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IVT-seq reveals extreme bias in RNA sequencing
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Abstract

Background: RNA-seq is a powerful technique for identifying and quantifying transcription and splicing events,

both known and novel. However, given its recent development and the proliferation of library construction

methods, understanding the bias it introduces is incomplete but critical to realizing its value.

Results: We present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the

technical biases in RNA-seq library generation and sequencing at scale. We created a pool of over 1,000 in vitro

transcribed RNAs from a full-length human cDNA library and sequenced them with polyA and total RNA-seq, the

most common protocols. Because each cDNA is full length, and we show in vitro transcription is incredibly processive,

each base in each transcript should be equivalently represented. However, with common RNA-seq applications

and platforms, we find 50% of transcripts have more than two-fold and 10% have more than 10-fold differences in

within-transcript sequence coverage. We also find greater than 6% of transcripts have regions of dramatically

unpredictable sequencing coverage between samples, confounding accurate determination of their expression.

We use a combination of experimental and computational approaches to show rRNA depletion is responsible for the

most significant variability in coverage, and several sequence determinants also strongly influence representation.

Conclusions: These results show the utility of IVT-seq for promoting better understanding of bias introduced by

RNA-seq. We find rRNA depletion is responsible for substantial, unappreciated biases in coverage introduced

during library preparation. These biases suggest exon-level expression analysis may be inadvisable, and we recommend

caution when interpreting RNA-seq results.

Background
High-throughput sequencing of RNA (RNA-seq) is a

powerful suite of techniques to understand transcriptional

regulation. Using RNA-seq, not only can we perform trad-

itional differential gene expression analysis with better

resolution, we can now comprehensively study alternative

splicing, RNA editing and allele-specific expression, and

identify novel transcripts, both coding and non-coding

RNAs [1-3]. In contrast to the more established microarray-

based RNA expression analysis, the flexibility of RNA-seq

has allowed for the development of many different protocols

aimed at different goals (for example, gene expression of

polyadenylated (polyA) transcripts, small RNA sequen-

cing, and total RNA sequencing). However, this same

flexibility has the potential for complex technical bias, be-

cause different methods are routinely employed in RNA

isolation, size selection, fragmentation, conversion to

cDNA, amplification and, finally, sequencing [4-7]. While

progress has been made in generating and analyzing

RNA-seq data, we understand comparatively little about

the technical biases the various protocols introduce. Un-

derstanding these biases is critical to differential analysis,

to avoiding experimental artifacts (for example, in charac-

terizing RNA editing), and to realizing the full potential of

this powerful technology.

Previous efforts at understanding bias identified several

contributing sources, including GC-content and PCR en-

richment [8,9], priming of reverse transcription by ran-

dom hexamers [10], read errors introduced during the

sequencing-by-synthesis reaction [11], and bias introduced

by various methods of rRNA subtraction [7]. Studies that

revealed these sources of bias typically used computa-

tional methods on existing sequencing data to assess the

performance of various sequencing technologies and li-

brary protocols. One downside to this approach is that it

can be difficult to know whether anomalies in coverage
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are natural, or are due to technical artifacts. For example,

nearly every RNA-seq study has differences in intra-exonal

coverage, which could arise from naturally occurring splice

variants sharing part of an exon, or could be due to tech-

nical error in library construction or sequencing.

Given that researchers are continually developing new

sequencing methodologies and library generation proto-

cols [12], we need a means for assessing the technical

biases introduced by each new iteration in technology.

One attractive alternative is to generate libraries from

RNA that has been in vitro transcribed (IVT) from cDNA

clones, where the nucleotide sequence at every base is

known, the splicing pattern established and inviolate, and

the expression level is known to be uniform across the

transcript. Thus, any observed biases in coverage or ex-

pression must be technical rather than biological. This is

the experimental equivalent of simulated data that com-

putational researchers commonly use to develop and as-

sess alignment algorithms [13-15]. Jiang and colleagues

used a similar approach with 96 synthetic sequences de-

rived from Bacillus subtilis or the deep-sea vent microbe

Methanocaldococcus jannaschii genomes [16], organisms

that do not have RNA splicing or polyadenylation. The

focus of that work, though, was creating a useful set of

standards that could be used in downstream analysis, not

exploring library construction bias in a comprehensive set

of complex mammalian samples.

Here we present and apply IVT-seq at scale to better

understand bias introduced by RNA-seq. In brief, indi-

vidual plasmids were produced, pooled, and subjected to

in vitro transcription. Next, this RNA was mixed with

complex mouse total RNA at various concentrations,

and sequenced using the two most common RNA-seq

protocols, polyA-seq or total RNA-seq, on the Illumina

platform. We found coverage bias in most IVT transcripts,

with over 50% showing greater than two-fold changes in

within-transcript coverage and 10% having more than 10-

fold differences attributable to library preparation and se-

quencing. Additionally, we found greater than 6% of IVT

transcripts contained regions of high, unpredictable se-

quencing coverage, which varied significantly between

samples. These biases were highly reproducible between

replicates and suggest that exon-level quantification may

be inadvisable. Furthermore, we created sequencing librar-

ies from the original plasmid templates and using several

different RNA selection methods (rRNA depletion, polyA

selection, and no selection). We found that both rRNA de-

pletion and polyA selection are responsible for a signifi-

cant portion of this coverage bias, and computational

analysis showed that poorly represented regions of tran-

scripts are associated with low complexity sequences.

Taken together, these results show the utility of the IVT-

seq method for characterizing and identifying the sources

of coverage bias in sequencing technologies.

Results and discussion
IVT-seq library preparation and sequencing

To generate IVT-seq libraries (for full details, please see

the Materials and methods section), we produced indi-

vidual glycerol stocks each harboring a single, human,

fully sequenced plasmid from the Mammalian Gene Col-

lection (MGC) [17]. Next, we extracted the plasmid

DNA and plated it at 50 ng per well in 384-well plates.

We mixed the contents of three 384-well plates containing

a total of 1,062 cDNA clones (Additional file 1), trans-

formed this mixture into bacteria, and plated the bacteria

as single colonies. Following an overnight incubation, we

scraped these plates, amplified the bacteria for a few hours

in liquid culture, and purified plasmids from the bacteria

as a pool (Figure 1A). Next, we linearized the plasmids,

and used SP6 polymerase to drive in vitro transcription

of the cloned cDNA sequences (Figure 1B). Following a

DNase I treatment to remove the DNA template and

RNA purification, we were left with a pool of 1,062 differ-

ent human RNAs derived from fully sequenced plasmids.

To approximate what happens in a total RNA-seq reac-

tion, we subjected this IVT RNA to rRNA depletion and

then prepared libraries using the Illumina TruSeq protocol

(Figure 1C, IVT only). To account for possible carrier ef-

fects, we also mixed the IVT RNA with various amounts

of mouse total RNA derived from liver. The addition of

the mouse RNA gave these samples greater diversity (tran-

scripts from approximately 10,000 genes versus 1,062) and

more closely resembled a real biological sample. Also, by

adding background RNA from a different species (mouse)

than the IVT RNA (human), we made it easier to differen-

tiate between the IVT transcripts and mouse sequences

during downstream analysis. Because the IVT RNA did

not contain rRNA sequences whereas the mouse RNA

did, the quantity of mouse RNA would be significantly re-

duced by the rRNA depletion step. To account for this,

we mixed IVT and mouse RNA such that, following rRNA

depletion, we would have final pools with IVT:mouse

ratios of 1:1, 1:2, and 1:10. Finally, to account for mouse

RNAs potentially mapping to the human reference genome

and our IVT sequences, we prepared a pool consisting of

mouse RNA alone. We pooled the resulting six libraries

and sequenced them using an Illumina HiSeq 2000. We

performed this entire process in duplicate.

Mapping and coverage of IVT-seq data

Following sequencing and de-multiplexing, we aligned all

of the data to the human reference genome (hg19) using

the RNA-seq Unified Mapper (RUM) [14]. For all ana-

lyses, we only used data from reads uniquely mapped to

the reference, excluding all multi-mappers (data contained

in RUM_Unique and RUM_Unique.cov files). Of the

1,062 original IVT transcripts, we found 11 aligned to

multiple genomic loci, while 88 aligned to overlapping
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loci. To avoid any confounding effects in our analyses,

we filtered those transcripts from all analyses, leaving us

with 963, non-overlapping, uniquely-aligned IVT tran-

scripts. We saw excellent correlation in expression

levels between replicates (transcript-level R2 between

replicates >0.95; Additional file 2: Figure S1A). Sec-

ondly, at least 90% of the 963 IVT transcripts were

expressed with fragments per kilobase of exon per mil-

lion mapped reads (FPKM) values ≥5 in all IVT-seq

datasets, except mouse only (Table 1). In the IVT-only

samples, over 80% of the IVT sequences were expressed

above 100 FPKM (Additional file 2: Figure S1B). Be-

cause we prepared the MGC plasmids and IVT tran-

scripts as pools, it is likely that the IVT transcripts

showing low or zero coverage were initially present at

low plasmid concentrations prior to the transformation

and IVT steps. Using the IVT-seq technique, we were

able to specifically detect the vast majority of the human

IVT transcripts with high coverage in both the absence

and presence of the background mouse RNA.

While we do see reads aligned to the human IVT tran-

scripts in the mouse-only data, these transcripts collectively
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Figure 1 Construction of IVT-seq libraries. (A) Preparation of a pool of 1,062 human cDNA plasmids. Contents of three 384-well plates containing

MGC plasmids were pooled together. Pool was amplified via transformation in Escherichia coli, and resulting clones were purified and re-pooled.

(B) Generation of IVT transcripts. Pool of MGC plasmids was linearized and used as a template for an in vitro transcription reaction. Enzymes

and unincorporated nucleotides were purified, leaving pool of polyA transcripts. (C) Creation of IVT-seq libraries. Listed quantities of IVT RNA

were mixed with mouse liver total RNA to create six pools with final RNA quantities of 1 μg. Ribosomal RNA was depleted from these pools

using the Ribo-Zero Gold kit. IVT RNA and mouse RNA are now present in pools at the listed ratios, following depletion of rRNA from mouse

total RNA. These pools were used to generate RNA-seq libraries using Illumina’s TruSeq kit/protocol. This entire process was performed in

duplicate. Replicate libraries were pooled separately and sequenced in separate HiSeq 2000 lanes (two lanes total). IVT, in vitro transcribed;

MGC, Mammalian Gene Collection.
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represent approximately 2% of reads (Table 1). Those

transcripts with higher coverage are likely the result of

mouse reads aligning to highly similar human sequences.

We excluded these sequences from our analyses.

Within-transcript variation in RNA-seq coverage of IVT

transcripts

Consider first the IVT-only data. Given that these tran-

scripts were generated from an IVT reaction using cDNA

sequences, these data are unaffected by splicing or other

post-transcriptional regulation. Thus, most regions of

transcripts should be ‘expressed’ and present at similar

levels. The exceptions would be repetitive sequences that

map to multiple genome locations and may be poorly rep-

resented, and the ends of the cDNAs, which are subject to

fragmentation bias. To account for this, we created a sim-

ulated dataset that models the fragmentation process and

deviates from uniform data only by the randomness in-

curred by fragmentation. We generated two such datasets

using the Benchmarker for Evaluating the Effectiveness

of RNA-Seq Software (BEERS) [14]. The first dataset

contained all of the IVT transcripts expressed at roughly

the same level of expression (approximately 500 FPKM).

For the second, we used FPKM values from the IVT-only

samples as a seed, creating a simulated dataset with ex-

pression levels closely matching real data (Additional file 3:

Figure S2). These datasets are referred to as simulated and

quantity matched (QM)-simulated, respectively. The sim-

ulated data provide an ideal result, while the QM data

allow us to control for any artifacts arising from expres-

sion level (for example, transcripts with lower expression

may show more variability). Next, we aligned both simu-

lated datasets using RUM, with the same parameters as

for the biological data. Thus, both simulated datasets

also serve as controls for any artifacts introduced by the

alignment (for example, low coverage in repeat regions).

For full details on the creation of simulated data, see the

Materials and methods section.

Using IVT data derived from the BC015891 transcript

as a representative example, the ideal, theoretical coverage

plot from the simulated data shows near-uniform cover-

age across the transcript’s entire length, with none of the

extreme peaks and valleys characteristic of biological data-

sets (Figure 2A). However, our observed data showed a

high degree of variability, with peaks and valleys within an

exon (Figure 2B). Furthermore, these patterns were repro-

ducible across our replicates (Additional file 4: Figure S3).

We saw many other cases of extreme changes in coverage:

over 50% of the IVT transcripts showed greater than

two-fold changes in within-transcript coverage attribut-

able to library preparation and sequencing (Table 2 and

Additional file 5: Figure S4). For example, BC009037

showed sudden dips to extremely low levels of expression

in both of its exons (Figure 2C). Both simulated datasets

showed no such patterns, which indicates this coverage

variability is not the result of alignment artifacts. Further-

more, the absence of this pattern in the QM-simulated

data indicates these fold-change differences in coverage

were not due to sampling noise introduced by transcripts

with low or high coverage. In the case of BC016283, the

peaks and valleys in coverage led to greater than five-fold

differences in expression levels between exons (Figure 2D).

Once again, these patterns were reproducible across repli-

cates (Additional file 4: Figure S3). The SP6 polymerase

cannot fall off and then re-attach at a later point in the

transcript, leaving a region un-transcribed. Therefore,

given that these patterns showed troughs followed by

peaks, they cannot be the result of artifacts from in vitro

transcription. Furthermore, we sequenced the IVT prod-

ucts directly and found the vast majority were transcribed

with little to no bias. Taken together, these data suggest

that these coverage patterns are primarily the result of

technical biases introduced during library construction,

rather than biology. These results are consistent with a

previous study that used IVT RNA as standards in RNA-

seq experiments [16], suggesting that our IVT-seq meth-

odology is suitable for identifying technical variability in

sequencing data.

Table 1 Detection of source cDNA sequences in IVT-seq

Total number of cDNA clones: 963

Replicate 1 Replicate 2

Number of clones detected (FPKM ≥5):

IVT only 869 870

1:1 Mix 877 876

1:2 Mix 886 883

1:10 Mix 896 892

Mouse only 278 271

PolyA selection 829 -

No selection 870 -

Plasmid library 924 -

Average, normalizeda depth
of coverage for detected clones:

IVT Only 76.09 80.22

1:1 Mix 75.15 75.06

1:2 Mix 65.79 69.40

1:10 Mix 37.50 47.46

Mouse only 01.58 02.42

PolyA selection 72.27 -

No selection 72.74 -

Plasmid library 42.08 -

aAverage depth of coverage is normalized by the number of millions of

fragments mapped to the human reference in each sample.
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Between-sample variation in RNA-seq coverage of IVT

transcripts

In addition to this variability within transcripts, we also

found many transcript regions showing extreme variabil-

ity in coverage across samples (Figure 3). For example,

the sixth exon of BC003355 varied wildly relative to the

remainder of the transcript across all IVT:mouse dilutions.

Interestingly, the overall pattern of variation relative to the

rest of the transcript across the dilutions was maintained

between the replicates. Almost no reads in the mouse-

only sample map to this transcript, which eliminates the

possibility that this variability was due to incorrect align-

ment of mouse RNA.

Including BC003355, we found 86 regions of high, un-

predictable coverage (hunc) spread across 65 transcripts

(Additional file 6). Therefore, over 6% of the 963 IVT

transcripts contained regions showing wild but reprodu-

cible variations in RNA-seq coverage between samples.

While identifying these hunc regions, we used a two-

stage filter to eliminate variable regions resulting from

mouse reads mapped to highly similar human sequences.

First, we eliminated all hunc regions coming from tran-

scripts with FPKM ≥5 in either mouse-only dataset.

Next, to account for localized misalignment of mouse

Actual RNA-seq Coverage

Simulated RNA-seq CoverageA

B

C

D

Figure 2 Within-transcript variations in RNA-seq coverage. (A) Simulated RNA-seq coverage for a representative IVT transcript (BC015891).

RNA-seq coverage plot (black) is displayed according to the gene model (green), as it is mapped to the reference genome. Blocks correspond to

exons and lines indicate introns. The chevrons within the intronic lines indicate the direction of transcription. Numbers on y-axis refer to

RNA-seq read-depth at a given nucleotide position. (B) The actual RNA-seq coverage plot for BC015891 in the IVT-only sample. Representative

coverage plots for the IVT transcripts (C) BC009037 and (D) BC016283 are displayed according to the same conventions used above. All transcripts

are displayed in the 5ʹ to 3ʹ direction.

Table 2 Fold-change differences in within-transcript

coverage by library type

Number of IVT-transcripts with fold-change
differences:

>2 >10 >100

rRNA-depleted 713 (74.0%) 110 (11.4%) 17 (1.7%)

PolyA selection 678 (70.4%) 163 (16.9%) 7 (0.7%)

No selection 400 (41.5%) 31 (3.2%) 3 (0.3%)

Plasmid 189 (19.6%) 14 (1.5%) 3 (0.3%)

Simulated 0 0 0

QM-simulated 0 0 0

The plasmid data provides a measure of bias from library preparation/sequencing,

while the no selection data accounts for potential artifacts from the in vitro

transcription (IVT) step. To calculate the percentage of transcripts affected by bias

due specifically to library preparation and sequencing, but not sequence or

in vitro transcription artifacts, we performed the following calculation: rRNA

depletion% - no selection%+plasmid%. So we found 74% – 41.5%+ 19.6%= 52.1%

of transcripts in the rRNA-depleted data have greater than two-fold difference in

coverage, and 11.4% – 3.2% + 1.5% = 9.7% have greater than 10-fold difference in

coverage. QM, quantity matched.
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reads, we filtered out all hunc regions with an average

coverage ≥10 in either mouse-only dataset. We also re-

moved those hunc regions with mouse-only coverage ≥10

in the flanking 100 base pairs (bp) on either side. Given

the stringent criteria we used to identify these hunc re-

gions (see Materials and methods section for full details),

it is likely that this is an underestimate. To address the

possibility that mouse RNAs may interact with homolo-

gous human RNAs and interfere with them in trans, we

assayed the sequences surrounding these regions using

the MEME Suite [18], but we found no sequence motifs

these regions have in common. Furthermore, the depth of

coverage at these regions did not follow a linear relation-

ship with the increasing mouse RNA, which suggests it is

not simply a direct interaction with the background RNA.

There is no clear cause for these hunc regions, particularly

since we prepared all samples from the same pool of IVT

RNA and the only difference between samples was the

relative ratios of IVT RNA to mouse liver RNA. We also

searched for hunc regions that were divergent between

the two replicates, but found none. If such regions do

exist, they could be identified and overcome by creating li-

braries in duplicate. The hunc regions we identified above

with expression patterns maintained between replicates

present a greater challenge, as they could not be identified

and filtered out by creating duplicate libraries. This is

particularly problematic for using exon-level expression

values to identify alternative splicing events or differential

expression. The within-transcript and between-sample

variation we see in our IVT-seq data suggests that library

generation introduces strong technical biases, which could

confound attempts to study the underlying biology.

Sources of variability in RNA-seq coverage

There are three potential sources for technical bias in library

preparation: RNA-specific molecular biology (RNA fragmen-

tation, reverse-transcription), RNA selection method (rRNA

depletion, polyA selection), and sequencing-specific molecu-

lar biology (adapter ligation, library enrichment, bridge PCR).

To identify biases introduced solely by sequencing-specific

molecular biology, we created a DNA-seq library from the

same MGC plasmids used as templates for the IVT-seq li-

braries (Additional file 7: Figure S5). In doing this, we

skipped the steps specific to the IVT or RNA molecular

biology. We also prepared two additional IVT-seq libraries

using polyA selection or no selection, instead of rRNA

depletion. By comparing our plasmid library data and

the IVT-seq data using various selection methods, we

could identify which coverage patterns were the result

of RNA-specific molecular biology, the RNA selection

method, or of some common aspect of the library-generation

protocol.

We sequenced the plasmid library using an Illumina

MiSeq and aligned the resulting data to the human refer-

ence genome using the same method as the IVT-seq li-

braries. In this plasmid data, we saw 924 of the cDNA

clone sequences with FPKM values ≥5, compared to ap-

proximately 870 in both of the IVT only samples (Table 1).

IVT 

Only

1:1

1:2

1:10

Replicate 1 Replicate 2

Figure 3 Between-sample variations in RNA-seq coverage. RNA-seq coverage plots across all samples for exons 4 to 11 of the IVT transcript

BC003355. The black rectangles identify exon six, which shows extreme variability in coverage relative to the rest of the transcript when viewed

across all of the samples. The ratio of IVT RNA to mouse RNA is listed to the left of each sample’s coverage plots. Coverage plots (red for first

replicate; blue for second replicate) are displayed according to the gene model (black), as it is mapped to the reference genome. Blocks in the

gene model correspond to exons and lines indicate introns. The chevrons within the intronic lines indicated the direction of transcription.

Numbers on y-axes refer to RNA-seq read-depth at a given nucleotide position.
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This small drop in coverage was likely because the IVT

RNA goes through more pooling steps during library con-

struction than the plasmids. Furthermore, the plasmids

are not affected by transcription and reverse transcription

efficiencies. Additionally, the plasmid data mapped to the

cDNA sequences with an average, normalized coverage of

42.08, which is within the range of coverage values we see

for the IVT-seq samples. We sequenced the no selection

and polyA selection libraries on a HiSeq 2500. These data

also show cDNA clone coverage values similar to the

other IVT-seq libraries.

The plasmid data represents the ‘input’ into the IVT

reaction and the no selection data represents the closest

measure of its direct output. By measuring the 3′/5′ ra-

tio in depth of coverage for each IVT transcript, we

could assess the processivity of the SP6 polymerase. In a

perfectly processive reaction, this 3′/5′ ratio would be 1,

indicating the polymerase did not fall off the cDNA tem-

plate and lead to the formation of truncated products.

The median 3′/5′ ratios for the plasmid and no selection

data were 1 and 0.98, respectively, indicating premature

termination of the IVT reaction was not a factor in our

analyses.

Effect of different RNA selection methods on coverage

patterns

Our analysis is illustrated by an examination of the cover-

age plots for BC003355 across all of our different datasets.

The high degree of variability we noted in this gene’s

coverage plot from our rRNA-depleted data was absent in

the no selection and plasmid data (Figure 4A). While the

polyA data also showed fewer peaks and valleys than the

rRNA-depleted total RNA-seq data, it was marked by the

well-documented 3′ bias. These data suggest that the

rRNA depletion step is likely responsible for a large quan-

tity of the observed coverage biases.

To quantify the variability for each selection method, we

calculated the coefficient of variation at the single base

level in coverage for all IVT transcripts across each of

these datasets (Figure 4B). Using a Wilcoxon rank-sum

test (plasmid n = 924, no selection n = 870, rRNA-depleted

n = 869), we found the rRNA-depleted data had signifi-

cantly higher variability than the no selection and plasmid

data (P <2.2e-16). Furthermore, the rRNA-depleted and

polyA libraries were more than 60% more variable on

average than the plasmid library (Figure 4C). This suggests

that a significant portion of the observed variability in

coverage across transcripts in the IVT-seq data is the re-

sult of RNA-specific molecular biology, specifically the

RNA selection step. Furthermore, after accounting for bias

introduced by the sequences themselves (plasmid data)

and bias introduced by the IVT reaction (no selection

data), we found that 50% of transcripts had two-fold and

10% had 10-fold variation in within-transcript expression

(Table 2 and Additional file 5: Figure S4). While it is well-

appreciated that polyA selection introduces bias, we found

that rRNA-depleted data introduced just as much if not

more. Neither simulated dataset showed transcripts with a

two-fold or higher change in within-transcript expression.

Again, this suggests that the observed within-transcript

variations are not the result of alignment artifacts or sam-

pling due to low or high expression. One commonly ac-

knowledged source of bias arises from random priming

during library preparation [10]. When we examined the

different libraries, we saw that fragments from all of the

RNA-seq data showed nucleotide frequencies characteris-

tic of random priming bias (Additional file 8: Figure S6).

As expected, the plasmid data showed no such bias, since

it was derived directly from DNA and did not require a

cDNA-generation step. However, the significant differ-

ences between all RNA libraries suggest that bias from

random priming is not the only factor. The plasmid and

no selection data still contain a fair amount of variability

when viewed alongside the simulated data (Figure 4A;

black). When we examined the entire dataset, both the

plasmid and no selection data had significantly higher

variation than either simulated dataset (Wilcoxon rank-

sum test; simulated data n = 963, QM-simulated data n =

869, plasmid n = 924, no selection n = 870; P <2.2e-16).

These data suggest that sequencing-specific molecular

biology common to all libraries we prepared (adapter

ligation, library amplification via PCR) is also responsible

for a portion of the observed coverage variability and

sequencing bias.

Biases associated with sequence features are dependent

on RNA selection method

Given these significant differences in coverage variability,

we sought to identify sequence features that might con-

tribute to this bias. We considered three quantifiable se-

quence characteristics: hexamer entropy, GC-content, and

sequence similarity to rRNA (see Materials and methods

for a detailed description of these metrics). For each se-

quencing strategy (plasmid, no selection, rRNA-depleted,

polyA), we tested if any of the three sequence characteris-

tics had a significant effect on variability in sequencing

coverage, as measured by the coefficient of variation.

While we are primarily focused on coverage variability as

an indicator of sequencing bias, we also looked at depth of

coverage, as measured by FPKM.

For each sequencing strategy, we sorted the transcripts

by coverage variability or depth. Next, we selected the

100 most and 100 least extreme transcripts from each

list. We compared the values of the sequence charac-

teristics between the 100 most and 100 least extreme

transcripts using a Wilcoxon rank-sum test. Significant

P-values indicate a significant association of the sequence

characteristic with coverage variability and/or depth. The
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results of our analysis are displayed as box-plots (Figure 5

and Additional file 9: Figure S7).

To check for any confounding effects between cover-

age depth and variability, we tested the least and most

expressed transcripts for any correlations with variabil-

ity in coverage (Additional file 10: Figure S8). The polyA

library showed a significant correlation (P <2.2e-16) be-

tween coverage variability and depth, which indicates

sequence features could be affecting coverage through

variability (or vice versa). The rRNA-depleted data

showed a slight, significant correlation (P = 0.04933). It

is possible some feature of RNA selection affects both

variability and coverage, given that we saw no significant

correlations for the two remaining samples. This indicates

that coverage variability and depth are independent for

the plasmid and no selection data.

All three sequence characteristics had a significant asso-

ciation with variability and depth-of-coverage in at least

one of the sequencing strategies. In particular, lower hex-

amer entropy, a measure of sequence complexity [19-21],

was strongly associated with higher variance in all of the

RNA libraries (no selection P = 4.712e-05; rRNA depletion

P = 3.956e-11; polyA P = 0.003921; Figure 5A). This sug-

gests that bias associated with hexamer entropy is due

partially to RNA-specific procedures in library prepar-

ation. Furthermore, an association with lower hexamer

entropy indicates there are more repeat sequences in the

transcripts with higher variability. This could be indicative
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Figure 4 Sources of bias in RNA-seq coverage. (A) RNA-seq coverage plots for IVT transcript BC003355 from simulated (black), plasmid (blue),

no selection (green), rRNA-depleted (red), and polyA (orange) data. The gene model is displayed in black, below all of the coverage plots. Blocks

correspond to exons and lines indicate introns. The chevrons within the intronic lines indicate the direction of transcription. (B) Distributions for

coefficients of variation across data displayed above, with the addition of the QM-simulated data (gray). Note that while the graph is cutoff at a

coefficient of variation of 1.3, the tails for the rRNA-depleted and polyA distributions extend out to 2.13 and 2.7, respectively. (C) Effect sizes for

the differences in distribution of coefficients of variation between sequencing libraries and simulated data. Effect sizes are calculated as the

per-transcript ratios of coefficients of variation between a given library and the simulated dataset. QM, quantity matched.
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of complex RNA secondary structures, as repeated motifs

could facilitate hairpin formation. Furthermore, the ab-

sence of this association from the plasmid data suggests

that this observation was not due to mapping artifacts.

The plasmid data contained the same sequences as the

RNA-seq data, and would be subject to the same biases

introduced by our exclusion of multi-mapped reads.

Higher GC-content was strongly associated with lower

coverage variability in the no selection and polyA data

(P = 5.627e-13; P = 4.914e-05; Figure 5B), suggesting that

the effects of GC-bias on within-transcript variability

could arise, in part, due to some RNA-specific aspects of

library preparation. Also, it appears that GC-bias was not

a significant contributing factor to either depth of cover-

age or the extreme variability in the rRNA-depleted data.

Meanwhile, lower GC-content was associated with higher

coverage in the plasmid data (P = 3.776e-05), and lower

coverage depth in the no selection and polyA libraries (no

selection P = 8.531e-05; polyA P = 0.0009675; Additional

file 9: Figure S7B). Given that this trend switched direc-

tions between the plasmid library and the RNA libraries,

this also suggests that some RNA-specific aspect of library

preparation is introducing GC-bias distinct from the high

GC-bias associated with Illumina sequencing [22].

Interestingly, higher rRNA sequence similarity was asso-

ciated with higher coverage variability in the rRNA-

depleted library (P = 9.006e-05) and lower variability in the

no selection library (P = 0.0367; Figure 5C). It is unsurpris-

ing that similarity to rRNA sequences contributed to vari-

ability in the rRNA-depleted data, given that rRNA

depletion is based upon pair-binding between probes and

rRNA sequences. While it is unclear why this trend was

reversed in the no selection library, it is striking given the

significant increase in within-transcript variability between

the no selection and rRNA-depleted libraries (Figure 4B).

Furthermore, we saw a slight but highly significant correl-

ation (Pearson R2 = 0.308452; P <2.2e-16) between a tran-

script sequence’s similarity to rRNA and the magnitude of

the difference in coverage between the no selection and

rRNA-depleted libraries (Additional file 11: Figure S9 and

Additional file 12). While the majority of the factors con-

tributing to the extreme bias in sequence coverage we saw

in the rRNA-depleted data remain unclear, our data sug-

gest this could be partially due to depletion of sequences

homologous to rRNA.

Taken together, our data demonstrate the utility and

potential of the IVT-seq method to identify sources of

technical bias introduced by sequencing platforms and

library preparation protocols.

Conclusions
In this study, we present IVT-seq as a method for asses-

sing the technical variability of RNA-seq technologies and

platforms. We created a pool of IVT RNAs from a collec-

tion of full-length human cDNAs, followed by high-

throughput sequencing (Figure 1). Because we know the

identities and sequences of these IVT transcripts, and

because they were created under conditions not affected

by splicing and post-transcriptional modification, they are

ideal for identifying technical biases introduced during

RNA-seq library generation and sequencing. We used this

method to demonstrate that library generation introduces

Figure 5 Effects of sequence characteristics on coverage variability. Distributions of (A) hexamer entropy, (B) GC-content, and (C) rRNA

sequence similarity for the 100 transcripts with the highest and lowest coefficients of variation for transcript coverage from the plasmid, no

selection, rRNA-depleted, and polyA libraries. Asterisks indicate the significance of a Wilcoxon signed-rank test comparing values for the listed

sequence characteristics between each pair of groups from the same sample. *P <0.05; **P <0.01; ***P <0.001.
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significant biases in RNA-seq data, adding extreme vari-

ability to coverage and read-depth along the length of

sequenced transcripts (Figure 2). Our most striking

finding was that over 50% of the IVT transcripts showed

more than two-fold differences in this within-transcript

coverage attributable to library preparation and sequen-

cing in the polyA and rRNA-depleted data (Table 2).

We prepared all RNA-seq libraries from the same pool

of IVT RNA, so these differences were due to library

construction and sequencing methods. Furthermore, 6%

of the IVT transcripts contained hunc regions with vari-

able coverage across different dilutions of IVT and

mouse liver RNA (Figure 3). We found it particularly

concerning that these huncs were consistent between

replicates, as this means these regions cannot be identi-

fied and avoided by making replicate libraries. While the

exact cause of this effect is unclear, it could be due to

some trans interaction between different RNA (human

IVT RNA and the background mouse liver RNA). If this

is the case, it could prove difficult to account for, given

the challenges we have already encountered making

predictions for miRNA targets and RNA secondary

structure. Based on these results, we strongly recom-

mend caution in interpreting exon-level quantification

data, particularly for identifying and quantifying alter-

native splicing events, without further understanding of

these biases.

Using simulated data and by sequencing at various

stages of the process (plasmids, unselected IVT RNAs,

rRNA-depleted, and polyA selected), we found each step

introduced bias. Regions of certain IVT transcripts were

under-represented in both DNA and RNA, suggesting

something inherent in their structure may resist cloning

and sequencing properly. The IVT reaction had its own

biases; however, by and large, it worked extremely effi-

ciently with 90% of the input templates producing tran-

scripts at detectable levels. PolyA sequencing revealed

the well-described 3′ bias. Finally, we saw extreme bias

introduced by the rRNA depletion step. Though we

have yet to find the majority of the sources for this ex-

treme bias, knowing that it occurs and that it is at least

partially due to rRNA sequence similarity is an import-

ant first step. By making this data available to the com-

munity, we hope that new experimental and analysis

methods can be developed to account for the biases in-

herent in various aspects of RNA-seq.

Moreover, IVT-seq could be more broadly employed.

By itself, the MGC collection has cDNAs derived from

more than 16,000 mouse and human genes, including

hundreds of genes for which there are more than one

form. Therefore, in principle, it is possible to generate

sequence profiles for representatives for nearly two

thirds of the mammalian transcriptome, or spike in

datasets to develop new and better methods for splice

form detection and quantification. Similar profiling ap-

proaches could do the same for other organisms. In

addition, IVT-seq is also immediately relevant to RNA-

seq method development, for example, developing new

protocols or refining existing ones. Finally, the method

is not specific to Illumina sequencing and could be

used to account for bias in other sequencing chemis-

tries and methods (for example, SOLiD, Ion Torrent,

PacBio).

Importantly, we are not suggesting that current gener-

ation RNA-seq is not a fantastic new technology or that

quantification data is incorrect, particularly given the

validated, reproducible results researchers have been

able to gain through its use. Rather, we wish to provide

a cautionary note that our understanding of this tech-

nology is still relatively new and incomplete. It is our

hope that through the use of this data and IVT-seq, we

will develop the means to minimize or account for bias

in RNA-seq and truly realize the vision of digital gene

expression.

Materials and methods
Amplification of plasmid library

Glycerol stocks containing individual cDNAs (cloned into

pCMV-Sport 6 plasmid) from the MGC [17] were pro-

duced. Plasmid DNA was extracted from these glycerol

stocks and plated at 50 ng per well in 384-well plates. The

contents of three 384-well plates (total of 1,062 human

transcripts; Additional file 1) were collected as follows:

10 μl sterile dH2O was added to each well and incubated

at 37°C for 10 min to resuspend plasmid DNA in water.

Plasmid DNAs were collected and combined in 1.5 mL

tubes with the aid of a multichannel pipette and concen-

trated by ethanol precipitation. To amplify the library,

10 ng of plasmid library was transferred into E. coli DH5α

cells (Invitrogen, Life Technologies, Carlsbad, CA, USA,

catalog no. 18258–012). The heat shock method was used

to transform E. coli. Briefly, cells were incubated with plas-

mid library for 5 min on ice and were subjected to 42°C

for 30 s. Cells were transferred back to ice and incubated

for 2 min. Next, 0.95 mL S.O.C. medium (Invitrogen, cata-

log no. 15544-034) was added to the cells before incuba-

tion at 37°C for 1 h with shaking at 225 rpm. Cells were

plated on LB-agar (Thermo Fisher Scientific, Waltham,

MA, USA, catalog no. BP9724-500) plates containing

100 μg/ml ampicillin. Plates were incubated for 16 h at 37°C

to grow the colonies and 3,500 (approximately three times

the library size) colonies were collected with liquid LB

(Thermo Fisher Scientific, catalog no. BP9723-500). Cells

were transferred into 100 mL liquid LB and incubated at

37°C for 2 h. Plasmids were purified using Qiagen (Hilden,

Germany) maxiprep kit (catalog no. 12163), according to

the manufacturer’s protocol.
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In vitro transcription from plasmid library

Plasmids were linearized by NotI enzyme so that the

SP6 polymerase promoter site was upstream of the se-

quences to be transcribed. Reactions consisted of 5 U NotI

(New England Biolabs, Ipswich, MA, USA, catalog no.

R3189L), 5 μg library plasmid DNA, 1 X NEBuffer 4

(supplied with enzyme), and 90 μl of dH2O. The reaction

was incubated at 37°C for 2 h to achieve complete diges-

tion. We assessed the complete digestion of plasmid DNA

using DNA gel electrophoresis. To eliminate NotI and

possible RNase in reaction mixture, the sample was

subjected to Proteinase K treatment. SDS and Proteinase

K were added to the reaction mixture to a final concentra-

tion of 0.5% and 100 μg/mL, respectively. The sample was

incubated at 37°C for 30 min. After Proteinase K treat-

ment, the sample was subjected to phenol/chloroform

extraction, followed by ethanol precipitation. The pellet

was dissolved in 50 μl of RNase-free water. Next, in vitro

transcription was carried out using MAXIscript® SP6 Kit

(Ambion, Life Technologies, catalog no: AM1308). The

reaction was composed of 1 μg of library plasmid, 1X

transcription buffer, 0.5 mM of nucleoside triphosphates

(GTP, ATP, CTP, and UTP), 40 U of SP6 RNA polymerase,

and 10 μl of RNase-free water. The reaction was incubated

at 37°C for 30 min. Next, the sample was treated with

TURBO DNase to remove the plasmid templates. Briefly,

10 U of TURBO DNase (included with the MAXIscript

SP6 Kit) were added to the reaction mixture and incu-

bated at 37°C for 15 min. To stop the reaction, 1 μL of

0.5 M EDTA was added. To remove unincorporated nu-

cleoside triphosphates and other impurities, the sample

was precipitated with ammonium acetate/ethanol. The

following reagents were added to the DNase -treated

reaction mixture: 30 μL RNase-free water to bring the vol-

ume to 50 μL, 5 μL of 5 M ammonium acetate, and three

volumes of 100% ethanol. The sample was chilled at -20°C

for 30 min and then centrifuged at maximum speed in a

4°C table-top microcentrifuge. The supernatant was dis-

carded and the pellet washed with ice-cold 70% ethanol.

The pellet was dissolved in 50 μL of RNase-free water and

the quality of RNA was assessed by agarose gel electro-

phoresis. In addition, PCR was carried out with IVT RNA

to confirm total depletion of plasmid DNA.

Mouse liver collection and RNA extraction

Wild-type, six-week old male C57/BL6 mice were ac-

quired from Jackson Laboratories (Bar Harbor, Maine,

USA). Mice were sacrificed and liver samples were

quickly dissected and snap-frozen in liquid nitrogen.

RNA was isolated from frozen mouse liver samples by

TRIzol reagent according to the manufacturer’s protocol

(Invitrogen, catalog no. 15596–026). All animal experiments

were performed in accordance with the approval of the

Institutional Animal Care and Use Committee.

Construction and sequencing of RNA-seq library from IVT

RNA

IVT RNA (2,500 ng, 150 ng, 75 ng, 15 ng, and 0 ng) was

pooled with mouse liver RNA (0 ng, 2,350 ng, 2,425 ng,

2,485 ng, and 2,500 ng respectively) to a final quantity of

2.5 μg. Each pool was split into two replicate samples of

1 μg each. RNA pools were treated with Ribo-Zero Gold

Kit (Epicentre, Illumina, San Diego, CA, USA, catalog

no. RZHM11106) and converted into Illumina RNA-seq

libraries with the TruSeq RNA Sample Preparation Kit

(Ilumina, catalog no. FC-122-1001). Briefly, rRNA was

removed from 1 ug of pooled RNA using Ribo-Zero

Gold Kit and purified via ethanol/sodium acetate pre-

cipitation according to the manufacturer’s protocol.

After drying, the RNA pellet was dissolved in 18 μL of

Elute, Prime, Fragment mix (provided with the TruSeq

RNA Sample Preparation Kit). RNA was fragmented for

8 minutes and 17 uL of this fragmented RNA was used

to make the RNA-seq library according to Illumina Tru-

Seq RNA Sample Preparation Kit protocol. After fragmen-

tation and priming, first strand cDNA synthesis with

SuperScript II (Invitrogen, catalog no. 18064014), second-

strand synthesis, end-repair, a-tailing, and adapter ligation,

the library fragments were enriched with 15 cycles of

PCR. The quality and size of the library was assessed using

Agilent (Santa Clara, CA, USA) 2100 BioAnalyzer. The

five libraries from each replicate were pooled together and

sequenced using a single lane from an Illumina HiSeq

2000 (paired 100 bp reads).

Construction and sequencing of plasmid library

MGC plasmids were linearized by NotI-HF enzyme as

before. These linearized plasmids were then fragmented

using a Covaris (Woburn, MA, USA) S220 Focused-

ultrasonicator. Briefly, 1.2 μg of linearized plasmid in a

final volume of 60 uL of H2O was loaded into a micro-

TUBE (Covaris, catalog no. 520045). The ultrasonicator

was de-gassed and prepared according to the manufac-

turer’s protocol. Linearized plasmids were sonicated using

the following conditions: intensity 5, duty factor 10%, cy-

cles per burst 200, time 120 s, and water bath temperature

7°C. Fragmented plasmids were gel-purified using a 1%

agarose gel (BioRad, Hercules, CA, USA, catalog no. 161–

3107) and TAE running buffer (BioRad, catalog no. 161–

0743). A slice between 100 bp and 700 bp was excised

from this gel. DNA was purified from this gel slice using

the MinElute Gel Extraction Kit (Qiagen, catalog no.

28606) according to the manufacturer’s protocol. Frag-

mented DNA was converted into a sequencing library

using the TruSeq DNA Sample Preparation Kit (Illumina,

catalog no. FC-121-2001). End repair, adenylation, adapter

ligation, gel size-selection, and PCR enrichment were per-

formed according to the manufacturer’s protocol. During

the gel size-selection, a band between 300 bp and 500 bp
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was excised. The quality and size of the library was assessed

using Agilent 2100 BioAnalyzer. This library was sequenced

using an Illumina MiSeq (paired 100 bp reads).

Construction and sequencing of no selection and polyA

libraries

As with the other RNA-seq libraries, these libraries were

prepared using the TruSeq RNA Sample Preparation Kit

(Illumina, catalog no. FC-122-1001). For the polyA sam-

ple, 1 μg of IVT RNA was treated with polyA selection

reagents included with the TruSeq RNA Sample Prepar-

ation Kit according to the manufacturer’s protocol. The

remainder of the library preparation was carried out using

the same conditions as for the other IVT RNA samples.

For the no selection sample, 100 ng of IVT RNA at a con-

centration of 100 ng/μL was diluted with 17 μL of Elute,

Prime, Fragment mix (provided with the TruSeq RNA

Sample Preparation Kit). Again, the remainder of the li-

brary preparation was carried out as with the other sam-

ples. These samples were sequenced in a single Illumina

HiSeq 2500 lane (paired 100 bp reads).

Aligning, quantifying, and visualizing sequencing data

Raw reads from all sequencing samples were aligned to

the human genome (GRCh37/hg19) using the RNA-seq

Unified Mapper [14] (RUM; v2.0.4) with default parame-

ters. Mapping statistics for all libraries are included in

Additional file 13. RUM also generated RNA-seq coverage

plots in bedgraph format, and calculated transcript- and

exon-level FPKM values for each IVT transcript (acces-

sion numbers listed in Additional file 1). All analyses were

performed using uniquely aligned reads (no multi-

mappers) from the RUM_Unique and RUM_Unique.cov

output files. Quantification was performed using annota-

tions for the IVT transcripts that we downloaded from the

MGC Genes track [17] on the UCSC Genome Browser

[23]. Those IVT transcripts mapping to multiple loci or

overlapping other IVT transcripts were removed from fur-

ther analysis (marked with an asterisk in Additional file 1).

All coverage plots in this paper were visualized in and

captured from the UCSC Genome Browser. All statistical

tests and correlation plots were performed in R.

Generating simulated data

Simulated data was generated using the BEERS software

package [24] from gene models for IVT transcripts, with

an average coverage depth of 1,000 reads (10,000,000

reads total). All error, intronic read, and polymorphism

parameters were set to zero. The remaining parameters

used default values. For the QM-simulated data, FPKM

values from replicate one of the IVT-only data were

used as seeds for generating expression levels (40,000,000

reads total). This generated simulated data with FPKM values

closely matching those from the real data (Additional file 3:

Figure S2B). All other parameters were the same as for

the other simulated data.

Processivity analysis

Coverage data for each IVT transcript was extracted

from coverage files for the plasmid and no selection sam-

ples. For each transcript, base pair-level coverage data was

extracted from the regions spanning 5% to 15% and 85%

to 95% of the transcript, by length. For example, given a

1,000 bp transcript, the first region spanned base pairs 50

to 150, and the second region spanned base pairs 850 to

950. These two coverage regions represent the 5′ end and

3′ end of the transcript, respectively. The first and last 5%

of the transcript was excluded to avoid artifacts from the

fragmentation process. Processivity of each transcript was

assessed by the ratio of the mean depth of coverage from

both of these regions (3′ region mean/5′ region mean).

These processivity ratios were calculated for all transcripts

in the plasmid and no selection data, with expression >5

FPKM.

Calculating fold-change difference in within-transcript

coverage

Coverage data for each of the IVT transcripts was ex-

tracted from the coverage files for the IVT-only, polyA,

and no selection samples. The first and last 200 bp were

trimmed from each transcript to prevent edge effects

from interfering with the calculations. Due to this trim-

ming, all IVT transcripts with less than 500 bp were dis-

carded. All IVT transcripts expressed with FPKM <5 in

any of the samples were discarded from further analysis.

Nucleotide-level coverage data was grouped into percen-

tiles based on depth of coverage. Average coverage

was calculated across the 10th percentile and the 90th

percentile. Fold-change differences in within-transcript

coverage were calculated by dividing the 90th percentile

average by the 10th percentile average. The list of tran-

scripts with associated fold-change values is included in

Additional file 14.

Identifying hunc regions

Coverage data for each of the IVT transcripts was extracted

from the coverage files from each of the rRNA-depleted

datasets (replicate dilution series: IVT-only, 1 IVT:1 mouse,

1 IVT:2 mouse, 1 IVT:10 mouse, and mouse-only). These

coverage plots were normalized between zero and one to

allow comparison between different dilutions. For each

nucleotide position in a transcript, the deviation in cover-

age between each of the samples was calculated using the

median absolute deviation (MAD), due to its resistance to

outliers. MAD scores were calculated across the different

dilutions using R’s mad function with constant = 1. Next,

a sliding window was used to calculate the average MAD
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in the 100 bp windows centered on each nucleotide in the

transcript. The first 300 and last 250 windows were

trimmed from each transcript to avoid confounding vari-

ability due to edge effects or fragmentation artifacts. All

analysis up until this point was carried out separately on

the two replicate datasets. The 95th percentile of MAD

scores was calculated for each of the replicates using R’s

quantile function (replicate 1: 0.08810424; replicate 2:

0.07183765). Only those regions with at least 20 contigu-

ous windows having MAD scores above the appropriate

95th percentile values were retained for further analysis.

Next, the BEDTools [25] intersect function was used to

remove any regions with high MAD scores not present in

both replicates. Finally, these remaining regions of high

coverage variability were filtered for mouse reads misa-

ligned to the human reference. Any regions coming from

transcripts with FPKM ≥5 in the mouse-only samples

were discarded. To account for localized misalignment of

mouse reads, any regions with an average coverage >10 in

the mouse-only samples or in the 100 bp on either side of

the region were discarded. These remaining regions com-

prise the final list of regions with high coverage variability.

To search for hunc regions not maintained between repli-

cates, windowed MAD scores from replicate two were

subtracted from those of replicate one. The 2.5th and

97.5th percentiles of these difference values were used as

cutoffs (2.5th percentile: −0.07053690; 97.5th percentile:

0.09134876) to pull out the most extreme positive and

negative difference values. Regions corresponding to these

extreme difference values were filtered as above. Addition-

ally, those difference regions within 200 bp of a previously

identified hunc region were filtered out. This last filtering

step accounted for cases where a difference region with

high MAD scores was just an extension of an existing

hunc region. Hunc regions and difference regions were

manually checked to determine whether they represented

regions where expression patterns deviated from the re-

mainder of the transcript.

Generating sequence characteristics

Sequences for each transcript were collected in R using

the BSgenome, GenomicRanges, and GenomicFeatures

packages. Hexamer entropy for each transcript was calcu-

lated as follows: occurrences of all possible hexamers in a

given transcript were counted. These counts were con-

verted into frequency space, and these frequency values

were used to calculate the Shannon entropy. Shannon en-

tropy is commonly used to represent complexity in nucleo-

tide sequences or multiple alignments [19-21]. Similarity of

transcripts to rRNA sequences was calculated as follows:

each transcript was aligned to 45S (NR_046235.1) and 5S

(X71804.1) rRNA using NCBI BLAST [26] and the e-score

for the best alignment was saved.

Sequence characteristic analysis

The list of IVT transcripts was sorted by transcript-level

coefficients of variation for each library method (plasmid,

no selection, polyA, replicate one of rRNA-depleted IVT-

only). All transcripts with transcript-level FPKM ≤5 were

excluded from further analysis. From this sorted list, the

transcripts with the 100 least and 100 most extreme coef-

ficients of variation were collected for each of the above

sequencing samples. The values for hexamer entropy, GC-

content, and rRNA sequence similarity were compared

between every pair of 100 least and 100 most extreme co-

efficients of variation using a Wilcoxon signed-rank test

(implemented in R as the wilcox.test function). This entire

analysis was repeated using transcript-level FPKM values

instead of the coefficients of variation. All boxplots were

prepared using R.

Data access

We deposited all sequencing data in the NCBI Gene

Expression Omnibus under accession number [GEO:

GSE50445]. We also loaded the coverage tracks on the

UCSC Genome Browser, making them available to the

community (comparison between different selection

methods [27]; comparison between replicates [28]).

Additional files

Additional file 1: Accession numbers for IVT transcripts.

Additional file 2: Figure S1. Expression comparison between

replicates. (A) Correlation plots for log10 transcript-level FPKM values

between replicate IVT-seq samples. Pearson R2 values for the correlations

are included as inserts in each plot. (B) Distribution of FPKM values in

both replicates of the IVT-only sample. FPKM values are plotted on the

x-axis in log10 space. The y-axis is plotted in arbitrary density units.

Additional file 3: Figure S2. Expression comparison between

simulated and IVT data. Correlation plots for log10 transcript-level FPKM

values between (A) simulated data or (B) QM-simulated data, and

replicate one of the IVT-only data. Pearson R2 values for the correlations

are included as inserts in each plot.

Additional file 4: Figure S3. Coverage patterns are reproducible across

replicates. Coverage patterns from both replicates for all transcripts in

Figure 2. RNA-seq coverage plots from replicate IVT only samples

(red – replicate one; blue – replicate two) for (A) BC015891, (B) BC009037,

and (C) BC016283 are displayed according to the gene model (green), as it

is mapped to the human reference genome. Blocks correspond to exons

and lines indicate introns. The chevrons within the intronic lines indicate

the direction of transcription. Numbers on y-axis refer to RNA-seq

read-depth at a given nucleotide position. All transcripts are displayed

in the 5ʹ to 3ʹ direction.

Additional file 5: Figure S4. Fold-change in within-transcript coverage

across libraries. The cumulative distribution functions for fold-change in

within transcript coverage are displayed for the rRNA-depleted (red),

polyA (orange), no selection (green), plasmid (blue), QM-simulated (gray),

and simulated (black) datasets. Curves toward the left side of the plot

indicate fewer genes contain high fold-change differences in coverage.

Curves toward the right side of the plot indicate many genes contain

high fold-change differences in coverage. The dotted lines indicate the

y-axis values for none of the data (0.0) and all of the data (1.0). This plot

is focused on the fold-change values between 1 and 10. See the Materials

and methods section for full details on the fold-change calculations.
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Additional file 6: List of regions with high coverage variability

(hunc regions).

Additional file 7: Figure S5. Plasmid sequencing protocol compared

to IVT-seq. The protocol for preparing MGC plasmids for DNA-sequencing

library generation is displayed alongside the protocol for preparing IVT

transcripts for RNA-seq library generation. Both protocols start by linearizing

the plasmids. For DNA-sequencing, linearized plasmids are fragmented via

Covaris sonication, and the resulting fragments are taken through the

TruSeq protocol. For RNA-sequencing, the linearized plasmids are used as

templates for an in vitro transcription reaction. IVT RNA is then pooled with

mouse RNA, rRNA is removed from pool via Ribo-Zero Gold kit, rRNA-depleted

pool is fragmented via metal-ion hydrolysis, and fragmented RNA is converted

to cDNA via reverse transcription with random-hexamer priming. The resulting

cDNA fragments are then taken through the TruSeq protocol.

Additional file 8: Figure S6. Nucleotide frequency as a function of

read position for sequencing reads at the 5ʹ ends of cDNA fragments.

Frequencies are plotted for plasmid, no selection, rRNA-depleted, and

polyA datasets.

Additional file 9: Figure S7. Effects of sequence characteristics on

coverage depth. Distributions of (A) hexamer entropy, (B) GC-content,

and (C) rRNA sequence similarity for the 100 transcripts with the highest

and lowest transcript-level FPKMs from the plasmid, no selection,

rRNA-depleted, and polyA libraries. Asterisks indicate the significance of a

Wilcoxon signed-rank test comparing values for the listed sequence

characteristics between each pair of groups from the same sample.

**P <0.01; ***P <0.001.

Additional file 10: Figure S8. Confounding effects between coverage

depth and variability. Distributions of transcript-level coefficients of variation

for the 100 transcripts with the highest and lowest transcript-level FPKMs

from the plasmid, no selection, rRNA-depleted, and polyA libraries. Asterisks

indicate the significance of a Wilcoxon signed-rank test comparing values

for the listed sequence characteristics between each pair of groups from

the same sample. *P <0.05; ***P <0.001.

Additional file 11: Figure S9. rRNA sequence similarity and coverage

bias in rRNA-depleted data. Correlation plot between Smith-Waterman

alignment score to rRNA sequences and the magnitude of the decrease

in coverage depth between no selection and rRNA-depleted samples. A

coverage drop of 1.0 indicates a large decrease in coverage between the

no selection and rRNA-depleted samples. A coverage drop of 0 indicates

no difference between the two samples. For full details on this analysis,

see Additional file 12.

Additional file 12: Description of window analysis of rRNA

sequence similarity.

Additional file 13: Alignment statistics for all sequencing datasets.

Additional file 14: List of transcripts with associated fold-change

values in within-transcript coverage.
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