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ABSTRACT

Context. We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band
photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-
metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are
determined using this method.
Aims. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, Teff , and
metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint.
Methods. The Stellar Photometric Index Network Explorer, SPHINX, was developed to produce estimates of Teff and [Fe/H], after
training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ∼ 2000) spectra
of the Sloan Digital Sky Survey. This methodology was applied to J-PLUS photometry of the globular cluster M15.
Results. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, σ(Teff) = 91 K, over
the temperature range 4500 < Teff (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < Teff (K) < 6200, 85 ± 3% of
stars known to have [Fe/H] < −2.0 are recovered by SPHINX. A mean metallicity of [Fe/H] =−2.32 ± 0.01, with a residual spread of
0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members.
Conclusions. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for
photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.

Key words. stars: chemically peculiar – stars: fundamental parameters – stars: abundances – techniques: photometric –
methods: data analysis

1. Introduction

The chemical properties of individual stars in the Milky Way
are crucial in order to develop an understanding of our Galaxy’s
chemical evolution and assembly history. In particular, the
metallicity distribution function of Galactic halo stars is among
the most important observational constraints for cosmological

models (Beers & Christlieb 2005; Salvadori et al. 2010). The
comparatively rare stars with metallicity below 1% of the solar
value – described in terms of their metal abundance, very metal-
poor (VMP; [Fe/H]1 < −2.0), extremely metal-poor (EMP;
[Fe/H] < −3.0), and ultra metal-poor (UMP; [Fe/H] < −4.0) –

1 [A/B]≡ log10(NA/NB)∗ − log10(NA/NB)⊙.
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are expected to include the earliest generations of stars to have
formed since the Big Bang. With the exception of mass-transfer
binaries and highly evolved late-type giants, these ancient stars
retain the chemical signature of their natal environments. Mea-
surement of the chemical abundances of the earliest stars thereby
provides a means to study the nucleosynthetic pathways and
astrophysical mechanisms that were in operation during the first
generations of stars born in the early Universe. One example
is the most iron-poor star presently known, SMSS J031300.36-
670839.3 ([Fe/H] ≤ −7.1), from which the carbon ([C/Fe]) and
[Mg/Ca] abundance ratios are believed to have originated from a
single explosion of a metal-free ∼60 M⊙-mass star (Keller et al.
2014).

A substantial fraction of VMP stars exhibit large enhance-
ments of their [C/Fe] ratios, increasing rapidly with declining
[Fe/H] (see Yoon et al. 2018 and references therein); these
are known collectively as carbon-enhanced metal-poor (CEMP)
stars (Beers & Christlieb 2005). Guided by the work of Spite
et al. (2013) and Bonifacio et al. (2015), Yoon et al. (2016)
explored the complex morphology of CEMP stars in the A(C)-
[Fe/H] space2. The so-called Yoon–Beers diagram (Fig. 1 of
Yoon et al. 2016) provides evidence for multiple progenitors and
environments in which different sub-classes of CEMP stars are
found. The identification and study of significantly larger sam-
ples of CEMP stars is crucial for future studies, as only 300+
of these stars with available high-resolution spectroscopy are
currently known.

Obtaining chemical abundances and overall estimates of
metallicity is a costly endeavor, however, requiring pre-selection
and follow-up spectroscopic analysis for confirmation. While
there are now tens of thousands of VMP stars with well-
measured (medium-resolution) spectroscopic metallicities, the
numbers of known EMP and UMP stars are considerably
smaller; in particular, ∼30 UMP stars have been discovered to
date (the compilation as given in Placco et al. 2015, 2016, and
Abohalima & Frebel 2018; Starkenburg et al. 2018; Frebel et al.
2019; Aguado et al. 2018).

Wide-field photometry offers an alternative means to probe
the chemical characteristics of stars, and presents a method
for pre-selection of targets based on their colors. Using broad-
band photometry from the Sloan Digital Sky Survey (SDSS;
York et al. 2000), Ivezić et al. (2008) developed a methodol-
ogy for estimating metallicity for F- and G-type main-sequence
stars (5000 < Teff (K) < 7000, 3 < log g < 5) using polyno-
mial regressions based on de-reddened u–g and g–r colors. This
approach was found to be effective down to [Fe/H] approxi-
mately −2.0.

Later, An et al. (2013, 2015) used fiducial isochrone fits
to SDSS ugriz photometry to extend metallicity determinations
for main-sequence stars with broadband photometry down to at
least [Fe/H] approximately −2.5. This new threshold is below
the peak in the metallicity distribution function of outer-halo
population stars ([Fe/H]= − 2.2; Carollo et al. 2007, 2010),
leading them to conclude that ∼35–55% of local halo stars
belong to this population. Other notable moderate- and narrow-
band photometric metallicity estimation techniques have existed
for many years, for instance, the Washington (Canterna 1976)
and Strömgren (Strömgren 1963, 1964) systems. However, no
wide-field large sky-coverage surveys in these systems have
been carried out to date. The Canada-France Imaging Survey,

2 A(X) = log ǫ(X) = log(NX/NH) + 12, where X represents a given
element.

which will cover 10 000 deg2 of the northern sky with a u-band,
demonstrated metallicity sensitivity of σ[Fe/H] = 0.2 dex down
to [Fe/H] approximately −2.5 for dwarf stars (3 < log g < 5) when
combined with SDSS and PS1 photometry (Ibata et al. 2017a,b).

Pre-selection of targets for spectroscopic follow-up can dra-
matically increase the success rate for the identification of large
numbers of metal-poor stars. For example, using all-sky APASS
optical, 2MASS near-infrared, and WISE mid-infrared photom-
etry, Schlaufman & Casey (2014) developed an efficient method
for selecting bright (V < 14) metal-poor candidates based on
their lack of molecular absorption near 4.6 µm. This effect was
demonstrated to be present in atmospheres of all surface gravities
in the effective temperature range 4500 . Teff (K) . 5500. Of
these targets, 32.5% were found to have −3.0 < [Fe/H] < −2.0.
The identification of bright metal-poor candidates is of great
benefit to high-resolution follow-up observations, for which the
acquisition of high-resolution spectra with high signal-to-noise
ratio (S/N) can become prohibitively expensive in terms of
telescope time.

New multiband photometric surveys build upon previous
broadband photometric metallicity determinations by implemen-
tation of one or more narrowband filters across the optical and
near-infrared spectrum to target key stellar absorption features.
The SkyMapper Southern Survey (Keller et al. 2007) makes use
of a 310 Å v-band filter, which covers (but is not centered on) the
Ca II K line, along with SDSS-like ugriz filters, to survey much
of the entire southern hemisphere sky. Other recent ongoing sur-
veys, such as Pristine (Starkenburg et al. 2017), are employing a
narrowband (∼100 Å) filter centered on the Ca II H & K lines,
a technique pioneered by Anthony-Twarog et al. (1991). When
used in conjunction with pre-existing SDSS or Pan-STARRs
(Tonry et al. 2012) broadband filter photometry, they obtain
improved photometric metallicity estimates for numerous stars
over large swaths of sky. As described by Starkenburg et al.
(2017), Pristine’s resulting success rate for recovering EMP stars
is 26%, with 80% of the remaining candidates being VMP stars.
When combined with SDSS photometry, Pristine has demon-
strated an accuracy of ∼0.2 dex down to [Fe/H] < −3.0. The use
of Ca II H & K photometry from Pristine has already led to the
discovery of a [Fe/H]< −4.66 star, Pristine_221.8781+9.7844
(Starkenburg et al. 2018).

Located at the Observatorio Astrofísico de Javalambre (OAJ,
Teruel, Spain), the Javalambre Auxiliary Survey Telescope
(JAST/T80) is a 83 cm telescope that is currently carrying out
the Javalambre Photometric Local Universe Survey (J-PLUS;
Cenarro et al. 2019). A twin of JAST/T80, based at the Cerro
Tololo InterAmerican Observatory (CTIO, Chile), is execut-
ing the Southern Photometric Local Universe Survey (S-PLUS;
Mendes de Oliveira et al. 2018), a Southern Hemisphere coun-
terpart of J-PLUS.

J-PLUS is the first large-sky survey conducted at the OAJ,
and was initially conceived to aid with photometric calibration
of the upcoming Javalambre Physics of the Accelerating Uni-
verse Survey (J-PAS; Benitez et al. 2014), to be executed as well
at the OAJ. While J-PAS is motivated by cosmological goals
and, hence, has formally stronger requirements than J-PLUS
in terms of photometric depth and number of narrowband fil-
ters (see Benitez et al. 2014 for details), J-PLUS has scientific
goals that are largely (but not exclusively) related to the science
of the Milky Way Halo and local Universe studies. The seven
narrowband (∼100 Å) filters of J-PLUS (J0378, J0395, J0410,
J0430, J0450, J0515, J0660, J0861) are specifically designed
to detect a variety of absorption features across the optical
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Fig. 1. Synthetic spectra of varying abundances are shown plotted over the J-PLUS filters J0395, J0410, and J0430. The J0395 filter is optimally
centered on the Ca II H & K lines, which can be used as indicators of the overall stellar metallicity. The temperature-sensitive Hδ line is apparent
in the F410 filter. The J0430 filter captures the CH G-band, which serves as a carbon indicator.

spectrum (Cenarro et al. 2019 for details). The filter system
also hosts traditional ugriz bands, similar to those of SDSS,
but with a more stable u-band response (Cenarro et al. 2019).
Figure 1 depicts the location of some filters of special interest –
J0395, J0410, and J0430, from left to right – along with
the corresponding spectral features, illustrated with synthetic
spectra.

These filters provide the sensitivity necessary to detect
absorption features such as the Ca II H & K lines, and the CH
G-band, but mapping their behavior to estimate metallicity,
[Fe/H], and the carbon-to-iron abundance ratio, [C/Fe], presents
a highly degenerate problem. At temperatures above ∼5750 K,
the CH molecule begins to dissociate, while the Hγ line broad-
ens to the extent of disrupting the feature. The Ca II H & K lines
also exhibit a strong temperature dependence. In addition, many
lines respond to varying surface gravity due to Stark pressure
broadening. A robust technique capable of unraveling the com-
plex behavior of the parameter space explored by these filters for
estimates of stellar parameters is thus required.

Machine learning tools – and in particular, Artificial Neu-
ral Networks (ANN) – have a long history (Rosenblatt 1958),
but have found success in data-driven astronomical applica-
tions. Once adequately trained, these networks are powerful
statistical pattern recognition tools capable of modeling highly
complex behavior, through implementation of non-linear activa-
tion functions according to a user-specified architecture. Fabbro
et al. (2018) applied their deep convolutional neural network,
StarNet, to SDSS-III APOGEE (Eisenstein et al. 2011) spectra
for determination of effective temperature, surface gravity, and
metallicity, with precision and accuracy similar to that of the
APOGEE pipeline. Using APOGEE DR14 for validation, Ting
et al. (2019) applied a neural network function in their method,
The Payne, to interpolate training sets of physical ab initio spec-
tral models, and produced estimates of stellar parameters and 15
element abundances.

Deep convolutional networks have also been used to deter-
mine the evolutionary states of red giants from astroseismology
(Hon et al. 2017). Using frequency power spectra from the Kepler
mission (Borucki et al. 2010), Hon et al. (2018) classified 426
red giants as red giant branch or helium-core burning stars.

Neural networks have been employed for classification-based
problems in astronomy as well, such as star-galaxy classification
(Kim & Brunner 2017) and spectral classification (Kheirdastan &
Bazarghan 2016).

In this paper, the utility of ANNs for estimates of effec-
tive temperature and metallicity is explored. We present the
Stellar Photometric Index Network Explorer (SPHINX3), a soft-
ware package based on ANN estimation of stellar parameters
(Teff and [Fe/H]) from the J-PLUS mixed-bandwidth photom-
etry. All training catalogs and parameter determination routines
used in the text are provided. The databases and ANN used in the
development and operation of SPHINX are described in Sects. 2
and 3. The basic structure is outlined in Sect. 4. In Sect. 5, the
training process and results of effective temperature determina-
tions are described, followed by the results of the metallicity
determinations in Sect. 6. An application of SPHINX to a case
study of the metal-poor globular cluster M15 is conducted in
Sect. 7. A preliminary investigation of carbon sensitivity within
the J-PLUS filter system is described in Sect. 8, and a concluding
discussion of results and future applications is given in Sect. 9.

2. Databases

2.1. The J-PLUS early and first data releases

Calibration and testing of the network’s inputs were performed
in part with the J-PLUS data set. The J-PLUS First Data Release4

(hereafter DR1) consists of 511 pointings collected from Novem-
ber 2015 to January 2018 with JAST/T80 in all twelve optical
bands described above, and covers approximately 1022 deg2. The
reduction and photometric calibration of the J-PLUS DR1, as
well as the limiting magnitudes in the twelve bands, are pre-
sented in Cenarro et al. (2019). A representative subset of the
DR1, the J-PLUS Early Data Release (EDR), comprises 18 point-
ings (36 deg2), and is publicly available5. In addition to the
present paper, the J-PLUS EDR and science verification data
have been used to refine the membership in the nearby galaxy

3 https://github.com/DevinWhitten/SPHINX
4 j-plus.es/datareleases/data_release_dr1
5 j-plus.es/datareleases/early_data_release
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Table 1. Reddening coefficients for the J-PLUS photometric system.

Filter λeff A(λ)/E(B − V)

name (Å)

u 3536 4.295
J0378 3782 4.013
J0395 3939 3.849
J0410 4108 3.685
J0430 4303 3.506

g 4810 3.120
J0515 5141 2.864

r 6271 2.235
J0660 6604 2.070

i 7669 1.668
J0861 8611 1.377

z 8979 1.290

clusters Abell 2589 and Abell 2593 (Molino et al. 2019), ana-
lyze the globular cluster M15 (Bonatto et al. 2019), study the
Hα emission (Logroño-García et al. 2019) and the stellar pop-
ulations (San Roman et al. 2019) of several local galaxies, and
compute the stellar and galaxy number counts up to r = 21
(López-Sanjuan et al. 2019).

Selections of the 6 arcsec aperture photometry were made
from the MagABDualObj catalogs for each release. To limit con-
tamination from non-stellar type objects, we removed extended
sources using the stellarity index given by SExtractor,
CLASS_STAR ≥ 0.92 (Bertin & Arnouts 1996; López-Sanjuan
et al. 2019). This morphological classifier was itself based on a
neural network, taking into account the pixel scale of the image
and full width at half maximum.

From these selections, we obtained 3 132 543 and 78 329
sources for DR1 and EDR, respectively. Minor variations in the
6 arcsec aperture photometry were present, tile by tile, in EDR.
Corrections were made, based on a stellar-locus regression tech-
nique provided by Cristóbal-Hornillos et al. (priv. comm.). For
training and validation of SPHINX, these catalogs were cross-
matched, using a 1.0 arcsec search radius, with stars from the
SDSS Reservoir (described in Sect. 2.2) with available stellar
atmospheric-parameter estimates. This search radius was varied
to 3.0 arcsec, and no new stars were obtained.

Interstellar extinction is expected to be small in EDR and
DR1. However, application of extinction corrections is still
expected to improve the performance of the photometric ANNs.
One method to determine reddening coefficients for J-PLUS
photometry is to convolve the filter-response functions corre-
sponding to each of the J-PLUS filters with the reddening law
from Fitzpatrick (1999). The result is a transmission-weighted
sum of the wavelength-dependent extinction contribution within
the filter bandpass. These values are provided in Table 1. The
effective wavelength, λeff , was determined from a transmission-
weighted average of the wavelength for each filter.

To estimate the line-of-sight reddening, E(B − V), for our
sources, we used Schlafly & Finkbeiner (2011). Corrections for
reddening estimates for the J-PLUS photometry indeed improved
the synthetic magnitude calibrations (Sect. 2.3). However, these
corrections are subject to some limitations, particularly in that
this extinction map is only two dimensional. In future work,
we will utilize three-dimensional estimates of dust extinction
(e.g., Green et al. 2018), based on parallaxes from Gaia Data
Release 2 (Gaia Collaboration 2016). In this work, we imple-
mented a hard extinction selection, corresponding to E(B− V) <

0.05 dex, so that more reddened sources were not admitted to our
samples.

2.2. The SDSS Reservoir

Three separate spectroscopic campaigns comprise the training
databases for SPHINX, hereafter called the SDSS Reservoir. The
first, SDSS’s Baryon Oscillation Spectroscopic Survey (BOSS;
Dawson et al. 2013), obtained over 500 000 stellar spectra
(including repeated stars) across a wavelength of 3 600–10 000 Å
(R ≈ 2000) over approximately 10 000 deg2 of the sky. Our
database included 80 221 stars from this survey, selected for high
S/N and low metallicity ([Fe/H] < −0.5). The Sloan Extension
for Galactic Understanding and Exploration (SEGUE; Yanny
et al. 2009) took place in two phases, SEGUE-1 and SEGUE-2,
and covered a combined area of 2755 deg2. We made use of
147 811 of the ∼350 000 spectra from this sample. Finally, we
included 74 572 spectra from the component of SDSS-I known
as the Legacy Survey, provided by SDSS DR7 (Abazajian et al.
2009). This survey covered primarily ∼7500 deg2 of the North
Galactic Cap, with additional stripes in the South Galactic Cap
amounting to ∼740 deg2.

Stellar parameters for these databases were derived using the
SEGUE Stellar Parameter Pipeline (SSPP; Lee et al. 2008a,b).
This pipeline made robust determinations of effective temper-
ature (Teff), surface gravity (log g), metallicity ([Fe/H]), and
carbonicity ([C/Fe]) over a temperature range 4000 < Teff (K) <
8000. Typical random uncertainties in the effective temperature
and metallicity estimates for F- and G-type stars were deter-
mined empirically, σ(Teff) ∼ 130 K, and σ([Fe/H])∼ 0.21 dex
(Allende Prieto et al. 2008). The color–magnitude diagram of
stars available for training from the SDSS Reservoir is shown
in Fig. 2, along with the effective temperature and metallicity
distributions of source matches with J-PLUS DR1. In all three
plots, stars were limited to those with σ(Teff) < 250 K, σ[Fe/H]<
0.3 dex, and S/N > 25, as dictated by the SSPP.

2.3. Synthetic magnitudes

Synthetic photometry was computed for all spectra in the
databases described above. This was done initially to provide the
photometric inputs required for network training before J-PLUS
had accumulated an adequate number of source photometry with
EDR and DR1. First, filter intensities were computed by taking
the inner product of the flux-calibrated spectrum and the J-PLUS
filter-response functions. These filter intensities were converted
to synthetic magnitudes using the following form of the asinh
magnitude, or luptitude (Lupton et al. 1999):

m = (−2.5/ ln 10) ·

[

sinh−1 f

2b f0
+ ln b

]

. (1)

Here, f was the integrated flux through the filter. Appropriate
values for the classical zero-point, f0, and the softening parame-
ter, b, were determined by calibrating the synthetic intensities to
known J-PLUS magnitudes from a cross-match of EDR and DR1
with synthetic magnitudes derived from the flux-calibrated spec-
tra for stars in common with the SDSS Reservoir. This was done
using the orthogonal distance regression technique (Boggs &
Rogers 1990), taking into account error estimates in the native
photometry as well as the variances in the flux reported in the
medium-resolution SDSS spectra.

The resulting synthetic magnitude calibrations for stars in
the SDSS Reservoir are shown in Fig. 3. In addition, minor
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Fig. 2. Left panel: Hess diagram of the SDSS Reservoir available for training of the photometric ANN pipeline. Top right panel: metallicity
distribution of the SDSS Reservoir and the subset with J-PLUS DR1 photometry. Bottom right panel: distribution of effective temperatures for the
subset of the SDSS Reservoir with [Fe/H] < −2.5.

Table 2. Limiting magnitudes for synthetic calibrations.

Filter mlim σm

name (mag) (mag)

J0395 18.46 0.11
J0410 18.52 0.09
J0430 18.69 0.08

g 18.68 0.07
J0515 18.79 0.05

r 18.90 0.04
J0660 18.80 0.04

i 18.75 0.04
J0861 18.48 0.05

offsets (±0.2 mag) were found and removed in a few J-PLUS
tiles during the calibration. Residuals in the synthetic magni-
tude calibrations are moderately dependent on the S/N of the
underlying SDSS spectra, particularly for the J0395 and J0410
filters. Sources with S/N < 25 and magnitude uncertainties
larger than 0.1 mag were thus excluded for each calibration. This
S/N cut had the effect of preferentially removing calibration
stars at fainter magnitudes, where we found that the scatter for
each calibration tended to increase. Considering again a critical
limit in the scatter of 0.1 mag, we found limiting magnitude
values for each filter, provided in Table 2 along with the standard
deviation, σm, of the corresponding calibration. Use of synthetic
magnitudes beyond these limits is not recommended, as the cal-
ibrations are less reliable. Both uncertainties in the underlying
SDSS spectra and the native J-PLUS photometry contribute to
the scatter seen in the Fig. 3, but if synthetic magnitudes are
limited to those with S/N > 25, the critical residual value of
0.1 mag is reached at characteristically brighter values in the
native photometric system.

As expected, the scatter in the photometric calibration is seen
to increase for bluer filters, where CCD response and atmo-
spheric absorption become more problematic. This calibration

ensured that synthetic magnitudes were on the same scale as the
J-PLUS photometric system, thus both synthetic and native pho-
tometry could be used interchangeably within the magnitude and
S/N limits specified.

The blue cutoff of the SEGUE spectra (∼3700 Å) precluded
determination of synthetic magnitudes for the J0378 and u-band
filters. The same was true for the z-band filter, for which the
response curve extended beyond the range of the SEGUE spec-
tra. Consequently, these filters were excluded from the method-
ology. Once photometry is available for a sufficient number of
these stars, construction of synthetic magnitudes for training of
the ANNs will not be necessary, and these filters should cer-
tainly be included, as they each capture important information
about the stellar atmospheres.

2.4. The synthetic library

For exploratory and training purposes, we made use of a library
of synthetic spectra. To build the synthetic spectra library, we
proceeded similarly to the approach described by Lee et al.
(2013). In short, we used a specific grid of model atmospheres
computed with the MARCS code (Gustafsson et al. 2008), which
took into account the impact of the carbon enhancement in the
atmosphere. From those model atmospheres we generated the
synthetic spectra using the Turbospectrum routine (Álvarez &
Plez 1998; Plez 2012). Compared to Lee et al. (2013), we
improved the procedure in several aspects. First, we extended the
wavelength range, now covering the entire optical region from
3000 to 10,000 Å. In addition, we updated the linelists to include
CN, CH, NH, C2, MgH, TiO, ZrO, CaH, VO, and SiH for the
molecules, and the ultimate version of VALD3 (Ryabchikova
et al. 2015) for the atoms. Finally, we extended the grid to a
much larger space of parameters, 3500 ≤ Teff (K) ≤ 8000 in
increments of 250 K, 0.0 ≤ log g ≤ 5.0 in increments of 0.5 dex,
−4.5 ≤ [Fe/H] ≤ +0.5 in increments of 0.25 dex, and −1.5 ≤
[C/Fe] ≤ +4.5 in increments of 0.25 dex.

Due to the finite resolution of this library, we interpolated
when necessary using a 4D cubic spline interpolation routine
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Fig. 3. Synthetic magnitudes determined with SDSS Reservoir and J-PLUS filter-response functions are compared with photometry from the
J-PLUS First Data Release. Scatter in the calibrations increases for bluer filters, as the uncertainty in the interstellar extinction correction is larger.
The colors are indicative of the photometric tile from which the data were obtained, for which no biases are seen.

(Y. S. Lee, priv. comm.). Training sets could then be generated
with stellar parameters distributed anywhere within the param-
eter regions of interest. A crude flux-calibration was performed
on these spectra by convolving each normalized spectrum with
a blackbody function corresponding to its effective tempera-
ture. This library was primarily used for investigation of the
photometric carbon sensitivity, discussed in Sect. 8.

2.5. Narrowband parameter response

In addition to sampling the overall blackbody function of the
spectral-energy distribution (SED), we expect response to a
number of temperature-sensitive features present in the narrow-
band filters. For example, the J0410 filter hosts a particularly
temperature-dependent feature, the Hδ line (4102 Å); see Fig. 4.
In the upper left panel, we consider the strength of Hδ over the
temperature range 5250 < Teff (K) < 8000 for a star of log g =
2.5, [Fe/H] = −2.50, and [C/Fe] = 0.0. As seen in the upper
right panel, this temperature range corresponds to a 31% increase
in the equivalent width of Hδ, from 18.4 to 24.2 Å. Thus, we
anticipate success using networks in which training parameters
include photometric colors and magnitudes incorporating the
J0410 filter.

The Ca II H & K lines (3969 and 3934 Å, respectively) dis-
play similar behavior with increasing metallicity. In the middle-
left panel, we vary the metallicity of a Teff = 5000 K star over
the range −4.00 < [Fe/H] < 0.0. From inspection of the middle-
right panel, for a star of solar metallicity, the equivalent widths
of the Ca II H & K lines are 42 and 64% stronger than for a
[Fe/H] = −2.0 star of the same temperature. However, the Ca II
H & K lines also exhibit an asymmetric temperature dependence.
In the same range of effective temperature, the Ca II H line
strength can increase by as much as 50% for a star with [Fe/H] =
−2.50, due to the increasing influence of Hǫ at λ = 3970 Å.
Meanwhile, the Ca II K line nearly vanishes by Teff = 7500 K.
We therefore expect to obtain a keen sensitivity to metallicity
by incorporation of the J0395 filter in our methodology, and
anticipate the necessity to unravel a degeneracy with effective
temperature.

3. Artificial neural network

3.1. Architecture

In the development of SPHINX, we generalized the use of the
core ANN element with what amounts to a three-layered system.
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Fig. 4. Top panels: temperature sensitivity of the Hδ feature. Over an effective temperature range of 5250 < Teff (K) < 8000, we expect an increase
in absorption of 31% for a star of log g = 2.50, [Fe/H] = −2.50, and [C/Fe] = 0.0. Middle panels: variation in Ca II H & K line strengths with
increasing metallicity for a star of Teff = 5000 K, log g = 1.0, and [C/Fe] = 0.0. Bottom panels: Ca II H & K line response to increasing effective
temperature. The Ca II H line is nearly superposed with Hǫ.

The motivations for this structure are discussed in Sect. 4. Here,
we consider the basic function of an ANN.

For the core implementation of the ANN, we made use
of the multilayered perceptron class, MLPRegressor, from
scikit-learn (Pedregosa et al. 2011). We chose a feed-forward
algorithm with one hidden layer of neurons. As an example,
Fig. 5 shows a schematic of this network. Each node computes a
non-linear function of the scalar product of the input vector and a
weight vector. For N nodes, the functional form can be expressed
as follows:

y(x) = g̃















N
∑

i=1

ωi2 · g(ω
T
i1x)















. (2)

Here, x denotes the input vector, in our case, the pre-scaled
magnitudes from a subset of the J-PLUS filter set. Each neu-
ron, i of N, in the hidden layer receives the sum of the input
vector with the weight vector corresponding to the first layer,
ωi1, represented for simplicity by the inner product, where T
denotes the transpose. For each hidden layer, we implement a
bias neuron, the corresponding weight of which is included in

ωi1. These bias neurons produce a constant output of 1, and
thus are not connected to the previous layer. Bias neurons help to
shape the output of the activation function, where they shift the
inner product in a way analogous to the y-intercept of a linear
equation.

The node then applies an activation function, g, and the
output is provided to the output layer. A similar sum is then per-
formed with the outputs of each neuron in the hidden layer and
the weights of the second layer where, in general, the output acti-
vation function, g̃, is not required to be the same function used
in previous layers.

A hyperbolic tangent activation function was implemented in
SPHINX, in part because it resulted in faster convergence times,
but also because the function maps the input vectors to (−1,1),
while the logistic sigmoid produces values in an asymmetric
range (0,1). It has been empirically shown that symmetric acti-
vation functions produce faster convergence times (Le Cun et al.
1991). This is the case for the application of effective temperature
and metallicity estimates.

Optimal weights for the network are determined using
a stochastic gradient descent algorithm. With traditional
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Fig. 5. Example network element used in the SPHINX ANN pipeline.
The ANN unit utilizes a feed-forward algorithm and consists of a single
hidden layer. The inputs are scaled combinations of J-PLUS colors and
magnitudes.

back-propagation, partial derivatives are computed for each
weight with respect to a specified error function, E, to determine
the influence of small perturbations of each weight’s value. In
this manner, new values of the ith weight in the jth layer can be
determined as follows (Riedmiller 1994):

ωi j(t + 1) = ωi j(t) − ǫ
∂E

∂ωi j

(t). (3)

Here, ǫ is the learning rate, which scales the update correction.
Fixed values of this parameter were found to introduce oscilla-
tions, where the updated value over-corrects with each iteration,
and so never converges to the optimal weight. To overcome this, a
stochastic gradient-based optimizer known as Adam was imple-
mented, in which an adaptive-learning rate is computed from
first-order moments of the gradient in the scalar cost function
(Kingma & Ba 2014).

3.2. Prescaling/normalization

Prior to using the magnitudes of our training set to converge
the network, a form of prescaling was applied, whereby all
input variables were set to the same scale. The chosen tech-
nique was simply a linear rescaling, in which we subtracted the
sample mean and divide by the standard deviation, leaving each
input vector with a mean of zero and variance of one. A more
robust method of prescaling was also included as an option in
SPHINX, in which the center of the distribution is taken as the
median, and the spread is determined by some specified per-
centile range. This provides the option to control the fraction of
inputs between [−1, 1], or the optimal domain of the activation
function’s response.

Although synthetic magnitudes are calibrated to the J-PLUS
photometric system, it is highly desirable to train the ANN with
inputs for which the distributions match that of the validation,
or science set. Otherwise, prescaling the input colors could push
these inputs to a region that requires the ANN to extrapolate from
the inputs, or operate near the asymptotic region of the activation
function.

This ANN structure serves as the basis for the architec-
ture of SPHINX, where we generalize the use of the ANN in
a larger, three-layered structure in an attempt to maximize the

capability of the ANN, while including the variety of input com-
binations available. We describe the detailed design of SPHINX
in Sect. 4.3.

4. Parameter determination and optimization with

SPHINX

4.1. Training set assembly

In contrast to an ANN’s capability for modeling patterns in
high-dimensionality space, their ability to extrapolate beyond
the boundaries of their underlying training set is quite limited.
One consequence of this limitation is the need to be aware of
the distribution of the validation set prior to training of the net-
work. While we have no a priori knowledge of the chemical
abundance and atmospheric-parameter distributions in EDR and
DR1, we have all of the necessary information regarding the
magnitude distributions, which can be used to construct an ideal
training set.

At present, SPHINX allows for selection of training stars
from a variety of catalogs, including the subset of EDR and
DR1 sources with available SSPP-estimated parameters, as well
as SDSS Reservoir sources with synthetic magnitudes calibrated
to the J-PLUS photometric system. SPHINX then performs an
S/N, photometric error, and E(B − V) rejection according to the
specified thresholds, in addition to the faint and bright limits, all
of which are set in the input parameter file. With the appropri-
ate parameter bounds and rejections determined, the training set
can be uniformly sampled across the target variable, in this case
Teff or [Fe/H]. This routine is optional, but is designed to protect
against overemphasis by the network on a particular region of the
parameter space.

Once all desired processing of a training set is complete,
we define a scale frame, which describes each input distribution
in the target set. This includes the center location and spread
estimates that SPHINX used to linearly scale and unscale all
inputs to the networks for training and parameter estimation.
If the number of target sources is large, it may be desirable
to set the scales according to the target photometry. However,
if the target list consists of only a few sources, this is not advised;
the scales should be set based on the training set’s photometric
distributions. The default manner of determining the center and
spread of each distribution is to fit a Gaussian to each input. A
more robust method utilizing the median and fourth-spread, or f
spread (i.e., the interquartile range), is also available, although
it was found that alternative estimates of the scales did not
significantly influence the network’s performance.

4.2. Approximating input distributions

While the SDSS Reservoir and DR1 catalogs are sufficiently
large that we can construct training sets across a reasonably wide
range of stellar parameters and magnitudes, an effective method
to accommodate a variety of target (or testing) distributions is
required. For instance, our selection from the J-PLUS M15 pho-
tometry (details in Sect. 7) comprises stars of 14 < g < 18,
well within the SDSS Reservoir distribution. However, the SDSS
Reservoir distribution peaks at g = 18.3, with a standard devia-
tion of 1.2 mag, while the M15 distribution mean and standard
deviation are g = 16.3 and 1.1 mag, respectively. Training stars
naively sampled from the SDSS Reservoir catalog would intro-
duce a bias towards the fainter stars in the M15 cluster, which is
not ideal.
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Fig. 6. Example schematic of the Stellar Photometric Index Network Explorer (SPHINX). The architecture consists of a scalable three-layered
neural network. The hidden layer performs the hyperbolic tangent activation function on the neuron-specific weighted inputs. The following layer
represents each sub-networks best estimate of the stellar parameter. The final layer performs a validation weighted sum of the estimates verified to
have resulted from the interpolating networks.

We include the option to force the training set input distri-
butions to best approximate those of the target or science set.
For a certain magnitude or color input, it is assumed that the
center and spread of the target distribution have previously been
set. The following error function is minimized for γ, the scale of
the Gaussian distribution in the training set corresponding to the
center and scale of the target distribution:

Φ(γ|x̄,σ) =

N
∑

i

∣

∣

∣

∣

∣

∣

yi − γ · exp

[

−(x − x̄)2

2σ2

]
∣

∣

∣

∣

∣

∣

−α

, (4)

where the scale γ sets the maximum number of stars with input
value x ± δx that can be drawn from the training distribution,
such that the resulting input distribution conforms to a Gaussian
described by x̄ and σ. We leave α as a free parameter (default
α = 1/2) to tune the level with which the algorithm penalizes
non-conformities to the desired distribution.

4.3. Network optimization with SPHINX

In general, the proper combination of inputs for the network – or,
for that matter, their quantity – is not known. We anticipate the
use of temperature-sensitive filters such as J0410 and J0660, and
metallicity-sensitive filters such as J0395, J0515, and J0861.
Beyond these, however, it is not directly apparent what addi-
tional combinations facilitate the capabilities of the network.
Furthermore, for networks operating with different combinations
of photometric inputs, one network may be forced to extrapolate,
but not another.

To address these concerns and ensure resilience against
potentially faulty inputs in both the training and science case
data, we enable a system of networks, or ANN units, each with a
distinct combination of the available inputs. SPHINX determines
all combinations of the specified filters and their corresponding
colors, assigning and training a network for a specified number
of these combinations. Throughout the operation and analysis
of SPHINX, the number of inputs to each ANN unit is small
(N = 6), to maximize the ANN’s dependence on the each input
in the subset, and also to mitigate the convergence time of each
ANN in the array.

The basic schematic of SPHINX is shown in Fig. 6. For sim-
plicity of this illustration, only a sub-sample of available colors
is shown, and the number of ANN units is limited to three. As
can be seen, SPHINX amounts to a three-layered neural net-
work, consisting of a layer of subordinate ANN units that we
call the network array. This array is of scalable size; we evalu-
ate the performance of SPHINX as a function of array size in
Sect. 6. For every network estimate made, SPHINX notes when
that network is extrapolating outside of its training domain. This
is accomplished with a structure that we refer to as an interpola-
tion frame, which stores the domains of all inputs in the training
set. All estimates made in the network array layer are subject
to an interpolation check, flagging any and all estimates where
extrapolation was necessary.

During training, the performance of each ANN unit in the
network array is evaluated and recorded using a validation set,
and this analysis is used to assign each ANN unit a score for
future reference and for computing final estimates. We define
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a score for the network, which we base on a modified median
absolute deviation (MAD) of the verification set:

ξN = median(|EN −median(E)N)|)−β, (5)

where EN represents the error in network N’s estimate of the
target variable in the verification set. Here, β is left as a free
parameter (default β = 2) to control the degree to which we
penalize ANN units with poorer performance in the final param-
eter estimate. We then assert that the proper science estimate is
the weighted sum of each network estimate and its corresponding
score, ξN .

A system of twelve filters corresponds to
(

12
2

)

= 66 possible
colors. With a network array size of six ANN units, the result-
ing number of unique color combinations is

(

66
6

)

= 90 858 768,
an infeasible number of networks to train in a finite time. To
address this, we allow for a specified number of input combina-
tions to be utilized, whereby a subsample of networks from the
underlying ensemble is selected. This can be done at random,
or if any specific filters or colors are desired, SPHINX can be
restricted to employ combinations of colors in which at least one
input is comprised of these specifications. We make use of this
feature for effective temperature and metallicity estimates, where
SPHINX is forced to use of J0410 and J0395, respectively, in
combination with the other available filters.

Before consideration of the final parameter estimates, each
ANN unit estimate is verified by the interpolation check
described above. The number of contributing ANN units is
recorded for future consideration via the NET_ARRAY_FLAG, and
the final estimate is simply a weighted sum of the contributing
ANN unit estimates and corresponding validation scores, ξN .
With the ensemble of contributing ANN units, we compute the
MAD of the estimates, as well as the standard deviation, which is
also weighted by the validation scores. These serve as the uncer-
tainty in the parameter estimate reported by SPHINX. This pro-
cedure can also be used to determine the most optimal networks
achieved in the network array. If specified, SPHINX considers
only networks with the highest scores, ξN , and excludes all other
estimates from the final parameter estimation.

5. Effective temperature determination with

SPHINX

For effective-temperature training, we restricted the range of
interest to 4500 < Teff (K) < 8500. We selected stars with
DR1 photometry from the SDSS Reservoir, and reserved all
EDR sources for testing purposes. For simplicity, stars for which
metallicities exceed solar were excluded, anticipating the influ-
ence of high metal abundance on the underlying continua. A
limit of 0.1 mag in the error reported for the observed photom-
etry, with a faint limit of 20 on all magnitudes was applied to
the training set, in addition to the extinction limit of E(B − V) <
0.05 mag stated previously.

It was possible that, even with excellent synthetic photo-
metric errors and an optimal S/N in the underlying spectrum,
the temperature assigned to the training star by the SSPP was
incorrect, or at least imprecise. We therefore implemented a ±
120 K cut on the adopted Teff error estimate, and insisted that the
individual estimates from the SSPP – in this case the adopted
estimate and estimates derived from the Hα & Hδ Balmer-line
strengths6 – not differ from by more than 75 K.

6 T1 and T2 as described in Lee et al. (2008a).

With the optimally cleaned stars selected, training sets were
constructed by uniformly sampling temperatures between the
maximum and minimum temperature thresholds. The act of sort-
ing and partitioning the catalog into 15 bins prior to randomly
sampling 200 stars from each bin ensured that a roughly even dis-
tribution of temperatures was obtained. The final DR1 training
batch consisted of 1152 stars. Both the training and testing sets
included stars with surface gravities in the range 1.0 < log g <
5.0. The median log g in both sets was 4.1, with a standard devi-
ation of 0.5 dex. Both sets were dominated by main-sequence
stars, but ∼5% of stars had surface gravities consistant with
giants (log g < 3.0).

SPHINX was applied to 1015 stars with EDR photometry.
For analysis of the network performance, we excluded testing
sources with spectral S/N < 20, or a larger uncertainty in the
SSPP Teff estimate (σ(Teff) > 150 K). For comparison, effective
temperature estimates were made with two broadband calibra-
tions, Eq. (1) of Fukugita et al. (2011), and Tl of Lee et al.
(2008a). Fukugita et al. (2011) determined an empirical temper-
ature range for their calibration of 3850 < Teff (K) < 8000, and
noted the smallest scatter of σ(Teff) = 93 K when using g–r com-
pared to other broadband colors. The Tl estimate was derived to
be effective for a wide range of temperatures, beyond 4500 < Teff

(K) < 7500, making it ideal as a comparison for our calibration
with SPHINX.

We made use of a number of robust estimators of central
location and scale, and adopted the suggested nomenclature from
Beers et al. (1990). For measures of central location, in addition
to the median CM, we used the trimean CTRI – based on the sam-
ple median and upper and lower fourths of the distribution(s) –
the biweight location CBI, and the mean Cµ. For estimates of
scale, we made use of a normalized median absolute deviation,
S MAD, which is particularly suited for heavy-tailed distributions
(Beers et al. 1990). In addition, a scale estimate based on the
fourth spread, the f pseudosigma, S f , was used, along with the
biweight scale estimate S BI and standard deviation S σ.

The results of the temperature estimates made with SPHINX
and the comparison calibrations on the EDR photometry are
shown in Fig. 7 and summarized in Table 3, where we com-
pare as well the statistics of high temperature stars (Teff >
7000 K). For estimates made with SPHINX, shown in the left-
most panel of Fig. 7, central location estimates of the residuals
Cµ = +21 K and CTRI = +20 K indicated a slight bias towards
overestimation for the EDR sample. This behavior was in con-
trast to the underestimation seen for temperatures above Teff >
7000 K, where the CM and CTRI of the residuals were −14
and −28 K, respectively. The scatter in the region, where S f

increased from 93 to 171 K. Similarly, the S MAD increased from
93 K to 172 K. We attributed this behavior both to edge effects
emerging near the limit of the network interpolation range. Inter-
estingly, it was found that inclusion of the J0410 filter did not
significantly improve the performance of effective temperature
estimates made with SPHINX. We conclude that the quality
of these estimates is more likely a matter of J-PLUS filters
tracing the overall SED, as well as the capability of SPHINX
to interpret the behavior of the SED over a wide temperature
range.

Using the g–r calibration given in Eq. (1) of Fukugita et al.
(2011), we computed an S f of 156 K. This calibration, shown
in the middle panels, was biased as well towards overestima-
tion, indicated by the mean of the residuals, +66 K, and CTRI of
+55 K. Similar to the estimates made with SPHINX, we found
underestimation of effective temperature beyond Teff > 7000 K,
where the median of the residuals was −230 K, with a CTRI of
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Fig. 7. Effective-temperature estimates, Teff , from SPHINX, as a function of the adopted value from the SSPP for a testing catalog consisting of
J-PLUS EDR photometry (left panels). For comparison, g–r calibrations from Fukugita et al. (2011; middle panels) and Lee et al. (2008a; right
panels) were applied to the sample. The residuals for each temperature calibration are shown against the accepted temperature in the bottom panels,
where the green region depicts the standard deviation from a Gaussian maximum-likelihood fit.

Table 3. Central location and scale estimates of photometric tempera-
ture calibration residuals.

SPHINX Fukugita et al. 2011 Lee et al. 2008a
(K) (K) (K)

CM +20 +60 +57
CTRI +20 +56 +56
CBI +20 +57 +56
Cµ +21 +66 +64

S MAD 93 157 143
S f 93 156 144
S BI 106 171 156
S σ 91 146 138

Teff > 7000 K
CM −14 −230 −10

CTRI −28 −233 −15
CBI −26 −230 −19
Cµ −5 −201 +13

S MAD 172 218 199
S f 171 213 195
S BI 161 195 208
S σ 188 196 196

−233 K. Estimates in this regime became increasingly uncertain,
with S f of 213 K, and a S MAD of 218 K.

In the right panel we compare the network temperature esti-
mates to a polynomial calibration of g–rr from the SSPP, TI (see
Lee et al. 2008a, for details). For this calibration, the median in
the residuals of +57 K and CTRI of +56 K again indicated a sys-
tematic overestimation. The standard deviation of the Gaussian
maximum-likelihood fit of 138 K increased to 196 K in the high
temperature range, Teff > 7000 K. A number of outliers were
apparent around Teff ∼ 6200 K for each calibration, particularly
in the Lee et al. (2008a) calibration, which was expected if
variable stars such as RR Lyrae stars are present in the EDR
sample. Offsets such as these would occur for stars of which
spectroscopic and photometric temperature estimates were made
at disparate phases of the pulsation cycle.

We concluded that the use of SPHINX with J-PLUS pho-
tometry provides effective temperatures with a bias reduced by

a factor of three and a dispersion reduced by ∼40% with respect
to the previous broadband calibrations. In addition, SPHINX is
less prone to under-estimation in the high-temperature regime
beyond 6500 K. No significant influence by surface gravity on
the effective temperature was seen in the range 2.0 < log g < 5.0,
however for lower values (log g < 2.0) determinations tended to
be overestimated by ∼70 K.

6. Metallicity determination with SPHINX

Two separate trials were conducted for validation of the metal-
licity routine in SPHINX. The maximum error on the biweight
estimate of [Fe/H] from the SSPP was set to ±0.20 dex. Simi-
lar to the temperature training, we insisted that the adopted and
biweight estimates of metallicity from the SSPP did not differ
by more than ±0.20 dex. We refer the interested reader to Lee
et al. (2008a) for an in-depth description of the biweight and
adopted estimators from the SSPP. In short, the biweight is sim-
ply the robust average of all accepted estimates from the pipeline,
while the adopted estimate takes into account an average of the
biweight and a refined estimate that considers the reduced χ2

of a synthetic spectrum match. In the event that the refined and
biweight estimates do not differ significantly (<0.15 dex), the
adopted value is set to the biweight estimate. The reliability of
the metallicity estimates from the SSPP was somewhat depen-
dent on the S/N. We therefore set the minimum S/N to 40. The
faint limit for all magnitudes was set to 18.5 to insure reliability
in the synthetic magnitude calibrations.

For both trials, an array of 100 ANN units was constructed,
where SPHINX was set to consider the five highest performing
networks in each array. Anticipating the utility of the J0395 filter
sensitivity to the Ca II H & K feature, we insisted on the use of
J0395 photometry in each of the ANN units. The results of the
metallicity estimates for both samples are shown in Fig. 8. Esti-
mates of spread and central location in the residuals are provided
in Table 4.

6.1. J-PLUS DR1 trial

The first trial implemented a testing set consisting entirely of
J-PLUS DR1 photometry for stars in the range of 4500 < Teff

(K) < 6200. The subset of the SDSS Reservoir with DR1
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Fig. 8. Metallicity estimates, [Fe/H], from SPHINX, as a function of the biweight estimate from the SSPP, for stars of effective temperature 4500 <
Teff (K) < 6200. The gray region corresponds to the standard deviation of the residuals, determined from a maximum-likelihood Gaussian fit.
Results from SPHINX using synthetic magnitudes from the SDSS Reservoir (left panels) are shown with the results from native J-PLUS DR1
photometry (right panels) for comparison.

Table 4. Central location and scale estimates of photometric metallicity determinations.

Trial Cµ CM CTRI CBI S σ S MAD S f S BI

(dex) (dex) (dex) (dex) (dex) (dex) (dex) (dex)

SDSS Reservoir +0.02 +0.03 +0.03 +0.02 0.22 0.22 0.22 0.23
J-PLUS DR1 −0.06 −0.06 −0.05 −0.06 0.25 0.25 0.25 0.27

photometry in this range, after the error criteria described pre-
viously, was limited to 935 stars, which included only 28 stars
with [Fe/H] < −2.5, of which five had [Fe/H]< −3.0. Therefore,
all DR1 stars with [Fe/H] < −2.5 were reserved for the test-
ing set, and we supplemented the DR1 training photometry with
500 stars with [Fe/H] < −2.5 and synthetic magnitudes from the
SDSS Reservoir, of which 250 had [Fe/H] < −3.0. By doing so,
the testing set consisted entirely of native J-PLUS photometry,
while the training set maximized the number of low-metallicity
stars in the sample. The surface gravity range for the testing
set was 1.3 < log g < 4.8, with a median of 4.2 and standard
deviation of 0.7 dex.

The median, CM, and biweight central location, CBI, of the
residuals were both found to be −0.06 dex for the DR1 trial,
so the predictions were prone to slight underestimation when
compared to the SSPP values. The Gaussian fit to the residu-
als revealed a standard deviation of Sσ = 0.25 dex. The largest
estimate of scale for the DR1 trial was the biweight estimate,
S BI = 0.27 dex. The scatter in the metallicity was independent
of surface gravity in the range of 1.75 < log g < 4.5. SPHINX
tended to overestimate the metallicity for low surface gravity
stars (log g < 1.75), for which the residual median increased
to CM = +0.14 dex. However, these stars are correspondingly
cool (Teff . 4750 K), and it was found that stars in the range
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4500 < Teff (K) < 4850 tended to produce over-estimations
regardless of the surface gravity.

For both the classification and recovery fractions of VMP
stars with SPHINX, errors were expressed using the Wil-
son score approximation of the binomial confidence interval
(Wilson 1927; Brown et al. 2001). Of the 81 VMP stars in the
DR1 sample, 85 ± 3% were recovered by the [Fe/H] estimate
from SPHINX. SPHINX classified 109 stars in the DR1 sam-
ple as VMP, in which 63 ± 4% were confirmed by the biweight
estimate from the SSPP.

6.2. Synthetic SDSS trial

To explore the extent of current metallicity sensitivity with
SPHINX, the second trial consisted of training and testing sets
constructed from the SDSS Reservoir, using synthetic magni-
tudes. Effective temperature for both training and testing sets was
again restricted to 4500 < Teff (K) < 6200, with a surface gravity
range of 1.0 < log g < 4.8. We included a wider distribution of
surface gravities in the synthetic SDSS trial, with a median log g
of 3.8 and standard deviation of 0.78 dex, to further explore the
potential influence on the final determinations. The training set
consisted of 1986 stars, 590 of which had [Fe/H] < −2.5, with
269 having [Fe/H] < −3.0.

A slight overestimation was seen in the residuals of the
synthetic SDSS trial, where the median and trimean estimates
were both +0.03 dex. Sensitivity was found to diminish below
[Fe/H]< − 3.0, where the residual median, CM, increased to
0.17 dex. The standard deviation of the residuals was Sσ =

0.22 dex, somewhat improved from the DR1 trial. As seen in
Table 4, all estimates of scale were found to be smaller for
the synthetic SDSS trial. Similar to the DR1 trial, scatter in
the residuals was independent of surface gravity in the range
1.5 < log g < 5.0. Overestimation was also seen for cooler stars
in SDSS trial, where the median residual increased to CM =

+0.32 dex for stars of Teff < 4750 K. The synthetic SDSS trial
was repeated while excluding the use of the J0395 filter, result-
ing in a significant increase in scatter, where Sσ = 0.41 dex
and S MAD = 0.43 dex. We concluded that the J0395 photome-
try is indeed a crucial component for metallicity sensitivity with
SPHINX.

Of the 214 VMP stars in the synthetic SDSS trial, 91 ± 2%
were recovered, while 93±2% of the 209 stars classified as VMP
by SPHINX were confirmed the SSPP estimate. While there is an
insufficient number of EMP stars in the DR1 sample at present,
we can investigate the classification and recovery fractions of
EMP using the synthetic SDSS sample. Of the 43 stars deter-
mined to be [Fe/H] < −3.0 by the SSPP, SPHINX recovered
53± 6%. Of the 33 stars classified as EMP by SPHINX, 70± 6%
were confirmed by the SSPP estimate, while all remaining stars
were VMP. These results are comparable to those obtained by
the Pristine survey (Starkenburg et al. 2017).

To evaluate the performance of SPHINX as a function of the
number of ANN units employed in the network array, another
series of trials were run on the DR1 photometric set. We made
use of the DR1 training catalog supplemented with synthetic
VMP magnitudes, as described above. The number of ANN units
was varied from three to 500, and the classification and recov-
ery fractions for all cases was evaluated. We noted a small but
consistent increase in the classification fraction, from 49 to 51%
over the range of 3 to 100 ANN units. We found large oscilla-
tions in the recovery fractions over the full range of employed
ANN units, but a general increase of a few percent. In the case
of individual estimates, we found generally better convergence
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Fig. 9. Metallicity estimates from SPHINX for three example stars with
DR1 photometry, as a function of the number of ANN units employed.
The scale estimate, S MAD, is represented by the orange band. In all
three cases the scale is within the uncertainty in the spectroscopic value
determined by the SSPP, shown in gray.

to a limiting value as the array size was increased. In many
cases, estimates varied over 0.20 dex with smaller array size.
This behavior is shown for three example stars with different
metallicities in Fig. 9. In all cases, the variation in the estimates
was seen to be stabilized after array sizes N > 50. For all three
cases considered, the variation in the estimates of the photomet-
ric metallicities, determined from the MAD, was well within the
uncertainty reported from the SSPP estimate.

7. A case study with M15

Photometric sources from the globular cluster M15 (Messier 15,
NGC 7078) provide an opportunity to test both the accuracy
and precision of metallicity estimates from SPHINX. Located
at ∼10.4 kpc from the Sun, M15 is a particularly bright globu-
lar cluster with a horizontal-branch magnitude of V = 15.8 and
tidal radius of 21.5 arcmin (Harris 1996). M15 has a well-defined
spectroscopically determined age of 10.56 ± 0.47 Gyr (Koleva
et al. 2008) and metallicity of [Fe/H] = −2.33 ± 0.02 (Harris
1996; Carretta et al. 2009). Furthermore, with an intrinsic scatter
in the metallicity of σ([Fe/H])< 0.05 dex, we regard this cluster
as essentially mono-metallic (Carretta et al. 2009). The accuracy
of SPHINX determinations is thereby investigated by consider-
ing the central location of the photometric metallicity estimates
for the cluster, while the spread is reflective of the precision.

For this analysis, we made use of a stellar sample from
Bonatto et al. (2019). Data were obtained as a science verification
set prior to the J-PLUS Early Data Release. The 1.4 × 1.4 deg2

field of the J-PLUS T80Cam was sufficiently large to contain the
projected area of M15 in a single pointing. Photometry extended
to a limiting magnitude of g ∼ 21.5 for over 40 000 stars.
The photometric uncertainty at g ∼ 21.5 was estimated to be
σm ∼ 0.2 however typical uncertainties for magnitudes within
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Fig. 10. Left panel: color–magnitude diagram of the J-PLUS M15 stars. The population is over-plotted with a PARSEC isochrone corresponding
to an age of 10.5 Gyr, and metallicity of Z = 0.0001 (Bressan et al. 2012), with an assumed extinction of E(B− V) = 0.11 mag. Of the 1437 stars in
the sample, the 15 with SEGUE-1 medium-resolution spectra are denoted by green triangles. Right panel: distribution of photometric metallicity
estimates from M15. A Gaussian distribution was fit to the photometric distribution, with the σ= 0.33 dex region shaded. A stripe density plot is
shown for the 66 confirmed M15 members with medium-resolution parameters from the SSPP. The shaded region in the density plot depicts the
S f of 0.13 dex.

the calibration limit for SPHINX (g ∼ 18.79) were less than
0.05 mag. Contrary to the standard procedure of SExtractor
used by OAJ, DAOPHOT PSF (Stetson 1987) was used to extract
photometry of stars for M15, as the standard pipeline is not cur-
rently able to cope with the level of stellar crowding typical
of GCs, and DAOPHOT PSF can typically reach deeper photo-
metric limits than SExtractor (Bonatto et al. 2019). Bonatto
et al. (2019) applied a decontamination algorithm using color–
magnitude diagrams, based on the work of Bonatto & Bica
(2007), resulting in 1437 candidate member stars.

Our analysis included 98 stars with medium-resolution spec-
tra from SEGUE-1. Stellar parameters and radial velocities for
these stars were determined from the SSPP. For stars with high-
quality estimates from the adopted and biweight procedures,
effective temperatures and metallicities were taken to be the aver-
age of the two. Otherwise, a star was assigned the best of the
two estimates, evaluated on the basis of a visual comparison
with model synthetic spectra. Typical uncertainties in the radial
velocity estimates were ±7.0 km s−1. These stars were originally
selected as candidates of M15 on the basis of their proximity to
the center of the cluster and thus required a check for foreground
and background contamination.

We rejected non-member SEGUE-1 stars on the basis of
radial velocity. First, we computed the biweight location and
scale for the distribution of radial velocities in the sample.
With the tuning constant of the biweight estimator set at 6.0,
the central location was found to be CBI = −108.0 km s−1,
commensurate with a CTRI = −107.9 km s−1. For estimates of
scale, we computed S BI = 11.5 km s−1, S f = 11.5 km s−1. We
rejected as outliers stars with radial velocities outside of the
range CBI ± 2 S BI. This process was repeated until no new stars
were rejected; 66 stars remained. We recomputed the CBI and S BI

again, and found −108.0 and 6.9 km s−1, respectively. Finally,
we compared these results with those determined by Pryor &
Meylan (1993), on the basis of high-dispersion spectroscopy.
They measured a mean velocity of −107.09 ± 0.82 km s−1, and
a velocity dispersion of 8.95 ± 0.59 km s−1, very similar to our
values.

Of the 66 SEGUE-1 stars selected on the basis of radial
velocity, a cross-match with the J-PLUS M15 catalog using a
3 ′′search radius identified 15 stars in common. These stars are
shown in the left panel of Fig. 10, along with 1083 J-PLUS stars
and a Z = 10−4, 10.5 Gyr isochrone generated with the Padova
and Trieste Stellar Evolution Code (PARSEC; Bressan et al.
2012). Here, the distance modulus for the cluster was taken to
be 15.4 mag (Harris 1996). A correction of 0.3 mag was applied
to the (J0410 − J0861)0 color prediction from PARSEC to align
the isochrone with the giant branch seen in the M15 photometry.
These spectroscopic targets largely occupied the giant branch,
with one possible horizontal-branch star.

SPHINX was applied to J-PLUS photometry of the 1437
M15 stars with a limiting magnitude of g ∼ 18.0 using an array
of 50 ANN units, and resulted in parameter estimates for 1041
sources (96% of the initial sample). The remaining 396 were
rejected by the pipeline due to restrictions on the photomet-
ric errors, or extrapolation of all contributing networks. We
excluded estimates produced with less than 25 of the available
ANN units, after which 664 (61% of the initial sample) stars
remained. The right panel in Fig. 10 compares the distribution
of photometric [Fe/H] estimates to both the 66 SSPP medium-
resolution parameters, as well as to the external spectroscopic
value of [Fe/H]= − 2.33 ± 0.02 for the cluster (Carretta et al.
2009). A central metallicity of [Fe/H] = −2.32 ± 0.01 was found
from a Gaussian maximum-likelihood fit to the distribution of
metallicities from SPHINX. The error estimate of the central
metallicity, ±0.01 dex, was determined from a bootstrap pro-
cedure, for which the 664 stars were randomly sampled with
replacement for 1000 trials. The standard deviation of the residu-
als for the photometric estimates was determined to be 0.29 dex.
We compared this to the median value of [Fe/H] = −2.31 ± 0.02
for the 66 SEGUE-1 stars with SSPP parameters, for which the
error in the median was determined from the bootstrap pro-
cedure. The f spread of the SSPP metallicity distribution was
0.17 dex, corresponding to S f = 0.13 dex.

We consider the accuracy of the photometric metallicity esti-
mates for the cluster in Fig. 11. With the σ estimate from the
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Table 5. Spectroscopic stellar parameters of 13 SEGUE-1 + J-PLUS stars in M15.

RA Dec TSP σ(TSP) TSS σ(TSS) [Fe/H]SP σ([Fe/H]SP) [Fe/H]SS σ([Fe/H]SS)
(hh:mm:ss) (dd:mm:ss) (K) (K) (K) (K) (dex) (dex)

21:29:37.1 12:13:41 5570 93 5447 75 −2.44 0.24 −2.47 0.24
21:29:39.4 12:18:21 5411 84 5299 44 −2.34 0.26 −2.38 0.10
21:29:43.1 12:00:18 5690 55 5521 60 −2.21 0.17 −2.25 0.13
21:29:48.5 12:20:20 5510 81 5315 37 −2.37 0.28 −2.27 0.16
21:29:49.9 12:18:12 5288 93 5206 48 −2.42 0.25 −2.34 0.17
21:29:52.3 12:19:40 5128 108 5215 48 −2.24 0.63 −2.27 0.20
21:30:00.7 12:22:32 5568 136 5320 33 −2.35 0.27 −2.27 0.16
21:30:13.5 12:00:38 5523 91 5390 36 −2.42 0.22 −2.33 0.18
21:30:15.2 12:19:46 5352 114 5269 50 −2.21 0.26 −2.33 0.18
21:30:24.5 12:02:38 5592 130 5420 33 −2.95 0.79 −2.35 0.18
21:30:35.2 12:18:10 5626 117 5314 32 −2.36 0.26 −2.49 0.17
21:30:49.3 12:07:31 5532 114 5344 31 −2.52 0.26 −2.32 0.14
21:30:54.4 12:07:11 5569 121 5419 45 −2.39 0.22 −2.23 0.21

Fig. 11. Metallicity estimates for 13 stars in the M15 cluster with
both SEGUE-1 spectra and J-PLUS photometry. Estimates are shown
above the 1σ and 2σ regions corresponding to the standard deviation
of SPHINX estimates for the entire cluster, and the median error esti-
mate from the SSPP. The small red ellipse in the center represents the
intrinsic scatter of the M15 cluster, [Fe/H] = −2.33± 0.02 (Carretta et al.
2009).

Gaussian distribution of 0.30 dex and the uncertainty from the
SSPP of 0.13 dex, we depict the individual estimates for 13 stars
of the original 15 with both photometric and spectroscopic esti-
mates. The elliptical regions of Fig. 11 corresponding to 0.5,
1.0, 1.5, and 2σ from the center value of [Fe/H] = −2.33 for
the cluster were vertically scaled to a circular region for simplic-
ity. We excluded one star from this sample due to a large error
estimate from SPHINX ([Fe/H]SP = −2.94± 0.79). Another star,
thought originally to occupy the horizontal branch, was found
to have a large deviation between the photometric and spec-
troscopic estimates. We therefore excluded this estimate on the
basis of potential error in the photometry. Of the 13 stars consid-
ered with SSPP and SPHINX metallicity estimates, 11 (85%) fall
within the 1σ region. The remaining two stars each lie within the
1.5σ region. Both the median and CBI computed for the residuals
were found to be −0.02 dex. These 13 sources with spectroscopic

parameters are provided in Table 5. We use the SP subscript
to denote values determined by SPHINX, while SS refers to
spectroscopically determined estimates from the SSPP.

J-PLUS photometry of M15 provides an opportunity to vali-
date the effective temperature and metallicity routines on a single
stellar population. While determinations of metallicity made
with SPHINX exhibit a scatter of ∼0.26 dex, we are able to make
estimations of central metallicity for M15 to remarkably high
accuracy, in addition to estimates of photometric effective tem-
perature that are commensurate with estimates from the SSPP.
In fact, the uncertainty in the mean of the metallicity distribution
generated from estimates using J-PLUS photometry is within the
uncertainty in the value determined from high-resolution spec-
tra. While the capability of SPHINX is currently limited with
respect to individual precision measurements, SPHINX enables
studies of stellar populations as well.

8. Preliminary results on carbonicity

While SPHINX is presently limited to obtaining effective tem-
perature and metallicity determinations, we anticipate the addi-
tion of carbonicity ([C/Fe]) and surface gravity (log g) estimates
in the near future. This will require more stars with J-PLUS
photometry for proper training on their carbon features. How-
ever, with our library of synthetic spectra, we are able to explore
the validity of a neural network approach to carbon detection.
The application of the synthetic library also permits an in-depth
study of the influence of underlying S/N on network training and
estimation.

To isolate the carbon dependence on our synthetic spectra,
we restricted our analysis to synthetic spectra corresponding
to a giant VMP star, Teff = 5000 K, log g = 1.00, [Fe/H] =
−2.50. Next, 100 spectra were generated by way of cubic spline
interpolation across the interval −1.0 < [C/Fe] < +2.5. These
normalized spectra were convolved with a blackbody to best
approximate a flux-calibrated spectrum.

The flux of each spectrum was randomly rescaled from 50
to 150% to best emulate a random distribution of distance mod-
uli, then injected with Gaussian noise, resulting in 66 batches
of the original 100 spectra from 10 < S/N < 122, each batch
consisting of a unique global S/N. Synthetic magnitudes for the
narrowband J-PLUS filters were computed in the same manner
as for the SDSS Reservoir, by convolving the noise-injected,
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Fig. 12. Results of synthetic carbon training for various S/N implementations. Left panel: [C/Fe] estimates from the network trained on S/N = 122
inputs; the color of the estimates are proportional to the S/N of the validation photometry, where red indicates lower S/N. Middle panel: [C/Fe]
residuals for networks of various S/N are shown, as a function of the S/N for the validation sets employed. Right panel: median residuals for three
tiers of validation sets, S/N < 28, S/N < 36, and S/N < 65, are shown, as a function of the network S/N.

blackbody-calibrated synthetic spectrum with the appropriate
filter-response function. Linear scaling was then performed to
center each input magnitude distribution.

For simplicity, SPHINX was limited to a single ANN unit
for each trial described below. For each trial, one of the 66
synthetic spectra batches was used to train the ANN unit, con-
sisting of six narrowband inputs – J0378, J0395, J0430, J0515,
J0660, and J0861 – with a single hidden layer of five hyperbolic
tangent neurons and a stochastic gradient-descent optimization.
The result was an array of identical networks, each trained on a
set of inputs with a specific S/N, which we refer to as the net-
work S/N. These networks of unique S/N were then tested on
each batch of noise-injected synthetic spectra, in order to eval-
uate the performance of each version of the network with an
approximation of photometry of varying quality. In doing so, we
assigned a median residual to each network and its constituent
66 verification batch runs. The result of this analysis is shown in
Fig. 12.

The left panel of Fig. 12 shows the results of the S/N = 122
network for all batches of synthetic spectra. We find a charac-
teristic behavior, namely, that photometry of lower S/N results
in a greater dispersion of the predicted [C/Fe] about the true
value. The dispersion is more prevalent in the lower carbonicity
regime ([C/Fe] < 0.0), as might be expected, since the carbon-
sensitive features at low [C/Fe] are weaker, and so are generally
more influenced by the S/N across the spectrum.

The middle panel of Fig. 12 shows the behavior of each net-
work, as a function of the S/N in the photometry in the validation
set. First, there is a general trend of a reduction in the spread of
the residuals as the S/N of the validation photometry increases.
Interestingly, in the input range of S/N < 20, networks trained
on S/N = 10 and S/N = 20 outperform those trained on higher-
quality photometry, for which residuals exceeded a standard
deviation of 0.30 dex. We conclude that, in general, a network
trained on poor photometry will exhibit better performance on
poor photometry.

The right panel of Fig. 12 tracks the performance of the net-
work for different regions of the validation S/N, as a function of
the network’s S/N. For sources of low quality (S/N < 28), the
median residual is worse overall for all values of the network
S/N. The low-quality source residuals tend to increase as the net-
works are trained on higher-quality photometry. In the region
of 20 ≤ S/N ≤ 30, we observe no significant increase in the
median residual of the low-quality source set (median residual
∼0.13 dex), while the high-quality set relaxes to a roughly consis-
tent value of ∼0.08 dex. This suggests an optimal region of S/N
for network training, approximately 30 < S/N < 40, to ensure

high-confidence performance for sources of both high and low
quality, for network applications of this nature.

9. Discussion and conclusion

The Stellar Photometric Index Network Explorer, SPHINX, is
designed to estimate the effective temperature and metallicity of
stellar atmospheres using broad- and intermediate-band optical
J-PLUS photometry, with a particular emphasis on the capac-
ity to identify low-metallicity stars. This pipeline attempts to
optimize training databases provided to converge its constituent
artifical neural network units, as well as the relative weight
assigned to these subordinate ANN units for use in science esti-
mates. By doing so, SPHINX has the potential to be quite flexible
in its ability to accommodate a variety of photometric data.

Estimates of effective temperature made using J-PLUS Early
Data Release were found to be successful across a temperature
range of 4500 < Teff (K) < 8500, with an uncertainty of ± 91 K.
Comparisons were made to previous calibrations by Lee et al.
(2008a) and Fukugita et al. (2011), and in all cases estimates
by SPHINX with J-PLUS photometry proved superior to the
broadband performance. For the application of both broadband
photometric methods, the J-PLUS analogs to SDSS photometry
were used. We emphasize the success of temperature estimates
made with SPHINX without the use of a priori knowledge of
surface gravity, for which we find no significant influence on
temperature determinations within 2.0 < log g < 5.0.

Photometric estimates of metallicity for stars in the J-PLUS
First Data Release within 4500 < Teff (K) < 6200 indicate sen-
sitivity down to [Fe/H] approximately −3.0, with a scatter of
σ([Fe/H]) = 0.25 dex. However, verification of this sensitivity
is limited by the lack of numerous [Fe/H] < −3.0 stars in the
footprint of J-PLUS at present. We find that metallicity determi-
nations made with J-PLUS DR1 photometry are not influenced
by surface gravity within the range 1.75 < log g < 5.0. SPHINX
is very effective as a means for recovering and correctly iden-
tifying significant fractions of low-metallicity stars. SPHINX
recovers 85 ± 3% of very metal-poor (VMP) targets in the DR1
testing set used, with 63± 4% of VMP candidates correctly clas-
sified. For the trial consisting of synthetic magnitudes from the
SDSS Reservoir, 70± 6% of stars designated as [Fe/H]< − 3
were confirmed by the SSPP, while all remaining stars were
VMP. Of the 43 EMP stars in the synthetic SDSS trial, 53 ± 6%
were recovered by SPHINX.

Photometric metallicity estimates were made using J-PLUS
photometry of 664 sources associated with globular cluster M15
(NGC 7078). The central value obtained, [Fe/H]= − 2.32± 0.01,
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with a residual spread of 0.29 dex, was commensurate with the
value determined from SEGUE-1 medium-resolution spectra of
−2.32 ± 0.02 for the cluster. These estimates essentially match
the accepted value from the literature, −2.33 ± 0.02 (Harris
1996; Carretta et al. 2009). The accuracy of estimates made
by SPHINX was, in part, due to the level of optimization
made possible by way of adjustable neural network architecture
and the ability to tailor the training set used to converge the
subordinate ANN units. This enables SPHINX to make param-
eter estimates for science cases involving stars of a single
evolutionary stage, or to generalize to accommodate field stars
in a variety of evolutionary stages across large regions of sky.

The development of SPHINX is at present limited to effec-
tive temperature and metallicity estimates, but we anticipate the
addition of carbon abundance estimates, at least for some portion
of the stellar parameter space. With carbon-abundance estimates
from SPHINX, the primary sub-classes of carbon-enhanced
metal-poor (CEMP) stars, the CEMP-s and CEMP-no stars,
describing the nature of their neutron-capture element abun-
dance ratios (Beers & Christlieb 2005), could be discerned from
photometry alone (Yoon et al. 2016), avoiding the requirement
for obtaining far-more time-consuming high-resolution spectro-
scopic follow-up. In addition, with accurate parallaxes from Gaia
DR2 (Gaia Collaboration 2016), improved photometric maps of
carbon abundances for the inner- and outer-halo regions of the
Milky Way are readily obtainable (see spectroscopic-based maps
in Lee et al. 2013).

In the future, we plan to provide photometric parameters for a
substantial portion of stars in the J-PLUS footprint. However, at
present, a pure catalog of stellar sources from J-PLUS is not yet
available – present catalogs are contaminated by quasars at faint
magnitudes. Low-redshift quasars can be identified and removed
by straightforward PSF analysis and the use of color–color dia-
grams (Caballero et al. 2008). However, high-redshift quasars
remain a challenge, as they are optically similar to ultracool
dwarfs.

The artificial neural network methodology of SPHINX, in
conjunction with J-PLUS photometry, is an ideal tool for select-
ing low-metallicity targets for spectroscopic follow-up. In addi-
tion, reasonable sensitivity has been demonstrated for individual
estimates of metallicity down to [Fe/H] approximately −3.0
for stars in the range 4500 < Teff (K) < 6200. We anticipate
that future data releases from J-PLUS will enable an expanded
sensitivity to low-metallicity stars. Ultimately, we expect to sub-
stantially increase the number of known VMP, EMP, UMP, and
CEMP stars in the coming years on the basis of such studies.
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