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Abstract The paper deals with calculations of the
J-integral for a plate weakened by U- and V-blunt
notches under mode I loading in the case of a linear
and nonlinear elastic material. The main aim of the
study is to suggest simple equations suitable for rapid
calculations of the J-integral. The semicircular arc of
the notch, which is traction free, is assumed as inte-
gration path and the J-integral is given as a function of
the strain energy over the notch edge. For a numerical
investigation of the strain energy density distribution on
the notch edge the equation W (θ) = Wmax cosδ(θ) has
been assumed, where δ has been determined from finite
element analyses. In particular, the following values of
the notch acuity a/ρ and the opening angle 2α have
been analyzed: 4 ≤ a/ρ ≤ 400 and 0 ≤ 2α ≤ 3π/4.
Considering plates weakened by lateral and central
notches under symmetric mode I loading, the approxi-
mate relationships for the strain energy density, which
require the presence of a non zero notch radius for
their application, and the J-integral are discussed firstly
considering a linear elastic material and then a mate-
rial obeying a power hardening law during the loa-
ding phase. The predicted results of the J-integral are
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consistent with those directly obtained from finite
element analyses.

Keywords Strain energy density distribution ·
J-integral · U- and V-notches · Finite element results

Nomenclature

a Notch depth (lateral notch) or
notch semi-depth (central notch)

B Width of the specimen
E Young’s modulus
J J -integral (as due to the notch arc)
Je J -integral under linear elastic conditions
K Constant in the Ramberg-Osgood law
Kt,g Theoretical stress concentration factor
n Hardening exponent in the

Ramberg-Osgood law (1 ≤ n < ∞)
r Distance from the notch tip
W Strain energy density on the

semicircular edge of the notch
2α V-notch opening angle (2α = 0 in a U-notch)
δ Exponent in the equation of the strain

energy density
ν Poisson’s ratio
θ Angular coordinate
ρ Notch radius
σ0 Yield stress (0.2% offset stress)
σg Remotely applied tensile stress
σ B

max Beltrami equivalent stress at the notch tip

123



F. Berto et al.

1 Introduction

The J-integral is a commonly used nonlinear fracture
parameter for the description of the local fields in the
neighbourhood of stress concentrations and for the ana-
lysis of crack initiation and propagation. The J-integral
was thought of as the generalisation of the strain energy
release rate to cases of nonlinear-elastic stress-strain
curves (Rice 1968). However, for most cases of engi-
neering interest, the nonlinear stress-strain behaviour
is due to elastic–plastic behaviour, as in metals. For
elastic–plastic materials J loses its interpretation in
terms of potential energy available for crack extension,
but retains physical significance as a measure of the
characteristic crack-tip stress and strain fields around
the crack tip (Dowling 1993).

Numerical methods allow us to evaluate the J-integral
for any body configuration with a crack as well as type
of loading (Atluri 1986, Anderson 2005). However, the
numerical analysis is expensive and time-consuming
to be used routinely in engineering calculations. Ano-
ther problem is the difficulty to transfer the numeri-
cal results from one geometry to another, considering
also the differences in the properties of the materials.
At the same time, only a limited number of analyti-
cal solutions are presented in the literature (Shih and
Hutchinson 1976; Kumar et al. 1981, 1984; Kumar and
German 1988; Zahoor 1989; Saxena 1998; Matvienko
and Morozov 2004; Anderson 2005) and these solu-
tions mainly refer to cracked specimens made of mate-
rials obeying a power hardening law.

In the case of a sharp V-notch under linear elastic
conditions, the local stress components follow
Williams’ exact solution (Williams 1952) and the stress
intensity in the vicinity of the zone of singularity is
generally quantified by means of the Notch Stress Inten-
sity Factors (NSIFs) (Gross and Mendelson 1972). In
contrast with the crack case, there is no possibility to
correlate the J-integral to the NSIF of sharp V-notches,
mainly because the J-integral is dependent on the arbi-
trary selected close contour connecting two points of
the V-notch surfaces. However, as soon as the radius
r of a semicircular path, at power 2λ1 − 1, is used to
normalize J (the path being fully included in the zone
governed by the Mode I singularity, 1 − λ1), the para-
meter JL = J/r2λ1−1 returns to being path-independent
(Lazzarin et al. 2002). It is clear that, contrary to the
crack case, the straight flanks of the notch (and not only
the V-notch tip) contribute to J and JL.

Recently, the J-integral’s properties were investiga-
ted for blunt U- and V-notches by means of analyti-
cal and numerical analyses (Livieri 2003; Chen and
Lu 2004). In particular, Livieri (2003) demonstrated
that if an appropriate integration path is chosen, there
always exists an operator JLρ that is invariant with res-
pect to a particular semicircular path and coincides
with JL = J/r2λ1−1 pertaining to a sharp V-notch of
the same depth. The operator JLρ was later correla-
ted to the relevant NSIF both of the blunt notch and
of the sharp notch, making it possible to evaluate the
theoretical stress concentration factor Kt for a blunt
V-notch. The contribution to J provided by the notch
flanks and the semicircular arc describing the notch root
was discussed in detail also by Chen and Lu (2004). By
using the Ji vector, it was confirmed that the J-integral
for a blunt V-notch is always path-dependent, whereas
for a U-notch the path independence of the J-integral
requires certain conditions, namely, that the integra-
tion path completely encloses the notch root even if
the remote loading is symmetric. Chen and Lu (2004)
noted that the contribution to the J-integral induced by
the arc describing the notch root might explain why
there is a large scatter in the fracture toughness and
fatigue data measured by means of the compliance tech-
nique by different researchers for nominally identical
materials.

Neuber (1958, 1985) formulated the idea that in the
presence of a sharp notch the material is sensitive to
a fictitious root radius that depends on the material’s
‘micro structural support-length’, linked to the concept
of ‘elementary volume’. This concept was reconsidered
in some recent papers where the strain energy density
was evaluated over a given finite size volume surroun-
ding the tip of sharp and blunt V-notches subjected to
Mode I loading. By using the mean value of the strain
energy density (SED), the static strength properties
of brittle engineering components weakened by sharp
V-notches (Lazzarin and Zambardi 2001; Yosibash
et al. 2004) and blunt V-notches under Mode I or mixed
(Mode I and Mode II) loading (Lazzarin and Berto
2005a, b; Gómez et al. 2007), were treated in a unified
manner, as was done for the high cycle fatigue strength
properties of welded joints made of steels or alumi-
nium alloys (Lazzarin and Zambardi 2001; Lazzarin
et al. 2003; Livieri and Lazzarin 2005). In the case
of brittle failures under static loads, the SED method
was validated by using a large body of experimental
data taken from the literature, mainly due to Carpinteri

123



J-integral evaluation for U- and V-blunt notches

(1987), Seweryn (1994), Seweryn et al. (1997), Dunn
et al. (1997a, b), Gómez and Elices (2003, 2004), Gómez
et al. (2005, 2007).

With the progress in computing, it is now possible
to evaluate the actual stress distribution in the vicinity
of a notch, independently of the complexity of the geo-
metry. In the last years, an approach based on a volume
definition was developed in Notch Fracture Mechanics
also by Pluvinage (2003).

In parallel, a bridging between the elastic strain
energy E(e) and the J-integral has been established
considering a given critical volume. Such a volume is
simply a circular sector of radius Rc in the case of sharp
V-notches, and becomes a semi-moon embracing the
notch edge in the case of blunt notches, leaving unchan-
ged the material parameter Rc on the notch bisector line
(see Fig. 1; Lazzarin and Berto 2005a, b). Rc works
like Neuber’s ‘microstructural support length’. Close
form expressions linking E(e), J-integral, the structural
volume and the notch stress intensity factors were given
for U- and V-notches under mode I loading (Berto and
Lazzarin 2007).

Analytical calculation of the J-integral for a body
with a U-notch was performed by Matvienko and
Morozov (2004) considering a linear elastic and nonli-
near elastic behaviour of the material. The integration
path was chosen as the complete semicircular contour
of the notch. In this case, the new equations based on
stress concentration analysis and on the method of sec-
tions were proposed. The formulas were employed for
bodies weakened by cracks and U-notches. Further-
more, the approach was also applied to the case of
cracks emanating from the notches and to the critical
state of short notches. As a result, these approximate
solutions allow us to calculate the maximum stress and
strain intensity on the surface of the notch tip using
the notch radius, some mechanical properties of the

material (the yield stress and the hardening exponent)
and the J-integral. The tendency of the J/Je ratio (Je

being the J-integral for an ideally linear elastic mate-
rial) was found to be analogous to that of a notched
body with a short crack at the notch tip, the crack length
being less than the radius of curvature of the notch. Due
to their nature, the equations proposed by Matvienko
and Morozov (2004) work well when the notch acuity
(notch depth a to notch radius ρ) tends to infinity.

The aim of the present paper is to analyze the effect
of the notch acuity on the J-integral expressions and to
give a set of useful formulas for plates weakened by
U- and V-blunt notches under mode I loading in the
case of a linear and nonlinear elastic material. The
approximate equations, which take advantage of accu-
rate results from finite element analyses, permit the
rapid evaluation of the contribution to J-integral due
to the circumferential arc describing the notch root.
In the case of V-notches, where the J-integral is path-
dependent, the contribution of the straight edges is
not included. This means that the relevant, material-
dependent, semi-moon-like volume shown in Fig. 1
should embrace entirely (or partially) the notch root but
not the straight edges of the notches and this is a limita-
tion of the paper. However, some numerical plots inclu-
ding the sharp, zero radius, V-notches will permit to
understand the different contributions due to the notch
arc and the notch flanks and to create a link between
the J-integral approach and the approach based on the
strain energy over a control volume, where the control
radius is thought of as a material property.

2 Materials and geometry of the notched plates

In the present paper, a body with a U- and V- blunt
notch under a remotely applied tensile stress σg has

Fig. 1 Control volume
(area) for sharp V-notch (a),
crack (b) and blunt V-notch
(c) under Mode I loading
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Fig. 2 Geometry of the specimens

been considered (Fig. 2). A multi-parametric analysis
has been carried out considering a large variability of
the ratio a/ρ(4 ≤ a/ρ ≤ 400) and of the notch opening
angle 2α(0 ≤ 2α ≤ 135◦). In order to analyze the effect
of different load intensities on the strain energy den-
sity and J-integral formulations, different stress levels
were applied to the plates. All results are related to
the loading phase, when stress increases monotonically,
excluding the unloading phase as well as cyclic loading
cases.

In the FE analysis the ratio of the width B to the
notch length a has been kept constant and equal to 5.
However, the set of equations presented in the present
paper can be used for all cases with B/a ≥ 5. In order
to evaluate the effect of different strain hardening beha-
viours, two different common steels have been analy-
zed. These materials follow the Ramberg-Osgood law
ε = σ/E + (σ/K )n and their properties are the follo-
wing:

AISI 1008, K = 600 MPa, n = 4, σ0 = 125 MPa,

E = 206 GPa, ν = 0.3.

AISI 1045, K = 950 MPa, n = 8.33, σ0 = 450 MPa,

E = 206 GPa, ν = 0.3.

Here, E is Young’s modulus, K is the material constant,
n is the hardening exponent, ν is Poisson’s ratio and,
finally, σ0 is the yield stress.

3 The strain energy density for central and lateral
U-notches under linear elastic conditions

A notch of length a with the curvature radius ρ at
the notch tip has parallel flat surfaces. The J-integral
is represented as a contour integral according to Rice
(1968) and Cherepanov (1979). At the same time, the
J contour integral is equal to the energy release rate
for a linear or nonlinear elastic material under quasi-
static conditions (Anderson 2005). Thus, the J-integral
can be viewed as both a contour integral and an energy
parameter.

If integration path is the arc of the notch tip, which is
traction-free, the J-integral can be evaluated by means
of the expression:

J =
∫ π/2

−π/2
W (θ)ρ cos(θ)dθ, (1)

where W (θ) is the strain energy density, ρ is the radius
of curvature and θ is the angular coordinate of points
on the notch edge. The polar coordinate system has
its origin located at the notch center. Equation 1 was
used by Matvienko (1994) to develop some expressions
useful to evaluate J for a power hardening material. As a
first approximation, the distribution of the strain energy
density on the surface of the notch arc was assumed in
the form (Matvienko 1994; Matvienko and Morozov
2004)

W (θ) = Wmax cos(θ), (2)

Wmax being the maximum strain energy density at the
notch tip. Strictly speaking, Eq. 2 is valid only in the
case of a/ρ → ∞. A more general law for W (θ),
which should be valid also in the case of finite values
of the notch acuity a/ρ, is assumed here according to
the following relationship:

W (θ) = Wmax cosδ(θ), (3)

where δ is the exponent to evaluate by means of FE
analysis. It is necessary to notice that Eq. 3 is an empi-
rical guess based on a best fit of numerical results from
mode I loading, the starting point, however, being Eq. 2
valid for an infinite plate weakened by U-notches with
a strong acuity.

Some plots of the strain energy density on the notch
edge for different values of a/ρ are shown in Figs. 3
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Fig. 3 Strain energy
density along the notch for
lateral U-notches having
different acuity a/ρ. The
applied nominal stress σg
was equal to 100 MPa
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and 4. Under a linear elastic hypothesis and plane strain
conditions, the exponent δ depends only on the U-notch
acuity. The relevant values for δ are listed in Table 1,
as obtained by means of a best-fit analysis on the FE
data. In particular, two different expressions have been
obtained by interpolation of the numerical results from
lateral and central notches under mode I loading. The
expressions for the exponent δ is a function of a/ρ are:

δ = 3.005

(
a

ρ

)−0.112

for 4 ≤ a/ρ ≤ 400 (4)

for lateral U-notches, and

δ = 4.764

(
a

ρ

)−0.180

for 4 ≤ a/ρ ≤ 400 (5)

for a central U-notch.
The maximum difference between the values of

Table 1 and those provided by Eqs. 4 and 5 is less
than 1 percent. It should be noted that, at the same
value of the notch acuity, the exponent δ is higher for
central notches than for lateral notches. The difference
decreases as the ratio a/ρ increases.
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Fig. 4 Strain energy
density along the notch edge
for central U-notches
having different acuity a/ρ.
The applied stress σg was
equal to 100 MPa

0.2

0.4

0.6

0.8

0 50 100
θ [degrees] 

W
 )θ(

m
m/

m
m

N[
3 ] 

a/ρ=4.0

FEM

Eqs 3, 5

0.3

0.6

0.9

1.2

1.5

0 50 100
θ [degrees]

a/ρ=10

FEM

Eqs 3, 5 

W
 )θ(
[N

m
m/

m
m

3 ] 

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100
θ [degrees] 

a/ρ=25

FEM

Eqs 3, 5 

W
 )θ(
[ N

m
m/

m
m

3 ] 

2

4

6

8

0 50 100
θ [degrees]

a/ρ=100

FEM

Eqs 3, 5 

W
 )θ(

m
m/

m
m

N[
3 ] 

4

8

12

16

20

0 50 100
θ [degrees] 

a/ρ=150

FEM

Eqs 3, 5 

W
 )θ(

m
m/

m
m

N[
3 ] 

10

20

30

40

50

0 50 100
θ [degrees]

a/ρ=400

FEM

Eqs 3, 5 

W
 )θ (
[ N

m
m/

m
m

3 ] 

Recently, while considering U-notches under mixed
mode loading, Gómez et al. (2005) extended the strain
energy density approach by rigidly rotating a given
control volume, as previously defined under mode I
loading (Fig. 5a). All specimens were made of PMMA
and tested at −60◦C, a temperature able to assure a
linear elastic behaviour. This volume was simply cen-
tred with respect to point P on the notch edge where the
principal stress reached its maximum value (Fig. 5b).

The ‘effective’ Mode I loading was justified by the
strain energy density distribution, which resulted sub-
stantially symmetric with respect to the line crossing
the point and normal to the notch edge (Gómez et al.
2007). This means that Eq. 3 can be applied also to
mixed mode conditions moving the origin of the refe-
rence system from the notch bisector to the point of
maximum principal stress, at least when the arc AP̂C
is small with respect to entire semicircular root. When
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Table 1 The value of δ for lateral and central U-notches as a
function of the notch acuity under linear (L) or nonlinear (NL)
elastic conditions

Notch L-elastic δ NL-elastic δ

acuity a/ρ

Central U-notches 4 3.71 3.93
10 3.15 3.17
25 2.67 2.57
60 2.28 2.09

150 1.93 1.69
400 1.62 1.35

Lateral U-notches 4 2.57 2.68
10 2.32 2.22
25 2.10 1.83
60 1.90 1.52

150 1.71 1.26
400 1.54 1.02

this condition is not satisfied, more precise calculations
of the J-integral under mixed loading can be performed

by using the inner arc A



BC and involving J1 and J2

components of J-integral (Gdoutos et al. 2003; Chen
and Lu 2004).

Some results are shown in Fig. 5 with reference to
both experimental data and theoretical predictions from
U-notched specimens under mode I loading (Fig. 5a)
and some results from mixed mode loading (Fig. 5b).
With a control radius Rc = 0.035 mm (as determined
on the basis of the ultimate tensile stress σu and the
fracture toughness KIC of the material), predictions of
the critical loads to static failure based on the criti-
cal values of the strain energy density Wc match those

based on the J-integral to arc A



BC ratio in all the cases
considered here and are in a good agreement with the
experimental data.

4 Strain energy density for blunt V-shaped notches
under linear elastic conditions

When the opening angle 2α is different from zero, the
exponent δ in Eq. 3 depends both on the angle 2α and on
the ratio a/ρ. In the FE analysis, the following values
have been considered:

a/ρ = 4; 10; 25; 60; 150; 400 and

2α = 60◦, 90, 135◦.
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Fig. 5 Critical load Fcr versus notch radius ρ; comparison bet-
ween theoretical predictions and experimental data for specimens
made of PMMA tested at −60◦C (experimental data from Gómez
and Elices 2004, Gómez et al. 2007); (a) Mode I loading; (b)
Mixed mode loading. Elastic modulus E = 5050 MPa, Poisson’s
ratio ν = 0.4, ultimate tensile strength σu = 130 MPa, fracture
toughness KIC = 1.8 MPa m0.5. Predictions based on constant
values of Wc = σ 2

u /2E = 1.69 MJ/m3 and Rc = 0.035 mm

As a result, different expressions are given for lateral
and central notches under mode I loading. Namely, for
lateral V-notches the equation is:

δ

(
a

ρ
, 2α

)
= 3.005

(
a

ρ

)−0.112

+ 0.335 (2α)3.10

for 4 ≤ a/ρ ≤ 400 and 0 ≤ 2α ≤ 3π/4 (6)

where the angle 2α is in radians. It should be noted that
the first term on the right hand side of Eq. 6 matches
Eq. 4 already proposed for lateral U-notches. The dis-
tribution of the strain energy density W (θ) on the edge
for two symmetric V-notches is shown in Fig. 6 together
with a comparison with Eq. 6.
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Fig. 6 Strain energy
density along the notch edge
for lateral V-notches having
different acuity a/ρ. The
applied nominal stress σg
was equal to 100 MPa
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For central V-notches two equations are proposed,
depending on the notch acuity:

δ

(
a

ρ
, 2α

)
= 4.764

(
a

ρ

)−0.180

+ 1.479 (2α)2.000

−2.002(2α) for 4 ≤ a/ρ ≤ 25

and 0 ≤ 2α ≤ 3π/4 (7)

δ

(
a

ρ
, 2α

)
= 4.764

(
a

ρ

)−0.180

+ 1.232 (2α)2.000

−1.150(2α) for 60 ≤ a/ρ ≤ 400

and 0 ≤ 2α ≤ 3π/4 (8)

When 25 < a/ρ < 60, Eq. 7 or 8 can be used alterna-
tively.
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5 Evaluation of the J-integral under linear elastic
conditions

The expression of the J-integral, considering only the
notch arc contribution of a blunt V-notch (and exclu-
ding the contribution of the rectilinear flanks) can be
written in the case of a generic opening angle (different
from zero) as follows:

J =
∫ π/2−α

−π/2+α

W (θ)ρ cos(θ)dθ. (9)

Here, the value of W (θ) for mode I loading can be calcu-
lated by means of the equations reported in paragraphs
3 and 4. A synthesis of all formulas for the exponent
δ is given also in Table 2 considering both linear and
nonlinear elastic conditions. It should be noted that Eq.
9 can be applied not only to the entire arc but also to
an incomplete arc, by simply reducing in a symmetric
way the integration limits.

Under plane strain conditions, the stress state at the
notch tip is obviously biaxial, and the maximum value
of the strain energy density Wmax can be linked to the
Beltrami equivalent stress σ B

max:

Wmax = 1

2E
(σ B

max)
2 = 1

2E

(
σ 2

y,apex + σ 2
z,apex

−2ν
(
σy,apexσz,apex

) )

= 1

2E
σ 2

y,apex

(
1 − ν2

)
, (10)

where y is the direction normal to the notch bisector,
in the plate plane, z is the direction normal to the plate
surface and ν is Poisson’s ratio. Taking into account
Eqs. 3 and 10, Eq. 9 can be rewritten as follows:

Je = ρ
(
σ B

max

)2

E

∫ π/2−α

0
(cos(θ))δ+1dθ

= ρ
(
1 − ν2

) (
σy,apex

)2

E

∫ π/2−α

0
(cos(θ))δ+1 dθ.

(11)

This equation is not fully analytical because the eva-
luation of the value of Je depends on the stress σy,apex

at the notch tip. If the theoretical stress concentration
factorKt,g referred to the gross area of the specimen is
known, Eq. 11 becomes:
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Fig. 7 Comparison between J evaluated using Eq. 12 and FE
results for lateral and central U-notches under linear elastic
conditions

Je = ρ
(
1 − ν2

) (
Kt,gσg

)2

E

∫ π/2−α

0
(cos(θ))δ+1dθ.

(12)

The results of the J-integral predicted on the basis of
Eq. 12 are consistent with those obtained by processing
results from FE analysis. Figure 7 shows a very good
agreement between Eq. 12 and numerical results for
central and lateral U-shaped notches. The same com-
parison is made in Table 3 for V-notches. Here, the
maximum difference is 3.8% for the lateral notches
and 3.7% for the central notches.

6 Strain energy density for U-notches in the case
of a nonlinear elastic material

The aim is to analyse the role played by the stress level
and the hardening exponent n on the exponent δ in Eq. 3
for a material obeying a power hardening law during the
loading phase, excluding unloading or cyclic loading
conditions (Anderson 2005).

A number of FE calculations have been carried out
considering two steels and varying the notch acuity,
as well as the applied stress σg in the gross sectional
area (normalized with respect to the yield stress of the
material). The trend of the strain energy density along
the arc of a lateral U-notch tip is shown in Fig. 8 for
different stress levels and different values of the notch
acuity. In order to clearly represent in the same figure
the trend of the strain energy density at different load
levels, a multiplying factor η has been used. The factor
η is reported in the caption of Fig. 8.

It can be seen that the exponent δ depends only on
the notch acuity a/ρ, i.e. the value of δ is the same
at the same acuity for the two different materials with
very different hardening exponents n. Figure 8 shows
also that the exponent δ tends to unity as the ratio a/ρ

increases. For high values of the a/ρ ratio, the equa-
tion proposed by Matvienko and Morozov (2004) for
U-notches is fully justified.

The exponent δ is a function of the notch acuity for
central notches, as in the case of lateral notches, but
its values are higher than in the previous case. For the
two steels under consideration, Fig. 9 plots the strain
energy density along the notch arc for different stress
levels (σ̄ = σg/σ0 = 0.2; 0.4; 0.6; 0.8). In parallel,
the ratio a/ρ ranges from 4 to 400. Also, in this case
a multiplied factor η has been used to avoid the curves
overlapping.

The values of the exponent δ are found to be close
to the values obtained under linear elastic conditions
when the notch acuity a/ρ is less than or equal to 25 in
the case of central notches, less than or equal to 10 in
the case of lateral notches (see again Table 1). The dif-
ferences, probably due also to numerical errors, should
mainly depend on the different values of Poisson’s ratio
ν characterising the notch tip under linear elastic (ν =
0.3) and nonlinear elastic conditions (ν = 0.5). For deep
notches, a plastic zone is present also under low stress
levels and the differences due to different values of ν

are higher than for notches having low notch acuity.
Moreover, there is a transition zone ahead of the notch
where the value of ν gradually tends to approach the
value of 0.3 characterising the zones far from the notch
tip.

By using the values of δ listed in Table 1 for lateral
and central U-notches under mode I loading for a power
hardening material, the following equations have been
obtained. For lateral U-notches we have:

δ = 3.585

(
a

ρ

)−0.209

for 4 ≤ a/ρ ≤ 400 (13)

For central U-notches the equation is:

δ = 5.415

(
a

ρ

)−0.232

for 4 ≤ a/ρ ≤ 400 (14)
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Fig. 8 Strain energy
density along the notch edge
for lateral U-notches having
different acuity a/ρ.
Different stress levels have
been applied
(σ = σg/σ0 = 0.2, 0.4, 0.6,
0.8). For the AISI 1008 the
multiplying factor η was
equal to 10, 5, 2, 1 for the
ratio σg/σ0 = 0.2, 0.4, 0.6,
0.8, respectively. For the
AISI 1045 η = 10, 5, 4, 1
for the ratio σg/σ0 = 0.2,
0.4, 0.6, 0.8, respectively
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7 Strain energy density for V-notches in the case
of a nonlinear elastic material

The strain energy density was evaluated considering
also lateral and central V-notches under mode I loa-
ding. As in the case of U-notches, firstly lateral notches
have been considered. Several FE calculations have
been carried out to analyze the influence played on the
exponent δ by the stress level, the hardening exponent,
the notch acuity and the opening angle. As an example,
Fig. 10 shows the trend of the strain energy density
W (θ) along the semicircular arc of a V-notch for a nor-
malised stress ratio equal to 0.6. Also in this case a
multiplying factor η is used to show clearly the three
curves corresponding to the different opening angles,
avoiding their overlapping. Here, the plate is made of
AISI 1045. The exponent δ does depend on the notch

angle and the notch acuity, not on the stress level and
the hardening exponent n.

With reference to lateral V-notches, the equation for
δ is:

δ

(
a

ρ
, 2α

)
= 3.858

(
a

ρ

)−0.209

+0.082(2α)4.75 for 60 ≤ a/ρ ≤ 400

and 0 ≤ 2α ≤ 3π/4 (15)

For central V-notches, δ varies according to the follo-
wing laws:

δ

(
a

ρ
, 2α

)
= 5.415

(
a

ρ

)−0.232

+ 0.496(2α)3.20

−1.186 (2α)1.60 for 4 ≤ a/ρ ≤ 25

and 0 ≤ 2α ≤ 3π/4 (16)
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Fig. 9 Strain energy
density along the notch edge
for central U-notches
having different acuity a/ρ.
Different stress levels have
been applied
(σ = σg/σ0 = 0.2, 0.4, 0.6,
0.8). For the AISI 1008 the
multiplying factor η was
equal to 10, 5, 2, 1 for the
ratio σg/σ0 = 0.2, 0.4, 0.6,
0.8, respectively. For the
AISI 1045 η = 10, 5, 4, 1
for the stress ratio
σg/σ0 = 0.2, 0.4, 0.6, 0.8,
respectively
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δ

(
a

ρ
, 2α

)
= 5.415

(
a

ρ

)−0.232

+ 0.494(2α)3.20

−0.771 (2α)1.60 for 60 ≤ a/ρ ≤ 450

and 0 ≤ 2α ≤ 3π/4 (17)

8 Evaluation of the J-integral in the case
of a nonlinear elastic material

Equations 9 and 3 have been employed in combinations
to estimate the J-integral for U- and V-blunt notches in
a power hardening material under mode I loading. (For
a complete synthesis, see also Table 2).

For materials that follow the Ramberg-Osgood law,
the maximum value of the strain energy density Wmax

can be evaluated by means of the following equation:

Wmax = 1

2E

(
σB

max

)2 + n

n + 1

((
σB

max

)n+1

K n

)
(18)

Under plane strain conditions, the Beltrami stress at the
notch tip turns out to be

σB
max =

√
σ 2

y,apex + σ 2
z,apex − 2νσy,apexσz,apex

=
√

σ 2
y,apex + (

νσ y,apex
)2 − 2νσy,apex

(
νσ y,apex

)
(19a)

σB
max = σy,apex

√
1 − ν2, (19b)

where σy,apex and σz,apex are the two principal stresses,
both different from zero, at the notch tip.

Note that, differently from the maximum principal
stress that is not located at the notch tip, the Beltrami
stress reaches its maximum value at the notch tip. It
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Fig. 10 Strain energy density along the notch edge for blunt
central and lateral V-notches for a/ρ = 4. The multiplying factor,
η, was equal to1/2 and 1/3 for 2α = 90◦ and 135◦, respectively

is also worth noting that for a nonlinear behaviour of
the material the Beltrami equivalent stress coincides
with the von Mises equivalent stress when ν is equal to
0.5. Obviously, the equivalent stress allows us to quan-
tify the stress state at the notch tip and it is due to the
presence of two principal stresses different from zero,
being also σz different from zero under plane strain
conditions.

By including Eq. 18 into Eq. 9, the J -integral can
be given as a function of the Beltrami stress:

J = 2ρ

[(
σB

max

)2

2E
+ n

n + 1

(
σB

max

)n+1

K n

]

×
∫ π/2−α

0
(cos(θ))δ+1dθ (20)

Again, it should be noted that Eq. 20 is not fully
analytical because the Beltrami stress at the notch apex
should be evaluated with the FE method or with approxi-
mate equations (Neuber’s rule; the Equivalent Strain
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Fig. 11 Comparison between J evaluated using Eq. 20 and FE
results for lateral U- and V-notches in the case of a power harde-
ning material (AISI 1045). Different values of the notch acuity
for blunt U-notches have been considered (a/ρ = 4, 10, 25, 60,
150, 400)

Energy Density criterion; Molski and Glinka 1981;
Glinka 1985).

Some comparisons have been carried out between
Eq. 20 and FE results both for U- and V-notches (Fig.
11). A more complete synthesis is given in Table 4
(AISI 1008 and AISI 1045, lateral and central U-notches,
σg/σ0 = 0.8), Table 5 (AISI 1008, lateral and central
V-notches, with σg/σ0 equal to 0.8 or 0.6, respectively)
and Table 6 (AISI 1045, lateral and central V-notches,
with σg/σ0 equal to 0.6).The agreement between the
FE results and the analytical ones is good enough for
all considered cases. The maximum difference is found
to be 2.5% for U-notches (Table 4), 5.8% for V-notches
made of AISI 1008 (Table 5) and 5.3% for V-notches
made of AISI 1045 (Table 6).

9 Some links between the J-integral and the strain
energy

Equation 3 for W cannot be applied to sharp, zero
radius, V-notches (i.e. for re-entrant corners), nor per-
mits to account for the contribution to J provided by
the straight flanks in the case of blunt V-notches.

These limitations are overcome in Fig. 12 where all
results are determined by means of FE analyses. In
particular, a plate made of AISI 1008 with two symme-
tric notches is considered, like that already shown in
Fig. 2a. The notch depth a and the notch opening angle
2α are 14 mm and 135◦, respectively, whereas the liga-
ment width, B −2a, is 28 mm. Two values are conside-
red for the notch root radius, 0 and 1 mm. Finally, the
material is modelled according to a linear elastic law
or a power strain hardening law.
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Fig. 12 E1/J trend for sharp and blunt symmetric V-notches
under nonlinear elastic conditions, as obtained from FE analyses;
comparison with linear elastic FE results (nominal stress values
σg related to the gross sectional area). Plots taken from (Berto
and Lazzarin 2007)

Figure 12 plots E1/J as a function of Rc, being E1

the total strain energy evaluated on the control volume
under plane strain conditions. The results from blunt
V-notches under linear elastic conditions match those
from notches under nonlinear elastic conditions, the
latter obtained by applying two different values of the
nominal stress, both greater than the yielding stress of
the material to assure a large amount of plasticity. Also
the results from sharp notches are coincident and very
close to the previous ones. No discontinuity is present
in the diagram for values of Rc greater or lower than
0.2 mm, which is the maximum value that assures a
control volume embracing only the semicircular root.

10 Conclusions

Some approximate formulas to calculate the J-integral
in plates with lateral and central U- and V-blunt notches
under mode I loading have been obtained taking into
account both a linear elastic and nonlinear elastic mate-
rial, the latter being modelled according a power harde-
ning law. It should be noted that suggested formulas are
valid also for an elastic–plastic material if the material
is not unloaded or cyclically loaded.

For the J-integral calculations the integration path
has been assumed to be coincident with the semi-circular
arc of the notch, which is traction free. Then, the contri-
bution to the J-integral provided by the notch arc, and
not that of the notch rectilinear flanks, has been evalua-
ted in the case of V-notches.

The distribution of the strain energy density W (θ)

on the surface of the notch arc has been assumed in the

form W (θ) = Wmax cosδ(θ) as a result of an empirical
guess based on matching numerical results for mode I
loading.

A numerical investigation of the strain energy den-
sity, the exponent δ and the J-integral has been car-
ried out considering a large variability of the notch
acuity (4 ≤ a/ρ ≤ 400) and the opening angle (0 ≤
2α ≤ 3/4π). For materials obeying the Ramberg-
Osgood law the results from the FE analysis have
demonstrated that the exponent δ depends on the notch
opening angle and the notch acuity a/ρ. It does not
depend on the stress level and the hardening exponent n.
The basic equations for the exponent δ have been
summarized in a tabular form.

In order to calculate the strain energy density and
then the J-integral for a body with notches, the equiva-
lent stress at the notch tip should be known or calcu-
lated by means of the FEM or approximate equations.
By using the approximate formulas suggested in the
present paper for U- and V-blunt notches under mode
I loading, the J-integral values for a linear and nonli-
near elastic material are consistent with those directly
obtained from FE analyses, the maximum errors being
about equal to 5 percent.
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