
...........................................................................................................................

IVF culture media: past, present
and future
Elpiniki Chronopoulou1,* and Joyce C. Harper2,3

1Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK 2UCL Centre for PG and D,
Institute for Women’s Health, University College London, London, UK 3The Centre for Reproductive and Genetic Health, UCLH, London, UK

*Correspondence address. E-mail: elpiniki.chronopoulou.12@ucl.ac.uk

Submitted on October 29, 2013; resubmitted on May 5, 2014; accepted on May 12, 2014

table of contents

† Introduction
Challenges in the optimization of ART culture media

† Methods
† The past: development of IVF culture media

Landmarks of mammalian embryo culture
A success story for human IVF
Glucose: essential or deleterious?
Which AAs to include and when?
Growth factors
Hyaluronic acid

† The present: where are we now?
† Quality assessment

CE marking
Outside Europe
Mouse embryo assay
Which is the best?

† IVF and embryo culture: do they come without risks?
Effects of assisted conception on mammals
Children conceived by IVF
Epigenetics

† Conclusion

background: The advances in the world of IVF during the last decades have been rapid and impressive and culture media playa major role in
this success. Until the 1980s fertility centers made their media in house. Nowadays, there are numerous commercially available culture media that
contain various components including nutrients, vitamins and growth factors. This review goes through the past, present and future of IVF culture
media and explores their composition and quality assessment.

methods: A computerized search was performed in PubMed regarding IVF culture media including results from 1929 until March 2014.
Information was gathered from the websites of companies who market culture media, advertising material, instructions for use and certificates
of analysis. The regulation regarding IVF media mainly in the European Union (EU) but also in non-European countries was explored.

results: The keyword ‘IVF culture media’ gave 923 results in PubMed and ‘embryo culture media’ 12 068 results dating from 1912 until March
2014, depicting the increased scientific activity in this field. The commercialization of IVF culture media has increased the standards bringing a great
variety of options into clinical practice. However, it has led to reduced transparency and comparisons of brand names that do not facilitate the
scientific dialogue. Furthermore, there is some evidence suggesting that suboptimal culture conditions could cause long-term reprogramming in
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the embryo as the periconception period is particularly susceptible to epigenetic alterations. IVF media are now classified as class III medical
devices and only CE (Conformité Européene)-marked media should be used in the EU.

conclusion: The CE marking of IVF culture media is a significant development in the field. However, the quality and efficiency of culture
media should be monitored closely. Well-designed randomized controlled trials, large epidemiological studies and full transparency should be
the next steps. Reliable, standardized models assessing multiple end-points and post-implantation development should replace the mouse
embryo assay. Structured long-term follow-up of children conceived by assisted reproduction technologies and traceability are of paramount
importance.

Key words: culture media / CE marking / embryo culture / IVF / mouse embryo assay

Introduction
Since the birth of Louise Brown, the first child born as a result of IVF
(Steptoe and Edwards, 1978), the advances in the world of assisted
reproduction have been rapid and impressive and the future holds
even more. The number of children conceived by assisted reproduction
technologies (ART) has reached 5 million as calculated by the Inter-
national Committee for monitoring Assisted Reproduction Technolo-
gies (ICMART) and presented in European Society of Human
Reproduction and Embryology (ESHRE) (Adamson et al., 2012). New
techniques are introduced at such a rate that they are often incorporated
into clinical practice without solid proof of their benefit and safety
(Harper et al., 2012). IVF success rates are high and the results have
tempted some in the scientific community to wonder if its performance
can actually be better than nature (Vajta et al., 2010). The great improve-
ment in culture conditions and especially IVF culture media is an import-
ant part of this success. The commercialization of culture media has
created competition, has increased the standards and has brought into
clinical practice a variety of options. In contrast to media produced
in house, there are now strict manufacturing and quality assessment
requirements, improved batch-to-batch consistency and less
contamination (Karamalegos and Bolton, 1999; Quinn, 2004).

There is accumulating evidence showing that culture conditions are
important for the IVF outcome and have an impact on pre and post-
implantation development and possibly the future health of the offspring
(Dumoulin et al., 2010; Nelissen et al., 2012, 2013; El Hajj and Haaf, 2013;
Mantikou et al., 2013). However, the evidence for a role of the compos-
ition of IVF culture media in these outcomes is often insufficient and con-
troversial. The current media are mostly designed based on data from
animal studies which are not always transferable in human embryology
(Harper et al., 2012). Also, the strong financial aspect of this field has
led to a lack of transparency regarding composition, which does not fa-
cilitate the scientific effort to refine IVF culture media and reach a consen-
sus (Biggers, 2000). IVF media are now classified as class III medical
devices in the European Union (EU) under the remit of the Medicines
and Healthcare products Regulatory Agency (MHRA) and all media
used should now be CE (Conformité Européene) marked.

Challenges in the optimization of ART culture
media
The ideal steps that should be followed before the introduction of any
new technique or culture media in the IVF laboratory have been
described by Harper et al. (2012). In comparison to culture media for
mouse embryos, media for human embryos are not truly optimized

and probably will never be. In order to optimize basic culture parameters
for mice, Brinster used several thousand mouse embryos (Brinster,
1963, 1965a, b, c, d). To achieve similar experiments in humans, the
number of human embryos would be very high and numerous ethical
issues would be raised. Quality assessment is challenging since numerous
parameters influence the outcome (manipulation of gametes and
embryos, ovarian stimulation protocols, subfertility factors, genetic
background of parents) and there is no ‘gold standard’ quality assessment
method since the mouse embryo assay (MEA) has its own limitations and
is not standardized (Quinn and Horstman, 1998).

Methods
This review goes through the past, present and future of IVF culture media
and explores their composition and quality assessment. The history of IVF
culture media is summarized with references to embryo metabolism. Con-
troversies are highlighted and the logic behind current media formulations
is discussed. The major culture media companies and their products are pre-
sented along with the information they provide to IVF units and the public
through their websites and publications.

A computerized search was performed in PubMed regarding IVF culture
media including results from 1929 until March 2014. The keywords and com-
binations used included: ‘IVF culture media’, ‘embryo culture media’, ‘in vitro
fertilization’, ‘IVF conceived children’, ‘mouse embryo assay’, ‘metabolism’
and ‘embryo’, ‘growth factors’ and ‘embryo culture’, ‘epigenetics’ and
‘embryo culture’, ‘IVF culture media’ and ‘quality assessment’. Information
was gathered from the culture media companies’ websites, advertising ma-
terial, instructions for use (IFU) and certificates of analysis. The European
Medichines Agency, European Commission and MHRA websites were
explored to investigate current legislation regarding the use of IVF media in
the EU and the regulation in non-European countries was also investigated.
Results relevant to IVF culture media for human embryos were included
but not for media for gamete handling, cryopreservation, PGD or culture
oils and supplements. The keyword ‘IVF culture media’ gave 923 results in
PubMed and ‘embryo culture media’ 12 068 results dating from 1912 until
March 2014, depicting the increased scientific activity in this field.

The past: development of IVF
culture media
A remarkable scientific journey led to the development of the current
complex IVF culture media. From the first tissue culture medium based
on blood serum that was developed in University College London
(UCL), England, UK and was able to support in vitro a beating frog
heart (Ringer, 1882) we have reached an era where culture media
contain up to 80 components including nutrients, vitamins and growth

40 Chronopoulou and Harper

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/21/1/39/2952622 by guest on 21 August 2022



factors (GFs) (Supplementary data, Table SI). The development of
culture media for human embryos is the result of many years of laborious
animal research. Some of the early culture media and their composition
are summarized in Supplementary data, Table SII.

Landmarks of mammalian embryo culture
After Lewis and Gregory studied the development of rabbit embryos
in vitro in plasma (1929), Kuhl (1941) was the first to culture mouse
embryos on a blood clot and Chang (1947) successfully cultured and
stored rabbit embryos conceived in vivo at low temperature and then
transferred them to recipients achieving live births. Chang (1959)
successfully fertilized and cultured rabbit eggs in vitro using autologous
serum and 42% of the embryos resulted in healthy offspring.
Hammond (1949) managed to recover and incubate 4-cell and 8-cell
mouse embryos to blastocyst stage in a solution produced daily based
on Krebs-Ringers bicarbonate that contained egg white (Krebs and
Henseleit, 1932). The efforts continued and the 8-cell mouse embryos
now developed into blastocysts in a medium with just nine ingredients
including glucose, water and egg white (Whitten, 1956). The birth of
healthy offspring in mice after embryo culture was achieved using a
formula containing Krebs-Ringers bicarbonate, glucose and bovine
serum albumin (BSA) (McLaren and Biggers, 1958). The in vitro culture
of mouse embryos from the 1-cell stage was achieved in a chemically
defined medium (Biggers et al., 1962). At the time the embryos were cul-
tured in organ cultures with Fallopian tube cells. No large-scale experi-
ments had been performed to study the effect of culture conditions on
the embryos. Brinster directly studied the effect of individual compo-
nents and observed their interactions. Antibiotics and BSAwere included
in the basic formulation of salts, along with lactic acid neutralized with
sodium hydroxide and ionized water. Thousands of mouse embryos
were needed in order to complete a series of experiments that led to
the optimization of basic parameters such as pH, osmolality, energy sub-
strates, amino acids (AAs) and albumin (Brinster, 1963, 1965a, b, c).
Brinster’s experiments also demonstrated the changing needs of the
embryo according to its stage of development; pyruvate for the 2-cell
embryo, glucose and malate for the 8-cell stage (Brinster, 1965b, d).
An optimized culture medium (BMOC-2) was developed for 2-cell
mouse embryos and set the basis for a general culture solution for mam-
malian embryos (Brinster, 1965c, d, 1968). Whitten and Biggers (1968)
achieved the first cleavage divisions (1-cell to 2-cell stage) completely
in vitro but co-culture with Fallopian tube cells was necessary for these
2-cell embryos to further develop to blastocysts. Brinster and Biggers
(1965) fertilized and cultured mouse eggs within the ampulla of Fallopian
tubes that were retrieved from superovulated females. The in vitro
culture of mouse embryos from 1-cell stage to blastocyst without
co-cultures was achieved by Whitten and Biggers (1968) and the first
IVF and embryo culture for mice was reported in a modified Krebs-
Ringers bicarbonate solution containing sodium lactate, sodium pyru-
vate, glucose, bovine serum, streptomycin and penicillin (Whittingham,
1968). BMOC-2wasthe basis forother media suchas M16(Whittingham,
1971) but the 2-cell block remained a challenge as the in vitro developing
embryos arrested at that stage (Goddard and Pratt, 1983). Some strains
were excluded from this block (Whitten and Biggers, 1967). Different
groups adopted different approaches to this phenomenon. Abramczuk
et al. (1977) highlighted the beneficial role of EDTA in the culture of the
blocking strains. Cross and Brinster (1973) studied the effect of the

lactate to pyruvate ratio for the 1-cell mouse embryos. The 2-cell block
was later attributed to the presence of glucose and phosphate (Schini
and Bavister, 1988; Chatot et al., 1989).

A success story for human IVF
The IVF and culture of human eggs was proposed by Rock and Menkin
(1944). The eggs were collected from ovarian tissue obtained after lapar-
otomy close to the time of ovulation and were cultured in human serum.
Edwards and colleagues achieved major breakthroughs in the world of
IVF. Human eggs were retrieved with laparoscopy and were in vitro
matured and fertilized in a medium that contained Tyrode’s solution
(Tyrode, 1910), BSA and penicillin with the addition of sodium pyruvate,
phenol red and an increased concentration of bicarbonate (Edwards
et al., 1969; Steptoe and Edwards, 1970). The team also managed to cul-
tivate human embryos up to the blastocyst stage using Ham’s F10 with
human or fetal calf serum (Steptoe et al., 1971). The embryos from
the first IVF cycles were cultured in Earle’s simple salt solution with pyru-
vate supplemented with the patient’s serum, and the first IVF baby was
born (Steptoe and Edwards, 1978). Edwards et al. also used Ham’s
F10 with homologous human serum or BSA (Edwards et al., 1980;
Edwards, 1981). Ham’s F10 supplemented with 20% fetal calf serum
was also used for embryo culture by the Australian group that reported
the first IVF pregnancy which resulted in early miscarriage (De Kretzer
et al., 1973). The first IVF baby to be born in Australia was Candice
Reed (Lopata et al., 1980). At the same time, Mohr and Trounson
(1980) focused on culture media and used the mouse model for the
quality assessment of culture conditions. Ménézo et al. (1984) ques-
tioned the necessity of whole serum since its omission in the B3
medium, that contained albumin and an array of AAs, did not have an
effect on embryo development or pregnancy rates (PR). The B3
medium was a modification of the B2 medium which was designed for
bovine embryos based on the composition of their reproductive fluids
and serum (Ménézo, 1976). At the time there was full transparency
regarding composition and the media were made in house. The
Ménézo and Quinn groups set the foundation for the commercially avail-
able culture media specialized for human IVF (Ménézo et al., 1984; Quinn
et al., 1985). The B2 medium was widely used for the first IVF cycles in
France and was known as the ‘French medium’ (Cohen et al., 2005).

Embryo-somatic cell co-culture was an important chapter in the
history of embryo culture as initially, co-cultures were essential to
achieve development in vitro. Mouse embryos co-cultured with Fallopian
tube cells were able to develop in vitro even fromthe zygote stage (Biggers
et al., 1962). Also, when arrested embryos were transferred to the
ampula of Fallopian tubes they resumed their developmental capacity
(Whittingham and Biggers, 1967). The co-culture of human embryos
with fetal bovine uterine fibroblasts or human tubal cells appeared to
be superior to conventional embryo culture, improving embryo morph-
ology, implantation and PR (Bongso et al., 1989; Wiemer et al., 1989a, b).
Since then, various studies have addressed the issue using various feeder
cell lines (human tubal, endometrial and ovarian cancer cell lines, human
autologous endometrial cells, bovine tubal and endometrial cells,
monkey renal cells) in different cases, such as prior to embryo freezing
(Jayot et al., 1995; Tucker et al., 1995) and for patients with recurrent
IVF failures or poor quality embryos (Wiemer et al., 1996; Desai et al.,
2008). The results were favorable for co-cultures after randomization
in some studies (Wiemer et al., 1989a, 1993; Morgan et al., 1995;
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Ben-Chetrit et al., 1996; Parikh et al., 2006). However, others failed to
prove their benefit (Sakkas et al., 1994; Tucker et al., 1995; Hu et al.,
1998). The beneficial effects of co-culture were not species-specific or
tissue-specific and included GF production, pH and gas regulation and
clearance of deleterious products (Bongso et al., 1991; Bavister, 1992;
Barmat et al., 1997). A hormonal effect was excluded after using pre-
pubertal cells in animal studies and non-genital tract-derived cells in
humans (Ménézo et al., 1989, 1990). A recent meta-analysis found
co-cultures beneficial for implantation rate (IR), clinical pregnancy rate
(CPR) and ongoing pregnancy rate (OPR) (Kattal et al., 2008). Despite
their initial success, co-cultures with animal-derived feeder cell lines
are considered too risky and technically challenging.

The research activity continued, including attempts to omit protein
from the media formulation (Caro and Trounson, 1986), to assess the
need for serum (Feichtinger et al., 1986; Parinaud et al., 1987) and to
select a superior medium in the effort to improve success rates (Muggle-
ton Harris et al., 1990; Staessen et al., 1994) while the blastocyst stage
transfer became a feasible option (Gardner and Lane, 1997). Human am-
niotic fluid was also tested as a culture medium (Gianaroli et al., 1986).
Finally, the search for the ideal formula followed two paths; the ‘back
to nature’ and the simplex optimization strategy (Quinn et al., 1985;
Lawitts and Biggers, 1991; Leese, 1998).

The ‘back to nature’ strategy studied reproductive fluids and the
composition of the media was developed accordingly. The analysis of
the Fallopian tube secretions (Borland et al., 1980) and of uterine fluid
led to synthetic oviduct fluid for sheep (Tervit et al., 1972), mouse
tubal fluid (Gardner and Leese, 1990), human tubal fluid (HTF) (Quinn
et al., 1985) and synthetic tubal fluid for humans (Mortimer, 1986).
However, the analysis of biological fluids is incomplete and laborious,
gives information of unknown importance and could be influenced
by various parameters (Leese, 2002; Summers and Biggers, 2003). The
HTF was found to be only slightly similar to actual tubal fluid (Summers
and Biggers, 2003). On the contrary, the simplex optimization strategy
used sophisticated software to assess multiple components and their
interactions simultaneously (Spendley et al., 1962; Lawitts and Biggers,
1991). This was applied for mouse embryos and gave the optimized
medium SOM (simplex optimization medium), later supplemented
with potassium (KSOM) (Lawitts and Biggers 1991, 1993). This approach
identified the composition and concentration that gave maximum
response but not necessarily the best results (Summers and Biggers,
2003). Human culture media could only be based on these results, as
similar experiments with human embryos would not be possible.

In the first few decades of human IVF, the majority of IVF cycles trans-
ferred embryos at the cleavage stage as the media used at the time was
poor at supporting blastocyst development. It was recognized that the
environment around the embryo changes naturally during its journey
through the reproductive system, which led to the development of se-
quential media. Sequential media contain different ingredients during dif-
ferent days of culture (Chatot et al., 1989; Gardner, 1994; Gardner and
Lane, 1997; Hentemann and Bertheussen, 2009). Gardner et al. (1996)
collected uterine and tubal fluid at different stages of the menstrual cycle
and demonstrated the cyclical changing concentrations of lactate and
glucose. These observations contributed to the composition of G1
and G2 media (Barnes et al., 1995; Gardner et al., 1996). Also, the meta-
bolic needs of the embryo change at different stages as demonstrated for
glucose and pyruvate which can affect development (Conaghan et al.,
1993; Gardner, 1998). Other teams argue, however, that the change

in culture conditions creates extra stress for the embryo and in vitro con-
ditions should not be regulated according to the in vivo paradigm. Inter-
estingly, the stress to the embryo or gametes in the right form and timing
may not always be harmful (Isom et al., 2009). The debate is ongoing
without consistent results (Macklon et al., 2002; Reed et al., 2009; Sepúl-
veda et al., 2009; Paternot et al., 2010; Vajta et al., 2010; Wirleitner et al.,
2010; Khoury et al., 2012; Quinn, 2012). Sequential media have captured
the imagination and are widely used but there is no solid evidence for
their superiority (Basile et al., 2013; Summers et al., 2013). Also, as
reports emerge regarding the benefit of time-lapse imaging as a
method for embryo selection (Meseguer et al., 2011, 2012b), the popu-
larity of the more convenient single step media is increasing.

Glucose: essential or deleterious?
Schini and Bavister (1988) attributed the 2-cell block to glucose and
phosphate. Chatot et al. (1989) was the first to overcome the block re-
moving glucose from the medium during the early stages while keeping
phosphate and adding glutamine (CZB medium). Quinn (1995) modified
the HTF medium to produce a glucose- and phosphate-free medium
that contained EDTA and glutamine and yielded improved results in
mouse and human embryos. Pool (2004) developed P1, another modi-
fication of HTF, without glucose and phosphate containing citrate and
taurine instead of EDTA and glutamine. The KSOM medium (Lawitts
and Biggers, 1993) had low levels of glucose and phosphate and both
the KSOM and the CZB included EDTA. A proposed explanation for
the beneficial role of EDTA is that it blocks one of the enzymes of the
glycolytic pathway and therefore prevents the inappropriate use of
glucose (Abramczuk et al., 1977; Lane and Gardner, 2001). However,
the toxicity of glucose for the early embryo is controversial (Lawitts
and Biggers., 1992). Baraket al. (1998) concluded that glucose is not dele-
terious for the early human embryo. On the contrary, the presence of
glucose or fructose is essential (Ludwig et al., 2001) and AAs were
considered key to overcome the 2-cell block possibly by regulating the
reactive oxygen species (ROS) (Gardner and Lane, 1996). A large RCT
showed no difference in PR after the culture of pronucleate human
embryos in media lacking glucose or containing glucose at a concentra-
tion of 5.5 mmol/l (Coates et al., 1999). However, in this study and
that by Conaghan et al. (1993), the embryo quality was impaired. Also,
high levels of glucose were associated with increased apoptosis and
favored the female sex in bovine (Jiménez et al., 2003). Nevertheless, a
medium containing 4.7 mmol/l glucose supported human embryo de-
velopment to blastocyst as efficiently as sequential media or media
renewal in a randomized trial (Macklon et al., 2002). A retrospective
study by Michaeli et al. (2011) compared three culture media with differ-
ent concentrations of glucose (P1 that is glucose free, ISM1 which con-
tains 1 mmol/l of glucose and Universal IVF medium containing
5.55 mmol/l glucose). The results demonstrated that high glucose con-
centrations did not affect the embryo quality but resulted in a higher poly-
ploid fertilization and affected cleavage rate while ISM1 had a beneficial
effect on embryo development. Therefore, it has been suggested that
glucose is not inhibitory for the early embryo at concentrations that
mimic the in vivo conditions, avoiding extremes (Bavister, 1999;
Ménézo et al., 2013). Glucose-free media are still advertised for the
early stages of embryo culture even though the inhibitory role of
glucose is no longer a dogma and the content of phosphate during
Days 1–3 varies from zero to high concentration (Quinn, 2004).
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Which AAs to include and when?
Simple media lacking AAs were able to support the development of
mouse embryos to blastocyst stage (Whitten, 1956; Whitten and
Biggers, 1968). However, the importance of AAs became evident as re-
search activity was increased around the embryo and its environment
(Chatot et al., 1989; Lane and Gardner, 1997a). AAs, pyruvate and
lactate were recognized as preferred energy resources for the early
embryo over glucose (Brinster, 1965d; Biggers et al., 1967). Lawitts
and Biggers (1992) noticed that glutamine alleviated the inhibitory
effect of NaCl when its concentration was high in the medium. Thus,
they concluded that AAs act as organic osmolytes counteracting the
deleterious effect of high levels of inorganic ions. This was confirmed
for glycine and betaine (van Winkle et al., 1990; Biggers et al., 1993).
Except from their obvious role as protein precursors, AAs function as
pH buffers and metabolism regulators (Gardner and Lane, 1997).
Besides, mammalian embryos have AA transporters (Van Winkle,
1988) and AAs are detected in uterine and tubal fluids of animals and
humans (Casslén, 1987; Gardner and Leese, 1990). Devreker et al.
(2001) randomized human embryos in three media with and without
AAs and concluded that AA supplementation increases blastocyst cell
number, however the use of the Cook Sydney IVF media in this study
was criticized (Mortimer, 2001). Due to the complex nature of
embryo metabolism and the interaction between components, it is still
unclear which specific AAs are necessary or harmful to the embryo
(Summers and Biggers, 2003).

Experiments in mouse embryos demonstrated that non-essential AAs
are important during early embryo development while essential and non-
essential AAs should be included in the medium after the 8- to 16-cell
stage, and the G1/2 media were formulated accordingly. G1 contained
only non-essential AAs but all AAs were included in G2 (Barnes et al.,
1995; Lane and Gardner, 1997b). These media were then modified
and finally, after other versions, the GIII series of media was developed.
This sequential use of AAs was considered beneficial for embryo devel-
opment and PR (Gardner and Lane, 1998; Jones et al., 1998). However,
this theory is highly controversial (Summers and Biggers, 2003; Ménézo
et al., 2013). The inclusion of all AAs at a lower concentration throughout
embryo culture was shown to be beneficial for embryo development in
monocultures (Ho et al., 1995). There is also evidence suggesting that
lack of sulfur AAs, such as methionine, is associated with monozygotic
twinning in humans (Cassuto et al., 2003). Methionine is related to
glutathione, hypotaurine and taurine synthesis and imprinting (Ménézo
et al., 2013).

The use of AAs, and especially glutamine, in the media is associated
with ammonium accumulation (Lane and Gardner, 1994, 2007;
Zander et al., 2006). A single human embryo in culture for 4 days can
produce 100 mM of ammonium and the AA breakdown adds further
to this which can affect the developmental capacity and gene expression
(Gardner et al., 2001, 2013; Virant Klun et al., 2006). The initial
approaches were either to reduce the concentration of AAs or to
renew the medium (Gardner and Lane, 1993; Devreker and Hardy,
1997; Lane et al., 2001; Gardner et al., 2013). However, others argue
that ammonium accumulation is not that significant and is pH and
temperature dependent and studies should avoid using stable forms of
exogenous ammonium which could bias the results (Summers and
Biggers, 2003; Ménézo et al., 2013). The use of the stable
L-alanyl-L-glutamine or glycyl-L-glutamine instead of glutamine was

adopted in commercial media although this does not eliminate the con-
tribution from other AAs. There are few relevant studies showing that
this strategy may be beneficial (Biggers et al., 2004; Summers et al.,
2005). Kleijkers et al. (2013) found ammonium accumulation in Vitrolife
G1 Plus but this did not have an effect on embryo development, PRs or
birthweight.

According to the quiet embryo hypothesis, embryos with low meta-
bolic activity, especially AA turnover, have greater viability (Leese,
2002; Brison et al., 2004). However, this theory has been questioned
especially when 5% oxygen is used (Gardner and Wale, 2013).

Growth factors
GFs evaluated as supplements to human IVF culture media include epi-
dermal growth factor (EGF) (Khamsi et al., 1996), insulin-like growth
factor 1 (IGF1) (Lighten et al., 1998; Spanos et al., 2000), brain-derived
neurotrophic factor (Anderson et al., 2010), the combination of the
three (Yu et al., 2012), leukemia inhibitory factor (LIF) (Dunglison
et al., 1996), platelet-derived growth factor (Lopata and Oliva, 1993),
heparin-binding epidermal growth factor (HB-EGF) (Martin et al.,
1998), platelet activation factor (PAF) which was found to increase PR
(O’Neill et al., 1989) and granulocyte-macrophage colony-stimulating
factor (GM-CSF) (Ziebe et al., 2013). The results are optimistic
showing accelerated development, better quality, increased blastocyst
rate, increased cell number, earlier hatching, increased hCG and IR
(Richter, 2008). GFs play a key role in the beneficial effect of co-cultures,
which are shown to increase the embryonic expression of GF ligands (Liu
et al., 1999), and of embryo culture in groups through their cross-talk
(O’Neill, 2008). GFs are present in vivo, act on embryo receptors, they
are anti-apoptotic and increase development rates. However, the
same principles that render GFs beneficial are reasons for caution. Apop-
tosis is a normal phenomenon during embryo development (Hardy et al.,
1989), which not only serves as an essential parameter of embryogenesis
but also as an extreme repair mechanism to deal with abnormal cells
(Alison and Sarraf, 1992; Hardy and Spanos, 2002). Even though devel-
opment rate is used as an end-point to evaluate culture conditions, faster
is not necessarily better. The faster developing mouse embryos pre-
sented loss of genomic imprinting raising safety issues for media that
promote fast growth (Market Velker et al., 2012). Also GFs, if not well
regulated, can have adverse effects on development and have been asso-
ciated with large offspring syndrome (LOS) (Young et al., 2001). Further-
more, embryos produce GFs creating a closed loop of autocrine signaling
(O’Neill, 2008) and the addition of a single GF could disturb the balance
(Ménézo et al., 2013). Finally, after embryo culture with LIF, IGF-1 and
HB-EGF, distinct deviations were noticed in the expression of various
cell fate genes (Kimber et al., 2008).

GM-CSF is expressed in the female genital tract (Dudley et al., 1990;
Zhao and Chegini, 1994; Giacomini et al., 1995; Zhao et al., 1995) and
placenta (Berkowitz et al., 1990). It has receptors on human embryos
and acts by suppressing apoptosis (Sjöblom et al., 2002). GM-CSF was
reduced in patients with recurrent miscarriages (Perricone et al.,
2003). It inhibits the expression of genes involved in apoptotic and
stress response pathways in mouse embryos (Chin et al., 2009). Its
significance has been documented for mouse embryo development,
implantation and placentation (Wegmann et al., 1989; Robertson and
Seamark, 1992; Sjöblom et al., 2005; Robertson, 2007). GM-
CSF-knockout mice had increased miscarriages, intrauterine growth
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restriction, impaired placentation and fetal malformations and the off-
spring presented impaired growth and higher post-natal mortality
(Robertson et al., 1999). The results were more evident for males and
for GM-CSF-deficient embryos. Media supplemented with GM-CSF
appeared to be safe for human embryos in a multicenter double-blinded
RCT as no significant difference in embryo chromosomal constitution
was found after fluorescence in situ hybridization (FISH) (Agerholm
et al., 2010). The 86 oocytes in this trial were fertilized by the same chro-
mosomally normal sperm donor. The results agree with a mouse study
that showed no increase in aneuploidy or mosaicism for embryos cul-
tured in GM-CSF (Elaimi et al., 2012). Embryo culture with GM-CSF
appeared to be beneficial since it enhanced the development rate of
frozen-thawed embryos in two different culture systems (Sjöblom
et al., 1999) and yielded improved PRs in a study by Kim et al. (2001).
The RCT by Shapiro et al. (2003) showed increased blastocyst cell
number and more expanded blastocysts after GM-CSF supplementation
but no difference in PR. In a multicenter double-blinded RCT supported
by ORIGIO, 14 fertility units and more than 1300 women participated
(Ziebe et al., 2013). Supplementation of culture media with GM-CSF
showed a significant increase in live birth rate (LBR) in a subgroup of
patients with at least one previous miscarriage but only in low human
serum albumin media. Also, GM-CSF supplementation appeared bene-
ficial for LBR in a retrospective study for patients with previous miscar-
riages by Mignini Renzini et al. (2013). A pilot study by Sfontouris et al.
(2013), showed a trend toward increased PR with GM-CSF-supplemen-
ted medium for patients with previous unsuccessful IVF cycles. Well-
powered, properly randomized trials assessing LBR and long-term
follow-up of the offspring are needed to determine the benefit and
safety of GM-CF-supplemented media for the general IVF population
and these particular patient groups (Siristatidis et al., 2013).

Hyaluronic acid
Hyaluronic acid is an adherence compound and its inclusion in culture
media has been well studied. The macromolecule is present in the endo-
metrium at concentrations that vary according to the day of the cycle
(Salamonsen et al., 2001) and its receptors are detected in the endomet-
rium and the preimplantation embryo (Knudson and Knudson, 1993;
Campbell et al., 1995). A Cohrane review concluded that hyaluronan
supplementation appeared to be safe and significant benefit was docu-
mented for PR but not LBR (Bontekoe et al., 2010). A recent update
on this Cohrane review including 16 RCTs concluded that the addition
of hyaluronic acid to embryo transfer medium yielded improved LBR.
However, only six trials reported on LBR and the obtained evidence
was of moderate quality (Bontekoe et al., 2014). Balaban et al. (2011)
found significantly increased LBR for the hyaluronan group in a follow-up
study for participants of a previous RCT that compared EmbryoGlue to
G2 version 3 medium for embryo transfer (both Vitrolife media) (Urman
et al., 2008). Large RCTs are needed to draw solid conclusions for the
benefit in LBR, which is where the interest lies for both patients and
clinicians.

The present: where are we now?
Up until the late 1980s, embryologists were still making their own culture
media in house, with limited quality control. The competitive nature of
the field saw the first commercial media produced around this time

(Medicult from Denmark). The development of this field over the past
30 years has led to a huge commercial market making IVF culture
media, freezing media, biopsy media, etc. There are eight major compan-
ies whose culture media are used in the majority of studies. The list
includes Cook Medical, Cooper Surgical that produces both SAGE and
ORIGIO media, FertiPro, Gynemed, Gynotec. Irvine Scientific, IVF
online and Vitrolife. Other companies that currently produce IVF
culture media are Genea Biomedx (previously Sydney IVF), InVitroCare
and Kitazato. The main companies and the culture media they produce
along with their quality assessment information, IFU and components
disclosed in their websites are included in Supplemetary data, Tables
SI–SV. Supplementary data, Table SII presents the basic early culture
media; the simplicity and transparency of their composition is evident.
In contrast, Supplementary data, Table SIII presents some of the most
commonly used modern culture media (1-2 media from each company
are included). Their composition is far more complex but the details
not revealed.

Different companies highlight different features through their advertis-
ing messages, emphasizing both quality and success rates. Commercial
media contain salts, energy substrates, serum supplements, AAs,
buffer solutions, antibiotics, vitamins, nucleotides, GFs, and other
reagents such as trace elements, nuclease inhibitors, etc. (Supplementary
data, Table SI). Some of these reagents have unclear functions. The for-
mulations vary and most components are used at different concentra-
tions in the different media, illustrating the lack of consensus. Even for
the most basic parameters of embryo culture (use of AAs and glucose,
monoculture or sequential culture, temperature, gas composition) the
different groups agree to disagree (Vajta et al., 2010). The components
are disclosed by most companies but concentrations are not disclosed
(Supplementary data, Table SIII) (Biggers, 2000; Carrasco et al., 2013).
All companies provide in their websites media specifications and IFU
and most of them include relevant scientific publications. Most of the
media are now CE marked and all companies use the MEA but none of
them discloses in the website or printed material the number of
mouse embryos used. Certificates of Analysis are available on request
for every batch of culture media and for some companies samples of
these certificates are available online. For all companies it is documented
that the human source materials used are found to be non-reactive to
antibodies for Hepatitis C, human immunodeficiency virus and hepatitis
B surface antigen, In addition, the donors have been screened for
Creutzfeldt-Jakob disease but all human source material should be
treated as if it were capable of transmitting infection as the possibility
of transmitting infective agents, including unknown or emerging
viruses, cannot be totally excluded. In the medical safety data sheet
(MSDS) all companies state that they shall not be held liable for any
damage resulting from handling or from contact with the product.

Quality assessment

CE marking
By definition a ‘medication’ should be used on or in the human body. In
the UK the embryo is not legally considered a human being therefore
culture media do not strictly comply with this definition. However,
they mayhave an effect on the endometrium and contain substancesclas-
sified as medicinal products. In 2008, 30 years after Louise Brown was
born, IVF culture media and utensils were classified as class III Medical
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Devices in the EU under the Directive 93/42/EEC as amended, as they
are (indirectly) used for human beings by promulgating pregnancy. The
CE mark obtained its form in 1993 and indicates that the manufacturer
complies with the EU regulations. The Human Fertilisation and Embry-
ology Authority produced a paper regarding CE marking and its signifi-
cance in 2013. The CE marking process is described in Supplementary
data, Table SVI and the information the companies provide online
regarding quality control (QC) vary (Supplementary data, Table SV).
After an adjustment period all IVF culture media in the EU should now
be CE marked.

Disclosure of the full composition, quality assessment, post-market
surveillance, well-defined reporting and investigating systems for
adverse incidents, and traceability are important pylons of CE marking.
A constant cross-talking should, therefore, be established between the
culture media companies and the IVF units regarding the IVF outcome,
the health of the ART conceived offspring and the recording of possible
adverse effects or suboptimal performance of the media but is this truly
the case in everyday clinical practice? Also, the full composition of the
medium is hardly ever disclosed for commercial reasons and the need
for traceability of the culture conditions is not always documented.
Only Cook and ORIGIO have included this information in their IFU.
Finally, it is unclear exactly what information the notifying bodies
request as some components are still used ‘based on experience’.

Outside Europe
The Food and Drug Administration (FDA) (as per Code of Federal Reg-
ulations Title 21, volume 8, revised in April 2013) classifies IVF culture
media as class II Medical Devices (special controls) since they come in
direct contact with human gametes or embryos. Their quality assess-
ment should involve the MEA, endotoxin testing, sterilization validation,
design specifications, labeling requirements, biocompatibility testing and
clinical testing. Special controls also include post-market surveillance.

In Australia, IVF culture media are classified as class III Medical Devices
under the Therapeutic Goods Administration. According to the guid-
ance all components and raw materials should be clearly identified and
the results of the MEA should be provided in the labeling. Other require-
ments include sterility and stability testing, pH, osmolality and endotoxin
testing. Also, biocompatibility testing for the individual components and
the raw materials is required as well as cytotoxicity and embryotoxicity
testing. Finally, clinical data on the safety and efficiency of the product
are requested according to the Australian Regulatory Guidelines for
Medical Devices. It should be highlighted that the guidance mentions
that genotoxicity tests should also be considered to determine potential
developmental toxicity; this could include the bacterial gene reverse
mutation assay, in vitro mammalian cell chromosomal aberration assay
and in vivo rodent bone marrow micronucleus assay.

In China, culture media require the approval of the China Food and
Drug Administration (CFDA) (Good manufacturing practice for drugs,
2010 revision) as laboratory reagents. In Japan, there is no clear regula-
tion around IVF media and culture media are not classified as pharmaceu-
ticals or medical devices.

Mouse embryo assay
The QC of commercial media includes pH, osmolality, sterility, endo-
toxin tests and the MEA (Ackerman et al., 1984, 1985; Byers et al.,
2006). The medium can usually pass the MEA if it supports development

of ≥80% of mouse embryos to blastocyst stage. The MEA was found
valid in some studies (van den Bergh et al., 1996; Gardner et al., 2005).
However, its use has been heavily criticized (Fleming et al., 1987;
Dumoulin et al., 1991; Fleetham et al., 1993) as it is only really testing tox-
icity and certainly not testing formulations for human IVF. The mouse
model should be used with caution as it presents obvious differences
in reproductive physiology compared with humans (Ménézo and
Hérubel, 2002) and there is no standardization of the day the culture
should start, the mouse strain, number of embryos, etc. Efforts to in-
crease its sensitivity include one cell as the starting point (Davidson
et al., 1988; Scott et al., 1993), zona-free embryos (Montoro et al.,
1990), the inclusion of positive controls (Dubin et al., 1995), accurate
sample size calculations (Hendriks et al., 2005), assessment of multiple
end-points and of blastocyst cell number (Scott et al., 1993; Gardner
et al., 2005). The FDA (1998) considered MEA appropriate without spe-
cifying its design, which often ignores the basics, such as a power calcu-
lation (Punt-van der Zalm et al., 2009). Different companies use
various protocols so the test cannot be considered standardized.
None of the companies provides information online regarding the
number of mouse embryos used.

Mouse embryos have varying sensitivities to deleterious effects de-
pending on the strain (Dandekar and Glass, 1987; Scott et al., 1993;
Dubin et al., 1995). They can even develop to blastocysts when cultured
in media with tap water lacking any protein supplement (Silverman et al.,
1987; George et al., 1989). Mouse embryos that lost one blastomere at
the 2-cell stage and therefore had reduced inner cell mass (ICM) devel-
oped to blastocyst and achieved implantation (Papaioannou and Ebert,
1995). Mouse blastocysts developed further despite having a 10% imbal-
ance of the founder cell lineages and responded differently to culture
media compared with human embryos in a study by Schwarzer et al.
(2012). These findings raise questions regarding the reliability of the
current MEA as guide for the suitability and safety of culture media for
human embryos but currently we have no alternative.

Which is the best?
A Cohrane review has been designed to answer the question of which is
the best culture medium (Youssef et al., 2009). The primary outcome
should be LBR. A recent systematic review reported that the existing
data are insufficient to conclude which is the best culture medium for
ART (Mantikou et al., 2013). Twenty-two RCTs were included that com-
pared 20 different IVF commercial culture media produced by 11 com-
panies. Most media were only compared once and the design and
end-points of the studies varied significantly so a meta-analysis was not
possible. The authors suggested that culture media make a difference
not only for success rates but also for embryo quality and development,
as also stated in other reviews (Pool, 2004; Lane and Gardner, 2007).
Schwarzer et al. (2012) compared the effect of 13 culture protocols
used in human embryology on mouse embryos fertilized in vivo. A signifi-
cant difference was noticed not only in embryo development but also
during the post-implantation development and litter size according to
the culture medium used. As expected, however, safe conclusions for
a superior culture medium for human embryo culture cannot be
drawn. Also, mouse embryos responded in the opposite fashion to
human embryos to the studied culture media.

Recently two culture media were compared regarding their effect on
CPR, perinatal outcomes and intrauterine growth by a group in the
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Netherlands. The culture media were both sequential media from Vitro-
life and Cook. In the first paper (Dumoulin et al. 2010) embryos from 826
IVF cycles were randomized through alternate allocation to culture with
the Cook or the Vitrolife medium that resulted in 188 live births of single-
tons. Only first IVF treatments and fresh transfers were included.
Dumoulin et al. (2010) concluded that the CPR and the mean birthweight
for singletons were higher for the Vitrolife group (more than 200 g differ-
ence in the average birthweight). The study was not optimally rando-
mized and there were more double embryo transfers and increased
maternal weight and height and paternal weight in the Vitrolife group.
Also, embryos with less blastomeres but higher morphological grade
were transferred for the Cook group. However, the parents had other-
wise similar characteristics, the same stimulation protocols and embryo
transfer strategy were followed for both groups, confounding factors
were considered and birthweight was adjusted for gestational age and
sex. Although the difference was not as dramatic as in animal studies,
this study was the first to demonstrate a link between the culture
medium and the offspring phenotype in humans. This is particularly im-
portant since low birthweight (LBW) has been associated with suscepti-
bility to future cardiovascular disease and type 2 diabetes (Barker, 1993,
2004) and high birthweight has been associated with overgrowth abnor-
malities in animals.

A later study by Nelissen et al. (2012) that included twin pregnancies,
fresh and frozen transfers and women with previous failed cycles con-
firmed the above results for singletons and also demonstrated an
effect on the perinatal outcome of twins. For singletons the Cook
group had significantly increased incidence of LBW and LBW for gesta-
tional age and the average birthweight was lower compared with the
Vitrolife group. A similar trend was noticed for twins along with signifi-
cantly higher inter-twin mean birthweight disparity and birthweight dis-
cordance for the Cook group. Also, while five large for gestational age
singletons were found in the Vitrolife group, none was reported for the
Cook group. The same team reported in a retrospective study that dif-
ferences attributed to culture media were detected from the second tri-
mester of pregnancy based on the 20 weeks scan (Nelissen et al., 2013).
Also, in a follow-up study they found that at 2 years of age there was still a
significant difference in weight (up to 500 g) and weight gain amongst the
two groups, with no difference in height and head circumference (Kleij-
kers et al., 2012). Furthermore, Eskild et al. (2013) found in a retrospect-
ive study that IVF culture media significantly influenced both the
birthweight and the placental weight to birthweight ratiowhen compared
with the trend from spontaneous conceptions. However, Carrasco et al.
(2013) in a prospective and retrospective study found no effect of culture
media on the birthweight of singletons, and three recent retrospective
studies reached the same conclusion (Eaton et al., 2012; Vergouw
et al., 2012; Lin et al., 2013). Carrasco et al. (2013) compared Cook,
Medicult and Vitrolife media and reported that their main difference is
the AA composition. The comparison of four different culture media
showed that the hCG rise during early pregnancy was related to the
medium used (Orasanu et al., 2006) which was also the case in the Nelis-
sen et al. study (2013). Also, comparison between the one-step Univer-
sal IVF medium and the sequential ISM1 (ORIGIO) yielded better results
for ISM1 regarding embryo quality, IR and OPR (Xella et al., 2010). An
effect of culture media on embryo quality after ICSI from the second
day of culture was also demonstrated by Cossiello et al. (2012). The
exact composition of the compared media is not disclosed so specific
components cannot be linked to the outcome. Various studies have

been published exploring effects of culture media from fertilization to
post-natal phenotype (Supplementary data, Table SVII).

IVF and embryo culture: do they
come without risks?
Time is the only true counselor regarding the safety of any intervention
during the periconception period as it is characterized by increased
epigenetic plasticity that creates a window for long-term reprogramming
(El Hajj and Haaf, 2013; Steegers-Theunissen et al., 2013). There are nu-
merous examples supporting the susceptibility of this period to epigen-
etic changes whose consequences may not be obvious at birth or during
childhood. In the case of diethylstilbestrol the effects on the female off-
spring only appeared in adulthood (Li et al., 2003). Also, according to
the Barker hypothesis, adult diseases have their origins in the conditions
around the early stages of development (Barker, 1993, 2003). Animal
studies have also demonstrated a link between the early environment
and adult disease (Langley-Evans, 2006). Dietary supplementation in
female mice 2 weeks prior to conception and during pregnancy and lac-
tation had a phenotypic effect on the offspring, changing the coat color
due to alterations in gene methylation (Waterland and Jirtle, 2003).
Mild undernutrition of the mother during the first trimester of pregnancy,
not severe enough to cause growth restriction or LBW, caused cardio-
vascular changes and reduced ovarian reserve for the bovine offspring
(Mossa et al., 2013). Similarly, in vitro embryo culture can induce epigen-
etic alterations for different species highlighting the need for caution in
human IVF (Grace and Sinclair, 2009; El Hajj and Haaf, 2013). Clinical
practice until now shows that the in vitro culture of human embryos
does not confer major adverse effects on the offspring but possible con-
sequences in late childhood or adulthood are still to be explored keeping
in mind that even the first children conceived by ART are still young.
Studies reporting phenotypic and behavioral abnormalities attributed
to ART for different species are summarized in Supplementary data,
Tables SVIII and SIX.

Effects of assisted conception on mammals
Animal studies have demonstrated that in vitro culture and manipulation
of the early embryo can alter gene expression and influence imprinted
genes affecting the phenotype of the offspring (Reik et al., 1993; Young
and Fairburn, 2000; El Hajj and Haaf, 2013). It was recognized that in
vitro conceived mice had reduced fetal growth (Bowman and McLaren,
1970). Also, in some studies, in vitro developed blastocysts were found
to have decreased cell number in both the ICM and trophectoderm
and to generate a reduced number of embryonic stem cells (Tielens
et al., 2006; Watkins et al., 2007). IVF and embryo culture also influences
placentation (Bertolini et al., 2004; Miles et al., 2004; Delle Piane et al.,
2010). It affects post-natal growth, blood pressure (BP), cardiovascular
profile and metabolism in mice (Watkins et al., 2007). Alteration of the
culture medium creating a suboptimal environment leads to delayed neu-
romotor development, hyperactivity and impaired growth in the mouse
model (Fernández-Gonzalez et al., 2004). FISH studies in bovine and
murine embryos demonstrated increased chromosomal abnormalities
after in vitro culture compared with in vivo (Hyttel et al., 2000; Viuff
et al., 2000; Lonergan et al., 2004; Sabhnani et al., 2010). Furthermore,
overgrowth abnormalities, such as LOS, arewell documented in different
species and attributed to epigenetic alterations due to complex media
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containing serum (Thompson et al., 1995; McEvoy et al., 1998). LOS
increases mortality and causes skeletal, placental and multiple organ de-
velopmental abnormalities (Farin and Farin, 1995; Thompson et al.,
1995; Sinclair et al., 1999, 2000).

Children conceived by IVF
The in vitro culture of human embryos is relatively new and the scientific
community is still exploring its effects. Various parameters can influence
the IVF outcome and the phenotype of the offspring, including intrinsic
factors from the couple (infertility, genetic factors) and ART-related
procedures (stimulation protocols, manipulation of the gametes and
embryos, embryo culture).

Many follow-up studies give reassuring results for the physical and
mental health and neurological outcome of IVF conceived children
(Rufat et al., 1994; Olivennes et al., 1997; Bradbury and Jick, 2004; Pon-
jaert Kristoffersen et al., 2005; Middelburg et al., 2009; Wagenaar et al.,
2009, 2011; Basatemur et al., 2010; Beydoun et al., 2010; Mains et al.,
2010; Schendelaar et al., 2011; Hart and Norman, 2013). However,
increased risk of obstetric and perinatal complications, preterm birth,
congenital defects and higher mortality has been associated with assisted
conception. When compared with spontaneously conceived controls in
various studies,ART childrenhavebeen found to have lowerbirthweight,
higher BP, dyslipidemia, increased cancer risk, increased risk for imprint-
ing disorders, increased need for health care resources and the list goes
on (Supplementary data, Table SIX). The vast majority of IVF conceived
children are healthy and for rare disorders, such as imprinting disorders,
the absolute numbers would be low even with a large increase in the risk.
Also, the link between ART and imprinting disorders has been ques-
tioned in large epidemiological studies (Lidegaard et al., 2005; Bowdin
et al., 2007; Doornbos et al., 2007).

Some of the most well-designed relevant studies were conducted by
Ceelen et al. (2007, 2008a, b, 2009) who followed up 233 IVF conceived
children in comparison to their age- and gender-matched naturally con-
ceived controls whose parents had fertility problems. IVF children had
significantly lower weight and height in early childhood but later had a
catch up period with significantly higher growth velocity associated
with future cardiovascular risk (Ceelen et al., 2009). It was also reported
that 8–18 year old IVF children tend to have increased total body fat
(Ceelen et al., 2007), and higher fasting glucose levels and BP than
their spontaneously conceived peers (Ceelen et al., 2008a). Further-
more, adolescent IVF conceived girls had advanced bone age and signifi-
cantly higher levels of LH and dehydroepiandrosterone sulfate (DHEAS)
with no difference in pubertal stage and age at menarche (Ceelen et al.,
2008b). Miles et al. (2007) also concluded that 4–10 yearold IVF children
had a more favorable lipid profile, were taller and had higher levels of
IGF1 and IGF2. Increased mean birthweight for singletons and increased
risk of preterm birth, birth defects and monozygotic twinning has been
documented after blastocyst transfer compared with Day 3 transfer
(Ménézo et al., 1999; Tarlatzis et al., 2002; Milki et al., 2003; Luna
et al., 2007; Källén et al., 2010; Finnström et al., 2011; Zhu et al., 2014).

Epigenetics
Why is the environment during embryo culture important for embryonic
development and possibly the phenotype of the offspring?

In IVF, fertilization occurs in a Petri dish and the culture medium sup-
ports the embryo from the very beginning until the transfer. The culture

medium plays a very important role in IVF by supporting these first deli-
cate steps. The first week after fertilization is characterized by precisely
orchestrated events including the first mitotic divisions, zygotic genome
activation, compaction, morula formation, cavitation and blastocyst for-
mation (Cockburn and Rossant, 2010). During these stages develop-
mental programming takes place through timed epigenetic
modifications (Smith et al., 2012). The epigenome can be considered a
type of software that determines how the genome (hardware)
behaves (Brower, 2011). Mainly through methylation of the promoter
region of genes and through other mechanisms, such as histone methy-
lation, epigenetic changes (either inherited or acquired) can cause silen-
cing of a specific gene permanently ceasing its expression. The genome
and the epigenome are equally important for embryo development.
Their interaction is responsible for the necessary changes in gene
expression that accompany the passage from fertilization and zygote to
blastocyst and implantation (Shi and Wu, 2009). Methylation and
demethylation profiles change through the development of the mouse
embryo as the cells become differentiated and the ICM that will give
the fetal structures is separated from the trophectoderm that will give
rise to the placenta (Rougier et al., 1998; Santos et al., 2002; Santos
and Dean, 2004; Morgan et al., 2005; Reik, 2007). This period is particu-
larly sensitive and any epigenetic alterations that may give a survival ad-
vantage to the embryo facilitating its adaptation, can have irreversible
consequences in gene expression and metabolic profile for the offspring
and even for future generations (Thompson et al., 2002; Fleming et al.,
2004; Denomme and Mann, 2012; van Montfoort et al., 2012; Feuer
et al., 2013). Furthermore, metabolism is linked to epigenetics through
histone modification (Rathmell and Newgard, 2009).

The most obvious example of epigenetic alteration after mouse
embryo culture was the case of the ‘agouti viable yellow’ allele
(Morgan et al., 2008). Furthermore, altered expression was detected
after mouse embryo culture in Whitten’s medium and in KSOM with
AAs for 114 genes and 24 genes, respectively (Rinaudo and Schultz,
2004). Also, suboptimal culture conditions led to impaired neuromotor
development, behavioral abnormalities and anxiety in mice (Fernández-
Gonzalez et al., 2004). The transgenerational adverse effects of a sub-
optimal culture environment, including lower weight to the time of
weaning and larger organs during adulthood, were also documented
by Mahsoudi et al. (2007). In another study by Calle et al. (2012), the
modification of the culture medium led to the alteration of gene expres-
sion in the testis of adult mice and induced apoptosis. The adverse
effects, such as subfertility, glucose intolerance and overgrowth abnor-
malities, for the male offspring were also passed on to next generations
of male progeny. These are data from animal studies and they cannot be
extrapolated to humans. However, there is evidence suggesting that
embryo culture can also induce epigenetic alterations in human
embryos. Katari et al. (2009) demonstrated the impact that embryo
culture can have on gene expression in different tissues by studying the
methylation pattern for more than 700 genes from the placenta and
the cord blood of ten ART conceived children compared with spontan-
eously conceived controls. A lower level of promoter methylation was
detected in the placenta and higher level in cord blood for some of the
studied genes for the IVF conceived children. Also, placental gene ex-
pression was altered for 26 genes in three IVF pregnancies in comparison
to three controls (Zhang et al., 2010).

Imprinted genes are closely linked with epigenetics. For these genes
only the maternal or the paternal derived allele should be expressed.
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They are particularly interesting since the methylation pattern that leads
to silencing of the paternal or maternal allele should be maintained during
development and is susceptible to epigenetic changes (Surani, 1998).
The period that this methylation or demethylation occurs is vulnerable
to errors due to environmental parameters. In humans maternal imprint-
ing can be completed during or after fertilization (El Maarri et al., 2001)
and therefore can be affected by the culture conditions. Imprinted
genes are important both for embryo development and for future
health (Kelsey, 2007). In animal studies different regulation of the
imprinted genes H19, IGF2 and Grb10 was reported depending on
whether the culture medium was supplemented with serum or not
(Khosla et al., 2001; Shi and Haaf, 2002). Epigenetic alteration of the
H19 and IGF2 in ruminants has been associated with LOS (van Montfoort
et al., 2012). Also, culture of mouse embryos in Whitten’s medium
resulted in inappropriate expression of the paternal allele for the
imprinted H19 gene in comparison to culture in KSOM medium with
AAs (Doherty et al., 2000). Alterations of the methylation pattern of
IGF2 and H19 were also detected after mouse embryo culture in
Quinn’s Advantage medium (Li et al., 2005). Naturally conceived
mouse embryos were cultured in five commercial media and were com-
pared with those cultured in Whitten medium and those that had devel-
oped in vivo. In all media groups there were epigenetic alterations for the
three imprinted loci studied in comparison to the in vivo derived group, to
different extents for the different media (Market-Velker et al., 2010).

Conclusion
The focus of this review was on IVF culture media. Other factors, such as
incubator gases and temperature, culture oils and supplements, are
equally important and can change the dynamics of how the embryo inter-
acts with components of the medium. Characteristics of the surfaces
used in ART (e.g. elasticity), of the devices used, such as Petri dishes,
and other parameters, such as pH and oxygen concentration, can also
affect the embryos (Swain, 2010, 2012; Vajta et al., 2010; Hentemann,
2011; Swain and Smith, 2011; Kolahi et al., 2012; Sommer et al., 2012).
Interestingly, commercial culture media (depending on their compos-
ition) contribute to the creation of ROS even under conditions of low
oxygen concentration (Martı́n-Romero et al., 2008).

The field of embryo culture is a focus of attention and research is being
conducted worldwide aiming to optimize the culture conditions and in-
crease the IVF success rates. With the introduction of new techniques,
such as microfluidics and dynamic culture systems, that aim to replenish
the media (Isachenko et al., 2010; Alegretti et al., 2011) we may move
toward an automated, precise IVF ‘lab-on-a-chip’ (Swain et al., 2013).
From the very first steps of IVF to the robotic IVF of the future, culture
media will always play a major role in the IVF laboratory. The standards
of culture media that are currently produced are obviously very high and
the CE marking process in the EU is a significant development in the field.
However, the future can be even brighter.

We are largely still using culture media whose exact composition is
unknown and this not only raises ethical issues but also deprives us of
the chance of developing even better culture media after constructive
comparisons. The field of IVF culture media is surrounded by numerous
controversies some of which were highlighted in this review. Further-
more, there is some evidence suggesting that culture media can induce
epigenetic changes affecting development and future disease risk. Well-
designed studies are currently lacking since human embryos are too

valuable to be used in large-scale optimization experiments. The only
well-studied supplements are GM-CSF and hyaluronan but still their
benefit in LBR is yet to be shown and the possibility of rescuing abnormal
embryos should be considered.

Well-designed RCTs, large epidemiological studies and full transpar-
ency should be the next steps without further delays. All those involved
in the field should contribute to a worldwide effort. The companies
should fully disclose composition with concentrations. Reliable, standar-
dized models assessing multiple end-points and post-implantation devel-
opment should replace the MEA. These models could be used to identify
possible epigenetic dysregulations after exposure to different media. Fer-
tility clinics should facilitate comparisons by sharing their results. They
should be encouraged to only work with companies that disclose
media composition and are CE marked. Embryologists should be critical
of the media used, evaluate their performance in house, use them as
instructed and report adverse effects. The importance of the pericon-
ception and preimplantation period for the future health of the
progeny is now recognized in animal models and humans. Structured
follow-up for IVF conceived individuals is of paramount importance to
identify possible adverse outcomes during childhood or adulthood.
Central confidential databases documenting the exact culture conditions
and media used for every embryo could be created. These outcomes
could, therefore, be linked to culture conditions to determine trends
aiming to identify epigenetic alterations and demystify the pathways
that induce them.
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