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One of themain challenges in arti	cial intelligence or computational linguistics is understanding themeaning of a word or concept.
We argue that the connotation of the term “understanding,” or themeaning of the word “meaning,” ismerely a wordmapping game
due to unavoidable circular de	nitions. �ese circular de	nitions arise when an individual de	nes a concept, the concepts in its
de	nition, and so on, eventually forming a personalized network of concepts, which we call an iWordNet. Such an iWordNet serves
as an external representation of an individual’s knowledge and state of mind at the time of the network construction. As a result,
“understanding” and knowledge can be regarded as a calculable statistical property of iWordNet topology. We will discuss the
construction and analysis of the iWordNet, as well as the proposed “Path of Understanding” in an iWordNet that characterizes an
individual’s understanding of a complex concept such as a written passage. In our pilot study of 20 subjects we used a regression
model to demonstrate that the topological properties of an individual’s iWordNet are related to his IQ score, a relationship that
suggests iWordNets as a potential new methodology to studying cognitive science and arti	cial intelligence.

1. Introduction

Cognitive science, as an interdisciplinary study of mind and
intelligence, embraces philosophy, psychology, arti	cial intel-
ligence, neuroscience, linguistics, and sociology. As cognitive
science continues to evolve, arti	cial intelligent approaches
such as statistical learning and network science are becoming
increasingly attractive and relevant to researchers in cog-
nitive science and arti	cial intelligence. Recent work [1–
6] demonstrates that statistical learning is one of the most
deeply explored phenomena in the 	eld of cognitive science.
Noticeably, the increasing utilization of network science with
statistical learning [7–9] makes network-based approaches a
robust tool in cognitive science and computational linguistics
[10, 11]. Network science has been successfully applied to
several pressing issues: feature biases in early word learning
[12], semantic concepts [13–17], grammatical relationships
[18], spatial learning in human navigation [19], structural
and functional brain connections in relationship to various
cognitive capacities [20–23], and scene perception studies

such as texture and shape discrimination [24–26]. Perhaps
the 	eld that has most broadly adopted network-based
approaches in cognitive science is computational linguistics
[27–33].

Despite these numerous advances, the integration of
network science and cognitive science has not been carried
out in the way that we hoped for. �e research tends to
focus either on (i) the description of networks derived from
the sensory world, or (ii) the mechanisms by which the
human brain engages with the sensory world, with little
communication between these two areas, as Karuza et al.
[34] commented in their recent review paper, “In�uences
of Network Topology on Human Learning.” �e authors
pointed out: “. . .a dominant approach to human learning has
focused on microlevel patterns, o�en the pairwise relation-
ships between the constituents of sensory input. . .. Currently,
many quantitative approaches to learning hinge on sensitivity
to local statistics such as cooccurrence frequencies and tran-
sitional probabilities between adjacent elements.” �ey urge
us to examine how internal complex system dynamics gives
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rise to learning, how acquired knowledge might be re�ected
in observable topological patterns in the human brain,
and how micro- and macrolevel brain dynamics support
learning.

It is undeniable that our lives today are intimately tied
to various external networks, whether it is friends, trans-
portation, or social media networks. �e collective analyses
of social media networks have o�ered unprecedented insight
into how humans transmit information and interact with one
another [34–37]. To use network science methodology to
study themind and cognitive development, knowledge needs
to be expressed as a network of concepts, which re�ects one’s
state of mind and collective intelligence.

Di�erent from human neural networks, which are com-
monly studied in cognitive science, we propose a method
of constructing individualized networks of concepts, called
iWordNets, which re�ect an individual’s knowledge or state
of mind at the time of construction. By studying the topology
of the iWordNet, we can learn how the person’s cognition
was developed, how it di�ers in comparison to others, and
why people experience di�erent cognitive developments.
�is information can further provide potential insights into
improving teaching, learning, educational evaluations, and
patient treatments in clinics.

An iWordNet can be constructed through continuously
asking a subject to explain concepts, one a�er another,
recursively. We will 	rst examine the connotation of the term
“understanding” and prove that the meaning of “understand-
ing” is essentially a word mapping game and that a word
is just a placeholder. Based on this view, we postulate that
there are relationships between the topology of an individual’s
iWordNet and his overall knowledge or IQ and use a small
pilot study to test the hypothesis. Encouraged by the initial
positive 	ndings between IQ and iWordNet topology, we fur-
ther describe how to use iWordNets to study an individual’s
understanding of a concept, sentence, or paragraph using
the so-called Path of Understanding (PoU). We quantify the
meaning of a string of words using topological characteristics
(such as degree, centrality) along the PoU to explain how
people might acquire new knowledge. �us, the iWordNet
as an arti	cial intelligent approach potentially provides a
new, noninvasive, low-cost way to study the brain, mind, and
cognitive science.

2. The Connotation of Understanding

Knowledge is a collection and organization of concepts
and consists of many pieces of individual “understanding.”
However, we rarely question the understanding of a concept.
What does the term “understanding” mean? Does each
person have a unique understanding of a concept and to what
extentmight they vary?What role does understanding play in
our communication?

We can say that a library, a collection of books, a research
paper, the news, and so forth are bodies of knowledge
or collections of concepts. A library is a relatively simple
organized repository of concepts and so is a social media
network. In a dictionary, words are de	ned by other words,
which are further de	ned by other words, and so on. If

we connect these words using lines to re�ect their direct
relationships, we form a network of words, which can
be considered as knowledge external to any individuals.
Similar to how we would construct a dictionary network,
a person can explain a concept by other concepts, which
are further explained by other concepts, and so on. If we
connect a concept with the concepts directly used in the
explanation, we form a network of concepts (Figure 1). �is
type of networks re�ects the state of mind of the person,
making it a potential tool for studying individual’s knowledge,
learning process, abilities, and so forth. Such a network
is an external representation of an individual’s knowledge.
We call such a network an iWordNet for lack of a better
term. �e letter “i” in “iWordNet” re�ects the individualistic
nature of the network. An iWordNet will evolve over time
and vary from individual to individual. �erefore, study-
ing iWordNets can help us to learn about the cognitive
development of an individual and explain the di�erences
among di�erent groups of individuals. If an iWordNet is
constructed by all the people in an organization, it measures
or re�ects the collective intelligence of the organization. As
a result, an iWordNet can be used to determine both an
individual’s and organization’s behaviors and predict their
successes and failures. Before we can elaborate all these,
however, we need to de	ne “understanding” or “meaning” as
a statistical problem surrounding iWordNets. We will start
with the investigation of the connotation of understand-
ing.

A concept is de	ned by other concepts, which are further
de	ned by other concepts. Since one has a limited number
of concepts, he will ultimately have an iWordNet in which
all concepts have circular de	nitions or words that cannot
be de	ned by other concepts. Furthermore, the meaning of
each word is di�erent for di�erent individuals and shi�s
constantly as time goes by. Most of the time people think
they understand each other when they establish a mapping
(or agreement) between what they perceive. It is synonymous
with hearing the phrase: “I know what you are talking
about” or “I understand what you mean.” Although one’s
perceived understanding and one’s actual understanding can
be di�erent, it does not matter as long as one thinks the other
understands, and vice versa. �at is, the meaning of a word
has to be de	ned in terms of the individual and is nothing
but mapping in an iWordNet that is de	ned by the topology
of the iWordNet. In this sense, meaning is meaningless, an
idea which we call the Paradox of Understanding.

If you look in the online Webster dictionary, you will
	nd that confusionmeans perplexity, perplexitymeans bewil-
derment, bewilderment means incomprehension, and incom-
prehension means confusion, which turns out to be a cyclic
network with many loops or circular de	nitions.

Because of the circular de	nitions, the concept in a node
is insigni	cant and can be replaced with anything else: a
symbol in a di�erent language, or simply a di�erently shaped
node. Consequently, the overall level of knowledge of a
person can be characterized by the topology of the iWordNet.
In our small pilot study, we will show you how the topology
of iWordNets correlates to IQ score.
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Figure 1: An example of a knowledge network.

experienced smart

knowledgeable

wise intelligent

Figure 2: A simple iWordNet.

3. The iWordNet

An iWordNet is not a network of synonyms. Using con-
cepts to explain other concepts in an iWordNet implies the
necessity of understanding the concepts before understand-
ing the concept in question. For instance, if you use “knowl-
edgeable” to explain “smart,” even though their meanings
may be di�erent, you need to know the meaning of “knowl-
edgeable” to understand “smart.” Moreover, in an iWordNet,
the items at the vertices (nodes) of the network are not
limited to words; they can include phrases, long text strings,
sentences, symbols, pictures representing activities or events,
music clips, video clips, and other relevant items. �e items
that are directly connected do not have to be related in the
sense that one explains the other. Other relationships may
be equally valid. A causal relationship, for example, could be
how “hungry” makes one think of “food.” Figure 2 is a small
portion of an iWordNet in a graphic form, whereas Table 1 is
the same portion of the iWordNet in a table form.

When the edges in the networks are directionless, the
networks are undirected, dependent on whether the edges
are directional or not. For example, we can use an arrow to

Table 1: iWordNet in table format.

smart intelligent

smart knowledgeable

intelligent wise

intelligent knowledgeable

wise knowledgeable

wise experienced

represent a causal relationship. We can also put a weight on
each edge to indicate the strength of the relationship or other
properties, such as in the Petri Net [38–40] in biological and
electronic networks.

Unlike nodes in neural network models in cognitive
neuropsychology, those in iWordNets have no meaning in
terms of physical location or physical distance with other
nodes. Neural networks focus on information processes,
while iWordNets dealwith both knowledge itself and learning
mechanisms. iWordNets are also di�erent from arti	cial
neural networks. An ANN is a learning model, while an
iWordNet is a representation of individual knowledge on
which learning mechanisms can be built.

WordNet� by Princeton University is a large lexical data-
base of English. Nouns, verbs, adjectives, and adverbs are
grouped into sets of cognitive synonyms (synsets), each ex-
pressing a distinct concept.WordNet� focuses onword usage.
Similarly, ConceptNet byMIT is a semantic network contain-
ing concepts that can be used for a machine to “understand”
texts written by humans. A fundamental di�erence between
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iWordNet and these two networks is that WordNet� and
ConceptNet are exhaustive collections of words, concepts,
and their usage and thus contain no information about any
individual, whereas iWordNets are individualized and can
be used to study an individual’s cognitive development. �is
will become much clearer when we discuss the Path of
Understanding below.

3.1. �e Concept of Constructing an iWordNet. An iWordNet
can be constructed in many di�erent forms, including a
graphical network form, a table-like form, and a database-like
form. Here we describe a simple way used in our pilot study.

(1) Pick a starting word (phrase, concept, picture, or
object) and ask, face-to-face or online, a subject to
explain the meaning of the word. Record the list of
words used by the user to de	ne the starting word.

(2) Make a connection between the word to be explained
(i.e., the starting word) and each word used in the
explanation. Such a connection can be a directed
segment (an arrow) or an undirected segment (a line).
�e connection between the paired words can also be
recorded in a table form by entering the two words in
two di�erent columns of the same row.

(3) Recursively ask the subject to explain the words used
in the explanation, creating more connections or
edges. Continue this process until an iWordNet is
constructed. In the process, some concepts or words
used previously are expected to be used again, form-
ing circular de	nitions. See the example in Figure 2.
�e criterion for the completion of an iWordNet can
be subjective. In our pilot study, for simplicity, we
stopped asking questions when the diameter of an
iWordNet reached 10.

�ere are di�erent methods for creating an iWordNet, dig-
itally or by hand: we can use simple questions, computer
games, and so forth. Concepts can be expressed by dif-
ferent languages, symbols, pictures, music clips, and any
other objects, since a child acquires a concept o�en before
he/she understands a language or word. A network can be
constructed all at once or piecewise over time.

3.2. Modeling Cognition with the iWordNet. �e local topo-
logical properties of an iWordNet include vertices (nodes,
words, etc.), degrees, clusters, betweenness centrality, close-
ness centrality, eigenvalue centrality, PageRank, geodesic
distance, and “top items.” �e global topological properties
include number of vertices, number of edges, number of
components, number of clusters, clustering coe�cient, mean
geodesic distance, mean closeness centrality, mean closeness
centrality, number of unique edges, graph density, and any
variables derived from these variables.

Modeling cognitive, emotional, and personalitymeasure-
mentswith iWordNet topological properties can be donewith
regressions or other statistical modeling techniques. Other
supervised and unsupervised methods in statistical learning
can also be used.

4. The Pilot Study

As part of the pilot study, we were interested in how one’s IQ
and iWordNet are related. To pursue the answers, we obtained
IQ scores and iWordNets from 20 male and female subjects
with an age range of 16 to 60 years.

�e IQ test we employed was designed to measure abil-
ities in short-termmemory, analytical thinking, abstract pro-
blem solving, mathematical ability, and spatial recognition
(http://www.seemypersonality.com:80/IQ-Test, retrievedOc-
tober 13, 2014). Like all IQ tests, the test we used was not
intended to measure the amount of knowledge the individual
has, but rather the capacity of the individual to learn.Wewere
not able to get the subjects’ academic transcripts; otherwise,
we would have used them in addition to the IQ scores.

�e IQ test, in addition to an overall IQ measurement,
includes le� brain and right brain IQ components. Le�
brain IQ measures memory, word comprehension, logic, and
numerical sequences. Right brain IQ measures perception,
visual designs, spatial relations, and creativity.

To construct the iWordNets, we 	rst told each individual
to de	ne the word “smart.”We chose to use the word “smart”
because we conjectured that if the starting word is related to
IQ, it would help us to establish a relationship between them.
A�er de	ning the 	rst word, the subject was told to de	ne the
key words in its de	nition and, furthermore, the key words in
the de	nitions of the de	nitions. �e key words were chosen
based on their importance in an individual’s de	nition. For
example, if a person de	ned “smart” as “the state of being
intellectual or having knowledge,” wewould record thewords
“state,” “being,” “intellectual,” “have,” and “knowledge.” �e
words and the key words in their de	nitions are considered
to be the vertices of the network and are linked together with
lines (edges) to form anetwork ofwords, that is, an iWordNet.

By analyzing the iWordNet for each individual, we obtai-
ned the topological properties, such as the degree, geodesic
distance, and modularity, of the networks.�en, we modeled
the relationships between network properties and IQ results
using a linear model.

Materials. Human subjects, computer with Internet access,
online IQ test, NodeXL Basic (http://nodexl.codeplex.com,
retrieved 2014), Statistical Analysis So�ware, and large papers
for sketching iWordNets.

4.1. �e Procedure for Constructing the iWordNet

(1) Recruit subjects, obtain their consent forms, and
schedule an interview for constructing his/her iWord-
Net (an interviewmay take from as little as 30minutes
to as much as multiple hours).

(2) Give the subject the IQ test to take online at his/her
convenience. �e test will take about 10–15 minutes
to 	nish. Keep an electronic copy of each subject’s IQ
scores (overall, le� brain, and right brain).

(3) In a data collection document, record the subject
number and his/her IQ scores.

(4) For the iWordNets, start with the word “smart,” and
tell the subject to de	ne it. Tell the subject to de	ne
the key words in their de	nition.

http://www.seemypersonality.com:80/IQ-Test
http://nodexl.codeplex.com
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Figure 3: An iWordNet from the pilot study.

(5) As the subject speaks, record the key words in his/her
de	nitions onto the large sheet of paper (creating a
sort of “tree” diagram). Also enter the words and their
de	ningwords pairwise intoNodeXL. A�er inputting
the words for each subject into NodeXL, one will
eventually be able to create an iWordNet for that
individual.

(6) Continue with this de	ning process until the subject
has reached up to 10 steps in chains of questioning
from the starting word to the farthest word.

(7) Repeat steps (2)–(6) for all 20 subjects.

(8) Once steps (2)–(6) have been accomplished for all 20
subjects, use the tools in NodeXL [41] to analyze and
generate topological properties for each iWordNet
(centrality, vertices, geodesic distance, etc.).

(9) On the master spreadsheet, compile all the data,
including the subject numbers, IQ scores, and values
for the key topological properties of the iWordNets
(Table 2).

4.2. �e Global Topological Properties of the iWordNet. Be-
cause our pilot study was small, and the iWordNets were
constructed in a relatively short amount of time, we do not
want to overinterpret the 	ndings, but we would like to point
out a few interesting properties of the iWordNets.

�e networks exhibit a clustered structure (Clauset-
Newman-Moore clustering algorithm) as indicated by the
colors in the example of an iWordNet (Figure 3). �e clus-
tering implies that some words/concepts, as expected, are
more loosely related than others. Modularity is designed to
measure the strength of the division of a network into clusters.

Networks with high modularity have dense connections
between the nodes within modules but sparse connections
between nodes in di�erent modules. �e mean modularity
of the iWordNets ranges from 0.53 to 0.76, indicating a
strong clustering structure. �e minimum and maximum
modularity values are −0.5 and 1, respectively. A very low
value of modularity for an iWordNet may indicate a person’s
confusion among di�erent concepts, whereas an extremely
high valuemay indicate a lack of creativity becauseminimally
connected clustersmay disable one’s ability tomake analogies
across di�erent 	elds, an essential part of creativity.

Among 20 iWordNets, although the number of vertices
(words used) rangeswidely from35 to 600, themean geodesic
(shortest distance by steps between two vertices) ranges from
4.4 to 8.8. Even the diameter (the largest geodesic distance)
ranges from 12 to 18, meaning any two words in any of
the iWordNets can be reached with 12 to 18 steps. �us, an
iWordNet is clearly a small-world network. More interest-
ingly, diameter, mean geodesic distance, and modularity do
not necessarily increase or decrease as the number of vertices
increases.�e nature of the small-world network implies that
concepts are muchmore closely related to each other than we
expected.

Like many other small-world networks, such as electric
power grids, metabolic networks, neural networks, voter
networks, telephone call graphs, and social in�uence net-
works, iWordNets are robust against the random deletion of
vertices. In other words, randomly forgetting some words
does not a�ect the iWordNet or knowledge as signi	cantly
as it does for a random graph/network, where randomly
deleting a vertex is likely to impact almost every vertex.While
random networks are vulnerable to random perturbations,
they cannot be targeted for catastrophic failure. Meanwhile,
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Table 2: Summary of key topological properties of 20 subjects.

Subject IQ
Total

vertices
Unique
edges

Total
edges

Diameter
Mean

geodesic
Graph
density

Modularity Mean degree
Mean

betweenness
centrality

1 136 72 72 118 14 5.80 0.0344 0.5358 2.444 173.4

2 144 184 199 233 18 7.41 0.0127 0.7048 2.135 590.5

3 147 104 113 125 18 6.68 0.0222 0.7132 2.288 296.0

4 89 605 981 1282 12 5.50 0.0060 0.6075 3.739 1360.4

5 137 58 60 60 16 7.44 0.0363 0.7142 2.069 187.2

6 145 35 33 35 14 6.30 0.0606 0.6278 2.000 90.5

7 142 152 162 227 17 7.20 0.0163 0.6322 2.461 471.3

8 144 151 148 170 19 8.59 0.0140 0.7573 2.093 568.1

9 160 150 145 211 15 6.30 0.0160 0.6309 2.373 398.2

10 156 202 322 412 12 4.38 0.0181 0.5516 3.634 342.3

11 155 112 113 127 19 8.78 0.0193 0.7475 2.143 406.3

12 155 121 161 191 12 4.70 0.0242 0.6030 2.909 217.3

13 151 202 230 260 16 7.10 0.0121 0.7115 2.426 616.8

14 146 105 83 172 16 7.33 0.0223 0.5309 2.324 332.7

15 146 38 36 44 13 5.72 0.0569 0.5971 2.105 90.2

16 146 72 76 86 14 6.44 0.0313 0.6591 2.25 196.3

17 160 164 178 228 16 6.45 0.0151 0.6660 2.463 447.2

18 154 152 178 230 12 5.65 0.0178 0.6367 2.684 354.3

19 127 228 270 286 15 6.53 0.0107 0.7164 2.439 630.8

20 160 55 57 61 13 6.08 0.0397 0.6660 2.145 140.1

small-world networks are usually vulnerable to targeted
attacks of hubs, but within the 20 iWordNets, there is only
a maximum degree of 10 to 15, so no signi	cant hubs exist. Of
course when an iWordNet gets larger with more time for the
construction, there could be more signi	cant hubs.

As expected, the data indicate that the total number of
unique edges and the mean betweenness centrality increase
linearly as the total number of vertices increases. However,
the graphic density and mean eigenvector centrality decrease
exponentially as the total number of vertices increases.

4.3. Statistical Modeling of IQ with Global iWordNet Prop-
erties. We have described the topological properties of the
iWordNet. Now we will investigate how these properties
are related to knowledge or IQ. We initially included 9
topological variables of iWordNets in the IQ modeling. We
used linear regression with backward-elimination methods
and a staying � value less than 0.1. Because the time of
the experiment for each subject was not fully controlled
(most subjects took about one hour of questioning to their
iWordNet, but some took up to several hours) and because
the betweenness centrality increases as the time increases, we
need to include variables that are stable as the experiment
time changes to adjust for the e�ect. We identi	ed stabilized
centrality such as a variable, de	ned as the betweenness
centrality divided by the total number of edges. Under the
same logic, we also included another “stable factor,” stabilized

density, de	ned as graph density divided by the number
vertices.

�e 	nal model includes statistically signi	cant factors,
MD (mean degree), M (modularity), NE (total number of
edges), UE (number of unique edges), GD (graphic density),
SD (stabilized density), and SC (stabilized centrality) with
associated � values, 0.0199, 0.0137, 0.0295, 0.0093, 0.0798,
0.0612, and 0.0589, respectively.

IQ = −50.21 + 32.03MD + 309.4M + 0.364NE

− 0.62UE − 1335GD + 42526SD − 18.1SC.
(1)

�e � value for the IQ model is 0.0002. �e �2 value for the
model is 0.864, which indicates that 86.4% of the variability
of the IQ scores can be explained by themodel.�e IQmodel
also shows positive associations between IQ and MD (a
high average number of direct connections between concepts
may increase IQ), M (a highly clustered iWordNet may be
associated with a high IQ), NE (more concepts and con-
nections may increase IQ), and SD (adjusting for increases
in connections due to experimental time di�erences) and
negative associations between IQandunique edges (adjusting
for overcorrection of NE), graph density (a high level of
connectedness between all concepts may indicate one’s con-
fusion), and stabilized centrality (adjusting for increases in
connections due to experimental time di�erences). Figure 4
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Figure 4: IQ modeling based on 20 iWordNets.

showsmodel predicted IQ scores (circles) versus the observed
values (squares).

�e le� brain IQ (measuring memory, word comprehen-
sion, logic, etc.) model includes the variables mean geodesic
distance, mean closeness centrality, total edges, unique edges,
graph density, stabilized density, and stabilized centrality
with associated � values of 0.0129, 0.0418, 0.0780, 0.0325,
0.0083, 0.0456, and 0.0403, respectively. �e model � value
is 0.006 and �2 is 0.838. �e le� brain IQ model shows
that IQ increases whenmean closeness centrality, total edges,
stabilized density, and stabilized centrality increase andmean
geodesic, unique edges, and graph density decrease. �e
right brain IQ includes the variables modularity, total edges,
vertices, graph density, stabilized density, and stabilized
centrality, with associated � values of 0.0622, 0.0403, 0.0170,
0.0237, 0.0452, and 0.0316, respectively. �e model � value
is 0.0091 and �2 is 0.686. �e right brain IQ (measuring
perceptions, spatial relations, creativity, etc.) model shows
that IQ increases when modularity, total number of edges,
and stabilized density increase and vertices and stabilized
centrality decrease.

�ese positive 	ndings between IQ and iWordNets from
this pilot study are very encouraging, although larger studies
are necessary to con	rm the 	ndings of this general rela-
tionship (see Section 6), since the relationship between IQ
and iWordNet topology is dependent on how the iWordNets
are constructed. More importantly, larger studies are needed
to explore the relationship between iWordNet topology and
other aspects of cognitive development.

5. Utilizing Local Topological Properties
of the iWordNet

5.1. �e Path of Understanding. �e global topology of an
iWordNet canmeasure the overall knowledge of an individual
as well as his knowledge and intelligence in di�erent 	elds.
However, the global topology is insu�cient in describing an
individual’s understanding of each concept (word, phrase,
sentence, etc.). Local topological properties of an iWordNet
have to be used to describe an individual’s understanding of
particular concepts, as elaborated below.

According to distributional similarity or distributional
semantics in computational linguistics, the meaning of a
word is associated with its location in the sentence or the
distribution of surrounding words [42, 43]. If the word “foot”
wherever andwhenever it appearswas replacedwith theword
“hand,” and vice versa, the meanings of “foot” and “hand”
would be switched. �at is why di�erent languages in the
world almost work equally well in their own environments.
�e concept of distribution semantics is further developed
using iWordNets: the meaning of a word in distributional
semantics can be viewed as the aggregated meaning, which
is individualized through the iWordNet.�is implies that the
meaning of a word is an individualized understanding and
one shi�s as one’s iWordNet evolves. However, the meanings
or topological properties of isolated words cannot carry us
very far. We have to study how a concept string is expressed
in an iWordNet. To this end, we introduce the concept of the
“Path of Understanding” and describe its numerization.

An individual’s understanding of a concept or a string
of words (a phrase, sentence, paragraph, etc.) is determined
by the path in the iWordNet marked by the sequence of the
words in the word string, called the Path of Understanding
(PoU). �e sequence of topological properties (such as
degree, centrality, and geodesic distance) of the nodes along
the path forms a sequence of vectors. We call such a sequence
of numerical vectors a numerization string. �is numeriza-
tion string characterizes an individual’s understanding of the
word string.

Let us use the sentence “We can use a network approach
to study the mind” to illustrate the method: suppose that
from a person’s iWordNet, the words “we,” “can,” “use,”
“a,” “network,” “approach,” “to,” “study,” “the,” and “mind”
have degrees 5, 4, 7, 3, 2, 9, 12, 6, 3, and 8, respectively. �e
numerization string {5, 4, 7, 3, 2, 9, 12, 6, 3, 8} is a numerical
representation of the person’s understanding of the sentence.
Of course, di�erent people have di�erent understandings of
the sentence, so their iWordNets and, therefore, numerization
strings will di�er.

If we want to characterize a person’s understanding of
word string more precisely, we can use more than one of the
iWordNet’s local properties, for example, degrees and central-
ity of vertices, on the PoU. Suppose that in our example
above, in addition to the words’ degrees, the centralities of
“we,” “can,” “use,” “a,” “network,” “approach,” “to,” “study,”
“the,” and “mind” are 0.001, 0.003, 0.0012, 0.0023, 0.0015,
0.0032, 0.004, 0.0012, 0.003, and 0.0026, respectively.�e nu-
merization string becomes {(5, 0.001), (4, 0.003), (7, 0.0012),
(3, 0.0023), (2, 0.0015), (9, 0.0032), (12, 0.004), (6, 0.0012), (3,
0.003), (8, 0.0026)}. Similarly, we can construct numerization
strings with three or more di�erent properties of iWordNets
for more precise characterizations. It is interesting to
note that numerization strings can also be visualized or
converted to sound or music. Perhaps, most signi	cantly, the
numerization string provides a foundation for individualized
statistical learning, such as Bayesian learning tools, arti	cial
neural networks, and deep learning models.

5.2. Acquiring New Knowledge. How does a person acquire
new knowledge or a new word? We can explain this using a
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Figure 5: Illustration of smoothing on the Path of Understanding
(PoU).

smoothing method over the iWordNet. �e idea of smooth-
ing is similar to the so-called smoothing method in modern
control theory. If a word is missing in a sentence, we o�en
use the smoothing technique to guess the meaning of the
word in a way that makes sense in the sentence. Similarly,
suppose one reads the sentence: “I love romantic stories.”
If the word “romantic” is new to him, he would make a
guess about its meaning such that the sentence makes sense
to him (smoothing). �e meaning guessed must be closely
related to the two words (love and stories) immediately
before and a�er “romantic.” We use the shortest distance
(geodesic distance) to re�ect the closeness and maximum
number of links (degree) to re�ect the commonness. In case
there are multiple words, the maximization of distributional
similarity or cosine similarity [44] and various statistical
learning tools can also be used to understand the subject.
With the assistance of the numerization of strings, smoothing
using neighboring sentences can become much easier.

If a person reads the sentence “I love romantic stories”
and does not recognize “romantic,” hemay use “enigmatic” to
guess the meaning. Since “romantic” is not in his iWordNet,
the two geodesics between love and stories, corresponding to
the words “enigmatic” (with a degree of 3) and “humorous”
(with a degree of 3), can help him make the guess. From
past experiences, the meaning of “romantic” is more likely
to be closer to “enigmatic” (with probability 3/5) than to
“humorous” (with probability 2/5).

�e idea of new knowledge acquisition can be based
on the maximization of cosine similarity and when cosine
similarities are the same for several Paths of Understanding
then the probability Degree/∑Degree will be associated with
several possible meanings. In the example (Figure 5), the
cosine similarity between “I love enigmatic stories” and “I
love romantic stories” is the same as the cosine similarity
between “I love humor stories” and “I love romantic stories,”
but the associated probabilities, 3/5 versus 2/5, respectively,
are di�erent.

Here we raise an interesting paradox, even if we will
not attempt to resolve it: as Einstein [45] said, “Pure logical
thinking cannot yield us any knowledge of the empirical
world. . ..” If people understand a new concept by means
of old, existing concepts, then what is the essence of new
knowledge learned?

6. Limitations

In the pilot study, we were not able to address many questions
regarding iWordNet construction such as the following:
should we limit construction to single or multiple starting

words (we always started with “smart”)? Should we treat
di�erent forms of a word as the same thing (di�erent tenses)?
Should we limit the time for constructing an iWordNet?
Should we use directed or undirected and weighted or
unweighted networks? Should we limit the depth of a ques-
tion chain (i.e., geodesic distance)? Should we only use key
words in an iWordNet and what constitutes a key word?
Should we di�erentiate between iWordNets with a general
versus speci	c purpose?

7. Discussion

�e Paradox of Understanding (meaning is meaningless)
led to the iWordNet formulated by recursive de	nitions.
Consequently, the global topological properties of an iWord-
Net holds the information that represents an individual’s
overall knowledge, IQ, personality, or status of cognitive
development, and the local properties and numerization of
PoU hold the information of the understanding of particular
concepts. Since an iWordNet is primarily a representation of
one’s knowledge, it makes perfect sense to study cognitive
science and arti	cial intelligence through network science.
Network topology might also have a far-reaching impact on
cognitive capacities that support or in�uence learning [34].
Studying how topological properties of iWordNets andneural
networks drive the process of human learning might bridge
branches of cognitive science.

Unlike the traditional study of cognitive science and
arti	cial intelligence, for which the meanings of words are
essential, the iWordNet approach intends to identify rela-
tionships between the topological properties of the iWord-
Net and an individual’s personality, behavior, and cognitive
development. �is may be di�cult to accept at 	rst glance
because the topological properties appear to be irrelevant
to the meaning of the words, but it is evidenced by (1) the
meaning of a word depends on where and how it is used,
making the location of a word relative to others important,
(2) the recursive explanation of a word by other words (i.e.,
circular de	nitions) makes words merely placeholders (as we
discussed in the section of connotation of understanding),
and (3) the pilot study, though small, did show a statistically
signi	cant association between IQ and the topology of
iWordNets. However, the signi	cance of the results of the
pilot study is not about how iWordNets can predict IQ, but
how it enlightens our appreciation of iWordNets as a newway
of studying cognitive science.

Wewant to emphasize that understanding has to be on an
individual basis. Even when we use the same dictionary for
the de	nition of a word, the meaning of the word can only
make sense through an individual Path of Understanding in
the brain or iWordNet.�us, it still circles back to individual-
based understanding.�e Path of Understanding (PoU) in an
iWordNet and its numerization provide a tool for quantitative
studies of meaning or individual understandings of a word,
concept, sentence, or passage.�e topological properties and
numerization of the PoU technique can be used in clinics or
experimental settings to study a person’s cognitive aspects.

Just like a neurologist can obtain images of a patient’s
brain and determine where the damage is, we can construct
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an iWordNet to see the topological “damage” to a patient
with Alzheimer’s disease or a person who is mathematically
impaired, for example. �us, the potential treatments can
be to directly target one’s iWordNet or individualize teach-
ing/learning methods to improve the “damage.” �e key to
the success of the iWordNet approach is how to construct a
reliable and sensible iWordNet, which is to be developed. To
get a glimpse of the broad potential applications of iWordNet,
the following is a list of examples:

(1) Evaluating one’s knowledge over time using the
iWordNet

(2) Evaluating one’s personality over time using the
iWordNet

(3) Analyzing and evaluating the cognitive impairment in
patients or the elderly using the iWordNet

(4) Studying why people have di�erent skills using the
iWordNet

(5) Comparing the knowledge of di�erent individuals
using the iWordNet for improving teaching and
learning

(6) Using the topologies of the iWordNet with other
variables such as race, gender, and age to study the
di�erences among di�erent ethnic, gender, and age
groups

(7) Studying people with communication de	ciencies
through the iWordNet

(8) Using the iWordNet combined with neurological and
psychological approaches in research or in clinics

(9) Studying the process of new knowledge acquisition

(10) Making robots that truly understand humans, or, at
least, using words and concepts in the same ways that
humans do

(11) Studying organizational behaviors when the iWord-
Net is constructed using collective intelligence from
an organization or speci	c group of people.

8. Conclusion

In the paper, we propose a new approach to study individual-
based understanding. In this approach, we argue the mean-
ing or understanding of a concept should be individual-
based through the so-called understanding paradox, while
the meaning of a concept by conventional wisdom is the
collective individual understandings of a concept from the
society.We proposed a simplemethod to construct iWordNet
that connects di�erent concepts of the same individual and
postulate that such an iWordNet is a knowledge representa-
tion of the individual and thus, the topological properties of
the iWordNet will characterize the person’s knowledge, IQ,
and so forth. We conducted a pilot study to prove that. �e
signi	cance of the research work is that it could potentially
open a new way to study arti	cial intelligence since one of
the important aspects of AI is to study agent’s understanding
and knowledge. We further proposed the concept of “Path
of Understanding” in an iWordNet that characterizes an
individual’s understanding of a complex concept such as a

written passage. However, further discussions would exceed
the scope of this paper.We hope this paper as an introductory,
a proof-of-concept article, will attractmore researchers in this
area.
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of scale-free syntax networks: Phase transitions in early lan-
guage acquisition,” Advances in Complex Systems, vol. 12, no. 3,
pp. 371–392, 2009.

[34] E. A. Karuza et al., “Local patterns to global architectures,” in
In
uences of Network Topology on Human Learning Trends in
Cognitive Sciences, vol. 20, 8 edition, August 2016.

[35] D. R. Radev, M. T. Joseph, B. Gibson, and P. Muthukrishnan, “A
bibliometric and network analysis of the 	eld of computational
linguistics,” Journal of the Association for Information Science
and Technology, vol. 67, no. 3, pp. 683–706, 2016.

[36] Z. Wang, C. Xia, S. Meloni, C. Zhou, and Y. Moreno, “Impact
of Social Punishment on Cooperative Behavior in Complex
Networks,” Scienti�c Reports, vol. 3, no. 1, 2013.

[37] F. Zhang et al., “Community detection based on links and node
features in social networks,” in Proceeding of the MultiMedia
Modeling: 21st International Conference, Part I, I. He andT., Eds.,
pp. 418–429, Springer International Publishing, Switzerland,
2015.

[38] H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S.
Miyano, “Biopathways representation and simulation on hybrid
functional Petri Net,” In Silico Biology, vol. 3, no. 3, pp. 389–404,
2003.

[39] I. Koch, B. H. Junker, and M. Heiner, “Application of Petri net
theory for modelling and validation of the sucrose breakdown
pathway in the potato tuber,” Bioinformatics, vol. 21, no. 7, pp.
1219–1226, 2005.

[40] M. Chang, Monte Carol Simulations for the Pharmaceutical
Industry, CRC Press, Boca Raton, FL, USA, 2010.

[41] D. Hansen, B. Shneiderman, and M. A. Smith, Analyzing Social
Media Networks with NodeXL: Insights from a ConnectedWorld,
Morgan Kaufmann, Burlington, Mass, USA, 1st edition, 2010.

[42] H. Rubenstein and J. Goodenough, “Contextual correlates of
synonymy,” Communications of the ACM, vol. 8, no. 10, pp. 627–
633, 1965.

[43] P. Pantel, “Inducing ontological co-occurrence vectors,” in
Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL ’05), pp. 125–132, Association
for Computational Linguistics, Morristown, NJ, USA, June
2005.

[44] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and
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