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J-Orthogonal Matrices:
Properties and Generation∗

Nicholas J. Higham†

Abstract. A real, square matrix Q is J-orthogonal if QT JQ = J , where the signature matrix
J = diag(±1). J-orthogonal matrices arise in the analysis and numerical solution of
various matrix problems involving indefinite inner products, including, in particular, the
downdating of Cholesky factorizations. We present techniques and tools useful in the anal-
ysis, application, and construction of these matrices, giving a self-contained treatment that
provides new insights. First, we define and explore the properties of the exchange operator,
which maps J-orthogonal matrices to orthogonal matrices and vice versa. Then we show
how the exchange operator can be used to obtain a hyperbolic CS decomposition of a J-
orthogonal matrix directly from the usual CS decomposition of an orthogonal matrix. We
employ the decomposition to derive an algorithm for constructing random J-orthogonal
matrices with specified norm and condition number. We also give a short proof of the fact
that J-orthogonal matrices are optimally scaled under two-sided diagonal scalings. We
introduce the indefinite polar decomposition and investigate two iterations for computing
the J-orthogonal polar factor: a Newton iteration involving only matrix inversion and a
Schulz iteration involving only matrix multiplication. We show that these iterations can
be used to J-orthogonalize a matrix that is not too far from being J-orthogonal.
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1. Introduction. A matrix Q ∈ Rn×n is J-orthogonal if

QTJQ = J,(1.1)

where J = diag(±1) is a signature matrix. Clearly, Q is nonsingular and QJQT = J .
This type of matrix arises in hyperbolic problems, that is, problems where there is
an underlying indefinite inner product or weight matrix. We give two examples to
illustrate the utility of J-orthogonal matrices.
First consider the downdating problem of computing the Cholesky factorization of

a positive definite matrix C = ATA−BTB, where A ∈ Rp×n (p ≥ n) and B ∈ Rq×n.
This task arises when solving a regression problem after some of the rows (namely
those of B) of the data matrix are removed, and A in this case is usually upper
triangular. Numerical stability considerations dictate that we should avoid explicit
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formulation of C. If we can find a J-orthogonal matrix Q such that

Q

[
A
B

]
=
[

R
0

]
,(1.2)

with J = diag(Ip,−Iq) and R ∈ Rn×n upper triangular, then

C =
[

A
B

]T
J

[
A
B

]
=
[

A
B

]T
QTJQ

[
A
B

]
= RTR,

so R is the desired Cholesky factor. The factorization (1.2) is a hyperbolic QR fac-
torization; for details of how to compute it see, for example, [1].
A second example where J-orthogonal matrices play a key role is in the solution

of the symmetric definite generalized eigenproblem Ax = λBx, where A and B are
symmetric, some linear combination of them is positive definite, and B is nonsingular.
Through the use of a congruence transformation (for example, by using a block LDLT

decomposition of B followed by a diagonalization of the block diagonal factor [38]) the
problem can be reduced to Ãx = λJx, for some signature matrix J = diag(±1). If we
can find a J-orthogonal Q such that QT ÃQ = D = diag(di), then the eigenvalues are
the diagonal elements of JD; such a Q can be constructed using a Jacobi algorithm
of Veselić [40].
In addition to these practical applications, J-orthogonal matrices are of significant

theoretical interest. For example, they play a fundamental role in the study of J-
contractive matrices [30], which are matrices X for which XJXT ≤ J , where A ≥ 0
denotes that the symmetric matrix A is positive semidefinite.
A matrix Q ∈ Rn×n is (J1, J2)-orthogonal if

QTJ1Q = J2,(1.3)

where J1 = diag(±1) and J2 = diag(±1) are signature matrices having the same
inertia. (J1, J2)-orthogonal matrices are also known as hyperexchange matrices and
J-orthogonal matrices as hypernormal matrices [2]. Since J1 and J2 in (1.3) have the
same inertia, J2 = PJ1P

T for some permutation matrix P , and hence (QP )TJ1(QP ) =
J1. A (J1, J2)-orthogonal matrix is therefore simply a column permutation of a J1-
orthogonal matrix, and so for the purposes of this work we can restrict our attention
to J-orthogonal matrices. An application in which (J1, J2)-orthogonal matrices arise
with J1 and J2 generally different is the HR algorithm of Brebner and Grad [5] and
Bunse-Gerstner [6] for solving the standard eigenvalue problem for J-symmetric ma-
trices. A matrix A ∈ Rn×n is J-symmetric if AJ is symmetric or, equivalently, if JA,
JAT , or ATJ is symmetric. Given a J0-symmetric matrix A, the kth stage of the
unshifted HR algorithm consists of factoring Ak = HkRk, where Hk is (Jk, Jk+1)-
orthogonal with Jk+1 = HT

k JkHk and Rk is upper triangular, and then setting
Ak+1 = RkHk. Computational details and convergence properties of the algorithm
can be found in [6].
Unlike the subclass of orthogonal matrices, J-orthogonal matrices can be arbi-

trarily ill conditioned. This poses interesting questions and difficulties in the design,
analysis, and testing of algorithms and motivates our attempt to gain a better under-
standing of the class of J-orthogonal matrices.
The purpose of this paper is threefold. First we collect some interesting and not

so well-known properties of J-orthogonal matrices. In particular, we give a new proof
of the hyperbolic CS decomposition via the usual CS decomposition by exploiting the
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exchange operator. The exchange operator is a tool that has found use in several areas
of mathematics and is known by several different names; we give a brief survey of its
properties and its history. We also give a new proof of the fact that J-orthogonal
matrices are optimally scaled under two-sided diagonal scalings. Our second aim is to
show how to generate random J-orthogonal matrices with specified singular values,
and in particular with specified norms and condition numbers—a capability that is
very useful for constructing test data for problems with an indefinite flavor. Finally, we
investigate two Newton iterations for computing a J-orthogonal matrix, one involving
only matrix inversion, the other only matrix multiplication. Both iterations are shown
to converge to the J-orthogonal factor in a certain indefinite polar decomposition
under suitable conditions. Analogously to the case of orthogonal matrices and the
corresponding Newton iterations [15], [20], we show that these Newton iterations can
be used to J-orthogonalize a matrix that is not too far from being J-orthogonal. An
application is to the situation where a matrix that should be J-orthogonal turns out
not to be because of rounding or other errors and it is desired to J-orthogonalize it.

J-orthogonal matrices, and hyperbolic problems in general, are the subject of
much recent and current research, covering both theory and algorithms. This paper
provides a self-contained treatment that highlights some techniques and tools useful
in the analysis and application of these matrices; the treatment should also be of more
general interest.
Throughout, we take J to have the form

J =
[

Ip 0
0 −Iq

]
, p+ q = n,(1.4)

and we use exclusively the 2-norm: ‖A‖2 = maxx�=0 ‖Ax‖2/‖x‖2, where ‖x‖22 = xTx.

2. The Exchange Operator. Let A ∈ Rn×n and consider the system

y =
[ 1

p y1
q y2

]
=

[ p q

p A11 A12
q A21 A22

] 1[
x1
x2

]
p

q
= Ax,(2.1)

where A11 is nonsingular. We use this partitioning of A throughout the section. By
solving the first equation in (2.1) for x1 and then eliminating x1 from the second
equation we obtain [

x1
y2

]
= exc(A)

[
y1
x2

]
,(2.2)

where

exc(A) =
[

A−1
11 −A−1

11 A12
A21A

−1
11 A22 −A21A

−1
11 A12

]
.

We call exc the exchange operator, since it exchanges x1 and y1 in (2.1). Note that
the (2,2)-block of exc(A) is the Schur complement of A11 in A. The definition of
the exchange operator can be generalized to allow the “pivot matrix” A11 to be any
principal submatrix, but for our purposes this extra level of generality is not necessary.
It is easy to see that the exchange operator is involutary,

exc(exc(A)) = A,(2.3)
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and moreover that

exc(JAJ) = Jexc(A)J = exc(AT )T .(2.4)

This last identity shows that J is naturally associated with exc.
We first address the nonsingularity of exc(A). The block LU factorization

exc(A) =
[

I 0
A21 A22

] [
A−1

11 −A−1
11 A12

0 I

]

=
[

I 0
A21 A22

] [
A11 A12
0 I

]−1

≡ LR−1(2.5)

will be useful.
Lemma 2.1. Let A ∈ Rn×n with A11 nonsingular. Then exc(A) is nonsingular if

and only if A22 is nonsingular. If A is nonsingular and exc(A−1) exists then exc(A)
is nonsingular and

exc(A)−1 = exc(A−1).(2.6)

Proof. For A ∈ Rn×n with A11 nonsingular, the block LU factorization (2.5)
makes clear that exc(A) is nonsingular if and only if A22 is nonsingular. The last part
is obtained by rewriting (2.1) as x = A−1y and deriving the corresponding analogue
of (2.2): [

y1
x2

]
= exc(A−1)

[
x1
y2

]
.(2.7)

It follows from (2.7) that for any x1 and y2 there is a unique x2 and y1, which implies
from (2.2) that exc(A) is nonsingular and exc(A)−1 = exc(A−1).
Note that either of A and exc(A) can be singular without the other being singular,

as shown by the examples with p = q = 1,

A =
[
1 1
1 0

]
, exc(A) =

[
1 −1
1 −1

]
, A =

[
1 1
1 1

]
, exc(A) =

[
1 −1
1 0

]
.

For completeness, we mention that for both exc(A) and exc(A−1) to exist and be
nonsingular, it is necessary and sufficient that A, A11, and A22 be nonsingular.
The reason for our interest in the exchange operator is that it maps J-orthogonal

matrices to orthogonal matrices and vice versa. Note that J-orthogonality of A implies
that AT

11A11 = I + AT
21A21 and hence that A11 is nonsingular and exc(A) exists, but

if A is orthogonal, A11 can be singular.
Theorem 2.2. Let A ∈ Rn×n. If A is J-orthogonal then exc(A) is orthogonal.

If A is orthogonal and A11 is nonsingular then exc(A) is J-orthogonal.
Proof. Proving the result by working directly with exc(A) involves some laborious

algebra. A more elegant proof involving quadratic forms is given by Stewart and
Stewart [36, sect. 2]. We give another proof, suggested by Chris Paige. Assume first
that A is orthogonal with A11 nonsingular. Then exc(AT ) = exc(A−1) exists and
Lemma 2.1 shows that exc(A) is nonsingular and exc(A)−1 = exc(A−1) = exc(AT ).
Hence, using (2.4),

I = exc(AT )exc(A) = Jexc(A)TJ · exc(A),

which shows that exc(A) is J-orthogonal.
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If A is J-orthogonal then, as noted above, A11 is nonsingular. Also JATJ = A−1

and so from Lemma 2.1, exc(JATJ) = exc(A−1) = exc(A)−1. But (2.4) shows that
exc(JATJ) = exc(A)T , and we conclude that exc(A) is orthogonal.
As an example of a result of a different flavor, we give the following generalization

to arbitrary p of a result obtained by Duffin, Hazony, and Morrison [10] for p = 1.
Theorem 2.3. Let A ∈ Rn×n with A11 nonsingular. Then exc(A) + exc(A)T is

congruent to A+AT .
Proof. Using (2.5) we have

exc(A) + exc(A)T = LR−1 +R−TLT = R−T (RTL+ LTR)R−1.

Hence exc(A) + exc(A)T is congruent to

RTL+ LTR =
[

AT
11 0

AT
12 I

] [
I 0

A21 A22

]
+
[

I AT
21

0 AT
22

] [
A11 A12
0 I

]
= A+AT .

Theorem 2.3 has two interesting implications. First, the symmetric part of exc(A)
has the same rank as that of A; second, if A has positive definite symmetric part then
so does exc(A).
The exchange operator has an interesting history, a survey of which is given by

Tsatsomeros [39]. An early reference to it is in network analysis: Duffin, Hazony, and
Morrison [10] study it in the case p = 1 and call it the gyration operator. In statistics
the exchange operator is known as the sweep operator and it is used as a vehicle for
expressing Gauss–Jordan elimination; see Stark and Fitzgerald [32] or the tutorial by
Goodnight [13]. In linear algebra the term principal pivot transform is used [39], and
much of the interest stems from the property that if A is a P -matrix, that is, all its
principal minors are positive, then exc(A) is also a P -matrix.
In numerical analysis the exchange operator has found use as a way of relating

computations involving J-orthogonal matrices to computations with orthogonal ma-
trices, both for deriving algorithms and for carrying out their rounding error analyses.
More often than not this conversion has been done without explicit use of the exchange
operator, but the operator is used explicitly by Pan and Plemmons [29], Stewart and
Stewart [36], and Bojanczyk, Higham, and Patel [1].

3. Properties of J-Orthogonal Matrices. The definition of J-orthogonality of a
matrix Q can be rewritten as

Q = JQ−TJ,(3.1)

which shows that Q is similar to the inverse of its transpose. From this simple obser-
vation several interesting facts follow.

Lemma 3.1. Let Q ∈ Rn×n be J-orthogonal. If λ is an eigenvalue of Q then λ−1

is also an eigenvalue and it has the same algebraic and geometric multiplicities as λ.
Proof. From (3.1), Q is similar to Q−T , which is similar to Q−1, since any square

matrix is similar to its transpose [21, sect. 3.2.3]. The result follows.
An interesting property implied by Lemma 3.1 is that the characteristic polyno-

mial of a J-orthogonal matrix is (skew-) palindromic, in the sense that in det(Q−λI) =∑n
i=0 aiλ

i, ak = (−1)n det(Q)an−k = san−k, k = 0: 	n/2
, where s = ±1.
J-orthogonality brings considerably more structure to the eigensystem than is

described in Lemma 3.1. Mehrmann and Xu [27, Thm. 5.9] identify the appropriate
structured Jordan canonical form of a J-orthogonal matrix, and we refer the reader
to that paper for the rather complicated details.
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Another implication of (3.1) is that the class of J-orthogonal matrices is closed
under powering, for positive, negative, integer, and fractional powers. For fractional
powers we need to be careful about the definition of the power. We illustrate with
the square root. Denote by X1/2 the principal square root of a matrix X with no
nonpositive real eigenvalues, that is, the square root all of whose eigenvalues lie in the
open right half-plane. Assuming Q has no nonpositive real eigenvalues, taking square
roots in (3.1) gives Q1/2 = J(Q−T )1/2J = J(Q−1/2)TJ = J(Q1/2)−TJ , which implies
that Q1/2 is J-orthogonal. The importance of taking the principal square root can be
seen by noting that for a general square root the reciprocal pairing of the eigenvalues
can be lost.
We note in passing that appropriate modifications of the properties described

above hold more generally for matrices belonging to automorphism groups correspond-
ing to certain scalar products defined in terms of bilinear and sesquilinear forms, and
these include the groups of real symplectic and complex orthogonal matrices. See
Mackey, Mackey, and Tisseur [25], [26] for details.
Our main interest is in deriving and exploring an analogue for J-orthogonal ma-

trices of the CS decomposition for orthogonal matrices. There is no loss of generality
in assuming that q ≥ p, since if Q is diag(Ip,−Iq)-orthogonal and q < p, then −PTQP
is diag(Iq,−Ip)-orthogonal for a suitable permutation matrix P .

Theorem 3.2 (hyperbolic CS decomposition). Let

Q =
[ p q

p Q11 Q12
q Q21 Q22

]
be J-orthogonal and assume that q ≥ p. Then there are orthogonal matrices U1, V1 ∈
R
p×p and U2, V2 ∈ Rq×q such that

[
UT

1 0
0 UT

2

] [
Q11 Q12
Q21 Q22

] [
V1 0
0 V2

]
=

p p q−p
 C −S 0
−S C 0
0 0 Iq−p


 p

p

q−p
,(3.2)

where C = diag(ci), S = diag(si), and C2 − S2 = I. Without loss of generality we
can take ci > si ≥ 0 for all i. Any matrix Q satisfying (3.2) is J-orthogonal.

Proof. From Theorem 2.2 we know that P = exc(Q) is orthogonal, and its
leading principal p× p submatrix is nonsingular. Partitioning P conformally with Q,
the standard CS decomposition (see, e.g., Stewart [34, p. 75] or Paige and Wei [28])
yields

[
V T

1 0
0 UT

2

] [
P11 P12
P21 P22

] [
U1 0
0 V2

]
=

p p q−p
 C̃ S̃ 0

− S̃ C̃ 0
0 0 Iq−p


 p

p

q−p

for orthogonal U1, V1 ∈ Rp×p and U2, V2 ∈ Rq×q, where C̃ and S̃ are diagonal and
nonnegative with C̃ nonsingular and C̃2 + S̃2 = I. It is straightforward to show that

Q = exc(P ) =
[

U1 0
0 U2

] C̃−1 −C̃−1S̃ 0

− S̃C̃−1 C̃ + S̃C̃−1S̃ 0
0 0 Iq−p


[V T

1 0
0 V T

2

]
,

and so (3.2) holds with C = C̃−1 = C̃+ S̃C̃−1S̃ and S = C̃−1S̃, which are easily seen
to satisfy C2 − S2 = I and ci > si ≥ 0 for all i. The last part is easy to check.
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The hyperbolic CS decomposition shows that the singular value decompositions
(SVDs) of the blocks of a J-orthogonal matrix are related: four orthogonal matrices
suffice to define the SVDs, instead of eight for a general matrix. Moreover, the singular
values of the blocks are closely related.
The hyperbolic CS decomposition was first derived by Grimme, Sorensen, and

Van Dooren [14, Lem. 6], and it is treated in more depth by Stewart and Van Dooren
[37]. The proofs in [14] and [37] are similar to those for the standard CS decomposi-
tion given, for example, by Stewart and Sun [35, Thm. I.5.1] or Paige and Wei [28,
Thm. 8.1], the latter being a relatively simple and memorable proof. Our proof of
Theorem 3.2 shows that there is no need to derive the hyperbolic CS decomposition
directly, as it is a direct consequence of the CS decomposition.
The hyperbolic CS decomposition represents an orthogonal transformation of the

J-orthogonal matrix Q to a symmetric, and in fact positive definite, matrix. Therefore
the singular values of Q are the eigenvalues of the matrix on the right-hand side of
(3.2), namely

c1 ± s1, . . . , cp ± sp; 1, with multiplicity q − p.

Since c2
i − s2

i = 1 for all i, the first 2p singular values occur in reciprocal pairs, so we
can rewrite the singular values as

ci + si and
1

ci + si
, i = 1: p ; 1, with multiplicity q − p.(3.3)

It follows that the 2-norm condition number κ2(Q) = ‖Q‖2‖Q−1‖2 is given by

κ2(Q) = ‖Q‖22 = max
i=1:p

(
ci +

√
c2
i − 1

)2
.

The hyperbolic CS decomposition implies that the SVD of a J-orthogonal matrix
has a special structure. To obtain the SVD of Q in (3.2) we need to diagonalize the
matrix on the right-hand side. This boils down to diagonalizing blocks

[
ci
−si
−si
ci

]
,

which can be done by pre- and postmultiplying by the symmetric orthogonal matrix
2−1/2

[
1
1

1
−1

]
. It is then easy to see that in the SVD Q = UΣV T if {σi, ui1 , vi1} and

{σ−1
i , ui2 , vi2} are singular triplets corresponding to any of the p singular values σi

not generically equal to 1, then

ui1 =
[
xi
yi

]
p

q
, ui2 =

[
xi
−yi

]
p

q
,(3.4)

and vi1 and vi2 satisfy the analogous relationship. Aside from its aesthetic interest,
this property has an important implication: that J-orthogonal matrices are optimally
scaled in the 2-norm under the class of two-sided diagonal scalings. This result is due
to Grimme, Sorensen, and Van Dooren [14, Lem. 7]; our proof exploiting the structure
(3.4) in the SVD is much shorter than the more computational proof in [14].

Theorem 3.3. If Q ∈ Rn×n is J-orthogonal then κ2(Q) ≤ κ2(D1QD2) for all
nonsingular diagonal matrices D1, D2 ∈ Rn×n.

Proof. The result follows from a best &2-scaling characterization of Golub and
Varah [12, Thm. 2.1]. We simply reproduce the proof of that characterization. We
can assume that Q has at least one singular value different from 1, otherwise Q is
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orthogonal and the result is immediate. Hence in the SVD Q = UΣV T , σ1 = σ−1
n > 1.

We have

κ2(D1QD2) = max
x,y

‖D1QD2x‖2‖y‖2
‖D1QD2y‖2‖x‖2

= max
s,t

‖D1Qs‖2‖D−1
2 t‖2

‖D1Qt‖2‖D−1
2 s‖2

≥ ‖D1Qv1‖2‖D−1
2 vn‖2

‖D1Qvn‖2‖D−1
2 v1‖2

=
σ1

σn

‖D1u1‖2‖D−1
2 vn‖2

‖D1un‖2‖D−1
2 v1‖2

=
σ1

σn
= κ2(Q),

where the penultimate equality follows from the structure of the singular vectors
displayed in (3.4).
We have restricted the treatment in this section to general J-orthogonal matrices.

Within the class of J-orthogonal matrices are generalizations of Givens rotations and
Householder matrices. For details of these special J-orthogonal matrices see, for
example, Bojanczyk, Qiao, and Steinhardt [3], Mackey, Mackey, and Tisseur [24], and
the references therein.

4. Random J-Orthogonal Matrices. When constructing random problems of a
hyperbolic nature it is useful to be able to generate random J-orthogonal matrices
with specified singular value distribution or condition number. Since multiplication of
a matrix by a J-orthogonal matrix changes the singular values of the matrix, simply
forming a product of random J-orthogonal matrices does not allow precise control of
the norm or conditioning of the product. However, the hyperbolic CS decomposition
provides the flexibility we need, as it expresses a J-orthogonal matrix in terms of four
“half-sized” orthogonal matrices together with 2p scalars that determine the norm and
condition number of the matrix. We can therefore generate a random J-orthogonal
matrix as follows.

Algorithm 1. Let J be defined as in (1.4). This algorithm generates a random
J-orthogonal Q ∈ Rn×n having singular values given by (3.3), where the ci and si,
i = 1:min(p, q), can be freely chosen subject to the constraints ci > si ≥ 0 and
c2
i − s2

i = 1.
1. If p > q, swap p and q.
2. Generate random orthogonal matrices U1, V1 ∈ Rp×p and U2, V2 ∈ Rq×q from
the Haar distribution (see below).
3. Choose C = diag(ci) and S = diag(si) according to the given constraints.
4. Form

Q =
[

U1 0
0 U2

] C −S 0
−S C 0
0 0 Iq−p


[V T

1 0
0 V T

2

]
.

5. If the swap was done on step 1, Q = PQPT , where P =
[
0 Iq
Ip 0

]
.

The Haar distribution is a natural distribution over the space of orthogonal ma-
trices, and matrices from it are best generated by an algorithm of Stewart [33] (see
also [19, sect. 28.3]), which forms an appropriate product of random Householder ma-
trices. Using Stewart’s approach, Algorithm 1 can be implemented at a cost of about
(10/3)(p3 + q3) + 2pq(p+ q) operations.
Because the computations in Algorithm 1 comprise multiplication by orthogonal

matrices, the algorithm is perfectly numerically stable: the computed Q̂ satisfies
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‖Q− Q̂‖2 ≤ cnu‖Q‖2, where u is the unit roundoff, cn is a constant depending on n,
and Q is the exact result.
We give two examples to show how Algorithm 1 can be used. First, we consider

the indefinite least squares (ILS) problem

ILS : min
x
(b−Ax)TJ(b−Ax),(4.1)

where A ∈ R
(p+q)×r, b ∈ R

p+q. This problem has been investigated by Chan-
drasekaran, Gu, and Sayed [9] and Bojanczyk, Higham, and Patel [1]. Pertinent
facts are that the ILS problem has a unique solution if and only if ATJA is positive
definite, and that a perturbation bound for the problem is obtained in [1] whose key
factors are the 2-norms of

(ATJA)−1, (ATJA)−1AT .(4.2)

In generating test problems for ILS solvers we therefore need to generate matrices
A such that ATJA is positive definite and such that the two matrices in (4.2) have
specified norms. (Subsequently the right-hand side b must be chosen, perhaps to
achieve a desired residual b − Ax, since the norm of the residual also occurs in the
perturbation bound.) Note first that ATJA positive definite implies p ≥ r. We define

A = Q

r[
R
0

]
r

p+q−r
,

where Q is a J-orthogonal matrix of dimension p+ q generated by Algorithm 1 and R
is a chosen nonsingular upper triangular matrix; this is a hyperbolic QR factorization
of A [1]. We have

‖(ATJA)−1‖2 = ‖(RTR)−1‖2 = ‖R−1‖22
and

(ATJA)−1AT = R−1R−T [RT 0 ]QT = R−1 [ Ir 0 ]QT .

Inserting the formula for Q from Algorithm 1 we obtain

(ATJA)−1AT = R−1V1(1: r, :) [C −S 0 ]
[

UT
1 0
0 UT

2

]
.

Hence

‖(ATJA)−1AT ‖2 ≤ ‖R−1‖2 max
i

ci,

and since V1 is a random orthogonal matrix this inequality can be expected to be
an approximate equality. Therefore by choosing R and maxi ci appropriately we can
control, independently, the key terms in the perturbation bound for the ILS problem.
Next, consider the symmetric generalized eigenvalue problem Ax = λJx, where

A ∈ Rn×n is symmetric and J ∈ Rn×n is a signature matrix. To test algorithms
for this problem it is desirable to generate random problems with known eigenvalues.
This can be accomplished by choosing a symmetric matrixM such that JM is in real
Jordan form, either unstructured or structured [27, Thm. 3.6], generating a random
J-orthogonal Q with Algorithm 1, and transforming the pencil M − λJ to

QT (M − λJ)Q = QTMQ− λJ =: A− λJ.

The eigenvalues of the pencil are those of JM .
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5. The Indefinite Polar Decomposition and the Newton and Schulz Itera-
tions. The exchange operator provides a mapping between orthogonal and J-orthogonal
matrices. In this section we show that there is a map from a certain class of general
matrices to the J-orthogonal matrices, and we show how this map can be efficiently
computed and used to J-orthogonalize a matrix. To begin, we give a result on the
existence of an indefinite polar decomposition.
Recall that A ∈ Rn×n is J-symmetric if AJ is symmetric.
Theorem 5.1. If A ∈ Rn×n and JATJA has no eigenvalues on the nonpositive

real axis, then A has a unique indefinite polar decomposition A = QS, where Q is
J-orthogonal and S is J-symmetric with eigenvalues in the open right half-plane.

Proof. Note first that if the factorization exists then, using the J-symmetry of S,

JATJA = JSTQTJQS = JSTJS = SJ · JS = S2.(5.1)

Let

S := (JATJA)1/2 = p(JATJA)(5.2)

for a certain polynomial p depending on A. Here, we are using the fact that the
principal square root of a matrix X is a function of X [16] and hence is expressible as
a polynomial in X (the coefficients of the polynomial depend on X, in general). We
need to show first that S is J-symmetric, that is, that

SJ = (JATJA)1/2J

is symmetric, and then that Q = AS−1 is J-orthogonal. The former property follows
easily from the fact that SJ = p(JATJA)J . Next, using (5.1),

QTJQ = S−TATJAS−1 = S−TJS2S−1 = S−TJS = J,

so Q is J-orthogonal.
Finally, note that since the eigenvalues of S must lie in the open right half-plane,

S is uniquely determined as (5.2), and the uniqueness of Q follows.
The indefinite polar decomposition in Theorem 5.1 is a special case of decompo-

sitions involving more general J described by Bolshakov et al. [4] and Cardoso and
Silva Leite [8]. Theorem 5.1 can be generalized to incorporate a (J1, J2)-orthogonal
factor: it then states that if JT2 ATJ1A has no eigenvalues on the nonpositive real
axis, then A can be expressed uniquely as A = QS, with Q (J1, J2)-orthogonal and S
J2-symmetric.
Theorem 5.1 shows that if JATJA has no eigenvalues on the nonpositive real axis,

then it has an indefinite polar decomposition with J-orthogonal polar factor

Q = A(JATJA)−1/2.(5.3)

Thus to each such A there corresponds a particular J-orthogonal matrix. One class
of matrices having an indefinite polar decomposition for any J is the symmetric pos-
itive definite matrices, since for such A, JATJA = (JA)2 and JA has real, nonzero
eigenvalues (and the same inertia as J).
We now derive a Newton iteration for computing the matrix (5.3). The technique

we use is to write down and then “solve” a perturbed form of the equation defining the
property of interest; this technique is quite general and can be used to derive related
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iterations for the orthogonal polar factor and for the matrix sign function. Consider
the equation (X + E)TJ(X + E) = J , or

ETJX +XTJE = J −XTJX − ETJE.

Suppose that XTJE is symmetric. Then, to first order, 2XTJE = J−XTJX, which
yields E = J(X−TJ − JX)/2. On regarding X + E as a corrected version of X, we
are led to the iteration

Xk+1 =
1
2
(Xk + JX−Tk J).(5.4)

This is a generalization of the much-studied Newton iteration for the (standard) polar
decomposition (see, e.g., [15], [23]), the latter iteration being produced on setting
J = I. Note that (5.4) is built on a symmetry assumption, so convergence does not
follow from standard convergence theory for Newton’s method. However, convergence
can be proved for X0 = A.

Theorem 5.2. If A ∈ Rn×n and JATJA has no eigenvalues on the nonpositive
real axis then the iterates Xk defined by

Xk+1 =
1
2
(Xk + JX−Tk J), X0 = A(5.5)

converge quadratically to the J-orthogonal factor Q in the indefinite polar decomposi-
tion of A, and

‖Xk+1 −Q‖2 ≤
1
2
‖X−1

k ‖2‖Xk −Q‖22.(5.6)

Proof. Let A have the indefinite polar decomposition X0 = A = Q0S0. The
factors Q0 and S0 are nonsingular and QT

0 JQ0 = J , S0 = JST0 J , so

X1 =
1
2
(Q0S0 + JQ−T0 S−T0 J)

=
1
2
(Q0S0 + J · JQ0J · S−T0 J)

= Q0
1
2
(S0 + JS−T0 J)

= Q0
1
2
(S0 + S−1

0 ).

By induction we find that Xk = Q0Sk, where

Sk+1 =
1
2
(Sk + S−1

k )(5.7)

is J-symmetric with eigenvalues in the open right half-plane. The iteration (5.7) is
the Newton iteration for the matrix sign function. From standard analysis of this
iteration (see, e.g., [23]) we know that Sk converges quadratically to sign(S0), which
is the identity matrix since the spectrum of S0 lies in the open right half-plane. In
other words, Xk → Q0 quadratically. The bound (5.6) follows from the identity

Xk+1 −Q =
1
2
JX−Tk (Xk −Q)TJ(Xk −Q).
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Theorem 5.2 is given by Cardoso, Kenney, and Silva Leite [7] for more general
J satisfying JT = J−1 and J2 = ±I. For computing the (J1, J2)-orthogonal polar
factor of A the appropriate modification of (5.5) is Xk+1 = 1

2 (Xk + J1X
−T
k J2).

The Newton iteration (5.5) is of interest for two reasons. First, it provides a way
to compute the indefinite polar decomposition using only matrix inversion. More im-
portantly, it can be used to restore J-orthogonality of an approximate J-orthogonal
matrix. Restoring lost orthogonality is a common requirement, for example, in numer-
ical solution of matrix differential equations having an orthogonal solution [17], or for
computed eigenvector matrices of symmetric matrices. Restoring J-orthogonality is of
interest for similar reasons. Suppose we measure the departure from J-orthogonality
of A by E = ATJA− J . Then

JATJA = I + JE,

and so long as ‖E‖2 < 1 the eigenvalues of JATJA are guaranteed to be in the open
right half-plane and hence the Newton iteration converges. Therefore any approxi-
mately J-orthogonal matrix with

‖ATJA− J‖2 < 1(5.8)

can be J-orthogonalized by Newton’s method.
In the case J = I, the Newton iteration (5.5) converges to the orthogonal factor

in the polar decomposition of A, which is the nearest orthogonal matrix to A in
any unitarily invariant norm [11]. For general signature matrices J the J-orthogonal
factor Q in the indefinite polar decomposition of A is not necessarily the nearest J-
orthogonal matrix to A in any natural norm; indeed, determining that nearest matrix
is an open question. Nevertheless, as the following result makes clear, if A is nearly
J-orthogonal then Q must be close to A, as long as ‖Q‖2 ≈ ‖A‖2 and ‖A‖2 is not too
large.

Lemma 5.3. Let A ∈ Rn×n have an indefinite polar decomposition A = QS. If
‖Q−1(A−Q)‖2 < 1 then

‖ATJA− J‖2
‖A‖2(‖A‖2 + ‖Q‖2)

≤ ‖A−Q‖2
‖A‖2

≤ ‖A
TJA− J‖2
‖A‖22

‖A‖2‖Q‖2.

The lower bound always holds.
Proof. It is straightforward to show that

(A−Q)TJ(A+Q) = ATJA− J,

which leads immediately to the lower bound. For the upper bound, we need to bound
‖(A + Q)−1‖2. This can be done by writing A + Q = 2Q(I + Q−1(A − Q)/2), from
which

‖(A+Q)−1‖2 = ‖ 1
2 (I +Q−1(A−Q)/2)−1Q−1‖2

≤ 1
2
‖Q−1‖2

1
1− 1

2‖Q−1(A−Q)‖2
≤ ‖Q−1‖2 = ‖Q‖2,

which yields the result.
The cost of the iteration (5.5) is one matrix inversion per iteration. Possibly to be

preferred is an iteration that uses only matrix multiplication. Such an iteration can
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be obtained by adapting the Schulz iteration, which exists in variants for computing
the matrix inverse [31], the orthogonal polar factor [20], the matrix sign function [22],
and the matrix square root [18]. The Schulz iteration for computing Q in (5.3) is

Xk+1 =
1
2
Xk(3I − JXT

k JXk), X0 = A.(5.9)

The convergence of this iteration, which like that of (5.5) is at a quadratic rate, is
described by the relation

Rk+1 =
3
4
R2
k +
1
4
R3
k, Rk = I − JXT

k JXk,

from which a sufficient condition for convergence is that (5.8) holds. The Schulz
iteration requires two matrix multiplications per iteration, and the intermediate term
XT
k JXk is symmetric, so the Schulz iteration requires 50% more flops than the Newton
iteration (5.5) and should be faster if matrix multiplication can be done at more than
1.5 times the rate of matrix inversion.
Unlike for orthogonal matrices, for general J-orthogonal matrices ‖Q‖2 can be

arbitrarily large, and this has implications for the attainable accuracy of the Newton
and Schulz iterations in floating point arithmetic. If Q and Q+∆Q satisfy

J = QTJQ, ‖∆Q‖2 ≤ ε‖Q‖2,(5.10)

we have

‖J − (Q+∆Q)TJ(Q+∆Q)‖2 ≤ (2ε+ ε2)‖Q‖22.

It follows that the appropriate measure of numerical J-orthogonality is the scaled
residual

ρ(A) =
‖J −ATJA‖2
‖A‖22

,(5.11)

and A being numerically J-orthogonal to working precision corresponds to ρ(A) ≈ u.
A termination criterion based on ρ can be used for the Schulz iteration, since ρ(Xk)
is available at minimal extra cost. For the Newton iteration, evaluating ρ(Xk) would
be a significant extra expense. An alternative termination criterion can be derived by
examining the limiting accuracy. Consider one iteration applied to Q+∆Q in (5.10)
with ε = u: for the Newton iteration (5.5) we have

1
2
((Q+∆Q) + J(Q+∆Q)−TJ) = Q+ E, ‖E‖2 ≤

1
2
u
(
1 + ‖Q‖22

)
‖Q‖2 +O(u2),

so that ‖E‖2/‖Q‖2 is bounded in terms of ‖Q‖22u. A natural stopping criterion for
the Newton iteration is therefore of the form

‖Xk+1 −Xk‖2
‖Xk+1‖2

≤ u‖Xk+1‖22.(5.12)

The crucial point to note is the presence of the norm-squared terms in the denominator
of ρ and on the right-hand side of (5.12)—without them, the iterations might never
terminate in floating point arithmetic.
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Table 5.1 Results for Newton iteration (5.5) on Ã = A + ∆A, where A is J-orthogonal with 2-
norm 102.

‖∆A‖/‖A‖2 1.0e-13 1.0e-9 1.0e-5
ρ(Ã) 5.2e-14 4.4e-10 6.6e-6

‖J − ÃT JÃ‖2 5.2e-10 4.4e-6 6.6e-2
Iterations 1 2 3
ρ(Q̂) 4.5e-17 6.0e-17 5.7e-17

‖A− Q̂‖2/‖A‖2 5.8e-11 2.7e-7 4.6e-3

We note that ρ appears in the bounds of Lemma 5.3. Under the reasonable
assumption that ‖A‖2 ≈ ‖Q‖2, Lemma 5.3 says that the relative error in Q as an
approximation to A lies between ρ(A)/2 and ‖A‖22ρ(A).
Finally, we give a numerical experiment that illustrates the main ideas in this

paper. We take p = 4 and q = 2 and generate a random J-orthogonal A of 2-norm
102 using Algorithm 1 (hence κ2(A) = 104). We form a perturbed matrix Ã = A+∆A,
where ∆A is a random matrix with elements from the standard normal distribution,
and then use the Newton iteration (5.5) applied to Ã to restore J-orthogonality, by
computing the J-orthogonal polar factor Q. The convergence test is (5.12). Results
for three different matrices subject to three perturbations of different sizes are shown
in Table 5.1, with Q̂ denoting the computed J-orthogonal polar factor. The Newton
iteration quickly reduces the relative residual ρ to the unit roundoff level, the number
of iterations increasing with the size of the perturbation∆A. The values ‖J−ÃTJÃ‖2
are all less than 1, which confirms that the Newton iteration is applicable in each case
(see (5.8)). The final line in the table shows that the distance between A and Q̂ is
about 102 times larger than the original perturbation, showing that Q̂ is not close to
being the nearest J-orthogonal matrix to A+∆A. As noted earlier, how to determine
the nearest J-orthogonal matrix is an interesting open question. When the experiment
is repeated using the Schulz iteration (5.9), almost identical results are obtained.

Acknowledgments. I thank Chris Paige for his many helpful comments on the
manuscript and, in particular, for suggesting the proof of Theorem 2.2.
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