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# Brno University of Technology, Speech@FIT, Božetěchova 2, Brno, 612 66, Czech Republic
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Abstract—We presented a novel technique for discriminative
feature-level adaptation of automatic speech recognition system.
The concept of iVectors popular in Speaker Recognition is
used to extract information about speaker or acoustic environ-
ment from speech segment. iVector is a low-dimensional fixed-
length representing such information. To utilized iVectors for
adaptation, Region Dependent Linear Transforms (RDLT) are
discriminatively trained using MPE criterion on large amount of
annotated data to extract the relevant information from iVectors
and to compensate speech feature. The approach was tested
on standard CTS data. We found it to be complementary to
common adaptation techniques. On a well tuned RDLT system
with standard CMLLR adaptation we reached 0.8% additive
absolute WER improvement.

I. INTRODUCTION

We propose new method for discriminative adaptation of
automatic speech recognition (ASR) system, which is based
on combination of two successful techniques: From speaker
recognition field, we have borrowed the idea of represent-
ing speech segment using so called iVector. iVector is an
information-rich low-dimensional fixed length vector extracted
from the feature sequence. Recently, systems based on iVec-
tors [1], [2], [3] extracted from cepstral features have provided
excellent performance in speaker verification, which classifies
iVectors as good candidates for representing information about
speaker. Just like MLLR transformations for ASR adaptation
became popular features in speaker recognition [4], we believe
that iVectors — successful in speaker recognition — can
be used as compact representations for ASR adaptation. For
brevity, we will describe the proposed method only from the
perspective of speaker adaptation. Keep in mind, however, that
iVector represents information about both speaker and acoustic
environment of the corresponding segment and therefore, the
proposed technique is expected to effectively adapt ASR
system to both speaker and acoustic environment.

In order to utilize information encoded in iVectors for
adaptation of speech recognition system, we build on the idea
of Region Dependent Linear Transform (RDLT) [5]. In the
original version, RDLT is a nonlinear feature transformation,
which is typically discriminatively trained using Minimum
Phone Error (MPE) criterion [6]. More precisely, each feature
vector is transformed by a linear transformation, which is se-
lected from an ensemble of transformations depending on the

acoustic region of the current frame. To apply this framework
for discriminatively trained feature-level adaptation, we use the
same form of frame-dependent transformation. However, the
fixed iVector is transformed by such varying transformation
and the resulting vector is added as a bias to the original
feature vector.

The paper is organized as follows: the following section II
presents the state-of-the-art in discriminative techniques for
speaker adaptation and positions our proposal. Section III
briefly introduces iVectors while IV defines the RDLT scheme
and recipes. Section V suggests the the iVector adaptation.
The following section VI describes the experimental setup
including the baseline systems and VII presents the results
with RDLT systems including the proposed iVector adaptation.
Section VIII contains the conclusions and directions for future
work.

II. CURRENT TECHNIQUES FOR DISCRIMINATIVE

ADAPTATION AND POSITION OF OUR PROPOSAL

The idea of using discriminative training criterion for adap-
tation is not new. In the early works on this topic [7], [8],
[9], acoustic model parameters or features were adapted using
transformations of the same form as in Maximum Likelihood
Linear Regression (MLLR) or Constrained MLLR (CMLLR),
where the adaptation transformations were estimated on adap-
tation data by optimizing discriminative rather than Maximum
Likelihood (ML) criterion. While this approach provided ex-
cellent performance for supervised adaptation, it appeared to
be too sensitive to the quality of the initial hypothesis in the
case of unsupervised adaptation. Fortunately, our technique
does not suffer form such problem as only the RDLT part
is trained using MPE criterion on large amount of annotated
training data. RDLT discriminatively adapts speech features
based on the information encoded in the iVector. The iVectors
estimated on adaptation data are, however, robustly obtained
by optimizing Maximum a-posteriori (MAP) criterion. More-
over, there is no need for any initial hypothesis as iVectors are
estimated using simple Gaussian Mixture Model (GMM).

Our technique is similar in spirit to Discriminative Map-
ping transforms (DMT) [10], [11], where MLLR or CMLLR
transformations are estimated on adaptation data using ML
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criterion first. The adapted model parameters are further post-
processed by an ensemble of discriminatively trained linear
transformations (typically 64), where each transformation cor-
responds to a cluster of Gaussian components from the acous-
tic model. The transformations are discriminatively trained on
large amount of annotated training data to refine the adapted
models and to compensate for the discriminative power that
could be taken away from discriminatively acoustic trained
models when adapted using ML estimated transformations.

DMT can be seen as some form of region dependent
transforms, where the regions in acoustic space are defined
by the Gaussian clusters rather than by a dedicated GMM as
it is in the case of RDLT. From this perspective, CMLLR-
based DMT [11] is very similar to standard RDLT jointly
trained with the following CMLLR adaptation as described
in [5]. Therefore, it can be expected that, just like RDLT,
DMT would bring improvements even without ML trained
adaptation transformations. Unfortunately, the papers on DMT
do not provide such analysis and it is not clear how much
improvement is to be attributed to improved adaptation and
how much to the improved discriminative acoustic model
training.

In our approach, however, we do not estimate any feature
or model transformations to adapt the acoustic model to the
adaptation data. Instead, we estimate iVector summarizing
information about the speaker and the acoustic environment
of adaptation data independently of any ASR acoustic model.
Also, the discriminatively trained transformation does no di-
rectly operate on speech features or model parameters. Instead,
for each speech frame, it is trained to extract a correction
bias vector from iVector. In our implementation, zero iVector,
which is the expected value of iVector on training data, leads to
zero correction bias and therefore to no adaptation. Therefore,
it is easy to separately analyze the effect of RDLT used
for adaptation and RDLT used, in the standard way, as a
discriminative feature transformation.

III. IVECTORS

The iVector approach has become state of the art in the
speaker verification field [1]. In this work, we show that it
can be successfully applied to extract information useful for
adapting ASR system. The approach provides an elegant way
of reducing large-dimensional sequential input data to a low-
dimensional fixed length feature vector while retaining most
of the relevant information.

In the iVector framework, a GMM model is adapted to
observation sequence representing a speech segment that we
want to extract speaker information from. Only the mean
parameters of a pre-trained GMM are adapted. The super-
vector of concatenated mean vectors for the adapted GMM
is obtained as

s = m + Ti, (1)

where m is the segment-independent component of the mean
supervector, T is a matrix of basis spanning the subspace
covering the important variability (both useful and useless

for adaptation) in the supervector space, and i is a low-
dimensional latent variable representing coordinates in the
subspace. We assume standard normal prior for the latent
variable i. GMM is adapted to the observation sequence by
finding i that maximizes MAP criterion. This MAP point
estimate of i, which is obtained with single iteration of EM
algorithm, is taken as the iVector representing the segment.
The parameters of the GMM and the subspace are trained
in unsupervised manner using EM algorithm on a collection
of speech segment covering variety of speakers and acoustic
environments. We use an efficient implementation of the
training procedure suggested in [12].

IV. REGION DEPENDENT LINEAR TRANSFORMS

In the RDLT framework, an ensemble of linear trans-
formations is trained discriminatively. Each transformation
corresponds to one region in partitioned feature space. Each
feature vector is then transformed by a linear transformation
corresponding to the region that the vector belongs to. The re-
sulting (generally nonlinear) transformation has the following
form:

FRDLT (ot) =
N∑

r=1

γr(t)(Arot + br), (2)

where ot is input feature vector at time t, Ar and br are linear
transformation and biases corresponding rth region and γr(t)
is probability that the vector ot belongs to rth region. The
probabilities γr(t) are typically obtained using GMM (pre-
trained on the input features) as mixture component posterior
probabilities. Usually, RDLT parameters Ar, br and ASR
acoustic model parameters are alternately updated in several
iterations. While RDLT parameters are updated using MPE
criterion, ML update is typically used for acoustic model pa-
rameters. As proposed in [13] and described in RDLT context
in [5], ML update of acoustic model parameters must be taken
into account when optimizing RDLT parameters. Otherwise,
the discriminative power obtained from MPE training of RDLT
feature transformation is mostly lost after ML acoustic model
re-training. In our experiments, we closely follow the training
recipe described in [5].

In our experiments, we do not use the bias terms br (the
number of their parameters would anyway be only a small
proportion of parameters in matrices Ar). In agreement with
results reported in [5], we have found that omitting the bias
terms has little effect on the performance.

RDLT can be seen as a generalization of previously pro-
posed fMPE discriminative feature transformation. The special
case of RDLT with square matrices Ar (i.e. without dimen-
sionality reduction of input features) was shown [5] to be
equivalent to fMPE with offset features as described in [14].
This is also the configuration used in our experiments. From
fMPE recipe [13], we have also take the idea of incorporating
context information by considering γr(t) corresponding not
only to the current frame but also to the neighboring frames
(see section VII-A for more details). From our experience, this
style of incorporation context information leads to significantly
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better results compared to to the style previously considered
in the context of RDLT [5], where feature vectors of multiple
frames were stacked at the RDLT input and transformations
with dimensionality reduction were used to recover the original
feature dimensionality. Therefore, our RDLT baseline system
configuration is very similar to the one described in the
fMPE recipe. Still, we prefer to use the more general RDLT
abstraction as it can be easily extended by the proposed iVector
based adaptation.

V. IVECTOR BASED ADAPTATION

To utilize the RDLT framework for adaptation, we use
transformation of the following form:

Fivec(ot) = ot +

N∑
r=1

γr(t)Aris, (3)

where is is iVector estimated on adaptation data corresponding
to speaker s. Typically, iVector dimensionality is larger than
the dimensionality of feature vector, therefore Ar are matrices
reducing the dimensionality of iVector to the one of feature
vectors. The same MPE training framework as described in the
previous section can be used to train RDLT to discriminatively
extract the corrective term from iVector is, which is added to
the original feature vector ot in order to adapt the features
to the model. Note that, although the iVector stays constant,
its transformation depends or region of current feature frame
so that different pieces of information can be extracted from
iVector to compensate feature frames from different regions
of acoustic space.

We again use the iterative training scheme where, after
updating RDLT parameters, acoustic model parameters are
retrained on the compensated features. The resulting procedure
can be seen as another form of speaker adaptive training
(SAT) [15], [16].

Finally, we can combine both ideas of using RDLT for
adaptation and discriminative feature transformation. Since the
whole RDLT framework has to be implemented to deal with
either of the two problems, it makes a little sense to use RDLT
only for adaptation without using it also for feature transfor-
mation, which is expected to provide an additional significant
gain. If the same data and the same region definitions are used
to train RDLT for both problems, which is the case in our
experiments, we can simply concatenate each feature vector
with the appropriate iVector and process the resulting extended
vectors

õt =

[
ot

is

]
(4)

just as in the standard RDLT framework corresponding to
equation (2). Ar will perform dimensionality reduction.

VI. EXPERIMENTAL SETUP

A. ASR training and testing data

The acoustic model was trained on ctstrain04 training set,
a subset of the h5train03 set, defined at the University of
Cambridge. It contains about 278 hours of well transcribed

Database Amount of data [hours]

Switchboard I 248.52
Switchboard cellular 15.27
Call Home English 13.93

Total 277.72

TABLE I
CTS TRAINING DATA DESCRIPTION.

Models WER [%]
ML 34.7
ML - CMLLR 32.1
ML - CMLLR-SAT 31.9

TABLE II
BASELINE: ML TRAINED SYSTEMS

speech data from Switchboard I,II and Call Home English
(see Table I).

All recognition results are reported on the Hub5 Eval01 test
set (defined during 2001 NIST CTS evaluation) composed of 3
subsets of 20 conversations from Switchboard-1, Switchboard-
2 and Switchboard-cellular corpora, for a total length of more
than 6 hours of audio data.

A bigram language model was used for recognition. It was
adopted from AMI speech recognition system for NIST Rich
Transcriptions 2007 [17].

B. Baseline ASR systems

The speech recognition system is HMM-based cross-word
tied-states triphones, with approximately 8500 tied states
and 28 Gaussian mixtures per state. The features were 13
VTLN normalized Mel-Frequency PLP coefficients generated
by HTK, augmented with their deltas, double-deltas and triple-
deltas. Cepstral mean and variance normalization was applied
with the mean and variance vectors estimated on each conver-
sation side. HLDA was estimated with Gaussian components
as classes and the dimensionality was reduced from 52 to 39.
This model is denoted as ML in table II

Using this model, CMLLR adaptation transforms were
generated for training and test data, one for each conver-
sation side. This model also served for generating lattices,
which were used for MPE training of RDLT. Only a single
CMLLR transformation was used in our system, as we did
not observe any significant gain from using multiple CMLLR
or MLLR transformations with our system on this task.
Table II shows 2.6% absolute improvement in Word Error Rate
(WER)obtained from CMLLR adaptation and additional 0.2%
WER improvement when the acoustic model was retrained in
SAT fashion [16]. Unless stated otherwise, CMLLR SAT sys-
tem forms the basis of all systems described in the following
sections.

C. iVector extraction

In principle, both ASR acoustic models and iVector extrac-
tion could be based on the same features and trained on the
same data. Also, iVector extraction and definition of regions
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in RDLT could be based on the same GMM model. In our
experiments, however, we use two different GMMs trained on
different features, since we simply took iVectors extracted by
our existing system optimized for speaker verification task [3].

The features used for the iVector extraction were 19 Mel fre-
quency cepstral coefficients (with log-energy) calculated every
10 ms using 25 ms Hamming window. This 20-dimensional
feature vector was subjected to short time mean and variance
normalization using a 3s sliding window. Delta and double
delta coefficients were then calculated using a 5-frame window
giving 60-dimensional feature vectors. The iVector extraction
was based on Semi-Tied Covariance (STC) GMM with 2048
mixture components, which was trained on NIST SRE 2004
and 2005 telephone data. The subspace matrix T was trained
on more than 2500 hours of data from the following telephone
databases: NIST SRE 2004, 2005, 2006, Switchboard II Phases
2 and 3, Switchboard Cellular Parts 1 and 2, Fisher English
Parts 1 and 2. The results are reported with 400 dimensional
iVectors. Similarly to CMLLR transformations, iVectors were
generated per conversation side for training and test data.

One could object that the iVector extraction is trained
on much more data than the baseline ASR system, which
makes the comparison of systems unfair. However, the iVector
extraction is trained in unsupervised manner on data that
are mostly not transcribed and therefore unusable for ASR
training. Also, while large amount of training data is necessary
to obtain good performance is speaker verification, we believe
that it is not the case in these experiments, as RDLT, which is
trained to extract the adaptation information from the iVector,
is still trained on the same data as baseline ASR system.

VII. RDLT EXPERIMENTS

A. RDLT for discriminative feature extraction

In this section, we examine different configurations of
RDLT used only in the usual way as a discriminative feature
extraction. In the trivial case, where all feature frames are
considers to belong to only one single region, RDLT comprises
only one discriminatively trained linear transform. This con-
figuration, which is also know as Discriminative HLDA [18],
brings 0.5% absolute WER improvement compared to “ML
CMLLR-SAT” baseline, as we can see in the first line of
Table III.

The second line of the table reports additional 1.1% absolute
WER improvement obtained from using 1000 regions. To
define the regions in the acoustic space, all Gaussians from
ML trained HMM model are pooled and clustered using ag-
glomerative clustering to create GMM with desired number of
components (see [19] for detailed description of the clustering
algorithm).

In the following experiment, we incorporated also the in-
formation about context by using region posterior probabilities
also from neighboring frames as suggested in [13]. Posterior
probabilities of the GMM components for a current frame are
stacked with the averages of posteriors for adjacent frames 1-
2, 3-5 and 6-9 on the right and likewise for the left context
(i.e. 7 groups spanning 19 frames in total). The resulting 7000

Models WER [%]

RDLT 1 regions 31.4
RDLT 1000 regions 30.3

RDLT 7x1000 regions 27.3
RDLT 7x500 regions 27.6
RDLT 7x250 regions 27.7

TABLE III
RESULTS WITH RDLT USED AS FEATURE TRANSFORMATION FOR

CMLLR-SAT ADAPTED SYSTEM.

Models WER [%]

iVector RDLT 1 region 31.3
iVector RDLT 250 regions 30.2
iVector RDLT 500 regions 30.0
iVector RDLT 1000 regions 29.9

TABLE IV
RESULTS WITH RDLT USED ONLY FOR IVECTORS BASED ADAPTATION

APPLIED ON TOP OF CMLLR-SAT ADAPTATION.

dimensional vector served as weights γr(t) in equation (2)
corresponding to 7000 transformations (39×39 matrices).
Block diagram demonstrating such RDLT configuration is
shown in Figure 1. The use of context brings large additional
improvement (3% absolute) as can be seen in Table III in line
denoted as “RDLT 7x1000 regions”.

Next, we tested scaled-down systems to see a degradation
of performance with smaller number of regions. A difference
in WER between 1000 and 250 regions is 0.4%. This suggests
that it is more important to invest parameters into context
modeling than increasing the number of regions for the current
frame.

B. iVector based adaptation

Table IV shows the behavior of the proposed adaptation ap-
proach with various number of transforms. To find the optimal
configuration, we first considered the case corresponding to
equation (3), where RDLT is used only for the adaptation. The
optimal number of transformations saturates again on 1000
giving 2% absolute WER improvement over the CMLLR-
SAT baseline. The differences between 500 and 1000 mixture
components (and hence regions) is only 0.1% absolute.

We also experimented with incorporating the context infor-
mation using the region posteriors form neighboring frames,
but we found it ineffective when using RDLT for adaptation.

In table V, we compare the effect of CMLLR adaptation,
iVector adaptation and combination of both for systems with
and without RDLT used as discriminative feature transfor-
mation. For RDLT as feature transformation, we use the
configuration with 7000 transformations as described in the
previous section. For iVector adaptation, RDLT uses only
1000 transformations corresponding only to the regions for
the current frame. This is the case even when both RDLT for
feature transformation and RDLT for adaptation are combined.
In this case, only 1000 transformations (39×439 matrices)
corresponding to the current frame of GMM posteriors pro-
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Fig. 1. RDLT with context transformations.

Adaptation ML RDLT

none 34.7 29.7
iVector 32.1 28.7
CMLLR-SAT 31.9 27.3
both 29.9 26.5

TABLE V
SUMMARY OF DIFFERENT TECHNIQUES.

cesses 39-dimensional feature vector concatenated with 400
dimensional iVector. The remaining transformations (39×39
matrices) corresponding to context posteriors process only the
39-dimensional feature vector.

The first line of table V shows the results without any
adaptation. As can be seen, RDLT provides impressive im-
provement 5% absolute in this case. Comparing the following
two lines, we see that iVector adaptation on its own appears
to be slightly less effective than CMLLR transformation for
this task. However, the two adaptation techniques seem to
be complementary and the best result is obtained from their
combination as can be seen from the last line in the table.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a novel technique for feature compensa-
tion based on iVectors — a popular technique in Speaker
Recognition. We found it to be complementary approach to
common adaptation techniques. On a well tuned RDLT system
with standard CMLLR adaptation, we reached 0.8% additive

absolute WER improvement. Without CMLLR adaptation,
1.0% absolute improvement was obtained.

Unsupervised estimation of CMLLR requires an additional
decoding pass to obtain the adaptation hypothesis. On contrary,
our approach only requires to extract the iVector from adap-
tation data which takes only a fraction of time necessary for
decoding. Forwarding features through the set of transforms
is also fast as only few transformations (usually only one or
two) are applied per frame due to the sparsity of posterior
probabilities. Therefore, our approach could be considered for
decoding in the first pass of multi-pass systems or in one-pass
systems.

This paper presents the first results of the proposed tech-
nique, in short-term, we will face the following issues:

1) Lattices used for discriminative training were generated
using model with more than 8% higher WER compared
to the performance of the final model. Further improve-
ment could be obtain from lattices that would better
reflect errors made by the final system.

2) iVector extraction was optimized for Speaker Recogni-
tion and the optimal configuration for speech recognition
can be very different. Also, iVector extraction based
on ASR features and GMM taken from RDLT would
greatly simplify the system.

3) Finally, we would like to integrate the proposed ap-
proach into our full-featured system including other
advanced techniques such as MPE model parameter
training or neural network bottle-neck features.
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This paper describe only one special instance of a more
general scheme, where nonlinear transformation is trained
discriminatively to compensate features based on external
source of information useful for adaptation. Other forms of
discriminatively trained nonlinear transformations can be con-
sidered (e.g. artificial neural networks), and different external
sources of adaptation information can be found useful (e.g.
noise spectrum estimate for noise robust speech recognition).
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