Hindawi

Advances in Artificial Intelligence

Volume 2017, Article ID 1948317, 10 pages
https://doi.org/10.1155/2017/1948317

Research Article

Hindawi

iWordNet: A New Approach to Cognitive Science and

Artificial Intelligence

Mark Chang' and Monica Chang’

IBoston University, 801 Massachusetts Ave, Boston, MA, USA
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA

Correspondence should be addressed to Mark Chang; mychang@bu.edu
Received 5 April 2017; Revised 18 July 2017; Accepted 28 August 2017; Published 11 October 2017
Academic Editor: Anténio Dourado Pereira Correia

Copyright © 2017 Mark Chang and Monica Chang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

One of the main challenges in artificial intelligence or computational linguistics is understanding the meaning of a word or concept.
We argue that the connotation of the term “understanding,” or the meaning of the word “meaning,” is merely a word mapping game
due to unavoidable circular definitions. These circular definitions arise when an individual defines a concept, the concepts in its
definition, and so on, eventually forming a personalized network of concepts, which we call an iWordNet. Such an iWordNet serves
as an external representation of an individual’s knowledge and state of mind at the time of the network construction. As a result,
“understanding” and knowledge can be regarded as a calculable statistical property of iWordNet topology. We will discuss the
construction and analysis of the iWordNet, as well as the proposed “Path of Understanding” in an iWordNet that characterizes an
individual’s understanding of a complex concept such as a written passage. In our pilot study of 20 subjects we used a regression
model to demonstrate that the topological properties of an individual's iWordNet are related to his IQ score, a relationship that

suggests iWordNets as a potential new methodology to studying cognitive science and artificial intelligence.

1. Introduction

Cognitive science, as an interdisciplinary study of mind and
intelligence, embraces philosophy, psychology, artificial intel-
ligence, neuroscience, linguistics, and sociology. As cognitive
science continues to evolve, artificial intelligent approaches
such as statistical learning and network science are becoming
increasingly attractive and relevant to researchers in cog-
nitive science and artificial intelligence. Recent work [1-
6] demonstrates that statistical learning is one of the most
deeply explored phenomena in the field of cognitive science.
Noticeably, the increasing utilization of network science with
statistical learning [7-9] makes network-based approaches a
robust tool in cognitive science and computational linguistics
[10, 11]. Network science has been successfully applied to
several pressing issues: feature biases in early word learning
[12], semantic concepts [13-17], grammatical relationships
[18], spatial learning in human navigation [19], structural
and functional brain connections in relationship to various
cognitive capacities [20-23], and scene perception studies

such as texture and shape discrimination [24-26]. Perhaps
the field that has most broadly adopted network-based
approaches in cognitive science is computational linguistics
[27-33].

Despite these numerous advances, the integration of
network science and cognitive science has not been carried
out in the way that we hoped for. The research tends to
focus either on (i) the description of networks derived from
the sensory world, or (ii) the mechanisms by which the
human brain engages with the sensory world, with little
communication between these two areas, as Karuza et al.
[34] commented in their recent review paper, “Influences
of Network Topology on Human Learning.” The authors
pointed out: “...a dominant approach to human learning has
focused on microlevel patterns, often the pairwise relation-
ships between the constituents of sensory input. . .. Currently,
many quantitative approaches to learning hinge on sensitivity
to local statistics such as cooccurrence frequencies and tran-
sitional probabilities between adjacent elements.” They urge
us to examine how internal complex system dynamics gives
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rise to learning, how acquired knowledge might be reflected
in observable topological patterns in the human brain,
and how micro- and macrolevel brain dynamics support
learning.

It is undeniable that our lives today are intimately tied
to various external networks, whether it is friends, trans-
portation, or social media networks. The collective analyses
of social media networks have offered unprecedented insight
into how humans transmit information and interact with one
another [34-37]. To use network science methodology to
study the mind and cognitive development, knowledge needs
to be expressed as a network of concepts, which reflects one’s
state of mind and collective intelligence.

Different from human neural networks, which are com-
monly studied in cognitive science, we propose a method
of constructing individualized networks of concepts, called
iWordNets, which reflect an individual’s knowledge or state
of mind at the time of construction. By studying the topology
of the iWordNet, we can learn how the person’s cognition
was developed, how it differs in comparison to others, and
why people experience different cognitive developments.
This information can further provide potential insights into
improving teaching, learning, educational evaluations, and
patient treatments in clinics.

An iWordNet can be constructed through continuously
asking a subject to explain concepts, one after another,
recursively. We will first examine the connotation of the term
“understanding” and prove that the meaning of “understand-
ing” is essentially a word mapping game and that a word
is just a placeholder. Based on this view, we postulate that
there are relationships between the topology of an individual’s
iWordNet and his overall knowledge or IQ and use a small
pilot study to test the hypothesis. Encouraged by the initial
positive findings between IQ and iWordNet topology, we fur-
ther describe how to use iWordNets to study an individual’s
understanding of a concept, sentence, or paragraph using
the so-called Path of Understanding (PoU). We quantify the
meaning of a string of words using topological characteristics
(such as degree, centrality) along the PoU to explain how
people might acquire new knowledge. Thus, the iWordNet
as an artificial intelligent approach potentially provides a
new, noninvasive, low-cost way to study the brain, mind, and
cognitive science.

2. The Connotation of Understanding

Knowledge is a collection and organization of concepts
and consists of many pieces of individual “understanding.”
However, we rarely question the understanding of a concept.
What does the term “understanding” mean? Does each
person have a unique understanding of a concept and to what
extent might they vary? What role does understanding play in
our communication?

We can say that a library, a collection of books, a research
paper, the news, and so forth are bodies of knowledge
or collections of concepts. A library is a relatively simple
organized repository of concepts and so is a social media
network. In a dictionary, words are defined by other words,
which are further defined by other words, and so on. If
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we connect these words using lines to reflect their direct
relationships, we form a network of words, which can
be considered as knowledge external to any individuals.
Similar to how we would construct a dictionary network,
a person can explain a concept by other concepts, which
are further explained by other concepts, and so on. If we
connect a concept with the concepts directly used in the
explanation, we form a network of concepts (Figure 1). This
type of networks reflects the state of mind of the person,
making it a potential tool for studying individual’s knowledge,
learning process, abilities, and so forth. Such a network
is an external representation of an individual’s knowledge.
We call such a network an iWordNet for lack of a better
term. The letter “i” in “iWordNet” reflects the individualistic
nature of the network. An iWordNet will evolve over time
and vary from individual to individual. Therefore, study-
ing iWordNets can help us to learn about the cognitive
development of an individual and explain the differences
among different groups of individuals. If an iWordNet is
constructed by all the people in an organization, it measures
or reflects the collective intelligence of the organization. As
a result, an iWordNet can be used to determine both an
individual’s and organizations behaviors and predict their
successes and failures. Before we can elaborate all these,
however, we need to define “understanding” or “meaning” as
a statistical problem surrounding iWordNets. We will start
with the investigation of the connotation of understand-
ing.

A concept is defined by other concepts, which are further
defined by other concepts. Since one has a limited number
of concepts, he will ultimately have an iWordNet in which
all concepts have circular definitions or words that cannot
be defined by other concepts. Furthermore, the meaning of
each word is different for different individuals and shifts
constantly as time goes by. Most of the time people think
they understand each other when they establish a mapping
(or agreement) between what they perceive. It is synonymous
with hearing the phrase: “I know what you are talking
about” or “I understand what you mean.” Although one’s
perceived understanding and one’s actual understanding can
be different, it does not matter as long as one thinks the other
understands, and vice versa. That is, the meaning of a word
has to be defined in terms of the individual and is nothing
but mapping in an iWordNet that is defined by the topology
of the iWordNet. In this sense, meaning is meaningless, an
idea which we call the Paradox of Understanding.

If you look in the online Webster dictionary, you will
find that confusion means perplexity, perplexity means bewil-
derment, bewilderment means incomprehension, and incom-
prehension means confusion, which turns out to be a cyclic
network with many loops or circular definitions.

Because of the circular definitions, the concept in a node
is insignificant and can be replaced with anything else: a
symbol in a different language, or simply a differently shaped
node. Consequently, the overall level of knowledge of a
person can be characterized by the topology of the iWordNet.
In our small pilot study, we will show you how the topology
of iWordNets correlates to IQ score.
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FIGURE 1: An example of a knowledge network.
experienced smart TABLE 1: iWordNet in table format.
smart intelligent
knowledgeable 8
smart knowledgeable
intelligent wise
wise intelligent : ;
§ intelligent knowledgeable
FIGURE 2: A simple iWordNet. wise knowledgeable
wise experienced
.
3. The iWordNet

An iWordNet is not a network of synonyms. Using con-
cepts to explain other concepts in an iWordNet implies the
necessity of understanding the concepts before understand-
ing the concept in question. For instance, if you use “knowl-
edgeable” to explain “smart,” even though their meanings
may be different, you need to know the meaning of “knowl-
edgeable” to understand “smart.” Moreover, in an iWordNet,
the items at the vertices (nodes) of the network are not
limited to words; they can include phrases, long text strings,
sentences, symbols, pictures representing activities or events,
music clips, video clips, and other relevant items. The items
that are directly connected do not have to be related in the
sense that one explains the other. Other relationships may
be equally valid. A causal relationship, for example, could be
how “hungry” makes one think of “food.” Figure 2 is a small
portion of an iWordNet in a graphic form, whereas Table 1 is
the same portion of the iWordNet in a table form.

When the edges in the networks are directionless, the
networks are undirected, dependent on whether the edges
are directional or not. For example, we can use an arrow to

represent a causal relationship. We can also put a weight on
each edge to indicate the strength of the relationship or other
properties, such as in the Petri Net [38-40] in biological and
electronic networks.

Unlike nodes in neural network models in cognitive
neuropsychology, those in iWordNets have no meaning in
terms of physical location or physical distance with other
nodes. Neural networks focus on information processes,
while iWordNets deal with both knowledge itself and learning
mechanisms. iWordNets are also different from artificial
neural networks. An ANN is a learning model, while an
iWordNet is a representation of individual knowledge on
which learning mechanisms can be built.

WordNet® by Princeton University is a large lexical data-
base of English. Nouns, verbs, adjectives, and adverbs are
grouped into sets of cognitive synonyms (synsets), each ex-
pressing a distinct concept. WordNet® focuses on word usage.
Similarly, ConceptNet by MIT is a semantic network contain-
ing concepts that can be used for a machine to “understand”
texts written by humans. A fundamental difference between



iWordNet and these two networks is that WordNet® and
ConceptNet are exhaustive collections of words, concepts,
and their usage and thus contain no information about any
individual, whereas iWordNets are individualized and can
be used to study an individual’s cognitive development. This
will become much clearer when we discuss the Path of
Understanding below.

3.1. The Concept of Constructing an iWordNet. An iWordNet
can be constructed in many different forms, including a
graphical network form, a table-like form, and a database-like
form. Here we describe a simple way used in our pilot study.

(1) Pick a starting word (phrase, concept, picture, or
object) and ask, face-to-face or online, a subject to
explain the meaning of the word. Record the list of
words used by the user to define the starting word.

(2) Make a connection between the word to be explained
(i.e., the starting word) and each word used in the
explanation. Such a connection can be a directed
segment (an arrow) or an undirected segment (a line).
The connection between the paired words can also be
recorded in a table form by entering the two words in
two different columns of the same row.

(3) Recursively ask the subject to explain the words used
in the explanation, creating more connections or
edges. Continue this process until an iWordNet is
constructed. In the process, some concepts or words
used previously are expected to be used again, form-
ing circular definitions. See the example in Figure 2.
The criterion for the completion of an iWordNet can
be subjective. In our pilot study, for simplicity, we
stopped asking questions when the diameter of an
iWordNet reached 10.

There are different methods for creating an iWordNet, dig-
itally or by hand: we can use simple questions, computer
games, and so forth. Concepts can be expressed by dif-
ferent languages, symbols, pictures, music clips, and any
other objects, since a child acquires a concept often before
he/she understands a language or word. A network can be
constructed all at once or piecewise over time.

3.2. Modeling Cognition with the iWordNet. The local topo-
logical properties of an iWordNet include vertices (nodes,
words, etc.), degrees, clusters, betweenness centrality, close-
ness centrality, eigenvalue centrality, PageRank, geodesic
distance, and “top items.” The global topological properties
include number of vertices, number of edges, number of
components, number of clusters, clustering coefficient, mean
geodesic distance, mean closeness centrality, mean closeness
centrality, number of unique edges, graph density, and any
variables derived from these variables.

Modeling cognitive, emotional, and personality measure-
ments with iWordNet topological properties can be done with
regressions or other statistical modeling techniques. Other
supervised and unsupervised methods in statistical learning
can also be used.
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4. The Pilot Study

As part of the pilot study, we were interested in how one’s IQ
and iWordNet are related. To pursue the answers, we obtained
IQ scores and iWordNets from 20 male and female subjects
with an age range of 16 to 60 years.

The IQ test we employed was designed to measure abil-
ities in short-term memory, analytical thinking, abstract pro-
blem solving, mathematical ability, and spatial recognition
(ttp://www.seemypersonality.com:80/IQ-Test, retrieved Oc-
tober 13, 2014). Like all IQ tests, the test we used was not
intended to measure the amount of knowledge the individual
has, but rather the capacity of the individual to learn. We were
not able to get the subjects’ academic transcripts; otherwise,
we would have used them in addition to the IQ scores.

The IQ test, in addition to an overall IQ measurement,
includes left brain and right brain IQ components. Left
brain IQ measures memory, word comprehension, logic, and
numerical sequences. Right brain IQ measures perception,
visual designs, spatial relations, and creativity.

To construct the iWordNets, we first told each individual
to define the word “smart.” We chose to use the word “smart”
because we conjectured that if the starting word is related to
IQ, it would help us to establish a relationship between them.
After defining the first word, the subject was told to define the
key words in its definition and, furthermore, the key words in
the definitions of the definitions. The key words were chosen
based on their importance in an individual’s definition. For
example, if a person defined “smart” as “the state of being
intellectual or having knowledge,” we would record the words
“state,” “being,” “intellectual,” “have,” and “knowledge.” The
words and the key words in their definitions are considered
to be the vertices of the network and are linked together with
lines (edges) to form a network of words, that is, an iWordNet.

By analyzing the iWordNet for each individual, we obtai-
ned the topological properties, such as the degree, geodesic
distance, and modularity, of the networks. Then, we modeled
the relationships between network properties and IQ results
using a linear model.

Materials. Human subjects, computer with Internet access,
online IQ test, NodeXL Basic (http://nodexl.codeplex.com,
retrieved 2014), Statistical Analysis Software, and large papers
for sketching iWordNets.

4.1. The Procedure for Constructing the iWordNet

(1) Recruit subjects, obtain their consent forms, and
schedule an interview for constructing his/her iWord-
Net (an interview may take from as little as 30 minutes
to as much as multiple hours).

(2) Give the subject the IQ test to take online at his/her
convenience. The test will take about 10-15 minutes
to finish. Keep an electronic copy of each subject’s IQ
scores (overall, left brain, and right brain).

(3) In a data collection document, record the subject
number and his/her IQ scores.

(4) For the iWordNets, start with the word “smart,” and
tell the subject to define it. Tell the subject to define
the key words in their definition.
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FIGURE 3: An iWordNet from the pilot study.

(5) As the subject speaks, record the key words in his/her
definitions onto the large sheet of paper (creating a
sort of “tree” diagram). Also enter the words and their
defining words pairwise into NodeXL. After inputting
the words for each subject into NodeXL, one will
eventually be able to create an iWordNet for that
individual.

(6) Continue with this defining process until the subject
has reached up to 10 steps in chains of questioning
from the starting word to the farthest word.

(7) Repeat steps (2)-(6) for all 20 subjects.

(8) Once steps (2)-(6) have been accomplished for all 20
subjects, use the tools in NodeXL [41] to analyze and
generate topological properties for each iWordNet
(centrality, vertices, geodesic distance, etc.).

(9) On the master spreadsheet, compile all the data,
including the subject numbers, IQ scores, and values
for the key topological properties of the iWordNets
(Table 2).

4.2. The Global Topological Properties of the iWordNet. Be-
cause our pilot study was small, and the iWordNets were
constructed in a relatively short amount of time, we do not
want to overinterpret the findings, but we would like to point
out a few interesting properties of the iWordNets.

The networks exhibit a clustered structure (Clauset-
Newman-Moore clustering algorithm) as indicated by the
colors in the example of an iWordNet (Figure 3). The clus-
tering implies that some words/concepts, as expected, are
more loosely related than others. Modularity is designed to
measure the strength of the division of a network into clusters.

Networks with high modularity have dense connections
between the nodes within modules but sparse connections
between nodes in different modules. The mean modularity
of the iWordNets ranges from 0.53 to 0.76, indicating a
strong clustering structure. The minimum and maximum
modularity values are —0.5 and 1, respectively. A very low
value of modularity for an iWordNet may indicate a person’s
confusion among different concepts, whereas an extremely
high value may indicate a lack of creativity because minimally
connected clusters may disable one’s ability to make analogies
across different fields, an essential part of creativity.

Among 20 iWordNets, although the number of vertices
(words used) ranges widely from 35 to 600, the mean geodesic
(shortest distance by steps between two vertices) ranges from
4.4 to 8.8. Even the diameter (the largest geodesic distance)
ranges from 12 to 18, meaning any two words in any of
the iWordNets can be reached with 12 to 18 steps. Thus, an
iWordNet is clearly a small-world network. More interest-
ingly, diameter, mean geodesic distance, and modularity do
not necessarily increase or decrease as the number of vertices
increases. The nature of the small-world network implies that
concepts are much more closely related to each other than we
expected.

Like many other small-world networks, such as electric
power grids, metabolic networks, neural networks, voter
networks, telephone call graphs, and social influence net-
works, iWordNets are robust against the random deletion of
vertices. In other words, randomly forgetting some words
does not affect the iWordNet or knowledge as significantly
as it does for a random graph/network, where randomly
deleting a vertex is likely to impact almost every vertex. While
random networks are vulnerable to random perturbations,
they cannot be targeted for catastrophic failure. Meanwhile,



6 Advances in Artificial Intelligence
TABLE 2: Summary of key topological properties of 20 subjects.

. Mean

Subject  IQ V;l;(gf:les Lirélgq;e gggt:i Diameter gi\g(i?slic iﬁg Modularity ~Mean degree betweenpess
centrality

1 136 72 72 118 14 5.80 0.0344 0.5358 2.444 173.4
2 144 184 199 233 18 7.41 0.0127 0.7048 2.135 590.5
3 147 104 113 125 18 6.68 0.0222 0.7132 2.288 296.0
4 89 605 981 1282 12 5.50 0.0060 0.6075 3.739 1360.4
5 137 58 60 60 16 7.44 0.0363 0.7142 2.069 187.2
6 145 35 33 35 14 6.30 0.0606 0.6278 2.000 90.5
7 142 152 162 227 17 7.20 0.0163 0.6322 2.461 4713
8 144 151 148 170 19 8.59 0.0140 0.7573 2.093 568.1
9 160 150 145 211 15 6.30 0.0160 0.6309 2.373 398.2
10 156 202 322 412 12 4.38 0.0181 0.5516 3.634 342.3
11 155 112 113 127 19 8.78 0.0193 0.7475 2.143 406.3
12 155 121 161 191 12 4.70 0.0242 0.6030 2.909 217.3
13 151 202 230 260 16 7.10 0.0121 0.7115 2.426 616.8
14 146 105 83 172 16 7.33 0.0223 0.5309 2.324 332.7
15 146 38 36 44 13 5.72 0.0569 0.5971 2.105 90.2
16 146 72 76 86 14 6.44 0.0313 0.6591 2.25 196.3
17 160 164 178 228 16 6.45 0.0151 0.6660 2.463 4472
18 154 152 178 230 12 5.65 0.0178 0.6367 2.684 354.3
19 127 228 270 286 15 6.53 0.0107 0.7164 2.439 630.8
20 160 55 57 61 13 6.08 0.0397 0.6660 2.145 140.1

small-world networks are usually vulnerable to targeted
attacks of hubs, but within the 20 iWordNets, there is only
a maximum degree of 10 to 15, so no significant hubs exist. Of
course when an iWordNet gets larger with more time for the
construction, there could be more significant hubs.

As expected, the data indicate that the total number of
unique edges and the mean betweenness centrality increase
linearly as the total number of vertices increases. However,
the graphic density and mean eigenvector centrality decrease
exponentially as the total number of vertices increases.

4.3. Statistical Modeling of IQ with Global iWordNet Prop-
erties. We have described the topological properties of the
iWordNet. Now we will investigate how these properties
are related to knowledge or IQ. We initially included 9
topological variables of iWordNets in the IQ modeling. We
used linear regression with backward-elimination methods
and a staying p value less than 0.1. Because the time of
the experiment for each subject was not fully controlled
(most subjects took about one hour of questioning to their
iWordNet, but some took up to several hours) and because
the betweenness centrality increases as the time increases, we
need to include variables that are stable as the experiment
time changes to adjust for the effect. We identified stabilized
centrality such as a variable, defined as the betweenness
centrality divided by the total number of edges. Under the
same logic, we also included another “stable factor,” stabilized

density, defined as graph density divided by the number
vertices.

The final model includes statistically significant factors,
MD (mean degree), M (modularity), NE (total number of
edges), UE (number of unique edges), GD (graphic density),
SD (stabilized density), and SC (stabilized centrality) with
associated p values, 0.0199, 0.0137, 0.0295, 0.0093, 0.0798,
0.0612, and 0.0589, respectively.

IQ = -50.21 + 32.03MD + 309.4M + 0.364NE
—0.62UE - 1335GD + 42526SD - 18.1SC.

The p value for the IQ model is 0.0002. The R? value for the
model is 0.864, which indicates that 86.4% of the variability
of the IQ scores can be explained by the model. The IQ model
also shows positive associations between IQ and MD (a
high average number of direct connections between concepts
may increase 1Q), M (a highly clustered iWordNet may be
associated with a high 1IQ), NE (more concepts and con-
nections may increase 1Q), and SD (adjusting for increases
in connections due to experimental time differences) and
negative associations between IQ and unique edges (adjusting
for overcorrection of NE), graph density (a high level of
connectedness between all concepts may indicate one’s con-
fusion), and stabilized centrality (adjusting for increases in
connections due to experimental time differences). Figure 4
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FIGURE 4: IQ modeling based on 20 iWordNets.

shows model predicted IQ scores (circles) versus the observed
values (squares).

The left brain IQ (measuring memory, word comprehen-
sion, logic, etc.) model includes the variables mean geodesic
distance, mean closeness centrality, total edges, unique edges,
graph density, stabilized density, and stabilized centrality
with associated p values of 0.0129, 0.0418, 0.0780, 0.0325,
0.0083, 0.0456, and 0.0403, respectively. The model p value
is 0.006 and R® is 0.838. The left brain IQ model shows
that IQ increases when mean closeness centrality, total edges,
stabilized density, and stabilized centrality increase and mean
geodesic, unique edges, and graph density decrease. The
right brain IQ includes the variables modularity, total edges,
vertices, graph density, stabilized density, and stabilized
centrality, with associated p values of 0.0622, 0.0403, 0.0170,
0.0237, 0.0452, and 0.0316, respectively. The model p value
is 0.0091 and R* is 0.686. The right brain IQ (measuring
perceptions, spatial relations, creativity, etc.) model shows
that IQ increases when modularity, total number of edges,
and stabilized density increase and vertices and stabilized
centrality decrease.

These positive findings between IQ and iWordNets from
this pilot study are very encouraging, although larger studies
are necessary to confirm the findings of this general rela-
tionship (see Section 6), since the relationship between 1Q
and iWordNet topology is dependent on how the iWordNets
are constructed. More importantly, larger studies are needed
to explore the relationship between iWordNet topology and
other aspects of cognitive development.

5. Utilizing Local Topological Properties
of the iWordNet

5.1 The Path of Understanding. The global topology of an
iWordNet can measure the overall knowledge of an individual
as well as his knowledge and intelligence in different fields.
However, the global topology is insufficient in describing an
individual’s understanding of each concept (word, phrase,
sentence, etc.). Local topological properties of an iWordNet
have to be used to describe an individual’s understanding of
particular concepts, as elaborated below.

According to distributional similarity or distributional
semantics in computational linguistics, the meaning of a
word is associated with its location in the sentence or the
distribution of surrounding words [42, 43]. If the word “foot”
wherever and whenever it appears was replaced with the word
“hand,” and vice versa, the meanings of “foot” and “hand”
would be switched. That is why different languages in the
world almost work equally well in their own environments.
The concept of distribution semantics is further developed
using iWordNets: the meaning of a word in distributional
semantics can be viewed as the aggregated meaning, which
is individualized through the iWordNet. This implies that the
meaning of a word is an individualized understanding and
one shifts as one’s iWordNet evolves. However, the meanings
or topological properties of isolated words cannot carry us
very far. We have to study how a concept string is expressed
in an iWordNet. To this end, we introduce the concept of the
“Path of Understanding” and describe its numerization.

An individual’s understanding of a concept or a string
of words (a phrase, sentence, paragraph, etc.) is determined
by the path in the iWordNet marked by the sequence of the
words in the word string, called the Path of Understanding
(PoU). The sequence of topological properties (such as
degree, centrality, and geodesic distance) of the nodes along
the path forms a sequence of vectors. We call such a sequence
of numerical vectors a numerization string. This numeriza-
tion string characterizes an individual’s understanding of the
word string.

Let us use the sentence “We can use a network approach
to study the mind” to illustrate the method: suppose that
from a person’s iWordNet, the words “we,” “can,” “use,”
“a,” “network,” “approach,” “to,” “study,” “the,” and “mind”
have degrees 5, 4, 7, 3, 2, 9, 12, 6, 3, and 8, respectively. The
numerization string {5,4,7,3,2,9, 12,6, 3,8} is a numerical
representation of the person’s understanding of the sentence.
Of course, different people have different understandings of
the sentence, so their iWordNets and, therefore, numerization
strings will differ.

If we want to characterize a person’s understanding of
word string more precisely, we can use more than one of the
iWordNet’s local properties, for example, degrees and central-
ity of vertices, on the PoU. Suppose that in our example
above, in addition to the words’ degrees, the centralities of
“we,” “can,” “use,” “a,” “network,” “approach,” “to,” “study,”
“the,” and “mind” are 0.001, 0.003, 0.0012, 0.0023, 0.0015,
0.0032, 0.004, 0.0012, 0.003, and 0.0026, respectively. The nu-
merization string becomes {(5,0.001), (4, 0.003), (7,0.0012),
(3,0.0023), (2,0.0015), (9, 0.0032), (12, 0.004), (6,0.0012), (3,
0.003), (8,0.0026)}. Similarly, we can construct numerization
strings with three or more different properties of iWordNets
for more precise characterizations. It is interesting to
note that numerization strings can also be visualized or
converted to sound or music. Perhaps, most significantly, the
numerization string provides a foundation for individualized
statistical learning, such as Bayesian learning tools, artificial
neural networks, and deep learning models.

» <«

5.2. Acquiring New Knowledge. How does a person acquire
new knowledge or a new word? We can explain this using a
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FIGURE 5: Illustration of smoothing on the Path of Understanding
(PoU).

smoothing method over the iWordNet. The idea of smooth-
ing is similar to the so-called smoothing method in modern
control theory. If a word is missing in a sentence, we often
use the smoothing technique to guess the meaning of the
word in a way that makes sense in the sentence. Similarly,
suppose one reads the sentence: “I love romantic stories.”
If the word “romantic” is new to him, he would make a
guess about its meaning such that the sentence makes sense
to him (smoothing). The meaning guessed must be closely
related to the two words (love and stories) immediately
before and after “romantic.” We use the shortest distance
(geodesic distance) to reflect the closeness and maximum
number of links (degree) to reflect the commonness. In case
there are multiple words, the maximization of distributional
similarity or cosine similarity [44] and various statistical
learning tools can also be used to understand the subject.
With the assistance of the numerization of strings, smoothing
using neighboring sentences can become much easier.

If a person reads the sentence “I love romantic stories”
and does not recognize “romantic,” he may use “enigmatic” to
guess the meaning. Since “romantic” is not in his iWordNet,
the two geodesics between love and stories, corresponding to
the words “enigmatic” (with a degree of 3) and “humorous”
(with a degree of 3), can help him make the guess. From
past experiences, the meaning of “romantic” is more likely
to be closer to “enigmatic” (with probability 3/5) than to
“humorous” (with probability 2/5).

The idea of new knowledge acquisition can be based
on the maximization of cosine similarity and when cosine
similarities are the same for several Paths of Understanding
then the probability Degree/Y Degree will be associated with

several possible meanings. In the example (Figure5), the
cosine similarity between “I love enigmatic stories” and “I
love romantic stories” is the same as the cosine similarity
between “I love humor stories” and “I love romantic stories,”
but the associated probabilities, 3/5 versus 2/5, respectively,
are different.

Here we raise an interesting paradox, even if we will
not attempt to resolve it: as Einstein [45] said, “Pure logical
thinking cannot yield us any knowledge of the empirical
world....” If people understand a new concept by means
of old, existing concepts, then what is the essence of new
knowledge learned?

6. Limitations

In the pilot study, we were not able to address many questions
regarding iWordNet construction such as the following:
should we limit construction to single or multiple starting

Advances in Artificial Intelligence

words (we always started with “smart”)? Should we treat
different forms of a word as the same thing (different tenses)?
Should we limit the time for constructing an iWordNet?
Should we use directed or undirected and weighted or
unweighted networks? Should we limit the depth of a ques-
tion chain (i.e., geodesic distance)? Should we only use key
words in an iWordNet and what constitutes a key word?
Should we differentiate between iWordNets with a general
versus specific purpose?

7. Discussion

The Paradox of Understanding (meaning is meaningless)
led to the iWordNet formulated by recursive definitions.
Consequently, the global topological properties of an iWord-
Net holds the information that represents an individual’s
overall knowledge, IQ, personality, or status of cognitive
development, and the local properties and numerization of
PoU hold the information of the understanding of particular
concepts. Since an iWordNet is primarily a representation of
one’s knowledge, it makes perfect sense to study cognitive
science and artificial intelligence through network science.
Network topology might also have a far-reaching impact on
cognitive capacities that support or influence learning [34].
Studying how topological properties of iWordNets and neural
networks drive the process of human learning might bridge
branches of cognitive science.

Unlike the traditional study of cognitive science and
artificial intelligence, for which the meanings of words are
essential, the iWordNet approach intends to identify rela-
tionships between the topological properties of the iWord-
Net and an individual’s personality, behavior, and cognitive
development. This may be difficult to accept at first glance
because the topological properties appear to be irrelevant
to the meaning of the words, but it is evidenced by (1) the
meaning of a word depends on where and how it is used,
making the location of a word relative to others important,
(2) the recursive explanation of a word by other words (i.e.,
circular definitions) makes words merely placeholders (as we
discussed in the section of connotation of understanding),
and (3) the pilot study, though small, did show a statistically
significant association between IQ and the topology of
iWordNets. However, the significance of the results of the
pilot study is not about how iWordNets can predict IQ, but
how it enlightens our appreciation of iWordNets as a new way
of studying cognitive science.

We want to emphasize that understanding has to be on an
individual basis. Even when we use the same dictionary for
the definition of a word, the meaning of the word can only
make sense through an individual Path of Understanding in
the brain or iWordNet. Thus, it still circles back to individual-
based understanding. The Path of Understanding (PoU) in an
iWordNet and its numerization provide a tool for quantitative
studies of meaning or individual understandings of a word,
concept, sentence, or passage. The topological properties and
numerization of the PoU technique can be used in clinics or
experimental settings to study a person’s cognitive aspects.

Just like a neurologist can obtain images of a patient’s
brain and determine where the damage is, we can construct
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an iWordNet to see the topological “damage” to a patient
with Alzheimer’s disease or a person who is mathematically
impaired, for example. Thus, the potential treatments can
be to directly target one’s iWordNet or individualize teach-
ing/learning methods to improve the “damage.” The key to
the success of the iWordNet approach is how to construct a
reliable and sensible iWordNet, which is to be developed. To
geta glimpse of the broad potential applications of iWordNet,
the following is a list of examples:

(1) Evaluating one’s knowledge over time using the
iWordNet

(2) Evaluating one’s personality over time using the
iWordNet

(3) Analyzing and evaluating the cognitive impairmentin
yzing g g p
patients or the elderly using the iWordNet

(4) Studying why people have different skills using the
iWordNet

(5) Comparing the knowledge of different individuals
using the iWordNet for improving teaching and
learning

(6) Using the topologies of the iWordNet with other
variables such as race, gender, and age to study the
differences among different ethnic, gender, and age
groups

(7) Studying people with communication deficiencies
through the iWordNet

(8) Using the iWordNet combined with neurological and
psychological approaches in research or in clinics

(9) Studying the process of new knowledge acquisition

(10) Making robots that truly understand humans, or, at
least, using words and concepts in the same ways that
humans do

(11) Studying organizational behaviors when the iWord-
Net is constructed using collective intelligence from
an organization or specific group of people.

8. Conclusion

In the paper, we propose a new approach to study individual-
based understanding. In this approach, we argue the mean-
ing or understanding of a concept should be individual-
based through the so-called understanding paradox, while
the meaning of a concept by conventional wisdom is the
collective individual understandings of a concept from the
society. We proposed a simple method to construct iWordNet
that connects different concepts of the same individual and
postulate that such an iWordNet is a knowledge representa-
tion of the individual and thus, the topological properties of
the iWordNet will characterize the person’s knowledge, IQ,
and so forth. We conducted a pilot study to prove that. The
significance of the research work is that it could potentially
open a new way to study artificial intelligence since one of
the important aspects of Al is to study agent’s understanding
and knowledge. We further proposed the concept of “Path
of Understanding” in an iWordNet that characterizes an
individual’s understanding of a complex concept such as a

written passage. However, further discussions would exceed
the scope of this paper. We hope this paper as an introductory,
a proof-of-concept article, will attract more researchers in this
area.
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