 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a 3  $\times$  80 cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Original Measurements: 127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree, Jr.                                                                  |
|                                                                                                   |

### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 405.4 | 0.994              | 0.0059             |
| 430.1 | 0.983              | 0.0174             |
| 438.5 | 0.975              | 0.0248             |
| 451.2 | 0.939              | 0.0610             |
| 464.7 | 0.869              | 0.131              |
| 468.9 | 0.721              | 0.279              |
| 472.0 | 0.527              | 0.473              |
| 479.2 | 0.266              | 0.734              |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 486.2 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  56 P. A. Ongley, J. Chem. Soc. 1954, 3634. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                       |
| T/K = 298.15                                                                                                                                           | W. E. Acree, Jr.                                                   |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 3.432$ , which corresponds to a solubility of  $c_1 = 0.000370 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.

 $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  147 J. Walker and J. K. Wood, J. Chem. Soc. Trans. 73, 618 (1898). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                                               |
| Temperature                                                                                                                                            | W. E. Acree, Jr.                                                                           |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.9999             | 0.0000111 |
| 306.2 | 0.9999             | 0.0000323 |
| 322.2 | 0.9999             | 0.0000876 |
| 337.2 | 0.9998             | 0.000198  |
| 353.2 | 0.9996             | 0.000373  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator. Prior to titration, the solvent was removed by evaporation under reduced pressure.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported as grams of solute per 100 g of solvent. Numerical values calculated by the compiler.

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Toluene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{\ b}$ |
|--------------------|-------------|
| 0.9999             | 0.000027    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                               | Original Measurements:                         |
|---------------------------------------------------------------------------|------------------------------------------------|
| (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>167</sup> S. Gracin and A. C. Rasmuson, J |
| [99-96-7]                                                                 | Chem. Eng. Data 47, 1379 (2002).               |
| (2) Toluene; C <sub>7</sub> H <sub>8</sub> ; [108-88-3]                   |                                                |
| Variables:                                                                | Prepared by:                                   |
| T/K = 298.15                                                              | W. E. Acree, Jr.                               |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9990  | 0.00100   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

# Source and Purity of Chemicals:

- $(1)\ 99\%,\ Sigma-Aldrich,\ Sweden,\ no\ purification\ details\ were\ provided.$
- (2) 99.5%, Kemetyl AB, Sweden, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 60\%$  (relative error, based on standard deviation given in the paper).

# 48.4. 4-Hydroxybenzoic acid solubility data in esters

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                  |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9263  | 0.0737    |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  167 S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data 47, 1379 (2002). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9302  | 0.0698    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) 99%, Sigma-Aldrich, Sweden, no purification details were provided. (2) Pro Analyse, Merck Chemical Company, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  168 F. Nordström and A. C. Rasmuson, J. Pharm. Sci. 95, 748 (2006). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                |
| Temperature                                                                                                                                                                    | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.9389             | 0.0611    |
| 288.2 | 0.9356             | 0.0644    |
| 293.2 | 0.9320             | 0.0680    |
| 298.2 | 0.9278             | 0.0722    |
| 303.2 | 0.9233             | 0.0767    |
| 308.2 | 0.9189             | 0.0811    |
| 313.2 | 0.9135             | 0.0865    |
| 318.2 | 0.9084             | 0.0916    |
| 323.2 | 0.9027             | 0.0973    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99+%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8%, HiperSolv, VWR Scientific, USA, used as received.

#### Estimated Error:

Temperature:  $\pm 0.01$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:                                                                         | Original Measurements:                                                               |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] | <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 |
| (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4]     | (1984).                                                                              |
| Variables: $T/K = 298.15$                                                           | Prepared by:<br>W. E. Acree, Jr.                                                     |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9426  | 0.0574  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $bx_1$ : mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility was reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Methylethyl tetradecanoate; C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> ; [110-27-0] | Original Measurements: <sup>61</sup> E. R. Cooper, J. Controlled Release <b>1</b> , 153 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                    | Prepared by:                                                                                    |
| T/K = 295                                                                                                                                                                                     | W. E. Acree, Jr.                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.984   | 0.016     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

# **Source and Purity of Chemicals:**

- (1) Reagent grade, Aldrich Chemical Company, Metuchen, NJ, USA, no purification details provided.
- (2) Reagent grade, Wickhen Corporation, Huguenot, NJ, USA, no purification details provided.

# **Estimated Error:**

Temperature: No information given.  $x_1$ : No information given.

# 48.5. 4-Hydroxybenzoic acid solubility data in ethers

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9479  | 0.0521  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:                                                               | Original Measurements:                      |
|---------------------------------------------------------------------------|---------------------------------------------|
| (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>147</sup> J. Walker and J. K. Wood, J. |
| [99-96-7]                                                                 | Chem. Soc. Trans. <b>73</b> , 618 (1898).   |
| (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;                  |                                             |
| [60-29-7]                                                                 |                                             |
| Variables:                                                                | Prepared by:                                |
| T/K = 290                                                                 | W. E. Acree, Jr.                            |
|                                                                           | ,                                           |

#### **Experimental Values**

The measured solubility was reported to be 9.43 g/100 ml of solution, which corresponds to a molar concentration of  $0.683 \text{ mol dm}^{-3}$ .

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                              |
| T/K = 303.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.707   | 0.293              |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

## **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:<br><sup>166</sup> A. Martin, P. L. Wu, and A.<br>Beerbower, J. Pharm. Sci. <b>73</b> , 188<br>(1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9156  | 0.0844    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-96-7]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.851   | 0.149       |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 48.6. 4-Hydroxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                      |
| T/K = 298.15                                                                                                                                        | W. E. Acree, Jr.                                                                                  |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9998  | 0.00015   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                          | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                        | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 2.991$ , which corresponds to a solubility of  $c_1 = 0.00102 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:                                                               | Original Measurements:                                  |
|---------------------------------------------------------------------------|---------------------------------------------------------|
| (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , |
| [99-96-7]                                                                 | 3634.                                                   |
| (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5]                      |                                                         |
|                                                                           |                                                         |
| Variables:                                                                | Prepared by:                                            |
| T/K = 298.15                                                              | W. E. Acree, Jr.                                        |

# **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 5.000$ , which corresponds to a solubility of  $c_1 = 0.0000100$  mol dm<sup>-3</sup>.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1,2-Dichloroethane; C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> ; [107-60-2] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9999  | 0.00011 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 48.7. 4-Hydroxybenzoic acid solubility data in alcohols

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8858  | 0.1142    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  167 S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data 47, 1379 (2002). |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                              |

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8858  | 0.1142      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^</sup>bx_1$ : mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

#### Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) 99%, Sigma-Aldrich, Sweden, no purification details were provided. (2) Pro Analyse, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  168 F. Nordström and A. C. Rasmuson, J. Pharm. Sci. 95, 748 (2006). |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                |
| Temperature                                                                                                                                | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.8987             | 0.1013    |
| 288.2 | 0.8961             | 0.1039    |
| 293.2 | 0.8902             | 0.1098    |
| 298.2 | 0.8859             | 0.1141    |
| 303.2 | 0.8795             | 0.1205    |
| 308.2 | 0.8746             | 0.1254    |
| 313.2 | 0.8693             | 0.1307    |
| 318.2 | 0.8617             | 0.1383    |
| 323.2 | 0.8556             | 0.1444    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### Source and Purity of Chemicals:

(1) 99+%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8%, HiperSolv, VWR Scientific, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | <b>Original Measurements:</b> <sup>158</sup> E. Bergroth, Farm. Aikak. <b>70</b> , 91 (1961). |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                        | Prepared by:                                                                                  |
| T/K = 293.15                                                                                                                                      | W. E. Acree, Jr.                                                                              |

#### **Experimental Values**

The measured solubility was reported to be 32.45 g/100 ml of solution, which corresponds to a molar concentration of  $2.349 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

# Source and Purity of Chemicals:

- (1) 99.5%, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:                                                               | Original Measurements:                     |
|---------------------------------------------------------------------------|--------------------------------------------|
| (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; | <sup>166</sup> A. Martin, P. L. Wu, and A. |
| [99-96-7]                                                                 | Beerbower, J. Pharm. Sci. <b>73</b> , 188  |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                   | (1984).                                    |
| Variables: T/K = 298.15                                                   | Prepared by:<br>W. E. Acree, Jr.           |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility was reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.8787           | 0.1213    |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  167 S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data 47, 1379 (2002). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8739  | 0.1261  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich, Sweden, no purification details were provided. (2) 99.5%, Kemetyl AB, Sweden, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                       |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 340.2 | 0.826              | 0.174     |
| 409.7 | 0.658              | 0.342     |
| 457.2 | 0.382              | 0.618     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 486.2 K. (2) 99%, Chemical source not given, distilled over calcium oxide shortly before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  158E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                        |
| T/K = 293.15                                                                                                                                            | W. E. Acree, Jr.                                                    |

#### **Experimental Values**

The measured solubility was reported to be 24.36 g/100 ml of solution, which corresponds to a molar concentration of  $1.699 \text{ mol dm}^{-3}$ .

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.5%, Schuchardt Chemicals, no purification details were provided.
(2) Purity not given, Chemical source not given, no purification details were

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8916  | 0.1084    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | <b>Original Measurements:</b> <sup>158</sup> E. Bergroth, Farm. Aikak. <b>70</b> , 91 (1961). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 293.15$                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

The measured solubility was reported to be 19.46 g/100 ml of solution, which corresponds to a molar concentration of  $1.409 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

### Source and Purity of Chemicals:

- (1) 99.5%, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                      |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8703  | 0.1297  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  167 S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data 47, 1379 (2002). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8639  | 0.1361      |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### Source and Purity of Chemicals:

(1) 99%, Sigma-Aldrich, Sweden, no purification details were provided. (2) Pro Analyse, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8846  | 0.1154    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | <b>Original Measurements:</b> <sup>127</sup> N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. <b>119</b> , 979 (1921). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                                                                |
| Temperature                                                                                                                                                       | W. E. Acree, Jr.                                                                                                            |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 305.7 | 0.885              | 0.115              |
| 335.2 | 0.848              | 0.152              |
| 389.3 | 0.741              | 0.259              |
| 440.2 | 0.529              | 0.471              |
| 467.0 | 0.240              | 0.760              |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 486.2 K. (2) Purity not given, Chemical source not given, fractionated and distilled several times before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9099  | 0.0901    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.8855           | 0.1145    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | <b>Original Measurements:</b> <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8879  | 0.1121  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                      |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8968  | 0.1032    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  167 S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data 47, 1379 (2002). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.8898    | 0.1102    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### **Source and Purity of Chemicals:**

(1) 99%, Sigma-Aldrich, Sweden, no purification details were provided. (2) Pro Analyse, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>77</sup> J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, and L. Guiju, J. Chem. Eng. Data <b>53</b> , 1278 (2008). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                        |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 297.65 | 0.8947             | 0.1053             |
| 299.95 | 0.8928             | 0.1072             |
| 301.45 | 0.8911             | 0.1089             |
| 302.85 | 0.8897             | 0.1103             |
| 304.25 | 0.8885             | 0.1115             |
| 305.85 | 0.8869             | 0.1131             |
| 306.95 | 0.8854             | 0.1146             |
| 308.15 | 0.8841             | 0.1159             |
| 309.85 | 0.8828             | 0.1172             |
| 311.25 | 0.8812             | 0.1188             |
| 313.15 | 0.8794             | 0.1206             |
| 315.45 | 0.8776             | 0.1224             |
| 317.25 | 0.8757             | 0.1243             |
| 318.65 | 0.8740             | 0.1260             |
| 320.55 | 0.8721             | 0.1279             |
| 322.25 | 0.8701             | 0.1299             |
|        |                    |                    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Circulating water bath, analytical balance, laser monitoring system. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate of 0.5 K/20 min (0.2 K/20 min or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) <99%, Chemical source not specified, used as received.
- (2) <99%, Chemical source not specified, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 0.0005$ .

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:<br><sup>145</sup> G. L. Perlovich, T. V. Volkova,<br>and A. Bauer-Brandl, J. Pharm. Sci.<br><b>95</b> , 1448 (2006). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                                                |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                            |

#### **Experimental Values**

| T/K | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-----|--------------------|-----------|
| 293 | 0.871              | 0.129     |
| 298 | 0.861              | 0.139     |
| 303 | 0.846              | 0.154     |
| 310 | 0.823              | 0.177     |
| 315 | 0.814              | 0.186     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

 $Thermostated \ constant-temperature \ bath, \ centrifuge, \ and \ an \ ultraviolet/visible \ spectrophotometer.$ 

Excess solute and solvent were placed in a glass ampoule and allowed to equilibrate in a thermostated temperature bath with mixing (at a speed of 25 rpm) for a minimum of four days. After suitable equilibration the saturated solution was centrifuged, the supernatant liquid collected, quantitatively diluted, and the absorbance recorded using an ultraviolet/visible spectrophotometer. The solubility of the solute was calculated from the measured absorbance.

# **Source and Purity of Chemicals:**

- (1) 99%, Merck Chemicals, Darmstadt, Germany, no purification details provided.
- (2) Analytical Reagent grade, Sigma-Aldrich Inc., Oslo, Norway, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2$ :  $\pm 2.5\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Benzenemethanol; C <sub>7</sub> H <sub>8</sub> O; [100-51-6] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9216  | 0.0784    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1,2-Ethanediol; C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> ; [107-21-1] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8868  | 0.1132    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [57-55-6] | <b>Original Measurements:</b> <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                           | Prepared by:                                                                                                               |
| T/K = 298.15                                                                                                                                                                         | W. E. Acree, Jr.                                                                                                           |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8692  | 0.1308    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-96-7]<br>(2) 1,2-Propanediol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[57-55-6] | Original Measurements:  61 E. R. Cooper, J. Controlled Release 1, 153 (1984). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Variables: T/K = 295                                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                              |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.845   | 0.155     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details provided. Solubility determinations were made by stirring the solvent with excess solute for two days, centrifuging the sample, and analyzing the supernatant.

#### Source and Purity of Chemicals:

- (1) Reagent grade, Aldrich Chemical Company, Metuchen, NJ, USA, no purification details provided.
- (2) Reagent grade, J.T. Baker Chemical Company, Phillipsburg, NJ, USA, no purification details provided.

#### **Estimated Error:**

Temperature: No information given.  $x_1$ : No information given.

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 1,2,3-Propanetriol (Glycerol); C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> ; [60-29-7] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                  | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                                                                | W. E. Acree, Jr.                                                                                                    |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9699  | 0.0301    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Solubility data reported in terms of mass percent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 48.8. 4-Hydroxybenzoic acid solubility data in ketones

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                      |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8815  | 0.1185    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> <sup>167</sup> S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data <b>47</b> , 1379 (2002). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                           |
| T/K = 298.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8806  | 0.1194    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) 99%, Sigma-Aldrich, Sweden, no purification details were provided.
- (2) Pro Analyse, Merck Chemical Company, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components:<br>(1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-96-7]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | <b>Original Measurements:</b> 168 F. Nordström and A. C. Rasmuson, J. Pharm. Sci. <b>95</b> , 748 (2006). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                              |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                          |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 303.2 | 0.8417             | 0.1583  |
| 308.2 | 0.8371             | 0.1629  |
| 313.2 | 0.8299             | 0.1701  |
| 318.2 | 0.8235             | 0.1765  |
| 323.2 | 0.8145             | 0.1855  |

 $\overline{a}x_2$ : mole fraction of component 2 in the saturated solution.

bx<sub>1</sub>: mole fraction solubility of the solute. Solubility was reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

(1) 99+%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8%, HiperSolv, VWR Scientific, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-96-7]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  158 E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables: T/K = 293.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                     |

### **Experimental Values**

The measured solubility was reported to be 20.55 g/100 ml of solution, which corresponds to a molar concentration of 1.488 mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### **Source and Purity of Chemicals:**

(1) 99.5%, Schuchardt Chemicals, no purification details were provided. (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  147 J. Walker and J. K. Wood, J. Chem. Soc. Trans. 73, 618 (1898). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                               |
| T/K = 296                                                                                                                                                 | W. E. Acree, Jr.                                                                           |

#### **Experimental Values**

The measured solubility was reported to be 22.7 g/100 ml of solution, which corresponds to a molar concentration of 1.643 mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Excess solute and solvent were equilibrated with agitation by stirrers driven by a small turbine. At higher temperatures agitation was occasionally by hand. Equilibrium was obtained by both undersaturation at lower temperature and by supersaturation by pre-equilibrating at a higher temperature. The concentration of the dissolved solute was determined by titration with barium hydroxide with Congo Red being the endpoint indicator.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: Not given in paper.

 $c_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 2-Butanone; C <sub>4</sub> H <sub>8</sub> O; [78-93-3] | <b>Original Measurements:</b> <sup>158</sup> E. Bergroth, Farm. Aikak. <b>70</b> , 91 (1961). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                                  |
| T/K = 293.15                                                                                                                                                      | W. E. Acree, Jr.                                                                              |

#### **Experimental Values**

The measured solubility was reported to be 20.58 g/100 ml of solution, which corresponds to a molar concentration of  $1.490 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

## **Source and Purity of Chemicals:**

- (1) 99.5%, Schuchardt Chemicals, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ;<br>[99-96-7]<br>(2) 2-Pentanone; C <sub>5</sub> H <sub>10</sub> O; [107-87-9] | Original Measurements:  158E. Bergroth, Farm. Aikak. 70, 91 (1961). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Variables:                                                                                                                                                             | Prepared by:                                                        |
| T/K = 293.15                                                                                                                                                           | W. E. Acree, Jr.                                                    |

The measured solubility was reported to be 17.09 g/100 ml of solution, which corresponds to a molar concentration of  $1.237 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Solubility was determined using a gravimetric method. Excess solute and solvent were placed in a solubility vessel. The apparatus was closed tightly with rubber stoppers and allowed to equilibrate in a constant-temperature water bath with stirring. A known aliquot of the saturated solution was removed, filtered, and transferred to an evaporating dish. The solvent was carefully removed over a steam bath. The evaporating dish was then placed in a drying oven, and later removed and weighed. The solubility was calculated from the mass of the solid residue and volume of saturated sample analyzed.

#### **Source and Purity of Chemicals:**

99.5%, Schuchardt Chemicals, no purification details were provided.
 Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 5\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) 4-Methyl-2-pentanone; C <sub>6</sub> H <sub>12</sub> O; [108-10-1] | <b>Original Measurements:</b> <sup>167</sup> S. Gracin and A. C. Rasmuson, J Chem. Eng. Data <b>47</b> , 1379 (2002). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Variables:<br>T/K = 298.15                                                                                                                                                    | Prepared by: W. E. Acree, Jr.                                                                                         |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.8999    | 0.1001      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Thermostated water bath, analytical balance, magnetic stirrer, and vacuum drying oven.

Solubility was determined by the gravimetric method. Excess solute and solvent were placed in Erlenmeyer flasks and allowed to equilibrate for 72 h in a thermostatic water bath sitting on a multiple-position magnetic stirrer. The solutions were stirred during the equilibration period. The stirring was then stopped for 4 h to allow the suspended solid to settle to the bottom of the flask. A sample of the clear saturated solution was transferred with a heated syringe into a previously weighed sample vial. The vial containing the saturated solution was then weighed, and the solvent was allowed to evaporate in a vacuum oven at 293 K for approximately one week until a constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of the saturated solution analyzed.

#### Source and Purity of Chemicals:

- 99%, Sigma-Aldrich, Sweden, no purification details were provided.
   Pro Analyse, Merck Chemical Company, no purification details were provided.
- **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Acetophenone; C <sub>8</sub> H <sub>8</sub> O; [98-86-2] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9777  | 0.0223    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1 µm pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility data were reported as the grams of solute that dissolved per kilogram of solvent. Mole fraction solubility calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 48.9. 4-Hydroxybenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                    |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.6326  | 0.3674    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Pyridine; C <sub>5</sub> H <sub>5</sub> N; [110-86-1] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                      |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

| $\overline{x_2}^a$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.8956             | 0.1044    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Formamide; CH <sub>3</sub> NO; [75-12-7] | Original Measurements:  166 A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984). |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Variables:                                                                                                                                   | Prepared by:                                                                                      |  |
| T/K = 298.15                                                                                                                                 | W. E. Acree, Jr.                                                                                  |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9659  | 0.0341    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) <i>N</i> -Methylformamide; C <sub>2</sub> H <sub>5</sub> NO; [123-39-7] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                                        |
| T/K = 298.15                                                                                                                                                                | W. E. Acree, Jr.                                                                                                    |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8975  | 0.1025    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) <i>N</i> , <i>N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [68-12-2] | Original Measurements: <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                    |  |

### Experimental Values

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7863  | 0.2137    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) <i>N,N</i> -Dimethylacetamide; C <sub>4</sub> H <sub>9</sub> NO; [127-19-5] | <b>Original Measurements:</b> <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                               |
| T/K = 298.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                           |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.7646             | 0.2354    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| <b>Components:</b> (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | <b>Original Measurements:</b> <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                           |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9556  | 0.0444    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a  $0.1\,\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  168 F. Nordström and A. C. Rasmuson, J. Pharm. Sci. 95, 748 (2006). |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                |  |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                                            |  |

## **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 283.2 | 0.9628             | 0.0372             |
| 288.2 | 0.9599             | 0.0401             |
| 293.2 | 0.9568             | 0.0432             |
| 298.2 | 0.9531             | 0.0469             |
| 303.2 | 0.9494             | 0.0506             |
| 308.2 | 0.9455             | 0.0545             |
| 313.2 | 0.9412             | 0.0588             |
| 318.2 | 0.9363             | 0.0637             |
| 323.2 | 0.9311             | 0.0689             |
|       |                    |                    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

#### Source and Purity of Chemicals:

- (1) 99.7%, Merck Chemical Company, Germany, was used as received.
- (2) 96%, Pro Analysi, Merck Chemicals, Darmstadt, Germany, used as received.

### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Propanoic acid; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-09-4] | <b>Original Measurements:</b> <sup>166</sup> A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. <b>73</b> , 188 (1984). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                   | Prepared by:                                                                                                               |
| T/K = 298.15                                                                                                                                                                 | W. E. Acree, Jr.                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9653  | 0.0347  |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath and ultraviolet/visible spectrophotometer. Excess solute and solvent were placed in screw-capped vials. The vials were sealed and submerged in a constant-temperature water bath and shaken at 100 cycles/min for 24 h. After the 24 h equilibration period, the vial was removed, wiped dry, and the contents analyzed. The solutions were transferred to a syringe and filtered through a 0.1  $\mu m$  pore size filter. The solutions were diluted and the absorbances recorded at the maximum absorption wavelength of benzoic acid. The solubility was determined at least six times.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, recrystallized from aqueous ethanol before use.
- (2) Spectrophotometric or ACS Reagent grade, Chemical source not specified, redistilled before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Solubility was reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Hydroxybenzoic acid; C <sub>7</sub> H <sub>6</sub> O <sub>3</sub> ; [99-96-7] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements: <sup>168</sup> F. Nordström and A. C. Rasmuson, J. Pharm. Sci. <b>95</b> , 748 (2006). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                  |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                                              |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 283.2 | 0.9907             | 0.00927   |
| 288.2 | 0.9894             | 0.01057   |
| 293.2 | 0.9878             | 0.0122    |
| 298.2 | 0.9857             | 0.0143    |
| 303.2 | 0.9833             | 0.0167    |
| 308.2 | 0.9815             | 0.0185    |
| 313.2 | 0.9786             | 0.0214    |
| 318.2 | 0.9755             | 0.0245    |
| 323.2 | 0.9721             | 0.0279    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, magnetic stirrer, analytical balance, and ventilated laboratory hood.

Solubilities were determined by a gravimetric method. Excess solute and solvent were placed in sealed bottles and allowed to equilibrate in a constant-temperature bath. An aliquot of the clear solution was removed by syringe, filtered through a 0.2  $\mu m$  PTFE filter, and transferred to a preweighed glass vial. The glass vial was then weighed, and the solvent was allowed to evaporate in a ventilated laboratory hood at ambient room temperature. Once the solvent had evaporated, the vial with solid residue was weighed until constant weight was obtained. The solubility was calculated from the mass of the solid residue and mass of sample analyzed.

### Source and Purity of Chemicals:

(1) 99+%, Sigma-Aldrich Chemical Company, USA, was used as received. (2) 99.8+%, LiChroSolv, VWR Scientific, USA, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 49. Solubility of 2-Hydroxy-3-methylbenzoic Acid in Organic Solvents

# 49.1. Critical evaluation of experimental solubility data

There has been only a single study involving the solubility of 2-hydroxy-3-methylbenzoic acid in organic solvents. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 2-hydroxy-3-methylbenzoic acid in both heptane and benzene at elevated

temperatures. The observed mole fraction solubilities were curve-fit to Eq. (8) to yield the following mathematical representations:

$$\ln x_1 = -140.489 - \frac{2.700}{T} + 23.144 \ln T, \tag{54}$$

$$\ln x_1 = -91.627 - \frac{1.853}{T} + 15.108 \ln T, \tag{55}$$

for heptane and benzene, respectively. The experimental data point at 392.2 K had to be excluded from the regression analysis for heptane in order to get a reasonable mathematical correlation. The mean absolute deviations between experimental and calculated values are on the order of 14.5% [Eq. (54)] and 7.6% [Eq. (55)], which are larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0114$  to  $x_1 = 0.8275$  for heptane and  $x_1 = 0.0094$  to  $x_1 = 0.8127$  for benzene. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 2-hydroxy-3-methylbenzoic acid in organic solvents are in Secs. 49.2 and 49.3.

# 49.2. 2-Hydroxy-3-methylbenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components:                                              | Original Measurements:                    |
|----------------------------------------------------------|-------------------------------------------|
| (1) 2-Hydroxy-3-methylbenzoic acid;                      | <sup>127</sup> N. V. Sidgwick and E. K.   |
| C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [83-40-9] | Ewbank, J. Chem. Soc. Trans. <b>119</b> , |
| (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | 979 (1921).                               |
| Variables:                                               | Prepared by:                              |
| Temperature                                              | W. E. Acree, Jr.                          |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 354.2 | 0.9886             | 0.0114             |
| 374.2 | 0.9705             | 0.0295             |
| 392.2 | 0.9382             | 0.0618             |
| 406.1 | 0.8360             | 0.1640             |
| 414.1 | 0.6485             | 0.3515             |
| 415.1 | 0.6074             | 0.3926             |
| 419.8 | 0.4178             | 0.5822             |
| 427.5 | 0.1727             | 0.8275             |
|       |                    |                    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

bx<sub>1</sub>: mole fraction solubility of the solute. Solubility was reported as grams of solute per kilogram of solvent. Mole fraction values were calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 440.2 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 49.3. 2-Hydroxy-3-methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2-Hydroxy-3-methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [83-40-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                       |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 318.4 | 0.9906             | 0.0094             |
| 335.6 | 0.9750             | 0.0250             |
| 352.3 | 0.9526             | 0.0474             |
| 380.4 | 0.8342             | 0.1658             |
| 396.2 | 0.6899             | 0.3101             |
| 411.5 | 0.4808             | 0.5192             |
| 428.6 | 0.1873             | 0.8127             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 440.2 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

#### **Estimated Error:**

Temperature: Not given in paper.  $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 50. Solubility of 2-Hydroxy-4methylbenzoic Acid in Organic Solvents

# 50.1. Critical evaluation of experimental solubility data

There has been only a single study involving the solubility of 2-hydroxy-4-methylbenzoic acid in organic solvents. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 2-hydroxy-4-methylbenzoic acid in both heptane and benzene at elevated temperatures. The observed mole fraction solubilities were curve-fit to Eq. (8) to yield the following mathematical representations:

$$\ln x_1 = -146.021 - \frac{2.939}{T} + 23.876 \ln T, \tag{56}$$

$$\ln x_1 = -89.757 - \frac{1.876}{T} + 14.728 \ln T, \tag{57}$$

for heptane and benzene, respectively. The mean absolute deviations between experimental and calculated values are on the order of 19.9% [Eq. (56)] and 7.1% [Eq. (57)], which are larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0127$  to  $x_1 = 0.6953$  for heptane and  $x_1 = 0.0095$  to  $x_1 = 0.8351$  for benzene. It is more difficult to curvefit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 2-hydroxy-4-methylbenzoic acid in organic solvents are in Secs. 50.2 and 50.3.

# 50.2. 2-Hydroxy-4-methylbenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 2-Hydroxy-4-methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [50-85-1] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                   |

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 373.8 | 0.9873    | 0.0127    |
| 389.9 | 0.9726    | 0.0274    |
| 408.8 | 0.9379    | 0.0621    |
| 420.3 | 0.8693    | 0.1307    |
| 429.8 | 0.7466    | 0.2534    |
| 435.4 | 0.5172    | 0.4828    |
| 441.9 | 0.3047    | 0.6953    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 451.0 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 50.3. 2-Hydroxy-4-methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2-Hydroxy-4-methylbenzoic acid; $C_8H_8O_3$ ; [50-85-1] (2) Benzene; $C_6H_6$ ; [71-43-2] | Original Measurements:<br><sup>127</sup> N. V. Sidgwick and E. K.<br>Ewbank, J. Chem. Soc. Trans. <b>119</b> ,<br>979 (1921). |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                | Prepared by:                                                                                                                  |
| Temperature                                                                                               | W. E. Acree, Jr.                                                                                                              |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 322.0 | 0.9905             | 0.0095  |
| 344.9 | 0.9764             | 0.0236  |
| 363.4 | 0.9523             | 0.0477  |
| 390.8 | 0.8384             | 0.1616  |
| 408.3 | 0.6767             | 0.3233  |
| 423.5 | 0.4594             | 0.5406  |
| 440.8 | 0.1649             | 0.8351  |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 451.0 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 51. Solubility of 2-Hydroxy-5methylbenzoic Acid in Organic Solvents

# 51.1. Critical evaluation of experimental solubility data

There has been only a single study involving the solubility of 2-hydroxy-5-methylbenzoic acid in organic solvents. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 2-hydroxy-5-methylbenzoic acid in both heptane and benzene at elevated temperatures. The observed mole fraction solubilities were curve-fit to Eq. (8) to yield the following mathematical representations:

$$\ln x_1 = -152.882 - \frac{3.209}{T} + 25.256 \ln T, \tag{58}$$

$$\ln x_1 = -89.710 - \frac{1.955}{T} + 14.876 \ln T, \tag{59}$$

for heptane and benzene, respectively. The mean absolute deviations between experimental and calculated values are on the order of 25.2% [Eq. (58)] and 7.1% [Eq. (59)], which are larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0110$  to  $x_1 = 0.8414$  for heptane and  $x_1 = 0.0083$  to  $x_1 = 0.8262$  for benzene. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 2-hydroxy-5-methylbenzoic acid in organic solvents are in Secs. 51.2 and 51.3.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

# 51.2. 2-Hydroxy-5-methylbenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 2-Hydroxy-5-methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [89-56-5] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                        | Prepared by:                                                                                       |
| Temperature                                                                                                                                                       | W. E. Acree, Jr.                                                                                   |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 352.2 | 0.9890  | 0.0110    |
| 370.3 | 0.9721  | 0.0279    |
| 389.4 | 0.9352  | 0.0648    |
| 404.3 | 0.7936  | 0.2064    |
| 408.7 | 0.6181  | 0.3819    |
| 411.9 | 0.4195  | 0.5805    |
| 419.1 | 0.1586  | 0.8414    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 425.7 K. (2) Purity not given, sample isolated from the resin of *Pinus sabiniana*, purified by treatment with sulfuric acid and nitric acid, and then distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 51.3. 2-Hydroxy-5-methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 2-Hydroxy-5-methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [89-56-5] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>127</sup> N. V. Sidgwick and E. K.<br>Ewbank, J. Chem. Soc. Trans. <b>119</b> ,<br>979 (1921). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                                  |
| Temperature                                                                                                                                                     | W. E. Acree, Jr.                                                                                                              |

#### **Experimental Values**

| $x_1^{b}$ |
|-----------|
| 0.0083    |
| 0.0225    |
| 0.0518    |
| 0.1659    |
| 0.3352    |
| 0.5244    |
| 0.8262    |
|           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 425.7 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 52. Solubility of 3-Hydroxy-4methylbenzoic Acid in Organic Solvents

# 52.1. Critical evaluation of experimental solubility data

There has been only a single study involving the solubility of 3-hydroxy-4-methylbenzoic acid in organic solvents. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 3-hydroxy-4-methylbenzoic acid in benzene at elevated temperatures. The observed mole fraction solubilities were curve-fit to Eq. (8) to yield the following correlation:

$$\ln x_1 = -178.244 - \frac{3.1001}{T} + 28.896 \ln T. \tag{60}$$

The mean absolute deviation between experimental and calculated values is on the order of 14.1%, which is larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0102$  to

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $x_1 = 0.8369$ . It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 3-hydroxy-4-methylbenzoic acid in organic solvents are in Sec. 52.2.

# 52.2. 3-Hydroxy-4-methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3-Hydroxy-4-methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-30-1] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>127</sup> N. V. Sidgwick and E. K.<br>Ewbank, J. Chem. Soc. Trans. <b>119</b> ,<br>979 (1921). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                              |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 404.8 | 0.9898             | 0.0102  |
| 420.6 | 0.9768             | 0.0232  |
| 433.7 | 0.9520             | 0.0480  |
| 449.7 | 0.8353             | 0.1647  |
| 456.9 | 0.6828             | 0.3172  |
| 465.2 | 0.4470             | 0.5530  |
| 475.7 | 0.1631             | 0.8369  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 481.7 K.
 (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. The sample was further purified by freezing several times.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 53. Solubility of 4-Hydroxy-3methoxybenzoic Acid in Organic Solvents

# 53.1. Critical evaluation of experimental solubility data

There has been only a single study involving the solubility of 4-hydroxy-3-methoxybenzoic acid (commonly referred to as vanillic acid) in organic solvents. Manic *et al.* <sup>169</sup> measured the solubility of 4-hydroxy-3-methoxybenzoic acid in ethyl 2-hydroxypropanoate at five temperatures between 296 K and 333 K. The observed mole fraction solubilities were curve-fit to Eq. (8) to yield the following correlation:

$$\ln x_1 = -37.631 + \frac{114.97}{T} + 5.916 \ln T. \tag{61}$$

The mean absolute deviation between experimental and calculated values is on the order of 0.9%, indicating that the experimental data are internally consistent.

The experimental solubility data for 4-hydroxy-3-methoxybenzoic acid in ethyl 2-hydroxypropanoate are in Sec. 53.2.

# 53.2. 4-Hydroxy-3-methoxybenzoic acid solubility data in miscellaneous organic solvents

| Components:                                                | Original Measurements:                     |
|------------------------------------------------------------|--------------------------------------------|
| (1) 4-Hydroxy-3-methoxybenzoic acid;                       | <sup>169</sup> M. S. Manic, D. Villanueva, |
| C <sub>8</sub> H <sub>8</sub> O <sub>4</sub> ; [121-34-6]  | T. Fornari, A. J. Queimada, E. A.          |
| (2) Ethyl 2-hydroxypropanoate,                             | Macedo, and V. Najdanovic-                 |
| C <sub>5</sub> H <sub>10</sub> O <sub>3</sub> ; [687-47-8] | Visak, J. Chem. Thermodyn. 48,             |
|                                                            | 93 (2012).                                 |
| Variables:                                                 | Prepared by:                               |
| Temperature                                                | W. E. Acree, Jr.                           |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 296.2 | 0.9721             | 0.0279             |
| 303.1 | 0.9679             | 0.0321             |
| 312.7 | 0.9621             | 0.0379             |
| 323.0 | 0.9556             | 0.0444             |
| 333.3 | 0.9455             | 0.0545             |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature water bath, stirring plate, and analytical balance. Solubilities were determined using a gravimetric method. Excess solute and solvent were placed in a glass vessel with stirrer. The vessel was placed in a constant-temperature water bath and allowed to equilibrate with stirring for 48 h. After equilibrium had been attained, the stirring was discontinued and the sample was allowed to set for more than 48 h. Samples of the clear saturated solution were removed by micropipette, transferred to a weighed empty vial, and the mass of the vial plus sample were recorded. The sample was placed in a vacuum oven, and the solvent was evaporated at 338 K. Once the solvent had completely evaporated, the mass of the vial and solid residue was determined. The solubility was calculated from the mass of the solid residue and mass of the saturated sample analyzed.

#### Source and Purity of Chemicals:

(1) 97+%, Fluka Chemical Company, used as received.

(2) 98%, Sigma-Aldrich Chemical Company, dried in a vacuum oven at room temperature for several days prior to use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 0.0007$ .

# 54. Solubility of 4-Hydroxy-3-methylbenzoic Acid in Organic Solvents

# 54.1. Critical evaluation of experimental solubility data

There has been only a single study involving the solubility of 4-hydroxy-3-methylbenzoic acid in organic solvents. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 4-hydroxy-3-methylbenzoic acid in benzene at elevated temperatures. The observed mole fraction solubilities were curve-fit to Eq. (8) to yield the following correlation:

$$\ln x_1 = -217.192 - \frac{4.4130}{T} + 35.778 \ln T. \tag{62}$$

The experimental mole fraction solubility at 439 K had to be excluded in order to obtain a reasonable mathematical correlation. The mean absolute deviation between experimental and calculated values is on the order of 8.3%, which is larger than desired. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to uncertainties in estimating the amount of solvent that remained in the liquid phase, and the large range covered by the experimental values,  $x_1 = 0.0131$  to  $x_1 = 0.5406$ . The derived equation should not be used to predict 4-hydroxy-3-methylbenzoic acid solubilities at temperatures greater than 426 K, as the calculated  $x_1$  values will exceed unity. It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 4-hydroxy-3-methylbenzoic acid in benzene are in Sec. 54.2.

# 54.2. 4-Hydroxy-3-methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-Hydroxy-3-methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [499-76-3] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                       |
| Temperature                                                                                                                                                      | W. E. Acree, Jr.                                                                                   |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 382.7 | 0.9869  | 0.0131             |
| 389.9 | 0.9772  | 0.0228             |
| 399.4 | 0.9503  | 0.0497             |
| 412.7 | 0.8353  | 0.1647             |
| 418.2 | 0.6599  | 0.3401             |
| 426.0 | 0.4594  | 0.5406             |
| 439.2 | 0.1808  | 0.8192             |
|       |         |                    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 445.6 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times

### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 55. Solubility of 4-lodobenzoic Acid in Organic Solvents

# 55.1. Critical evaluation of experimental solubility data

There has been only one published paper<sup>83</sup> reporting the solubility of 4-iodobenzoic acid in organic solvents. Chantooni and Kolthoff<sup>83</sup> determined the solubility of 4-iodobenzoic acid in methanol, ethanenitrile, dimethyl sulfoxide, and *N*, *N*-dimethylformamide at 298 K. It is not possible to perform a critical evaluation of the experimental data as the authors

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

performed measurements at only a single temperature, and there are no independent experimental 4-iodobenzoic acid solubility data in any of the four organic solvents.

The experimental solubility data for 4-iodobenzoic acid in organic solvents are given in Secs. 55.2 and 55.3.

# 55.2. 4-lodobenzoic acid solubility data in alcohols

| Components: (1) 4-Iodobenzoic acid; C <sub>7</sub> H <sub>5</sub> IO <sub>2</sub> ; [619-58-9] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. <b>77</b> , 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                      |

#### **Experimental Values**

The measured solubility was reported to be 0.068 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was dehydrated and then distilled over sulfanilic acid to remove alkaline impurities.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 55.3. 4-lodobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Iodobenzoic acid; C <sub>7</sub> H <sub>5</sub> IO <sub>2</sub> ; [619-58-9] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                              |

# **Experimental Values**

The measured solubility was reported to be 0.0098 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and

W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Iodobenzoic acid; C <sub>7</sub> H <sub>5</sub> IO <sub>2</sub> ; [619-58-9] (2) Dimethyl sulfoxide; C <sub>2</sub> H <sub>6</sub> OS; [67-68-5] | <b>Original Measurements:</b> <sup>83</sup> M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. <b>77</b> , 527 (1973). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                       |

#### **Experimental Values**

The measured solubility was reported to be 2.14 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was shaken with activated alumina and then distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Iodobenzoic acid; C <sub>7</sub> H <sub>5</sub> IO <sub>2</sub> ; [619-58-9] (2) <i>N,N</i> -Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                              |

The measured solubility was reported to be  $0.72 \text{ mol dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

(1) Purity not given, Chemical source not given, was recrystallized from either aqueous or aqueous-ethanol solution and dried in vacuo at 333 K. (2) Purity not given, Chemical source not given, was shaken first with phosphorous pentoxide and then with potassium hydroxide pellets. Solvent was distilled shortly before use.

#### **Estimated Error:**

Temperature: +0.1 K (estimated by compiler).

 $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 56. Solubility of 2-Methoxybenzoic Acid in Organic Solvents

# 56.1. Critical evaluation of experimental solubility data

There have been four published studies 9,56,72,130 investigating the solubility behavior of 2-methoxybenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Hoover et al. measured the solubility of 2-methoxybenzoic acid in 18 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2methyl-2-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 4methyl-2-pentanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), in four alkyl alkanoates (methyl ethanoate, ethyl ethanoate, butyl ethanoate, and pentyl ethanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 2-methoxybenzoic acid. The authors were able to assemble a total of 47  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and

aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 2-methoxybenzoic acid is  $\log_{10} c_{1,W} = -1.554.^{56,72}$  The McGowan volume of 2-methoxybenzoic acid, V = 1.1313, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 0.899. This left four solute descriptors (S, A, B, and L) still to be determined. The 47 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.410, A = 0.450, B = 0.620, and L= 5.636, that best described the  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -8.354$  for the gas-phase solute concentration that made the  $log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) predictions internally consistent. The calculated molecular solute descriptors reproduced the log<sub>10</sub> (SR or P) and  $\log_{10} (GSR \text{ or } K)$  values to within an average standard deviation of 0.146 and 0.146 log<sub>10</sub> units, respectively.

After the 2-methoxybenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 2-methoxybenzoic acid solubility data. Table 40 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 2-methoxybenzoic acid,  $x_1$ , determined by Hoover et al. were converted into molar solubilities by dividing  $x_1$  by the

Table 40. Comparison between observed and calculated molar solubilities of 2-methoxybenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                              | / 1 \                                   |                                          |
|---------------------|------------------------------|-----------------------------------------|------------------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{calc}};$ Eq. (20) | $\log_{10} c_1^{\text{ calc}};$ Eq. (21) |
| Methanol            | 0.267                        | 0.081                                   | 0.104                                    |
| Ethanol             | 0.074                        | -0.087                                  | -0.064                                   |
| 1-Propanol          | -0.120                       | -0.217                                  | -0.218                                   |
| 2-Propanol          | -0.392                       | -0.252                                  | -0.235                                   |
| 1-Butanol           | -0.247                       | -0.308                                  | -0.303                                   |
| 2-Butanol           | -0.299                       | -0.257                                  | -0.266                                   |
| 2-Methyl-1-propanol | -0.392                       | -0.332                                  | -0.336                                   |
| 2-Methyl-2-propanol | -0.286                       | -0.260                                  | -0.243                                   |
| 1-Pentanol          | -0.327                       | -0.375                                  | -0.379                                   |
| 2-Pentanol          | -0.411                       | -0.383                                  | -0.373                                   |
| 3-Methyl-1-butanol  | -0.402                       | -0.415                                  | -0.401                                   |
| 1-Hexanol           | -0.430                       | -0.407                                  | -0.403                                   |
| 1-Heptanol          | -0.471                       | -0.467                                  | -0.449                                   |
| 1-Octanol           | -0.518                       | -0.485                                  | -0.545                                   |
| 1-Decanol           | -0.658                       | -0.640                                  | -0.626                                   |
| 1,1'-Oxybisethane   | -0.638                       | -0.455                                  | -0.354                                   |
| Tetrahydrofuran     | 0.299                        | 0.316                                   | 0.309                                    |
| 1,4-Dioxane         | 0.197                        | 0.240                                   | 0.235                                    |
| Methyl ethanoate    | -0.054                       | 0.007                                   | -0.040                                   |
| Ethyl ethanoate     | -0.187                       | -0.184                                  | -0.169                                   |
| Butyl ethanoate     | -0.447                       | -0.323                                  | -0.313                                   |

ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)\ V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 2-methoxybenzoic acid is  $V_{\text{solute}} = 124.1\ \text{cm}^3\ \text{mol}^{-1}$ . Examination of the numerical entries in Table 40 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Ongley<sup>56</sup> measured the solubility of 2-methoxybenzoic acid in cyclohexane, benzene, trichloromethane, and tetrachloromethane at 298.15 K. Abraham model predictions would not be applicable to these solvents because 2-methoxybenzoic acid would likely dimerize to an appreciable extent. In such cases, the measured solubility would represent the sum of both the monomeric and dimeric forms of the solute. The solute descriptors that have been calculated for 2-methoxybenzoic acid pertain only to the monomeric form. Thuaire<sup>72</sup> reported a mole fraction solubility for 2-methoxybenzoic acid in ethanol of  $x_1 = 0.0758$ , which differs by less than 1% from the value of  $x_1 = 0.0765$  determined by Hoover *et al.*<sup>9</sup>

The experimental solubility data for 2-methoxybenzoic acid in organic solvents are in Secs. 56.2–56.9.

# 56.2. 2-Methoxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  56P. A. Ongley, J. Chem. Soc. 1954, 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                      |
| T/K = 298.15                                                                                                                                                  | W. E. Acree, Jr.                                                  |

### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.241$ , which corresponds to a solubility of  $c_1 = 0.0574$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 56.3. 2-Methoxybenzoic acid solubility data in aromatic hydrocarbons

| <b>Components:</b> (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.674$ , which corresponds to a solubility of  $c_1 = 0.212 \text{ mol dm}^{-3}$ .

### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 56.4. 2-Methoxybenzoic acid solubility data in esters

| Components:                                                               | Original Measurements:                       |
|---------------------------------------------------------------------------|----------------------------------------------|
| (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>9</sup> K. R. Hoover, D. M. Stovall, E. |
| [579-75-9]                                                                | Pustejovsky, R. Coaxum, K. Pop,              |
| (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ;      | W. E. Acree, Jr., and M. H.                  |
| [79-20-9]                                                                 | Abraham, Can. J. Chem. 82, 1353              |
|                                                                           | (2004).                                      |
| Variables:                                                                | Prepared by:                                 |
| T/K = 298.15                                                              | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9267  | 0.0733      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9345  | 0.0655    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9555  | 0.0445  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

# Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Methoxybenzoic acid; $C_8H_8O_3$ ; [579-75-9]<br>(2) Pentyl ethanoate; $C_7H_{14}O_2$ ; [628-63-7] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                              | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                            | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9621  | 0.0379    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 56.5. 2-Methoxybenzoic acid solubility data in ethers

| Components:                                                               | Original Measurements:                       |
|---------------------------------------------------------------------------|----------------------------------------------|
| (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>9</sup> K. R. Hoover, D. M. Stovall, E. |
| [579-75-9]                                                                | Pustejovsky, R. Coaxum, K. Pop,              |
| (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;                  | W. E. Acree, Jr., and M. H.                  |
| [60-29-7]                                                                 | Abraham, Can. J. Chem. 82, 1353              |
|                                                                           | (2004).                                      |
| Variables:                                                                | Prepared by:                                 |
| T/K = 298.15                                                              | W. E. Acree, Jr.                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9757  | 0.0243    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9916  | 0.00838   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                               | Original Measurements:                       |
|---------------------------------------------------------------------------|----------------------------------------------|
| (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>9</sup> K. R. Hoover, D. M. Stovall, E. |
| [579-75-9]                                                                | Pustejovsky, R. Coaxum, K. Pop,              |
| (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O;                  | W. E. Acree, Jr., and M. H.                  |
| [142-96-1]                                                                | Abraham, Can. J. Chem. 82, 1353              |
|                                                                           | (2004).                                      |
| Variables:                                                                | Prepared by:                                 |
| T/K = 298.15                                                              | W. E. Acree, Jr.                             |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9940  | 0.00603     |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8226  | 0.1774  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8559  | 0.1441  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 56.6. 2-Methoxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                     |

## **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = -0.225$ , which corresponds to a solubility of  $c_1 = 1.679 \text{ mol dm}^{-3}$ .

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                          | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.605$ , which corresponds to a solubility of  $c_1 = 0.0248 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue  $\pm$  neutral red) indicator.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 56.7. 2-Methoxybenzoic acid solubility data in alcohols

| <b>Components:</b> (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

|         | h.        |
|---------|-----------|
| $x_2^a$ | $x_1^{B}$ |
| 0.9089  | 0.0911    |

 $\bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

W. E. ACREE, JR.

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] | Original Measurements:  9K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| (2) Ethanol; $C_2H_6O$ ; [64-17-5]                                                               | W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004).              |
| Variables: T/K = 298.15                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9235  | 0.0765    |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                             | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

The measured solubility was reported to be 1.780 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.07579$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.9405    | 0.0595      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | x <sub>1</sub> <sup>b</sup> |
|---------|-----------------------------|
| 0.9537  | 0.0463                      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ;<br>[579-75-9]<br>(2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9466  | 0.0534    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9526  | 0.0474    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                               | Original Measurements:                       |
|---------------------------------------------------------------------------|----------------------------------------------|
| (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>9</sup> K. R. Hoover, D. M. Stovall, E. |
| [579-75-9]                                                                | Pustejovsky, R. Coaxum, K. Pop,              |
| (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O;                | W. E. Acree, Jr., and M. H.                  |
| [78-83-1]                                                                 | Abraham, Can. J. Chem. 82, 1353              |
|                                                                           | (2004).                                      |
| Variables:                                                                | Prepared by:                                 |
| T/K = 298.15                                                              | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9617  | 0.0383    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

 $Constant-temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9502  | 0.0498    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9481  | 0.0519  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                     | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9573  | 0.0427    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [137-32-6] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9573  | 0.0427    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                                                |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9600  | 0.0400    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9533  | 0.0467  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Methyl-1-pentanol; C <sub>6</sub> H <sub>14</sub> O; [105-30-6] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9562  | 0.0438  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9591  | 0.0409  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9522  | 0.0478  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9523  | 0.0477    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9584  | 0.0416    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 56.8. 2-Methoxybenzoic acid solubility data in alkoxyalcohols

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [111-80-5] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8807  | 0.1193    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Propoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2807-30-9] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.8948           | 0.1052    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

# **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [109-59-1] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                           | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                                       |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9150           | 0.0850    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8699  | 0.1301    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ;<br>[579-75-9]<br>(2) 3-Methoxy-1-butanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ;<br>[2517-43-3] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E De La Rosa, S. Ye, S. S. Achi, W. E Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                    |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8908  | 0.1092    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) 1-Methyl-2- <i>tert</i> -butoxyethanol; C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> ; [57018-52-7] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                                              | W. E. Acree, Jr.                                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9236  | 0.0764    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 56.9. 2-Methoxybenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 2-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [579-75-9] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9105  | 0.0895    |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 295 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

**Estimated Error:** 

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 57. Solubility of 3-Methoxybenzoic Acid in Organic Solvents

# 57.1. Critical evaluation of experimental solubility data

There have been four published studies <sup>54,56,63,72</sup> investigating the solubility behavior of 3-methoxybenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Thuaire <sup>72</sup> reported a mole fraction solubility for 3-methoxybenzoic acid dissolved in ethanol. Hancock *et al.* <sup>54,63</sup> measured the solubility of 3-methoxybenzoic acid in cyclohexane, benzene, tetrahydrofuran, and 1,4-dioxane at 303 K based on a gravimetric method. Ongley <sup>56</sup> measured the solubility of 3-methoxybenzoic acid in cyclohexane, benzene, trichloromethane, and tetrachloromethane at 298 K. It is not possible to directly compare the two sets of solubility data as the measurements were performed at different temperatures.

The experimental solubility data for 3-methoxybenzoic acid in organic solvents are in Secs. 57.2–57.6.

# 57.2. 3-Methoxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9951  | 0.00493   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                            |

# **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.851$ , which corresponds to a solubility of  $c_1 = 0.0141$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 57.3. 3-Methoxybenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements: 54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>31</b> , 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9558  | 0.0442    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                         |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.398$ , which corresponds to a solubility of  $c_1 = 0.400 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 57.4. 3-Methoxybenzoic acid solubility data in ethers

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:<br><sup>63</sup> C. K. Hancock, J. N. Pawloski,<br>and J. P. Idoux, J. Org. Chem.<br><b>32</b> , 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.691   | 0.309     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components:                                                                | Original Measurements:                       |
|----------------------------------------------------------------------------|----------------------------------------------|
| (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ;  | <sup>63</sup> C. K. Hancock, J. N. Pawloski, |
| [586-38-9]                                                                 | and J. P. Idoux, J. Org. Chem. <b>32</b> ,   |
| (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | 1931 (1967).                                 |
| Variables: $T/K = 303.15$                                                  | Prepared by:<br>W. E. Acree, Jr.             |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.754   | 0.246     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 57.5. 3-Methoxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                     |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = -0.049$ , which corresponds to a solubility of  $c_1 = 1.119 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue  $\pm$  neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                         |
| T/K = 298.15                                                                                                                                          | W. E. Acree, Jr.                                                                     |

# **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 0.737$ , which corresponds to a solubility of  $c_1 = 0.183 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 57.6. 3-Methoxybenzoic acid solubility data in alcohols

| Components: (1) 3-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [586-38-9] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                   |

#### **Experimental Values**

The measured solubility was reported to be 4.216 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1626$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 58. Solubility of 4-Methoxybenzoic Acid in Organic Solvents

# 58.1. Critical evaluation of experimental solubility data

There have been several published studies 9,54,56,72,130 investigating the solubility behavior of 4-methoxybenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Hoover et al.9 measured the solubility of 4-methoxybenzoic acid in 14 alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol, 1hexanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4dioxane), and in three alkanoates (ethyl ethanoate, butyl ethanoate, and pentyl ethanoate) at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 4-methoxybenzoic acid. The authors were able to assemble a total of 44  $log_{10}$  (SR or P) and  $log_{10}$ (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 4-methoxybenzoic acid is  $\log_{10} c_{1,W} = -2.800.^{72,170}$  The McGowan volume of 4-methoxybenzoic acid, V = 1.1313, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E =0.899. This left four solute descriptors (S, A, B, and L) still to be determined. The 44 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.250, A = 0.620, B = 0.520, and L = 5.741, that best described the  $\log_{10} (SR)$ or P) and  $\log_{10}$  (GSR or K) values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -9.500$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$ values to within an average standard deviation of 0.119 and  $0.110 \log_{10}$  units, respectively.

After the 4-methoxybenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 4-methoxybenzoic acid solubility data. Table 41 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 4-methoxybenzoic acid,  $x_1$ , determined by Hoover et al.9 were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 4-methoxybenzoic acid is  $V_{\text{solute}} = 124.1 \text{ cm}^3 \text{ mol}^{-1}$ . Examination of the

Table 41. Comparison between observed and calculated molar solubilities of 4-methoxybenzoic acid based on the Abraham model, Eqs. (20) and (21)

| Solvent             | $\log_{10} c_1^{\text{exp}}$ | $\log_{10} c_1^{\text{ calc}};$ Eq. (20) | $\log_{10} c_1^{\text{calc}};$ Eq. (21) |
|---------------------|------------------------------|------------------------------------------|-----------------------------------------|
| Ethanol             | -0.702                       | -0.753                                   | -0.717                                  |
| 1-Propanol          | -0.875                       | -0.879                                   | -0.839                                  |
| 2-Propanol          | -0.864                       | -0.879                                   | -0.822                                  |
| 1-Butanol           | -0.929                       | -0.987                                   | -0.937                                  |
| 2-Butanol           | -0.898                       | -0.932                                   | -0.905                                  |
| 2-Methyl-1-propanol | -1.100                       | -1.039                                   | -1.015                                  |
| 2-Methyl-2-propanol | -0.783                       | -0.889                                   | -0.810                                  |
| 1-Pentanol          | -0.984                       | -1.014                                   | -0.970                                  |
| 2-Pentanol          | -0.977                       | -1.007                                   | -0.958                                  |
| 3-Methyl-1-butanol  | -1.079                       | -1.065                                   | -1.020                                  |
| 1-Hexanol           | -1.022                       | -1.059                                   | -1.020                                  |
| 1-Heptanol          | -1.060                       | -1.109                                   | -1.054                                  |
| 1-Octanol           | -1.093                       | -1.145                                   | -1.161                                  |
| 1-Decanol           | -1.174                       | -1.256                                   | -1.198                                  |
| 1,1'-Oxybisethane   | -1.043                       | -1.157                                   | -1.044                                  |
| Tetrahydrofuran     | -0.162                       | -0.409                                   | -0.378                                  |
| 1,4-Dioxane         | -0.401                       | -0.619                                   | -0.582                                  |
| Ethyl ethanoate     | -0.879                       | -0.987                                   | -0.938                                  |
| Butyl ethanoate     | -1.086                       | -1.139                                   | -1.107                                  |

numerical entries in Table 41 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Ongley<sup>56</sup> measured the solubility of 4-methoxybenzoic acid in cyclohexane, benzene, trichloromethane, and tetrachloromethane at 298.15 K. Abraham model predictions would not be applicable to these solvents because 4-methoxybenzoic acid would likely dimerize to an appreciable extent. In such cases, the measured solubility would represent the sum of both the monomeric and dimeric forms of the solute. The solute descriptors that have been calculated for 4-methoxybenzoic acid pertain only to the monomeric form. Thuaire<sup>72</sup> reported a mole fraction solubility for 4-methoxybenzoic acid in ethanol of  $x_1 = 0.01242$ , which differs by less than 6% from the value of  $x_1 = 0.01185$  determined by Hoover *et al.*<sup>9</sup> Differences in chemical purities and experimental methodologies can lead to differences of a few percent between values determined by two different research groups.

The experimental solubility data for 4-methoxybenzoic acid in organic solvents are in Secs. 58.2–58.8.

# 58.2. 4-Methoxybenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$   |
|---------|-----------|
| 0.9999  | 0.0000640 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

# 58.3. 4-Methoxybenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9983  | 0.00166   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3 \times 80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 3\%$  (relative error, by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements: <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                     |

The measured solubility was reported to be  $-\log_{10} c_1 = 1.714$ , which corresponds to a solubility of  $c_1 = 0.0193 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least  $8\,h$  at  $298\,K$ . The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

# 58.4. 4-Methoxybenzoic acid solubility data in esters

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9869  | 0.01308 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                            | Original Measurements:                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) 4-Methoxybenzoic acid; $C_8H_8O_3$ ; [100-09-4]<br>(2) Butyl ethanoate; $C_6H_{12}O_2$ ; [123-864] | <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
| Variables:                                                                                             | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                           | W. E. Acree, Jr.                                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9891  | 0.01087 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9905  | 0.00949   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

#### 58.5. 4-Methoxybenzoic acid solubility data in ethers

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [00-29-7]                                                                                                                                                           | (2004).                                                                                                                                                                 |
| Variables:                                                                                                                                                          | Prepared by:                                                                                                                                                            |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                                        |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9905  | 0.00952   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9962  | 0.00377   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- $(2)\,99\%, an hydrous, Aldrich \, Chemical \, Company, stored \, over \, molecular \, sieves \, and \, distilled \, shortly \, before \, use.$

### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9972  | 0.00275   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; $C_8H_8O_3$ ; [100-09-4] (2) Tetrahydrofuran; $C_4H_8O$ ; [109-99-9] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9419  | 0.05811   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{\mathbf{b}}$ |
|------------------|--------------------|
| 0.934            | 0.066              |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9652  | 0.03476   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

# Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.959              | 0.041     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 58.6. 4-Methoxybenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | <b>Original Measurements:</b> <sup>56</sup> P. A. Ongley, J. Chem. Soc. <b>1954</b> , 3634. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                           | Prepared by:                                                                                |
| T/K = 298.15                                                                                                                                         | W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be  $-\log_{10} c_1 = 1.130$ , which corresponds to a solubility of  $c_1 = 0.0741$  mol dm<sup>-3</sup>.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Excess solute and solvent were placed in tubes, which were rotated for at least 8 h at 298 K. The solutions were then removed, concentrated if necessary, and titrated with standard alkali using a mixed (bromothymol blue + neutral red) indicator.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, solute was either "AnalaR" grade or recrystallized prior to use.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: No information was given.  $c_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 58.7. 4-Methoxybenzoic acid solubility data in alcohols

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                             | W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9881  | 0.01185   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

# Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                               | Original Measurements:                         |
|---------------------------------------------------------------------------|------------------------------------------------|
| (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. |
| [100-09-4]                                                                | 3815 (1971).                                   |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                   |                                                |
| Variables:                                                                | Prepared by:                                   |
| T/K = 298.15                                                              | W. E. Acree, Jr.                               |

#### **Experimental Values**

The measured solubility was reported to be 0.273 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.01242$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9899  | 0.01008     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 1.5\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9894  | 0.01060   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9891  | 0.01088   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9882  | 0.01175   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9926  | 0.00740   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                               | Original Measurements:                       |
|---------------------------------------------------------------------------|----------------------------------------------|
| (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>9</sup> K. R. Hoover, D. M. Stovall, E. |
| [100-09-4]                                                                | Pustejovsky, R. Coaxum, K. Pop,              |
| (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O;                | W. E. Acree, Jr., and M. H.                  |
| [75-65-0]                                                                 | Abraham, Can. J. Chem. 82, 1353              |
|                                                                           | (2004).                                      |
| Variables:                                                                | Prepared by:                                 |
| T/K = 298.15                                                              | W. E. Acree, Jr.                             |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9844  | 0.01561   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9887  | 0.01130 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9884  | 0.01156   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9908  | 0.00916   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9881  | 0.01190   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9877  | 0.01234   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                                                    |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9872  | 0.01275   |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements: <sup>9</sup> K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. <b>82</b> , 1353 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9872  | 0.01278 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 58.8. 4-Methoxybenzoic acid solubility data in alkoxyalcohols

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-80-5] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree, Jr.                                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.9588  | 0.0412      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Propoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2807-30-9] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9667  | 0.0333    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [109-59-1] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.9639           | 0.0361  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9616  | 0.0384  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; [100-09-4] (2) 3-Methoxy-1-butanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2517-43-3] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9629  | 0.0371    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                               | Original Measurements:                           |  |
|---------------------------------------------------------------------------|--------------------------------------------------|--|
| (1) 4-Methoxybenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>3</sub> ; | <sup>130</sup> L. M. Grubbs, M. Saifullah, N. E. |  |
| [100-09-4]                                                                | De La Rosa, S. Ye, S. S. Achi, W. E.             |  |
| (2) 1-Methyl-2-tert-butoxyethanol;                                        | Acree, Jr., and M. H. Abraham,                   |  |
| C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> ; [57018-52-7]              | Fluid Phase Equilib. <b>298</b> , 48 (2010).     |  |
| Variables:                                                                | Prepared by:                                     |  |
| T/K = 298.15                                                              | W. E. Acree, Jr.                                 |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9727  | 0.0273  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 273 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 59. Solubility of 2-Methylbenzoic Acid in Organic Solvents

# 59.1. Critical evaluation of experimental solubility data

There have been several published studies 72,77,171–174 investigating the solubility behavior of 2-methylbenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Coaxum et al. 171 measured the solubility of 2methylbenzoic acid in 16 alcohols (ethanol, 1-propanol, 2propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2methyl-2-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 4-methyl-2-pentanol, 1heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), and in four alkanoates (methyl ethanoate, ethyl ethanoate, butyl ethanoate, and pentyl ethanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 2methylbenzoic acid. The authors were able to assemble a total of 47  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 2-methylbenzoic acid is  $\log_{10} c_{1,W} = -2.06.^{131,175}$  The McGowan volume of 2-methylbenzoic acid, V = 1.0726, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was B, and L) still to be determined. The 47 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 0.840, A = 0.420, B = 0.440, and L = 4.6770, that best described the $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values. The computation treated  $log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -6.360$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$ predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10}$  (SR or P) and  $\log_{10}$ (GSR or K) values to within an average standard deviation of 0.080 and  $0.067 \log_{10}$  units, respectively.

After the 2-methylbenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 2-methylbenzoic acid solubility data. Table 42 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 2-methylbenzoic acid,  $x_1$ , determined by Coaxum *et al.*<sup>171</sup> were converted into molar solubilities by dividing  $x_1$  by the

Table 42. Comparison between observed and calculated molar solubilities of 2-methylbenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                                | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|--------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp,a}}$ | Eq. (20)                       | Eq. (21)                       |
| Ethanol             | 0.325                          | 0.238                          | 0.333                          |
| 1-Propanol          | 0.248                          | 0.232                          | 0.242                          |
| 2-Propanol          | 0.282                          | 0.221                          | 0.248                          |
| 1-Butanol           | 0.205                          | 0.168                          | 0.178                          |
| 2-Butanol           | 0.242                          | 0.203                          | 0.208                          |
| 2-Methyl-1-propanol | 0.106                          | 0.152                          | 0.143                          |
| 2-Methyl-2-propanol | 0.329                          | 0.229                          | 0.278                          |
| 1-Pentanol          | 0.172                          | 0.181                          | 0.188                          |
| 2-Pentanol          | 0.220                          | 0.214                          | 0.200                          |
| 3-Methyl-1-butanol  | 0.121                          | 0.169                          | 0.132                          |
| 1-Hexanol           | 0.137                          | 0.140                          | 0.149                          |
| 1-Heptanol          | 0.103                          | 0.093                          | 0.119                          |
| 1-Octanol           | 0.063                          | 0.037                          | 0.021                          |
| 1-Decanol           | 0.016                          | -0.003                         | 0.025                          |
| 1,1'-Oxybisethane   | 0.203                          | 0.101                          | 0.172                          |
| Tetrahydrofuran     | 0.456                          | 0.608                          | 0.609                          |
| 1,4-Dioxane         | 0.427                          | 0.336                          | 0.338                          |
| Methyl ethanoate    | 0.185                          | 0.162                          | 0.117                          |
| Ethyl ethanoate     | 0.170                          | 0.162                          | 0.169                          |
| Butyl ethanoate     | 0.063                          | 0.067                          | 0.066                          |

<sup>&</sup>lt;sup>a</sup>Experimental solubility data were taken from Coaxum et al. <sup>17</sup>

ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} = x_1/[x_1V_1 + (1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 2-methylbenzoic acid is  $V_{\text{solute}} = 121.8$  cm<sup>3</sup> mol<sup>-1</sup>. Examination of the numerical entries in Table 42 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

There are three close independent experimental values in Sec. 59.7 for the solubility of 2-methylbenzoic acid in ethanol. The recommended solubility in ethanol is  $x_1 = 0.143$ , which is calculated as the arithmetic average of the values of  $x_1 = 0.1401$ ,  $x_1^{171} = 0.1460$ ,  $x_2^{172} = 0.1461$ ,  $x_3^{173} = 0.1461$ ,  $x_4^{173} = 0.1461$ ,  $x_5^{173} = 0.1461$ ,  $x_5^{$ 

Two research groups have studied the solubility behavior of 2-methylbenzoic acid as a function of temperature. Domańska  $^{172,173}$  determined the solubility of 2-methylbenzoic acid in hexane, heptane, cyclohexane, benzene, 1,2-dimethylbenzene, tetrachloromethane, diiodomethane, chlorobenzene, 1,2-dichlorobenzene, bromobenzene, ethanol, 2-propanol, and nitrobenzene at several temperatures from about 295–345 K based on a dynamic solubility method. The internal consistency of the 13 datasets can be assessed by curve-fitting the measured mole fraction solubilities to Buchowski  $\lambda$ h Model [see Eq. (9)]. Table 43 tabulates the equation coefficients (h and h) calculated by the author, along with the corresponding mean standard temperature deviations,  $\sigma_T$ ,

$$\sigma_{\rm T} = \sqrt{\frac{\sum \left(T_i^{\rm calc} - T_i^{\rm exp}\right)^2}{n-1}},\tag{63}$$

that describe the goodness-of-fit. The summation in Eq. (63) extends over the number of experimental data points, n.

Table 43. Parameters of the Buchowski λh model for describing the solubility of 2-methylbenzoic acid in various organic solvents<sup>a</sup>

| Solvent             | T/K     | h     | λ    | $\sigma_{\mathrm{T}}\left(\mathrm{K}\right)$ |
|---------------------|---------|-------|------|----------------------------------------------|
| Hexane              | 298-332 | 19550 | 0.55 | 0.36                                         |
| Heptane             | 292-341 | 9370  | 0.52 | 0.83                                         |
| Cyclohexane         | 295-338 | 5700  | 1.02 | 0.87                                         |
| Benzene             | 294-345 | 5200  | 1.62 | 0.57                                         |
| 1,3-Dimethylbenzene | 297-340 | 5120  | 1.61 | 0.36                                         |
| Tetrachloromethane  | 296-336 | 5270  | 1.72 | 0.17                                         |
| Diiodomethane       | 294-345 | 9040  | 0.83 | 1.27                                         |
| Chlorobenzene       | 299-354 | 3210  | 2.44 | 0.38                                         |
| 1,2-Dichlorobenzene | 296-335 | 4710  | 1.59 | 0.33                                         |
| Bromobenzene        | 298-352 | 4850  | 1.52 | 0.39                                         |
| Ethanol             | 291-337 | 3450  | 0.62 | 0.25                                         |
| 2-Propanol          | 293-345 | 3090  | 0.68 | 0.42                                         |
| Nitrobenzene        | 298-338 | 5280  | 1.55 | 0.22                                         |

<sup>&</sup>lt;sup>a</sup>Values of the coefficients and the mean standard temperature deviations were taken from Domańska. <sup>172</sup>

Qingzhu  $et\,al.^{77}$  measured the solubility of 2-methylbenzoic acid in 1-octanol from 297 to 322 K employing a laser monitoring method that determined the temperature at which the solid solute was completely dissolved. The authors curvefit the mole fraction solubilities to Eq. (8) (with C=0). The derived mathematical expression

$$\ln x_1 = 5.432 - \frac{2127}{T} \tag{64}$$

described the experimental  $x_1$  values to within an average absolute relative deviation of 0.8%.

The experimental solubility data for 2-methylbenzoic acid in organic solvents are in Secs. 59.2–59.9.

# 59.2. 2-Methylbenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements:  172U. Domańska, Pol. J. Chem. 60 847 (1986). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                     |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 298.10 | 0.9872             | 0.0128    |
| 301.95 | 0.9843             | 0.0157    |
| 306.20 | 0.9841             | 0.0199    |
| 311.45 | 0.9731             | 0.0269    |
| 319.65 | 0.9574             | 0.0426    |
| 322.65 | 0.9501             | 0.0499    |
| 331.85 | 0.9145             | 0.0855    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over phosphorous pentoxide and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Heptane; C <sub>7</sub> H <sub>16</sub> ; [142-82-5] | Original Measurements:  173 U. Domańska and T. Hofman, J. Solution Chem. 14, 531 (1985).  172 U. Domańska, Pol. J. Chem. 60, 847 (1986). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                                                                             |
| Temperature                                                                                                                                              | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$                                                                               |
|--------------------|--------------------------------------------------------------------------------------------------|
| 0.9886             | 0.0114                                                                                           |
| 0.9851             | 0.0149                                                                                           |
| 0.9803             | 0.0197                                                                                           |
| 0.9741             | 0.0259                                                                                           |
| 0.9676             | 0.0324                                                                                           |
| 0.9605             | 0.0395                                                                                           |
| 0.9523             | 0.0477                                                                                           |
| 0.9415             | 0.0585                                                                                           |
| 0.9271             | 0.0729                                                                                           |
| 0.9047             | 0.0953                                                                                           |
| 0.8618             | 0.1382                                                                                           |
| 0.8449             | 0.1551                                                                                           |
|                    | 0.9886<br>0.9851<br>0.9803<br>0.9741<br>0.9676<br>0.9605<br>0.9523<br>0.9415<br>0.9271<br>0.9047 |

 $<sup>\</sup>frac{a}{a}$  $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

# **Source and Purity of Chemicals:**

- $(1)\,99+\%,$  Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, VEB Jena Pharm, dried over molecular sieves and then fractionally distilled before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  173 U. Domańska and T. Hofman, J. Solution Chem. 14, 531 (1985).  172 U. Domańska, Pol. J. Chem. 60, 847 (1986). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 295.45 | 0.9854  | 0.0146    |
| 304.95 | 0.9721  | 0.0279    |
| 316.65 | 0.9485  | 0.0515    |
| 319.40 | 0.9385  | 0.0615    |
| 325.30 | 0.9115  | 0.0885    |
| 329.35 | 0.8941  | 0.1059    |
| 333.45 | 0.8619  | 0.1381    |
| 338.15 | 0.8152  | 0.1848    |
|        |         |           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constanttemperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

## Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over phosphorous pentoxide and then fractionally distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

# 59.3. 2-Methylbenzoic acid solubility data in aromatic hydrocarbons

| <b>Components:</b> (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | <b>Original Measurements:</b> 172 U. Domańska, Pol. J. Chem. <b>60</b> , 847 (1986). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                         |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                     |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 294.25 | 0.9352             | 0.0648    |
| 301.85 | 0.9049             | 0.0951    |
| 311.85 | 0.8471             | 0.1529    |
| 323.75 | 0.7721             | 0.2279    |
| 329.25 | 0.7186             | 0.2814    |
| 334.85 | 0.6559             | 0.3441    |
| 338.75 | 0.6113             | 0.3887    |
| 345.25 | 0.5389             | 0.4611    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

## Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constanttemperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components:                                                              | Original Measurements:                                |
|--------------------------------------------------------------------------|-------------------------------------------------------|
| (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>172</sup> U. Domańska, Pol. J. Chem. <b>60</b> , |
| [118-90-1]                                                               | 847 (1986).                                           |
| (2) 1,3-Dimethylbenzene; C <sub>8</sub> H <sub>10</sub> ;                |                                                       |
| [108-38-3]                                                               |                                                       |
| Variables:                                                               | Prepared by:                                          |
| Temperature                                                              | W. E. Acree, Jr.                                      |

| $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$                                                           |
|--------------------|------------------------------------------------------------------------------|
| 0.9175             | 0.0825                                                                       |
| 0.9063             | 0.0937                                                                       |
| 0.8765             | 0.1235                                                                       |
| 0.8476             | 0.1524                                                                       |
| 0.8224             | 0.1776                                                                       |
| 0.7812             | 0.2188                                                                       |
| 0.7593             | 0.2407                                                                       |
| 0.6954             | 0.3046                                                                       |
| 0.5916             | 0.4084                                                                       |
|                    | 0.9175<br>0.9063<br>0.8765<br>0.8476<br>0.8224<br>0.7812<br>0.7593<br>0.6954 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Reakhim, Poland, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

# 59.4. 2-Methylbenzoic acid solubility data in esters

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8694  | 0.1306    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8491  | 0.1509    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8486  | 0.1514    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8506  | 0.1494      |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 2-Methylbenzoic acid; $C_8H_8O_2$ ;<br>[118-90-1]<br>(2) 1,2,3-Triacetoxypropane (Triacetin);<br>$C_9H_{14}O_6$ ; [102-76-1] | Original Measurements: W. E. Acree, Jr., unpublished data. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8876  | 0.1124    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Acros Organics, USA, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 59.5. 2-Methylbenzoic acid solubility data in ethers

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8282  | 0.1718    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8852  | 0.1148    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9061  | 0.0939    |

 $\bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7371  | 0.2629  |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                 | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.7466  | 0.2534             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

# 59.6. 2-Methylbenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components:                                                              | Original Measurements:                                |
|--------------------------------------------------------------------------|-------------------------------------------------------|
| (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>172</sup> U. Domańska, Pol. J. Chem. <b>60</b> , |
| [118-90-1]                                                               | 847 (1986).                                           |
| (2) Tetrachloromethane; CCl <sub>4</sub> ;                               |                                                       |
| [56-23-5]                                                                |                                                       |
| Variables:                                                               | Prepared by:                                          |
| Temperature                                                              | W. E. Acree, Jr.                                      |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 296.20 | 0.9383  | 0.0617    |
| 305.85 | 0.9017  | 0.0983    |
| 312.05 | 0.8692  | 0.1308    |
| 318.15 | 0.8273  | 0.1727    |
| 328.05 | 0.7492  | 0.2508    |
| 336.35 | 0.6602  | 0.3398    |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

# **Source and Purity of Chemicals:**

 $(1)\,99+\%,$  Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.

(2) Purity not given, POCh Gliwice, Poland, dried over phosphorous pentoxide and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Diiodomethane; CH <sub>2</sub> I <sub>2</sub> ; [75-11-6] | Original Measurements:  172 U. Domańska, Pol. J. Chem. 60, 847 (1986). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                           |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                       |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 294.45 | 0.9962             | 0.00378            |
| 301.05 | 0.9941             | 0.00588            |
| 303.75 | 0.9926             | 0.00740            |
| 307.45 | 0.9913             | 0.00870            |
| 308.55 | 0.9905             | 0.00948            |
| 312.15 | 0.9886             | 0.0114             |
| 316.45 | 0.9851             | 0.0149             |
| 321.15 | 0.9787             | 0.0213             |
| 324.85 | 0.9733             | 0.0267             |
| 328.35 | 0.9664             | 0.0336             |
| 332.45 | 0.9562             | 0.0438             |
| 336.45 | 0.9401             | 0.0599             |
| 340.45 | 0.9175             | 0.0825             |
| 343.85 | 0.8823             | 0.1177             |
| 345.55 | 0.8614             | 0.1386             |
|        |                    |                    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- $(1)\,99+\%,$  Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Chemapol, CSRS, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components:                                                              | Original Measurements:                   |
|--------------------------------------------------------------------------|------------------------------------------|
| (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>172</sup> U. Domańska, Pol. J. Chem |
| [118-90-1]                                                               | <b>60</b> , 847 (1986).                  |
| (2) Chlorobenzene; C <sub>6</sub> H <sub>5</sub> Cl; [108-90-7]          |                                          |

| Variables:  | Prepared by:     |
|-------------|------------------|
| Temperature | W. E. Acree, Jr. |

## **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 299.05 | 0.8517             | 0.1483    |
| 301.05 | 0.8429             | 0.1571    |
| 305.95 | 0.8120             | 0.1880    |
| 309.10 | 0.7796             | 0.2204    |
| 314.70 | 0.7439             | 0.2561    |
| 319.15 | 0.7011             | 0.2989    |
| 323.70 | 0.6582             | 0.3418    |
| 326.85 | 0.6213             | 0.3787    |
| 334.00 | 0.5389             | 0.4611    |
| 342.85 | 0.4295             | 0.5705    |
| 354.15 | 0.2799             | 0.7201    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### **Source and Purity of Chemicals:**

- $(1)\,99+\%,$  Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Intern. Enzymes Limited, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1,2-Dichlorobenzene; C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub> ; [95-50-1] | <b>Original Measurements:</b> <sup>172</sup> U. Domańska, Pol. J. Chem. <b>60</b> , 847 (1986). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                    |
| Temperature                                                                                                                                                                        | W. E. Acree, Jr.                                                                                |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 296.05 | 0.9031             | 0.0969    |
| 302.35 | 0.8720             | 0.1280    |
| 307.70 | 0.8410             | 0.1590    |
| 310.80 | 0.8205             | 0.1795    |
| 318.65 | 0.7681             | 0.2319    |
| 328.50 | 0.6828             | 0.3172    |
| 335.25 | 0.6121             | 0.3879    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature: ±0.1 K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Bromobenzene; C <sub>6</sub> H <sub>5</sub> Br; [108-86-1] | <b>Original Measurements:</b> <sup>172</sup> U. Domańska, Pol. J. Chem. <b>60</b> , 847 (1986). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                     | Prepared by:                                                                                    |
| Temperature                                                                                                                                                    | W. E. Acree, Jr.                                                                                |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 298.35 | 0.9043             | 0.0957    |
| 301.95 | 0.8884             | 0.1116    |
| 308.20 | 0.8526             | 0.1474    |
| 312.65 | 0.8237             | 0.1763    |
| 317.55 | 0.7867             | 0.2133    |
| 330.95 | 0.6773             | 0.3227    |
| 334.60 | 0.6371             | 0.3629    |
| 344.15 | 0.5176             | 0.4824    |
| 352.10 | 0.4063             | 0.5937    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### **Source and Purity of Chemicals:**

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over molecular sieves and then fractionally distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

# 59.7. 2-Methylbenzoic acid solubility data in alcohols

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.8599             | 0.1401    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  72R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                            |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                        |

# **Experimental Values**

The measured solubility was reported to be 3.712 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1460$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  173 U. Domańska and T. Hofman, J Solution Chem. 14, 531 (1985).  172 U. Domańska, Pol. J. Chem. 60 847 (1986). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                                                                           |
| Temperature                                                                                                                                             | W. E. Acree, Jr.                                                                                                                       |

| T/K    | $x_2^a$ | $x_1^b$ |
|--------|---------|---------|
| 291.55 | 0.8791  | 0.1209  |
| 296.05 | 0.8665  | 0.1335  |
| 301.65 | 0.8442  | 0.1558  |
| 306.25 | 0.8228  | 0.1772  |
| 312.05 | 0.7973  | 0.2027  |
| 316.05 | 0.7749  | 0.2251  |
| 319.35 | 0.7560  | 0.2440  |
| 323.35 | 0.7301  | 0.2699  |
| 329.35 | 0.6874  | 0.3126  |
| 336.85 | 0.6349  | 0.3651  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

# **Source and Purity of Chemicals:**

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over molecular sieves and then fractionally distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8550  | 0.1450    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                     |
|--------------------------------------------------------------------------|--------------------------------------------|
| (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>171</sup> R. Coaxum, K. R. Hoover, E. |
| [118-90-1]                                                               | Pustejovsky, D. M. Stovall, W. E.          |
| (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0]               | Acree, Jr., and M. H. Abraham,             |
|                                                                          | Phys. Chem. Liq. <b>42</b> , 313 (2004).   |
| Variables:                                                               | Prepared by:                               |
| T/K = 298.15                                                             | W. E. Acree, Jr.                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8388  | 0.1612    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  173 U. Domańska and T. Hofman, J. Solution Chem. 14, 531 (1985).  172 U. Domańska, Pol. J. Chem. 60, 847 (1986). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                             |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                                                                         |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 292.65 | 0.8643             | 0.1357             |
| 296.75 | 0.8457             | 0.1543             |
| 301.95 | 0.8262             | 0.1738             |
| 306.75 | 0.8019             | 0.1981             |
| 312.40 | 0.7723             | 0.2277             |
| 317.75 | 0.7388             | 0.2612             |
| 324.90 | 0.6957             | 0.3043             |
| 333.35 | 0.6337             | 0.3663             |
| 340.15 | 0.5798             | 0.4202             |
| 344.75 | 0.5344             | 0.4656             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

# **Source and Purity of Chemicals:**

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, POCh Gliwice, Poland, dried over molecular sieves and then fractionally distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8449  | 0.1551             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                     |
|--------------------------------------------------------------------------|--------------------------------------------|
| (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>171</sup> R. Coaxum, K. R. Hoover, E. |
| [118-90-1]                                                               | Pustejovsky, D. M. Stovall, W. E.          |
| (2) 2-Butanol; $C_4H_{10}O$ ; [78-92-2]                                  | Acree, Jr., and M. H. Abraham,             |
|                                                                          | Phys. Chem. Liq. <b>42</b> , 313 (2004).   |
| Variables:                                                               | Prepared by:                               |
| T/K = 298.15                                                             | W. E. Acree, Jr.                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8300  | 0.1700    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8771  | 0.1229    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2-Methyl-2-propanol; C <sub>3</sub> H <sub>8</sub> O; [75-65-0] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7862  | 0.2138    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8354  | 0.1646             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8144  | 0.1856  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [137-32-6] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8619  | 0.1381    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8527  | 0.1473    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

 $Constant\text{-}temperature\ bath,\ calorimetric\ thermometer,\ and\ an\ ultraviolet/\ visible\ spectrophotometer.$ 

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8293  | 0.1707    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

## **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8265  | 0.1735    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8245  | 0.1755             |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8242  | 0.1758    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  77 J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, and L. Guiju, J. Chem. Eng. Data 53, 1278 (2008). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                          |
| Temperature                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                      |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 297.15 | 0.8452             | 0.1548    |
| 299.65 | 0.8354             | 0.1646    |
| 301.15 | 0.8195             | 0.1805    |
| 302.65 | 0.8105             | 0.1895    |
| 304.75 | 0.8044             | 0.1956    |
| 305.35 | 0.8033             | 0.1967    |
| 306.25 | 0.7998             | 0.2002    |
| 306.95 | 0.7924             | 0.2076    |
| 308.95 | 0.7806             | 0.2194    |
| 310.65 | 0.7704             | 0.2296    |

| T/K    | $x_2^a$ | $x_1^b$ |
|--------|---------|---------|
| 312.25 | 0.7606  | 0.2394  |
| 314.05 | 0.7501  | 0.2499  |
| 315.75 | 0.7399  | 0.2601  |
| 316.95 | 0.7295  | 0.2705  |
| 318.75 | 0.7193  | 0.2807  |
| 320.35 | 0.7060  | 0.2940  |
| 321.55 | 0.6954  | 0.3046  |

 $<sup>\</sup>overline{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Circulating water bath, analytical balance, and laser monitoring system. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate 0.5 K/20 min (0.2 K/20 min or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

# **Source and Purity of Chemicals:**

- (1) <99%, Chemical source not specified, used as received.
- (2) <99%, Chemical source not specified, used as received.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 0.0005$ .

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                              |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8147  | 0.1853             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 59.8. 2-Methylbenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements:  171 R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9592  | 0.04081   |

 $<sup>^{\</sup>mathrm{a}}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Nitrobenzene; C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub> ; [98-95-3] | Original Measurements: 172U. Domańska, Pol. J. Chem. <b>60</b> , 847 (1986). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                 |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                             |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 298.35 | 0.9170             | 0.0830    |
| 299.95 | 0.9092             | 0.0908    |
| 305.25 | 0.8853             | 0.1147    |
| 315.00 | 0.8283             | 0.1717    |
| 321.65 | 0.7827             | 0.2173    |
| 327.15 | 0.7373             | 0.2627    |
| 338.35 | 0.6172             | 0.3828    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased. The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, J. E. London, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

# 59.9. 2-Methylbenzoic acid solubility data in binary organic solvent mixtures

# Components:Original Measurements:(1) 2-Methylbenzoic acid; $C_8H_8O_2$ ; $^{173}U$ . Domańska and T. Hofman, J.[118-90-1]Solution Chem. 14, 531 (1985).(2) Heptane; $C_7H_{16}$ ; [142-82-5]Solution Chem. 14, 531 (1985).(3) Cyclohexane; $C_6H_{12}$ ; [110-82-7]Prepared by:Variables:Prepared by:Temperature; Solvent CompositionW. E. Acree, Jr.

| T/K    | $x_2^{(s)a}$ | $x_2^{b}$ | $x_1^c$ |
|--------|--------------|-----------|---------|
| 295.45 | 0.0000       | 0.0000    | 0.0146  |
| 304.95 | 0.0000       | 0.0000    | 0.0279  |
| 316.65 | 0.0000       | 0.0000    | 0.0515  |
| 319.40 | 0.0000       | 0.0000    | 0.0615  |
| 325.30 | 0.0000       | 0.0000    | 0.0885  |
| 329.35 | 0.0000       | 0.0000    | 0.1059  |
| 333.45 | 0.0000       | 0.0000    | 0.1381  |
| 338.15 | 0.0000       | 0.0000    | 0.1848  |
| 292.05 | 0.1999       | 0.1976    | 0.0117  |
| 294.85 | 0.1999       | 0.1971    | 0.0140  |
| 300.55 | 0.1999       | 0.1960    | 0.0194  |
| 304.95 | 0.1999       | 0.1948    | 0.0254  |
| 310.95 | 0.1999       | 0.1932    | 0.0336  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{(s)a}$ | $x_2^{b}$ | $x_1^{c}$ |
|--------|--------------|-----------|-----------|
| 314.55 | 0.1999       | 0.1912    | 0.0436    |
| 319.55 | 0.1999       | 0.1888    | 0.0556    |
| 327.15 | 0.1999       | 0.1838    | 0.0805    |
| 333.05 | 0.1999       | 0.1773    | 0.1130    |
| 338.35 | 0.1999       | 0.1699    | 0.1501    |
| 342.55 | 0.1999       | 0.1628    | 0.1855    |
| 292.55 | 0.3988       | 0.3944    | 0.0111    |
| 297.05 | 0.3988       | 0.3931    | 0.0144    |
| 302.85 | 0.3988       | 0.3908    | 0.0200    |
| 306.45 | 0.3988       | 0.3889    | 0.0248    |
| 311.15 | 0.3988       | 0.3859    | 0.0324    |
| 319.55 | 0.3988       | 0.3792    | 0.0491    |
| 325.45 | 0.3988       | 0.3719    | 0.0675    |
| 330.95 | 0.3988       | 0.3621    | 0.0921    |
| 336.65 | 0.3988       | 0.3478    | 0.1280    |
| 340.95 | 0.3988       | 0.3336    | 0.1634    |
| 292.65 | 0.5938       | 0.5867    | 0.0119    |
| 297.85 | 0.5938       | 0.5842    | 0.0161    |
| 302.95 | 0.5938       | 0.5810    | 0.0216    |
| 308.95 | 0.5938       | 0.5759    | 0.0301    |
| 316.25 | 0.5938       | 0.5671    | 0.0449    |
| 322.55 | 0.5938       | 0.5569    | 0.0622    |
| 329.05 | 0.5938       | 0.5427    | 0.0861    |
| 334.85 | 0.5938       | 0.5247    | 0.1163    |
| 339.15 | 0.5938       | 0.5062    | 0.1103    |
| 343.15 | 0.5938       | 0.4861    | 0.1470    |
| 292.95 | 0.8000       | 0.7841    | 0.1014    |
| 299.95 | 0.8000       | 0.7862    | 0.0172    |
| 305.55 | 0.8000       | 0.7811    | 0.0172    |
| 311.35 | 0.8000       | 0.7738    | 0.0230    |
| 318.75 | 0.8000       | 0.7621    | 0.0327    |
| 324.45 | 0.8000       | 0.7500    | 0.0638    |
| 328.95 | 0.8000       | 0.7334    | 0.0038    |
| 334.65 | 0.8000       | 0.7334    | 0.1032    |
| 337.25 | 0.8000       | 0.6964    | 0.1032    |
| 341.35 | 0.8000       | 0.6702    | 0.1293    |
| 344.45 | 0.8000       | 0.6454    | 0.1022    |
| 292.15 | 1.0000       | 0.9886    | 0.1933    |
| 296.75 | 1.0000       | 0.9851    |           |
|        |              |           | 0.0149    |
| 302.05 | 1.0000       | 0.9803    | 0.0197    |
| 307.35 | 1.0000       | 0.9741    | 0.0259    |
| 311.85 | 1.0000       | 0.9676    | 0.0324    |
| 315.45 | 1.0000       | 0.9605    | 0.0395    |
| 319.15 | 1.0000       | 0.9523    | 0.0477    |
| 323.55 | 1.0000       | 0.9415    | 0.0585    |
| 329.45 | 1.0000       | 0.9271    | 0.0729    |
| 334.85 | 1.0000       | 0.9047    | 0.0953    |
| 341.45 | 1.0000       | 0.8618    | 0.1382    |
| 341.85 | 1.0000       | 0.8449    | 0.1551    |

 $<sup>{}^{</sup>a}x_{2}^{(s)}$ : initial mole fraction of component 2 in the binary solvent mixture.

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Chemical source not given, dried over molecular sieves and then fractionally distilled before use.
- (3) Purity not given, Chemical source not given, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 2.0\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] (3) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:<br><sup>173</sup> U. Domańska and T. Hofman, J.<br>Solution Chem. <b>14</b> , 531 (1985). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                           | Prepared by:                                                                                                     |
| Temperature; Solvent Composition                                                                                                                                                                                     | W. E. Acree, Jr.                                                                                                 |

| T/K    | $x_2^{(s)a}$ | $x_2^{b}$ | $x_1^{c}$ |
|--------|--------------|-----------|-----------|
| 295.45 | 0.0000       | 0.0000    | 0.0146    |
| 304.95 | 0.0000       | 0.0000    | 0.0279    |
| 316.65 | 0.0000       | 0.0000    | 0.0515    |
| 319.40 | 0.0000       | 0.0000    | 0.0615    |
| 325.30 | 0.0000       | 0.0000    | 0.0885    |
| 329.35 | 0.0000       | 0.0000    | 0.1059    |
| 333.45 | 0.0000       | 0.0000    | 0.1381    |
| 338.15 | 0.0000       | 0.0000    | 0.1848    |
| 287.15 | 0.1999       | 0.1885    | 0.0569    |
| 294.15 | 0.1999       | 0.1852    | 0.0735    |
| 303.15 | 0.1999       | 0.1804    | 0.0975    |
| 311.15 | 0.1999       | 0.1749    | 0.1250    |
| 313.85 | 0.1999       | 0.1719    | 0.1399    |
| 317.65 | 0.1999       | 0.1684    | 0.1576    |
| 320.75 | 0.1999       | 0.1658    | 0.1708    |
| 325.35 | 0.1999       | 0.1603    | 0.1980    |
| 331.15 | 0.1999       | 0.1526    | 0.2366    |
| 332.15 | 0.1999       | 0.1485    | 0.2570    |
| 286.15 | 0.4007       | 0.3675    | 0.0828    |
| 290.15 | 0.4007       | 0.3628    | 0.0946    |
| 294.15 | 0.4007       | 0.3578    | 0.1070    |
| 297.15 | 0.4007       | 0.3533    | 0.1183    |
| 298.45 | 0.4007       | 0.3518    | 0.1221    |
| 308.15 | 0.4007       | 0.3372    | 0.1585    |
| 311.15 | 0.4007       | 0.3294    | 0.1780    |
| 317.05 | 0.4007       | 0.3180    | 0.2064    |
| 321.35 | 0.4007       | 0.3054    | 0.2379    |
| 324.35 | 0.4007       | 0.2968    | 0.2594    |
| 289.35 | 0.5902       | 0.5252    | 0.1101    |
| 298.85 | 0.5902       | 0.5061    | 0.1425    |
| 303.65 | 0.5902       | 0.4955    | 0.1604    |
| 314.65 | 0.5902       | 0.4646    | 0.2128    |
| 318.15 | 0.5902       | 0.4599    | 0.2207    |
| 319.95 | 0.5902       | 0.4466    | 0.2433    |
| 325.15 | 0.5902       | 0.4270    | 0.2766    |
| 327.75 | 0.5902       | 0.4164    | 0.2945    |
| 288.05 | 0.8001       | 0.7049    | 0.1190    |
| 292.15 | 0.8001       | 0.6942    | 0.1324    |
| 295.75 | 0.8001       | 0.6844    | 0.1446    |
| 299.45 | 0.8001       | 0.6718    | 0.1603    |

 $<sup>{}^{\</sup>mathrm{b}}x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

T/K

| 304.05 | 0.8001 |        |        |
|--------|--------|--------|--------|
| 304.03 | 0.8001 | 0.6590 | 0.1763 |
| 306.95 | 0.8001 | 0.6470 | 0.1914 |
| 312.25 | 0.8001 | 0.6315 | 0.2107 |
| 315.85 | 0.8001 | 0.6172 | 0.2286 |
| 319.65 | 0.8001 | 0.6021 | 0.2475 |
| 323.45 | 0.8001 | 0.5626 | 0.2968 |
| 329.55 | 0.8001 | 0.5611 | 0.2987 |
| 333.95 | 0.8001 | 0.5370 | 0.3288 |
| 291.55 | 1.0000 | 0.8791 | 0.1209 |
| 296.05 | 1.0000 | 0.8665 | 0.1335 |
| 301.65 | 1.0000 | 0.8442 | 0.1558 |
| 306.25 | 1.0000 | 0.8228 | 0.1772 |
| 312.05 | 1.0000 | 0.7973 | 0.2027 |
| 316.05 | 1.0000 | 0.7749 | 0.2251 |
| 319.35 | 1.0000 | 0.7560 | 0.2440 |
| 323.35 | 1.0000 | 0.7301 | 0.2699 |
| 329.35 | 1.0000 | 0.6874 | 0.3126 |
| 336.85 | 1.0000 | 0.6349 | 0.3651 |

 $<sup>{}^{</sup>a}x_{2}$ (s): initial mole fraction of component 2 in the binary solvent mixture.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

## **Source and Purity of Chemicals:**

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Chemical source not given, dried over molecular sieves and then fractionally distilled before use.
- (3) Purity not given, Chemical source not given, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_2^{(s)}$ : ±0.0001.

 $x_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [118-90-1] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] (3) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  173 U. Domańska and T. Hofman, J. Solution Chem. <b>14</b> , 531 (1985). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                              | Prepared by:                                                                                     |
| Temperature; Solvent Composition                                                                                                                                                                                        | W. E. Acree, Jr.                                                                                 |

# **Experimental Values**

| T/K    | $x_2^{(s)a}$ | $x_2^{\mathbf{b}}$ | $x_1^{c}$ |
|--------|--------------|--------------------|-----------|
| 295.45 | 0.0000       | 0.0000             | 0.0146    |
| 304.95 | 0.0000       | 0.0000             | 0.0279    |
| 316.65 | 0.0000       | 0.0000             | 0.0515    |
| 319.40 | 0.0000       | 0.0000             | 0.0615    |
| 325.30 | 0.0000       | 0.0000             | 0.0885    |

| 1/K                              | X2 · ·                  | $\chi_2$              | <i>x</i> <sub>1</sub> |
|----------------------------------|-------------------------|-----------------------|-----------------------|
| 329.35                           | 0.0000                  | 0.0000                | 0.1059                |
| 333.45                           | 0.0000                  | 0.0000                | 0.1381                |
| 338.15                           | 0.0000                  | 0.0000                | 0.1848                |
| 292.45                           | 0.2000                  | 0.1849                | 0.0757                |
| 296.65                           | 0.2000                  | 0.1828                | 0.0862                |
| 301.75                           | 0.2000                  | 0.1804                | 0.0982                |
| 306.95                           | 0.2000                  | 0.1773                | 0.1136                |
| 311.55                           | 0.2000                  | 0.1735                | 0.1325                |
| 317.25                           | 0.2000                  | 0.1683                | 0.1585                |
| 323.45                           | 0.2000                  | 0.1612                | 0.1940                |
| 328.55                           | 0.2000                  | 0.1535                | 0.1346                |
| 334.55                           | 0.2000                  | 0.1433                | 0.2320                |
| 339.45                           | 0.2000                  | 0.1339                | 0.2834                |
| 343.35                           | 0.2000                  | 0.1359                |                       |
| 290.95                           | 0.4000                  | 0.1238                | 0.3712<br>0.1085      |
|                                  |                         |                       |                       |
| 293.25                           | 0.4000                  | 0.3538                | 0.1156                |
| 298.45                           | 0.4000                  | 0.3479                | 0.1303                |
| 301.85                           | 0.4000                  | 0.3416                | 0.1459                |
| 307.95                           | 0.4000                  | 0.3337                | 0.1658                |
| 312.65                           | 0.4000                  | 0.3248                | 0.1881                |
| 318.85                           | 0.4000                  | 0.3120                | 0.2199                |
| 325.75                           | 0.4000                  | 0.2950                | 0.2625                |
| 332.45                           | 0.4000                  | 0.2757                | 0.3108                |
| 338.35                           | 0.4000                  | 0.2564                | 0.3590                |
| 343.15                           | 0.4000                  | 0.2412                | 0.3970                |
| 291.15                           | 0.6000                  | 0.5236                | 0.1274                |
| 295.75                           | 0.6000                  | 0.5129                | 0.1452                |
| 300.75                           | 0.6000                  | 0.5003                | 0.1662                |
| 306.55                           | 0.6000                  | 0.4859                | 0.1901                |
| 311.35                           | 0.6000                  | 0.4712                | 0.2147                |
| 318.05                           | 0.6000                  | 0.4516                | 0.2473                |
| 324.45                           | 0.6000                  | 0.4283                | 0.2863                |
| 331.25                           | 0.6000                  | 0.3997                | 0.3339                |
| 336.55                           | 0.6000                  | 0.3761                | 0.3731                |
| 342.55                           | 0.6000                  | 0.3452                | 0.4246                |
| 291.25                           | 0.8001                  | 0.6940                | 0.1326                |
| 298.45                           | 0.8001                  | 0.6794                | 0.1509                |
| 302.45                           | 0.8001                  | 0.6594                | 0.1759                |
| 307.45                           | 0.8001                  | 0.6407                | 0.1992                |
| 312.45                           | 0.8001                  | 0.6214                | 0.2234                |
| 317.85                           | 0.8001                  | 0.5988                | 0.2516                |
| 323.25                           | 0.8001                  | 0.5749                | 0.2815                |
| 329.65                           | 0.8001                  | 0.5411                | 0.3237                |
| 337.15                           | 0.8001                  | 0.5006                | 0.3743                |
| 341.15                           | 0.8001                  | 0.4768                | 0.4041                |
| 292.65                           | 1.0000                  | 0.8643                | 0.1357                |
| 296.75                           | 1.0000                  | 0.8457                | 0.1543                |
| 301.95                           | 1.0000                  | 0.8262                | 0.1738                |
| 306.75                           | 1.0000                  | 0.8019                | 0.1981                |
| 312.40                           | 1.0000                  | 0.7723                | 0.2277                |
| 317.75                           | 1.0000                  | 0.7388                | 0.2612                |
| 324.90                           | 1.0000                  | 0.6957                | 0.3043                |
| 333.35                           | 1.0000                  | 0.6337                | 0.3663                |
| 340.15                           | 1.0000                  | 0.5798                | 0.4202                |
| 344.75                           | 1.0000                  | 0.5344                | 0.4656                |
|                                  |                         |                       |                       |
| "x <sub>2</sub> '": initial mole | fraction of component 2 | in the binary solvent | t mixture.            |

 $x_2^b$ 

 $x_1^c$ 

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>a}x_{2}$ (s): initial mole fraction of component 2 in the binary solvent mixture.

 $<sup>{}^{\</sup>mathrm{b}}x_2$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### **Source and Purity of Chemicals:**

- (1) 99+%, Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Chemical source not given, dried over molecular sieves and then fractionally distilled before use.
- (3) Purity not given, Chemical source not given, dried over molecular sieves and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.

 $x_2^{(s)}$ : ±0.0001.

 $x_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:                                                              | Original Measurements:                       |
|--------------------------------------------------------------------------|----------------------------------------------|
| (1) 2-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>174</sup> U. Domańska, J. Solution Chem |
| [118-90-1]                                                               | <b>18</b> , 1153 (1989).                     |
| (2) Diiodomethane; CH <sub>2</sub> I <sub>2</sub> ; [75-11-6]            |                                              |

(3) Cyclohexane;  $C_6H_{12}$ ; [110-82-7]

| Variables:                       | Prepared by:     |
|----------------------------------|------------------|
| Temperature; Solvent Composition | W. E. Acree, Jr. |

## **Experimental Values**

| T/K    | $x_2^{(s)a}$ | $x_2^{b}$ | $x_1^{c}$ |
|--------|--------------|-----------|-----------|
| 295.45 | 0.0000       | 0.0000    | 0.0146    |
| 304.95 | 0.0000       | 0.0000    | 0.0279    |
| 316.65 | 0.0000       | 0.0000    | 0.0515    |
| 319.40 | 0.0000       | 0.0000    | 0.0615    |
| 325.30 | 0.0000       | 0.0000    | 0.0885    |
| 329.35 | 0.0000       | 0.0000    | 0.1059    |
| 333.45 | 0.0000       | 0.0000    | 0.1381    |
| 338.15 | 0.0000       | 0.0000    | 0.1848    |
| 290.75 | 0.2000       | 0.1954    | 0.0228    |
| 293.35 | 0.2000       | 0.1947    | 0.0265    |
| 295.35 | 0.2000       | 0.1939    | 0.0306    |
| 297.95 | 0.2000       | 0.1930    | 0.0350    |
| 301.35 | 0.2000       | 0.1915    | 0.0425    |
| 304.25 | 0.2000       | 0.1897    | 0.0516    |
| 306.95 | 0.2000       | 0.1881    | 0.0595    |
| 309.25 | 0.2000       | 0.1862    | 0.0691    |
| 312.95 | 0.2000       | 0.1818    | 0.0909    |
| 316.55 | 0.2000       | 0.1804    | 0.0979    |
| 318.45 | 0.2000       | 0.1767    | 0.1164    |
| 322.05 | 0.2000       | 0.1717    | 0.1416    |
| 327.25 | 0.2000       | 0.1626    | 0.1869    |
| 330.75 | 0.2000       | 0.1540    | 0.2299    |
| 334.45 | 0.2000       | 0.1446    | 0.2769    |
| 338.05 | 0.2000       | 0.1336    | 0.3318    |
| 342.95 | 0.2000       | 0.1196    | 0.4021    |
| 346.05 | 0.2000       | 0.1093    | 0.4537    |
| 349.45 | 0.2000       | 0.0989    | 0.5054    |
| 294.85 | 0.3975       | 0.3853    | 0.0308    |
| 298.25 | 0.3975       | 0.3822    | 0.0386    |
| 301.55 | 0.3975       | 0.3785    | 0.0477    |

| T/K    | $x_2^{(s)a}$ | $x_2^{\mathbf{b}}$ | $x_1^{c}$ |
|--------|--------------|--------------------|-----------|
| 304.95 | 0.3975       | 0.3746             | 0.0577    |
| 307.65 | 0.3975       | 0.3705             | 0.0678    |
| 310.45 | 0.3975       | 0.3661             | 0.0789    |
| 313.55 | 0.3975       | 0.3616             | 0.0903    |
| 318.25 | 0.3975       | 0.3524             | 0.1134    |
| 322.65 | 0.3975       | 0.3426             | 0.1381    |
| 327.45 | 0.3975       | 0.3259             | 0.1801    |
| 332.15 | 0.3975       | 0.3080             | 0.2252    |
| 336.35 | 0.3975       | 0.2894             | 0.2720    |
| 341.75 | 0.3975       | 0.2647             | 0.3342    |
| 351.15 | 0.3975       | 0.2152             | 0.4586    |
| 294.35 | 0.5002       | 0.4862             | 0.0280    |
| 298.55 | 0.5002       | 0.4812             | 0.0280    |
| 302.55 | 0.5002       | 0.4759             | 0.0379    |
| 307.95 | 0.5002       | 0.4687             | 0.0630    |
| 311.65 | 0.5002       | 0.4604             | 0.0030    |
|        |              | 0.4494             |           |
| 316.15 | 0.5002       |                    | 0.1016    |
| 320.85 | 0.5002       | 0.4374             | 0.1255    |
| 325.35 | 0.5002       | 0.4210             | 0.1583    |
| 329.05 | 0.5002       | 0.4049             | 0.1905    |
| 332.85 | 0.5002       | 0.3873             | 0.2258    |
| 335.55 | 0.5002       | 0.3701             | 0.2600    |
| 342.15 | 0.5002       | 0.3305             | 0.3393    |
| 296.85 | 0.6002       | 0.5830             | 0.0287    |
| 302.45 | 0.6002       | 0.5755             | 0.0411    |
| 308.35 | 0.6002       | 0.5649             | 0.0588    |
| 312.75 | 0.6002       | 0.5550             | 0.0753    |
| 316.85 | 0.6002       | 0.5440             | 0.0937    |
| 318.85 | 0.6002       | 0.5349             | 0.1088    |
| 323.25 | 0.6002       | 0.5235             | 0.1278    |
| 323.75 | 0.6002       | 0.5121             | 0.1467    |
| 328.05 | 0.6002       | 0.5002             | 0.1666    |
| 331.35 | 0.6002       | 0.4821             | 0.1967    |
| 334.75 | 0.6002       | 0.4606             | 0.2326    |
| 337.45 | 0.6002       | 0.4395             | 0.2677    |
| 342.45 | 0.6002       | 0.3988             | 0.3356    |
| 346.95 | 0.6002       | 0.3595             | 0.4011    |
| 293.85 | 0.7999       | 0.7877             | 0.0152    |
| 299.35 | 0.7999       | 0.7838             | 0.0201    |
| 304.05 | 0.7999       | 0.7777             | 0.0277    |
| 311.65 | 0.7999       | 0.7673             | 0.0408    |
| 314.65 | 0.7999       | 0.7589             | 0.0512    |
| 320.05 | 0.7999       | 0.7477             | 0.0653    |
| 324.45 | 0.7999       | 0.7335             | 0.0830    |
| 328.55 | 0.7999       | 0.7152             | 0.1059    |
| 333.65 | 0.7999       | 0.8587             | 0.1413    |
| 337.55 | 0.7999       | 0.6562             | 0.1797    |
| 342.95 | 0.7999       | 0.6029             | 0.2463    |
| 348.55 | 0.7999       | 0.5223             | 0.3471    |
| 294.45 | 1.0000       | 0.9962             | 0.00378   |
| 301.05 | 1.0000       | 0.9941             | 0.00588   |
| 303.75 | 1.0000       | 0.9926             | 0.00740   |
| 307.45 | 1.0000       | 0.9913             | 0.00870   |
| 308.55 | 1.0000       | 0.9905             | 0.00948   |
| 312.15 | 1.0000       | 0.9886             | 0.0114    |
| 216.15 | 1.0000       | 0.2000             | 0.0117    |

 ${}^{a}x_{2}$  initial mole fraction of component 2 in the binary solvent mixture.

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

316.45

321.15

324.85

328.35

332.45

336.45

340.45

343.85

345.55

0.9851

0.9787

0.9733

0.9664

0.9562

0.9401

0.9175

0.8823

0.8614

0.0149

0.0213

0.0267

0.0336

0.0438

0.0599

0.0825

0.1177

0.1386

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Analytical balance and constant-temperature bath.

Solubilities were determined by a dynamic method. Weighed amounts of solute and solvent were placed in sample container and placed in a constant-temperature bath. The temperature of the bath was slowly increased (2 K/h near the equilibrium temperature). The temperature at which the last crystals disappeared was taken as the temperature of the solution-crystal equilibrium.

#### Source and Purity of Chemicals:

- (1) Analytical grade, Fluka Chemicals, Switzerland, purified by double vacuum sublimation.
- (2) Purity not given, Chemapol, Czechoslovakia, used as received.
- (3) 99.9%, Chemical source not given, dried over phosphorous pentoxide and then fractionally distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_2^{(s)}$ :  $\pm 0.0001$ .  $x_1$ :  $\pm 0.0005$ .

# 60. Solubility of 3-Methylbenzoic Acid in Organic Solvents

# 60.1. Critical evaluation of experimental solubility data

There have been several published studies 14,49,54,63,72,77,130 investigating the solubility behavior of 3-methylbenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Daniels et al. 14 measured the solubility of 3methylbenzoic acid in 18 alcohols (methanol, ethanol, 1propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 2methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, and 1-decanol), in one dialkyl ether (1,1'-oxybisethane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), and in three alkanoates (methyl ethanoate, ethyl ethanoate, and butyl ethanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to calculate the Abraham solute descriptors of 3-methylbenzoic acid. The authors were able to assemble a total of 42  $\log_{10}$  (SR or P) and  $log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 3methylbenzoic acid is  $\log_{10} c_{1,W} = -2.14.^{131,132,176}$  The McGowan volume of 3-methylbenzoic acid, V = 1.0726, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 0.730. This left four solute descriptors (S, A, A, A)B, and L) still to be determined. The 42 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 0.890, A = 0.600, B = 0.400, and L = 4.8187, that best described the $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values. The computation

Table 44. Comparison between observed and calculated molar solubilities of 3-methylbenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                                | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|--------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp,a}}$ | Eq. (20)                       | Eq. (21)                       |
| Methanol            | 0.437                          | 0.369                          | 0.345                          |
| Ethanol             | 0.371                          | 0.399                          | 0.389                          |
| 1-Propanol          | 0.292                          | 0.296                          | 0.300                          |
| 2-Propanol          | 0.292                          | 0.315                          | 0.333                          |
| 1-Butanol           | 0.217                          | 0.206                          | 0.215                          |
| 2-Butanol           | 0.288                          | 0.258                          | 0.241                          |
| 2-Methyl-1-propanol | 0.145                          | 0.161                          | 0.140                          |
| 2-Methyl-2-propanol | 0.353                          | 0.325                          | 0.371                          |
| 1-Pentanol          | 0.204                          | 0.219                          | 0.224                          |
| 2-Pentanol          | 0.244                          | 0.254                          | 0.239                          |
| 3-Methyl-1-butanol  | 0.164                          | 0.192                          | 0.158                          |
| 1-Hexanol           | 0.166                          | 0.170                          | 0.164                          |
| 1-Heptanol          | 0.141                          | 0.130                          | 0.134                          |
| 1-Octanol           | 0.119                          | 0.070                          | 0.024                          |
| 1-Decanol           | -0.044                         | 0.022                          | 0.027                          |
| 1,1'-Oxybisethane   | 0.242                          | 0.072                          | 0.127                          |
| Tetrahydrofuran     | 0.545                          | 0.664                          | 0.638                          |
| 1,4-Dioxane         | 0.303                          | 0.342                          | 0.333                          |
| Methyl ethanoate    | 0.203                          | 0.069                          | 0.050                          |
| Ethyl ethanoate     | 0.136                          | 0.130                          | 0.125                          |
| Butyl ethanoate     | -0.016                         | 0.004                          | -0.026                         |

<sup>a</sup>Experimental data were taken from Daniels et al. <sup>14</sup>

treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -7.120$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  values to within an average standard deviation of 0.077 and 0.083  $\log_{10}$  units, respectively.

After the 3-methylbenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 3-methylbenzoic acid solubility data. Table 44 compares the experimental  $\log_{10} c_1$ values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 3-methylbenzoic acid,  $x_1$ , determined by Daniels et al. 14 were converted into molar solubilities by dividing  $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1$ <sup>sat</sup> =  $x_1/[x_1V_1+(1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 3-methylbenzoic acid is  $V_{\text{solute}} = 121.8 \text{ cm}^3$ mol<sup>-1</sup>. Examination of the numerical entries in Table 44 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

Qingzhu *et al.*<sup>77</sup> measured the solubility of 3-methylbenzoic acid in 1-octanol as a function of temperature using a dynamic method with laser monitoring to observe when dissolution was complete. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [see Eq. (9)] of  $\lambda = 0.7617$  and

h = 2624.62 described the observed solubility data to within a mean relative deviation of 0.8%.

The experimental solubility data for 3-methylbenzoic acid in organic solvents are in Secs. 60.2–60.9.

# 60.2. 3-Methylbenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements: <sup>49</sup> W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. <b>70</b> , 1033 (1981). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9883  | 0.0117    |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

# Source and Purity of Chemicals:

(1) 99%, Chemical source not given, was recrystallized twice from aqueousethanol and dried at 353 K before use.

(2) 99%, Chemical source not given, stored over molecular sieves and distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9821  | 0.0179  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| <b>Components:</b> (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  49W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. <b>70</b> , 1033 (1981). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                       |

| r- <sup>a</sup> | r.b    |
|-----------------|--------|
| 0.9873          | 0.0127 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### Source and Purity of Chemicals:

(1) 99%, Chemical source not given, was recrystallized twice from aqueousethanol and dried at 353 K before use.

(2) 99%, Chemical source not given, stored over molecular sieves and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.  $x_1$ :  $\pm 1\%$  (relative error).

# 60.3. 3-Methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.894   | 0.106     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 60.4. 3-Methylbenzoic acid solubility data in esters

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8636  | 0.1364  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8609  | 0.1391    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [123-86-4] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8737  | 0.1263    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1,2,3-Triacetoxypropane (Triacetin); | Original Measurements: W. E. Acree, Jr., unpublished data. |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1]                                                                              |                                                            |
| Variables:                                                                                                                              | Prepared by:                                               |

# Variables:Prepared by:T/K = 298.15W. E. Acree, Jr.

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.8820           | 0.1180    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 60.5. 3-Methylbenzoic acid solubility data in ethers

| <b>Components:</b> (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:<br><sup>14</sup> C. R. Daniels, A. K. Charlton, R.<br>M. Wold, W. E. Acree, Jr., and M.<br>H. Abraham, Can. J. Chem. <b>81</b> , 1492<br>(2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                        |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8111  | 0.1889    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

## **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.6671  | 0.3329    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                      | Prepared by:                                                                                                                |
| T/K = 303.15                                                                                                                                                    | W. E. Acree, Jr.                                                                                                            |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.627   | 0.373     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                          |

## **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8140  | 0.1860    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.709   | 0.291     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

## Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 60.6. 3-Methylbenzoic acid solubility data in alcohols

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:<br><sup>14</sup> C. R. Daniels, A. K. Charlton, R.<br>M. Wold, W. E. Acree, Jr., and M.<br>H. Abraham, Can. J. Chem. <b>81</b> , 1492<br>(2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                        |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8570  | 0.1430    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                             | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                           | W. E. Acree, Jr.                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8383  | 0.1617    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| <b>Components:</b> (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                                  | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

The measured solubility was reported to be 4.187 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1616$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8382  | 0.1618    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

## Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.8347  | 0.1653             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3]                                     | H. Abraham, Can. J. Chem. <b>81</b> , 1492 (2003).                                            |
| Variables:                                                                                     | Prepared by:                                                                                  |
| T/K = 298.15                                                                                   | W. E. Acree, Jr.                                                                              |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8405  | 0.1595  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| <b>Components:</b> (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                       | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                                     | W. E. Acree, Jr.                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8105  | 0.1895    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

## Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.8655  | 0.1345             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Methylbenzoic acid; $C_8H_8O_2$ ;<br>[99-04-7]<br>(2) 2-Methyl-2-propanol; $C_4H_{10}O$ ;<br>[75-65-0] | Original Measurements:<br><sup>14</sup> C. R. Daniels, A. K. Charlton, R.<br>M. Wold, W. E. Acree, Jr., and M.<br>H. Abraham, Can. J. Chem. <b>81</b> , 1492<br>(2003). |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                  | Prepared by:                                                                                                                                                            |
| T/K = 298.15                                                                                                                | W. E. Acree, Jr.                                                                                                                                                        |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7733  | 0.2267  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.8227  | 0.1773      |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements:  14 C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                              |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8035  | 0.1965    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                          |
|--------------------------------------------------------------------------|-------------------------------------------------|
| (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>14</sup> C. R. Daniels, A. K. Charlton, R. |
| [99-04-7]                                                                | M. Wold, W. E. Acree, Jr., and M.               |
| (2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O;                | H. Abraham, Can. J. Chem. 81, 1492              |
| [137-32-6]                                                               | (2003).                                         |
| Variables:                                                               | Prepared by:                                    |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                |

#### **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{\ b}$ |
|--------------------|-------------|
| 0.8530             | 0.1470      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8368  | 0.1632    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8172  | 0.1828    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                          |
|--------------------------------------------------------------------------|-------------------------------------------------|
| (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; | <sup>14</sup> C. R. Daniels, A. K. Charlton, R. |
| [99-04-7]                                                                | M. Wold, W. E. Acree, Jr., and M.               |
| (2) 2-Methyl-1-pentanol; $C_6H_{14}O$ ;                                  | H. Abraham, Can. J. Chem. 81, 1492              |
| [105-30-6]                                                               | (2003).                                         |
| Variables:                                                               | Prepared by:                                    |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\text{b}}$ |
|---------|------------------|
| 0.8332  | 0.1668           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                             | Original Measurements:                          |
|-----------------------------------------|-------------------------------------------------|
| (1) 3-Methylbenzoic acid; $C_8H_8O_2$ ; | <sup>14</sup> C. R. Daniels, A. K. Charlton, R. |
| [99-04-7]                               | M. Wold, W. E. Acree, Jr., and M.               |
| (2) 4-Methyl-2-pentanol; $C_6H_{14}O$ ; | H. Abraham, Can. J. Chem. <b>81</b> , 1492      |
| [108-11-2]                              | (2003).                                         |
| Variables: T/K = 298.15                 | Prepared by:<br>W. E. Acree, Jr.                |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7867  | 0.2133    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8090  | 0.1910    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                               | W. F. Acree, Ir                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8015  | 0.1985    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  77 J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, and L. Guiju, J. Chem. Eng. Data 53, 1278 (2008). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                          |
| Temperature                                                                                                                                                | W. E. Acree, Jr.                                                                                                                      |

# **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 296.25 | 0.8259  | 0.1741    |
| 297.25 | 0.8212  | 0.1788    |
| 299.15 | 0.8144  | 0.1856    |
| 300.25 | 0.8063  | 0.1937    |
| 302.90 | 0.8011  | 0.1989    |
| 303.80 | 0.7906  | 0.2094    |
| 305.85 | 0.7806  | 0.2194    |
| 308.45 | 0.7687  | 0.2313    |
| 311.75 | 0.7543  | 0.2470    |
| 313.80 | 0.7379  | 0.2621    |
| 316.25 | 0.7251  | 0.2749    |
| 317.65 | 0.7133  | 0.2867    |
| 322.15 | 0.6945  | 0.3055    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# Method/Apparatus/Procedure:

Circulating water bath, analytical balance, and laser monitoring system. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate of 0.5 K/20 min (0.2 K/20 min or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) <99%, Chemical source not specified, used as received.
- (2) <99%, Chemical source not specified, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 0.0005$ .

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                             |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.8370  | 0.1630    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 60.7. 3-Methylbenzoic acid solubility data in alkoxyalcohols

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-80-5] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

|         | L.        |
|---------|-----------|
| $x_2^a$ | $x_1^{b}$ |
| 0.7894  | 0.2106    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Propoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2807-30-9] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.7894  | 0.2106      |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [109-59-1] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Variables: T/K = 298.15                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |  |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7726  | 0.2274    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7835  | 0.2165    |

 $\bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organics, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[99-04-7]<br>(2) 3-Methoxy-1-butanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ;<br>[2517-43-3] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Variables: T/K = 298.15                                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |  |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.7945  | 0.2055  |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) 1-Methyl-2- <i>tert</i> -butoxyethanol; C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> ; [57018-52-7] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.7743  | 0.2257    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

# **Source and Purity of Chemicals:**

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 60.8. 3-Methylbenzoic acid solubility data in miscellaneous organic solvents

| Original Measurements:  14C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. 81, 1492 (2003). |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Prepared by:<br>W. E. Acree. Jr.                                                                                                         |  |
|                                                                                                                                          |  |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9611  | 0.03892   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 279 nm.

### Source and Purity of Chemicals:

- (1) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 60.9. 3-Methylbenzoic acid solubility data in binary organic solvent mixtures

| Components: (1) 3-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [99-04-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] (3) Hexane; C <sub>6</sub> H <sub>14</sub> ; [110-54-3] | Original Measurements:  49 W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. <b>70</b> , 1033 (1981). |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Variables: $T/K = 298.15$ ; Solvent Composition                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                        |  |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{(s)a}$ | $x_2^{b}$ | $x_1^{c}$ |
|--------------|-----------|-----------|
| 0.0000       | 0.0000    | 0.0117    |
| 0.2380       | 0.2350    | 0.0127    |
| 0.4028       | 0.3974    | 0.0133    |
| 0.6121       | 0.6037    | 0.0137    |
| 0.8239       | 0.8127    | 0.0136    |
| 1.0000       | 0.9873    | 0.0127    |

 $\frac{a}{x_2}$  initial mole fraction of component 2 in the binary solvent mixture.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature water bath and an analytical balance.

Excess solute and solvent and were placed in brown glass containers and allowed to equilibrate in a constant-temperature water bath for several days. Attainment of equilibrium was verified by repetitive measurements after several additional days. Solubility was determined by transferring a weighed aliquot through a coarse filter into a flask containing blank nonaqueous titration solvent. The solutions were titrated with freshly standardized sodium methoxide to the thymol blue endpoint.

#### Source and Purity of Chemicals:

- (1) 99%, Chemical source not given, was recrystallized twice from aqueous ethanol and dried at 353 K before use.
- (2) 99+%, Chemical source not given, was dried over molecular sieves and distilled before use.
- (3) 99%, Chemical source not given, was dried over molecular sieves and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $x_2^{(s)}$ :  $\pm 0.0001$ .

 $x_1$ :  $\pm 1\%$  (relative error).

# 61. Solubility of 4-Methylbenzoic Acid in Organic Solvents

# 61.1. Critical evaluation of experimental solubility data

have been several published dies<sup>54,60,63,72,77,82,84,85,177–179</sup> investigating the solubility behavior of 4-methylbenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Hancock et al. 54,63 measured the solubility of 4-methylbenzoic acid in cyclohexane, benzene, tetrahydrofuran, and 1,4-dioxane at 303 K. Thuaire<sup>72</sup> determined the solubility of 4-methylbenzoic acid in ethanol as part of study involving solubilities of benzoic acids in binary aqueous-ethanol solvent mixtures. It is not possible to perform a critical evaluation of the experimental data as both research groups performed measurements at only a single temperature, and there are no independent experimental solubility data for 4-methylbenzoic acid in these five solvents.

There have been several experimental studies<sup>60,77,84,177–179</sup> examining the solubility of 4-methylbenzoic acid in different organic solvents as a function of temperature. Luo *et al.*<sup>179</sup>

determined the solubility of 4-methylbenzoic acid in ethanoic acid and in binary aqueous-ethanoic acid mixtures at several temperatures between 303 and 363 K as part of an experimental study aimed at calculating UNIFAC model group parameters for the ArCOOH group (carboxylic acid group connected to an aromatic ring) interacting with an aliphatic COOH group, with aliphatic CH<sub>3</sub> and CH<sub>2</sub> groups, with an aromatic CH3 group and with an aromatic ArH group. The authors used the Modified Apelblat equation [Eq. (8); A =-11.717, B = -1729.0, and C = 3.2722] to describe the variation in the mole fraction solubility with temperature to within a mean relative deviation of 2.75%. Zhao et al.<sup>60</sup> measured the solubility of 4-methylbenzoic acid in isobutyl ethanoate at 22 temperatures between 300 and 348 K. The experimental data were correlated with the Wilson and UNIQUAC models. Interaction coefficients calculated from the experimental solid-liquid equilibrium data provided a reasonably accurate mathematical description of the measured values. The mean absolute relative deviation between calculated and observed values was 4.76% (Wilson model) and 5.74% (UNIQUAC model).

Qingzhu  $et\,al.^{77}$  measured the solubility of 4-methylbenzoic acid in 1-octanol using a dynamic method with laser monitoring to observe when dissolution was complete. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model [see Eq. (9)] of  $\lambda = 0.7326$  and h = 2940.14 described the observed solubility data to within a mean relative deviation of 0.7%.

Li *et al.*<sup>84</sup> determined the solubility of 4-methylbenzoic acid in *N*-methyl-2-pyrrolidone from 296 to 370 K using a synthetic method with laser monitoring to determine when the last amount of solid solute dissolved. The authors employed a polynomial expression in temperature

$$x_1 = -32.6862 + 0.30878 T - 9.78125 \times 10^{-4} T + 10.4307 \times 10^{-7} T^2$$
(65)

to represent the measured mole fraction solubility data. The root-mean-square deviation between the observed  $x_1$  data and calculated values from Eq. (65) was on the order of 0.0052 mole fraction.

The experimental solubility data for 4-methylbenzoic acid in different organic solvents are in Secs. 61.2–61.7.

# 61.2. 4-Methylbenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                          |

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>^{</sup>c}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9975  | 0.00249   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 61.3. 4-Methylbenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>54</sup> C. K. Hancock, J. N. Pawloski,<br>and J. P. Idoux, J. Org. Chem. <b>31</b> ,<br>3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9908  | 0.00920   |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

| Components:<br>(1) 4-Methylbenzoic acid; $C_8H_8O_2$ ;<br>[100-09-4]<br>(2) 1,4-Dimethylbenzene; $C_8H_{10}$ ;<br>[106-42-3] | Original Measurements:<br><sup>177</sup> Q. Kong, Y. Cheng, X. Bao, L.<br>Wang, and X. Li, Fluid Phase<br>Equilib. <b>340</b> , 46 (2013). |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                   | Prepared by:                                                                                                                               |
| Temperature                                                                                                                  | W. E. Acree, Jr.                                                                                                                           |

| T/K   | $x_2^{a}$ | $x_1^{\mathbf{b}}$ |
|-------|-----------|--------------------|
| 303.2 | 0.9867    | 0.01332            |
| 308.2 | 0.9847    | 0.01525            |
| 313.2 | 0.9822    | 0.01776            |
| 318.2 | 0.9766    | 0.02338            |
| 323.2 | 0.9716    | 0.02840            |
| 328.2 | 0.9646    | 0.03544            |
| 333.2 | 0.9578    | 0.04217            |
| 338.2 | 0.9467    | 0.05326            |
| 343.2 | 0.9308    | 0.06917            |
| 348.2 | 0.9217    | 0.07825            |
| 353.2 | 0.9144    | 0.08555            |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Thermostatic circulating water bath, analytical balance, jacketed equilibrium glass vessel, and a high-performance liquid chromatographic system equipped with uv absorbance detector.

Solubility was measured by a static analytical method. Excess solute and solvent were placed in a jacketed equilibrium glass vessel and allowed to equilibrate at constant temperature for at least 36 h. Samples of the clear saturated solution was removed by syringe and transferred to a tared test tube containing 3 ml of methanol. The test tube with sample was then weighed. The concentration of the 4-methylbenzoic acid in the saturated solution was determined in triplicate by chromatographic analysis (hplc).

# **Source and Purity of Chemicals:**

- (1) 99+%, Shanghai Fe Xiang Chemical Company, Shanghai, China, used as received.
- (2) 99%, Sinopharm Chemical Reagent Co., Ltd., China, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 61.4. 4-Methylbenzoic acid solubility data in esters

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Isobutyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ; [110-19-0] | Original Measurements: <sup>60</sup> S. Zhao, X. Chen, Q. Dai, and L. Wang, J. Chem. Eng. Data <b>56</b> , 2399 (2011). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                            |
| Temperature                                                                                                                                                                        | W. E. Acree, Jr.                                                                                                        |

### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 300.19 | 0.9672             | 0.0328    |
| 303.04 | 0.9662             | 0.0338    |
| 306.43 | 0.9644             | 0.0356    |
| 310.28 | 0.9579             | 0.0421    |
| 312.70 | 0.9566             | 0.0434    |
| 315.36 | 0.9525             | 0.0475    |
| 319.97 | 0.9475             | 0.0525    |
| 323.16 | 0.9427             | 0.0573    |
| 324.84 | 0.9388             | 0.0612    |
| 325.76 | 0.9347             | 0.0653    |
| 329.67 | 0.9308             | 0.0692    |
| 332.48 | 0.9265             | 0.0735    |
| 333.91 | 0.9226             | 0.0774    |
| 335.96 | 0.9187             | 0.0813    |
| 337.49 | 0.9152             | 0.0848    |
| 339.46 | 0.9115             | 0.0885    |
| 341.07 | 0.9082             | 0.0918    |
| 342.68 | 0.9046             | 0.0954    |
| 344.69 | 0.9006             | 0.0994    |
| 345.82 | 0.8969             | 0.1031    |
| 347.26 | 0.8933             | 0.1067    |
| 348.41 | 0.8900             | 0.1100    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, thermoelectric circulating water temperature controller, electromagnetic stirrer, analytical balance, and laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate of 1–2 K/h (0.5–1.0 K/h or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

# Source and Purity of Chemicals:

- (1) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.
- (2) Analytical Reagent grade, Sinopharm Chemical Reagent Co. Ltd., China, was used as received.

#### Estimated Error:

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 0.0006$ .

# 61.5. 4-Methylbenzoic acid solubility data in ethers

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.834   | 0.166   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements:  63 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 32, 1931 (1967). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.904   | 0.096     |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 61.6. 4-Methylbenzoic acid solubility data in alcohols

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                              | Prepared by:                                                                              |
| T/K = 298.15                                                                                                                                            | W. E. Acree, Jr.                                                                          |

#### **Experimental Values**

The measured solubility was reported to be 1.202 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.05247$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ;<br>[100-09-4]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>77</sup> J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, and L. Guiju, J. Chem. Eng. Data <b>53</b> , 1278 (2008). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                            |
| Temperature                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                        |

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 297.35 | 0.9405  | 0.0595    |
| 298.05 | 0.9392  | 0.0608    |
| 298.95 | 0.9382  | 0.0618    |
| 301.65 | 0.9337  | 0.0663    |
| 307.25 | 0.9233  | 0.0767    |
| 308.65 | 0.9211  | 0.0789    |
| 309.65 | 0.9184  | 0.0816    |
| 312.95 | 0.9129  | 0.0871    |
| 314.35 | 0.9104  | 0.0896    |
| 315.80 | 0.9075  | 0.0925    |
| 317.65 | 0.9038  | 0.0962    |
| 319.65 | 0.9003  | 0.0997    |
| 320.40 | 0.8990  | 0.1010    |
| 321.55 | 0.8971  | 0.1029    |
| 322.15 | 0.8960  | 0.1040    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Circulating water bath, analytical balance, and laser monitoring system. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate 0.5 K/20 min (0.2 K/20 min or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

# **Source and Purity of Chemicals:**

(1) <99%, Chemical source not specified, used as received.

(2) <99%, Chemical source not specified, used as received.

# Estimated Error: Temperature: $\pm 0.05$ K.

 $x_1$ :  $\pm 0.0005$ .

# 61.7. 4-Methylbenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:  178 M. Chen and P. Ma, J. Chem. Eng. Data 49, 756 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                      |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                                  |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 291.95 | 0.9658             | 0.03421            |
| 292.45 | 0.9656             | 0.03440            |
| 297.35 | 0.9628             | 0.03724            |
| 301.65 | 0.9599             | 0.04006            |
| 307.75 | 0.9551             | 0.04488            |
| 311.95 | 0.9517             | 0.04829            |
| 318.25 | 0.9449             | 0.05505            |
| 324.95 | 0.9360             | 0.06397            |
| 328.25 | 0.9313             | 0.06868            |
| 335.05 | 0.9177             | 0.08225            |
| 340.45 | 0.9037             | 0.09625            |
| 344.45 | 0.8907             | 0.1093             |
| 348.85 | 0.8730             | 0.1270             |
| 349.75 | 0.8697             | 0.1303             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Titanium solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a dynamic method. Weighed amounts of solute and solvent were sealed in a titanium solid-liquid equilibrium cell, and the temperature slowly increased until the solid phase completely disappeared. Near the solid-liquid equilibrium temperature, the rate of temperature increase was 0.1 K/10 min. The disappearance of the solid solute was detected by a laser monitoring system.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) Ethanoic acid; C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ; [64-19-7] | Original Measurements:<br><sup>179</sup> W. Luo, Q. Wang, L. Fu, W.<br>Deng, X. Zhang, and C. Guo, Ind.<br>Eng. Chem. Res. <b>50</b> , 4099 (2011). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                  | Prepared by:                                                                                                                                        |
| Temperature                                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                    |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 303.2 | 0.9616             | 0.03839 |
| 313.2 | 0.9529             | 0.04710 |
| 323.2 | 0.9383             | 0.06174 |
| 333.2 | 0.9182             | 0.08177 |
| 343.2 | 0.8935             | 0.1065  |
| 353.2 | 0.8649             | 0.1351  |
| 363.2 | 0.8333             | 0.1667  |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed equilibrium glass bottle, analytical balance and thermostatic water-circulator bath.

Excess solute and solvent were placed in a jacketed equilibrium glass bottle and allowed to equilibrate for at least 24 h at constant temperature. For the experimental methodology for determining the concentration of the dissolved solute, the authors reference a paper involving the solubility of 1,4-

benzenedicarboxylic acid [Q. B. Wang, H. B. Xu, and X. Li, J. Chem. Eng. Data **50**, 258 (2005)]. In the referenced paper the concentration of the solute was determined by a high-performance liquid chromatographic method of analysis.

# **Source and Purity of Chemicals:**

- (1) 99.9%, Shanghai Fine Chemical Reagent Company, China, no purification details were provided.
- (2) Analytical Reagent grade, Hangzhou Chemical Reagent Company, China, was used as received.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 3\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) N,N-Dimethylformamide; C <sub>3</sub> H <sub>7</sub> NO; [64-19-7] | Original Measurements:  82 L. Dian-Qing, L. Jiang-Chu, Liu Da-Zhuang, and W. Fu-An, Fluid Phase Equilib. <b>200</b> , 69 (2002). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                             | Prepared by:                                                                                                                     |
| Temperature                                                                                                                                                            | W. E. Acree, Jr.                                                                                                                 |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 295.65 | 0.8815             | 0.1185    |
| 298.75 | 0.8691             | 0.1309    |
| 303.05 | 0.8509             | 0.1491    |
| 307.55 | 0.8311             | 0.1689    |
| 311.05 | 0.8131             | 0.1869    |
| 315.55 | 0.7895             | 0.2105    |
| 320.45 | 0.7592             | 0.2408    |
| 324.55 | 0.7325             | 0.2675    |
| 326.85 | 0.7142             | 0.2858    |
| 328.95 | 0.6989             | 0.3011    |
| 331.65 | 0.6759             | 0.3241    |
| 333.05 | 0.6631             | 0.3369    |
| 335.05 | 0.6435             | 0.3565    |
| 335.55 | 0.6364             | 0.3636    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

# **Source and Purity of Chemicals:**

(1) 98.5% (starting purity), Chemical source not given, was an industrial product purified by extracting with trichloromethane, and then recrystallized successively from acetic acid and water. Final purity was 99.7%.
(2) Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).  $x_1$ :  $\pm 0.0005$  or less.

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) <i>N</i> -Methyl-2-pyrrolidone; C <sub>5</sub> H <sub>9</sub> NO; [872-50-4] | Original Measurements:  84DQ. Li, DZ. Liu, and FA. Wang, J. Chem. Eng. Data 46, 172 (2001). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                            |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 295.65 | 0.9321             | 0.0679    |
| 298.65 | 0.9255             | 0.0745    |
| 303.35 | 0.9134             | 0.0866    |
| 308.55 | 0.8997             | 0.1013    |
| 313.75 | 0.8825             | 0.1175    |
| 319.55 | 0.8612             | 0.1388    |
| 323.45 | 0.8458             | 0.1542    |
| 328.75 | 0.8253             | 0.1747    |
| 334.85 | 0.7962             | 0.2038    |
| 340.25 | 0.7699             | 0.2301    |
| 343.35 | 0.7526             | 0.2474    |
| 346.65 | 0.7337             | 0.2663    |
| 351.45 | 0.7034             | 0.2966    |
| 355.75 | 0.6721             | 0.3279    |
| 360.65 | 0.6295             | 0.3705    |
| 364.05 | 0.5900             | 0.4100    |
| 366.55 | 0.5547             | 0.4453    |
| 369.25 | 0.5149             | 0.4851    |
| 370.05 | 0.4995             | 0.5005    |
|        |                    |           |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Jacketed solid-liquid equilibrium cell, analytical balance, magnetic stirring system, temperature controlling system, and a laser monitoring system. Solubilities were determined using a synthetic method. Weighed amounts of solute and solvent were sealed in a jacketed equilibrium vessel, and the temperature slowly increased until the solid phase completely disappeared. The disappearance of the solid solute was detected by a laser monitoring system. Measurements were repeated two or three times to check the reproducibility.

#### Source and Purity of Chemicals:

(1) 98.5% (starting purity), Chemical source not given, was an industrial product purified by extracting with trichloromethane, and then recrystallized successively from acetic acid and water. Final purity was 99.7%. (2) 99.0%, Analytical Reagent, Shanghai Chemical Reagent Company, used as received.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K (estimated by compiler).  $x_1$ :  $\pm 0.0005$  or less.

| $\label{eq:components:} \begin{split} &\text{(1) 4-Methylbenzoic acid; $C_8H_8O_2$;} \\ &\text{[100-09-4]} \\ &\text{(2) 5-Methyl-2-thiophenecarboxylic acid;} \\ &\text{$C_6H_6O_2S$; [1918-79-2]} \end{split}$ | <b>Original Measurements:</b> 85 K. Mislow, J. Phys. Coll. Chem. <b>52</b> , 729 (1948). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                                       | Prepared by:                                                                             |
| Temperature                                                                                                                                                                                                      | W.E. Acree Ir                                                                            |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| t/°C (thawing) | <i>t</i> /°C (melting) | $w_1^{\ a}$ |
|----------------|------------------------|-------------|
| 138            | 139                    | 0.000       |
| 116.6          | 133.2                  | 0.094       |
| 117.0          | 130.4                  | 0.192       |
| 116.2          | 127.4                  | 0.270       |
| 115.6          | 144.4                  | 0.450       |
| 116.2          | 147.0                  | 0.500       |
| 116.4          | 151.8                  | 0.600       |
| 116.2          | 159.0                  | 0.703       |
| 116.8          | 165.4                  | 0.795       |
| 154.2          | 173.4                  | 0.900       |
| 177            | 178                    | 1.000       |

 $a_{w_1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.250$  and t = 116 °C, with an indication of solid solution formation at  $w_1 > 0.80$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)^{\circ}$ C/min. The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm2$  °C for thawing and melting temperatures.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, Prepared by the authors, synthesized by heating levulinic acid with phosphorous trisulfide to give 2-methylthiophene. Iodination of 2-methylthiophene yielded 5-iodo-2-methylthiophene, which was converted to 5-methyl-2-thiophenecarboxylic acid by the Grignard synthesis.

#### **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

| Components: (1) 4-Methylbenzoic acid; C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> ; [100-09-4] (2) 5-Bromo-2-thiophenecarboxylic acid; C <sub>5</sub> H <sub>3</sub> BrO <sub>2</sub> S; [7311-63-9] | Original Measurements: 85 K. Mislow, J. Phys. Coll. Chem. <b>52</b> , 729 (1948). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Variables                                                                                                                                                                                             | Dronanad by                                                                       |

| variables:  | rrepared by:     |
|-------------|------------------|
| Temperature | W. E. Acree, Jr. |
|             |                  |

# **Experimental Values**

| t/°C (thawing) | t/°C (melting) | $w_1^{\ a}$ |
|----------------|----------------|-------------|
| 140            | 141            | 0.000       |
| 134.2          | 139.6          | 0.066       |
| 134.2          | 138.2          | 0.190       |
| 133.6          | 146.2          | 0.285       |

| t/°C (thawing) | t/°C (melting) | $w_1^{\ a}$ |
|----------------|----------------|-------------|
| 133.8          | 150.6          | 0.398       |
| 135.2          | 157.0          | 0.491       |
| 135.4          | 162.0          | 0.580       |
| 134.6          | 168.8          | 0.696       |
| 154.2          | 175.8          | 0.869       |
| 177            | 178            | 1.000       |

 $^{a}w_{1}$ : mass fraction solubility of the solute.

The author reports that the binary system forms a simple eutectic at  $w_1 = 0.140$  and t = 116 °C, with an indication of solid solution formation at  $w_1 > 0.75$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Experimental method involved observing the thawing-melting behavior of binary mixtures of known composition. Thoroughly mixed samples were placed in capillaries and sealed at one end. The capillaries were placed next to the junction of a thermocouple in a hot stage, which was mounted on a polarizing microscope. Heating rates were kept at  $(2\pm1)^{\circ}$ C/min. The thawing temperature was observed by reflected light, while the melting points were observed by transmitted light. Accuracy of the method, as judged by the reproducibility of the measured data, was estimated to be  $\pm2\,^{\circ}$ C for thawing and melting temperatures.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, recrystallized from aqueous solution.
- (2) Purity not given, Prepared by the authors, synthesized by direct bromination of 2-thiophene-carboxylic acid in glacial acetic acid.

# **Estimated Error:**

Temperature: 2 °C.

 $w_1$ :  $\pm 0.002$  (estimated by compiler).

# 62. Solubility of 2-Nitrobenzoic Acid in Organic Solvents

# 62.1. Critical evaluation of experimental solubility data

several There have been published studies<sup>72,77,83,126,127,180,181</sup> investigating the solubility behavior of 2-nitrobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Kolthoff and co-workers<sup>83,181</sup> measured the solubility of 2-nitrobenzoic acid in both methanol and ethanenitrile at 298 K. Biswas et al. 126 and Thuaire<sup>72</sup> both determined the solubility in ethanol at 298 K. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 2-nitrobenzoic acid in benzene. Collett and Lazzell<sup>180</sup> later performed solubility measurements for 2-nitrobenzoic acid in benzene, 1,1'-oxybisethane, trichloromethane, and propanone. The internal consistency of the five datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, and C)are given in Table 45, along with the MRD calculated according to Eq. (24). The largest MRD occurs in the 2-nitrobenzoic acid – benzene system, and corresponds to about a 11.5% error in back-calculating the observed mole fraction solubilities.

TABLE 45. Parameters of the Modified Apelblat equation for describing the solubility of 2-nitrobenzoic acid in various organic solvents

| Solvent                        | A        | В       | С      | MRD (%) |
|--------------------------------|----------|---------|--------|---------|
| Benzene <sup>a</sup>           | -149.976 | 112.67  | 24.905 | 11.44   |
| Benzene <sup>b</sup>           | -172.585 | 112.116 | 28.700 | 9.46    |
| 1,1'-Oxybisethane <sup>b</sup> | -38.774  | -0.878  | 6.420  | 3.23    |
| Trichloromethane <sup>b</sup>  | -123.562 | -7.489  | 20.558 | 7.19    |
| Propanone <sup>b</sup>         | -26.429  | -0.573  | 4.190  | 2.22    |

<sup>&</sup>lt;sup>a</sup>Calculated from the dataset of Sidgwick and Ewbank. 123

The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point, to changes in the liquid phase composition due to solvent evaporation into the vapor phase, and the large range covered by the experimental values,  $x_1 = 0.00142$  to  $x_1 = 0.8501$ . It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 2-nitrobenzoic acid in organic solvents are in Secs. 62.2–62.7.

# 62.2. 2-Nitrobenzoic acid solubility data in aromatic hydrocarbons

| Components:<br>(1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[552-16-9]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                   |

# Experimental Values

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 336.2 | 0.990              | 0.00993   |
| 351.8 | 0.976              | 0.0242    |
| 363.7 | 0.951              | 0.0494    |
| 379.0 | 0.844              | 0.156     |
| 386.2 | 0.679              | 0.321     |
| 401.5 | 0.334              | 0.666     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 420.0 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br><sup>180</sup> A. R. Collett and C. L. Lazzell, J.<br>Phys. Chem. <b>34</b> , 1838 (1930). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                    | Prepared by:                                                                                                         |
| Temperature                                                                                                                                                   | W. E. Acree, Jr.                                                                                                     |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 297.7 | 0.9986             | 0.00142   |
| 365.4 | 0.9501             | 0.0499    |
| 372.4 | 0.9130             | 0.0870    |
| 381.9 | 0.7906             | 0.2094    |
| 387.9 | 0.6608             | 0.3392    |
| 392.9 | 0.5415             | 0.4585    |
| 396.4 | 0.4539             | 0.5461    |
| 401.4 | 0.3574             | 0.6426    |
| 412.0 | 0.1499             | 0.8501    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

# **Source and Purity of Chemicals:**

- (1) Certified Pure, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized twice from aqueous solution. Melting point temperature of purified sample was 420.9 K.
- (2) Thiophene-free, Kahlbaum, was dried over sodium and distilled before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

<sup>&</sup>lt;sup>b</sup>Calculated from the dataset of Collett and Lazzell. <sup>180</sup> For benzene, the first and last data points were removed from the regression analysis in order to obtain a reasonable mathematical representation.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

# 62.3. 2-Nitrobenzoic acid solubility data in ethers

| Components: (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements:  180 A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                         |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                     |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 305.9 | 0.8775  | 0.1225    |
| 329.0 | 0.7719  | 0.2281    |
| 377.3 | 0.4919  | 0.5081    |
| 381.1 | 0.4648  | 0.5352    |
| 396.7 | 0.3183  | 0.6817    |
| 408.4 | 0.1710  | 0.8290    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

- (1) Certified Pure, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized twice from aqueous solution. Melting point temperature of purified sample was 420.9 K.
- (2) U.S.P. grade, Chemical source not given, was washed three times with distilled water, dried over calcium chloride, and distilled twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 62.4. 2-Nitrobenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 337.4 | 0.9789             | 0.0211    |
| 357.4 | 0.9450             | 0.0550    |
| 374.5 | 0.8306             | 0.1694    |
| 379.4 | 0.7626             | 0.2374    |
| 387.3 | 0.6165             | 0.3835    |
| 392.1 | 0.5137             | 0.4863    |
| 394.4 | 0.4573             | 0.5427    |
| 398.2 | 0.4081             | 0.5919    |
| 399.2 | 0.3928             | 0.6072    |
| 404.0 | 0.2888             | 0.7112    |
| 405.1 | 0.2760             | 0.7240    |
| 413.1 | 0.1199             | 0.8801    |
|       |                    |           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# Source and Purity of Chemicals:

- (1) Certified Pure, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized twice from aqueous solution. Melting point temperature of purified sample was 420.9 K.
- (2) Certified Pure, Merck Chemical Company, dried over calcium chloride and distilled twice before use.

# Estimated Error:

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 62.5. 2-Nitrobenzoic acid solubility data in alcohols

| Components: (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  181 I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, 2512 (1938). |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                             |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

The measured solubility was reported to be  $2.99 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by the conductance method.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, refluxed over silver oxide, distilled and dehydrated with magnesium.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:<br><sup>126</sup> P. K. Biswas, S. C. Lahiri, and B<br>P. Dey, Bull. Chem. Soc. Jpn. <b>66</b> ,<br>2785 (1993). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                                                                        |

# **Experimental Values**

| $c_1^{a}$ | $x_2^{\mathbf{b}}$ | $x_1^{c}$ |
|-----------|--------------------|-----------|
| 1.6261    | 0.8945             | 0.1055    |

 $<sup>{}^{</sup>a}c_{1}$ : solubility of the solute expressed in units of mol dm<sup>-3</sup>.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Analytical balance and an ultraviolet/visible spectrophotometer.

Solutions containing excess solute and solvent were allowed to equilibrate at constant temperature for at least 24 h. An aliquot of the saturated solution was removed, filtered, and the absorbance recorded. Solubility was calculated from the measured absorbance.

# Source and Purity of Chemicals:

- (1) Puris grade, Fluka Chemicals, recrystallized from aqueous ethanol mixture and dried in an air oven at 390 K. The purified compound was stored in vacuum desiccators.
- (2) Absolute, B.C.P.W., Calcutta, India, was distilled twice before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 1.0\%$  (relative error, estimated by compiler).  $x_1$ :  $\pm 2.5\%$  (relative error, estimated by compiler).

| Components:                                                              | Original Measurements:                         |
|--------------------------------------------------------------------------|------------------------------------------------|
| (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. |
| [552-16-9]                                                               | 3815 (1971).                                   |
| (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5]                  |                                                |
| Variables:                                                               | Prepared by:                                   |
| T/K = 298.15                                                             | W. E. Acree, Jr.                               |

#### **Experimental Values**

The measured solubility was reported to be 4.516 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1722$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  77 J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, and L. Guiju, J. Chem. Eng. Data 53, 1278 (2008). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                          |
| Temperature                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                      |

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|--------|--------------------|--------------------|
| 297.15 | 0.9239             | 0.0761             |
| 299.65 | 0.9194             | 0.0806             |
| 300.15 | 0.9160             | 0.0840             |
| 302.05 | 0.9105             | 0.0895             |
| 303.15 | 0.9072             | 0.0928             |
| 306.15 | 0.8989             | 0.1011             |
| 307.15 | 0.8955             | 0.1045             |
| 308.35 | 0.8921             | 0.1079             |
| 309.25 | 0.8873             | 0.1127             |
| 310.15 | 0.8828             | 0.1172             |
| 311.75 | 0.8781             | 0.1219             |
| 313.15 | 0.8710             | 0.1290             |
| 314.85 | 0.8649             | 0.1351             |
| 317.15 | 0.8585             | 0.1415             |
| 318.65 | 0.8525             | 0.1475             |
| 319.85 | 0.8459             | 0.1541             |
| 321.15 | 0.8393             | 0.1607             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute calculated by the compiler.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Circulating water bath, analytical balance, and laser monitoring system. Preweighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and the temperature gradually increased at a rate  $0.5~\rm K/20~min~(0.2~\rm K/20~min~c)$  min or slower near saturation temperature) until all of the solid solute dissolved. The temperature at which all of the solute dissolved was determined using laser monitoring.

#### **Source and Purity of Chemicals:**

(1) <99%, Chemical source not specified, used as received.

(2) <99%, Chemical source not specified, used as received.

# Estimated Error: Temperature: ±0.05 K.

 $x_1$ :  $\pm 0.0005$ .

# 62.6. 2-Nitrobenzoic acid solubility data in ketones

| Components:<br>(1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  180 A. R. Collett and C. L. Lazzell, J Phys. Chem. <b>34</b> , 1838 (1930). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                    |

#### **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 310.8 | 0.7415  | 0.2585    |
| 341.4 | 0.6334  | 0.3666    |
| 348.4 | 0.6068  | 0.3932    |
| 370.8 | 0.4868  | 0.5132    |
| 375.1 | 0.4616  | 0.5384    |
| 386.7 | 0.3745  | 0.6255    |
| 403.1 | 0.2238  | 0.7762    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

# Source and Purity of Chemicals:

- (1) Certified Pure, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized twice from aqueous solution. Melting point temperature of purified sample was 420.9 K.
- (2) Certified Pure, Merck Chemical Company, was dried over calcium chloride and distilled twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.  $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 62.7. 2-Nitrobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 2-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [552-16-9] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  83 M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Variables: $T/K = 298.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                              |  |

#### **Experimental Values**

The measured solubility was reported to be 0.98 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# **Source and Purity of Chemicals:**

(1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K. (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 63. Solubility of 3-Nitrobenzoic Acid in Organic Solvents

# 63.1. Critical evaluation of experimental solubility data

There have been several published studies 10,54,72,83,99,126,127,180,181 investigating the solubility behavior of 3-nitrobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Charlton *et al.* 10 measured the solubility of 3-nitrobenzoic acid in 17 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-pentanol, 1-heptanol, 1-octanol, and

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'oxybispropane, and 1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), in three alkyl alkanoates (methyl ethanoate, ethyl ethanoate, and butyl ethanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to revise and update the existing values that the authors had for the Abraham solute descriptors of 3-nitrobenzoic acid. The authors were able to assemble a total of 48  $\log_{10}$  (SR or P) and  $\log_{10}$  (GSR or K) equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 3-nitrobenzoic acid is  $\log_{10} c_{1,W} = -1.68$ . The McGowan volume of 3-nitrobenzoic acid, V = 1.1059, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was B, and L) still to be determined. The 48 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.180, A = 0.730, B = 0.520, and L = 5.6011, that best described the $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  values. The computation treated  $\log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -8.610$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$ predictions internally consistent. The calculated molecular solute descriptors reproduced the  $log_{10}$  (SR or P) and  $log_{10}$ (GSR or K) values to within an average standard deviation of 0.072 and  $0.094 \log_{10}$  units, respectively.

After the 3-nitrobenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, ethyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 3-nitrobenzoic acid solubility data. Table 46 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 3-nitrobenzoic acid,  $x_1$ , determined by Charlton et al., 10 were converted into molar solubilities by dividing  $x_1$ by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} =$  $x_1/[x_1V_1+(1-x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 3-nitrobenzoic acid,  $V_{\text{solute}} = 117.7 \text{ cm}^3$ mol<sup>-1</sup>, was estimated as the molar volume of benzoic acid  $(V_{\text{benzoic acid}} = 104.4 \text{ cm}^3 \text{ mol}^{-1}) + \text{molar volume of nitro-}$ benzene ( $V_{\text{nitrobenzene}} = 102.7 \text{ cm}^3 \text{ mol}^{-1}$ ) – molar volume of benzene ( $V_{\text{benzene}} = 89.40 \text{ cm}^3 \text{ mol}^{-1}$ ). Any errors resulting from the estimation of 3-nitrobenzoic acid's hypothetical subcooled liquid molar volume,  $V_{\rm solute}$ , or the ideal molarvolume approximation should have only a very small effect on the calculated  $c_1$  values. 3-Nitrobenzoic acid is not very soluble in many of the solvents considered, and the  $x_1V_{\text{solute}}$ term contributes very little to the molar volume of the saturated solution. Examination of the numerical entries in Table 46

Table 46. Comparison between observed and calculated molar solubilities of 3-nitrobenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                                | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|--------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp,a}}$ | Eq. (20)                       | Eq. (21)                       |
| Methanol            | 0.568                          | 0.460                          | 0.419                          |
| Ethanol             | 0.408                          | 0.421                          | 0.401                          |
| 1-Propanol          | 0.262                          | 0.275                          | 0.281                          |
| 2-Propanol          | 0.306                          | 0.288                          | 0.309                          |
| 1-Butanol           | 0.184                          | 0.144                          | 0.157                          |
| 2-Butanol           | 0.286                          | 0.192                          | 0.183                          |
| 2-Methyl-1-propanol | 0.071                          | 0.093                          | 0.066                          |
| 2-Methyl-2-propanol | 0.339                          | 0.244                          | 0.307                          |
| 1-Pentanol          | 0.114                          | 0.153                          | 0.158                          |
| 2-Pentanol          | 0.200                          | 0.164                          | 0.155                          |
| 3-Methyl-1-butanol  | 0.116                          | 0.078                          | 0.059                          |
| 1-Hexanol           | 0.047                          | 0.088                          | 0.081                          |
| 1-Heptanol          | -0.007                         | 0.012                          | 0.042                          |
| 1-Octanol           | -0.026                         | -0.017                         | -0.075                         |
| 1-Decanol           | -0.115                         | -0.093                         | -0.085                         |
| 1,1'-Oxybisethane   | 0.076                          | -0.139                         | -0.061                         |
| Tetrahydrofuran     | 0.581                          | 0.632                          | 0.608                          |
| 1,4-Dioxane         | 0.322                          | 0.367                          | 0.351                          |
| Methyl ethanoate    | 0.236                          | -0.002                         | -0.023                         |
| Ethyl ethanoate     | 0.135                          | 0.015                          | 0.017                          |
| Butyl ethanoate     | -0.084                         | -0.155                         | -0.184                         |

<sup>&</sup>lt;sup>a</sup>Experimental data were taken from Charlton et al. <sup>10</sup>

reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

There have also been a few published papers reporting 3-nitrobenzoic acid solubilities in organic solvents as a function of temperature. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 3-nitrobenzoic acid in benzene. Collett and Lazzell<sup>180</sup> later performed solubility measurements for 3-nitrobenzoic acid in benzene, 1,1'-oxybisethane, trichloromethane, tetrachloromethane and propanone. The internal consistency of the six datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (*A*, *B*, and *C*) are given in Table 47, along with the MRD, calculated according to Eq. (24). The largest MRD occurs in the 3-nitrobenzoic acid – tetrachloromethane system, and corresponds to about a 14% error in back-calculating the observed mole fraction solubilities. As noted in the table

Table 47. Parameters of the Modified Apelblat equation for describing the solubility of 3-nitrobenzoic acid in various organic solvents

| Solvent                         | A        | В      | С      | MRD (%) |
|---------------------------------|----------|--------|--------|---------|
| Benzene <sup>a</sup>            | -101.165 | -2.046 | 16.864 | 7.15    |
| Benzene <sup>b</sup>            | -103.906 | -2.100 | 17.329 | 10.34   |
| 1,1'-Oxybisethaneb              | -32.134  | -0.681 | 5.310  | 7.25    |
| Trichloromethane <sup>b</sup>   | -71.525  | -1.467 | 11.907 | 6.19    |
| Tetrachloromethane <sup>b</sup> | -249.472 | -4.655 | 41.634 | 13.81   |
| Propanone <sup>b</sup>          | -28.705  | -0.424 | 4.760  | 2.68    |

<sup>a</sup>Calculated from the dataset of Sidgwick and Ewbank. <sup>123</sup>

<sup>b</sup>Calculated from the dataset of Collett and Lazzell. <sup>180</sup> For benzene, the last data point was removed from the regression analysis in order to obtain a reasonable representation. For tetrachloromethane, the first and last data points were removed from the regression analysis in order to obtain a reasonable correlation.

footnote, the first and last data points had to be removed from the regression analysis in order to obtain a reasonable mean relative deviation. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to changes in the liquid phase composition due to solvent evaporation into the vapor phase, and the large range covered by the experimental values,  $x_1 = 0.00135$  to  $x_1 = 0.833$ . It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

Jia *et al.*<sup>99</sup> determined the solubility of 3-nitrobenzoic acid in 1-octanol in the temperature range from 293 to 323 K. The calculated curve-fit parameters from the Buchowski  $\lambda$ h-model (see Eq. (9)) of  $\lambda = 1.866$  and h = 1274.18 described the observed solubility data to within a mean relative deviation of 0.7%.

The experimental solubility data for 3-nitrobenzoic acid in organic solvents are in Secs. 63.2–63.9.

# 63.2. 3-Nitrobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:  54 C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9966  | 0.00340   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

# 63.3. 3-Nitrobenzoic acid solubility data in aromatic hydrocarbons

| <b>Components:</b> (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:<br>54 C. K. Hancock, J. N. Pawloski,<br>and J. P. Idoux, J. Org. Chem. <b>31</b> ,<br>3801 (1966). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 303.15$                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9918  | 0.00824            |

 $<sup>\</sup>bar{x}_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 3\%$  (relative error).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Variables: Temperature                                                   | Prepared by: W. E. Acree, Jr.           |
|--------------------------------------------------------------------------|-----------------------------------------|
| (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2]                   | 979 (1921).                             |
| [121-92-6]                                                               | Ewbank, J. Chem. Soc. Trans. 119,       |
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>127</sup> N. V. Sidgwick and E. K. |
| Components:                                                              | Original Measurements:                  |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 306.2 | 0.991              | 0.00921 |
| 321.2 | 0.976              | 0.0238  |
| 338.4 | 0.951              | 0.0487  |
| 362.7 | 0.830              | 0.170   |
| 378.2 | 0.632              | 0.368   |
| 394.2 | 0.354              | 0.646   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 414.6 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J Phys. Chem. <b>34</b> , 1838 (1930). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                              |

# **Experimental Values**

| T/K   | $x_2^a$ | $x_1^{b}$ |
|-------|---------|-----------|
| 297.7 | 0.9937  | 0.00628   |
| 323.8 | 0.9773  | 0.0227    |
| 333.9 | 0.9664  | 0.0336    |
| 345.0 | 0.9355  | 0.0645    |
| 353.5 | 0.8975  | 0.1025    |
| 366.6 | 0.7755  | 0.2245    |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|-------|--------------------|---------|
| 377.4 | 0.6336             | 0.3664  |
| 382.6 | 0.5242             | 0.4758  |
| 385.6 | 0.4670             | 0.5330  |
| 398.0 | 0.2761             | 0.7239  |
| 408.0 | 0.1115             | 0.8885  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

#### Source and Purity of Chemicals:

(1) Purity not given, Synthesized by the authors according to the published method of Holleman [Recl. Trav. Chim. 18, 267 (1899)], was washed with water, recrystallized from trichloromethane, and recrystallized again from water to give a purified sample having a melting point temperature of 414.6 K. (2) Thiophene-free, Kahlbaum, was dried over sodium and distilled before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 63.4. 3-Nitrobenzoic acid solubility data in esters

| Components:                                                                                                                                                                            | Original Measurements:                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} (1) \ 3\text{-Nitrobenzoic acid;} \ C_7H_5NO_4; \\ [121\text{-}92\text{-}6] \\ (2) \ \text{Methyl ethanoate;} \ C_3H_6O_2; \\ [79\text{-}20\text{-}9] \end{array} $ | <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. 116, 19 (2005). |
| Variables: T/K = 298.15                                                                                                                                                                | Prepared by:<br>W. E. Acree, Jr.                                                                                                           |

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.853   | 0.147       |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>*x*<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.5%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                         | Original Measurements:                                                         |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] | <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. |
| (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6]      | Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005).            |
| Variables:                                                                          | Prepared by:                                                                   |
| T/K = 298.15                                                                        | W. E. Acree, Jr.                                                               |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.862   | 0.138       |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ;<br>[123-86-4] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.892   | 0.108   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### Estimated Error:

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:        |
|--------------------------------------------------------------------------|-------------------------------|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | W. E. Acree, Jr., unpublished |
| [121-92-6]                                                               | data.                         |
| (2) 1,2,3-Triacetoxypropane (Triacetin);                                 |                               |
| C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1]               |                               |
| Variables:                                                               | Prepared by:                  |
| T/K = 298.15                                                             | W. E. Acree, Jr.              |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.8539  | 0.1461  |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Acros Organics, USA, stored over molecular sieves before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 63.5. 3-Nitrobenzoic acid solubility data in ethers

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.873   | 0.127     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                   |
| Temperature                                                                                                                                                                    | W. E. Acree, Jr.                                                                                               |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{b}$ |
|-------|-----------|-----------|
| 283.2 | 0.8658    | 0.1342    |
| 325.2 | 0.7867    | 0.2133    |
| 345.1 | 0.7020    | 0.2980    |
| 355.1 | 0.6404    | 0.3596    |
| 362.8 | 0.5820    | 0.4180    |
| 371.6 | 0.5118    | 0.4882    |
| 386.2 | 0.3849    | 0.6151    |
| 395.4 | 0.2802    | 0.7198    |
| 406.2 | 0.1364    | 0.8636    |

 $\bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

 ${}^{b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Synthesized by the authors according to the published method of Holleman [Recl. Trav. Chim. 18, 267 (1899)], was washed with water, recrystallized from trichloromethane, and recrystallized again from water to give a purified sample having a melting point temperature of 414.6 K. (2) U.S.P. grade, Chemical source not given, washed three times with distilled water, dried over calcium chloride, and distilled twice before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O;<br>[108-20-3] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9409  | 0.0591  |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9654  | 0.0346    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^b$ |
|------------------|---------|
| 0.640            | 0.360   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.9%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.807     | 0.193     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

# 63.6. 3-Nitrobenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Trichloromethane; CHCl <sub>3</sub> ; [67-66-3] | Original Measurements:  180 A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:<br>Temperature                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                     |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 320.9 | 0.9431             | 0.0569    |
| 340.7 | 0.8836             | 0.1164    |
| 358.5 | 0.7718             | 0.2282    |
| 373.0 | 0.6173             | 0.3827    |
| 373.2 | 0.6139             | 0.3861    |
| 373.7 | 0.6106             | 0.3894    |
| 379.0 | 0.5294             | 0.4706    |
| 387.1 | 0.4168             | 0.5832    |
| 397.5 | 0.2807             | 0.7193    |
| 405.3 | 0.1503             | 0.8497    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Purity not given, Synthesized by the authors according to the published method of Holleman [Recl. Trav. Chim. 18, 267 (1899)], was washed with water, recrystallized from trichloromethane, and recrystallized again from water to give a purified sample having a melting point temperature of 414.6 K. (2) Certified Pure, Merck Chemical Company, dried over calcium chloride and distilled twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:                                                              | Original Measurements:                             |  |
|--------------------------------------------------------------------------|----------------------------------------------------|--|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>180</sup> A. R. Collett and C. L. Lazzell, J. |  |
| [121-92-6]                                                               | Phys. Chem. 34, 1838 (1930).                       |  |
| (2) Tetrachloromethane; CCl <sub>4</sub> ;                               |                                                    |  |
| [56-23-5]                                                                |                                                    |  |
| Variables:                                                               | Prepared by:                                       |  |
| Temperature                                                              | W. E. Acree, Jr.                                   |  |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 302.6 | 0.9986             | 0.00135            |
| 368.8 | 0.9663             | 0.0337             |
| 380.4 | 0.9048             | 0.0952             |
| 385.5 | 0.7963             | 0.2037             |
| 389.1 | 0.6468             | 0.3532             |
| 390.2 | 0.6035             | 0.3965             |
| 392.5 | 0.4854             | 0.5146             |
| 398.9 | 0.3132             | 0.6862             |
| 405.5 | 0.1670             | 0.8330             |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

(1) Purity not given, Synthesized by the authors according to the published method of Holleman [Recl. Trav. Chim. 18, 267 (1899)], was washed with water, recrystallized from trichloromethane, and recrystallized again from water to give a purified sample having a melting point temperature of 414.6 K. (2) Certified Pure, Merck Chemical Company, dried over calcium chloride and distilled twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 63.7. 3-Nitrobenzoic acid solubility data in alcohols

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                 | Prepared by:                                                                                                                                                             |
| T/K = 298.15                                                                                                                               | W. E. Acree, Jr.                                                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.789   | 0.211     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                            |
|--------------------------------------------------------------------------|---------------------------------------------------|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>83</sup> M. K. Chantooni and I. M.           |
| [121-92-6]                                                               | Kolthoff, J. Phys. Chem. 77, 527                  |
| (2) Methanol; CH <sub>4</sub> O; [67-56-1]                               | (1973).                                           |
|                                                                          | <sup>181</sup> I. M. Kolthoff, J. J. Lingane, and |
|                                                                          | W. Larson, J. Am. Chem. Soc. 60,                  |
|                                                                          | 2512 (1938).                                      |
| Variables:                                                               | Prepared by:                                      |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                  |

#### **Experimental Values**

The measured solubility was reported to be  $3.46 \text{ mol dm}^{-3}$ .

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by the conductance method.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, refluxed over silver oxide, distilled and dehydrated with magnesium.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.825   | 0.175     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Variables: T/K = 298.15                                                             | Prepared by:<br>W. E. Acree, Jr.                                                  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| (2) Ethanol; $C_2H_6O$ ; [64-17-5]                                                  | 2785 (1993).                                                                      |
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] | 126P. K. Biswas, S. C. Lahiri, and B<br>P. Dey, Bull. Chem. Soc. Jpn. <b>66</b> , |
| Components:                                                                         | Original Measurements:                                                            |

| $c_1^{\text{a}}$ | $x_2^{\mathbf{b}}$ | $x_1^{\text{c}}$ |
|------------------|--------------------|------------------|
| 1.6157           | 0.8952             | 0.1048           |

 $<sup>{}^{</sup>a}c_{1}$ : solubility of the solute expressed in units of mol dm<sup>-3</sup>.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Analytical balance and an ultraviolet/visible spectrophotometer.

Solutions containing excess solute and solvent were allowed to equilibrate at constant temperature for at least 24 h. An aliquot of the saturated solution was removed, filtered, and the absorbance recorded. Solubility was calculated from the measured absorbance.

# Source and Purity of Chemicals:

- (1) Puris grade, Fluka Chemicals, recrystallized from aqueous ethanol mixture and dried in an air oven at 390 K. The purified compound was stored in vacuum desiccators.
- (2) Absolute, B.C.P.W., Calcutta, India, was distilled twice before use.

# **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 1.0\%$  (relative error, estimated by compiler).  $x_1$ :  $\pm 2.5\%$  (relative error, estimated by compiler).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | <b>Original Measurements:</b> <sup>72</sup> R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                               | Prepared by:<br>W. E. Acree, Jr.                                                          |

# **Experimental Values**

The measured solubility was reported to be 4.795 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.1809$ .

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.851   | 0.149     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements:  One of the state of |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.830            | 0.170     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                  | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.854   | 0.146   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                 | Prepared by:                                                                                                                                                              |
| T/K = 298.15                                                                                                                                               | W. E. Acree, Jr.                                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.812   | 0.188     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.887   | 0.113       |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                         | Original Measurements:                                                         |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] | <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. |
| (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0]                | Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005).            |
| Variables:                                                                          | Prepared by:                                                                   |
| T/K = 298.15                                                                        | W. E. Acree, Jr.                                                               |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.783   | 0.217     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.857   | 0.143     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| <b>Components:</b> (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements:<br><sup>10</sup> A. K. Charlton, C. R. Daniels, R.<br>M. Wold, E. Pustejovsky, W. E.<br>Acree, Jr., and M. H. Abraham, J.<br>Mol. Liq. <b>116</b> , 19 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by:                                                                                                                                                                          |
| T/K = 298.15                                                                                                                                                         | W. E. Acree, Jr.                                                                                                                                                                      |

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.824   | 0.176       |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Acros Organic, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                         | Original Measurements:                                                           |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] | <sup>10</sup> A. K. Charlton, C. R. Daniels, R<br>M. Wold, E. Pustejovsky, W. E. |
| (2) 2-Methyl-1-butanol; $C_5H_{12}O$ ; [137-32-6]                                   | Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005).              |
| Variables:                                                                          | Prepared by:                                                                     |
| T/K = 298.15                                                                        | W. E. Acree, Jr.                                                                 |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.890   | 0.110     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.855   | 0.145     |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.861   | 0.139   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                          |
|--------------------------------------------------------------------------|-------------------------------------------------|
| (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>10</sup> A. K. Charlton, C. R. Daniels, R. |
| [121-92-6]                                                               | M. Wold, E. Pustejovsky, W. E.                  |
| (2) 2-Methyl-1-pentanol; C <sub>6</sub> H <sub>14</sub> O;               | Acree, Jr., and M. H. Abraham, J.               |
| [105-30-6]                                                               | Mol. Liq. 116, 19 (2005).                       |
| Variables:                                                               | Prepared by:                                    |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                |

# **Experimental Values**

| $x_2^a$ | $x_1^{\ b}$ |
|---------|-------------|
| 0.866   | 0.134       |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

# **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99%, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.864   | 0.136     |

 $\bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                     | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.856   | 0.144     |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  99 Q. Jia, P. Ma, S. Ma, and C. Wang, Chin. J. Chem. Eng. 15, 710 (2007). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                           | Prepared by: W. E. Acree, Ir                                                                      |

#### **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 296.25 | 0.8259             | 0.1741    |
| 297.25 | 0.8213             | 0.1787    |
| 299.15 | 0.8144             | 0.1856    |
| 300.25 | 0.8063             | 0.1937    |
| 302.90 | 0.8012             | 0.1988    |
| 303.38 | 0.7904             | 0.2094    |
| 305.85 | 0.7806             | 0.2194    |
| 308.45 | 0.7866             | 0.2312    |
| 311.75 | 0.7530             | 0.2470    |
| 313.80 | 0.7379             | 0.2621    |
| 316.25 | 0.7251             | 0.2749    |
| 317.65 | 0.7133             | 0.2867    |
| 322.15 | 0.6945             | 0.3055    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature circulating bath, stirrer, analytical balance, and laser monitoring system.

Solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent were placed in a stoppered equilibrium vessel, which was connected to a circulating constant-temperature water bath. The solution was stirred and the temperature slowly increased until all of the solid dissolved. Near the dissolution temperature, the temperature was increased at a rate of 0.2 K/20 min. Complete dissolution was determined using a laser monitoring system.

#### Source and Purity of Chemicals:

(1) 99+%, Chemical source not specified, no purification details were provided.

(2) 99+%, Chemical source not specified, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.  $x_1$ :  $\pm 1\%$  (relative error).

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                            | Prepared by:                                                                                                                                                              |
| T/K = 298.15                                                                                                                                                          | W. E. Acree, Jr.                                                                                                                                                          |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.861   | 0.139     |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### **Source and Purity of Chemicals:**

(1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 63.8. 3-Nitrobenzoic acid solubility data in ketones

| Components:<br>(1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[121-92-6]<br>(2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                         | Prepared by:                                                                                                   |
| Temperature                                                                                                                                                        | W. E. Acree, Jr.                                                                                               |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{\mathbf{b}}$ |
|-------|--------------------|--------------------|
| 283.2 | 0.8477             | 0.1523             |
| 301.2 | 0.7730             | 0.2270             |
| 338.0 | 0.6168             | 0.3832             |
| 361.2 | 0.4892             | 0.5108             |
| 377.2 | 0.3847             | 0.6153             |
| 393.9 | 0.2317             | 0.7683             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

#### **Source and Purity of Chemicals:**

(1) Purity not given, Synthesized by the authors according to the published method of Holleman [Recl. Trav. Chim. 18, 267 (1899)], was washed with water, recrystallized from trichloromethane, and recrystallized again from water to give a purified sample having a melting point temperature of 414.6 K. (2) Certified Pure, Merck Chemical Company, was dried over calcium chloride and distilled twice before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 63.9. 3-Nitrobenzoic acid solubility data in miscellaneous organic solvents

| Components: (1) 3-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [121-92-6] (2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | Original Measurements: <sup>10</sup> A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. <b>116</b> , 19 (2005). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                                                                                              |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                                                                          |

#### **Experimental Values**

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9166  | 0.0834  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 280 nm.

#### Source and Purity of Chemicals:

- (1) 99%, Acros Organics, USA, and also from Aldrich Chemical Company, Milwaukee, WI, USA, was used as received.
- (2) 99.7%, anhydrous, Aldrich Chemical Company, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Original Measurements:  83M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. 77, 527 (1973). |
|----------------------------------------------------------------------------------------------|
| Prepared by:<br>W. E. Acree, Jr.                                                             |
|                                                                                              |

#### **Experimental Values**

The measured solubility was reported to be  $0.78~\text{mol}~\text{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

# Source and Purity of Chemicals:

- (1) Purity not given, Baker Chemical Company, USA, was recrystallized from either aqueous or aqueous-ethanol solution and dried *in vacuo* at 333 K.
- (2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# 64. Solubility of 4-Nitrobenzoic Acid in Organic Solvents

# 64.1. Critical evaluation of experimental solubility data

several published There have been dies<sup>11,54,63,72,76,126,127,129,130,136,180,181</sup> investigating the solubility behavior of 4-nitrobenzoic acid in organic solvents of varying polarity and hydrogen-bonding capability. Hoover et al. 11 measured the solubility of 4-nitrobenzoic acid in 19 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 1-hexanol, 2-methyl-1-pentanol, 4methyl-2-pentanol, 1-heptanol, 1-octanol, and 1-decanol), in three dialkyl ethers (1,1'-oxybisethane, 2,2'-oxybispropane, and 1,1'-oxybisbutane) and two cyclic ethers (tetrahydrofuran and 1,4-dioxane), in four alkyl alkanoates (methyl ethanoate, ethyl ethanoate, butyl ethanoate, and pentyl ethanoate), and in propylene carbonate at 298 K. Results of the experimental measurements were used to calculate Abraham solute descriptors of 4-nitrobenzoic acid. The authors were able to assemble a total of 51  $\log_{10}(SR \text{ or } P)$  and  $\log_{10}(GSR \text{ or } K)$  equations for which experimental partition coefficient data, solubility ratios, Abraham model equation coefficients and aqueous molar solubility were available. The logarithm of the aqueous molar solubility of 4-nitrobenzoic acid is  $\log_{10} c_{1,W} = -2.98$ . The McGowan volume of 4-nitrobenzoic acid, V = 1.1059, was calculated from the number of chemical bonds in the molecule and the individual atomic group volumes,  $AV_i$ , given in Sec. 1.3. The excess molar refraction solute descriptor was estimated as E = 0.990. This left four solute descriptors (S, A, A, A)B, and L) still to be determined. The 48 equations were then solved using the Microsoft "SOLVER" program to yield numerical values of the remaining four solute descriptors, S = 1.520, A = 0.680, B = 0.440, and L = 5.7699, that best described the $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$  values. The computation treated  $log_{10} c_{1,G}$  as a floating parameter to be determined as part of the regression analyses. The data analyses returned a value of  $\log_{10} c_{1,G} = -9.880$  for the gas-phase solute concentration that made the  $\log_{10} (SR \text{ or } P)$  and  $\log_{10} (GSR \text{ or } K)$ predictions internally consistent. The calculated molecular solute descriptors reproduced the  $\log_{10}$  (SR or P) and  $\log_{10}$ (GSR or K) values to within an average standard deviation of 0.058 and  $0.088 \log_{10}$  units, respectively.

After the 4-nitrobenzoic acid solubility study was published, Abraham model correlations have been developed for 2-pentanol, 3-methyl-1-butanol, methyl ethanoate, and butyl ethanoate, and equation coefficients for a few solvents were updated based on additional experimental data. The new correlations (listed in Tables 1 and 2) will be used in illustrating the ability of the Abraham model to correlate the experimental 4-nitrobenzoic acid solubility data. Table 48 compares the experimental  $\log_{10} c_1$  values to calculated values based on Eqs. (20) and (21) of the Abraham model. For comparison purposes, the measured mole fraction solubilities of 4-nitrobenzoic acid,  $x_1$ , determined by Hoover *et al.*<sup>11</sup> were converted into molar solubilities by dividing

Table 48. Comparison between observed and calculated molar solubilities of 4-nitrobenzoic acid based on the Abraham model, Eqs. (20) and (21)

|                     |                                | $\log_{10} c_1^{\text{calc}};$ | $\log_{10} c_1^{\text{calc}};$ |
|---------------------|--------------------------------|--------------------------------|--------------------------------|
| Solvent             | $\log_{10} c_1^{\text{exp,a}}$ | Eq. (20)                       | Eq. (21)                       |
| Methanol            | -0.719                         | -0.697                         | -0.632                         |
| Ethanol             | -0.841                         | -0.816                         | -0.769                         |
| 1-Propanol          | -0.975                         | -0.935                         | -0.910                         |
| 2-Propanol          | -0.956                         | -0.930                         | -0.898                         |
| 1-Butanol           | -1.063                         | -1.028                         | -0.993                         |
| 2-Butanol           | -1.017                         | -0.982                         | -1.007                         |
| 2-Methyl-1-propanol | -1.183                         | -1.163                         | -1.147                         |
| 2-Methyl-2-propanol | -0.821                         | -0.904                         | -0.879                         |
| 1-Pentanol          | -1.067                         | -1.108                         | -1.082                         |
| 2-Pentanol          | -1.086                         | -1.150                         | -1.102                         |
| 3-Methyl-1-butanol  | -1.178                         | -1.207                         | -1.134                         |
| 1-Hexanol           | -1.076                         | -1.133                         | -1.124                         |
| 1-Heptanol          | -1.121                         | -1.128                         | -1.158                         |
| 1-Octanol           | -1.209                         | -1.162                         | -1.261                         |
| 1-Decanol           | -1.271                         | -1.344                         | -1.337                         |
| 1,1'-Oxybisethane   | -0.902                         | -1.094                         | -1.008                         |
| Tetrahydrofuran     | -0.117                         | -0.195                         | -0.234                         |
| 1,4-Dioxane         | -0.317                         | -0.338                         | -0.326                         |
| Methyl ethanoate    | -0.837                         | -0.758                         | -0.684                         |
| Ethyl ethanoate     | -0.902                         | -0.813                         | -0.795                         |
| Butyl ethanoate     | -1.119                         | -0.985                         | -1.012                         |

<sup>a</sup>Experimental data were taken from Hoover et al.<sup>1</sup>

 $x_1$  by the ideal molar volume of the saturated solution (i.e.,  $c_1^{\text{sat}} =$  $x_1/[x_1V_1 + (1 - x_1)V_{\text{solvent}}]$ ). The molar volume of the hypothetical subcooled liquid 4-nitrobenzoic acid,  $V_{\text{solute}} =$ 117.7 cm<sup>3</sup> mol<sup>-1</sup>, was estimated as the molar volume of benzoic acid ( $V_{\text{benzoic acid}} = 104.4 \text{ cm}^3 \text{ mol}^{-1}$ ) + molar volume of nitrobenzene ( $V_{\text{nitrobenzene}} = 102.7 \text{ cm}^3 \text{ mol}^{-1}$ ) – molar volume of benzene ( $V_{\text{benzene}} = 89.40 \text{ cm}^3 \text{ mol}^{-1}$ ). Any errors resulting from the estimation of 4-nitrobenzoic acid's hypothetical subcooled liquid molar volume,  $V_{\rm solute}$ , or the ideal molar-volume approximation should have only a very small effect on the calculated  $c_1$  values. 4-Nitrobenzoic acid is not very soluble in many of the solvents considered, and the  $x_1V_{\text{solute}}$  term contributes very little to the molar volume of the saturated solution. Examination of the entries in Table 48 reveals that the Abraham model provides a reasonably accurate mathematical description of the observed solubility data, suggesting that there are no obvious outliers in the dataset.

There have also been a few published papers reporting 4-nitrobenzoic acid solubilities in organic solvents as a function of temperature. Sidgwick and Ewbank<sup>127</sup> measured the solubility of 4-nitrobenzoic acid in benzene. Collett and Lazzell<sup>180</sup> later performed solubility measurements for 4-nitrobenzoic acid in benzene, tetrachloromethane, and propanone. The internal consistency of the two of the four datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The limited number of data points in both the tetrachloromethane and propanone datasets was too small to perform a meaningful regression analysis. The values of the equation coefficients (A, B, and C) for the two benzene datasets are given in Table 49, along with the MRD, calculated according to Eq. (24). The largest MRD occurs for the experimental values determined by Sidgwick and Ewbank, <sup>127</sup>

Table 49. Parameters of the Modified Apelblat equation for describing the solubility of 4-nitrobenzoic acid in various organic solvents

| Solvent              | A        | В      | С      | MRD (%) |
|----------------------|----------|--------|--------|---------|
| Benzene <sup>a</sup> | -139.082 | 2.458  | 22.363 | 10.40   |
| Benzene <sup>b</sup> | -128.582 | -2.054 | 20.658 | 4.92    |

<sup>&</sup>lt;sup>a</sup>Calculated from the dataset of Sidgwick and Ewbank. <sup>127</sup>

and corresponds to about a 10.4% error in back-calculating the observed mole fraction solubilities. The large deviation may be due in part to the fact that the solution temperature is above the solvent's normal boiling point temperature, to changes in the liquid phase composition due to solvent evaporation into the vapor phase, and the large range covered by the experimental values,  $x_1 = 0.0465$  to  $x_1 = 0.682$ . It is more difficult to curve-fit experimental solubility data covering large mole fraction ranges.

The experimental solubility data for 4-nitrobenzoic acid in organic solvents are in Secs. 64.2–64.10.

# 64.2. 4-Nitrobenzoic acid solubility data in saturated hydrocarbons (including cycloalkanes)

| <b>Components:</b> (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Cyclohexane; C <sub>6</sub> H <sub>12</sub> ; [110-82-7] | Original Measurements:<br><sup>54</sup> C. K. Hancock, J. N. Pawloski,<br>and J. P. Idoux, J. Org. Chem. <b>31</b> ,<br>3801 (1966). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9999  | 0.0000118 |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 10\%$  (relative error, by compiler).

# 64.3. 4-Nitrobenzoic acid solubility data in aromatic hydrocarbons

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  54C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                                             |
| T/K = 303.15                                                                                                                                          | W. E. Acree, Jr.                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9998  | 0.000166  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

# **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Reagent grade, Chemical source not specified, refluxed over phosphorous pentoxide for 24 h, and then distilled through a  $3\times80$  cm column filled with 0.32-cm glass helices.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.

 $x_1$ :  $\pm 5\%$  (relative error, by compiler).

<sup>&</sup>lt;sup>b</sup>Calculated from the dataset of Collett and Lazzell. <sup>180</sup> For benzene, the first data point was removed from the regression analysis in order to obtain a reasonable representation.

 $<sup>^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements:  127 N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. 119, 979 (1921). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                            | Prepared by:                                                                                       |
| Temperature                                                                                                                                           | W. E. Acree, Jr.                                                                                   |

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 437.7 | 0.953              | 0.0465    |
| 456.6 | 0.889              | 0.111     |
| 469.7 | 0.810              | 0.190     |
| 474.8 | 0.638              | 0.362     |
| 495.2 | 0.318              | 0.682     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. At the higher temperatures, the concentration of solvent in the liquid solution was corrected for the amount of solvent vapor in the bulb. The correction assumed that the vapor pressure of the saturated solution was one half that of the pure solvent at the solution temperature. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

# **Source and Purity of Chemicals:**

(1) Purity not given, prepared and purified by the authors using a published synthetic procedure [see J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920) for synthetic details]. Melting point of the purified solute was 515.6 K. (2) Purity not given, Chemical source not given, thiophene was removed by treatment with sulfuric acid. Sample was further purified by freezing several times.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) Benzene; C <sub>6</sub> H <sub>6</sub> ; [71-43-2] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                     | Prepared by:                                                                                                   |
| Temperature                                                                                                                                                    | W. E. Acree, Jr.                                                                                               |

#### **Experimental Values**

| T/K   | $x_2^{a}$ | $x_1^{\mathbf{b}}$ |
|-------|-----------|--------------------|
| 297.7 | 0.9998    | 0.000156           |
| 412.1 | 0.9842    | 0.0158             |
| 442.1 | 0.9424    | 0.0576             |
| 451.1 | 0.9022    | 0.0978             |
| 470.4 | 0.7737    | 0.2263             |
| 479.6 | 0.6357    | 0.3643             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

#### **Source and Purity of Chemicals:**

(1) Technical grade, Eastman Kodak Chemical Company, Rochester, NY, USA, was dissolved in dilute aqueous sodium hydroxide, precipitated by addition of hydrochloric acid, and then recrystallized twice from aqueous solution. Purified sample had a melting point temperature of 515.6 K.

(2) Thiophene-free, Kahlbaum, was dried over sodium and distilled before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 64.4. 4-Nitrobenzoic acid solubility data in esters

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                 |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9883  | 0.01168   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

<sup>&</sup>lt;sup>b</sup>*x*<sub>1</sub>: mole fraction solubility of the solute. Solubility data reported in units of mass percent. Mole fraction values calculated by the compiler.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>^{\</sup>rm b}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.5%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                  | W. E. Acree, Jr.                                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9876  | 0.01237   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.(2) 99.9%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) Butyl ethanoate; C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> ;<br>[123-86-4] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9899  | 0.01007   |

 $<sup>\</sup>bar{a}_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.7%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Pentyl ethanoate; C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> ; [628-63-7] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9925  | 0.007469           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1,2,3-Triacetoxypropane (Triacetin); C <sub>9</sub> H <sub>14</sub> O <sub>6</sub> ; [102-76-1] | Original Measurements:<br>W. E. Acree, Jr., unpublished<br>data. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                 |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9848  | 0.01542   |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method: Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with 2-propanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Acros Organics, USA, stored over molecular sieves before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 64.5. 4-Nitrobenzoic acid solubility data in ethers

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O; [60-29-7] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9901  | 0.009861  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) 1,1'-Oxybisethane; C <sub>4</sub> H <sub>10</sub> O;<br>[60-29-7] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                    | Prepared by:                                                                                                   |
| Temperature                                                                                                                                                                   | W. E. Acree, Jr.                                                                                               |

| T/K   | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|-------|---------|--------------------|
| 460.8 | 0.9463  | 0.0537             |
| 466.8 | 0.7454  | 0.2546             |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

<sup>&</sup>lt;sup>b</sup>x<sub>1</sub>: mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### Source and Purity of Chemicals:

(1) Technical grade, Eastman Kodak Chemical Company, Rochester, NY, USA, was dissolved in dilute aqueous sodium hydroxide, precipitated by addition of hydrochloric acid, and then recrystallized twice from aqueous solution. Purified sample had a melting point temperature of 515.6 K. (2) U.S.P., Chemical Source not given, was dried over calcium chloride and distilled twice before use.

#### **Estimated Error:**

Temperature: Not given in paper.

 $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2,2'-Oxybispropane; C <sub>6</sub> H <sub>14</sub> O; [108-20-3] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9964  | 0.00362   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1,1'-Oxybisbutane; C <sub>8</sub> H <sub>18</sub> O; [142-96-1] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9972  | 0.002806           |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.3%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1,2-Dimethoxyethane; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-71-4] | Original Measurements:  129 S. H. Ghosh and D. K. Hazra, J. Indian Chem. Soc. 65, 620 (1988). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                         | Prepared by:                                                                                  |
| T/K = 298.15                                                                                                                                                                       | W. E. Acree, Jr.                                                                              |

# **Experimental Values**

The measured solubility was reported to be  $c_1 = 0.8324 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Mechanical shaker and a constant-temperature thermostat.

Excess solute and solvent were placed in a bottle and stoppered. The solution was shaken in a mechanical shaker for 24 h at ambient room temperature. The solution was then thermostated at 298 K for 24 h with occasional shaking. An aliquot of the saturated solution was then removed and filtered. The concentration of the dissolved solute was determined by titration with standard caustic soda using phenolphthalein as indicator.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### **Source and Purity of Chemicals:**

- (1) G.R., Merck Chemical Company, was recrystallized from aqueous ethanol mixture.
- (2) Purum, Fluka, was shaken with ferrous sulfate and then distilled. The distillate was further purified by refluxing for 12 h and then distilling over metallic sodium.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $c_1$ :  $\pm 1.5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9361  | 0.06393   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

### **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.9%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Original Measurements:                                                                               |
|------------------------------------------------------------------------------------------------------|
| <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
| Prepared by:<br>W. E. Acree, Jr.                                                                     |
|                                                                                                      |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{\ b}$ |
|-----------|-------------|
| 0.929     | 0.071       |

 ${}^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred using a Soxhlet thimble equipped with a one-hole cork stopper and an inverted U-shaped delivery tube to a second ground-glass stoppered flask suspended in the 303 K water bath. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed. The saturation solubility of the solute was calculated from the recorded mass data and molar masses of the solute and solvent.

#### Source and Purity of Chemicals:

- (1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.
- (2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2\times 70\text{-cm}$  chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

# **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9580  | 0.04203   |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 2.0\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1,4-Dioxane; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [123-91-1] | Original Measurements: <sup>63</sup> C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. <b>32</b> , 1931 (1967). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 303.15                                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                            |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.950   | 0.050     |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, Soxhlet thimble, conical flask, and analytical balance.

Excess solute and solvent were placed in a conical flask and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Weighed aliquots of saturated solutions were removed and titrated with a standardized sodium hydroxide solution (carbonate free) using a pH meter. The endpoint of the titration was determined by computing the second derivative in the pH versus volume of sodium hydroxide added.

#### Source and Purity of Chemicals:

(1) Purity not given, Chemical source not specified, was recrystallized several times from aqueous-ethanol mixture, and then dried under vacuum over phosphorous pentoxide.

(2) Practical grade, Chemical source not specified, stored over sodium hydroxide pellets for 24 h, and then passed through  $2 \times 70$ -cm chromatographic adsorption columns containing activated alumina. After this treatment, the purified solvent was stored over copper in a nitrogen atmosphere.

#### **Estimated Error:**

Temperature:  $\pm 0.02$  K.  $x_1$ :  $\pm 1.0\%$  (relative error).

# 64.6. 4-Nitrobenzoic acid solubility data in haloalkanes, haloalkenes, and haloaromatic hydrocarbons

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Tetrachloromethane; CCl <sub>4</sub> ; [56-23-5] | Original Measurements: <sup>180</sup> A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                               |

#### **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 302.6 | 0.9999             | 0.000101  |
| 439.8 | 0.9818             | 0.0182    |
| 471.4 | 0.9337             | 0.0663    |

 $\bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

 ${}^{b}x_{1}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature. In a few instances near room temperature, the solubility was determined by agitating the solvent in a thermostat with an excess of solute. After equilibrium had been established, an aliquot of the saturated solution was pipetted, weighed, and the amount of dissolved solute determined with a standard solution of titanium (III) chloride.

#### Source and Purity of Chemicals:

(1) Technical grade, Eastman Kodak Chemical Company, Rochester, NY, USA, was dissolved in dilute aqueous sodium hydroxide, precipitated by addition of hydrochloric acid, and then recrystallized twice from aqueous solution. Purified sample had a melting point temperature of 515.6 K. (2) Certified Pure, Merck Chemical Company, was dried over calcium chloride and distilled twice before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_1$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 64.7. 4-Nitrobenzoic acid solubility data in alcohols

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Methanol; CH <sub>4</sub> O; [67-56-1] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                              | W. E. Acree, Jr.                                                                                                                                         |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^{a}$ | $x_1^b$  |
|-----------|----------|
| 0.9921    | 0.007881 |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.8%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| (2) Methanol; CH <sub>4</sub> O; [67-56-1]  Variables:  T/K = 298.15                                 | 2512 (1938).  Prepared by: W. E. Acree. Jr.                                                     |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7] | Original Measurements:  181 I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. 60, |

# **Experimental Values**

The measured solubility was reported to be  $0.200 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by the conductance method.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, refluxed over silver oxide, distilled and dehydrated with magnesium.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9915  | 0.008544  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) Absolute, Aaper Alcohol and Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Ethanol; C <sub>2</sub> H <sub>6</sub> O; [64-17-5] | Original Measurements:<br><sup>126</sup> P. K. Biswas, S. C. Lahiri, and B.<br>P. Dey, Bull. Chem. Soc. Jpn. <b>66</b> ,<br>2785 (1993). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                         |

| $c_1^a$ | $x_2^{b}$ | $x_1^{c}$ |
|---------|-----------|-----------|
| 0.05445 | 0.9968    | 0.00321   |

 $<sup>{}^{</sup>a}c_{1}$ : solubility of the solute expressed in units of mol dm<sup>-3</sup>.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>c}x_{1}$ : mole fraction solubility of the solute calculated by the compiler.

#### Method/Apparatus/Procedure:

Analytical balance and an ultraviolet/visible spectrophotometer.

Solutions containing excess solute and solvent were allowed to equilibrate at constant temperature for at least 24 h. An aliquot of the saturated solution was removed, filtered, and the absorbance recorded. Solubility was calculated from the measured absorbance.

# **Source and Purity of Chemicals:**

- (1) Puris grade, Fluka Chemicals, recrystallized from aqueous ethanol mixture and dried in an air oven at 390 K. The purified compound was stored in a vacuum desiccators.
- (2) Absolute, B.C.P.W., Calcutta, India, was distilled twice before use.

#### **Estimated Error:**

Temperature:  $\pm 0.2$  K (estimated by compiler).  $c_1$ :  $\pm 1.0\%$  (relative error, estimated by compiler).  $x_1$ :  $\pm 2.5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] | Original Measurements:  72R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971). |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| (2) Ethanol; $C_2H_6O$ ; [64-17-5]                                                             | ( , ,                                                                   |
| Variables:                                                                                     | Prepared by:                                                            |
| T/K = 298.15                                                                                   | W.E. Acree Ir                                                           |

#### **Experimental Values**

The measured solubility was reported to be 0.190 mol/kg of solvent, which corresponds to a mole fraction solubility of  $x_1 = 0.00868$ .

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by a gravimetric method. The saturated solution was evaporated to dryness and the remaining solid residue was weighed. The solubility was calculated from the mass of the solid residue and mass of saturated solution analyzed.

#### **Source and Purity of Chemicals:**

- (1) Purity not given, Chemical source not given, no purification details were provided.
- (2) Purity not given, Chemical source not given, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 4\%$  (relative error, estimated by compiler).

| <b>Components:</b> (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Propanol; C <sub>3</sub> H <sub>8</sub> O; [71-23-8] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^{a}$ | $x_1^{b}$ |
|-----------|-----------|
| 0.9920    | 0.007990  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                              | W. E. Acree, Jr.                                                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9914  | 0.008550  |

 $^{a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Propanol; C <sub>3</sub> H <sub>8</sub> O; [67-63-0] | Original Measurements: <sup>76</sup> M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                 | Prepared by:<br>W. E. Acree, Jr.                                                                             |

#### **Experimental Values**

The measured solubility was reported to be 0.111 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

(1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous solution and dried *in vacuo* at 343 K.
(2) No Purity given, Fisher Scientific, USA, shaken with calcium hydride and distilled before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Butanol; C <sub>4</sub> H <sub>10</sub> O; [71-36-3] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9920  | 0.007973  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99.8+%, HPLC grade, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Butanol; C <sub>4</sub> H <sub>10</sub> O; [78-92-2] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                   | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9911  | 0.008898  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Methyl-1-propanol; C <sub>4</sub> H <sub>10</sub> O; [78-83-1] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9939  | 0.006093  |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O; [75-65-0] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                                           |

# Experimental Values

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9857  | 0.01430   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Arco Chemical Company, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                  |
|--------------------------------------------------------------------------|-----------------------------------------|
| (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>76</sup> M. K. Chantooni and I. M. |
| [62-23-7]                                                                | Kolthoff, Anal. Chem. 51, 133           |
| (2) 2-Methyl-2-propanol; C <sub>4</sub> H <sub>10</sub> O;               | (1979).                                 |
| [75-65-0]                                                                |                                         |
| Variables:                                                               | Prepared by:                            |
| T/K = 298.15                                                             | W. E. Acree, Jr.                        |

#### **Experimental Values**

The measured solubility was reported to be  $0.144\,\mathrm{mol}\,\mathrm{dm}^{-3}$ . The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

### Source and Purity of Chemicals:

(1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous solution and dried *in vacuo* at 343 K. (2) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [71-41-0] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9907  | 0.009317  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Pentanol; C <sub>5</sub> H <sub>12</sub> O; [6032-29-7] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                   | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                 | W. E. Acree, Jr.                                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9910  | 0.008967           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) 2-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O;<br>[137-32-6] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                      | Prepared by:                                                                                                                                             |
| T/K = 298.15                                                                                                                                                                    | W. E. Acree, Jr.                                                                                                                                         |

# **Experimental Values**

| $x_2^a$ | $x_1^b$  |
|---------|----------|
| 0.9941  | 0.005897 |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) 2-Methyl-2-butanol; C <sub>5</sub> H <sub>12</sub> O;<br>[75-85-4] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9819  | 0.01814   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 3-Methyl-1-butanol; C <sub>5</sub> H <sub>12</sub> O; [123-51-3] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                          | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                                        | W. E. Acree, Jr.                                                                                                                                                           |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9927  | 0.007285           |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9895  | 0.01051   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| Components:<br>(1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) 1-Hexanol; C <sub>6</sub> H <sub>14</sub> O; [111-27-3] | Original Measurements:  76M. K. Chantooni and I. M. Kolthoff, Anal. Chem. <b>51</b> , 133 (1979). |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Variables: T/K = 298 15                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                  |

The measured solubility was reported to be 0.084 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous-ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

(1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, was recrystallized from aqueous solution and dried *in vacuo* at 343 K. (2) Yellow Label, Eastman Kodak Chemical Company, Rochester, NY, USA, shaken with calcium hydride and distilled before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

| Components:<br>(1) 4-Nitrobenzoic acid; $C_7H_5NO_4$ ;<br>[62-23-7]<br>(2) 2-Methyl-1-pentanol; $C_6H_{14}O$ ;<br>[105-30-6] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                      | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

# **Experimental Values**

| $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------------------|-----------|
| 0.9935             | 0.006460  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 4-Methyl-2-pentanol; C <sub>6</sub> H <sub>14</sub> O; [108-11-2] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9915  | 0.008513           |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Heptanol; C <sub>7</sub> H <sub>16</sub> O; [111-70-6] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: $T/K = 298.15$                                                                                                                                   | Prepared by:<br>W. E. Acree. Jr.                                                                                                                                           |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| $x_2^a$ | $x_1^b$ |
|---------|---------|
| 0.9893  | 0.01071 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Octanol; C <sub>8</sub> H <sub>18</sub> O; [111-87-5] | Original Measurements:  11 K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004). |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                    | Prepared by:<br>W. E. Acree, Jr.                                                                                                                         |

# **Experimental Values**

| $x_2^{\text{a}}$ | $x_1^{b}$ |
|------------------|-----------|
| 0.9902           | 0.009758  |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 1-Decanol; C <sub>10</sub> H <sub>22</sub> O; [112-30-1] | Original Measurements: <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                  | Prepared by:                                                                                                                                                               |
| T/K = 298.15                                                                                                                                                | W. E. Acree, Jr.                                                                                                                                                           |

#### **Experimental Values**

| $x_2^a$ | $x_1^{\mathrm{b}}$ |
|---------|--------------------|
| 0.9898  | 0.01022            |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Alfa Aesar, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 64.8. 4-Nitrobenzoic acid solubility data in alkoxyalcohols

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Methoxyethanol; C <sub>3</sub> H <sub>8</sub> O <sub>2</sub> ; [109-86-4] | <b>Original Measurements:</b> <sup>129</sup> S. H. Ghosh and D. K. Hazra, J. Indian Chem. Soc. <b>65</b> , 620 (1988). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                        | Prepared by:<br>W. E. Acree, Jr.                                                                                       |

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

The measured solubility was reported to be  $c_1 = 0.4884 \text{ mol dm}^{-3}$ .

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Mechanical shaker and a constant-temperature thermostat.

Excess solute and solvent were placed in a bottle and stoppered. The solution was shaken in a mechanical shaker for 24 h at ambient room temperature. The solution was then thermostated at 298 K for 24 h with occasional shaking. An aliquot of the saturated solution was then removed and filtered. The concentration of the dissolved solute was determined by titration with standard caustic soda using phenolphthalein as indicator.

#### Source and Purity of Chemicals:

 $(1)\,G.R.,$  Merck Chemical Company, was recrystallized from a queous ethanol mixture.

(2) G.R., Merck Chemical Company, was distilled twice before use.

#### **Estimated Error:**

Temperature:  $\pm 0.01$  K.

 $c_1$ :  $\pm 1.5\%$  (relative error, estimated by compiler).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Ethoxyethanol; C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ; [110-80-5] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                                         | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9699  | 0.0301    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Propoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2807-30-9] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                       | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                     | W. E. Acree, Jr.                                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9753  | 0.0247    |

 $<sup>^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                              | Original Measurements:                           |
|--------------------------------------------------------------------------|--------------------------------------------------|
| (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; | <sup>130</sup> L. M. Grubbs, M. Saifullah, N. E. |
| [62-23-7]                                                                | De La Rosa, S. Ye, S. S. Achi, W. E.             |
| (2) 2-Isopropoxyethanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; | Acree, Jr., and M. H. Abraham,                   |
| [109-59-1]                                                               | Fluid Phase Equilib. <b>298</b> , 48 (2010).     |
| Variables:                                                               | Prepared by:                                     |
| T/K = 298.15                                                             | W. E. Acree, Jr.                                 |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9719  | 0.0281    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 2-Butoxyethanol; C <sub>6</sub> H <sub>14</sub> O <sub>2</sub> ; [111-76-2] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                     | Prepared by:                                                                                                                                                           |
| T/K = 298.15                                                                                                                                                                   | W. E. Acree, Jr.                                                                                                                                                       |

# **Experimental Values**

| $x_2^a$ | $x_1^{\mathbf{b}}$ |
|---------|--------------------|
| 0.9750  | 0.0250             |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99+%, Acros Organics, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) 3-Methoxy-1-butanol; C <sub>5</sub> H <sub>12</sub> O <sub>2</sub> ; [2517-43-3] | Original Measurements:  130 L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: T/K = 298.15                                                                                                                                                             | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9739  | 0.0261    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### **Source and Purity of Chemicals:**

(1) 99+%, Acros Organics, USA, was used as received.

(2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components:                                                                                                                                                                                          | Original Measurements:                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ;<br>[62-23-7]<br>(2) 1-Methyl-2- <i>tert</i> -butoxyethanol;<br>C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> ; [57018-52-7] | <sup>130</sup> L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. <b>298</b> , 48 (2010). |
| Variables: T/K = 298.15                                                                                                                                                                              | Prepared by:<br>W. E. Acree, Jr.                                                                                                                                  |

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9676  | 0.0324    |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

#### Source and Purity of Chemicals:

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99%, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

# 64.9. 4-Nitrobenzoic acid solubility data in ketones

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  180 A. R. Collett and C. L. Lazzell, J. Phys. Chem. <b>34</b> , 1838 (1930). |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                               | Prepared by:                                                                                         |
| Temperature                                                                                                                                              | W. E. Acree, Jr.                                                                                     |

# **Experimental Values**

| T/K   | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|-------|--------------------|-----------|
| 345.7 | 0.9626             | 0.0374    |
| 378.5 | 0.8952             | 0.1048    |
| 420.5 | 0.7809             | 0.2191    |
| 437.3 | 0.7122             | 0.2878    |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Preweighed quantities of solute and solvent were placed in bulbs, which were then sealed and heated in a suitable bath. The temperature at which the solid completely dissolved was recorded, and was taken to be the solid-liquid equilibrium temperature.

#### **Source and Purity of Chemicals:**

(1) Technical grade, Eastman Kodak Chemical Company, Rochester, NY, USA, was dissolved in dilute aqueous sodium hydroxide, precipitated by addition of hydrochloric acid, and then recrystallized twice from aqueous solution. Purified sample had a melting point temperature of 515.6 K.

(2) Certified Pure, Merck Chemical Company, was dried over calcium chloride and distilled twice before use.

# **Estimated Error:**

Temperature: Not given in paper.

 $x_2$ :  $\pm 10\%$  (relative error, estimated by compiler).

# 64.10. 4-Nitrobenzoic acid solubility data in miscellaneous organic solvents

| Components:                                                                                                                                                              | Original Measurements:                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7]<br>(2) Propylene carbonate; C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> ; [108-32-7] | <sup>11</sup> K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. <b>42</b> , 339 (2004). |
| Variables:<br>T/K = 298.15                                                                                                                                               | Prepared by: W. E. Acree, Jr.                                                                                                                       |

#### **Experimental Values**

| $x_2^a$ | $x_1^{b}$ |
|---------|-----------|
| 0.9951  | 0.004850  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Constant-temperature bath, calorimetric thermometer, and an ultraviolet/visible spectrophotometer.

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate for several days at constant temperature. Attainment of equilibrium was verified by several repetitive measurements and by approaching equilibrium from supersaturation. Aliquots of saturated solutions were transferred through a coarse filter into tared volumetric flasks, weighed, and diluted with methanol. Concentrations were determined by spectrophotometric measurements at 272 nm.

# **Source and Purity of Chemicals:**

- (1) 99+%, Acros Organics, USA, was used as received.
- (2) 99.7%, anhydrous, Aldrich Chemical Company, Milwaukee, WI, USA, stored over molecular sieves and distilled shortly before use.

# **Estimated Error:**

Temperature:  $\pm 0.1$  K.  $x_1$ :  $\pm 1.5\%$  (relative error).

| Components: (1) 4-Nitrobenzoic acid; C <sub>7</sub> H <sub>5</sub> NO <sub>4</sub> ; [62-23-7] (2) Ethanenitrile; C <sub>2</sub> H <sub>3</sub> N; [75-05-8] | Original Measurements:  136 M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. <b>78</b> , 839 (1974). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <b>Variables:</b> <i>T</i> /K = 298.15                                                                                                                       | Prepared by:<br>W. E. Acree, Jr.                                                                            |

#### **Experimental Values**

The measured solubility was reported to be 0.041 mol dm<sup>-3</sup>. The authors did not give the temperature at which the solubility was measured. Based on the experimental description given in an earlier paper [I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938)], the compiler believes the temperature to be 298.15 K.

 $<sup>{}^{</sup>b}x_{1}^{-}$ : mole fraction solubility of the solute. The solubility is given as molal percentage, which, based on the description of 100 times the mole fraction, is taken to be mole percentage.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

# Method/Apparatus/Procedure:

Very little experimental details were provided. Solubility was determined by titrating a filtered aliquot of the saturated solution alkalimetrically in an aqueous ethanol mixture using phenolphthalein as the acid-base indicator.

#### Source and Purity of Chemicals:

(1) White Label, Eastman Kodak Chemical Company, Rochester, NY, USA, recrystallized from aqueous solution and dried *in vacuo* at 343 K.

(2) Purity not given, Chemical source not given, was purified by shaking with saturated potassium hydroxide, followed by activated alumina, and then anhydrous calcium chloride to remove water. Ethanenitrile was further dried over anhydrous magnesium sulfate and then phosphorous pentoxide. The sample was distilled shortly before use.

#### **Estimated Error:**

Temperature:  $\pm 0.1$  K (estimated by compiler).  $c_1$ :  $\pm 2\%$  (relative error, estimated by compiler).

# 65. Solubility of 3-Nitro-1,2benzenedicarboxylic Acid in Organic Solvents

# 65.1. Critical evaluation of experimental solubility data

There has been only a single study reporting the solubility of 3-nitro-1,2-benzenedicarboxylic acid in organic solvents. Wang et al. 182 used a dynamic method with laser monitoring to determine the solubility of 3-nitro-1,2-benzenedicarboxylic acid in four alkyl alkanoates (ethyl methanoate, methyl ethanoate, ethyl ethanoate, and butyl ethanoate), in two cyclic ethers (tetrahydrofuran and 1,4-dioxane), and in one alkanone (propanone) solvent as a function of temperature. The internal consistency of the seven datasets was assessed by curve-fitting the measured mole fraction solubility data to Eq. (8). The values of the equation coefficients (A, B, and C) are given in Table 50, along with the RMSD, calculated according to Eq. (35). The largest RMSD occurs in the 3-nitro-1,2-benzenedicarboxylic acid - dioxane system, and corresponds to about a 5% error in back-calculating the observed mole fraction solubilities. Results of the mathematical representation analyses indicate that the experimental data for all seven 3-nitro-1,2-benzenedicarboxylic acid - organic solvent systems are internally consistent.

Table 50. Parameters of the Modified Apelblat equation for describing the solubility of 3-nitro-1,2-benzenedicarboxylic acid in various organic solvents<sup>a</sup>

| Solvent          | A       | В       | С       | 10 <sup>4</sup> RMSD |
|------------------|---------|---------|---------|----------------------|
| Ethyl methanoate | -147.71 | 4843.3  | 21.02   | 0.10                 |
| Methyl ethanoate | -54.07  | 1746    | 7.8873  | 0.97                 |
| Ethyl ethanoate  | -103.18 | 3427.5  | 15.275  | 0.42                 |
| Butyl ethanoate  | 148.35  | -9015.2 | -21.697 | 0.87                 |
| Tetrahydrofuran  | -19.492 | 735.44  | 2.7106  | 0.42                 |
| 1,4-Dioxane      | 178.46  | -9552.9 | -26.11  | 8.71                 |
| Propanone        | -79.296 | 2807.6  | 11.772  | 0.21                 |

 $^{
m a}$ Values of the coefficients and root-mean-square deviations were taken from Wang  $et~al.^{182}$ 

The experimental solubility data for 3-nitro-1,2-benzene-dicarboxylic acid in different organic solvents are in Secs. 65.2–65.4.

# 65.2. 3-Nitro-1,2-benzenedicarboxylic acid solubility data in esters

| Components: (1) 3-Nitro-1,2-benzenedicarboxylic acid; C <sub>8</sub> H <sub>5</sub> NO <sub>6</sub> ; [603-11-2] (2) Ethyl methanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [109-94-4] | Original Measurements:  182 S. Wang, QS. Li, X. Z. Lin, H. R. Wang, and L. Liu, J. Chem. Eng. Data 52, 876 (2007). |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                       | Prepared by:                                                                                                       |
| Temperature                                                                                                                                                                                      | W. E. Acree, Jr.                                                                                                   |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 283.17 | 0.9973             | 0.002679  |
| 288.18 | 0.9971             | 0.002866  |
| 293.21 | 0.9969             | 0.003088  |
| 298.26 | 0.9967             | 0.003346  |
| 303.16 | 0.9964             | 0.003631  |
| 308.19 | 0.9960             | 0.003956  |
| 313.27 | 0.9957             | 0.004329  |
| 318.25 | 0.9953             | 0.004729  |
| 323.29 | 0.9948             | 0.005173  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

# Source and Purity of Chemicals:

 $(1)\,99.4\%,$  Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.

(2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

# **Estimated Error:**

Temperature: ±0.05 K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 3-Nitro-1,2-benzenedicarboxylic acid; C <sub>8</sub> H <sub>5</sub> NO <sub>6</sub> ; [603-11-2] (2) Methyl ethanoate; C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> ; [79-20-9] | Original Measurements:<br><sup>182</sup> S. Wang, QS. Li, X. Z. Lin, H.<br>R. Wang, and L. Liu, J. Chem. Eng.<br>Data <b>52</b> , 876 (2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                                          | Prepared by:<br>W. E. Acree, Jr.                                                                                                              |

 $<sup>{}^{\</sup>mathrm{b}}x_1$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^b$ |
|--------|--------------------|---------|
| 278.17 | 0.9666             | 0.03344 |
| 283.26 | 0.9657             | 0.03431 |
| 288.27 | 0.9646             | 0.03535 |
| 293.21 | 0.9635             | 0.03652 |
| 298.24 | 0.9622             | 0.03783 |
| 303.16 | 0.9608             | 0.03922 |
| 308.22 | 0.9593             | 0.04071 |
| 313.28 | 0.9578             | 0.04224 |
| 318.17 | 0.9563             | 0.04373 |
| 323.19 | 0.9548             | 0.04524 |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) 99.4%, Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.
- (2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| (1) 3-Nitro-1,2-benzenedicarboxylic acid;<br>C <sub>8</sub> H <sub>5</sub> NO <sub>6</sub> ; [603-11-2]<br>(2) Ethyl ethanoate; C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> ; [141-78-6] | 182S. Wang, QS. Li, X. Z. Lin<br>H. R. Wang, and L. Liu, J.<br>Chem. Eng. Data <b>52</b> , 876<br>(2007). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                                | Prepared by:                                                                                              |
| Temperature                                                                                                                                                                               | W. E. Acree, Jr.                                                                                          |

# **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{b}$ |
|--------|---------|-----------|
| 283.20 | 0.9921  | 0.007926  |
| 288.26 | 0.9915  | 0.008467  |
| 293.28 | 0.9910  | 0.009015  |
| 298.19 | 0.9904  | 0.009577  |
| 303.21 | 0.9898  | 0.01019   |
| 308.30 | 0.9891  | 0.01088   |
| 313.16 | 0.9884  | 0.01160   |
| 318.22 | 0.9876  | 0.01244   |
| 323.16 | 0.9866  | 0.01337   |
| 328.23 | 0.9856  | 0.01443   |
| 333.17 | 0.9844  | 0.01561   |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) 99.4%, Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.
- (2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Components: (1) 3-Nitro-1,2-benzenedicarboxylic acid; $C_8H_5NO_6$ ; [603-11-2] (2) Butyl ethanoate; $C_6H_{12}O_2$ ; [123-86-4] | Original Measurements: <sup>182</sup> S. Wang, QS. Li, X. Z. Lin, H. R. Wang, and L. Liu, J. Chem. Eng. Data <b>52</b> , 876 (2007). |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                           | Prepared by:<br>W. E. Acree, Jr.                                                                                                     |

#### **Experimental Values**

| T/K    | $x_2^a$ | $x_1^{\mathbf{b}}$ |
|--------|---------|--------------------|
| 283.18 | 0.9976  | 0.002433           |
| 288.16 | 0.9970  | 0.002970           |
| 293.21 | 0.9965  | 0.003532           |
| 298.19 | 0.9959  | 0.004103           |
| 303.22 | 0.9953  | 0.004698           |
| 308.26 | 0.9947  | 0.005312           |
| 313.27 | 0.9941  | 0.005939           |
| 318.18 | 0.9936  | 0.006570           |
| 323.22 | 0.9928  | 0.007236           |
| 328.24 | 0.9921  | 0.007917           |
| 333.19 | 0.9914  | 0.008605           |
| 338.28 | 0.9907  | 0.009330           |
| 343.25 | 0.9899  | 0.01006            |
| 348.24 | 0.9892  | 0.01080            |
| 353.26 | 0.9884  | 0.01157            |
|        |         |                    |

 $<sup>\</sup>bar{a}x_2$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

Temperature

#### Source and Purity of Chemicals:

- (1) 99.4%, Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.
- (2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 65.3. 3-Nitro-1,2-benzenedicarboxylic acid solubility data in ethers

| Components: (1) 3-Nitro-1,2-benzenedicarboxylic acid; C <sub>8</sub> H <sub>5</sub> NO <sub>6</sub> ; [603-11-2] (2) Tetrahydrofuran; C <sub>4</sub> H <sub>8</sub> O; [109-99-9] | Original Measurements: 182S. Wang, QS. Li, X. Z. Lin, H. R. Wang, and L. Liu, J. Chem. Eng. Data <b>52</b> , 876 (2007). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Variables:                                                                                                                                                                        | Prepared by:                                                                                                             |
| Temperature                                                                                                                                                                       | W. E. Acree, Jr.                                                                                                         |

# **Experimental Values**

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.28 | 0.7966             | 0.2034    |
| 283.17 | 0.7962             | 0.2038    |
| 288.16 | 0.7957             | 0.2043    |
| 293.21 | 0.7950             | 0.2050    |
| 298.29 | 0.7943             | 0.2057    |
| 303.28 | 0.7934             | 0.2066    |
| 308.19 | 0.7924             | 0.2076    |
| 313.23 | 0.7912             | 0.2088    |
| 318.24 | 0.7900             | 0.2100    |
| 323.16 | 0.7886             | 0.2114    |
| 328.19 | 0.7871             | 0.2129    |
| 333.17 | 0.7855             | 0.2145    |

 $x_2$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

#### **Source and Purity of Chemicals:**

- (1) 99.4%, Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.
- (2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

| Variables:                                                                                                                                                                  | Prepared by:                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} \hbox{(1) 3-Nitro-1,2-benzenedicarboxylic acid;} \\ \hbox{$C_8H_5NO_6$; [603-11-2]$} \\ \hbox{(2) 1,4-Dioxane; $C_4H_8O_2$; [123-91-1]} \\ \end{array} $ | <sup>182</sup> S. Wang, QS. Li, X. Z. Lin, H. R. Wang, and L. Liu, J. Chem. Eng. Data <b>52</b> , 876 (2007). |
| Components:                                                                                                                                                                 | Original Measurements:                                                                                        |

#### **Experimental Values**

W. E. Acree, Jr.

| T/K    | $x_2^a$ | $x_1^b$ |
|--------|---------|---------|
| 288.17 | 0.9242  | 0.07583 |
| 293.28 | 0.9132  | 0.08682 |
| 298.31 | 0.9029  | 0.09705 |
| 303.29 | 0.8934  | 0.1066  |
| 308.26 | 0.8844  | 0.1156  |
| 313.20 | 0.8760  | 0.1240  |
| 318.21 | 0.8681  | 0.1319  |
| 323.29 | 0.8607  | 0.1393  |
| 328.19 | 0.8541  | 0.1459  |
| 333.18 | 0.8479  | 0.1521  |
| 338.22 | 0.8422  | 0.1578  |
| 343.16 | 0.8373  | 0.1627  |
| 348,23 | 0.8327  | 0.1673  |
| 353.32 | 0.8288  | 0.1712  |

 $a_{x_2}$ : mole fraction of component 2 in the saturated solution.

# **Auxiliary Information**

# Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

# **Source and Purity of Chemicals:**

- (1) 99.4%, Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.
- (2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

# **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 65.4. 3-Nitro-1,2-benzenedicarboxylic acid solubility data in ketones

| <b>Components:</b> (1) 3-Nitro-1,2-benzenedicarboxylic acid; C <sub>8</sub> H <sub>5</sub> NO <sub>6</sub> ; [603-11-2] (2) Propanone; C <sub>3</sub> H <sub>6</sub> O; [67-64-1] | Original Measurements:  182 S. Wang, QS. Li, X. Z. Lin, H. R. Wang, and L. Liu, J. Chem. Eng. Data <b>52</b> , 876 (2007). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Variables: Temperature                                                                                                                                                            | Prepared by:<br>W. E. Acree, Jr.                                                                                           |

 $<sup>{}^{\</sup>mathrm{b}}x_{1}$ : mole fraction solubility of the solute.

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

| T/K    | $x_2^{\mathrm{a}}$ | $x_1^{b}$ |
|--------|--------------------|-----------|
| 278.16 | 0.9475             | 0.05249   |
| 283.18 | 0.9459             | 0.05414   |
| 288.27 | 0.9440             | 0.05604   |
| 293.33 | 0.4918             | 0.05815   |
| 298.24 | 0.9396             | 0.06041   |
| 303.19 | 0.9371             | 0.06290   |
| 308.32 | 0.9343             | 0.06570   |
| 313.16 | 0.9314             | 0.06855   |
| 318.20 | 0.9283             | 0.07173   |

 $<sup>{}^{</sup>a}x_{2}$ : mole fraction of component 2 in the saturated solution.

#### **Auxiliary Information**

#### Method/Apparatus/Procedure:

Equilibrium jacketed glass vessel, circulating water temperature controller, stirrer, analytical balance, laser monitoring system.

Experimental solubilities were determined by a dynamic method. Pre-weighed amounts of solute and solvent and were placed in an equilibrium vessel, which was connected to a circulating water bath. The solution was stirred and small quantities of solid solute were added until the saturation point was reached. The saturation point was determined using laser monitoring.

#### Source and Purity of Chemicals:

- (1) 99.4%, Zhe Jiang Lianhe Chemical Technology Company, Ltd., China, no purification details were provided.
- (2) Analytical Reagent grade, Shanghai Chemical Reagent Company, China, no purification details were provided.

#### **Estimated Error:**

Temperature:  $\pm 0.05$  K.

 $x_1$ :  $\pm 3\%$  (relative error, estimated by compiler).

# 66. References

- <sup>1</sup>A. Goto, H. Miyamoto, M. Salomon, R. Goto, H. Fukuda, E. Königsberger, and L.-C. Königsberger, J. Phys. Chem. Ref. Data **40**, 013101 (2011).
- <sup>2</sup>A. Goto, H. Miyamoto, M. Salomon, R. Goto, H. Fukuda, E. Königsberger, L.-C. Königsberger, and P. Scharlin, J. Phys. Chem. Ref. Data **40**, 023102 (2011).
- <sup>3</sup>J. M. Prausnitz, *Molecular Thermodynamics of Fluid Phase Equilibria* (Prentice-Hall, Englewood Cliffs, NJ, 1969).
- <sup>4</sup>H. Buchowski, A. Ksizczak, and S. J. Pietrzyk, J. Phys. Chem. **84**, 975 (1980).
- <sup>5</sup>H. Buchowski and A. Khiat, Fluid Phase Equilib. **25**, 273 (1986).
- <sup>6</sup>M. H. Abraham, Chem. Soc. Rev. **22**, 73 (1993).
- <sup>7</sup>M. H. Abraham, A. Ibrahim, and A. M. Zissimos, J. Chromatogr. A **1037**, 29 (2004).
- <sup>8</sup>K. R. Hoover, K. Pop, W. E. Acree, Jr., and M. H. Abraham, S. Afr. J. Chem. **58**, 25 (2005).
- <sup>9</sup>K. R. Hoover, D. M. Stovall, E. Pustejovsky, R. Coaxum, K. Pop, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. **82**, 1353 (2004).
- <sup>10</sup>A. K. Charlton, C. R. Daniels, R. M. Wold, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, J. Mol. Liq. 116, 19 (2005).
- M. H. Abraham, S. Hol. Eq. 116, 19 (2003).
   K. R. Hoover, R. Coaxum, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 339 (2004).
- <sup>12</sup>A. K. Charlton, C. R. Daniels, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. **32**, 1087 (2003).
- <sup>13</sup>D. M. Stovall, C. Givens, S. Keown, K. R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 43, 351 (2005).

- <sup>14</sup>C. R. Daniels, A. K. Charlton, R. M. Wold, W. E. Acree, Jr., and M. H. Abraham, Can. J. Chem. **81**, 1492 (2003).
- <sup>15</sup>M. H. Abraham, R. E. Smith, R. Luchtefeld, A. J. Boorem, R. Luo, and W. E. Acree, Jr., J. Pharm. Sci. 99, 1500 (2010).
- <sup>16</sup>T. W. Stephens, A. N. Quay, V. Chou, M. Loera, C. Shen, A. Wilson, W. E. Acree, Jr., and M. H. Abraham, Global J. Phys. Chem. 3, 1/1 (2012).
- <sup>17</sup>T. W. Stephens, A. Wilson, N. Dabadge, A. Tian, H. J. Hensley, M. Zimmerman, W. E. Acree, Jr., and M. H. Abraham, Global J. Phys. Chem. 3, 9/1 (2012).
- <sup>18</sup>M. Saifullah, S. Ye, L. M. Grubbs, N. E. La Rosa, W. E. Acree, Jr., and M. H. Abraham, J. Solution Chem. 40, 2082 (2011).
- <sup>19</sup>T. W. Stephens, M. Loera, A. N. Quay, V. Chou, C. Shen, A. Wilson, W. E. Acree, Jr., and M. H. Abraham, Open Thermodyn. J. 5, 104 (2011).
- <sup>20</sup>T. W. Stephens, N. E. De La Rosa, M. Saiffullah, S. Ye, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 309, 30 (2011).
- <sup>21</sup>T. W. Stephens, N. E. De La Rosa, M. Saifullah, S. Ye, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 308, 64 (2011).
- <sup>22</sup>L. M. Sprunger, S. S. Achi, R. Pointer, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 288, 121 (2010).
- <sup>23</sup>M. H. Abraham and W. E. Acree, Jr., Phys. Chem. Chem. Phys. **12**, 13182 (2010)
- <sup>24</sup>M. H. Abraham, A. Nasezadeh, and W. E. Acree, Jr., Ind. Eng. Chem. Res. 47, 3990 (2008).
- <sup>25</sup>L. M. Sprunger, J. Gibbs, W. E. Acree, Jr., and M. H. Abraham, QSAR Comb. Sci. 28, 72 (2009).
- <sup>26</sup>L. M. Sprunger, W. E. Acree, Jr., and M. H. Abraham, J. Chem. Inf. Model. 47, 1808 (2007).
- <sup>27</sup>C. Mintz, T. Ladlie, K. Burton, M. Clark, W. E. Acree, Jr., and M. H. Abraham, QSAR Comb. Sci. 27, 483 (2008).
- <sup>28</sup>L. M. Sprunger, J. Gibbs, W. E. Acree, Jr., and M. H. Abraham, QSAR Comb. Sci. 27, 1130 (2008).
- <sup>29</sup>M. H. Abraham, A. Ibrahim, and W. E. Acree, Jr., Eur. J. Med. Chem. 42, 743 (2007).
- <sup>30</sup>M. H. Abraham, A. Ibrahim, and W. E. Acree, Jr., Eur. J. Med. Chem. 43, 478 (2008).
- <sup>31</sup>M. H. Abraham, A. Ibrahim, Y. Zhao, and W. E. Acree, Jr., J. Pharm. Sci. 95, 2091 (2006).
- <sup>32</sup>M. H. Abraham, A. Ibrahim, and W. E. Acree, Jr., Eur. J. Med. Chem. 41, 494 (2006).
- <sup>33</sup>M. H. Abraham, A. Ibrahim, and W. E. Acree, Jr., Chem. Res. Toxicol. **19**, 801 (2006).
- <sup>34</sup>M. H. Abraham, A. Ibrahim, and W. E. Acree, Jr., Chem. Res. Toxicol. 18, 904 (2005).
- <sup>35</sup>W. E. Acree, Jr. and M. H. Abraham, J. Solution Chem. **31**, 293 (2002).
- <sup>36</sup>A. M. Zissimos, M. H. Abraham, C. M. Du, K. Valko, B. Klara, C. Bevan, D. Reynolds, J. Wood, and K. Y. Tam, J. Chem. Soc., Perkin Trans. 2 2002, 2001.
- <sup>37</sup>A. M. Zissimos, M. H. Abraham, M. C. Barker, K. J. Box, and K. Y. Tam, J. Chem. Soc., Perkin Trans. 2 2002, 470.
- <sup>38</sup>M. H. Abraham and J. C. McGowan, Chromatographia **23**, 243 (1987).
- <sup>39</sup>Advanced Chemistry Development, 110 Yonge St., 14th Floor, Toronto, Ontario M5C 1T4, Canada. The ACD Freeware can be accessed at http:// www.acdlabs.com/.
- <sup>40</sup>J. A. Platts, D. Butina, M. H. Abraham, and A. Hersey, J. Chem. Inf. Comput. Sci. **39**, 835 (1999).
- <sup>41</sup>PharmaAlgorithms, ADME Boxes, Version 3.0, PharmaAlgorithms Inc., 591 Indian Road, Toronto, Ontario M6P 2C4, Canada.
- <sup>42</sup>W. E. Acree, Jr. and A. I. Zvaigzne, Thermochim. Acta **178**, 151 (1991).
- <sup>43</sup>W. E. Acree, Jr., J. W. McCargar, A. I. Zvaigzne, and I.-L. Teng, Phys. Chem. Liq. 23, 27 (1991).
- <sup>44</sup>W. E. Acree, Jr., J. Phys. Chem. Ref. Data **42**, 013103 (2013).
- <sup>45</sup>W. E. Acree, Jr., J. Phys. Chem. Ref. Data **42**, 013104 (2013).
- <sup>46</sup>W. E. Acree, Jr., J. Phys. Chem. Ref. Data **42**, 013105 (2013).
- <sup>47</sup>A. Beerbower, P. L. Wu, and A. Martin, J. Pharm. Sci. **73**, 179 (1984).
   <sup>48</sup>J. Thati, F. L. Nordström, and A. C. Rasmuson, J. Chem. Eng. Data **55**,
- 5124 (2010). <sup>49</sup>W. E. Acree, Jr. and G. L. Bertrand, J. Pharm. Sci. **70**, 1033 (1981).
- <sup>50</sup>P. G. Desai and A. M. Patel, J. Indian Chem. Soc. **12**, 131 (1935).
- <sup>51</sup>H.-M. Lin and R. A. Nash, J. Pharm. Sci. **82**, 1018 (1993).
- <sup>52</sup>A. Ksiazczak, Fluid Phase Equilib. **28**, 57 (1986).
- <sup>53</sup>G. L. Perlovich and A. Bauer-Brandl, Pharm. Res. **20**, 471 (2003).

 $<sup>{}^{</sup>b}x_{1}$ : mole fraction solubility of the solute.

- <sup>54</sup>C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. **31**, 3801 (1966).
- 55 B. Long, J. Li, R. Zhang, and L. Wan, Fluid Phase Equilib. 297, 113 (2010).
- <sup>56</sup>P. A. Ongley, J. Chem. Soc. **1954**, 3634.
- <sup>57</sup>J. W. Marden and M. V. Dover, J. Am. Chem. Soc. **38**, 1235 (1916).
- <sup>58</sup>J. Chipman, J. Am. Chem. Soc. **46**, 2445 (1924).
- <sup>59</sup>H. Buchowski, J. Solution Chem. **20**, 139 (1991).
- <sup>60</sup>S. Zhao, X. Chen, Q. Dai, and L. Wang, J. Chem. Eng. Data **56**, 2399 (2011).
- <sup>61</sup>E. R. Cooper, J. Controlled Release 1, 153 (1984).
- <sup>62</sup>S. H. Ghosh and D. K. Hazra, J. Chem. Soc., Perkin Trans. 2 **1989**, 1021.
- <sup>63</sup>C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. **32**, 1931 (1967).
- <sup>64</sup>E. A. Gomaa, Phys. Chem. Liq. **50**, 279 (2012).
- <sup>65</sup>A. F. Lagalante, A. Abdulagatov, and T. J. Bruno, J. Chem. Eng. Data 47, 47 (2002).
- <sup>66</sup>W. Herz and W. Rathmann, Z. Elektrochem. **19**, 887 (1913).
- <sup>67</sup>M. Davies and D. M. L. Griffiths, J. Chem. Soc. **1955**, 132.
- <sup>68</sup>K. K. Kundu, A. L. De, and M. N. Das, J. Chem. Soc. Dalton Trans. **1972**, 386.
- <sup>69</sup>C. M. McLoughlin, W. A. M. McMinn, and T. R. A. Magee, Powder Technol. **134**, 40 (2003).
- <sup>70</sup>J. M. Jessy, J. Indian Chem. Soc. **75**, 352 (1998).
- <sup>71</sup>A. Seidell, Trans. Am. Electrochem. Soc. **13**, 319 (1908).
- <sup>72</sup>R. Thuaire, Bull. Soc. Chim. Fr. 3815 (1971).
- <sup>73</sup>M. Dias, S. L. Raghavan, and J. Hadgraft, Int. J. Pharm. **216**, 51 (2001).
- <sup>74</sup>A. Pal and S. C. Lahiri, Indian J. Chem. **28A**, 276 (1989).
- <sup>75</sup>F. A. Restaino and A. N. Martin, J. Pharm. Sci. **53**, 636 (1964).
- <sup>76</sup>M. K. Chantooni and I. M. Kolthoff, Anal. Chem. **51**, 133 (1979).
- <sup>77</sup>J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, and L. Guiju, J. Chem. Eng. Data 53, 1278 (2008).
- <sup>78</sup>A. Yurquina, M. E. Manzur, P. Brito, R. Manzo, and M. A. A. Molina, J. Mol. Liq. **108**, 119 (2003).
- <sup>79</sup>Q. Wang, L. Hou, Y. Cheng, and X. Li, J. Chem. Eng. Data **52**, 936 (2007).
- <sup>80</sup>P. Ma and Q. Xia, Chin. J. Chem. Eng. **9**, 39 (2001).
- <sup>81</sup>A. G. Zakharov, M. I. Voronova, D. V. Batov, and K. V. Smirnova, Russ. J. Phys. Chem. **85**, 408 (2011).
- <sup>82</sup>L. Dian-Qing, L. Jiang-Chu, L. Da-Zhuang, and W. Fu-An, Fluid Phase Equilib. 200, 69 (2002).
- 83M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem. **77**, 527 (1973).
- <sup>84</sup>D.-Q. Li, D.-Z. Liu, and F.-A. Wang, J. Chem. Eng. Data 46, 172 (2001).
- 85K. Mislow, J. Phys. Chem. **52**, 729 (1948).
- <sup>86</sup>D. H. Wester and A. Bruins, Pharm. Weekbl. **51**, 1443 (1914).
- <sup>87</sup>M. Dias, J. Hadgraft, and M. E. Lane, Int. J. Pharm. **336**, 108 (2007).
- <sup>88</sup>B. J. Aungst, J. A. Blake, and A. Hussain, Pharm. Res. **7**, 712 (1990).
- <sup>89</sup>S. J. Lloyd, J. Phys. Chem. **22**, 300 (1918).
- <sup>90</sup>W. Cheng, S. Feng, X. Cui, and F. Cheng, Adv. Mater. Res. **518–523**, 3975 (2012).
- <sup>91</sup>J. Bradil, J. Malek, and V. Bazant, Chem. Prumysl **20**, 117 (1970).
- <sup>92</sup>G. D. Maia and M. Giulietti, J. Chem. Eng. Data **53**, 256 (2008).
- <sup>93</sup>C. Lindenberg, M. Krättli, J. Cornel, M. Mazzotti, and J. Brozio, Cryst. Growth Des. 9, 1124 (2009).
- <sup>94</sup>S. L. Cassidy, P. A. Lympany, and J. A. Henry, J. Pharm. Pharmacol. 40, 130 (1988).
- <sup>95</sup>R. Castro-Carela, C. Rey-Castro, T. Viaremo, and M. E. Sastre de Vicente, J. Chem. Eng. Data 47, 1432 (2002).
- <sup>96</sup>A. F. Diaz and D. L. Drogos, *Oxygenates in Gasoline*, ACS Symposium Series 799 (American Chemical Society, Washington, DC, 2002), pp. 138– 152.
- <sup>97</sup>H. Wang and W. Zhang, J. Chem. Eng. Data **54**, 1942 (2009).
- <sup>98</sup>N. Sunsandee, M. Hronec, M. Stolcova, N. Leepipatpiboon, and U. Pancharoen, J. Mol. Liq. **180**, 252 (2013).
- <sup>99</sup>Q. Jia, P. Ma, S. Ma, and C. Wang, Chin. J. Chem. Eng. **15**, 710 (2007).
- <sup>100</sup>C. L. Lazzell and J. Johnston, J. Phys. Chem. 32, 1331 (1928).
- <sup>101</sup>M. Svärd, F. L. Nordström, and A. C. Rasmuson, Cryst. Growth Des. 10, 195 (2010).
- <sup>102</sup>J. Barra, M.-A. Peña, and P. Bustamante, Eur. J. Pharm. Sci. **10**, 153 (2000).
- <sup>103</sup>C. R. Daniels, A. K. Charlton, R. M. Wold, R. J. Moreno, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. **42**, 633 (2004).
- <sup>104</sup>S. Gracin and A. C. Rasmuson, Cryst. Growth Des. 4, 1013 (2004).

- <sup>105</sup>P. K. Takayama, N. Nambu, and T. Nagai, Chem. Pharm. Bull. **25**, 879 (1977).
- <sup>106</sup>X. Q. Chen, S. J. Cho, Y. Li, and S. Venkatesh, J. Pharm. Sci. **91**, 1838 (2002).
- <sup>107</sup>A. Patel, A. Vaghasiya, R. Gajera, and S. Baluja, J. Chem. Eng. Data 55, 1453 (2010).
- <sup>108</sup>B.-Z. Ren, C.-H. Hou, H.-G. Chong, W.-R. Li, and H.-J. Song, J. Chem. Eng. Data **51**, 2022 (2006).
- <sup>109</sup>Y.-K. Che, Y.-X. Qu, and S. Wang, J. Chem. Eng. Data **54**, 3130 (2009).
- <sup>110</sup>M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. **79**, 1176 (1975).
- <sup>111</sup>B. K. Dolui, S. K. Bhattacharya, and K. K. Kundu, J. Solution Chem. 37, 987 (2008).
- <sup>112</sup>B. Long, Y. Wang, R. Zhang, and J. Xu, J. Chem. Eng. Data **54**, 1764 (2009).
- <sup>113</sup>L. Feng, L. Wang, G. Peng, X. Guo, and X. Li, J. Chem. Eng. Data 55, 500 (2010).
- <sup>114</sup>G. N. Friedlin and V. N. Davydov, Zh. Prikl. Khim. **35**, 2530 (1962).
- <sup>115</sup>G. N. Freidlin and V. N. Davydov, Dopov. Akad. Nauk Ukr. RSR 622 (1962)
- <sup>116</sup>B. Long and Z. Yang, Fluid Phase Equilib. **266**, 38 (2008).
- <sup>117</sup>L. Feng, Q. Wang, and X. Li, J. Chem. Eng. Data 53, 2501 (2008).
- <sup>118</sup>J. J. Harper and P. Janik, J. Chem. Eng. Data **15**, 439 (1970).
- <sup>119</sup>M.-M. Chen, P.-S. Ma, L. Wang, and F. Chen, Acta Phys. Chim. Sin. 20, 445 (2004).
- <sup>120</sup>Q. Wang, H. Xu, and X. Li, J. Chem. Eng. Data **50**, 258 (2005).
- <sup>121</sup>P. Ma and M. Chen, Chin. J. Chem. Eng. 11, 334 (2003).
- <sup>122</sup>Q. Wang, H. Xu, and X. Li, J. Chem. Eng. Data **50**, 719 (2005).
- <sup>123</sup>X. Guo, Y.-W. Cheng, L.-J. Wang, and X. Li, J. Chem. Eng. Data 53, 1421 (2008).
- <sup>124</sup>Q. Wang, H. Xu, and X. Li, J. Chem. Eng. Data **50**, 243 (2005).
- <sup>125</sup>S. Pinsuwan, A. Li, and S. H. Yalkowsky, J. Chem. Eng. Data 40, 623 (1995)
- <sup>126</sup>P. K. Biswas, S. C. Lahiri, and B. P. Dey, Bull. Chem. Soc. Jpn. **66**, 2785 (1993).
- <sup>127</sup>N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. Trans. **119**, 979 (1921)
- <sup>128</sup>G. S. Krasil'nikova, E. G. Freidlin, and Y. N. Pirig, Zh. Prikl. Khim. 60, 2519 (1987).
- <sup>129</sup>S. H. Ghosh and D. K. Hazra, J. Indian Chem. Soc. **65**, 620 (1988).
- <sup>130</sup>L. M. Grubbs, M. Saifullah, N. E. De La Rosa, S. Ye, S. S. Achi, W. E. Acree, Jr., and M. H. Abraham, Fluid Phase Equilib. 298, 48 (2010).
- <sup>131</sup>M. H. Abraham and J. Le, J. Pharm. Sci. **88**, 868 (1999).
- <sup>132</sup>G. Yang, Y. Ran, and S. H. Yalkowsky, J. Pharm. Sci. **91**, 517 (2002).
- <sup>133</sup>A. Osol and M. Kilpatrick, J. Am. Chem. Soc. **55**, 4430 (1933).
- <sup>134</sup>P. V. Phatak and V. K. Gaikar, J. Chem. Eng. Data 38, 217 (1993).
- <sup>135</sup>S. S. Laddha and M. M. Sharma, J. Appl. Chem. Biotechnol. **28**, 69 (1978).
- <sup>136</sup>M. K. Chantooni, Jr. and I. M. Kolthoff, J. Phys. Chem. **78**, 839 (1974).
- <sup>137</sup>A. Wilson, A. Tian, V. Chou, A. N. Quay, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. **50**, 324 (2012).
- <sup>138</sup>K. R. Bowen, T. W. Stephens, H. Lu, K. Satish, D. Shan, W. E. Acree, Jr., and M. H. Abraham, Eur. Chem. Bull. 2, 577 (2013).
- <sup>139</sup>Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013).
- <sup>140</sup>K. R. Hoover, R. Coaxum, E. Pustejovsky, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 457 (2004).
- <sup>141</sup>A. Seidell, Solubilities of Organic Compounds, 3rd ed. (Van Nostrand, New York, 1941).
- <sup>142</sup>J. C. Philip and F. B. Garner, J. Chem. Soc. Trans. **95**, 1466 (1909).
- <sup>143</sup>S. Ye, M. Saifullah, L. M. Grubbs, M. C. McMillan-Wiggins, P. Acosta, D. Mejorado, I. Flores, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 49, 821 (2011).
- <sup>144</sup>W. Sun, W. Qu, and L. Zhao, J. Chem. Eng. Data 55, 4476 (2010).
- <sup>145</sup>G. L. Perlovich, T. V. Volkova, and A. Bauer-Brandl, J. Pharm. Sci. 95, 1448 (2006).
- <sup>146</sup>H.-L. Fung and T. Higuchi, J. Pharm. Sci. **60**, 1782 (1971).
- <sup>147</sup>J. Walker and J. K. Wood, J. Chem. Soc. Trans. **73**, 618 (1898).
- <sup>148</sup>I. L. Krupatkin, J. Gen. Chem. USSR (Engl. Transl.) **26**, 3609 (1956).
- <sup>149</sup>J. W. Marden and M. V. Dover, J. Am. Chem. Soc. **39**, 1 (1917).
- <sup>150</sup>A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. **53**, 1349 (1964).
- <sup>151</sup>K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999).

- <sup>152</sup>H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi, and K. Tomono, J. Chem. Eng. Data 54, 480 (2009).
- <sup>153</sup>A. Shalmashi and A. Eliassi, J. Chem. Eng. Data **53**, 199 (2008).
- <sup>154</sup>M. A. Peña, B. Escalera, A. Reíllo, A. B. Sánchez, and P. Bustamante, J. Pharm. Sci. 98, 1129 (2009).
- <sup>155</sup>M. A. Peña, A. Reíllo, B. Escalera, and P. Bustamante, Int. J. Pharm. 321, 155 (2006).
- <sup>156</sup>K. B. Sloan, K. G. Siver, and S. A. M. Koch, J. Pharm. Sci. **75**, 744 (1986).
- <sup>157</sup>M. A. Peña, P. Bustamante, B. Escalera, A. Reillo, and J. M. Bosque-Sendra, J. Pharm. Biomed. Anal. 36, 571 (2004).
- <sup>158</sup>E. Bergroth, Farm. Aikak. **70**, 91 (1961).
- <sup>159</sup>J. Lim, S. Jang, H. K. Cho, M. S. Shin, and H. Kim, J. Chem. Thermodyn. 57, 295 (2013).
- <sup>160</sup> A. Jouyban, V. Panahi-Azar, and F. Khonsari, J. Mol. Liq. **160**, 14 (2011).
- <sup>161</sup>E. A. Gomaa, M. A. Mousa, and A. A. El-Khouly, Thermochim. Acta 86, 351 (1985).
- <sup>162</sup>M. A. A. Fakhree, S. Ahmadian, V. Panahi-Azar, W. E. Acree, Jr., and A. Jouyban, J. Chem. Eng. Data 57, 3303 (2012).
- <sup>163</sup>B. Bouillot, S. Teychené, and B. Biscans, Ind. Eng. Chem. Res. **52**, 9276 (2013).
- <sup>164</sup>M. H. Abraham, W. E. Acree, Jr., and J. E. Cometto-Muñiz, New J. Chem. 33, 2034 (2009).
- <sup>165</sup>F. L. Nordström and A. C. Rasmuson, Eur. J. Pharm. Sci. **28**, 377 (2006).

- <sup>166</sup>A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).
- <sup>167</sup>S. Gracin and A. C. Rasmuson, J. Chem. Eng. Data 47, 1379 (2002).
- <sup>168</sup>F. Nordström and A. C. Rasmuson, J. Pharm. Sci. **95**, 748 (2006).
- <sup>169</sup>M. S. Manic, D. Villanueva, T. Fornari, A. J. Queimada, E. A. Macedo, and V. Najdanovic-Visak, J. Chem. Thermodyn. 48, 93 (2012).
- <sup>170</sup>A. Apelblat and E. Manzurola, J. Chem. Thermodyn. **29**, 1527 (1997).
- <sup>171</sup>R. Coaxum, K. R. Hoover, E. Pustejovsky, D. M. Stovall, W. E. Acree, Jr., and M. H. Abraham, Phys. Chem. Liq. 42, 313 (2004).
- <sup>172</sup>U. Domańska, Pol. J. Chem. **60**, 847 (1986).
- <sup>173</sup>U. Domańska and T. Hofman, J. Solution Chem. **14**, 531 (1985).
- <sup>174</sup>U. Domańska, J. Solution Chem. **18**, 1153 (1989).
- <sup>175</sup>L. E. Strong, R. M. Neff, and I. Whitesel, J. Solution Chem. **18**, 101 (1989).
- <sup>176</sup>Y. Ran and S. H. Yalkowsky, J. Chem. Inf. Comput. Sci. **41**, 354 (2001).
- <sup>177</sup>Q. Kong, Y. Cheng, X. Bao, L. Wang, and X. Li, Fluid Phase Equilib. 340, 46 (2013).
- <sup>178</sup>M. Chen and P. Ma, J. Chem. Eng. Data **49**, 756 (2004).
- <sup>179</sup>W. Luo, Q. Wang, L. Fu, W. Deng, X. Zhang, and C. Guo, Ind. Eng. Chem. Res. **50**, 4099 (2011).
- <sup>180</sup>A. R. Collett and C. L. Lazzell, J. Phys. Chem. **34**, 1838 (1930).
- <sup>181</sup>I. M. Kolthoff, J. J. Lingane, and W. Larson, J. Am. Chem. Soc. **60**, 2512 (1938).
- <sup>182</sup>S. Wang, Q.-S. Li, X. Z. Lin, H. R. Wang, and L. Liu, J. Chem. Eng. Data 52, 876 (2007).