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2Observatório Nacional, 20921-400, Rio de Janeiro, RJ, Brasil
3Departamento de Fı́sica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brasil
4Instituto de Fı́sica, Universidade de São Paulo, R. do Matão 1371, 05508-090, São Paulo, SP, Brasil
5Centro de Estudios de Fı́sica del Cosmos de Aragón (CEFCA), Unidad Asociada al CSIC, Plaza de San Juan, 1, E-44001, Teruel, Spain
6Instituto de Astrofı́sica de Andalucı́a (CSIC), Glorieta de la Astronomı́a s/n, Granada, E-18008, Spain
7Instituto de Fı́sica, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brasil
8Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109, USA
9Instituto de Astronomia, Geofı́sica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão 1226, São Paulo, SP 05508-090, Brazil
10Instruments, 4121 Pembury Place, La Cañada-Flintridge, CA 91011, USA
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ABSTRACT

The next generation of galaxy surveys will allow us to test one of the most fundamental

assumptions of the standard cosmology, i.e. that gravity is governed by the general theory

of relativity (GR). In this paper, we investigate the ability of the Javalambre Physics of the

Accelerating Universe Astrophysical Survey (J-PAS) to constrain GR and its extensions. Based

on the J-PAS information on clustering and gravitational lensing, we perform a Fisher matrix

forecast on the effective Newton constant, μ, and the gravitational slip parameter, η, whose

deviations from unity would indicate a breakdown of GR. Similar analysis is also performed

for the DESI and Euclid surveys and compared to J-PAS with two configurations providing

different areas, namely an initial expectation with 4000 deg2 and the future best case scenario

with 8500 deg2. We show that J-PAS will be able to measure the parameters μ and η at a

sensitivity of 2–7 per cent, and will provide the best constraints in the interval z = 0.3–0.6,

thanks to the large number of ELGs detectable in that redshift range. We also discuss the

constraining power of J-PAS for dark energy models with a time-dependent equation-of-state

parameter of the type w(a) = w0 + wa(1 − a), obtaining �w0 = 0.058 and �wa = 0.24 for

the absolute errors of the dark energy parameters.

Key words: dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

The success of the general theory of relativity (GR) is unquestion-

able. For about a hundred years now, GR has remained unchanged

and capable of explaining observations and experiments in a number

of regimes, such as the dynamics of the Solar system, gravitational

wave emission, the energetics of supermassive black holes, and

quasars [see e.g. Will (2014) for the status of experimental tests of

⋆ E-mail: migueapa@ucm.es

GR]. When extrapolated to cosmological scales, Einstein’s theory

has also provided a very good description of the evolution of the

Universe, which is obtained at the cost of postulating the existence

of both dark matter as well as a dark energy component, i.e.

an additional field with fine-tuned properties responsible for the

current cosmic acceleration (Sahni & Starobinsky 2000; Padman-

abhan 2003; Peebles & Ratra 2003; Copeland, Sami & Tsujikawa

2006).

Given the unnatural properties of dark energy (Weinberg 1989), a

promising alternative to the standard scenario (GR plus dark energy)

is based on infra-red modifications to GR, leading to a weakening
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of gravity on cosmological scales and thus to late-time acceleration.

In the past few decades, a number of modified or extended theories

of gravity (MG) have been proposed (Dvali, Gabadadze & Porrati

2000; Sahni & Shtanov 2003; Capozziello 2002; Carroll et al. 2004;

Santos et al. 2007; see also Sotiriou & Faraoni 2010; Capozziello &

De Laurentis 2011; Clifton et al. 2012a; Ferreira 2019 for recent

reviews). In general, these ideas explore as much as they can

the loopholes of Lovelock’s theorem, while preserving GR on

astrophysical scales. Recently, the number of allowed MG theories

was significantly restricted (Baker et al. 2017; Creminelli & Vernizzi

2017; Ezquiaga & Zumalacárregui 2017), given the tight bound on

the speed of propagation of gravitational waves, |cgw/c − 1|� 10−15,

obtained from the binary neutron star merger GW170817 (Abbott

et al. 2017). In the near future, other constraints are also expected

from black hole imaging, as recently reported by the Event Horizon

Telescope.1

Cosmological observations are also able constrain MG theories at

the largest scales, as has been shown by e.g. the Planck experiment

(Aghanim et al. 2018). In this context, the large-scale structure

surveys that will become available in the coming years will play the

major role (Ferreira 2019). Those surveys can be categorized in two

main types: (i) spectroscopic surveys, obtaining high-quality spectra

(and corresponding high-quality redshift measurements thereof),

typically targeting a pre-selected subsample of extragalactic objects

BOSS (e.g. Dawson et al. 2013), eBOSS (Dawson et al. 2016), DESI

(Flaugher & Bebek 2014; Aghamousa et al. 2016), Euclid (Laureijs

et al. 2011; Amendola et al. 2018), etc., and (ii) photometric surveys,

probing the sky at deeper magnitudes in a reduced number of

filters, providing significantly larger catalogues of sources, but at

the expense of a poorer spectral characterization (e.g. DES, Abbott

et al. 2005; LSST, Abell et al. 2009).

An intermediate regime is represented by the so-called spec-

trophotometric surveys (COMBO-17, Wolf et al. 2003; ALHAM-

BRA, Moles et al. 2008; COSMOS, Ilbert et al. 2009; MUSYC,

Cardamone et al. 2010; CLASH, Postman et al. 2012; SHARDS,

Pérez-González et al. 2013; PAU, Martı́ et al. 2014; J-PLUS,

Cenarro et al. 2019a; J-PAS, Benitez et al. 2014; SPHEREx, Korngut

et al. 2018) that combine deep imaging with multicolour information

obtained through combination of broad-, medium- and narrow-

band filters. In this way, a low-resolution spectrum (also known

as ‘pseudo-spectrum’) is obtained for every pixel in the survey’s

footprint, and in particular for each and all sources present in

the joint catalogue extracted from the combination of all bands.

This allows providing high-quality photometric redshift estimations

for a much larger number of objects compared with spectroscopic

surveys, on top of 2D information for those sources that are spatially

resolved.

This paper discusses the expected cosmological implications

of J-PAS Benitez et al. (2014) on dark energy and modified

gravity theories. As is well known, the main body of observations

currently available comes from distance measurements that map the

expansion history of the Universe at the background level. However,

these measurements alone are not enough to discriminate between

a dark energy fluid and modifications to GR, as different models

can predict the same expansion history (Kunz 2012). Additional

observational information is thus required in order to break the

model degeneracy and, in particular, the growth of structures and

gravitational lensing, which is directly sensitive to the growth of

dark matter perturbations – in contrast with measurements based on

1https://eventhorizontelescope.org

galaxies, neutral hydrogen or any other baryonic tracer – are among

the most promising avenues in this respect.

Here, we consider the J-PAS information on clustering and

gravitational lensing and perform a Fisher matrix forecast on the

effective Newton constant, μ, and the gravitational slip parameter,

η (defined in Section 3), assuming two configurations of area for

J-PAS, i.e. 4000 and 8500 deg2. For completeness, we also discuss

the constraining power of J-PAS for dark energy models with a

time-dependent equation-of-state parameter w(a), and compare all

J-PAS forecasts with those expected by the DESI (Flaugher & Bebek

2014; Aghamousa et al. 2016) and Euclid surveys (Laureijs et al.

2011; Amendola et al. 2018). In this sense, this work updates some

of the results contained in Benitez et al. (2014) and also makes

new forecasts, including several new scenarios. Further analysis on

interactions in the dark sector can be found in Costa et al. (2019).

2 TH E J -PA S SU RV EY

The Javalambre Physics of the Accelerating Universe Astrophysical

Survey (J-PAS; Benitez et al. 2014) is a spectrophotometric survey

to be conducted at the Observatorio Astrofı́sico de Javalambre

(hereafter OAJ), a site on top of Pico del Buitre, a summit about

∼2000 m high above sea level at the Sierra of Javalambre, in the

Eastern region of the Iberian peninsula. The Javalambre Survey

Telescope (JST/T250), a 2.5 m diameter, altazimuthal telescope,

will be on charge of J-PAS. JST will be equipped with the

Javalambre Panoramic Camera (JPCam), a 14-CCD mosaic camera

using a new large format e2v 9.2 k-by–9.2 k 10µm pixel detectors,

and will incorporate a 54 narrow- and 4 broad-band filter set

covering the optical range (Marı́n-Franch et al. 2017). The field

of view covered by JPCam is close to 5 deg2, and thus the

JST/JPCam system constitutes a system specifically defined to

optimally conduct spectrophotometric surveys. J-PAS is not the

first survey being carried out at the OAJ, since the Javalambre

Local Universe Photometric Survey (J-PLUS), conducted by the

Javalambre Auxiliary Survey Telescope (JAST/T80), has already

covered about 1600 deg2 with 12 broad- and narrow-band filters

(some of them in common to J-PAS). We refer the reader to Benitez

et al. (2014) and Cenarro et al. (2019b) for more details on J-PAS

and J-PLUS, respectively.

3 DA R K E N E R G Y A N D M O D I F I E D G R AV I T Y

PA R A M E T R I Z AT I O N S

In recent years, many different models of dark energy or MG

have been proposed as alternatives to the standard � cold dark

matter (�CDM) cosmology. The possibility of confronting such

alternatives with observations in a largely model-independent way

has motivated the development of theoretical frameworks in which

general modifications can be captured in a few effective parameters

that can be directly tested by observations (Clifton et al. 2012b;

Silvestri, Pogosian & Buniy 2013).

In this section, we introduce the phenomenological parametriza-

tions of dark energy and MG that will be considered throughout the

paper.

3.1 Dark energy

In the context of GR, dark energy is understood as a smooth (non-

clustering) energy component with a sufficient negative pressure,

p, to violate the strong energy condition (ρ + 3p ≥ 0, where ρ

is the energy density) and accelerate the Universe. Many different

MNRAS 493, 3616–3631 (2020)
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models of dark energy have been proposed in recent years (see e.g.

Peebles & Ratra 2003; Copeland et al. 2006; Barboza & Alcaniz

2008; and references therein), based on fluid descriptions with

different equations of state or the inclusion of an additional scalar

field, as in the quintessence models.

Rather than focusing on particular models, we will consider a

phenomenological description of dark energy as a perfect fluid with

an equation of state given by the parametrization (Chevallier &

Polarski 2001; Linder 2003)

w(a) = w0 + wa(1 − a), (1)

which reduces to the standard �CDM model for values of w0 = −1

and wa = 0. Note also that this effective modification with respect

to the standard cosmology mainly affects the background evolution.

Notice that the dark energy component could acquire cosmological

perturbations that are already taken into account in the CAMB code

(Lewis, Challinor & Lasenby 2000).

3.2 Modified gravity

We will consider for simplicity the case of MG theories that include

additional scalar degrees of freedom. Extensions of the model-

independent approach for modified theories including additional

vector fields can be found in Resco & Maroto (2018b).

Let us then consider the scalar-perturbed flat Friedmann–

Lemaı̂tre–Robertson–Walker (FLRW) metric, written in the lon-

gitudinal gauge (Amendola & Tsujikawa 2010; Tsujikawa, De

Felice & Alcaniz 2013):

ds2 = −(1 + 2�)dt2 + a2(t)(1 + 2�)dx
2. (2)

The modified Einstein equation to first order in perturbations can

be written as

δḠμ
ν = 8πG δT μ

ν, (3)

where the perturbed modified Einstein tensor δḠμ
ν can in principle

depend on both the metric potentials � and �, and the perturbed

scalar field δφ. On the other hand, at late times the only relevant

energy component is non-relativistic matter so that

δT 0
0 = −ρm δm, (4a)

δT 0
i = −ρm vi, (4b)

δT i
j = 0, (4c)

where vi is the three velocity of matter, ρm is the total matter density,

and δm = δρm/ρm is the corresponding matter density contrast,

which is related to the galaxy density contrast δg via the bias factor

b, as δg = b δm.

Using the Bianchi identities in the modified Einstein tensor, we

find that in the sub-Hubble regime (k ≫ aH, H = ȧ(t)/a(t) is

the Hubble parameter) there are only two independent Einstein

equations, which together with the scalar field equation of motion

lead to the following set of equations to first order in perturbations

in Fourier space:

k2 � = 4πGa2 μη ρmδm, (5)

k2 � = −4πGa2μρmδm. (6)

Here, for simplicity, we have restricted ourselves to the case of

second-order operators and used the so-called quasi-static approx-

imation, in which time derivatives can be neglected with respect

to the spatial ones. Notice that the quasi-static approximation is

a good one for models with large speed of sound of dark energy

perturbations and can be safely employed for current galaxy surveys.

For future large surveys, it could be inappropriate on scales close to

the Hubble horizon. Also as shown in Sawicki & Bellini (2015), it

should never be used for the integrated Sachs–Wolfe effect analysis.

Note that on the sub-Hubble scales, δm agrees with the density

perturbation � used in Silvestri et al. (2013) since � = δm + 3aHv
k

.

Therefore, in the quasi-static approximation, a general modification

of Einstein’s equations can be written in terms of two arbitrary

functions of time and scale μ(a, k) and η(a, k) (Pogosian et al.

2010; Silvestri et al. 2013). These parameters can be understood as

an effective Newton constant, Geff(a, k), given by

μ(a, k) =
Geff

G
, (7)

and the gravitational slip parameter

η(a, k) = −
�

�
, (8)

which modifies the equation for the lensing potential that depends

upon the combination (� − �)/2. Thus, deviations from μ = η =
1 indicate a breakdown of standard GR. Notice that alternative

parametrizations have been considered in the literature such as (μ,

�) with � = μ(1 + η)/2. We have preferred to use (μ, η), since

they have a more direct physical interpretation.

The modified equations can be rewritten as

k2� ≃ −4πGeff a
2ρmδm, (9)

and

� − �

2
≃ −

3Geff

2G

1 + η

2

(

aH

k

)2

m(a)δm. (10)

where m(a) = m a−3 E(a)−2 is the matter density parameter

and E(a) = H(a)/H0, with the Hubble constant written as H0 =
100h km s−1 Mpc−1.

Using the standard conservation equation, T μν
;ν = 0, we obtain

the continuity and Euler equations, which in the sub-Hubble regime

and for non-relativistic matter, reduce to

aδ̇m = −θ, (11)

aθ̇ = −aHθ + k2�, (12)

where θ = i(k · v).

Taking the time derivative of equation (11) and using (12), we

obtain the modified growth equation that reads

δ′′
m +

(

2 +
H ′

H

)

δ′
m −

3

2
μ(a, k)m(a)δm ≃ 0, (13)

where the prime denotes derivative with respect to ln a.

Notice that in general, in typical modified gravity theories such

as f(R) or scalar-tensor models, the effective Newton constant and

slip parameter generically depends on both scale k and time a.

For simplicity, in our analysis we will limit ourselves to two

particular classes of effective parameters, namely scale-independent

parametrizations with μ = μ(a) and η = η(a) and time-independent

parametrizations, i.e. μ = μ(k) and η = η(k), in order to inde-

pendently assess the sensitivity of the surveys to scale and time

dependences. Notice that, in any case, this type of parametrizations

will only be valid in a given range of scales and times. At high

redshifts or sub-galactic scales, we expect the standard μ = η = 1

values to be recovered.

MNRAS 493, 3616–3631 (2020)
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In the scale-independent case, two particularly relevant examples

will be analysed. On one hand, the constant in time case and, on the

other, the parametrization proposed in Simpson et al. (2013), which

is usually employed in the literature (Ade et al. 2016),

μ(a) = 1 + (μ0 − 1)
1 − m(a)

1 − m

, (14)

η(a) = 1 + (η0 − 1)
1 − m(a)

1 − m

. (15)

This parametrization ensures that at high redshift the standard GR

values are recovered.

4 FI S H E R M ATR I C E S FO R G A L A X Y A N D

LENSING POWER SPECTRA

The Fisher matrix formalism provides a simple way to estimate

the precision with which certain cosmological parameters could be

measured from a set of observables once the survey specifications

and the fiducial cosmology are fixed. Thus, given a set of parameters

{pα}, the Fisher matrix Fp is just the inverse of the covariance

matrix in the parameters space. It provides the marginalized error

for the pα parameter as
√

F−1
αα . The corresponding 1σ region

is just an ellipsoid in the parameter space since the probability

distribution function (PDF) are assumed to be Gaussian in the Fisher

formalism. If we are interested in obtaining errors for a different set

of parameters {qα}, the Fisher matrix of the new parameters simply

reads

Fq = Pt Fp P, (16)

where P = Q−1 and Qαβ = ∂qα/∂pβ , evaluated on the fiducial model.

In the following, we provide general expressions for the Fisher

matrices for the galaxy power spectrum in redshift space and for the

lensing convergence power spectrum, both in different redshift and

in k (or ℓ) bins. We will apply them separately to J-PAS (Benitez

et al. 2014), DESI (Aghamousa et al. 2016), and Euclid (Laureijs

et al. 2011) galaxy surveys and for J-PAS and Euclid lensing surveys.

4.1 Fisher matrix for galaxy clustering

Following Amendola et al. (2013, 2014), let us introduce the

following dimensionless parameters A and R,

A = D b σ8, (17)

R = D f σ8, (18)

where D(z) = δm(z)/δm(0) is the growth factor, b is the bias, and f

is the growth function defined by

D(z) = exp

[∫ N(z)

0

f (N ′) dN ′
]

, (19)

being N(z) = −log (1 + z). The σ 8 constant corresponds to σ8 =
σ (0.8 Mpc h−1), where

σ 2(z, R) = D2(z)

∫

k′2 dk′

2π2
P (k′)|Ŵ (R, k′)|2, (20)

being P(k) the matter power spectrum. We use a top-hat filter

Ŵ (R, k), defined by

Ŵ (R, k) =
3

k3R3
[sin(kR) − kR cos(kR)]. (21)

Then, the galaxy power spectrum in redshift space is (Seo &

Eisenstein 2003)

P (kr , μ̂r , z) =
D2

A r E

D2
A Er

(A + R μ̂2)2 P̂ (k) e−k2
r μ̂2

r σ 2
r , (22)

where sub-index r denotes that the corresponding quantity is

evaluated on the fiducial model, P̂ (k) ≡ P (k)/σ 2
8 , σr = (δz (1 +

z))/H (z) with δz(1 + z) the photometric redshift error, and DA

is the angular distance which, in a flat universe, reads DA =
(1 + z)−1 χ (z), with

χ (z) = H−1
0

∫ z

0

dz′

E(z′)
. (23)

The dependences k = k(kr), μ̂ = μ̂(μ̂r ), and the factor
D2

Ar
E

D2
A

Er
are

due to the Alcock–Paczynski effect (Alcock & Paczynski 1979; see

also Amendola & Tsujikawa 2010):

k = Q kr , (24)

μ̂ =
E μ̂r

Er Q
, (25)

Q =

√

E2 χ2 μ̂2
r − E2

r χ2
r

(

μ̂2
r − 1

)

Er χ
. (26)

If we consider different galaxies as dark matter tracers with bias

bi, the galaxy power spectrum is (White, Song & Percival 2008;

McDonald & Seljak 2009)

Pij (kr , μ̂r , z) =
D2

A r E

D2
A Er

(Ai + R μ̂2)

× (Aj + R μ̂2)P̂ (k) e−k2
r μ̂2

r σ 2
r , (27)

where Ai = D bi σ8. Then, considering a set of cosmological

parameters {pα}, the corresponding Fisher matrix for clustering

of different tracers and for a given redshift bin centred at za is

(Abramo 2012; Abramo, Secco & Loureiro 2016)

FC
αβ (za) =

Va

8π2

∫ 1

−1

dμ̂

∫ ∞

kmin

dk k2 ∂Pij (k, μ̂, za)

∂pα

∣

∣

∣

∣

r

× C−1
j l

∂Plm(k, μ̂, za)

∂pβ

∣

∣

∣

∣

r

C−1
mi e

−k2 �2
⊥−k2 μ̂2

(

�2
‖−�2

⊥

)

,

(28)

where

�⊥(z) = 0.785 D(z) �0, (29)

�‖(z) = 0.785 D(z) (1 + f (z)) �0, (30)

with �0 = 11 h−1 Mpc for our fiducial value of σ 8 = 0.82 in the

modified gravity case, and �0 = 6.5 h−1 Mpc for the dark energy

case due to the reconstruction procedure (Seo & Eisenstein 2007).

Finally, kmin is fixed to 0.007 h Mpc−1 (Amendola et al. 2014).

Thus, the exponential cut-off (Seo & Eisenstein 2007) removes

the contribution from non-linear scales across and along the line of

sight. The factor 0.785 takes into account the different normalization

of (1 + z) D(z) at high redshifts compared to Seo & Eisenstein

MNRAS 493, 3616–3631 (2020)
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3620 M. A. Resco et al.

(2007).2 The data covariance matrix is

Cij = Pij +
δij

n̄i

, (31)

where n̄i = n̄i(za) is the mean galaxy density of tracer i in the

z bin a. Finally, Va is the total volume of the ath bin. For a flat

�CDM model, Va = 4π fsky

3

(

χ (z̄a)3 − χ (z̄a−1)3
)

where fsky is the

sky fraction of the survey and z̄a the upper limit of the ath bin. For

the particular case in which we have only one tracer we recover

from (28) the standard Fisher matrix of clustering for the power

spectrum (22) at za (Seo & Eisenstein 2003),

FC
αβ (za) =

Va

8π2

∫ 1

−1

dμ̂

∫ ∞

kmin

k2 Veff

∂ ln(P (k, μ̂, za))

∂pα

∣

∣

∣

∣

r

×
∂ ln(P (k, μ̂, za))

∂pβ

∣

∣

∣

∣

r

e
−k2 �2

⊥−k2 μ̂2
(

�2
‖−�2

⊥

)

dk. (32)

Here, Va is the volume of the redshift slice za, and the effective

volume is given by

Veff =
(

n̄(za) P (k, μ̂, z)

1 + n̄(za) P (k, μ̂, z)

)2

. (33)

Finally, if we are interested in estimating errors in different k-

bins, we sum the information for all z bins in each kq bin of width

�kq, so that

FC
αβ (kq ) =

∑

a

Va

8π2

∫ 1

−1

dμ̂

∫

�kq

dk k2 ∂Pij (k, μ̂, za)

∂pα

∣

∣

∣

∣

r

×C−1
j l

∂Plm(k, μ̂, za)

∂pβ

∣

∣

∣

∣

r

C−1
mi e

−k2�2
⊥−k2μ̂2

(

�2
‖−�2

⊥

)

. (34)

4.2 Fisher matrix for weak lensing

The main observable for the weak lensing measurements is the

convergence power spectrum. Using the Limber and flat-sky ap-

proximations, we obtain (Lemos, Challinor & Efstathiou 2017)

P (ℓ) =
∫ ∞

0

dz
H 2

0 2
m

H (z)
K2(z)

μ2 (1 + η)2

4
D2(z) P

(

ℓ

χ (z)

)

,

(35)

where K(z) is defined as

K(z) =
3 H0

2
(1 + z)

∫ ∞

z

(

1 −
χ (z)

χ (z′)

)

n(z′) dz′, (36)

being n(z) the source galaxy density function as a function of the

redshift. For a redshift tomography analysis, we can generalize the

convergence power spectrum as (Hu 1999)

Pij (ℓ) ≃ H0

∑

a

�za

Ea

Ki(za)Kj (za)L2
aP̂

(

ℓ

χ (za)

)

, (37)

where we have discretized the integral (35) and defined the dimen-

sionless parameter L as (Amendola et al. 2013)

L = m D
μ (1 + η)

2
σ8, (38)

2Note that there is a typo in the normalization factor of 0.785 on Seo &

Eisenstein (2007). We thank Cássio Pigozzo for pointing this out.

where La = L(za). The function Ki is related to the weak lensing

window function for the i-bin by

Ki(z) =
3 H0

2
(1 + z)

∫ ∞

z

(

1 −
χ (z)

χ (z′)

)

ni(z
′) dz′, (39)

where ni(z) is the density function for the i-bin, which is obtained

as follows: let us first consider the source galaxy density function

for the survey (Ma, Hu & Huterer 2005),

n(z) =
3

2z3
p

z2 e−(z/zp )3/2

, (40)

where zp = zmean/
√

2, being zmean the survey mean redshift. Then,

within the i-bin we have a new distribution function which is defined

to be equal to n(z) inside the bin and zero outside. Now, taking into

account the photometric redshift error, σi = δz (1 + zi), we obtain

ni(z) ∝
∫ z̄i

z̄i−1

z′2e−(z′/zp )3/2

e
− (z′−z)2

2σ2
i dz′, (41)

where z̄i is the upper limit of the i-bin. Then, the Fisher matrix for

weak lensing is given by (Eisenstein, Hu & Tegmark 1999)

FL
αβ = fsky

∑

ℓ

� ln ℓ
(2ℓ + 1)ℓ

2
Tr

[

∂P

∂pα

C−1 ∂P

∂pβ

C−1

]

, (42)

where P and C are the matrix of size nb × nb with,

Cij = Pij + γ 2
int n̂

−1
i δij , (43)

γ int = 0.22 being the intrinsic ellipticity (see for instance Hilbert

et al. 2017). Notice that we are not considering the effect of possible

systematic errors in the shear measurements (Huterer et al. 2006).

Finally, n̂i denotes the number of galaxies per steradian in the ith

bin,

n̂i = nθ

∫ z̄i

z̄i−1
n(z) dz

∫ ∞
0

n(z) dz
, (44)

where nθ is the areal galaxy density. We sum in ℓ with �ln ℓ =
0.1 from ℓmin = 5 (Amendola et al. 2014) to ℓmax with ℓmax =
χ (zα′ ) kmax where α

′ = min(α, β) and kmax(za) is defined so that

σ (za, π/2kmax(za)) = 0.35 using (20), i.e. we only consider modes

in the linear regime.

Finally, if we are interested in estimating errors in different ℓ-

bins, we introduce a window function in the Fisher matrix (42) in

order to take into account only the information of a bin ℓa of width

�ℓa,

FL
αβ (ℓa) = fsky

∑

ℓ

�ℓ
(2ℓ + 1)

2
Wa(ℓ)Tr

[

∂P

∂pα

C−1 ∂P

∂pβ

C−1

]

,

(45)

where Wa(ℓ) is defined as

Wa(ℓ) = θ

(

ℓ −
[

ℓa −
�ℓa

2

])

θ

([

ℓa +
�ℓa

2

]

− ℓ

)

, (46)

being θ (x) is the Heaviside function.

4.3 Fiducial model and surveys specifications

The fiducial J-PAS cosmology Costa et al. (2019) assumed in our

analysis is the flat �CDM model with the parameters m = 0.31,

b = 0.049, ns = 0.96, h = 0.68, H−1
0 = 2997.9 Mpc h−1, and σ 8 =

0.82 which are compatible with Planck 2018 (Aghanim et al. 2018).

MNRAS 493, 3616–3631 (2020)
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For this cosmology, the E(z) function defined previously is given

by

E(z) =
√

m (1 + z)3 + (1 − m), (47)

whereas the growth function can be written as

f�(z) =
(

m (1 + z)3 1

E2(z)

)γ

, (48)

with the growth index γ = 0.545 (Linder & Cahn 2007). For the

fiducial cosmology, the linear matter power spectrum P̂ (k) takes

the form

P̂ (k) ∝ kns T 2(k), (49)

where the transfer function has been obtained from CAMB (Lewis

et al. 2000). Then, we impose the normalization

∫

k′2 dk′

2π2
P̂ (k′)|Ŵ (8 Mpc h−1, k′)|2 = 1, (50)

since we have taken out σ 2
8 from the power spectrum and have

inserted it in the definitions (17) and (18). In the dark energy case,

we will consider derivatives of the transfer function with respect to

w0 and wa parameters when calculating the corresponding Fisher

matrices. However in the modified gravity case this is no longer

as the dependence of the transfer functions on the modified gravity

parameters is not explicitly known. For the bias, we consider four

different types of galaxies: luminous red galaxies (LRGs), emission-

line galaxies (ELGs), bright galaxies (BGS), and quasars (QSO;

Mostek et al. 2013; Ross et al. 2009). Each type has different fiducial

bias given by

b(z) =
b(0)

D(z)
, (51)

being b0 = 0.84 for ELGs, b0 = 1.7 for LRGs, and b0 = 1.34 for

BGS. For Euclid survey we use a fiducial bias for ELGs of the form

b(z) =
√

1 + z (Laureijs et al. 2011), while the bias for quasars is

b(z) = 0.53 + 0.289 (1 + z)2.

Finally, we summarize the surveys specifications necessary to

compute the different Fisher matrices. For clustering, we have

considered: redshift bins and galaxy densities for each bin which

can be found in the left-hand panel of Table A1 for J-PAS, in the

centre panel of Table A1 for DESI and in the right-hand panel of

Table A1 for Euclid. We consider two configurations of total area for

J-PAS, namely 8500 and 4000 deg2 which correspond to fractions

of the sky of fsky = 0.206 and fsky = 0.097, respectively. fsky =
0.339 for DESI with 14 000 deg2 and fsky = 0.364 for Euclid with

15 000 deg2. The redshift error is δz = 0.003 for galaxies and QSO

in J-PAS, δz = 0.0005 for galaxies in DESI and δz = 0.001 for QSO

in DESI and galaxies in Euclid.

For the weak lensing analysis we have used: redshift bins and

the fraction of the sky fsky, which are the same as in the clustering

analysis; mean redshifts for the galaxy density which are zmean = 0.5

for J-PAS and zmean = 0.9 for Euclid; the angular number density

nθ (in galaxies per square arcminute) that can be found in Table A8

for J-PAS with three different photometric errors. For Euclid, nθ =
35 galaxies per square arcminute with δz = 0.05.

5 R ESULTS

5.1 Galaxy clustering

5.1.1 Dark energy

The dark energy equation of state is one of the main drivers of

modern galaxy surveys. Low-redshift measurements of the scale

of baryonic acoustic oscillations (BAOs) in galaxy clustering con-

stitute a straightforward, nearly systematic-free way of measuring

distances using the ‘cosmic standard ruler’ provided by the acoustic

horizon at the epoch of baryon drag (Seo & Eisenstein 2003). These

distances are measured both along the line of sight [since dχ =
cdz/H(z)] as well as across the line of sight (using the angular-

diameter distance, which for an object of size dL subtending an

angle dθ reads dθ = dL/DA). The different dependencies of H(z)

and DA(z) on cosmological parameters help break degeneracies,

improving the constraints.

In order to derive these constraints, the BAOs derived from

galaxy clustering must be compared against the high-redshift

measurement of the acoustic horizon from observations of the

cosmic microwave background (Ade et al. 2016). In terms of the

Fisher matrix analysis, this means that one should include priors

that codify the CMB constraints on the acoustic horizon, so we

have considered from Aghanim et al. (2018) the acoustic horizon

rdrag = 147.18 ± 0.29 Mpc. Here, we chose the standard procedure

of including those priors as additional Fisher matrices that are

added to the full Fisher matrix (for all parameters and all slices),

before slicing and eventually inverting those matrices to find the

constraints.

It is important to note that one may break degeneracies and

improve measurements by measuring not only the BAO features

but also the shape of the power spectrum. However, since the shape

measurements are much more sensitive to systematic errors than

the pure BAO measurements (Seo & Eisenstein 2003; White et al.

2008), by isolating the former from the latter one obtains more

robust constraints. For that reason, it has become standard practice

to first derive constraints from each redshift slice on H(z) and DA(z),

and then project those constraints into the cosmological parameters.

It has been pointed out that the smearing of the BAO scale caused

by mode-coupling in the nonlinear regime can be partially undone

(at least on large scales) by the procedure known as reconstruction

(Seo & Eisenstein 2007). For our dark energy constraints, we

assume that a simple, conservative reconstruction procedure has

been applied to all data sets, which would lower the non-linear

scale �0 from 11 h−1 Mpc to 6.5 h−1 Mpc.

The procedure for extracting constraints from BAOs while

isolating as much as possible the systematics from the unknown

broad-band shape of the power spectrum and non-linear effects

has been well established (Seo & Eisenstein 2003). We have

followed this standard procedure, which in our case means that

our basic (parent) Fisher matrices include not only the ‘global’

degrees of freedom θglob = {k, b, c, h, ns} but also ‘local’

parameters, which are unknown on each redshift slice: θ loc = {H(z),

DA(z), fσ 8(z), bσ 8(z), Pshot(z)}. If there are more than one tracer

available on a given slice, there are as many bias factors in that

slice.

After marginalizing against every other parameter in the parent

Fisher matrix, we obtain constraints for the radial and angular-

diameter distances on each redshift slice (for dark energy constraints

we employed slices of �z = 0.2, and rescaled DESI and Euclid

parameters to match that choice). Finally, the Fisher matrices in

MNRAS 493, 3616–3631 (2020)
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3622 M. A. Resco et al.

Figure 1. Top panel: Constraints on w0 (left) and wa (right) as we increase the depth of the surveys. Here, we consider only the clustering information. The

errors for J-PAS (8500 deg2, black solid lines; 4000 deg2, black thin lines) combine ELGs, LRGs, and QSOs; those for DESI (14 000 deg2, blue dashed lines)

combine the BGS sample, ELGs, LRGs, and QSOs; and those for Euclid (15 000 deg2, green dotted lines) include only ELGs. Bottom panel: Added value of

each successive redshift slice (assuming here bins of �z = 0.2) on w0 (left) and wa (right).

terms of these parameters are used to derive constraints on the

desired cosmological parameters – in our case, {m, w0, wa}. This

last step requires that we use the BAO scale, which is imposed in

terms of a suitable prior derived from Planck data.

As mentioned earlier, our model for dark energy parametrizes

the equation of state using two parameters, such that w(a) = w0

+ wa(1 − a) (Chevallier & Polarski 2001; Linder 2003). The

joint measurement of w0 and wa has been the standard metric for

comparing surveys in terms of their power to constrain dark energy

(Albrecht et al. 2006). In Fig. 1, we compare the constraints on w0

and wa for two areas of J-PAS, together with those for DESI and

Euclid. In the top panel, we show how the constraints improve as we

include successive redshift slices, and in the bottom panel, we show

the added value of each successive slice for those constraints. In

Fig. 2, we plot 1σ contour error for w0 and wa using the information

of all redshift bins. We summarize the marginalized errors for w0

and wa in Table A2.

5.1.2 Modified gravity

For MG scenarios, we have the following independent parameters:

Ai, R, and E with i denoting the different tracers. Because we

have checked that marginalizing with respect to a non-Poissonian

shot noise component has a minimal effect, for simplicity, we do

not consider the shot noise term as a free parameter in this case.

However, we are interested in obtaining errors for the effective

Newton constant parameter μ and the growth function f. Thus,

we first consider as parameters the dimensionless quantities Ai, R,

and E for each redshift bin. Using the definitions of the Ai and R

parameters, we obtain for ∂Pij (kr , μ̂r , za)/∂pα ,

∂Pij (kr , μ̂r , za)

∂Al

=
[

δli

Ai + R μ̂2
+

δlj

Aj + R μ̂2

]

Pij , (52a)

∂Pij (kr , μ̂r , za)

∂R
=

[

μ̂2

Ai + Rμ̂2
+

μ̂2

Aj + Rμ̂2

]

Pij , (52b)

∂Pij (kr , μ̂r , za)

∂E
=

[

1

E
+ 2Rμ̂2(1 − μ̂2) � +

2�za

E2 H0χ (za)

]

Pij

(52c)

where

� =
(

1

Ai + R μ̂2
+

1

Aj + R μ̂2

)(

1

E
−

�za

E2 H0 χ (za)

)

,

and the length of the bin �za appears since we have discretized the

integration in equation (23) in order to calculate the derivative with

respect to E. Following Amendola et al. (2013), in the calculation

of ∂Pij (kr , μ̂r , za)/∂E we do not consider the dependence of

Pij (kr , μ̂r , z) on E through k since we do not know its explicit

k dependence in a model-independent way.

Once we have obtained the Fisher matrix for [ Ai, R, E ],

we project first into [ Ai, f , E ], and then to [ Ai, μ, E ] using

equations (16) and (48) and the approximate analytic expression for

f = f(μ, z) (Resco & Maroto 2018a),

f (μ, z) =
1

4

(

√

1 + 24 μ − 1
)

f�(z), (53)
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Figure 2. 1σ contour error for w0 and wa for J-PAS (8500 deg2, black solid lines; 4000 deg2, black thin lines) combine ELGs, LRGs, and QSOs; those for

DESI (14 000 deg2, blue dashed lines) combine the BGS sample, ELGs, LRGs, and QSOs; and those for Euclid (15 000 deg2, green dotted lines) include only

ELGs.

Figure 3. Left: Tomographic relative errors on scale independent and constant μ for J-PAS with ELGs, LRGs, and quasars. Right: Same as in the left plot but

for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and Euclid (ELGs) using clustering information (right).

which is valid for time-independent μ. Thus, using equation (32) we

obtain the errors for f and then those for μ. Forecasts for the relative

errors in μ and f(z) in the different redshift bins can be found in

Table A4 and in Table A5 for J-PAS, in Table A3 for DESI and in

Table A6 for Euclid. In Fig. 3, we plot these results for the three

surveys. As we can see, ELGs provide the tightest constraints for

J-PAS. Compared to Euclid or DESI, we find that J-PAS provides

the best precision in the redshift range of z = 0.3–0.6. Notice this is

also the case in the 4000 deg2 configuration. This is mainly thanks

to the large number of expected ELG detection in that redshift range

that compensates the smaller fraction of sky of J-PAS as compared

to other surveys.

In Fig. 4, we show f(z) and fσ 8(z) with the expected error bars.

Errors for μ in different k-bins are obtained using (equation 34)

and can be found in Table A7 and in Fig. 5 (left). We find that

the best precision is obtained for scales around k = 0.1 h Mpc−1,

which are slightly below Euclid and DESI best scales. Finally, in

Fig. 7 (left) we show errors for the Hubble dimensionless parameter

E(z) in the different redshift bins. Once more, J-PAS provides better

precision below z = 0.6, but also thanks to QSOs observation at

higher redshifts, J-PAS will be able to measure the expansion rate

in the practically unexplored region up to redshift z = 3.5 with

precision below 30 per cent.

5.2 Weak lensing

In this section, we obtain the errors on the η parameter using weak

lensing information. First, we compute the Fisher matrix for [E, L]

in each bin which has the following form:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E1E1 E1L1 E1E2 E1L2 ...

L1E1 L1L1 L1E2 L1L2 ...

E2E1 E2L1 E2E2 E2L2 ...

L2E1 L2L1 L2E2 L2L2 ...

... ... ... ... ...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (54)
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3624 M. A. Resco et al.

Figure 4. Growth function and fσ 8 function for the fiducial cosmology with error bars for J-PAS 8500 and 4000 deg2, using ELGs+LRGs+QSOs.

Figure 5. Left: Relative errors on constant μ(k) for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and Euclid (ELGs) using clustering

information. Centre: Tomographic relative errors of scale-independent constant η for J-PAS (ELGs+LRGs) and Euclid (ELGs) using lensing information.

Right: Relative errors on constant η(ℓ) for J-PAS (ELGs+LRGs) and Euclid (ELGs) using lensing information.

Then, we obtain the expressions for the derivatives of the

convergence power spectrum. The simplest case corresponds to

the derivative with respect to L,

∂Pij

∂La

= 2H0

�za

Ea

Ki(za)Kj (za) La P̂

(

ℓ

χ (za)

)

. (55)

For the derivative with respect to E, we need the expression,

∂Ki(zb)

∂Ea

=
3(1 + zb)�za

2E2
a

[

−θ̂ (za − zb)χ (zb)

∫ ∞

za

ni(z
′)

χ (z′)2
dz′

+ θ (zb − za)

∫ ∞

zb

(

1 −
χ (zb)

χ (z′)

)

ni(z
′)

χ (z′)
dz′

]

, (56)

where we have discretized the integration in equation (23) in the

different bins and we have introduced Heaviside functions such that

θ̂ (0) = 0 and θ (0) = 1. Then the derivative with respect to E reads

∂Pij

∂Ea

= −H0

�za

E2
a

Ki(za)Kj (za)L2
aP̂

(

ℓ

χ (za)

)

+ H0

∑

b

�zb

Eb

∂Ki(zb)

∂Ea

Kj (zb) L2
bP̂

(

ℓ

χ (zb)

)

+ H0

∑

b

�zb

Eb

∂Kj (zb)

∂Ea

Ki(zb) L2
bP̂

(

ℓ

χ (zb)

)

. (57)

As in the clustering case, we have not considered derivatives of

P̂ (k).

Now, it is necessary to change the initial parameters [E, L] to

the new ones [E, η]. Using equation (38), we obtain ∂η

∂L
= 2

L
and

∂η

∂E
= 0. For time-independent parameters, we show in Table A9 and

in Fig. 5 (middle) the relative errors in η for the different redshift

bins for J-PAS and Euclid. Again, J-PAS provides the best errors

in the range of z = 0.3–0.6. In order to obtain the errors of η in

different ℓ-bins, we compute the Fisher matrix (equation 45). We

first change from [E, L] to [E, η] in each redshift bin and then sum the

information of η for the different redshift bins. The corresponding

errors can be found in Table A10 for J-PAS and Euclid as well as in

Fig. 5 (right).

5.3 Clustering+weak lensing

Finally, in this section, we analyse the case in which information

from clustering and lensing is combined. We first take the Fisher

matrix of parameters [Ai, μ, E] for clustering and [E, η] for weak

lensing and build the full matrix with parameters [Ai, μ, E, η]. This

matrix has the form,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1A1 A1μ1 0 A1E1 ...

μ1A μ1μ1 0 μ1E1 ...

0 0 η1η1 η1E1 ...

E1A1 E1μ1 E1η1 E1E1 ...

... ... ... ... ...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (58)

where EE is the sum of terms EE for clustering and lensing. By

inverting this Fisher matrix, we obtain the errors for μ and η. These
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results are shown in Table A11 for J-PAS and in Table A12 for

Euclid. Finally, Fig. 6 compares the sensitivity of both surveys

for time-independent μ and η in the different redshift bins. For

completeness, we also show the same comparison for the function

E(z) in Fig. 7. As we can see, the combination of clustering and

lensing information improves the sensitivity in around a 10 per cent

for all the parameters. We sum all the information in the whole

redshift range for μ and η and plot their error ellipses in the right-

hand panel of Fig. 8. These results are summarized in Table A13.

So far we have limited ourselves to time-independent μ and

η parameters. For scale-independent parameters, we consider the

case in equations (14) and (15). Using the analytical fitting

function for this particular expressions obtained in Resco &

Maroto (2018a), we obtain errors for μ0 and η0 with fiducial

values μ0 = η0 = 1. We plot on the left-hand panel of Fig. 8

error ellipses for μ0 and η0, and we summarize these errors in

Table A13.

6 D ISCUSSION AND CONCLUSION

Over the past years, cosmological observations have been used not

only to constrain models within the context of GR but also the

theory of gravity itself (see e.g. Okumura et al. 2016). In general,

MG theories introduce changes in the Poisson equation which

relate the density perturbations δ with the gravitational potential

�, thus modifying the amplitude and evolution of the growth of

cosmological perturbations. Furthermore, gravitational lensing is

directly sensitive to the growth of dark matter perturbations – in

contrast with measurements based on galaxies, neutral hydrogen, or

any other baryonic tracer. These theories, therefore, also introduce

modifications in the equation that determines the lensing potential

and controls the motion of photons. Thus, observations of the

distribution of matter on large scales at different redshifts, and of the

weak lensing generated by those structures, provide a new suite of

tests of GR on cosmological scales (Tsujikawa et al. 2013; Huterer

et al. 2015; Joyce et al. 2015).

In this work, we have investigated the ability of the J-PAS survey

to constrain dark energy and MG cosmologies using both the J-

PAS information on the galaxy power spectra for different dark

matter tracers, with baryon acoustic oscillations and redshift-space

distortions, as well as the weak lensing information by consid-

ering the convergence power spectrum. Our analysis considers

phenomenological parametrization of dark energy and modified

gravity models, as discussed in Section 3.

Following Amendola et al. (2013), we have adopted a model-

independent parametrization of the power spectra of clustering

and weak lensing. This parametrization considers all the free and

independent parameters that are needed to describe such power

spectra in the linear regime. In this analysis, we have fixed the

initial dark matter power spectrum P̂ (k) to the fiducial model,

corresponding to a flat �CDM cosmology. As mentioned above,

rather than focusing on specific dark energy or MG theories, we

have considered a phenomenological approach described in terms

of a set of parameters that can be contrasted with observations.

Thus, in the dark energy case, the widely used (w0, wa) CPL

parametrization has been assumed. For MG theories, two cases

have been considered. First, for time-independent μ and η, we have

performed both a tomographic redshift bin analysis and an analysis

in k-bins. By summing over all the redshift range, we have obtained

the best errors for the modified gravity parameters. Secondly, for

scale-independent parameters, we have considered the particular

parametrization in terms of μ0 and η0 (equations 14 and 15) usually

employed in the literature.

J-PAS will be able to measure different tracers, e.g. LRG, ELG,

and QS. In order to contextualize the J-PAS measurements, we have

performed the same Fisher analysis for DESI and Euclid surveys.

In the case of DESI, in addition to LRGs, ELGs, and QSOs, a

bright galaxy sample (BGS) will be also measured at low redshifts,

while Euclid will measure only ELGs. In the dark energy analysis,

we have found that J-PAS will measure w0 with precision below

6 per cent that can be compared with the 4.5 per cent for DESI

and 3 per cent for Euclid. The absolute error in wa is found to be

below 0.24 for J-PAS, 0.19 for DESI, and 0.13 for Euclid. From the

tomographic analysis, we find that using the clustering information

alone, J-PAS will allow to measure the expansion rate H(z) with

precision 3 per cent in the best redshift bin (z = 0.7) and the μ

parameter with a precision around 5 per cent in the best redshift

bin. From lensing alone, J-PAS will be able to measure η with a

precision around 8 per cent in the best redshift bin. The combination

of clustering and lensing will allow to improve the precision in μ

down to 4 per cent in the best bin. Considering the information in

the whole redshift range, we have found that J-PAS will be able

to measure time-independent μ and η with precision better than

3 per cent for both parameters. For μ0 and η0, we have obtained

errors of 10 per cent and 5 per cent, respectively.

When compared to future spectroscopic surveys such as DESI or

spectroscopic and photometric ones such as Euclid, we have shown

that from clustering and lensing information, J-PAS will have the

best errors for redshifts between z = 0.3 and 0.6, thanks to the

large number of ELGs detectable in that redshift range. Note also

that thanks to QSOs observation at higher redshifts, J-PAS will

be able to measure the expansion rate and MG parameters in the

practically unexplored region up to redshift z = 3.5 with precision

below 30 per cent.

In the whole redshift range, the J-PAS precision in both μ and

η will be a factor of 1.5–2 below Euclid in their respective best

bins. For the (time-dependent) μ0–η0 parametrization (eqautions

14 and15), we have shown that J-PAS is closer to Euclid than

in the constant case. This is due to the fact that low-redshift

measurements are more sensitive to μ0 and η0 than high-redshift

ones, such that at low-redshift J-PAS precision surpasses that of

Euclid.

Finally, it is worth mentioning that by increasing the precision in

the determination of the dimensionless Hubble parameter using

e.g. the J-PAS sample of type Ia supernovae, and taking into

account information from the non-linear power spectra, it can

be expected that the sensitivity to the μ and η parameters will

increase. Additionally, considering the cross-correlation between

galaxy distribution and galaxy shapes will also allow to improve

the precision of J-PAS in the determination of dark energy and MG

parameters.
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Figure 6. Left: Tomographic relative errors for scale-independent constant μ for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and

Euclid (ELGs) using clustering and lensing information. In the case of DESI and J-PAS quasars only clustering information is taken into account. Right:

Tomographic relative errors for scale-independent constant η for J-PAS (ELGs+LRGs+QSOs) with δz = 3 per cent and Euclid (ELGs) using clustering and

lensing information.

Figure 7. Relative errors for E(z) for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and Euclid (ELGs) using clustering information

(left-hand panel), and using clustering and lensing information (right-hand panel). In the case of DESI and J-PAS quasars, only clustering information is taken

into account. For lensing in J-PAS, the redshift error is δz = 3 per cent.

Figure 8. Left: 1σ contour error for μ0 and η0 defined in equations (14) and (15). Right: 1σ contour error for scale-independent constant μ and η. All in

J-PAS (ELGs+LRGs+QSOs) and Euclid (ELGs) surveys combining clustering and lensing information for 8500 and 4000 deg2.
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Table A1. In left-hand panel: Redshift bins and densities of luminous red

galaxies, emission-line galaxies, and quasars for J-PAS. In centre panel:

Redshift bins and densities of bright galaxies, luminous red galaxies,

emission-line galaxies and quasars for DESI. In right-hand panel: Redshift

bins and densities of emission-line galaxies for Euclid. Galaxy densities in

units of 10−5 h3 Mpc−3.

J-PAS

z LRG ELG QSO

0.3 226.6 2958.6 0.45

0.5 156.3 1181.1 1.14

0.7 68.8 502.1 1.61

0.9 12.0 138.0 2.27

1.1 0.9 41.2 2.86

1.3 0 6.7 3.60

1.5 0 0 3.60

1.7 0 0 3.21

1.9 0 0 2.86

2.1 0 0 2.55

2.3 0 0 2.27

2.5 0 0 2.03

2.7 0 0 1.81

2.9 0 0 1.61

3.1 0 0 1.43

3.3 0 0 1.28

3.5 0 0 1.14

3.7 0 0 0.91

3.9 0 0 0.72

DESI

z BGS LRG ELG QSO

0.1 2240 0 0 0

0.3 240 0 0 0

0.5 6.3 0 0 0

0.7 0 48.7 69.1 2.75

0.9 0 19.1 81.9 2.60

1.1 0 1.18 47.7 2.55

1.3 0 0 28.2 2.50

1.5 0 0 11.2 2.40

1.7 0 0 1.68 2.30

Euclid

z ELG

0.6 356

0.8 242

1.0 181

1.2 144

1.4 99

1.6 66

1.8 33

Table A2. Absolute errors for w0 and wa for Euclid,

DESI, and JPAS (with 8500 and 4000 deg2), considering

clustering information.

Survey �w0 �wa

Euclid 0.029 0.128

DESI 0.045 0.186

J-PAS 8500 0.058 0.238

J-PAS 4000 0.079 0.316

Table A3. Redshift bins, fiducial values for μ and f, and

their errors for DESI forecast with clustering information, using

BGS+ELGs+LRGs+QSOs. Relative errors are per cent errors.

DESI clustering

z μ �μ/μ f �f �f /f

0.1 1 55.4 0.585 0.085 14.5

0.3 1 27.9 0.683 0.037 5.47

0.5 1 21.9 0.759 0.048 6.32

0.7 1 4.73 0.816 0.016 1.96

0.9 1 3.59 0.858 0.014 1.62

1.1 1 3.55 0.889 0.014 1.58

1.3 1 4.41 0.913 0.017 1.87

1.5 1 6.09 0.930 0.022 2.40

1.7 1 12.7 0.943 0.044 4.66
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J-PAS forecasts on DE and MG 3629

Table A4. Redshift bins, fiducial values for μ and f, and their errors for J-PAS forecast with clustering

information, 4000 deg2 and using ELGs+LRGs+QSOs . Relative errors are per cent errors.

J-PAS clustering 4000 deg2

z μ �μ/μ f �f �f /f fσ 8 �fσ 8 �f σ8/f σ8

0.30 1 17.5 0.683 0.024 3.57 0.477 0.074 15.6

0.50 1 7.47 0.759 0.021 2.81 0.477 0.033 6.83

0.70 1 6.14 0.816 0.023 2.84 0.465 0.027 5.75

0.90 1 6.69 0.858 0.029 3.39 0.446 0.028 6.33

1.10 1 8.03 0.889 0.035 3.96 0.423 0.030 7.10

1.30 1 16.9 0.913 0.068 7.42 0.400 0.052 13.1

1.50 1 28.7 0.930 0.113 12.1 0.377 0.080 21.1

1.70 1 30.0 0.943 0.122 12.9 0.357 0.079 22.1

1.90 1 31.9 0.954 0.132 13.9 0.337 0.079 23.5

2.10 1 32.8 0.961 0.139 14.4 0.318 0.077 24.2

2.30 1 39.4 0.968 0.169 17.4 0.302 0.088 29.0

2.50 1 40.8 0.973 0.177 18.2 0.287 0.086 30.0

2.70 1 44.7 0.977 0.195 20.0 0.273 0.090 33.0

2.90 1 49.6 0.980 0.218 22.2 0.259 0.094 36.5

3.10 1 54.9 0.983 0.242 24.7 0.248 0.100 40.4

3.30 1 60.5 0.985 0.268 27.2 0.237 0.105 44.4

3.50 1 67.1 0.987 0.298 30.2 0.228 0.112 49.2

3.70 1 82.2 0.989 0.363 36.7 0.218 0.130 59.7

3.90 1 100 0.990 0.442 44.6 0.210 0.152 72.5

Table A5. Redshift bins, fiducial values for μ and f and their errors for J-PAS forecast with clustering

information, 8500 deg2 and using ELGs+LRGs+QSOs. Relative errors are per cent errors.

J-PAS clustering 8500 deg2

z μ �μ/μ f �f �f /f fσ 8 �fσ 8 �f σ8/f σ8

0.30 1 12.0 0.683 0.017 2.45 0.477 0.051 10.7

0.50 1 5.12 0.759 0.015 1.93 0.477 0.022 4.68

0.70 1 4.21 0.816 0.016 1.95 0.465 0.018 3.95

0.90 1 4.59 0.858 0.020 2.32 0.446 0.019 4.34

1.10 1 5.51 0.889 0.024 2.72 0.423 0.021 4.87

1.30 1 11.6 0.913 0.046 5.09 0.400 0.036 8.97

1.50 1 19.7 0.930 0.077 8.32 0.377 0.055 14.5

1.70 1 20.6 0.943 0.083 8.84 0.357 0.054 15.1

1.90 1 21.9 0.954 0.091 9.52 0.337 0.054 16.1

2.10 1 22.5 0.961 0.095 9.90 0.318 0.053 16.6

2.30 1 27.0 0.968 0.116 12.0 0.302 0.060 19.9

2.50 1 28.0 0.973 0.121 12.5 0.287 0.059 20.6

2.70 1 30.7 0.977 0.134 13.7 0.273 0.062 22.6

2.90 1 34.0 0.980 0.149 15.2 0.259 0.065 25.0

3.10 1 37.7 0.983 0.166 16.9 0.248 0.068 27.7

3.30 1 41.5 0.985 0.184 18.6 0.237 0.072 30.4

3.50 1 46.1 0.987 0.204 20.7 0.228 0.077 33.7

3.70 1 56.4 0.989 0.249 25.2 0.218 0.089 41.0

3.90 1 68.9 0.990 0.303 30.6 0.210 0.104 49.8

Table A6. Redshift bins, fiducial values for μ and f and their

errors for Euclid forecast with clustering information, using

ELGs. Relative errors are per cent errors.

Euclid clustering

z μ �μ/μ f �f �f /f

0.6 1 4.88 0.789 0.017 2.12

0.8 1 3.42 0.838 0.014 1.65

1.0 1 2.64 0.875 0.012 1.32

1.2 1 2.60 0.902 0.012 1.31

1.4 1 2.46 0.922 0.011 1.19

1.6 1 2.67 0.937 0.012 1.23

1.8 1 3.58 0.949 0.014 1.50
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3630 M. A. Resco et al.

Table A7. Centres of bins ka in units of h−1 Mpc, fiducial values for

μ and their relative errors (per cent) for Euclid forecast using ELGs,

DESI forecast using BGS+ELGs+LRGs+QSOs, and J-PAS forecast us-

ing ELGs+LRGs+QSOs with 8500 and 4000 deg2. All for clustering

information.

�μ/μ

k μ Euclid DESI JPAS 8500 deg2 JPAS 4000 deg2

0.024 1 7.02 8.48 8.47 12.4

0.058 1 3.49 4.59 5.09 7.41

0.093 1 2.69 3.83 4.68 6.82

0.127 1 2.50 3.80 5.10 7.44

0.161 1 2.69 4.37 6.43 9.38

0.196 1 3.12 5.37 8.92 13.0

0.230 1 3.99 7.39 15.0 21.8

0.264 1 5.34 10.7 29.6 43.2

0.299 1 7.78 17.6 67.6 98.6

0.333 1 1.21 32.6 153 223

Table A8. nθ values for J-PAS with different galaxies

and redshift errors in galaxies per square arcminute.

nθ values for J-PAS

δz LRG ELG LRG+ELG

0.003 0.52 2.48 3.00

0.01 2.02 6.21 8.23

0.03 3.25 9.07 12.32

Table A9. Redshift bins, ℓmax values, fiducial values for η, and relative

errors (per cent). In left table, errors for J-PAS, using LRG+ELG galaxies

with δz = 0.03. We show only errors using ELG+LRG and lensing

information. In right table, errors for Euclid using lensing information.

J-PAS lensing

8500 deg2 4000 deg2

z ℓmax η �η/η �η/η

0.1 40 1 12.4 18.1

0.3 130 1 7.98 11.6

0.5 238 1 10.6 15.4

0.7 366 1 23.6 34.4

0.9 514 1 106 154

1.1 686 1 – –

1.3 884 1 – –

Euclid lensing

z ℓmax η �η/η

0.2 83 1 4.21

0.4 182 1 4.48

0.6 300 1 3.97

0.8 437 1 4.72

1.0 597 1 8.10

1.2 782 1 20.9

1.4 994 1 78.3

1.6 1240 1 490

1.8 1510 1 –

Table A10. Centres of bins ℓa, fiducial values for η and relative

errors (per cent) for J-PAS, using LRG+ELG galaxies with δz=
0.03 and for Euclid using lensing information.

Euclid 8500 deg2 4000 deg2

ℓ η �η/η �η/η �η/η

100 1 5.35 10.3 15.0

250 1 7.78 16.7 24.4

400 1 8.55 63.3 92.3

550 1 15.2 360 524

700 1 42.1 – –

850 1 130 – –

1000 1 176 – –
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J-PAS forecasts on DE and MG 3631

Table A11. Redshift bins, relative errors (per cent) for η, μ, and E(z) for J-PAS considering clustering and lensing information

(with δz = 3 per cent and ELGs+LRGs+QSOs).

J-PAS clustering +lensing

z �η/η 8500 �η/η 4000 �μ/μ 8500 �μ/μ 4000 �E/E 8500 �E/E 4000

0.3 4.28 6.25 11.1 16.1 7.12 10.4

0.5 6.86 10.0 4.71 6.86 3.22 4.70

0.7 17.1 24.9 4.03 5.87 2.88 4.20

0.9 88.8 129 4.49 6.55 3.34 4.87

1.1 – – 5.47 7.97 3.98 5.80

1.3 – – 11.6 16.9 7.88 11.5

Table A12. Redshift bins, relative errors (per cent) for

η, and μ for Euclid, considering clustering and lensing

information.

Euclid clustering +lensing

z �η/η �μ/μ �E/E

0.6 2.58 4.68 3.42

0.8 3.63 2.83 1.84

1.0 6.78 2.31 1.54

1.2 17.6 2.36 1.59

1.4 66.9 2.35 1.61

1.6 415 2.60 1.74

1.8 – 3.54 2.27

Table A13. Relative errors (per cent) for constant μ and η, and μ0 and

η0 for Euclid and JPAS (with 8500 and 4000 square degrees), considering

clustering and lensing information.

Survey �μ/μ �η/η �μ0/μ0 �η0/η0

Euclid 0.98 1.37 7.13 3.38

J-PAS 8500 2.08 2.89 9.66 4.58

J-PAS 4000 3.03 4.21 14.1 6.68

This paper has been typeset from a TEX/LATEX file prepared by the author.
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