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Abstract

Motivation: An accurate genome assembly from short read sequencing data is critical for down-

stream analysis, for example allowing investigation of variants within a sequenced population.

However, assembling sequencing data from virus samples, especially RNA viruses, into a genome

sequence is challenging due to the combination of viral population diversity and extremely uneven

read depth caused by amplification bias in the inevitable reverse transcription and polymerase

chain reaction amplification process of current methods.

Results: We developed a new de novo assembler called IVA (Iterative Virus Assembler) designed

specifically for read pairs sequenced at highly variable depth from RNA virus samples. We tested

IVA on datasets from 140 sequenced samples from human immunodeficiency virus-1 or influenza-

virus-infected people and demonstrated that IVA outperforms all other virus de novo assemblers.

Availability and implementation: The software runs under Linux, has the GPLv3 licence and is

freely available from http://sanger-pathogens.github.io/iva

Contact: iva@sanger.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The main challenge of assembling sequence data from an RNA virus

sample into a consensus sequence lies in the extremely variable read

depth from current sequencing approaches combined with the exten-

sive viral population diversity. An example is shown in Figure 1

where regions of the genome are represented with different read

depths, caused by the separate reverse transcription polymerase

chain reaction amplification of overlapping regions of the genome

before library preparation. Further, there is a relatively high rate of

single base differences in the reads throughout the genome. These

properties of the data cause standard assembly algorithms to

produce multiple contigs covering the same region and, more signifi-

cantly, miss regions of the genome entirely (Yang et al., 2012).

Despite the availability of at least 40 genome assemblers (http://

en.wikipedia.org/wiki/Sequence_assembly), VICUNA (Yang et al.,

2012) and PRICE (Ruby et al., 2013) are currently the only assem-

blers designed for virus data. VICUNA tackles the assembly problem

by first clustering the reads that should belong to the same contig,

using min hashes to infer similarity. Contigs are generated and then

merged to form the final output. PRICE begins with seed sequences,

which are iteratively extended by generating new sequence from

local assemblies of reads at contig ends. In addition, the RNA-seq
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assembler Trinity (Grabherr et al., 2011) has been used to assemble

virus data because it can handle irregular read depth. Trinity con-

structs de Bruijn graphs from clusters of the reads, then resolves

each cluster into transcripts by tracing reads and their mates through

the graphs.

Our approach is similar to that of PRICE, except we extend con-

tigs more conservatively using consensus kmers from the reads in-

stead of using local assemblies. Also our new assembler, called IVA

(Iterative Virus Assembler), is a completely de novo assembler,

whereas PRICE must be provided with seed sequences to be ex-

tended into contigs.

2 Methods

A flowchart describing the assembly process is shown in

Supplementary Figure S1 and full details are in the Supplementary

Material. Before assembling, adapter sequences are removed from

the reads using Trimmomatic (Bolger et al., 2014), followed by the

trimming of polymerase chain reaction primer sequences.

After trimming the reads, the most abundant kmer among the

reads is found using kmc (Deorowicz et al., 2013). This short seed

kmer is iteratively extended into a contig using reads that have a per-

fect match to that kmer, treating the reads as unpaired. A list of all

possible extension sequences is made (one sequence per overhanging

read). IVA identifies the kmer of length k among prefixes of the pos-

sible extension sequences, for largest possible k, such that the kmer

appears at least 10 times and is at least four times as abundant as

the next most common kmer of length k. In this way, the seed is it-

eratively extended until its length reaches the insert size of the read

pairs.

Contigs are extended in a similar manner to that of seed kmers.

Instead of using perfect string matches, reads are mapped to the con-

tigs with SMALT (http://www.sanger.ac.uk/resources/software/

smalt/). During mapping, IVA also uses SAMtools (Li et al., 2009).

Reads mapped as part of a perfect pair (in the correct orientation

and separated by the correct distance) and hang off a contig end are

used to extend the contig. The sequence added to a contig end is

constructed using the method described above for kmer extensions.

When no more contigs can be extended, they are cleaned as fol-

lows before generating a new seed. Contig ends are trimmed for

quality, and overlapping contigs are merged based on sequence simi-

larity found at their ends using nucmer (Kurtz et al., 2004).

Assembly stops either when a pre-defined maximum contig number

is reached or no new seeds can be made.

3 Results

We evaluated IVA, PRICE, Trinity and VICUNA with different

parameters on Illumina paired reads from 42 human immunodefi-

ciency virus 1 (HIV-1) samples and 98 Influenza A and B virus

samples. See the Supplementary Material for the full analysis. To

compare the assemblies for each sample, we picked the closest ref-

erence from a pool of genomes using Kraken (Wood and Salzberg,

2014). For the accession numbers and complete evaluation proced-

ure, see the Supplementary Material. We generated quality metrics

using (i) nucmer to compare contigs with a reference genome, (ii)

GAGE (Salzberg et al., 2012) analysis code and (iii) RATT (Otto

et al., 2011) to transfer annotation from the reference to the

assembly.

The ideal assembler output is defined as one contig for HIV-1, or

exactly one contig for each Influenza virus genome segment, with

the expected length compared to the closest reference and no dupli-

cation. IVA generated ideal assemblies for 57% of the HIV samples

and 21% of the Influenza virus samples (Table 1 and Supplementary

Tables S1 and S2), significantly more than the other assemblers.

These low numbers are generally due to contigs of incorrect length

(Fig. 2a) or duplications in the assemblies (Fig. 2b, Supplementary

Figs S2 and S3, Table 1 and Supplementary Tables S1 and S2). IVA

had the smallest variation in these results, especially for the

Influenza virus samples (Fig. 2, Supplementary Figs S2 and S3,

Table 1 and Supplementary Tables S1 and S2). The proportion of

each reference genome assembled into contigs was 89.8-98.3% for

HIV-1. The corresponding values for Influenza virus ranged from

89.8 (PRICE) to 98.8% (IVA). The mean per cent of HIV-1 annota-

tion features transferred by RATT from IVA assemblies was 99.0%

on both HIV-1 and Influenza virus samples. This was more than the

other assemblers, except VICUNA with alternative settings that

achieved 99.2% mean annotation transfer, at the expense of a dupli-

cation rate more than double that of IVA (Supplementary Table S1).

There were few assembly errors—Trinity produced none, and IVA

and VICUNA made one error each. The typical run time was under

10 h and none of the assemblers had excessive memory requirements

Fig. 1. Example HIV-1 assemblies. Plots show the proportion of single base

differences per mapped read compared to the IVA contig, the read depth and

contigs from PRICE, Trinity and VICUNA aligned to the single IVA contig. The

minimum read depth is 63

Table 1. Summary of assembly QC results

HIV-1 Influenza

IVA PRI Tri VIC IVA PRICE Tri VIC

Ideal assemblies (%)a 57.1 11.9 14.3 2.4 21.4 0.0 1.0 0.0

Mean reference bases assembled (%) 97.9 97.2 89.8 98.3 98.8 89.8 97.6 94.3

Mean % annotation transferred 99.0 90.0 86.2 97.3 99.0 92.1 96.1 95.3

Total assembly errorsb 1 4 0 1 0 6 0 0

aHIV-1: the entire genome must be assembled into a unique contig. Influenza: each segment must be assembled into a unique contig.
bAn error is an inversion, relocation or translocation reported by GAGE. Numbers reported are the total across all assemblies. Supplementary Tables S1 and S2

expand on this table.
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(Supplementary Fig. S4). IVA was slightly slower on the HIV-1 sam-

ples but was comparable to PRICE and faster than VICUNA on the

Influenza virus data.

4 Discussion

Considering the number of ideal assemblies produced by the

available tools, it can be seen that assembling RNA virus genomes is

challenging. However, IVA was consistently better at producing

single sequences representing the consensus sequence of each virus

population, especially on the Influenza virus data. In contrast, the

other tools tended to either produce multiple copies of parts

of each genome or miss entire regions from their output. In

summary, we developed IVA specifically to assemble short read

sequencing data from RNA virus samples and have shown that it

produces significantly higher quality assemblies than existing

approaches.
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Fig. 2. Comparison of assembly success. (a) For each segment of the refer-

ence, the longest matching contig was found. This plot shows the total length

of these contigs for each assembly, as a percentage of the reference length.

(b) Total assembly lengths, excluding contamination by only counting contigs

that match the reference, as a percentage of the reference length
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