
iVoLVER: Interactive Visual Language for Visualization
Extraction and Reconstruction

Gonzalo Gabriel Méndez
University of St Andrews, UK

ggm@st-andrews.ac.uk

Miguel A. Nacenta
University of St Andrews, UK

mans@st-andrews.ac.uk

Sebastien Vandenheste
University of St Andrews, UK
sebastien.vandenheste@gmail.com

Rectangle

A B C D
0.00

-2.00

2.00

400.00

Figure 1. A) Data is extracted from a pie chart, B) converted into bars, and C) transformed into D) a log-scale bar-chart (see Motivating Scenario).

ABSTRACT

We present the design and implementation of iVoLVER, a
tool that allows users to create visualizations without textual
programming. iVoLVER is designed to enable flexible acqui-
sition of many types of data (text, colors, shapes, quantities,
dates) from multiple source types (bitmap charts, webpages,
photographs, SVGs, CSV files) and, within the same canvas,
supports transformation of that data through simple widgets
to construct interactive animated visuals. Aside from the tool,
which is web-based and designed for pen and touch, we con-
tribute the design of the interactive visual language and wid-
gets for extraction, transformation, and representation of data.
We demonstrate the flexibility and expressive power of the
tool through a set of scenarios, and discuss some of the chal-
lenges encountered and how the tool fits within the current
infovis tool landscape.

Author Keywords

Information visualization; visual information extraction;
visual languages for visualization; visualization verification.

ACM Classification Keywords

H.5.2 Information interfaces and presentation: graphical user
interfaces; D.1.7 Software: visual programming

INTRODUCTION

Information Visualization is often motivated as a way to
leverage the innate human visual processing capacity for the
analysis of data [51]. Creating visualizations can enhance
the ability of users to explore, understand, and communi-
cate data, as evidenced by the large number of projects and

Copyright Owner/Authors 2016. This is the author’s version of the work. It is posted

here for your personal use. Not for redistribution. The definitive Version of Record

was published in the Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI 2016), http://dx.doi.org/10.1145/2858036.2858435

effort invested in visualization programming languages and
APIs (e.g., [5, 20, 35]), tools (e.g., MS Excel, Tableau,
ManyEyes [50]), and research prototypes (e.g., [12, 46]).

However, many of the existing tools and systems assume that
the data is available in a digital structured format, that the
user can access the software when it is needed with the ap-
propriate input and output devices (e.g., keyboard for textual
programming), or that the user has programming and debug-
ging expertise. These assumptions make it harder for non-
programmers to take advantage of infovis in certain situations
where textual programming is not possible or when the data
is not in the right format.

We present iVoLVER (interactive Visual Language for
Visualization Extraction and Reconstruction), a prototype
tool designed to address the issues mentioned above. The tool
aims to enable users to capture data from a range of sources
and use these data to build visualizations that fit the users’
own needs. For this purpose iVoLVER provides a novel set
of data extraction functions and widgets that enable one to
pull data from bitmaps (with computer vision), SVGs, pho-
tographs, text and web pages. The data extracted can then be
manipulated and combined through a touch-based web canvas
that offers visually explicit representations of the data trans-
formations.

This paper describes the following contributions:

• The design of a novel tool and visual language to create
alternative visualizations from varied data source types.

• The design and implementation of a set of novel widgets
that extract data from varied data sources.

• A discussion of scenarios that demonstrate how this ap-
proach can be used in a range of situations.

• A description of the challenges identified that can shed
light on the design and implementation of future tools.



In the next sections, we first provide a motivating scenario for
the use of our tool. This is followed by a review of relevant
work. Then, we describe the design principles and process
and show iVoLVER’s main interface. Several scenarios of
use are then demonstrated. We finish with a discussion of the
challenges, opportunities and lessons learnt for future tools in
this area of the design space.

MOTIVATING SCENARIO

Jacey is a professor at the fictional University of Lannisport,
working with her student, Manu, on a paper on world food
production. When Manu brings her the latest version of their
paper Prof. Jacey is dismayed at seeing a pie-chart (see Fig-
ure 1.A), which she has learned is a poor way to represent data
due to humans’ inability to judge angles [10, 19]. Instead of
tearing the paper apart and sending Manu back to his desk to
send her the data or re-do the image, she decides to take a
more didactic approach. Prof. Jacey captures the image from
the paper with her tablet’s camera and extracts each of the pie
sector areas, plugging them into the length of bars (B). This
only took a few seconds, but it is enough to convince Manu
that the barchart would be a better representation. Manu then
suggests that, as he has read recently in a statistical paper, per-
haps a logarithmic transformation of the data would provide
a better view. Prof. Jacey is skeptical, but indulges Manu’s
suggestion and applies a logarithmic function (C), plugging
the transformed results into bars again (D). Very quickly they
both agree that the logarithm was not useful.

RELATED WORK

The most powerful and flexible way to create visualizations
is by programming them using either general graphical API’s
(such as OpenGL) or, more effectively, by using specialized
visualization languages and APIs such as D3 [5], Process-
ing [35], the Prefuse API [20] or APIs for deployment in spe-
cific types of environments (e.g., ubicomp environments [1]).
However, textual programming demands a specific kind of
environment (appropriate text input, large screens) and re-
quires a significant time and effort to learn, which is why a
large literature of work in visual programming and visualiza-
tion tools exist. In the subsections below we summarize the
legacy of visual programing and visualization tools that form
the conceptual base of our system.

Visual Programming Languages

The idea that visual representations or diagrams—rather than
text or lists of instructions—can facilitate the understand-
ing and creation of programs or make them accessible to
non-programmers is several decades old. Many successful
projects and products rely on visual elements to represent pro-
gram structures. A notable example is Scratch [37] (inspired
by previous work by Seymour Papert [33]), which provides
visual support for teaching and learning programming. Sev-
eral surveys of the general area of visual programming lan-
guages exist [4, 21, 32].

Dataflow systems are a subset of visual programming lan-
guages where “boxes and arrows” represent data processes
and flow respectively. A number of very successful tools are
based on this approach such as LabView [47], MAX/MSP1,

1https://cycling74.com/products/max

and Simulink.2 This paradigm has also been used in re-
search as a way to facilitate investigation and creation of
performance-sensitive data processing algorithms [39].

More specific to visualization, GADGET/IV [15] and VAN-
ISH [25] provide boxes and arrows programming interfaces
as a means to generate visualizations in a separate visual
space. A more recent example is the visual IVO editor [31]
which makes visualization programming of image-space vi-
sualization operations for the GPU more accessible to non-
programmers. iVoLVER takes a dataflow approach with an
infinite canvas inspired by visual programming. However, it
differs from most visual languages above in that the visual
objects themselves are both controllers and representations
of the data, with a focus on flexible input of data in multiple
forms, and in that its web-based interface, which enables pen
and touch, supports use with a wider set of devices.

Visualization Tools

There is a current boom of tools oriented to simplify the vi-
sualization creation process and to make it accessible to non-
programmers [16, 45]. It is in this category that we find the
work that is most related to iVoLVER.

The most popular tools for creating visualizations and charts
are commercial products such as MS Excel or visual analy-
sis tools such as Tableau.3 Additionally, online systems such
as Many Eyes [50] and Gapminder4 provide web-based ways
to create visualizations, but also share the visualizations and
data through the web and support collaboration and com-
ments. These tools facilitate the creation of visualizations
without code, but tend to be more rigid and less expressive
than programming languages. This is mostly due to the use
of specific templates, which limit the choice of possible vi-
sualizations to a preloaded set and make the data representa-
tions somewhat monolithic. Additionally, the large number of
features results in overloaded traditional-style interfaces with
large amounts of hidden data and processing steps that might
not be obvious to the user.

This approach has been recognized as limiting by a recent
wave of research that has produced tools to address this rigid-
ity in different ways. For example, Javed and Elmqvist ad-
dress the issue that current tools do not provide an adequate
representation of the analysis process and built an infinite
canvas with exploration plates which can be interconnected
and annotated in a pen-based environment [24]. Some of
the philosophy in this system can be traced to previous work
in the DataMeadow system [12], which also uses an infi-
nite canvas but for the analysis of large-scale multivariate
data. Lyra [41], iVisDesigner [36], and Bret Victor’s Drawing
Dynamic Visualizations tool (demonstrated in his presenta-
tion [49]) all enable the construction of flexible custom visu-
alizations. iVoLVER shares multiple elements (e.g., infinite
canvas, direct manipulation) with these tools because it also
aims at flexibility, but it differs from these in: a) its focus on
integrating the acquisition of many forms of information, b)

2http://www.mathworks.com/products/simulink/

index-b.html
3http://www.tableau.com/products/desktop
4http://www.gapminder.org

https://cycling74.com/products/max
http://www.mathworks.com/products/simulink/index-b.html
http://www.mathworks.com/products/simulink/index-b.html
http://www.tableau.com/products/desktop
http://www.gapminder.org


its aim to preserve a visual record of the process as in [24],
and c) its touch and pen-friendly interface.

SketchStory [26], SketchVis [7], and napkinVis [8], are a
set of tools designed to support sketching of visualizations
in a natural, casual and occasionally social way. As with
iVoLVER, a flexible input and versatile visual interface are
a main focus of these tools, more so than in Lyra and iVis-
Designer. However, iVoLVER provides more computational
support and operations (further flexibility), a wider variety of
data sources, and a more widget-oriented approach that is not
based on digital ink and does not rely on ink recognition.

Our explicit representation of data processing is inspired by
Lark [46], a research prototype that provides an explicit vi-
sual representation of the visualization pipeline as interface
elements in a tree. This approach is also present in the earlier
DataMeadow [12] and in ExPlates [24]. iVoLVER applies
this approach but at a lower level of abstraction (data point
and mark instead of data tables) and is more expressive.

Finally, the interface of iVoLVER inherits interaction styles
from Pad++ [2] (zooming and panning [11]), and its main in-
teraction paradigm (touch on small objects in a large canvas)
relates to several other novel interfaces for music visualiza-
tion, scatterplots and networks [29, 40, 43].

Data Extraction, Transformation, and Collection

Data might exist in forms that are not easily processed by ex-
isting tools. Several research and production systems address
this problem. ReVision [42] applies computer vision to rec-
ognize the type of chart, extracts marks and encodings from
raster images, and allows the viewer to remap the data to dif-
ferent visual variables. ReVision builds upon existing work
that uses computer vision approaches to extract data from ex-
isting graphics, mostly for the purpose of making the quanti-
tative information of existing documents available as search-
able semantic data [22, 28]. Harper and Agrawala also pro-
vide a toolset that enables remapping of visual variables in ex-
isting D3 visualizations [18] to generate alternative graphics.
Additionally tools such as Data Thief [48] and WebPlotDigi-
tizer [38] enable the extraction of data from digital charts.

iVoLVER shares with these systems the goal of allowing the
viewer to extract and, in some cases, modify and restyle visu-
alizations; however, these systems are not generally designed
to derive new data, to combine data from multiple visualiza-
tions, or to process the data. Also, in our system the prob-
lem of computer vision and data mark extraction is limited
to simple data extraction algorithms by allowing the viewer
to drive the process via simple gestures or interactions. In
other words, it is the viewer who decides what is a mark or an
encoding and how to extract the visual variables from an ex-
isting graphic, which significantly simplifies its implementa-
tion. In this sense our work is closer to the concept of Trans-
mogrification [6], proposed by Brosz et al., where gestures
on existing bitmap graphics let the viewer transform the ge-
ometry of existing raster images such as a rose chart into a
barchart. iVoLVER can perform many of these reconstruc-
tions, but differs from Transmogrification in that, once the

data is extracted from the raster image, it allows calculations
and mappings that are not strictly geometrical or pixel-based.

In terms of its ability to collect and combine data from dif-
ferent sources and formats, iVoLVER relates to the Sand-
box [52], where pieces of evidence are manipulated in the
context of hypotheses analysis, and to the IdeaMâché curation
system [27], which is specifically oriented to support ideation
processes, not quantitative data representation.

DESIGN GOALS AND PRINCIPLES

The previous section summarizes a long history of tools to
create visualizations, some notable examples of tools to trans-
form and adapt existing visualizations, and multiple examples
of diagram-based visual languages as a paradigm to specify
visualizations. iVoLVER aims to build upon this work but
addresses a different set of goals. Specifically, we set out to
support the following:

G1: visualization of data that is not necessarily in digital or
structured formats,
G2: flexible exploration of alternative representations, and
G3: use by non-programmers.

Although simplicity of use and an easy to learn interface and
language are generally desirable, these were not the main fo-
cus of our design. We also did not focus on designing a tool
that is readily usable by novices or without instruction (see
also the Discussion section).

Naturally, the design space of such tools is large. We describe
the initial positioning of iVoLVER’s design in terms of three
dimensions: atomic-abstract, programmable-configurable,
and integrated-specialized.

Atomic vs. abstract—Inspired by the vision of constructive
visualization [23] (based on constructivist theoretical foun-
dations [34, 33]), we aimed at providing concrete interactive
visual representations of the smallest atomic elements of data
and visualization. Our assumption was that a bottom-up ap-
proach would fit well with foundational approaches to visu-
alization (Bertin [3] and Cleveland and McGill [9] decom-
posed data representation into atomic building blocks such as
marks and elementary graphic encodings), and support flexi-
bility (G2). This distinguishes iVoLVER from other tools that
hide operations and data under layers of abstraction through
more complex widgets (e.g., Lark’s coordination points [46]
or ExPlates [24]).

Programmable vs. configurable—To achieve flexibility (G2),
we also decided to avoid an approach based on templates
(e.g., Gapminder [13], Many Eyes [50]), where textboxes,
drop-down menus and other GUI elements determine how the
visual representations behave (here we call these configurable
templates). An alternative that avoids textual programming
(G3) is based on visual languages. The key is to allow any
number of elements to be created and to enable their inputs
and outputs to be connected in flexible ways. This approach
has been successfully applied before to infovis [12, 25].

Integrated vs. specialized—We aimed at creating a general
tool that could integrate data from multiple sources and do-
mains. The tool could support a range of scenarios such



as journalists verifying data from multiple sources or scien-
tists creating alternative visualizations from published graphs
(e.g., for discussion). Although it might be possible to take
advantage of specialization for specific scenarios or build
multiple tools that address specific needs (e.g., data extrac-
tion separate from data manipulation and representation) we
believe that there is benefit in supporting all these activities
within the same tool. This enables workflows that quickly
alternate between these activities.

Based on these goals and starting points, we chose to priori-
tise the following principles when designing the tool. The
iVoLVER UI and visual language should, when possible:

DP1–Provide access to data from multiple sources and in
multiple forms: flexibility and convenience in data input will
make the tool more useful when the data do not exist as a
structured file format with variables and associated values, or
are not explicitly available to the user (G1).
DP2–Enhance Atomicity: make the core conceptual elements
directly accessible to enable construction of complex and
flexible representations (G2).
DP3–Visual explicitness: make the interface elements and the
process as explicit as possible (G3).
DP4–Avoid textual programming: avoid when possible the
more complex elements of textual coding (e.g., syntax) (G3).
DP5–Avoid menus and hidden operations: as in DP4, non-
transparent computation and hidden menus might constrain
tool use (G3).
DP6–Enable interaction through different input modalities:
A PC with a mouse and a keyboard should not be the only
gateway to visual data analysis (G1, G3).

DESIGN PROCESS

The design process was iterative and user-driven. We al-
ternated design and implementation phases by the authors;
demonstration and interview with an expert (a researcher in
globalization and education who needed to make compelling
demonstrations of her non-standard map-based data to politi-
cians) and; a formal empirical test. Demonstrations and inter-
view with the researcher took place twice, once at the begin-
ning and once at the midpoint of the design process. These
helped to determine and prioritize features to implement. We
added several features as a consequence, including the ability
to import structured files, locators, and the measurement of
linear lengths from free-form marks. We run the empirical
test before the final iteration, which resulted in changes of the
organization and icons of the menus and the copying, align-
ing, and link hiding features. We describe the formal test in
the auxiliary materials.

THE IVOLVER VISUAL LANGUAGE

Here we describe the iVoLVER tool as well as the basic ele-
ments of the visual language. References to the design prin-
ciples (e.g., DP1) indicate the design motivation. See the
‘Components’ video included in the auxiliary materials for
more detail.

Canvas and System-Wide Features

The main space of the application is a web-based infinite
zoomable canvas or sandbox where all objects are dropped

and can be relocated at will by dragging (DP2, 3, 5, 6).
Most widgets have two states: compressed and expanded.
Compressed is their natural state for display, whereas the ex-
panded mode exposes their visual properties and allows con-
nection to other objects.

A top toolbar (Figure 3.A) enables essential operations (load,
save, align, compress, hide, duplicate, and delete objects),
and data importing functions: loading bitmap and vector
graphics, structured data files; taking camera pictures; and
opening web pages (DP1).

The right-side palette (Figure 3.B) is separated by categories
and contains all the types of objects that can be composed in
the canvas. The shape of the buttons encode whether these are
draggable (circles) or involve switching to a mode (squares).

We designed the palette and toolbar to show all available
functionality at a glance. Although these might appear com-
plex (58 icons), and many icons need to be learned, they
also make every operation and widget visually explicit (DP3).
This design avoids the multi-step interactions required in
menus (DP5—particularly important for touch interfaces),
and the discoverability problems of gestures.

Extractors

These components extract data from different data sources
(DP1) and make them available to other components in the
canvas.

Color region extractors (Figure 3.D) can extract size, color
and shape from uniformly colored areas within raster images
(e.g., a sector of a pie chart, the map area of a country). Dou-
ble tapping on an area of a bitmap image uses a flood fill
Computer Vision (CV) algorithm and creates an extractor ob-
ject from where to drag the values (Figure 2.A). A similar pro-
cess enables extraction from vector formats (without requir-
ing CV). To facilitate extraction of multiple regions, a trace
gesture creates multiple extractors for all objects in the trace
(Figure 2.B). A squiggle over several areas with different col-
ors creates a single extractor for all areas (Figure 2.C). If the
source material is not good enough for CV (e.g., low-contrast
photo), users can still trace areas with a pen or a finger over
the picture or map and use their information in the same way.

Line samplers are created by tracing a freehand line on top
of an image. The sampler extracts colors of the image below
(Figure 3.E) at adjustable intervals (Figure 3.F) and outputs
them as color collection. Line samplers can also output the
length of their trace. There is a straight line version as well.

Text recognizers appear as scalable and rotatable rectangu-
lar shapes that recognise textual information underneath the
area that they cover (Figure 3.G). Expanding a text extrac-
tor exposes the recognised text, which can be interpreted as a
string, a number, or a date with a time stamp (Figure 3.H).

Structured data file extractors are the canvas embodiment of
structured data files (in CSV or JSON format), which take the
form of a named collection of collections (Figure 3.I).

Web page extraction enables web pages to be opened in a
floating window on top of the canvas. Dragging elements



A

D
F

E
B

C

Figure 2. Gestures to create color region extractors. A double tap (A)
extracts from an homogeneous region (D). A trace (B) creates separate
extractors for each of the homogeneous regions underneath (E). A squig-
gle (C) creates a single extractor (F) from multiple regions.

from a web page (e.g., text, images, tables) into the canvas
creates the corresponding object, interpreting it if necessary
(e.g., as a date, time or number).

Values, Types and Data Flow

iVoLVER supports six different data types: numbers, strings,
colors, date and time stamps, durations, and shapes, which are
all represented as atomic objects in the canvas (DP2, DP3).
Values appear as colored circles with a symbol inside; color
and symbol identify the type of the value (Figure 3.J). They
are sized slightly larger than a fingertip to enable touch ma-
nipulation (DP6). Values can be dragged out of a value holder
element (e.g., a property of an extractor) into a blank sec-
tion of the canvas or from the palette. Expanding a number
value (with a double click or double tap) enables direct edit-
ing, scaling its output in orders of magnitude (for numbers),
and assigning a unit label (Figure 3.K). Strings, colors, date
and time stamps, and durations similarly support manual as-
signment of the value.

Reading and writing operations to and from a specific
iVoLVER value or a value holder element are displayed via
visual connections. The connectors are dashed lines with di-
rectional arrows that indicate flow direction (i.e., which value
is the origin and which is the destination, reading and writing,
etc.—see Figure 3.M, DP3, DP4). All links except the active
one can be made invisible through a toolbar button. This is
convenient when the canvas becomes cluttered.

To enable interactivity and as an alternative to having to edit
a value manually to explore a particular range, iVoLVER has
a slider (Figure 3.L) which outputs a value in real time de-
pending on the interactive position of the handle. The range
of values can be established interactively or from another ob-
ject. Sliders also have a ‘play’ button that cycles through the
range of values in a loop, producing animations.

Collections

Values can be grouped into collections. When compressed,
collections appear as a toast shape with a symbol that rep-
resent the type of objects held (Figure 3.N). Collections are
always homogeneous. When expanded, each value in the col-
lection can be accessed individually (Figure 3.O). Collections
are created by dragging the collection icon from the palette,
and are typeless until the first value is dragged into it. Col-
lections are built by adding iVoLVER values one by one or

generated from other objects, including a sequence genera-
tor that produces a collection of numbers between two values
with a configurable step increment (Figure 3.P).

Operators

Values of most types can be combined through the four ba-
sic arithmetic operations: addition, subtraction, multiplica-
tion and division, which are represented as circles with the
operator’s symbol in them (Figure 3.Q). Operators are sen-
sitive to the type of value of its inputs and produce a cor-
responding output; for example, subtraction of two numbers
produces a number, but subtraction of two time stamps pro-
duces a duration.

Marks

Visual marks in iVoLVER are represented through their own
visual elements (DP2, DP3). There are seven types of marks:
squares, rectangles, circles, ellipses, paths, filled marks, and
SVGs (Figure 3.R). Marks are created from the palette ex-
cept for paths and filled marks that can also be drawn on the
canvas. SVG marks require the selection of an existing file.

The visual appearance of a mark is controlled by several prop-
erties (visual variables) that can be interactively adjusted or
receive input from other objects. All marks can take text (a la-
bel), color, and a geometrical shape (which will convert them
into a different kind of mark); most marks take some kind
of geometrical dimension (width, height, radius, angle or a
combination of these). Paths and filled paths also take lists
of point coordinates to define their shape. Note that all these
properties can be read or written; For example, one can give
a mark the color from another mark, or read the collection of
coordinates that makes up a path mark.

Relations: Functions and Mappers

A critical element of using data flexibly (G2) is the ability
to transform it. iVoLVER provides two mechanisms to trans-
form data: functions and mappers. These define a relation
between a collection of inputs and a collection of outputs.

Functions correspond to the mathematical concept of real
number univariate functions: a mapping between subsets of
the domain of real numbers where each value in the input is
related to exactly one value of the output. The function wid-
get is one of the most important widgets in iVoLVER since it
indirectly supports DP1 and provides a visually explicit rep-
resentation of data transformation (DP3) without the need to
code (DP4). There are three main ways to create a function:
one can drag a predefined function from the palette (e.g., log-
arithmic, square, sin), draw the desired shape directly on the
canvas, or create a correspondence between x and y values
from elsewhere in the system.

The function visual widget is designed to resemble how func-
tions are depicted in mathematical education (Figure 3.S):
there is a vertical Y axis that represents the output and an
X axis that represents the input. Four numeric values (minX,
maxX, minY, maxY—visible as blue circles) control the in-
put and output range. A line between the orthogonal axes
represents the shape of the function. Input and output ports,
which also serve as interactive handles, move along the in-
put and output axes, respectively, to graphically represent the



USER-TRACED FUNCTION

OPERATORS

Q

EXTRACTORS

COLOR

SAMPLER

COLOR-BASED

STRUCTURED DATA 

FILE EXTRACTOR

Data.csv

Name

Age

Date of Birth

F

A

I

G

E

M

VALUES & DATA TYPES

07/Sep/2015, 00:00:00 61.02 minutes

A String rgb(112, 112, 112)

Circle

EXPANDED NUMBER

100 centi meters

J

K

D

C

Percent of

MAPPERS

EMPTY

COLORS TO NUMBERS MAPPING

(EXPANDED)

NUMBERS TO NUMBERS MAPPING

(COMPRESSED)

T

SLIDER

L

0.00 360.00

FUNCTIONS

S

U VW

BUILT-IN SIN FUNCTION

0.00

85.00

0.00 100.00

(77.00, 53.00)

(291.67, -278.30)

0.00

-300.00

300.00

360.00

LOCATORS

COMPRESSEDY

200.00

EXPANDEDX

MARKS

Sales

COMPRESSED

EXPANDED

Mark’s label Mark’s label

bottle.svg

R

V
IS

U
A

L
 V

A
R

IA
B

L
E

S

H

TEXT

RECOGNIZER

CONNEC-

TION

COLLECTIONS

EXPANDED

O

GENERATOR

P

COMPRESSED

EMPTY

N

B

Group 2

Group 4

Group 1

Group 2

160.00

Group 4

Group 1

Figure 3. iVoLVER components. See the iVoLVER Visual Language section for labeled descriptions.

transformation. The ports are connected through perpendicu-
lar lines to a small yellow circle that moves along the function
line. Each of the axes have two collection elements that pro-
vide access to the coordinates that define the function.

Functions are used by connecting any numeric value from the
canvas into the input port, which will result in the input port
moving to the corresponding position in the X axis and the
output port to the corresponding output position. Dragging
from the output port will make the transformed value avail-
able elsewhere in the canvas. Dragging the input port manu-
ally will also produce the same effect interactively. Dragging
a collection of numeric values into the input port will generate
a collection of transformed values in the output.

Mappers allow the specification of relations between values
of different types (e.g., numbers, colors, and dates), as op-
posed to functions which only work with numbers. They are
a key element to support the use of data from different sources
(G1, DP1) because data is often represented in different ways
in the real world. For example, many topographic maps use
color to represent height.

The mapper takes the shape of two vertical columns (collec-
tions) of values where the left column represents the input
domain, and the right one the output domain (Figure 3.T).
An input port to the left of the input collection (Figure 3.U)
can receive an input of the same type as the input domain,
or simply be slided up and down. The output port to the right
(Figure 3.V) will output a value within the output domain that
corresponds to the vertical alignment of the specific input.

The vertical alignment of input and output elements deter-
mines how the input and output domains are related. For
example, if an input numeric value of 8 is aligned horizon-
tally with a color value red, any inputs of value 8 fed to the
mapper will be output as red colors. In between elements the
mapper creates linear interpolations. Elements in the input
and output domains can also be adjusted by dragging them
(Figure 3.W). Finally, feeding a collection of values (rather
than a single value) to the input port will result in a collection
of outputs.

Locators

The locator is an object that controls the position of marks,
which is one of the most important visual variables. When
expanded it resembles a set of coordinate axes with handles



similar to functions (Figure 3.X). In its compressed form it is
just a small circle (Figure 3.Y).

Dragging from the core circle of the locator to a mark gives
control of the mark’s position to the locator. The mark’s X
and Y position within the Cartesian space defined by the lo-
cator provide a point of entry for values from other objects.
The locator also provides an anchor to move multiple objects
at the same time—once linked to a locator, they keep the spa-
tial relationship to it.

Interactivity and Interaction

iVoLVER supports multi-touch, pen-based and mouse input,
consistent with DP6. During the design we considered tak-
ing advantage of the different input modalities by changing
the input behavior depending on the type of input (e.g., en-
abling the creation of connections by simultaneously touch-
ing start and end ports), and even taking advantage of pen
and touch interactions (as in [14]). Although this could de-
liver optimized interactions and a better use of the input band-
width of specific devices, we decided against it to support
the use the tool in a consistent fashion across a range of de-
vices. We therefore designed interactions that are both consis-
tent and feasible across the three input modalities (e.g., drag,
tap/click) with occasional specific adaptations (e.g., buttons
to zoom in and out when using pen or mouse input, enforcing
a minimum size of objects for touch).

The web interface runs well on mobile devices such as iPads
and large phones, also supporting DP6. The gesture design is
consistent across widgets: double tap (or click) expands and
contracts, drag moves an object or pans the canvas, dwell and
drag pulls a data connection to another object. Multi-touch
pinching and rotation (with two fingers) change the zoom
level in the canvas or scale and translate when on top of im-
ages.

The design of many widgets also introduces interactivity at
all levels. For example, users can manipulate input ports in
functions and mappers in real time, as if they were handles.
Interactive sliders also enable interactive visualizations and
animations.

IMPLEMENTATION

Since text recognition and computer vision are not yet well
supported in browser-based frameworks, iVoLVER’s current
implementation offloads these tasks to a server program spe-
cialized in image processing routines. Thus, the system works
under a client-server scheme. The client is implemented as a
dynamic web page mostly written in JavaScript. The main
area of the screen (i.e., the system’s sandbox) is implemented
on top of a HTML5 canvas element, where most of the ren-
dering process takes place. Fabric.js5 is used to handle the
2D graphical context of this element while seeking to ex-
ploit the processing capabilities of the GPU at the client side.
iVoLVER also takes advantage of regular DOM elements to
implement objects such as the panels used to manually mod-
ify values (e.g., to configure numbers’ magnitudes). The
tooltipster6 jQuery plugin is used for this purpose. When

5http://www.fabricjs.com
6http://iamceege.github.io/tooltipster

running on multi-touch displays, the user input is handled
through the Hammer.js7 library in combination with the built-
in touch capabilities of Fabric.js. Other libraries used in the
client side of the system are: Simplify.js8 for polyline sim-
plification support, the JSTS Topology Suite9 for the appli-
cation of spatial predicates and geomety processing, and the
moment.js10 library for date parsing and manipulation.

On the server side, a computer vision system written in Java
executes several image processing routines as they are re-
quested by the iVoLVER’s web client. Among other tasks,
the server component is responsible for 1) computing color-
based connected components in images through the applica-
tion of a flood fill algorithm, 2) finding contours in binary and
gray-scale images, 3) applying graphical morphological oper-
ators (such as erosion and dilation), 4) performing per-pixel
operations (e.g., to extract color samples), and 5) recogniz-
ing text. These tasks are implemented with the OpenCV li-
brary.11 The text detection and recognition routines are built
upon the Tesseract4Java library.12 The communication be-
tween the client and the server is implemented through Java
servlets.

Although eventually it will be possible to carry out the server-
side operations in the browser, there are several advantages
in offloading them to an internal or external component: a)
computation is offloaded as well, which can benefit the use
of the application in devices with low computational power
such as phones and tablets; b) with the appropriate definition
of a communication interface, offloading results in a separa-
tion of concerns and improves maintainability; c) it can spur
the usage of computer vision computations as a service from
different provider frameworks or libraries, which could com-
pete and therefore improve on the basic algorithms.

iVoLVER’s current implementation is only tested on Google
Chrome, which is available for most major operating sys-
tems. iVoLVER is accessible through http://iVoLVER.cs.

st-andrews.ac.uk.

SCENARIOS

We present four scenarios that show how iVoLVER could be
used to support infovis in new situations. Live videos of the
scenarios are available in the Video Figure.

Verifying Infographics (and Correcting Them)

Figure 4.A illustrates how iVoLVER can be used to verify
(and correct) mistakes (or manipulations) in existing info-
graphics. We use the example of a TV line chart shown in
the National Spanish Television in January 2015 [30]. The
graphic showed a line representation of unemployment that is
incongruous with the numbers displayed and with a non-zero
baseline. This representation exaggerates and misrepresents
unemployment decrease in the last two years, which led to
many critics of the former government to claim bias through
social networks.
7http://hammerjs.github.io
8http://mourner.github.io/simplify-js
9https://github.com/bjornharrtell/jsts

10http://momentjs.com
11http://opencv.org
12https://github.com/tesseract4java

http://www.fabricjs.com
http://iamceege.github.io/tooltipster
http://iVoLVER.cs.st-andrews.ac.uk
http://iVoLVER.cs.st-andrews.ac.uk
http://hammerjs.github.io
http://mourner.github.io/simplify-js
https://github.com/bjornharrtell/jsts
http://momentjs.com
http://opencv.org
https://github.com/tesseract4java


0.00

6038.80 

8619.10

55.00

(35.04, 6368.72)

B

C

D

A

2007.00 2009.00 2012.00 2014.00

(2014.00, 3657543.18)

2014.002007.00

2129547.00

4848723.00

4447711.00

3657543.18

790167.82790167.82

0.00

5415.11

8786.50

55.00

(26.31, 6606.40)

22/Sep/2015, 16:30:0022/Sep/2015, 06:30:00

log.csv

Let’s play some music

China

Tweets

Times

United States
Saudi Arabia

Russia

China Saudi ArabiaUnited States
0

10

Russia

2

4

6

8

Oil Production
(millions of barrels per day)

Figure 4. Scenarios of use of iVoLVER. See Scenarios section for labelled descriptions.

With iVoLVER we trace the function over the displayed line
and adjust the range to correspond to the numbers shown in
the chart. A quick manipulation of the input of the function
can help us see that the numbers provided are inconsistent
with the shape of the chart (by hundreds of thousands of peo-

ple). We can then generate an alternative representation with
four rectangular marks that correspond to the numbers pro-
vided, this time with a zero-based vertical axis and the right
dimensions. It looks dramatically different.



This scenario shows how non-programmers trained in the use
of iVoLVER (perhaps even when in front of the TV, with a
tablet) could analyze graphics and generate alternative rep-
resentations that are more understandable to them or less bi-
ased. Simultaneously, journalists can use the same procedure
to verify their sources and to double check that the graphics
that they produce are correct and fair.

Climbing Everest

This scenario, depicted in Figure 4.B, involves the creation
of route altitude profiles from raster image data. Two raster
images are imported. One contains a depiction of the North
Col-North Ridge and the South Col routes to reach the sum-
mit of Mount Everest; the other is a topographic map of the
area. We then use the freehand sampler tool to create two
samplers that correspond to each of the routes. These traces
can be created directly in the second figure, or created in the
first figure and then moved onto the second (the second op-
tion works in this case because both representations coincide
spatially, but it might not be the case in other scenarios).

To create a mapping between color and altitudes we extract
the colors and the altitude figures from the legend. This map-
per can now translate any color or series of colors into a nu-
merical altitude. We feed the altitudes from the route sam-
plers into the mapper and use the output to display the as-
cension as an interactive function. The width of the function
widgets are adjusted to scale by extracting the route length
from the trace. The result is a set of two comparable profiles.

This scenario exemplifies the creation of a sophisticated visu-
alization optimized for a particular purpose, from data which
is spatial and not trivial to extract. Besides the expressiveness
of the visual language, this visualization also highlights the
embedded interactivity: one can interactively query the pro-
files, adjust routes or create new ones, adjust the sampling,
and any of the extracted or manipulated data can be further
fed into new processing or visuals.

Personal Visualization of a Trip

Camilla, which we assume has already learned the iVoLVER
tool, just flew from Brest (France) to Perugia (Italy) to visit
her family. She decides to visualize the trip in a fun way to
her relatives. She uses any map of the area as a base and pulls
the temporal data (flight departures and arrivals) straight from
her webmail inside the tool (Figure 4.C). She does not need
the system to have any geographical knowledge because she
can easily select the trajectory. Mappers can transform dates
into points of the map, interpolating the points in between. A
date slider feeds the mappers to generate coordinates which,
in turn, control the position of an SVG mark on the canvas
through a locator. The resulting animation is proportional to
the actual time scale of the trip. Finally, she can annotate the
trip with her tweets because these are also time-indexed.

The scenario demonstrates pulling data from different sources
to construct something new and fairly sophisticated in behav-
ior without the need of any textual programming. The result
is fun and animated. It is easy to imagine how this extends to
more serious needs such as animal trajectory visualizations
that help detect when two individuals are in close temporal
and spatial proximity.

Oil Production and Consumption

This scenario displays the multiple flexible data importing
mechanisms of iVoLVER and demonstrates how the different
collected data can be combined to build a relatively standard
chart of multivariate data (Figure 4.D).

We use oil production in the top four producing countries as
example motivation. We first use the photograph feature of
the tool to import a map that was on a poster. Color extrac-
tors pull approximate country areas from the map (with squig-
gles). Extractors on an SVG bring in the main production data
and the labels. The consumption data comes from a table in
the web. We use a locator to map the X coordinate to country
area, the Y coordinate to oil production, and a number-to-
color mapper translates oil consumption into color.

The scenario showcases how the tool can support a workflow
where importing and capturing data can be better integrated
and interleaved with the design of representations. Addition-
ally, the resulting visualization is also a visual record of the
representation choices and the data sources which can be use-
ful in explaining the chart itself.

DISCUSSION

iVoLVER is a novel infovis creation system distinguished
by the combination of three main features: it provides user-
driven data extraction from non-structured data sources such
as photographs, raster graphics, vector graphics, web pages
and text; it does not require textual programming; and it en-
ables analysis away from the mouse and keyboard through
a touch, pen or mouse-based interface. These combined ele-
ments aim to enable the use of infovis in an extended range of
possible situations, a small sample of which is demonstrated
through the scenarios from the previous section.

As a point exploration of a large design space, building
iVoLVER has also made apparent the impact of our early de-
sign choices. In the following subsections we identify the
challenges that we found during the design process and re-
flect on the advantages and disadvantages of our approach. It
is important to note, however, that much of what is discussed
below poses new questions rather than providing clear an-
swers, and that these questions should be addressed through
further analytical and empirical study.

Power and Simplicity

The radical atomic approach that we adopted (we repre-
sent very low-level data such as single numeric values—the
atoms—through separate interactive visual elements) aimed
at producing a flexible interface where a few types of building
blocks could be combined with each other in a multiplicity of
ways. We believe that this indeed resulted in a powerful and
flexible interface, especially when combined with the infinite
canvas approach. However, the power-simplicity tradeoff is
not really circumvented and complexity creeps up in several
ways. For example, we found that the number of basic ele-
ment types that we had to include in the design to make the
system useful is not small.

The atomic approach also means that, even for moderately
simple visualizations, it may be necessary to create and in-
terconnect a substantial number of elements. Sophisticated



emergent functionality and visualizations are possible, but the
time and number of interactions required to put those together
increases with their complexity and could threaten the util-
ity of the tool in many situations that rely on quick, sketch-
like creation of visualizations (e.g., the motivating scenario).
Clutter can also result from this, which we addressed partially
through functions that compress all objects and hide all links.

A related problem is caused by visualizations of larger
datasets, which could be tedious to create. iVoLVER does
not scale well with the size of the data because it does not
easily allow abstraction (e.g., generalization of the operation
on a concrete element to a group or to a group of groups),
as enforced by our visual explicitness (DP3) and avoidance
of hidden processes (DP5) principles. Complexity and scala-
bility have been identified as fundamental challenges in other
diagrammatic visual tools (e.g., by Javed and Elmqvist [24]).
These challenges could be addressed in future designs by in-
troducing abstraction in ways that do not obscure or hide the
operations taking place.

Learnability

Although visual explicitness (DP3), avoiding hidden pro-
cesses (DP5) and, more generally, avoiding abstraction might
be ways to make interfaces easier to learn, iVoLVER is far
from being suitable for novices and is definitely not walk-up-
and-use. Maximizing learnability was not part of the original
focus of iVoLVER’s design but it is an aspect of visual lan-
guages worth discussing. The learnability challenges from
iVoLVER stem, at least partially, from the complexities de-
scribed in the previous subsection; namely, the multiple types
of marks, data types, operations, functions and settings of the
interface must all be learned, and this might result in a steep
learning curve. It is also important to note that a visual syntax
such iVoLVER’s is still a syntax. The semantic challenges of
specification faced by textual programmers might be equiva-
lent or even exacerbated by the visual nature of the language.

The question of what kind of approaches in the atomic-
abstract and programmable-configurable continua work best
for novices is important but outside of the scope of this paper.

Teaching and Collaborating

We have noticed that the current design has some possible
advantages which we had not anticipated or aimed at. Specif-
ically, the effort to atomize (DP2) and make everything visi-
ble on the canvas (DP3) could prove useful for collaboration.
Most actions in iVoLVER leave visual traces and the perma-
nent feedthrough produced can help maintain other’s aware-
ness [17] and facilitate communication [44]. For example, a
circle connected with arrows in the canvas is harder to miss
and easier to interpret than some actions in menus and dia-
logues that disappear immediately (DP5). For the same rea-
son, iVoLVER might be useful for teaching visualization and
visual representation.

Integration and Interactivity

We realized early on that a tool that just enables extraction
would be severely limited. We believe that the main value
of iVoLVER comes from being able to extract data flexibly
while being able to transform, combine, and represent this

data immediately and swap seamlessly between all these ac-
tivities. All the activities take place through the same canvas,
which reduces the need to compartmentalize the screen real
estate or provide multiple screens or pages, although it might
result in a significant amount of panning and zooming.

The integration of interactive control of data, representation
and parameters within the canvas itself as interactive sliders,
movable buttons and direct tracing of functions was motivated
by DP5. The resulting interface is interesting in that the data
and its manipulation are integrated within the same space and
linked visually.

Limitations and Technical Constraints

iVoLVER does not provide universal coverage of all pos-
sible infovis tasks or representations. Specifically, it does
not provide features for set-level data interaction (e.g., se-
lection, navigation, annotation) and is not as expressive as
textual visualization programming languages or other recent
tools such as Lyra [41]. For example, there is no simple way
to produce force-directed layouts, trees, and two- and three-
dimensional scalar fields. These could be implemented in the
future through additional language elements. Extraction and
text recognition features are also limited by the graphic anal-
ysis algorithms. Users have no control of the parameters used
in the image processing routines. This simplifies the extrac-
tion process and avoids complex configuration, but might also
impact user experience if unexpected results arise.

CONCLUSION

We introduce iVoLVER, a web-based visualization system
that supports interactive construction of interactive visualiza-
tions. iVoLVER makes the data processing steps—and the
intermediate transformations performed on it—visually ex-
plicit. This is achieved by the implementation of a visual lan-
guage that provides graphical components aimed to support
the extraction, manipulation and processing of both struc-
tured and non-structured data. The combination of a flexible
set of tools to extract data from many forms (raster images,
pictures, SVG charts), a set of widgets to transform data, and
a set of representation objects, aim to support visualization
activity in a wider set of situations, such as when the data is
not available in a convenient digital form or when the data
comes from multiple sources. We illustrated the flexibility
and expressiveness of the tool with a set of scenarios. Fi-
nally, we provide a discussion that highlights the challenges
and lessons learnt from our design choices.

ACKNOWLEDGMENTS

The authors wish to thank the reviewers and associate chairs
for their advice. We are also indebted to Dr Laurence Lasselle
who gave us access to her research and presentation prob-
lems; to the Ecuadorian Government, who supports GGM
through a SENESCYT scholarship; to Uta Hinrichs, Aaron
Quigley and the SACHI group for feedback and help; and to
Wacom, who supports the research through the donation of
the Cintiq multi-touch displays in which our tool was devel-
oped.

REFERENCES

1. Sriram Karthik Badam, Eli Fisher, and Niklas Elmqvist.
2015. Munin: A Peer-to-Peer Middleware for



Ubiquitous Analytics and Visualization Spaces. IEEE
Transactions on Visualization and Computer Graphics
21, 2 (Feb. 2015), 215–228. DOI:
http://dx.doi.org/10.1109/TVCG.2014.2337337

2. Benjamin B. Bederson and James D. Hollan. 1994.
Pad++: A Zooming Graphical Interface for Exploring
Alternate Interface Physics. In Proceedings of the 7th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’94). ACM, New York, NY, USA,
17–26. DOI:
http://dx.doi.org/10.1145/192426.192435

3. Jacques Bertin. 2011. Semiology of Graphics:
Diagrams, Networks, Maps. ESRI Press, Redlands,
Calif.

4. Marat Boshernitsan and Michael Sean Downes. 2004.
Visual programming languages: A survey. Technical
Report UCB/CSD-04-1368. University of California,
Berkeley.

5. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3; Data-Driven Documents. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (Dec.
2011), 2301–2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

6. John Brosz, Miguel A. Nacenta, Richard Pusch,
Sheelagh Carpendale, and Christophe Hurter. 2013.
Transmogrification: Casual Manipulation of
Visualizations. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). ACM, New York, NY, USA, 97–106. DOI:
http://dx.doi.org/10.1145/2501988.2502046

7. Jeffrey Browne, Bongshin Lee, Sheelagh Carpendale,
Nathalie Riche, and Timothy Sherwood. 2011. Data
Analysis on Interactive Whiteboards Through
Sketch-based Interaction. In Proceedings of the ACM
International Conference on Interactive Tabletops and
Surfaces (ITS ’11). ACM, New York, NY, USA,
154–157. DOI:
http://dx.doi.org/10.1145/2076354.2076383

8. William O. Chao, Tamara Munzner, and Michiel van de
Panne. 2010. Poster: Rapid pen-centric authoring of
improvisational visualizations with napkinvis. Posters
Compendium InfoVis (2010).

9. William S Cleveland and Robert McGill. 1984.
Graphical Perception: Theory, Experimentation, and
Application to the Development of Graphical Methods.
J. Amer. Statist. Assoc. 79, 387 (1984), 531–554. DOI:
http://dx.doi.org/10.2307/2288400

10. William S. Cleveland and Robert McGill. 1987.
Graphical Perception: The Visual Decoding of
Quantitative Information on Graphical Displays of Data.
Journal of the Royal Statistical Society. Series A
(General) 150, 3 (1987), 192–229.
http://www.jstor.org/stable/2981473

11. Andy Cockburn, Amy Karlson, and Benjamin B.
Bederson. 2009. A Review of Overview+Detail,

Zooming, and Focus+Context Interfaces. Comput.
Surveys 41, 1 (Jan. 2009), 2:1–2:31. DOI:
http://dx.doi.org/10.1145/1456650.1456652

12. Niklas Elmqvist, John Stasko, and Philippas Tsigas.
2008. DataMeadow: A Visual Canvas for Analysis of
Large-scale Multivariate Data. Information Visualization
7, 1 (March 2008), 18–33. DOI:
http://dx.doi.org/10.1145/1391107.1391110

13. Gapminder Foundation. 2015. Gapminder, a fact-based
worldview. (2015). http://www.gapminder.org

14. Mathias Frisch, Jens Heydekorn, and Raimund Dachselt.
2009. Investigating Multi-touch and Pen Gestures for
Diagram Editing on Interactive Surfaces. In Proceedings
of the ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’09). ACM, New York, NY,
USA, 149–156. DOI:
http://dx.doi.org/10.1145/1731903.1731933

15. Issei Fujishiro, Yoshihiko Ichikawa, Rika Furuhata, and
Yuriko Takeshima. 2000. GADGET/IV: a taxonomic
approach to semi-automatic design of information
visualization applications using modular visualization
environment. In IEEE Symposium on Information
Visualization, 2000. InfoVis 2000. 77–83. DOI:
http://dx.doi.org/10.1109/INFVIS.2000.885093

16. Lars Grammel, Chris Bennett, Melanie Tory, and
Margaret-Anne Storey. 2013. A Survey of Visualization
Construction User Interfaces. In EuroVis - Short Papers,
Mario Hlawitschka and Tino Weinkauf (Eds.). The
Eurographics Association. DOI:
http://dx.doi.org/10.2312/PE.EuroVisShort.

EuroVisShort2013.019-023

17. Carl Gutwin and Saul Greenberg. 2004. The importance
of awareness for team cognition in distributed
collaboration. In Team cognition: Understanding the
factors that drive process and performance, E. Salas and
S. M. Fiore (Eds.). American Psychological Association,
Washington, DC, US, 177–201.
http://hdl.handle.net/1880/45867

18. Jonathan Harper and Maneesh Agrawala. 2014.
Deconstructing and Restyling D3 Visualizations. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14).
ACM, New York, NY, USA, 253–262. DOI:
http://dx.doi.org/10.1145/2642918.2647411

19. Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing
Graphical Perception: Using Mechanical Turk to Assess
Visualization Design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’10). ACM, New York, NY, USA, 203–212. DOI:
http://dx.doi.org/10.1145/1753326.1753357

20. Jeffrey Heer, Stuart K. Card, and James A. Landay.
2005. Prefuse: A Toolkit for Interactive Information
Visualization. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’05).
ACM, New York, NY, USA, 421–430. DOI:
http://dx.doi.org/10.1145/1054972.1055031

http://dx.doi.org/10.1109/TVCG.2014.2337337
http://dx.doi.org/10.1145/192426.192435
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2076354.2076383
http://dx.doi.org/10.2307/2288400
http://www.jstor.org/stable/2981473
http://dx.doi.org/10.1145/1456650.1456652
http://dx.doi.org/10.1145/1391107.1391110
http://www.gapminder.org
http://dx.doi.org/10.1145/1731903.1731933
http://dx.doi.org/10.1109/INFVIS.2000.885093
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://hdl.handle.net/1880/45867
http://dx.doi.org/10.1145/2642918.2647411
http://dx.doi.org/10.1145/1753326.1753357
http://dx.doi.org/10.1145/1054972.1055031


21. Daniel D. Hils. 1992. Visual languages and computing
survey: Data flow visual programming languages.
Journal of Visual Languages & Computing 3, 1 (March
1992), 69–101. DOI:
http://dx.doi.org/10.1016/1045-926X(92)90034-J

22. Weihua Huang and Chew Lim Tan. 2007. A System for
Understanding Imaged Infographics and Its
Applications. In Proceedings of the 2007 ACM
Symposium on Document Engineering (DocEng ’07).
ACM, New York, NY, USA, 9–18. DOI:
http://dx.doi.org/10.1145/1284420.1284427

23. Samuel Huron, Sheelagh Carpendale, Alice Thudt,
Anthony Tang, and Michael Mauerer. 2014.
Constructive Visualization. In Proceedings of the 2014
Conference on Designing Interactive Systems (DIS ’14).
ACM, New York, NY, USA, 433–442. DOI:
http://dx.doi.org/10.1145/2598510.2598566

24. Waqas Javed and Niklas Elmqvist. 2013. ExPlates:
Spatializing Interactive Analysis to Scaffold Visual
Exploration. Computer Graphics Forum 32, 3pt4 (2013),
441–450. DOI:
http://dx.doi.org/10.1111/cgf.12131

25. Rick Kazman and Jeromy Carrière. 1996. Rapid
prototyping of information visualizations using
VANISH. In Information Visualization ’96, Proceedings
IEEE Symposium on. 21–28, 118. DOI:
http://dx.doi.org/10.1109/INFVIS.1996.559212

26. Bongshin Lee, Rubaiat Habib Kazi, and Greg Smith.
2013. SketchStory: Telling More Engaging Stories with
Data through Freeform Sketching. IEEE Transactions
on Visualization and Computer Graphics 19, 12 (Dec.
2013), 2416–2425. DOI:
http://dx.doi.org/10.1109/TVCG.2013.191

27. Rhema Linder, Nic Lupfer, Andruid Kerne, Andrew M.
Webb, Cameron Hill, Yin Qu, Kade Keith, Matthew
Carrasco, and Elizabeth Kellogg. 2015. Beyond
Slideware: How a Free-form Presentation Medium
Stimulates Free-form Thinking in the Classroom. In
Proceedings of the 2015 ACM SIGCHI Conference on
Creativity and Cognition (C&C ’15). ACM, New York,
NY, USA, 285–294. DOI:
http://dx.doi.org/10.1145/2757226.2757251

28. Ruizhe Liu, Weihua Huang, and Chew Lim Tan. 2007.
Extraction of Vectorized Graphical Information from
Scientific Chart Images. In Ninth International
Conference on Document Analysis and Recognition,
2007. ICDAR 2007, Vol. 1. 521–525. DOI:
http://dx.doi.org/10.1109/ICDAR.2007.4378764

29. Sean Lynch, Miguel A. Nacenta, and Sheelagh
Carpendale. 2011. ToCoPlay: Graphical Multi-touch
Interaction for Composing and Playing Music. In
Human-Computer Interaction INTERACT 2011, Pedro
Campos, Nicholas Graham, Joaquim Jorge, Nuno
Nunes, Philippe Palanque, and Marco Winckler (Eds.).
Lecture Notes in Computer Science, Vol. 6948. Springer

Berlin Heidelberg, 306–322. DOI:
http://dx.doi.org/10.1007/978-3-642-23765-2_22

30. Redacción Madrid. 2015. Un nuevo gráfico
‘manipulado’ sobre el paro se cuela en TVE. La
Vanguardia (Jan. 2015). http://www.lavanguardia.
com/television/programas/20150123/54424726878/

grafico-manipulacion-tve-paro.html

31. Bryan McDonnel and Niklas Elmqvist. 2009. Towards
Utilizing GPUs in Information Visualization: A Model
and Implementation of Image-Space Operations. IEEE
Transactions on Visualization and Computer Graphics
15, 6 (Nov 2009), 1105–1112. DOI:
http://dx.doi.org/10.1109/TVCG.2009.191

32. Brad A. Myers. 1990. Taxonomies of visual
programming and program visualization. Journal of
Visual Languages & Computing 1, 1 (March 1990),
97–123. DOI:
http://dx.doi.org/10.1016/S1045-926X(05)80036-9

33. Seymour Papert. 1993. Mindstorms: Children,
Computers, and Powerful Ideas. Basic Books, New
York.

34. Seymour Papert and Idit Harel. 1991. Situating
Constructionism. In Constructionism. Ablex Publishing
Corporation.

35. Casey Reas and Benjamin Fry. 2003. Processing: A
Learning Environment for Creating Interactive Web
Graphics. In ACM SIGGRAPH 2003 Web Graphics
(SIGGRAPH ’03). ACM, New York, NY, USA, 1–1.
DOI:http://dx.doi.org/10.1145/965333.965356

36. Donghao Ren, T. Hollerer, and Xiaoru Yuan. 2014.
iVisDesigner: Expressive Interactive Design of
Information Visualizations. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (Dec.
2014), 2092–2101. DOI:
http://dx.doi.org/10.1109/TVCG.2014.2346291

37. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009.
Scratch: Programming for All. Commun. ACM 52, 11
(Nov. 2009), 60–67. DOI:
http://dx.doi.org/10.1145/1592761.1592779

38. Ankit Rohatgi. 2015. WebPlotDigitizer. (2015).
http://arohatgi.info/WebPlotDigitizer

39. Greg Ross and Matthew Chalmers. 2003. A Visual
Workspace for Hybrid Multidimensional Scaling
Algorithms. Information Visualization 2, 4 (Dec. 2003),
247–257. DOI:
http://dx.doi.org/10.1057/palgrave.ivs.9500056

40. Jeffrey M. Rzeszotarski and Aniket Kittur. 2014.
Kinetica: Naturalistic Multi-touch Data Visualization. In
Proceedings of the 32nd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’14). ACM,

http://dx.doi.org/10.1016/1045-926X(92)90034-J
http://dx.doi.org/10.1145/1284420.1284427
http://dx.doi.org/10.1145/2598510.2598566
http://dx.doi.org/10.1111/cgf.12131
http://dx.doi.org/10.1109/INFVIS.1996.559212
http://dx.doi.org/10.1109/TVCG.2013.191
http://dx.doi.org/10.1145/2757226.2757251
http://dx.doi.org/10.1109/ICDAR.2007.4378764
http://dx.doi.org/10.1007/978-3-642-23765-2_22
http://www.lavanguardia.com/television/programas/20150123/54424726878/grafico-manipulacion-tve-paro.html
http://www.lavanguardia.com/television/programas/20150123/54424726878/grafico-manipulacion-tve-paro.html
http://www.lavanguardia.com/television/programas/20150123/54424726878/grafico-manipulacion-tve-paro.html
http://dx.doi.org/10.1109/TVCG.2009.191
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1145/965333.965356
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1145/1592761.1592779
http://arohatgi.info/WebPlotDigitizer
http://dx.doi.org/10.1057/palgrave.ivs.9500056


New York, NY, USA, 897–906. DOI:
http://dx.doi.org/10.1145/2556288.2557231

41. Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An
Interactive Visualization Design Environment.
Computer Graphics Forum 33, 3 (June 2014), 351–360.
DOI:http://dx.doi.org/10.1111/cgf.12391

42. Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei,
Maneesh Agrawala, and Jeffrey Heer. 2011. ReVision:
Automated Classification, Analysis and Redesign of
Chart Images. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’11). ACM, New York, NY, USA, 393–402.
DOI:http://dx.doi.org/10.1145/2047196.2047247

43. Sebastian Schmidt, Miguel A. Nacenta, Raimund
Dachselt, and Sheelagh Carpendale. 2010. A Set of
Multi-touch Graph Interaction Techniques. In ACM
International Conference on Interactive Tabletops and
Surfaces (ITS ’10). ACM, New York, NY, USA,
113–116. DOI:
http://dx.doi.org/10.1145/1936652.1936673

44. Jaime Snyder. 2012. Image-Enabled Discourse:
Investigating the Creation of Visual Information as
Communicative Practice. iSchool Information Science
and Technology - Dissertations (May 2012).
http://surface.syr.edu/it_etd/70

45. Guo-Dao Sun, Ying-Cai Wu, Rong-Hua Liang, and
Shi-Xia Liu. 2013. A Survey of Visual Analytics
Techniques and Applications: State-of-the-Art Research
and Future Challenges. Journal of Computer Science
and Technology 28, 5 (Sept. 2013), 852–867. DOI:
http://dx.doi.org/10.1007/s11390-013-1383-8

46. Matthew Tobiasz, Petra Isenberg, and Sheelagh
Carpendale. 2009. Lark: Coordinating Co-located
Collaboration with Information Visualization. IEEE
Transactions on Visualization and Computer Graphics
15, 6 (Nov. 2009), 1065–1072. DOI:
http://dx.doi.org/10.1109/TVCG.2009.162

47. Jeffrey Travis and Jim Kring. 2006. LabVIEW for
Everyone: Graphical Programming Made Easy and Fun
(3rd Edition) (National Instruments Virtual
Instrumentation Series). Prentice Hall PTR, Upper
Saddle River, NJ, USA.

48. Bas Tummers. 2006. DataThief III. (2006).
http://datathief.org

49. Bret Victor. 2013. Drawing Dynamic Visualizations.
Recorded at the Stanford HCI seminar. (2013).
https://vimeo.com/66085662

50. Fernanda B. Viegas, Martin Wattenberg, Frank van
Ham, Jesse Kriss, and Matt McKeon. 2007. ManyEyes:
a Site for Visualization at Internet Scale. IEEE
Transactions on Visualization and Computer Graphics
13, 6 (Nov. 2007), 1121–1128. DOI:
http://dx.doi.org/10.1109/TVCG.2007.70577

51. Colin Ware. 2012. Information visualization: perception
for design. Elsevier.

52. William Wright, David Schroh, Pascale Proulx, Alex
Skaburskis, and Brian Cort. 2006. The Sandbox for
Analysis: Concepts and Methods. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’06). ACM, New York, NY, USA,
801–810. DOI:
http://dx.doi.org/10.1145/1124772.1124890

http://dx.doi.org/10.1145/2556288.2557231
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1145/2047196.2047247
http://dx.doi.org/10.1145/1936652.1936673
http://surface.syr.edu/it_etd/70
http://dx.doi.org/10.1007/s11390-013-1383-8
http://dx.doi.org/10.1109/TVCG.2009.162
http://datathief.org
https://vimeo.com/66085662
http://dx.doi.org/10.1109/TVCG.2007.70577
http://dx.doi.org/10.1145/1124772.1124890

	Introduction
	Motivating Scenario
	Related Work
	Visual Programming Languages
	Visualization Tools
	Data Extraction, Transformation, and Collection

	Design Goals and Principles
	Design Process
	The iVoLVER Visual Language
	Canvas and System-Wide Features
	Extractors
	Values, Types and Data Flow
	Collections
	Operators
	Marks
	Relations: Functions and Mappers
	Locators
	Interactivity and Interaction

	Implementation
	Scenarios
	Verifying Infographics (and Correcting Them)
	Climbing Everest
	Personal Visualization of a Trip
	Oil Production and Consumption

	Discussion
	Power and Simplicity
	Learnability
	Teaching and Collaborating
	Integration and Interactivity
	Limitations and Technical Constraints

	Conclusion
	Acknowledgments
	REFERENCES 

