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Abstract
This paper addresses a novel technique for representation and
processing of n-gram counts in phonotactic language recogni-
tion (LRE): subspace multinomial modelling represents the vec-
tors of n-gram counts by low dimensional vectors of coordinates
in total variability subspace, called iVector. Two techniques for
iVector scoring are tested: support vector machines (SVM), and
logistic regression (LR). Using standard NIST LRE 2009 task
as our evaluation set, the latter scoring approach was shown
to outperform phonotactic LRE system based on direct SVM
classification of n-gram count vectors. The proposed iVector
paradigm also shows comparable results to previously proposed
PCA-based phonotactic feature extraction.
Index Terms: language recognition, subspace modeling, multi-
nomial distribution.

1. Introduction
Spoken language recognition (LRE) is the task of automatically
determining the language of a spoken utterance. There are two
main approaches for this task: acoustic and phonotactic. The
focus of this paper is on the latter approach.

In a classical phonotactic LRE, the front-end is usually con-
sist of a phone recognizer used to tokenize speech utterances
into discrete events. Based on the produced phone sequence,
n-gram counts can be extracted. The n-gram counts are then
served as input to either a generative classifier (e.g. smoothed
n-gram language model), or discriminative ones such as sup-
port vector machines (SVM) [1] or logistic regression (LR). In
the latter case, we need to represent the n-gram counts by a
fixed-length vector, whose length depends on the size of the
phone inventory and grows exponentially with the order of the
n-gram. This is considered as a bottleneck for the phonotactic
solutions and generates a need for compact representation of the
original n-gram counts. A good compact representation makes
training of the classifiers and also the classification task faster
and enables us to use more data, which can eventually improve
the system performance.

In [2], discriminative selection of the n-grams was proposed
to tackle this problem . Another approach relies on principal
component analysis (PCA) to reduce dimensionality of the vec-
tor of n-gram counts to a lower-dimension [3, 4].
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Our paper introduces iVectors as a powerful tool for com-
pact representation of n-gram statistics. Since their introduc-
tion in speaker recognition (SRE) [5], iVectors have been used
very successfully. They were originally proposed for continu-
ous features, based on Gaussian mixture models (GMM). Re-
cently, the idea of iVector has been extended for discrete fea-
tures: Kockmann et al. [6] proposed a subspace multinomial
model to model a discrete representation of the prosodic fea-
tures in SRE. Since we are dealing with another discrete repre-
sentation of speech utterances (output of the phone recognizer),
we explore the idea of using the same method to model n-gram
counts. After being derived, the iVectors are used as feature vec-
tors in the discriminative classifiers. We also study the perfor-
mance of logistic regression (LR) and support vector machines
(SVM) as the back-end classifier.

We analyze the performance of the proposed iVector
paradigm with respect to the baseline, where the whole vector
of the n-gram counts is used as an input to the discriminative
classifiers [1]. We also compare performance of the iVector
approach with PCA-based dimensionality reduction presented
in [4]. The experiments are conducted on the NIST LRE 2009
task and all results are given in terms of the average decision
cost function (Cavg) according to the NIST LRE2009 evalua-
tion plan [7].

2. Subspace models
The basic assumption in subspace modeling is that the natural
parameters of a model usually live in a much smaller subspace
than the full parameter space. This subspace can be learned by
introducing latent variables in the model.

2.1. iVectors based on continuous features

The classical formulation of Joint Factor Analysis (JFA) model
for speaker verification [8] assumes that the super-vector of the
concatenated mean vectors φ of a GMM are distributed accord-
ing to a subspace model consisting of two separate subspaces
for speaker (within-class) and channel variability:

φ = m+Vy +Ux, (1)

where m is a speaker- and channel-independent supervector,
and V and U span linear subspaces (for speaker and channel
variability) in the original mean parameter space. The y and
x are the low-dimensional latent variables corresponding to the
speaker and channel subspaces.

A simplified variant of JFA [5] assumes that speaker and
channel subspaces are not decoupled and uses only one sub-
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space covering the total variability in an utterance:

φ = m+Tw. (2)

Again, T spans a linear subspace in the original mean
super-vector space and w is the corresponding low-dimensional
latent variable. The iVector is a point estimate of w obtained by
adapting the model in (2) to a given utterance. Unlike JFA, the
JFA-like model now serves only as the extractor of the vectors
w, which can be seen as low-dimensional fixed-size represen-
tations of utterances, which are in turn used as inputs to another
classifier.

The extracted iVectors contain information about both the
class of the utterance and the channel. In the context of SRE,
we have many classes with limited amount of training data and
the task is to make decision on whether two utterances belong to
the same speaker or to different speakers. As a result, we need
to model both speaker and channel variability in iVector space
by means of a proper technique, usually probabilistic linear dis-
criminant analysis (PLDA) [9]. However, in the context of LRE,
we have a small number of classes and a relatively large amount
of training data per class and we train discriminative classifier
for each class.

2.2. iVectors based on multinomial distribution

Discrete features can also be modeled under the subspace
paradigm. Discrete events can be modeled using multinomial
distribution and similar to the continuous feature case, we can
assume that there is a low-dimensional subspace of the param-
eter space in which the parameters of the multinomial distribu-
tions for individual utterances live. In the context of phono-
tactic LRE, every speech utterance can be represented by a
fixed-length vector containing discrete n-gram statistics. The
log-likelihood of nth utterance represented by E-dimensional
vector of n-gram counts (νn), can be calculated as

log(P (νn | φn)) =

E∑
e=1

νne log φne, (3)

Where νne is the occupation count for the n-gram e and utter-
ance n. The φne is the utterance-dependent model parameter,
representing probability for the corresponding n-gram. Log-
likelihood of a set of utterances is given by

N∑
n=1

logP (νn | φn), (4)

where N is the number of utterances. The utterance-dependent
model parameter φne can be estimated by means of subspace
modelling of the n-gram counts as follows:

φne =
exp(me + tewn)∑E
i=1 exp(mi + tiwn)

, (5)

where wn is an utterance-dependent latent variable and te is
the eth row of the subspace matrix T, which spans a linear sub-
space in the log-probability domain.

Given the parameters m and T we can estimate w to max-
imize the log-likelihood in (3) for the corresponding utterance.
The estimated w is called iVector. Similar to the case of contin-
uous features, the subspace multinomial model is used as a fea-
ture extractor and each iVector can be seen as a low-dimensional
representation of the whole utterance.

2.3. Parameter estimation

The parameters of the model for iVector extraction are esti-
mated using maximum likelihood (ML) estimation. To do so,
the T matrix and w(vectors for all training utterances) are es-
timated through an iterative algorithm, where we alternate be-
tween estimation of w with fixed bases (T) and estimation of
T with fixed w. We keep the value of m fixed during estima-
tion. Note that even by fixing one of T or w, to estimate the
other, there is no closed form solution for this problem. As a
consequence, every iteration of parameter estimation needs to
be done through a nonlinear optimization algorithm. In [6], a
Newton Raphson algorithm with a variation of the Hessian ma-
trix was proposed to estimate the model parameters of a similar
model for the SRE task. The same formulation is used in this
work. We initialize the me as

me = log(
1

N

N∑
n=1

νne) (6)

and the T matrix with small random numbers. Since this is a
concave optimization problem, we can continue the iteration as
long as the log-likelihood in (3) is increasing [10]. The trained
T matrix is then used to extract iVectors for all train, develop-
ment an test utterances.

Note that a similar model was already used for LRE in [11].
However, it was used to apply channel compensation similar to
the JFA paradigm in the context of phonotactic LRE, while we
are using it for extracting low-dimensional features. A simi-
lar model was also used for modelling of the weights in sub-
space GMM [12], which was served as inspiration to derive
re-estimation formula in [6].

3. Experimental setup
In this section, we briefly go through experimental setup and
each part of the baseline system and the PCA-based feature ex-
traction. After that, we explain the proposed system.

3.1. Data

The original training data is divided into two sets denoted as
TRAIN and DEV. The TRAIN set comprises data from 23 lan-
guages corresponding to the target language list of the NIST
LRE09 task [7]. After that, we limit the TRAIN set to at most
500 utterances per language as proposed in [13], resulting in
9763 segments (345 hours of recording). This way, we have
almost balanced amount of training data per language, which
will avoid to bias a classifier toward a language with lots of
training data. The DEV set contains 38469 segments from 23
languages according to the list of target languages in the NIST
LRE09 task. The DEV set mainly consists of data from the pre-
vious NIST LRE tasks plus some extra longer segments from
the standard conversational telephone speech (CTS) databases
(CallFriend, Switchboard etc.) and voice of America (VOA)
data. The TRAIN and the DEV sets contain disjoint set of
speakers. This way, the system should learn the language of
the utterance not the speaker. Full description of the used data
is given in [14]. The evaluation data (EVAL set) is identical to
what was provided by NIST for the NIST LRE 2009 task.

3.2. Vector of n-gram counts

The n-gram counts were extracted using the Hungarian phone
recognizer (HU) from Brno University of Technology (BUT),
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based on a hybrid ANN/HMM approach [15]. Only 3-gram
counts were used in our system and neither 2-gram nor 1-gram
improved the system performance. The 3-gram expected counts
are extracted from phone lattices, generated by the HU phone
recognizer. The Hungarian phoneme list contains 61 phonemes.
We use the mapping proposed by MIT to merge down the Hun-
garian phone list to 33 phonemes. This results in 333 = 35937
3-grams. We also took square roots of the expected n-grams
counts before going through other steps in all the systems. The
square root compresses the dynamic range of the counts and
slightly improves the performance over all systems.

3.3. Baseline setup

Our baseline is the BUT phonotactic LID system; as a part of the
BUT-AGNITIO submission to the NIST LRE 2009 [14]. This
system is denoted as BASE in the rest of this paper and uses the
whole vector of n-gram counts as the input to the SVM classi-
fiers. For this system, the expected counts are used to train 23
linear SVM classifiers in a one-to-all manner using LIBSVM
tool1 [1]. This system does not use any dimensionality re-
duction technique to reduce the size of 3-gram counts vectors.
The scores are then passed to a calibration back-end, which is
trained on the DEV set using jack-knifing scheme. The calibra-
tion back-end comprises linear generative model followed by a
multi-class logistic regression (MLR) as described in [14].

3.4. PCA-based vector compression

We also implemented the PCA-based dimensionality reduction
approach according to [4]. It is denote as PCA-BASE. In this
system, a transformation matrix U is extracted from the TRAIN
set. Using trained U matrix, all the utterances in TRAIN, DEV
and EVAL sets are transformed to a lower dimension. The trans-
formed TRAIN set is then used to train the discriminative clas-
sifiers (LR and SVM) in the same configuration as the BASE
system.

3.5. Classifier

The low dimensionality of the iVectors and also the feature vec-
tors generated by PCA makes it possible to use LR as the clas-
sifier. In the LRE task, we would like to have output scores
of the classifiers in the form of log-likelihood ratio (LLR) and
LR has this instinctive characteristic while SVM scores have no
probabilistic interpretation [10]. The performances of LR and
SVM as classifiers over DEV and EVAL sets are given in Ta-
ble 1. The results are given for PCA-based vector compression
with the target dimension of 600. As we were expecting, LR
performs consistently better than SVM over all the conditions.
Similar behavior was also observed for the proposed iVector
feature extraction. As a result, LR is used as a classifier for the
rest of the experiments. In fact, multi-class logistic regression
(MLR) would fit this problem better. However, we used LR bi-
nary classifiers in the same configuration as the SVMs in the
BASE system to keep the systems comparable.

3.6. Proposed system

In the proposed system, the 3-gram counts are produced as de-
scribed in section (3.2). Applying the technique explained in the
section (2.2), the vectors of the 3-gram counts are represented
by the corresponding iVectors, yet, the number of iterations for
estimating T and w should be decided. We could update the

1http://www.csie.ntu.edu.tw/ cjlin/libsvm

Table 1: The Cavg × 100 for PCA-BASE system with different
classifiers on DEV and EVAL sets over all the conditions

DEV EVAL

Classifier 30s 10s 3s 30s 10s 3s

SVM 2.83 7.05 17.77 3.62 8.89 21.09
LR 2.22 6.22 17.26 2.93 8.29 22.60

T matrix through the iterations as long as the model likelihood
is increasing over the TRAIN set. However, we only continue
the iterations as long as the likelihood on the DEV set is also
increasing to avoid over-training. On the other hand, our final
metric to assess the system performance is the Cavg . The final
number of iterations was therefore decided based on the both
criterions and it varies for various size of the n-gram counts and
also targeted subspace dimensionality. Mostly, 5 iterations were
chosen for the rest of the experiments.

The number of useful dimensions is believed to be much
lower than the original dimensionality in the vector of n-gram
counts [3, 4]. The performances of the proposed subspace
model on DEV set for different sizes of the subspace are shown
in Fiure 1. In fact, increasing dimensionality of the subspace
would always result in longer training time and higher memory
requirement and we are interested to have lower dimensional
representation of the original feature vector. 600 dimensions
seem to be an appropriate dimensionality since increasing the
dimension to 800 or 1000 did not improve system performance
on DEV set. Even though Cavg on the DEV set is our criterion
to decide on subspace dimensionality,Cavg on the EVAL set for
the corresponding dimensions are also included in Figure 1 to
observe the system performance on an independent evaluation
set.

Based on the findings in Table 1, we used LR as a classifier
in the proposed system. The generated iVectors are used to train
23 linear logistic regression classifiers in one-to-all manner us-
ing LIBLINEAR package2. For calibration of the scores, the
same back-end as in the BASE system was deployed.

4. System evaluation & results
Based on Figure 1, we chose 600 dimensional subspaces
trained with 5 iterations. All the systems are built based on
the output of the phone recognizers. However, the phone recog-
nizers do not detect any speech in some of the input utterances.
In fact, the NIST LRE 2009 key file also shows that there is no
speech part in some of the utterances. To deal with this, after
calibration of the scores, we put 0 as the scores for those par-
ticular utterances, implying that our system could not decide on
the language of the utterance.

The results for the base-line and the iVector feature extrac-
tion are given in Table 2. For PCA-BASE, the original 35937 di-
mensions is reduced to 600 using PCA as proposed in [4] and in
BASE, no dimensionality reduction technique was used and the
SVM classifiers were trained on the whole 35937 dimensions.
Comparing the IVECT with the BASE system, not only we did
not loose any system performance, but also slightly better re-
sults were achieved. Comparing the IVECT and PCA-BASE,
the iVector feature extraction performs the same as PCA-based
dimensionality reduction and is slightly better in the short con-

2http://www.csie.ntu.edu.tw/ cjlin/liblinear
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Figure 1: The Cavg × 100 on DEV and EVAL set for different subspace dimensions over 30s, 10s and 3s conditions

Table 2: Cavg × 100 for different systems on NIST LRE09
Evaluation task over 30s, 10s and 3s conditions.

System dimension 30s 10s 3s

BASE 35937 3.12 8.56 21.01
PCA-BASE 35937→600 2.93 8.29 22.60
IVECT 35937→600 3.05 8.10 21.39

ditions.

5. Discussions and Conclusions
We proposed a novel method to extract the iVectors by means
of subspace multinomial modelling of the n-gram counts. Us-
ing the proposed subspace model, the huge vector of the n-gram
counts are represented by the low-dimensional iVector while
preserving the discriminative power of the vector. By using
the iVectors, we earned slightly better results compared to the
BASE, which does not use any dimensionality reduction. Even
though these are just preliminary experiments on using the pro-
posed method in LRE, it has shown comparable results to PCA-
based feature extraction. Use of higher order n-gram statistics
would most likely improve the results and it has to be explored.

We showed that, in the context of LRE task, logistic regres-
sion outperforms SVM as a classifier and it consistently im-
proves the system performance. Since the iVector feature ex-
traction shows acceptable performance with binary LR classi-
fiers, we can expect to get even better performance by MLR as
a more appropriate classifier.

In our approach, we assume that the n-gram counts repre-
sent discrete independent events drawn from a single multino-
mial distribution. A more appropriate approach would be to
cluster the counts according to the n-gram histories and model
each such cluster by a separate distribution. This approach,
however, suffers from data sparsity and is yet to be dealt with as
the future work for this approach.
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