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Abstract: During the past few decades, the science of toxicology has been undergoing a transfor-
mation from observational to predictive science. New approach methodologies (NAMs), including
in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being
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developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time
and resources. Some of these methods have advanced past the exploratory research stage and are
beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature
reveals a burst of IVIVE publications over the past decade. In this review, we propose operational
definitions for IVIVE, present literature examples for several common toxicity endpoints, and high-
light their implications in decision-making processes across various federal agencies, as well as
international organizations, including those in the European Union (EU). The current challenges
and future needs are also summarized for IVIVE. In addition to refining and reducing the number
of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing,
the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their
continued evolution and development, including a strategic plan to qualify IVIVE methods for
regulatory acceptance.

Keywords: absorption; distribution; metabolism; excretion (ADME); dosimetry; in vitro to in vivo
extrapolation (IVIVE); physiologically based pharmacokinetic (PBPK) model; Interagency Coordinat-
ing Committee on the Validation of Alternative Methods (ICCVAM); new approach methodologies
(NAMs); risk assessment; toxicity tests

1. Introduction

U.S. regulatory and public health agencies are charged with protecting human, animal,
and environmental health. Agencies evaluate potential risks presented by substances that
enter the environment, such as chemicals, engineered nanomaterials, industrial chemicals,
metals and metalloids, pharmaceuticals, microplastics, or their degradation products or
metabolites. Risk evaluations often involve the use of toxicological tests conducted in living
organisms. However, concerns have been raised about these tests, including animal welfare,
the time and cost they require, and the ability of using animal models to accurately represent
human effects. These concerns have led to an increasing interest in developing alternative
methods that are rapid and efficient and that replace, reduce, or refine (3Rs) animal use [1].
Efforts to achieve these goals have resulted in the 2016 amendment to the Toxic Substances
Control Act that encouraged the development of new approach methodologies (NAMs) to
inform chemical hazard and risk assessment [2,3]. NAMs can include in silico, in chemico,
and in vitro approaches [4], and the application of NAMs is increasing, as federal agencies
and international entities have started adopting them, in some contexts, to reduce or phase
out animal testing. For example, the U.S. Environmental Protection Agency (EPA) is the
first U.S. agency to announce plans to redirect funds towards the development of NAMs
and away from animal testing. In vitro to in vivo extrapolation (IVIVE) can be considered a
NAM because it is broadly defined as a quantitative or qualitative transposition of in vitro
experimental data to predict in vivo phenomena [5–7].

1.1. Multiple Definitions of IVIVE in Literature

In the literature, the term “IVIVE” can be found to generally refer to two different
processes. Traditionally, the term IVIVE is used to refer to estimating in vivo whole-organ
absorption, distribution, metabolism, and excretion (ADME) properties by scaling from
properties measured in vitro, which is often used when constructing a bottom-up pharma-
cokinetic (PK) or physiologically based (pharmaco-) kinetic (PB(P)K) model [8–12]. The
ADME parameters most commonly measured in vitro are the hepatic metabolism, plasma
protein binding fraction, and intestinal absorption [13–18]. In vitro methods are also avail-
able for measuring other parameters, such as p-glycoprotein-mediated efflux ratio [19,20],
renal clearance [21,22], extrahepatic clearance [23], glucuronidation [24,25], and tissue or
blood partition coefficients [26].

Recently, the term IVIVE has been used to describe the process of converting an
in vitro concentration associated with bioactivity to an external exposure level [27,28]. This
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process is also referred to as reverse dosimetry or reverse toxicokinetics, which involves
using a PK model to determine a plausible exposure level that leads to a tissue or plasma
concentration equivalent to the in vitro concentration [29,30]. The predicted exposure level
can then be compared with the actual or estimated human exposures to estimate potential
health risks [31]. To distinguish this definition from the first definition, some used the term
quantitative IVIVE (QIVIVE) [32]. However, some usages of the term IVIVE are broadened
to cover both meanings. Therefore, it is suggested to refer to the context in which the IVIVE
is applied when using the term IVIVE. In this review, to avoid confusion, we use “IVIVE
of ADME parameters” to refer specifically to the traditional interpretation, and “IVIVE of
dosimetry” to refer specifically to the second and recent definition. When both processes
are involved and it is not easy to distinguish one term from another, we will use the term
IVIVE with a detailed context.

IVIVE of dosimetry typically assumes that chemicals in an in vitro system behave
the same way they behave in blood or tissue in an organism. However, this assumption
may not be appropriate due to several in vitro kinetic factors, such as chemical binding to
proteins and lipids in the cell culture medium, evaporation, binding to plastic containers,
uptake into the cultured cells, and degradation processes [33–37]. An in vitro bioactivity
concentration may be adjusted for these kinetic factors or assumed equivalent to an in vivo
plasma or tissue concentration. Then, pharmacokinetic models, such as PBPK models [24],
are used to convert the plasma or tissue concentration to an external dose. These models
include parameters that describe the ADME processes, and the values of model parameters
may be obtained using in vitro assays [38–40] and in silico methods, such as quantitative
structure–activity relationship (QSAR) models [41].

In some instances, when combining PK and pharmacodynamic (PD) modeling, IVIVE
of dosimetry can be used to predict in vivo organ toxicity levels based on in vitro toxi-
city testing results or translate the in vitro concentration–response curve to an external
dose–response curve [6,39,42–44]. In these cases, the term IVIVE more broadly refers to ex-
trapolating an in vitro bioactivity measurement that represents a molecular initiating event
or a battery of in vitro assays that interrogate multiple elements in a toxicity pathway to an
in vivo toxicological endpoint. Such a practice is likely to remain an important challenge in
conducting safety assessments based on in vitro toxicity testing [45,46].

1.2. Overview of Regulatory Applications of IVIVE

Several regulatory agencies have considered applying IVIVE of dosimetry to use
in vitro bioactivity data in assessing human health risks from chemical exposure. For
example, the EPA utilized data from in vitro high-throughput screening (HTS) assays in
Toxicology in the 21st Century (Tox21) [47] and Toxicity Forecaster (ToxCastTM) [48] and
IVIVE to prioritize chemicals for further testing under the Endocrine Disruptor Screening
Program [49]. The Organisation for Economic Co-operation and Development (OECD)
Guidance Document on Good In Vitro Method Practices (GIVIMP) describes the process
of conducting IVIVE to enable animal-free risk assessment [50]. The workflow known as
“Next Generation Risk Assessment” illustrates a process for chemical safety assessment
that is determined entirely by in vitro testing and IVIVE [51,52]. IVIVE was also included
in a recent OECD case study on the use of integrated approaches to testing and assessment
(IATA) of developmental neurotoxicity modalities [53].

There are also several guidance documents related to IVIVE of ADME parameters.
For example, OECD published [54] a guidance on the determination of intrinsic clearance
using cryopreserved hepatocytes or liver S9 sub-cellular fractions from rainbow trout. A
European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)
2016 workshop to facilitate the acceptance and use of new generation PBK models in the
regulatory domain [55,56] highlighted the need to develop guidance on constructing PBK
models using in vitro and in silico data. Moreover, the U.S. Food and Drug Administration
(FDA) recommends advancing PBPK modeling and IVIVE to address various shortcomings
that limit the utility of NAMs, such as microphysiological systems models, as a replacement
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for whole animal toxicity testing of human pharmaceuticals for regulatory purposes or as
an improvement in the predictivity of the testing [57].

1.3. Introduction to the IVIVE Workgroup

Given the critical role of IVIVE in using NAMs to supplement or replace the current
toxicity testing methods, an IVIVE workgroup (IVIVE–WG) was established under the
Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM)
to help actualize and implement the ICCVAM Strategic Roadmap, which requires federal
agencies and stakeholders to work together to develop and implement NAMs to toxicity
testing that improve human health relevance and reduce or eliminate the need for testing
in animals [3]. The IVIVE–WG includes representatives from nine U.S. federal offices: the
Agency for Toxic Substances and Disease Registry (ATSDR), the Consumer Product Safety
Commission (CPSC), the Department of Defense (DoD), the National Library of Medicine
(NLM), the Environmental Protection Agency (EPA), the Food and Drug Administration
(FDA), the National Institute of Environmental Health Sciences (NIEHS), the National
Institute of Standards and Technology (NIST), and the Department of Labor’s Occupational
Safety and Health Administration (OSHA). International partners participating in the
IVIVE workgroup include EURL ECVAM (which is part of the European Commission’s
Joint Research Centre) and the Japanese Center for the Validation of Alternative Methods
(JaCVAM). The workgroup was charged with cataloging and evaluating currently available
IVIVE approaches, and its activities have focused on harmonizing the technical terms used
in IVIVE applications, evaluating the suitability of IVIVE approaches for specific research
or regulatory purposes, and assessing whether additional tools or models are needed.

This manuscript presents the workgroup’s findings on the judicious use of IVIVE and
its potential to support decision making. We review the various applications of IVIVE
found in published peer-reviewed literature and highlight examples to demonstrate the use
of IVIVE in the safety assessment of drugs, food substances, and environmental chemicals.
We have also compiled a non-exhaustive list of resources and tools to support IVIVE, and
present areas of research needs and future opportunities.

2. Methods

Members of the IVIVE–WG provided input on their respective agencies’ specific risk
assessment applications that can involve the IVIVE approach; agency-specific guidance
documents or publications that are related to IVIVE; modeling tools or software an agency
plans to use or has used for facilitating IVIVE analysis and decision making; as well
as agency needs, data gaps, or uncertainty that prevents using IVIVE in regulatory risk
assessment. Input was received from the ATSDR, CPSC, DoD (U.S. Army Public Health
Center and U.S. Air Force, 711 Human Performance Wing, Airman Biosciences Division
(RHB)), NLM, EPA, FDA, NIEHS, and EURL ECVAM, and the responses are summarized
in following tables.

In addition to ICCVAM member agencies’ inputs, a literature review was conducted to
help grasp the extent IVIVE is used in the broader scientific community. The terms “In vitro
to in vivo extrapolation”, or “IVIVE”, were used to search for literature in PubMed, Scopus,
and Web of Science in May 2020. In addition, to harmonize IVIVE-related vocabularies
in the literature and to ensure better communication of IVIVE concepts in a precise and
consistent manner, a glossary of controlled vocabulary for IVIVE was developed by the
IVIVE–WG (Table S1).

3. Regulatory Application of IVIVE

Input on agency-specific IVIVE activities is summarized in the tables below. Table 1
lists each agency’s specific risk assessment applications that can involve the use of IVIVE.
The ATSDR, NIEHS/NTP, NIST, DoD (except in limited internal capacities) and EURL
ECVAM are not regulatory agencies, so they only use IVIVE for non-regulatory applications
if it is applied. Table 2 summarizes the guidance documents and publications that describe
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applications of IVIVE. In Table 2, in addition to inputs from the IVIVE–WG members, we
also added the recently published science approach document from Health Canada on the
use of an in vitro-based point of departure (POD) as a conservative surrogate in the absence
of traditional hazard data [58].

Table 1. Specific risk assessment applications that can involve the use of IVIVE.

Agency/Organization Use of In Vitro to In Vivo Extrapolation (IVIVE) in
Risk Characterization

Use of IVIVE or In Vitro Data Outside
of Quantitative Risk Characterization

Agency for Toxic
Substances and Disease
Registry (ATSDR)

Application of IVIVE approaches would require the
ability to derive health guidance values using
high-throughput in vitro data. Several uncertainties and
assumptions remain; hence, IVIVE is not used in
health assessments.

In vitro data are used or potentially used
as weight of evidence.

U.S. Food and Drug
Administration Center for
Food Safety and Applied
Nutrition (FDA/CFSAN)

Use IVIVE to develop physiologically based
pharmacokinetic (PBPK) models, specifically to account
for metabolism in the liver and transport in the kidney.

Not applicable (N/A)

FDA Center for Drug
Evaluation and Research
(FDA/CDER)

The role of IVIVE in risk assessment has generally been
limited to relating in vitro human ether-à-go-go-related
gene (hERG) channel assay results to the risk of QT
prolongation and PBPK modeling. Following
established decision trees in dedicated guidance [59],
in vitro data can be used to predict drug–drug
interactions and therefore dismiss the need for clinical
trials. It is anticipated that appropriately constructed
IVIVE algorithms will play a critical role in assessing the
utility of new approach methodologies (NAMs)
proposed to be used in risk assessment, which may
include the support of starting dose selection in
first-in-human trials of products using the Minimum
Anticipated Biological Effect Level [60].

In vitro data can predict efficacy of drugs
and estimate doses to use with high
potential in the field of rare diseases [61].

Consumer Product Safety
Commission (CPSC)

Has not used the approach but could use the
information during any applicable risk evaluation; the
approach could be used in a weight of evidence
approach for risk assessments.

N/A

U.S. Environmental
Protection Agency, Office
of Pesticide Programs
(EPA/OPP)

Use IVIVE to perform a rapid risk screening for
chemicals without in vivo toxicity data [62] or to support
a weight of evidence approach to identify data needs or
to derive extrapolation factors [63].

Identify chemicals that act on a common
mechanism.

U.S. Department of
Defense (DoD)

Various applications use IVIVE to derive
human-relevant numbers to address operational human
toxicity issues providing informed assessment of risk.
This approach has also been used in a corroborative
weight of evidence evaluation of hazard (comparisons
across various data streams).

N/A

National Institute of
Environmental Health
Sciences, National
Toxicology Program
(NIEHS/NTP)

N/A

Perform hazard characterization. Use
IVIVE to estimate external doses needed
to achieve blood levels that equate to the
identified in vitro potencies. The
approach is applied to multiple species
including human.

European Union Reference
Laboratory for
Alternatives to Animal
Testing (EURL ECVAM)

N/A—does not conduct regulatory risk assessments.
Development of case studies to explore
and illustrate applicability of in vitro data
and IVIVE.
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Table 2. Summary of current Agency’s publications or guidance documents that are related to IVIVE.

Agency/Organization Publications or Guidance Documents

ATSDR ATSDR does not have guidance on IVIVE.

CPSC CPSC has no guidance document related to IVIVE. There is a proposed Guidance on Alternative Test
Methods and Integrated Testing Approaches, 86 FR 16704, 31 March 2021.

DoD The DoD has no specific guidance on IVIVE implementation; however, other guidance frameworks are
currently being developed.

EPA

Guidance Documents: [49,64,65]
Publications grouped into the following categories:

• Workshop report, review or perspective related to IVIVE: [29,66];
• IVIVE application for specific biological pathway: [67,68];
• IVIVE application using HTS assays: [25,31,41,69–72];
• Evaluation of uncertainly and variability of IVIVE approach: [73–77];
• PK parameter prediction and evaluation: [78–84];
• Open-source tools for PBPK modeling and IVIVE: [85–88];
• General statements of chemical risk assessment goals including IVIVE: [7,89–92].

NIEHS/NTP Publications: [29,41,73,76]

FDA/CDER

Publications: [57,93,94]
Guidance Documents:

• In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug
Interactions Guidance for Industry [59];

• Clinical Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug
Interactions Guidance for Industry [95];

• Physiologically Based Pharmacokinetic Analyses—Format and Content Guidance for Industry [96];
• Guidance for Industry Pulmonary Tuberculosis: Developing Drugs for Treatment [97];
• The importance of a rigorous IVIVE algorithm to the qualification of a NAM for embryofetal

developmental toxicity is captured in Annex 2 of ICH S5(R3) Detection of Reproductive and
Developmental Toxicity for Human Pharmaceuticals: Guidance for Industry [98].

European
Commission/EURL
ECVAM

There is no specific guidance on IVIVE so far, but various approaches have been reviewed or
explored [39,43,99,100].

• OECD PBK model guidance describes IVIVE approach illustrated with several case studies [101];
• EURL ECVAM workshop highlighted the need to develop guidance on constructing PBK models

without the use of in vivo data to support IVIVE applications [54];
• OECD “Guidance Document on Good In Vitro Method Practices (GIVIMP)” [50] guidance also

reports use of IVIVE approach;
• European chemicals agency (ECHA) publishes reports emphasizing the important role of (Q)IVIVE

in in vitro-based hazard identification and providing recommendations for (Q)IVIVE
implementation [102];

• The Scientific Committee on Consumer Safety (SCCS) adopted one guidance document on the
safety assessment of nanomaterials in cosmetics, in which IVIVE is required for safety assessment
mostly or entirely based on in vitro test results [103].

Health Canada Science approach document on bioactivity exposure ratio: application in priority setting and risk
assessment [58].

4. Applications of IVIVE Approaches
4.1. Review of IVIVE Literature

The literature search, as described in the Methods, returned 1138, 654, and 619 articles
with PubMed, SCOPUS, and Web of Science, respectively. After combining the results from
the 3 databases and removing the duplicates, 1680 articles remained. The number of IVIVE
publications has significantly increased over the last decade (Figure 1).
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Figure 1. The number of articles found in the literature with the terms “In vitro to in vivo extrapolation”
or “IVIVE”.

The literature data set was further narrowed down by subject matter experts to 288 ar-
ticles of direct relevance to this review via screening of titles and abstracts. Thereafter, these
articles were grouped by the two main types of IVIVE applications: IVIVE of dosimetry
and IVIVE of ADME parameters. An article that included both applications was counted in
IVIVE of dosimetry, with the rationale that this application is more inclusive. Most articles
fell into the category of IVIVE of ADME parameters (133 articles), rather than IVIVE of
dosimetry (44 articles). The remaining articles fell into the other categories relevant to
IVIVE, such as studies that compared in vitro and in vivo correlations.

4.2. IVIVE of Dosimetry
4.2.1. Summary of Common Applications

Figure 2 describes the process of converting an in vitro concentration associated with
bioactivity to an external exposure level. Despite the general consensus that in vitro and
in silico approaches hold great potential in revolutionizing toxicity testing and risk assess-
ment [104], one of the key barriers to accepting the use of in vitro toxicity testing data
to inform risk evaluations is the inability to relate the nominal assay concentration to a
relevant in vivo exposure metric. The feasibility of employing a simplified PK model in an
IVIVE approach to approximate the lowest effect levels for chemicals based on in vitro data
was first tested in a pilot study on 35 chemicals [71], immediately followed by an effort
that expanded the approach to 239 chemicals [31]. A PK model that incorporated hepatic
clearance, renal (non-metabolic) clearance, and plasma protein binding was used to predict
an external dose that would result in the respective steady-state plasma concentration,
which corresponded to some in vitro bioactive concentration. This predicted dose has been
referred to in a variety of ways as equivalent administered dose (EAD), administered equiv-
alent dose (AED), or oral equivalent dose (OED) in the case of oral exposure [31,85,105].
For those chemicals with in vivo PK data, the approach was demonstrated to be reasonably
predictive, with overestimation of plasma concentrations at a given external dose occurring
for all but a few chemicals. In this case, such an overestimation was considered ultimately
protective of human health. Depending on the assumptions used, in vitro bioactivity can be
a conservative surrogate for in vivo toxicity, with relatively weak quantitative correlation
between the two [70,72,73,105,106].
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Meanwhile, Aylward and Hays [106] directly compared in vitro bioactive concen-
trations in the ToxCast database to in vivo plasma concentrations associated with the
no-observed-adverse-effect level (NOAELs) and lowest-observed-adverse-effect levels
(LOAELs) in traditional toxicological studies of laboratory animals or chronic human expo-
sure reference values and plasma concentrations in human biomonitoring studies. Their
assessment, which was limited to five chemicals, showed that in vitro bioactivity concen-
trations were similar to the range of in vivo concentrations associated with the transition
from non-adverse to adverse responses [106]. Turley and colleagues conducted a case study
of two indirect food additive chemicals, and showed that OEDs derived from ToxCast
bioactivity data and IVIVE were similar to or lower than LOAELs and NOAELs in animal
studies [66].

Beyond these high-throughput IVIVE (HT-IVIVE) applications, parallel efforts focus-
ing on specific chemical spaces have been presented. Tonnelier and colleagues used IVIVE
to assess bioaccumulative compounds covering pharmaceuticals, plant protection prod-
ucts, and industrial chemicals and demonstrated that metabolic clearance, plasma protein
binding, and renal excretion are the main factors in determining whether bioaccumulation
will occur [107]. Louisse and colleagues used a PBPK model for rat and human to convert
in vitro concentration–response data of all-trans-retinoic acid into in vivo dose–response
data [108], which were then used to derive a benchmark dose (BMD) [99,108,109]. Davidsen
and colleagues estimated psychoactive substance exposures based on hair and whole blood
biomarker concentrations, using both well-stirred and parallel tube models, to provide a
basis for toxicokinetic understanding of ketamine analogues [110].
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4.2.2. Challenges and Additional Considerations for IVIVE of Dosimetry

One challenge associated with in vitro toxicity testing is distinguishing the disruption
of specific biomolecular targets or pathways from generalized disruption of cellular ma-
chinery that can lead to cell stress and cytotoxicity. Multiple attempts have been made to
characterize the bioactivity seen in vitro, which may be separated into a cytotoxic burst of
non-specific activity and more focused effects on particular molecular targets [111–113].
Knowledge of the general cell stress response and cytotoxicity could help inform non-
specific or common mechanisms, such as necrosis and regenerative proliferation; whereas
knowledge of the specific molecular targets could help inform specific modes of action [112].

Zhang and colleagues suggested that IVIVE of toxic effects should be considered,
in addition to IVIVE of dosimetry [46]. For toxic effects involving systemic regulation,
organism-level PD models are needed to extrapolate in vitro toxicity pathway perturbation
to in vivo adverse outcomes [114–116]. By linking PBPK and PD models, in vitro POD can
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then be extrapolated to external doses for expected exposure scenarios and relevant toxic
endpoints [46,85,117].

IVIVE of dosimetry has also been used to improve correlation between in vitro bioactiv-
ity and in vivo toxicological endpoints such as in vitro lowest-observed-effect concentration
(LOEC) versus in vivo lowest-observed-effect level (LOEL) [73]; however, the overall util-
ity of IVIVE to assess toxicological risk depends on the characterization of experimental
variability for in vivo and in vitro endpoints and the assessment of uncertainty and inter-
individual variability in pharmacokinetic parameters [70,72,118–120].

Another challenge that can increase the uncertainty in IVIVE of dosimetry is the lack
of a well-defined in vitro dose metric to describe the in vitro dose–response relationship.
The traditional use of nominal concentration as a dose metric may not be appropriate as
many factors can reduce the bioavailable and biological effect dose to levels far below
the nominal concentration [36]. Non-specific migration to plastics and binding to me-
dia constituents (for example, serum proteins, lipids) have been documented, and test
chemicals may evaporate, degrade, or be metabolized. All these factors can result in an
underestimation of potency [121]. This information can be obtained by measuring chemi-
cal distribution in different tissue compartments or by mathematical model predictions.
Several in vitro kinetic models have been proposed to convert nominal concentrations to
free chemical concentrations in the well, largely based on physicochemical properties, such
as log Kow (n-octanol–water partition coefficient) [34,35,122–124]. Proença and colleagues
have compared and assessed the performance of these mathematical models to predict free
concentration [125]. Although these models show promise, a more thorough evaluation
has been hindered by a lack of available experimental data.

A workflow for IVIVE of dosimetry that considers the in vitro kinetics is presented
in Figure 3. This workflow is adapted from work by Louisse et al. [99], Punt et al. [126],
and Caroline et al. [127]. Briefly, in Step 1 (Figure 3), a PBPK model can be used to predict
relevant internal concentration dose metric, such as peak plasma or tissue concentration
(Cmax) or time-integrated area under the plasma concentration vs. time curve (AUC), in
plasma or a tissue over time and across a wide range of external doses. The dose metric
may be selected based on a proposed mode of action or an in vitro endpoint of interest.
For example, for relating to a cytotoxicity assay using hepatocytes, an external dose–peak
liver concentration curve is predicted. In Step 2, in vitro toxicity testing can generate an
in vitro dose–response curve. In parallel, in Step 3, the in vitro nominal concentration in the
testing system can be adjusted and converted to a free medium or a cellular concentration
with appropriate mathematical models or measurable analytics. Either nominal or adjusted
concentrations may be used as effective in vitro concentration, which is assumed to be
equivalent to the selected in vivo internal concentration dose metric (e.g., Cmax). Finally, in
Step 4, the external dose–in vitro response curve is generated using the above assumption,
from which a POD can be derived to inform risk assessment.
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Figure 3. Consideration of in vitro kinetics in IVIVE of dosimetry. Step 1. Execute the PBPK model
at the time point of interest at multiple doses to obtain chemical distribution in plasma and tissue
compartment. Then, use the dose–response curve to determine the relationship between the external
dose and Cmax or other internal dose metric (e.g., AUC) in plasma or selected tissue (e.g., liver).
Step 2. Concentration–response curve obtained from selected in vitro assay. Nominal concentration
is used for plotting. Step 3. Using appropriate in vitro kinetic models, adjust the in vitro nominal
concentration in the testing well to free medium or cellular concentration. Step 4. Combine the
external dose–Cmax curve form Step 1 and in vitro concentration–response curve (Step 2 or Step 3) to
obtain a relationship between external dose and in vitro endpoint. Adapted from Paini, et al. [39].

4.3. IVIVE of ADME Parameters

IVIVE has also been used to refer to scaling ADME properties measured in species-
or population-specific in vitro systems to in vivo conditions, such as metabolic clearance,
absorption, and bioavailability. IVIVE is a critical component of bottom-up PBPK mod-
els [76,88,128–131]. Compared to building a PBPK model primarily based on observed
in vivo data (a top-down approach) [132,133], the bottom-up PBPK models are built mainly
relying on in vitro and in silico data [88,134]. A large portion of the IVIVE literature dis-
cusses using IVIVE for predicting various ADME parameters. Drawing from earlier PBPK
modeling and parameter estimation research efforts, a 2014 expert-driven workshop sug-
gested that conservative default assumptions might be used in place of chemical-specific
in vivo data for IVIVE [135]. While this is a reasonable approach, the advent of large in vitro
datasets characterizing at least some key aspects for non-pharmaceutical compounds have
opened up additional avenues for exploration and model refinement from the use of
conservative default assumptions [31,75,100].
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4.3.1. Summary of Common Applications

The liver is the primary organ of metabolism and clearance from the body. A variety of
in vitro platforms have been used to measure intrinsic metabolic activities of liver enzymes
and are scaled to in vivo parameters for use in PBPKs. These platforms include recombi-
nant enzymes [136], human liver microsomes [137], and primary hepatocytes [138]. Other
experimental systems such as dynamic 3D bioreactors [139], coupled microfluidic systems,
and vascularized human organ chips [140] have also been proposed as in vitro models
to perform IVIVE of hepatic clearance. To scale in vitro intrinsic metabolic clearance, the
data need to be normalized to units such as mg per protein per million cells, and then
appropriate scaling factors to units such as L/hour need to be applied.

In addition, metabolic rate constants in non-hepatic tissues such as the gut, kidney, and
lung can also be measured in vitro and extrapolated to in vivo [21,141–144]. Comparable to
approaches for the liver, lung and kidney microsomes were used to estimate metabolism in
non-hepatic tissues [144]. Kunze and colleagues showed that the transport measurement of
a porcine proximal tubule cell line can be applied to predict human renal clearance as the
net result of glomerular filtration, tubular secretion, and tubular reabsorption for multiple-
class chemicals [21]. Wambaugh and colleagues suggested that the role of the extrahepatic
metabolism may be more pronounced for non-pharmaceutical compounds [76].

In vitro cell-based systems are also commonly used to examine the passive and active
transport mechanisms influencing permeability/absorption, distribution, and elimination
of chemicals or their metabolites. These assay systems vary in complexity and can make
use of membrane vesicles, cell lines transfected with relevant transporters, or other more
sophisticated models. The specific in vitro parameters can also vary but will consider
passive and active permeability and typically assume saturable Michaelis–Menten kinetics
to help determine the rate of accumulation in the tissues or efflux from the tissues based
on the direction of the transport. The model is the varied binding affinities of a substance
with different transporters in the same system; however, utilizing in vitro systems is an
efficient, cost-effective, and faster way of estimating the relevant parameters required
to complement PBPK models. Among the most commonly used cells in assessing drug
permeability and transport for predicting intestinal absorption are Caco-2 cells derived
from a human colon adenocarcinoma and which express many active transporters [13,145].
The correlation between the in vitro apparent permeability coefficients across Caco-2 cell
monolayers and the fraction of chemicals absorbed is well established [15]. Additionally,
the in vitro cell-based systems based on the human embryonic kidney cell line 293 (HEK293)
or Madin–Darby canine kidney (MDCK) cells have been commonly used to simulate the
transport of substances in the kidney to examine the impact of renal transport mechanisms
on their elimination [146].

For other parameters describing ADME properties such as drug penetration across the
blood–brain barrier and unbound tissue to plasma partition coefficients, IVIVE approaches
have also been developed using cell-based penetration models or in vitro membrane parti-
tioning and were shown to be successfully extrapolated to in vivo settings [147,148]. Several
review articles and the new OECD guidance on PBK modeling provide more details on
in vitro and in silico approaches and tools, as well as read-across methods, for IVIVE of
ADME parameters [13,15,101,149,150].

4.3.2. Evaluations and Additional Considerations for IVIVE of ADME Parameters

The evaluation of PBPK models parameterized using IVIVE can be performed by com-
paring predictions from IVIVE-linked PBPK models with in vivo observations of internal
dose metrics, such as steady-state concentration (Css), Cmax, or AUC [76,136]. Common
evaluation metrics used for comparing model predictions to observations include average
fold-error and absolute average fold-error [148,151], exposure overlap coefficients [152],
percent error thresholds, and evaluating whether the observations fall within the 5th to 95th
percentiles of model predictions [136]. Imperfect but statistically significant correlations
have been observed, consistent with the idea that the available in vitro methods describe



Toxics 2022, 10, 232 12 of 38

some key, but not all-encompassing, processes governing ADME. Wang found that, for six
out of seven prototypical CYP3A inhibitors, the predicted Cmax fell within two-fold of the
in vivo observations [128]. Wambaugh and colleagues also found that the predicted Css
for 40% of ToxCast chemicals examined as of 2015 were within ~3.2-fold of the literature
values [88].

In vitro extrapolated in vivo clearances are commonly found to underpredict in vivo
hepatic clearances [14]. Disconnects among in vivo extrapolated clearances from distinct
in vitro systems have also been observed and recently evaluated [153]. Thus, several strate-
gies for scaling factors have been proposed in the literature; these strategies tend to be
in vitro system-specific [154]. These scaling factors, such as intersystem extrapolation fac-
tors and relative activity factors, primarily aim to correct for any differences in enzyme
activity between in vitro and in vivo systems [136,154]. Correction factors, commonly used
for correcting drug binding in the incubations, plasma, and in the whole liver, are ad-
ditional methods used for improving the predictive accuracy of the IVIVE-based PBPK
modeling [14]. The underestimation of whole-body metabolism when using hepatic data
may be more pronounced for non-pharmaceutical chemicals, potentially due to greater
extrahepatic metabolism for chemicals not planned for use as therapeutics [76].

While most IVIVE applications have been developed for human health risk assessment,
applications for non-human species are also available. Nichols and colleagues [81–83] have
developed methods for measuring rainbow trout liver metabolism in vitro and incorporated
metabolism information into PBPK models via appropriate scaling factors to derive more
realistic estimates of fish bioconcentration factors. Stadnicka-Michalak and colleagues [155]
correlated acute lethality of organic chemicals (log Kow between 0.5 and 7) in cultured fish
gill cells with fathead minnow LC50s. Their approach used PK modeling of the cell culture
system to derive time-dependent cellular concentrations of the target compound in vitro
and compared these values to internal concentrations in vivo predicted with whole-body
PBPK models. Wetmore et al. [72] found that human and rat fraction unbound in plasma
and hepatic clearance were significantly but not perfectly correlated, while Black et al. [156]
observed limited agreement among humans, rats, and trout.

4.4. Employing IVIVE to Predict In Vivo Toxicity

The IVIVE approach has also been applied for evaluating, at the screening level,
the safety or toxic potential of environmental chemicals [6,31,100]. For example, Mebust
and colleagues [157] combined a biophysical model of chromosomal damage, which was
developed from in vitro data, with a dosimetric model to predict cancer incidences in rats
exposed to radiation. Leonard and colleagues [42] used a PBPK-PD model to predict
oral intake doses resulting in reduction of thyroid hormones by 10% for six drugs and
environmental chemicals that inhibit thyroid peroxidase enzyme. With the advance of
more sophisticated or more physiological in vitro and biomarker methods, more robust
IVIVE predictions have been developed in recent years to support applications such as
investigating cardiac safety of drugs [158] and studying the effects of metabolism on drug
efficacy [159]. More omics-oriented PD predictions or enzyme-expression behaviors have
been found in recent publications, providing potential substitutions for in vivo tests [6,160].

5. Case Examples from the Literature

This section highlights a few case examples of IVIVE applications from the literature.
The case examples are considered more relevant to regulatory risk assessment based on the
input from members of the IVIVE–WG.

5.1. For Prioritization

High-throughput pharmacokinetic models based on chemical properties and in vitro
high-throughput data have been applied by the pharmaceutical industry in preparation
for human clinical trials [128,134,136]. HT-IVIVE approaches have also been coupled to
in vitro bioactivity data as an alternative to animal testing for evaluating the safety or
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toxic potential of environmental chemicals [31,100]. As described in the previous section,
Wetmore and colleagues performed IVIVE on ToxCast bioactivity data to enable the com-
parison of ToxCast-based OEDs to human exposure or in vivo reference doses [31,72]. These
comparisons demonstrated that the in vitro assays generally provided a conservative (that
is, lower) POD estimate compared to those derived from in vivo studies, likely due to
conservative assumptions made in the PK model (such as restrictive clearance) and lower
threshold for bioactivity [31,70,73,105]. Based on the comparisons, chemicals with low
margins of exposure are put on the priority list for further assessment. This HT-IVIVE
approach, relying on hepatic clearance and plasma protein binding as critical determinants
of internal dose estimations [31,100] has gained reasonable acceptance in the toxicology
community as a prioritization tool in chemical risk assessment [70,161].

Subsequent efforts have been made to further explore the application of HT-IVIVE
in chemical prioritization. As an important step toward estimating plausible biologi-
cal interactions in a high-throughput risk assessment framework, Sipes and colleagues
applied in vitro or in silico derived toxicokinetic parameters (for example, hepatic clear-
ance and plasma protein binding) to perform IVIVE and exposure likelihood assessment
to the entire Tox21 federal collaboration chemical screening data set, which provides a
framework to relate in vitro toxicology data rapidly and quantitatively to chemical expo-
sures [41]. To incorporate toxicodynamic variability in HT-IVIVE, Abdo and colleagues
used human-population-based in vitro cytotoxicity screening data and comparative popu-
lation genomics analyses to evaluate individual variability in responses to toxicants [162].
Wetmore and colleagues measured in vitro clearance rates for 13 cytochrome P450 and
5 uridine 5′-diphospho-glucuronysyltransferase isozymes using recombinantly expressed
enzymes for selected ToxCast chemicals and incorporated the isozyme-specific clearance
rates into an IVIVE model that captures known differences in isozyme expression across
several life stages and ethnic populations. This approach allows for the estimation of
subpopulation-specific OEDs that can be directly compared to subpopulation-specific ex-
posure estimates [77]. Wambaugh and colleagues assessed toxicokinetic measurement
uncertainty and variability in HT-IVIVE by developing a Bayesian method to provide
chemical-specific uncertainty estimates for fraction unbound (fu) and intrinsic hepatic
clearance (Clint) and also used Monte Carlo simulation to address both measurement
uncertainty and biological variability into IVIVE [75]. A rough trend may be argued that
toxicodynamic variability is greater than toxicokinetic variability, which is in turn greater
than toxicokinetic uncertainty for in vitro TK methods; however, there are individual chem-
ical cases or sets of measurements where this order may be inverted, for example, due to
difficulties working with the chemicals in vitro [163].

Efforts are ongoing, but more research is needed for integration of AOP in IVIVE and
IVIVE of mixtures. El-Masri applied IVIVE to estimate maternal exposures that would yield
fetal blood levels equivalent to the chemical activity concentration of selected in vitro HTS
assays related to the most sensitive AOP. A life-stage PBPK model was used to convert fetal
blood levels to maternal exposures, which were then compared to potential exposure levels
for deriving AOP-based margins of exposure [164]. Compared to individual chemical appli-
cations, HT-IVIVE for mixtures remains largely unexplored. Abdo and colleagues applied
IVIVE to convert in vitro cytotoxic concentrations to OEDs for two pesticide mixtures with
similar ranges of in vitro cytotoxicity and identified nominal differences in the margins
of safety, suggesting the necessity of including IVIVE and potential human exposures in
risk evaluation [162]. Valdiviezo and colleagues investigated the concentration-dependent
effects of chemical interactions on toxicokinetic parameters using 20 pesticides (both in-
dividually and as equimolar mixtures) and observed that IVIVE using mixture-derived
toxicokinetic data produced more conservative estimates of activity-to-exposure ratios as
compared to using data from single chemical experiments [165].
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5.2. Developmental Toxicity

Several in vitro assays have been developed as alternatives for developmental toxicity
testing of chemicals in animal models [166,167]. These include cellular assays (such as the
rat limb bud micromass test), the embryonic stem cell test, and other culture assays (such
as whole embryos of rat, frog, chicken, and zebrafish). In these assays, in vitro readouts
including toxicogenomic and metabolomic data have been identified as biomarkers for
potential use in predicting developmental toxicity in vivo [167,168]. However, in vitro
findings alone, commonly used for hazard identification, have not always been reflective
of in vivo toxicity to support quantitative chemical risk assessment [169,170]. Louisse and
colleagues [167] used embryotoxicity as an example to discuss how in vitro effect data
could be translated to in vivo conditions with different approaches: (1) classify whether
a compound has a weak or strong embryotoxic potential using statistical models; (2)
predict relative embryotoxic potencies for a group of structurally related compounds using
QSAR models and read-across approaches; and (3) convert in vitro effect concentrations to
equivalent administered in vivo doses using PBPK modeling and IVIVE [167].

PBPK-IVIVE approaches are increasingly being applied to risk assessment, such as pre-
dicting developmental in vivo dose–response for the development toxicity of tebuconazole,
an agricultural fungicide [171]. In this study, an adult rat PBPK model primarily param-
eterized by in silico and in vitro approaches was developed, and the model’s predictive
performance was evaluated using available in vivo kinetic data. The authors had previously
demonstrated that tebuconazole does not cross into the placenta [172]; it was therefore
assumed that maternal blood concentration was an adequate surrogate for concentrations in
fetal tissues. Maternal blood concentration was used as the target concentration equivalent
to in vitro effect concentrations to perform IVIVE to predict the in vivo dose–response rela-
tionship [171]. BMD modeling was then applied to the extrapolated in vivo dose–response
to estimate the lower bound values of the 95% confidence interval of the BMD associated
with a 10% extra risk of adverse effect (BMDL10). The estimated BMDL10 value was
less than the reported in vivo POD value by three-fold, demonstrating the potential to use
this approach for conducting risk assessment without performing in vivo studies. This
approach has also been used to predict developmental toxicity potential for other classes of
developmental toxicants, such as glycol ethers in rats and humans [99], all-trans-retinoic
acid in rats and humans [109], and phenols in rats [169].

PBPK-IVIVE approaches can also include population analysis to study the influence of
inter-individual variabilities in developmental toxicity, as in the study of phenols conducted
by Strikwold and colleagues [173]. In addition, dynamic life-stage PBPK models can be used
to conduct IVIVE, as in the study that predicted embryotoxicity from ethanol exposure in
various species, including humans, during critical windows of developmental toxicity [68].

5.3. Endocrine Effects

Many environmental chemicals have the potential to interact with hormone receptors
and cause a variety of adverse health effects, posing regulatory challenges. To address
these challenges, a growing body of international in vitro test guidelines have been es-
tablished to address mechanisms and modes of action of endocrine-disrupting chemicals
to assist in the safety assessment of this class of substances. Standardized methods to
incorporate metabolic and PK aspects into these in vitro tests are necessary and still under
development [174,175].

In vitro estrogen receptor (ER) assays targeted to different key events in the ER activa-
tion pathway, such as ER binding and dimerization, have been developed as alternatives
for measuring estrogenic activity [176]. Several studies on IVIVE of dosimetry have been
conducted to predict the lowest effect levels (LELs) in rodent uterotrophic assays using
bioactive concentrations from in vitro-measured endpoints related to the ER signaling path-
way. In one of the early studies [177], a population-based PK model was used to conduct
IVIVE for two ER reference chemicals, estradiol and bisphenol A, and demonstrated that
the OEDs estimated from the in vitro POD of an ER transactivation assay were lower than
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the LELs in rat uterotrophic assays. The result suggested that this ER transactivation assay
may provide a more conservative hazard estimate for use in risk assessment. More recently,
in vitro concentration–response data for the same chemicals obtained from various in vitro
assays were translated into in vivo dose–response data using a PBPK model developed
based on in vitro and in silico derived parameter values [178]. BMD analysis was subse-
quently performed on the predicted dose–response data to produce BMDL10 values, which
were compared to those values derived from rodent uterotrophic assay data. One of the
in vitro assays, the yeast estrogen screen assay, was identified as having the best potential
to predict dose-dependent uterus growth induced by estrogenic chemicals [178].

Casey and colleagues [105] evaluated the performance of three PK models of different
structure and complexity in IVIVE of dosimetry for a group of 29 ER agonists. They
found little difference in model performance based on complexity, and demonstrated
that simple adjustments, applied to account for in vitro intracellular exposure or chemical
bioavailability, resulted in significant improvements in the predictive performance of all PK
models tested [105]. In a later study, a human uterine cell estrogen response assay was used
to estimate in vivo equivalent doses for a set of chemicals and found 19 out of 23 chemicals
to have an EAD lower or equivalent to PODs in the rodent uterotrophic assay. This
equivalency also suggests that an in vitro assay could provide a more conservative estimate
for human health risk than the rodent uterotrophic assay [179]. Punt and colleagues applied
an IVIVE approach to prioritize different polycarbonate monomers for their endocrine
potencies by combining in vitro bioassay data with PBPK modeling. This study revealed a
shift of relative potency between in vitro-measured potencies and IVIVE-based estimates,
which is likely due to the influence of intestinal metabolism on the in vivo availability [180].

Compared to ER, there are fewer reports describing IVIVE analyses predicting andro-
gen receptor activity. Kleinstreuer and colleagues conducted IVIVE of dosimetry using
in vitro activity concentration predictions from an androgen receptor pathway model de-
veloped based on 11 high-throughput in vitro assays. It was demonstrated that IVIVE
can be helpful in explaining the discrepancy in potency ranking seen between in vitro AR
pathway model prediction and the in vivo Hershberger assay. Considering the variability
seen in in vivo assays, it is suggested that the in vitro AR pathway model may better predict
specific AR interaction and could rapidly and cost-effectively screen thousands of chemicals
without using animals [67].

5.4. Case Examples of IVIVE of ADME Parameters

PBPK models can be built primarily based on observed in vivo data (a top-down
approach) [132,133] or mainly rely on in vitro and in silico data (a bottom-up approach) [88,
134]. Traditionally, development of PBPK models required significant resources, particularly
experiments characterizing chemical concentration in tissues as a function of time, dose,
and route of exposure [181]. As the traditional approach is not capable of keeping pace
with the new toxicity testing paradigm, more bottom-up PBPK models are being developed
based on a combination of results from in vitro and in silico methods [101].

PBPK models are intended to be fit-for-purpose, that is, explicitly simulating only the
key biological and ADME processes and tissue compartments of interest while “lumping”
less relevant aspects together. Considering this, it is important to define the objective
of the model and identify the existing data gaps before searching for relevant in vitro
data in literature or designing experiments to generate in vitro data for parameterizing
PBPK models. Examples of specific applications of PBPK model parameterization and
development using IVIVE of ADME parameters are described below.

Malmborg and colleagues provided an example citing the importance of conduct-
ing IVIVE for the various metabolically active tissues, including liver, gut, and blood,
and integrating them using PBPK modeling, especially for drugs administered as a pro-
drug [182]. Wambaugh and colleagues relied on in vitro metabolism data to characterize
active metabolism and developed a machine-learning model trained to predict the discrep-
ancy between in vitro-based predictions and in vivo observations of PK [88]. Campbell and
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colleagues developed a hybrid computational fluid dynamic–PBPK model for naphthalene,
in which the metabolic rates were determined experimentally using in vitro methods. The
model supported cross-species dosimetry comparisons of naphthalene concentrations and
tissue normalized rates of metabolism in the nasal respiratory and olfactory epithelium,
lungs, and liver. This model predicted human equivalent inhalation concentrations corre-
sponding to several NOAELs or LOAELs for noncancer effects of naphthalene observed in
rats [141].

An example of IVIVE for predicting renal transport is the rat PBPK model of perflu-
orooctanoic acid (PFOA), in which published data generated using in vitro cell systems
were utilized to establish the role of renal reabsorption in the elimination of PFOA via the
involvement of several transporters [183]. The renal reabsorption prediction from the PBPK
model was scaled and/or normalized from in vitro data, such as the Vmax (capacity) and
Km (affinity) of basolateral and apical transporters measured in in vitro assays [184,185].
This approach also included separate relative activity factors of apical and basolateral
transporters for males and females, which enabled the prediction of sex-based differences
in renal transport and the elimination of PFOA. The PBPK-model-based predictions of the
concentrations of PFOA in the liver, blood, and urine correlated with experimental data for
both the male and female rats, indicating that in vitro-derived physiological descriptions of
transporter-mediated renal reabsorption can reasonably predict sex-dependent elimination
of PFOA.

Recently, new approaches have been developed for calculating in vitro unbound tissue
to plasma partition coefficients using in vitro membrane partitioning, and the parameters
were shown to be extrapolated in vivo to predict whole-body drug distribution using PBPK
modeling [148]. In addition, a life-stage-specific PBPK model can be tailored using in vitro
data for chemicals with sparse data sets for predicting dosimetry in different life stages, such
as infants, children, pregnant and lactating women, and fetuses [68,186–190]. For example,
in vitro methods can be used to determine differences in metabolic parameters among
populations, ethnic groups, and ages, such as those based on differences in expression
of cytochromes P450 and associated genetic polymorphisms, or adjusted from enzyme
ontogeny or polymorphism [17,136,191–194].

5.5. IVIVE Application to Engineered Nanomaterials (ENMs)

One topic that has generated widespread research interest is IVIVE of studies using
ENMs, including how to assess ENM dosimetry [195]. Similar approaches would typically
also work for microplastic and nanoplastic particles with some exceptions (for example,
larger microplastic particles becoming trapped during passage through an exposure sys-
tem) [196]. For exposure systems that use deposition onto cells located at the air–liquid
interface after aerosolization of dry powders or ENM suspensions, it may be possible to
directly quantify the deposited concentration [197–199]. However, one complicating factor
is that some ENMs, such as carbonaceous particles, may be more challenging to quantify
at low concentrations in biological matrices [200,201]. In addition, it may be challenging
to differentiate between particles that have simply deposited onto the cells but are not yet
internalized since the amount removed may vary based on the washing procedure, which
may potentially remove viable cells [197]. The intracellular concentration may be more
directly comparable to the tissue concentration in in vivo studies than nominal concentra-
tion [197]. When cells are exposed by addition of an ENM suspension to the underlying
basolateral media, it may also be possible to directly quantify the concentration associated
with the cells.

For studies that use exposure in a submerged system where an ENM suspension is
added to the overlying media, several computational models are available to estimate
the concentration expected to reach the cells. For ENMs that do not dissolve, the in vitro
sedimentation, diffusion, and dosimetry (ISDD) model has been widely used to estimate
the ENM concentration delivered to the cells [202–204]. It should be noted that this concen-
tration estimation may vary based on the method used to characterize the size distribution
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of the suspended particles, especially if there is significant agglomeration [205]. For ENMs
where dissolution may occur, such as for silver ENMs, an improved ISDD model which also
incorporates dissolution has been developed [206]. Overall, these models require measuring
several parameters such as the particle size or size distribution and the effective density.

These measured or modeled concentrations during in vitro experiments can then be
compared to modeled concentrations of the internal dose during the in vivo experiments
such as by using the multi-path particle dosimetry model [207,208]. It is also possible to use
lung burden measurements for IVIVE comparisons when historical data are available [209].
Performing lung burden measurements is an option in OECD standard methods (for
example, TG 413 [210]) for particles that may be retained such as ENMs.

6. IVIVE Resources and Tools
6.1. Information Obtained from Literature and Agency’s Responses

The ICCVAM IVIVE-WG provided input for ICCVAM member agencies regarding
the modeling tools or software each agency plans to use or has used for facilitating IVIVE
analysis and decision making. The responses are summarized in the Table 3.

Table 3. The models or software tools agencies and organizations plan to use or make available to
facilitate IVIVE analysis in decision making.

Agency/Organization Models or Software Tools

ATSDR Models or software tools such as PBPK modeling have been used for dosimetric adjustments in the
minimal risk level (MRL) determination process.

CPSC There are no current plans to use models or software for facilitating IVIVE analysis and decision-making.

DoD

Current software use runs the spectrum of options. Current legacy software is used for PBPK (e.g., acslX
for PBPK modeling); widely available software (e.g., R, also for PBPK modeling); high-throughput
toxicokinetics (httk) R package; molecular docking and deep learning (TensorFlow); AOP wiki; STRING,
REACTOME, OECD QSAR Toolbox, and BIOVIA software packages; and tools developed within image
analysis tools for cell cultures.

EPA/ORD Developed httk R package [87]; SimcypTM for PBPK modeling; PBPK model knowledgebase [150];
Database of PK time-series data and parameters [120].

NIEHS/NTP No decision-making. Use httk R package, GastroPlus & ADMET Predictor (Simulations Plus), as well as
the Integrated Chemical Environment (ICE) tool.

European
Commission/EURL
ECVAM

No decision-making. Use httk R package (for the Accelerating the Pace of Chemical Risk Assessment
[APCRA] project); Berkeley Madonna PBK model; explored application of the Wetmore IVIVE
approach [31] and the BMD approach in a reverse dosimetry way; ongoing work from EFSA on the
toxicokinetic plate and EPAA project on IVIVE.
An IVIVE EPAA project [211,212] conducted by Health and Safety Executive, UK, is ongoing, which is
based on work from McNally et al. [43] (led by G. Loizou). It will provide a tool to translate in vitro
concentration–response relationships to in vivo dose–responses, determine in vivo benchmark dose
(BMD) values from the translated data, and compare the predicted in vivo BMD to existing experimental
BMD values used in chemical safety assessments by a regulatory agency.

Additional data resources and tools for conducting IVIVE collected from the literature
and the world wide web are summarized below.

6.2. Resources for Chemical Properties and In Vitro Data
6.2.1. Resources for Chemical Properties Data

When experimental measurements are not available, physicochemical properties
are needed for predicting tissue:plasma partition coefficients and membrane permeabil-
ity [213]. There are several useful open resources for obtaining chemical properties. OCHEM
(Online chemical database with modeling environment), https://ochem.eu/ (accessed
on 20 October 2021), is a web-based system with a chemical information database and
QSAR modeling framework [214]. OCHEM also includes toxicological alerts, a user guide,

https://ochem.eu/
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and tutorials. Other public sources for chemical information include ChemSpider [215]
and ChEMBL [216]. EPA CompTox Chemicals Dashboard (https://comptox.epa.gov/
dashboard, accessed on 20 October 2021) [217] also provides chemical-specific information,
including chemical properties, in vitro bioactivity, toxicokinetic, and IVIVE predictions for
more than 880,000 chemicals. Compared to other databases, the CompTox Chemicals Dash-
board focuses on curated chemical structures, as designated by its underlying database,
DSSTox [218]. DSSTox assigns a unique structure identifier (DTXSID) to each structure [219].
The curation of structures for DSSTox is intended to protect against inaccurate chemical
identification, often observed in public repositories [220].

PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 20 October 2021) is a
public chemical information resource at the U.S. National Library of Medicine (NLM),
National Institute for Biotechnology Information (NCBI). It provides freely accessible
chemical information that includes chemical name, molecular formula, structure, chemical
and physical properties, biological activities, and safety and toxicity information for over
100 million unique chemical structures extracted from chemical substance descriptions
contributed by data depositors [221,222]. NLM NCBI’s Bookshelf (https://www.ncbi.
nlm.nih.gov/books/, accessed on 20 October 2021), also known as Books, provides no-
cost online access to books and other documents, including those related to IVIVE, from
U.S. Government agencies and other organizations around the world. [TOXNET (the
TOXicology data NETwork) was retired in December 2019 as part of the reorganization
associated with the NLM Strategic Plan (https://www.nlm.nih.gov/pubs/plan/lrp17/
NLM_StrategicReport2017_2027.html, accessed on 20 October 2021). Most of TOXNET’s
databases have been incorporated into other NLM resources such as PubChem and the
NCBI’s Bookshelf or continue to be available elsewhere].

In a recent publication, Madden and colleagues summarized available resources rele-
vant to the development of PBPK models [223]. This review distinguishes freely available
versus commercial resources, and those that provide predicted versus measured values.
Summarized in this review are resources for predicting external exposure, physicochemical
properties, ADME properties, physiological or anatomical parameters, model structures
for specific organs, PBPK modeling software, and similar chemical determination. Pawar
and colleagues [224] compiled a systematic review and grouping of databases that can
assist in chemical or drug safety assessment. This review provides a comprehensive list of
the key in silico data resources relevant to chemical identity and properties, drug action,
toxicology, exposure, omics, pathways, ADME properties, clinical data, and databases
relating to animal alternatives in support of 3Rs policies. Also included is a list of previous
review articles for identification of databases relevant to chemistry and toxicology [224].

6.2.2. Resources for In Vitro ADME Data (Reviews or Multiple Topics)

From the articles returned by literature search, the IVIVE-WG also prepared Table 4
summarizing various in vitro ADME data that can potentially be used for IVIVE.

Table 4. List of resources for in vitro assay data.

In Vitro Assay Data Type Data Summary References

Overview or summary of
in vitro and in silico data

Comparison of metabolic clearance assay systems; discussion of computational
systems with built-in in vitro biochemical scaling [29]

In vitro ADME methods overview [135]

Kidney enzymes, transporters, scaling factors [143,225,226]

This review has an emphasis on test systems and dosimetry in the respiratory tract. [227]

As part of an assessment of QSAR quality and reproducibility, 80 models of 31
ADME-related endpoints were identified. [228]

https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
https://pubchem.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/books/
https://www.ncbi.nlm.nih.gov/books/
https://www.nlm.nih.gov/pubs/plan/lrp17/NLM_StrategicReport2017_2027.html
https://www.nlm.nih.gov/pubs/plan/lrp17/NLM_StrategicReport2017_2027.html
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Table 4. Cont.

In Vitro Assay Data Type Data Summary References

A summary table in the Supplementary Materials of Patel et al. [228] notes
published sources for in vitro data and QSARs pertaining to oral absorption (7 data
sets), distribution across the blood–brain barrier (1 data set), and metabolism data (8
data sets: in vitro metabolic clearance, Vmax, and Km).

[228]

Summaries of resources of ADME data sets, models, and predictive software
(designated as freely available or commercial products); while these tables do not
emphasize in vitro data, these resources are well represented.

[223]

Review of “high-throughput toxicokinetics”—the combination of in vitro
chemical-specific methods with generic toxicokinetic models for IVIVE [85]

In vitro data: metabolism
in hepatocytes,
microsomes, and purified
enzymes

Hepatocyte, microsomal, and purified (non-recombinant) hepatic enzyme data
assembled by Pirovano et al. for QSAR development [229,230]

Literature curated intrinsic clearance data from pooled hepatocyte suspensions for
1015 chemicals measured using human hepatocytes and 225 chemicals using rat
hepatocytes. Included in R package “httk”

[87]

In vitro scaling data for
scaling liver metabolism

Age-specific data (5-year bins, for adult humans aged 20–95 years old) for
microsomal protein content of liver and liver weight used in Simcyp [231]

“Age-dependent protein abundance of cytosolic alcohol and aldehyde
dehydrogenases in human liver.” (neonates to adults) [232]

Human hepatic microsomal protein yields and hepatocellularity collated from
multiple sources. Weakly statistically significant inverse relationship to age; no
relationship with gender, smoking, or alcohol consumption

[233]

Human hepatic CYP content (total, and per isoform, for 7 isoforms; n = 60 subjects);
rat and human hepatocyte numbers and microsomal protein yield [234]

Human hepatic CYP content central tendencies and variation (total and per isoform,
10 isoforms, 42–350 white subjects); reviews of data on impact of disease, age, sex,
environment, and genetics on hepatic clearance

[235]

Distribution of hepatic microsomal protein yields for 128 adult (Chinese) humans [236]

Human hepatic microsomal protein yields (20 adults from the United Kingdom) [237]

Hepatic metabolism scaling factors for rainbow trout (microsomal protein yield,
hepatocellularity, liver S9 yield, and CYP content (CYP2M1, CYP2K1, and CYP3A27) [83]

Population variability in hepatocellularity, liver blood flow, liver volume and liver
density for estimating in vivo hepatic clearance from in vitro data. Implemented in R
package “httk”

[74]

Partition coefficients (PCs)

A decision tree was described to choose the best predicted tissue partition
coefficients for a certain physicochemical space, selecting among 6 algorithms, based
on a 122-drug training set.

[238]

Reports Quantitative Property Relationship (QPPR) models for human and rat
blood:air PCs for diverse volatile organic chemicals [239]

Examines and compares the relative accuracy, strengths, and limitations of 7
published models for human tissue–air and 10 models for tissue–blood PCs. The
most accurate models for each category were identified.

[240]

Reports a QSAR model for predicting physicochemical and biochemical properties
of industrial chemicals of various groups [241]

Evaluation of QSAR predictions for 964 experimentally derived chemical–tissue PC
combinations (143 chemicals, 12 tissues) with calibration and uncertainty
quantification; Data and results are implemented in R package “httk”.

[242]
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6.3. Models and Tools for PBPK Modeling and IVIVE
6.3.1. Resources Explicitly Designed to Support IVIVE of Dosimetry and Related Activities

The Integrated Chemical Environment (ICE: https://ice.ntp.niehs.nih.gov/, accessed
on 24 March 2022), hosted by the National Toxicology Program Interagency Center for
the Evaluation of Alternative Toxicological Methods (NICEATM), provides access to high-
quality curated data and computational tools, including an IVIVE workflow, to facilitate
the use of in vitro alternatives in chemical hazard identification and modeling [243]. Users
are able to specify their own lists of chemical identifiers, choose from established reference
sets, or combine the two approaches. These chemical inputs can then be used in searches
for available data from legacy in vivo studies, mechanistically annotated in vitro data, in
silico prediction models, and curated ToxCast or Tox21 data that incorporate analytical
chemistry QC information and data processing flags to ensure high-quality curve fits and
hit calls [244].

ICE-curated HTS data are available as an input into the IVIVE workflow, which
relies upon a combination of models from the EPA’s httk R package and in-house PK
simulations to translate in vitro activity concentrations into estimated EAD [105]. Multiple
dosing routes (oral, intravenous, and inhalation), species parameterization (rat, human),
and model structures (one-compartment, three-compartment, multi-compartment) with
customizable exposure intervals and simulation lengths are available. Experimental data for
plasma protein binding and intrinsic clearance are incorporated for about 1000 chemicals,
while in silico predictions for these parameters are provided for the entire DSSTox Database
of ~800k chemicals from the Open Structure-activity/property Relationship App (OPERA,
https://github.com/NIEHS/OPERA, accessed on 24 March 2022) [245]. In addition to the
curated HTS data, the ICE user has the option to upload their own in vitro bioactivity data
for running the IVIVE workflow and obtaining results in graphical and tabular form. The
predicted EADs can be compared to doses from animal studies by overlaying data points
on the graphs, and the mechanistic target annotations are intended to facilitate biologically
meaningful comparisons by helping the user select in vitro and in vivo assays that query
similar pathways.

Other open-source web-based PBPK modeling tools include a web-based toolbox
that contains generic PBK models for rats and humans developed by RIKILT Wagenin-
gen University and Research Center. This toolbox provides calculation tools to predict
plasma protein binding and tissue:plasma distribution, which can be used for IVIVE of
dosimetry [246].

As mentioned above, the CompTox Chemicals Dashboard currently provides in vitro
bioactivity data for thousands of chemicals from ToxCast [48,247], Tox21 [47], and Pub-
Chem [221,222], as well as structure-based model predictions for tens of thousands more
chemicals. To facilitate IVIVE, in vitro measure hepatic clearance and fraction unbound in
plasma are reported for more than a thousand chemicals. In addition, the predicted volume
of distribution, days to steady-state, PK half-life, and Css are provided under the IVIVE Ta-
ble. The Css values are calculated assuming a 1 mg/kg/day rate and the 95th percentile of
a distribution representing a population of healthy adults. These data are available for the
chemicals listed at (https://comptox.epa.gov/dashboard/chemical_lists/HTTKHUMAN,
accessed on 24 March 2022).

6.3.2. Other Models and Tools for PBPK Modeling and IVIVE

Other than the web tools that are explicitly designed to support PBPK modeling
and IVIVE, various commercial and open-source software, such as Simcyp/SIVA [248],
Gastroplus [249], PK-Sim [250], httk [87], and Cloe PK [251], allow for performing IVIVE
of ADME parameters and implementing it in PBPK modeling, and facilitating IVIVE
of dosimetry. A thorough list of PBPK/IVIVE software and tools is summarized in the
Supplemental Excel Sheet. Tools for IVIVE have different levels of complexity. More
detailed predictions can be made for individual chemicals when more data are incorporated
into a model, whereas general predictions are made for large groups of data-poor chemicals

https://ice.ntp.niehs.nih.gov/
https://github.com/NIEHS/OPERA
https://comptox.epa.gov/dashboard/chemical_lists/HTTKHUMAN
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(as in high-throughput bioactivity screening) [24,100]. The higher-throughput approaches
typically trade off certainty for speed and flexibility [69,70].

As discussed earlier, due to chemical partitioning to various components of the assay
systems (for example, plastic, media proteins or lipids, head space, cells), the nominal
concentration in the test medium does not always provide an adequate estimate of chem-
ical potency when using in vitro activity to inform in vivo toxicity. To calculate the mass
distribution of a chemical within the in vitro test system at equilibrium, Armitage et al. [122]
published a mass-balance model that considers critical components of in vitro assay systems
(such as % serum in media, media volume, cell number) along with the physicochemical
properties of the test article. The Armitage model is implemented in Excel using the Visual
Basic for Applications programming language, and has recently been implemented in
the open-source R package “httk” [73]. To estimate the biologically effective concentra-
tion, Fischer and colleagues developed an equilibrium partitioning model to predict freely
dissolved, cellular, and membrane concentrations in the Tox21 GeneBLAzer bioassays
for a set of organic chemicals [35]. The model can readily be applied to diverse in vitro
bioassays as an Excel workbook that provides all relevant system parameters and a generic
bioassay setup.

Attempts to evaluate generic PK modeling approaches find the best case for predictions
is closer to a factor of 3 [88,128,129], which is larger than the average error factor of
2 discussed by the International Programme on Chemical Safety (IPCS) of the World Health
Organization [252]. In addition, generic PK modeling approaches generally perform worse
for predicting the time course of plasma or tissue concentrations than for summary statistics
such as peak or time-integrated concentration [76,86,130]. To better facilitate the evaluation
of generic PK models, Sayre and colleagues [120] developed a public database of published
chemical concentration vs. time data along with standardized formats for reporting the
outcome of PK experiments.

Moreover, a population-specific IVIVE-based PBPK model can be a valuable tool
for analyzing human biomonitoring studies in support of human health risk assessment
(Sharma et al., 2018). IVIVE calculations reported on the CompTox Chemicals Dashboard
are performed using the open-source R package “httk” (https://cran.r-project.org/web/
packages/httk/index.html, accessed on 24 March 2022) and include a Monte Carlo simula-
tion for population variability to identify the adults who obtain the upper 95th percentile
highest plasma concentrations from the same 1 mg/kg bw/day exposure [87]. “httk” is
itself a resource for IVIVE, as it includes generic models and chemical-specific data for
simulation and statistical analysis of chemical toxicokinetics. Chemical-specific data are
curated from the peer-reviewed scientific literature for both humans and other species
relevant to toxicology such as rats (>200 compounds) [73]. “httk” uses methods for predict-
ing tissue:plasma partition coefficients (PCs) and volume of distribution that have been
calibrated to better reflect in vivo observations [87]. The Monte Carlo sampler for human
variability is based upon biometrics described by the U.S. Centers for Disease Control and
Prevention National Health and Nutrition Examination Survey [74]. The Monte Carlo sam-
pler also allows for propagating chemical-specific parameter uncertainty [75]. In addition
to the CompTox Chemicals Dashboard, graphical interfaces to the predictions from “httk”
are also provided by ICE [243] and the Population Life-course exposure to health effects
model (PLETHEM) [253].

7. Agency Needs, Areas of Research Needed, and Future Opportunities
7.1. Agency Needs, Gaps, and Uncertainty in IVIVE

A workshop report by Bell and colleagues [29] identified aspects of regulatory decision
making where IVIVE may already be appropriate, such as screening data-poor chemicals
for potential toxicity, improving dose selection, developing data-derived uncertainty fac-
tors, and supporting the development of testing strategies. The report also identified
areas of need for IVIVE applications, such as guidance on model complexity, the devel-
opment of evaluation criteria, examination of differences between pharmaceutical and

https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html
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non-pharmaceutical compounds, databases for in vivo and in vitro toxicokinetic data, and
harmonization among scientific institutions.

The IVIVE–WG gathered information, from ICCVAM member agencies, on specific
needs for implementing IVIVE approaches in regulatory risk assessment, data gaps or un-
certainty that prevents using IVIVE in risk assessment. Table 5 summarizes this information.

Table 5. Agency Needs and Concerns on Gaps or Uncertainty in IVIVE approaches.

Agency/Organization Agency Needs Concerns on Gaps or Uncertainty

ATSDR

• Harmonized methods for risk assessors.
• Success stories to help strategic training

and thinking.
• An electronic version of methodology.
• Understanding advantages and

disadvantages or uncertainties of different
approaches.

• Agency does not develop regulatory
risk assessments.

• Gaps in the understanding of toxicity
mechanisms involved. Agreement and
differences in interpretation of data for same
endpoint using multiple assays.

• Uncertainties and assumptions in the
transformation of in vitro dose.

• Derivation of health guidance values using
in vitro assay results.

FDA/CFSAN To establish a consistent approach for IVIVE.

• Consistent and consensual criteria for
evaluating IVIVE approaches for specific
purposes.

• Lack of experiment data for PK model
validation.

• Refinement of a validated IVIVE approach for
fit-for-purpose application.

FDA/CDER
IVIVE needed to support the qualification of
NAM(s) associated with specific regulatory
context(s) of use.

Concerns will depend on the context of use being
addressed by a NAM being qualified and include:

• Data quality;
• Availability of clinical data;
• Understanding the mechanistic relevance of the

NAM regarding the in vivo or clinical setting
being modeled.

CPSC The method needs to be effective for mixture risk
assessment.

Demonstration of effectiveness for mixture risk
assessment.

EPA/OPP

• Determining the needs for additional
in vivo studies.

• Providing additional data for a weight of
evidence approach to estimate data-derived
extrapolation factors [63].

• Challenges in linking in vitro concentration to
relevant in vivo dose metric.

• Challenges in identifying toxic moiety in an
in vivo system unless the in vitro system has
metabolism capability.

EPA Office of Pollution
Prevention and Toxics
(OPPT)

Determine plausible route(s) of exposure:
dermal, inhalation, oral.

Many chemicals are considered rapidly with only
structure and physicochemical properties available.
No time for even in vitro measurements of TK. Must
rely on QSAR.

EPA/ORD

• Rapidly estimate doses based on the
bioactivity data that EPA generated.

• Best practices for use case, for example,
when to use which in silico models for
predicting input parameters for IVIVE.

• Current high-throughput pharmacokinetic
methods need to be expanded to better
characterize tissue distribution, particularly for
active transport barriers such as blood–brain
barrier, placenta, and lactation.

• Development of statistics-ready databases of
information from the peer-reviewed literature,
including pharmacokinetic models, tissue
concentration vs. time data, metabolic
relationships between chemicals, in vitro
toxicokinetic measurements, and in vitro
distribution information.
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Table 5. Cont.

Agency/Organization Agency Needs Concerns on Gaps or Uncertainty

DoD

• Currently accepts IVIVE data, verified or
validated NAMs.

• Methods that predict interorgan
relationships or effects.

• Applicable endpoints—acute lethality is
significant for connecting to historical
databases and for narrow uses with specific
chemical classes (e.g., chemical agent).
Biomarkers of effect, e.g., carboxyhemoglobin
levels, behavioral or cognitive deficits (sleep
deprivation or chemical intoxications), stress,
are valuable endpoints, although notably
difficult to predict.

• Organ specific endpoints such as pulmonary
edema, ischemia (cardiac or brain),
neurotransmitter alterations.

• Ability to test for interorgan effects (e.g.,
neuroendocrine, neurodevelopmental).

NIEHS/NTP Agency does not develop regulatory risk
assessments.

The standard issues with IVIVE might be explored
further, e.g., domain of applicability, parameter
estimation, uncertainty, inter-individual variability,
accuracy, sensitivity, and specificity.

European
Commission/EURL
ECVAM

Agency does not develop regulatory risk
assessments.

• Artifacts in in vitro systems.
• Uncertainty factors needs to be established to

extrapolate.

The historic application of IVIVE and reverse dosimetry focuses on chemical prioritiza-
tion using in vitro points of departure from various assays [31]. To go beyond prioritization
and screening decisions, most regulators require consistent approaches and good under-
standing of the advantages, disadvantages, and uncertainties of different approaches. Some
agencies also need approaches that demonstrate effectiveness for mixture risk assessment
and more sophisticated approaches that provide target tissue estimates.

Concerns on gaps or uncertainty in IVIVE approaches from agencies include under-
standing of mechanistic relevance of NAMs to in vivo outcomes, robust consideration of
chemical domain of applicability, inter-individual variability, and uncertainty in parameter
estimation. Challenges faced by multiple agencies also include identifying artifacts in
an in vitro system, identifying toxic moiety in an in vitro system, and selection of inter-
nal in vivo concentration corresponding to the in vitro concentration. For example, shall
in vitro half-maximal activity concentration (AC50) be regarded to be equal to maximum
or steady-state plasma concentration? In vitro assays that lack full metabolic competence
limit evaluations on the effects of parent compounds. In parallel, current high-throughput
IVIVE approaches also only focus on predicting the toxicokinetics of parent compounds.

Long-term efforts to address these limitations will require additional research con-
ducted in parallel with more historical efforts already underway, such as developing a
database of PK models, metabolic relationships between chemicals, and in vitro distribution
information. Conduct of such research is already underway at several U.S. and international
agencies and is detailed below.

7.2. Efforts to Address Needs and Future Opportunity

IVIVE research typically occurs in one of three broad areas: chemical-specific, physio-
logic, and population or life-stage. The area requiring the largest investment is the first, as
chemical-specific toxicokinetic and in vitro distribution information is a base requirement
that can then be applied across all endpoints of interest. Physiologic inputs are finite by
comparison, once described. For example, for all applicable species, tissues, they can
be retained in an established database [87]. Population or life-stage based libraries track
ontogenetics and variability for populations of interest that can then be used to inform
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the physiologic inputs employed in modeling and simulation efforts [74]. As outputs are
generated, evaluation that makes use of available in vivo data can inform the assessment of
uncertainty and variability [75]. It follows that research to inform these areas proceeds on
four fronts: data generation, informatics, modeling, and evaluation.

Data generation has and will continue to collect chemical-specific in vitro plasma
protein binding and hepatic clearance data to expand the tested chemical space on the
CompTox Chemicals Dashboard [31,100]. Furthermore, the implementation and evaluation
of additional assays that capture extrahepatic clearance, passive permeability, transport
kinetics, and chemical affinity for specific metabolizing enzymes are an important next
step to not only improve predictions of in vivo toxicokinetics but to inform target tissue
distribution more effectively. For in vitro distribution, the number of chemicals character-
ized is relatively small [122]. Large systematic efforts are needed to collect in vitro kinetic
data, such that correlation with physicochemical properties may be evaluated and better
understood. Finally, in some cases, limited in vivo data are still being generated to establish
the suitability of IVIVE for chemical classes, where existing in vivo data are scarce.

Informatics for IVIVE includes developing ontologies for describing key data types
and then organizing and curating existing data into machine-readable formats such that
algorithmic analysis for patterns is possible. Efforts are already underway for organiz-
ing in vivo pharmacokinetic concentration time-course data [120] and human variability
in metabolic enzyme expression [254]. Additional efforts might include the following:
mapping parent–metabolite relationships, annotating data from in vitro pharmacokinetic
assays, organizing data identifying the enzymes that interact with chemicals, continuing to
develop and expand libraries of pharmacokinetic models [150], and structuring datasets
characterizing the partitioning of chemicals to materials encountered in vitro. The inter-
national harmonization of databases and development of open-source tools will also be
important to establish consistent approaches for IVIVE.

As in vitro assays proliferate and new chemical classes are investigated, models must
similarly expand. Existing PBPK models for IVIVE have focused on organic compounds and
mostly the parent compound. However, new efforts are examining systematic approaches
to metals and PK models that generally allow for chemical transformation, including
cycling [255]. In addition, for PK models, the rapid growth in informatics has allowed
the development of many approaches relating chemical structure features to important
properties, including in vitro PK measurements [41,78,84]. Quantitative structure–property
relationships (QSPRs) are rapidly developing, and both new models and consensus pre-
dictors based on multiple models should be expected [79,256]. In vitro distribution models
need to be expanded to consider chemical ionization, time-dependent distribution, and
repeated dosing.

Ultimately, all of these models may only be used with confidence when their predictive
accuracy has been statistically evaluated. Many risk assessment paradigms make use of
default uncertainty factors to take into account extrapolation across species and differences
in route of exposure [257–259]. To make use of IVIVE in decision-making [29,135], rigorous
statistical evaluation of IVIVE or in vitro–in vivo correlation are needed to quantitatively
determine the confidence with which they may be applied [24,33,70,73,76,260].

For most regulators, “validation” is a legal determination of acceptability for decisions
that impact public health, the environment, and commerce [261,262]. To support validation,
scientists need to determine when and how to apply a methodology and the level of
confidence for a given class of chemicals for the intended purposes. Regulatory agencies
may also have qualification programs for NAMs related to specific contexts of use, to drive
a comprehensive collaborative avenue of evaluation towards acceptance. For example, the
Model-Informed Drug Development Meeting Pilot Program initiated in a pilot version at
FDA aims to provide a path for direct specialized interactions between drug developers
and the agency on suggested NAMs to address product-specific applications [263]. Other
qualification programs for potential drug development tools are available at the FDA to
address gaps or inefficiencies in drug development that relate to regulatory needs [264].
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As NAMs gain acceptance in regulatory fields, guidance may be developed for industry
if needed to facilitate their implementation and acceptance. Information to support these
efforts may include specialized contributions, data, and methodologies from relevant
academic, private, and public stakeholders [265].

Gaining further insight and understanding of uncertainties through continued re-
search and testing should remain a priority to build transparency and confidence. The
development of harmonized databases will increase data accessibility and use by domestic
and international entities. At the same time, the development of open-source methods and
software packages will motivate increased consistency of application and the predictive
accuracy of in silico and in vitro methods for IVIVE.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10050232/s1, Table S1: Concise list of general and IVIVE
approach terms commonly used in scientific and regulatory arenas; Supplemental Excel Sheet: List of
software and tools for PBPK modeling and IVIVE.
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Abbreviations

3Rs
to replace, reduce, and refine (or replacement, reduction, and refinement of) the
use of animal models

ADME absorption, distribution, metabolism and excretion
ATSDR Agency for Toxic Substances and Disease Registry
AUC area under curve

BMD
benchmark dose, the dose of a chemical that is required to achieve a predetermined
response of a toxicological effect

BMD10
derived benchmark dose that is associated with a 10% extra risk of adverse effect
in the exposed test animals

BMDL10 the lower bound of 95% confidence interval on BMD10
CFSAN FDA Center for Food Safety and Applied Nutrition
Cmax the highest concentration of a chemical in the blood or a tissue after a dose is given
CPSC U.S. Consumer Product Safety Commission
Css steady-state concentration
DoD U.S. Department of Defense
EAD equivalent administered dose
ENM engineered nanomaterial
EPA U.S. Environmental Protection Agency
ER estrogen receptor
EURL-ECVAM European Union Reference Laboratory for Alternatives to Animal Testing
FDA U.S. Food and Drug Administration
HTS high throughput screening
HT-IVIVE high throughput in vitro to in vivo extrapolation
ICCVAM Interagency Coordinating Committee on the Validation of Alternative Methods
ICE Integrated Chemical Environment
IVIVE in vitro to in vivo extrapolation
IVIVE-WG ICCVAM in vitro to in vivo Extrapolation Workgroup
LOAEL low observed adverse effects level
log Kow the n-octanol / water partition ratio or coefficient
NAM new approach methodology
NIEHS National Institute of Environmental Health Sciences
NIST National Institute of Standards and Technology
NLM U.S. National Library of Medicine
NOAEL no observed adverse effect level
NOEL no observed effect level
NTP National Toxicology Program
OECD Organisation for Economic Co-operation and Development
OED oral equivalent dose
OPP EPA Office of Pesticide Programs
QSAR quantitative structure activity relationship
PD pharmacodynamics
PK pharmacokinetics
PBK physiologically based kinetics
PBPK physiologically based pharmacokinetics
PBTK physiologically based toxicokinetics
PFOA perfluorooctanoic acid
POD point of departure
ToxCastTM Toxicity forecaster
Tox21 Toxicology in the 21st century
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