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We calculate the spin-averaged J/ψ-nucleon scattering length aJ/ψ by directly applying
the QCD sum rule to the J/ψ-N forward scattering amplitude. Our result, aJ/ψ = −0.10±
0.02 fm, implies the possibility of bound states with nuclei, though the force is weaker than
that of the light vector mesons (ρ, ω, φ)-N cases. Up to dimension-4 gluonic operators,
we evaluate the scattering length with a twist-2 contribution. This increases the absolute
value of the scattering length by about 30%. If we apply aJ/ψ to the effective mass of J/ψ
in nuclear matter on the basis of the linear density approximation, it exhibits very slight
decrease (4–7 MeV) at normal matter density.

§1. Introduction

Theoretical analysis on the in-medium properties of hadrons is increasingly nec-
essary for various on-going and forthcoming heavy-ion experiments (such as SPS,
LHC (CERN) and AGS, RHIC (BNL)). 1) In particular, experimentally it is impor-
tant to observe vector mesons, because they decay into lepton pairs and carry the
information inside matter without the disturbance of the strong interaction. The
properties of light vector mesons in nuclear matter have been studied extensively in
various theoretical approaches, including effective hadronic models 2) and QCD sum
rules (QSR’s). 3) - 6) Vacuum properties of the vector mesons have been successfully
studied using the QSR’s. 7), 8) The method enables us to express physical quantities
such as mass and decay width in terms of the parameters of the QCD Lagrangian
and vacuum condensates. Extending the vacuum QSR to finite density, we can
consistently incorporate the effects of nuclear matter into the form of in-medium
condensates. There are two methodologically different ways for applying in-medium
QSR. First, Hatsuda and Lee developed the in-medium QSR formalism for light vec-
tor mesons. 3) They found a 10− 20% decrease of the masses of the ρ and ω mesons
at normal matter density. Second, for light vector mesons, we formulated in-medium
QSR 4), 6) based on the relation between the scattering length and the mass shift. 9)

In this approach with the Fermi gas model, the in-medium correlation function is
divided into a vacuum part and a one nucleon part. This one nucleon part corre-
sponds to the forward vector meson-nucleon scattering amplitude. The QSR analysis
on the forward scattering amplitude enables us to obtain information concerning the
vector meson-nucleon interaction. Moreover, from this information we can estimate
the change of spectra for vector mesons in nuclear matter. The difference between
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924 A. Hayashigaki

these two approaches has been discussed in Refs. 10) and 6). Eventually we derived
in Ref. 6) the result that both of them are based on almost the same idea and can
lead to results consistent with those of the effective models.

In this paper we apply the QSR analysis established in Ref. 6) to a heavy quark
system with equal masses for quarks and antiquarks. As a concrete system we
focus on J/ψ, which is a low-lying charmonium state (3S1). The study of medium
modification of J/ψ has the following motivations:
1. We have detailed experimental information for charmonium. In particular, the
spectrum of J/ψ is extremely narrow for leptonic decay (Γl+l− � 5 keV). Thus
it would be a good tool to observe the change of the spectra (e.g., mass shift)
in nuclear matter.

2. Since charmonium and nucleons consist of quarks with different kinds of flavors,
the J/ψ-N interaction is purely gluonic without quark exchange to first order
in elastic scattering. This simplification reduces our practical calculation.

3. Theoretical studies for J/ψ in QSR are successful only in the description of the
free state. 8), 11)

4. In order to utilize J/ψ suppression 12), 13) as a direct signal of the quark-gluon
plasma phase, we need to understand the effect of nuclear absorption (L-
scaling 14)) theoretically. In particular, recent experimental data 15) suggest a
drastic deviation from the L-scaling in lead-lead collisions. We should estimate
the elementary J/ψ-nucleon interaction to investigate the origin of such addi-
tional suppression. For this purpose, it is reasonable as a first step to study
J/ψ-N elastic scattering at low energy.
Motivated by these points, we calculate the J/ψ-N scattering length and the

mass shift of J/ψ in nuclear matter obtained by the scattering length. That is, the
first aim is to estimate the essential features of the interaction between J/ψ and N
through the scattering length. In practice, by applying QSR to the J/ψ-N forward
scattering amplitude we calculate the scattering length. The scattering length is a
physically very important quantity in free space, because it is the unique observable
in J/ψ-N elastic scattering at low energy. If it is negative, then we could predict
an attractive interaction capable of binding J/ψ to a nucleus, so that J/ψ could
lead to a bound state with a nucleus. The prediction of such an exotic state would
open exciting new directions in nuclear physics. As is well known, since the meson-
nucleon interaction is repulsive for isovector mesons, a π meson forms a π-nucleus
bound state by a Coulomb attractive force. On the other hand, J/ψ is expected to
be bounded only by the attractive interaction from the isoscalar property. As was
pointed out in Ref. 16), this interaction should be sufficiently attractive to allow a
bound state. The probability of such exotic states has been recently discussed for η,
ω and D cases. 17)

The second aim is to determine the manner in which the superposition of ele-
mentary J/ψ-N scattering at low energy affects the effective mass of J/ψ in nuclear
matter. When we work in a dilute nucleon gas, we find that the mass shift is linearly
dependent on the density (linear density approximation).

This paper is organized as follows. In §2 we summarize the relation between the
scattering length and the mass shift in the linear density approximation. 6) In the
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J/ψ-Nucleon Scattering Length and In-Medium Mass Shift 925

actual calculation we adopt a moment sum rule method to the forward scattering
amplitude. In §3 the Wilson coefficients on the OPE side are explicitly given for
a twist-2 operator. In §4, in order to obtain unknown hadronic parameters for
the forward scattering amplitude, we apply the moment sum rule to the vacuum
correlation function. In §5 the numerical results of the scattering length and the
mass shift of J/ψ are shown. Finally concluding remarks are given.

§2. The relation between scattering length and mass shift

Let us first review the relation between the scattering length and the mass shift
on the basis of the QSR method. 4), 6) The starting point of this approach is the
following vector current correlation function in the ground state of nuclear matter
with nucleon density ρN :

ΠNM
µν (q) = i

∫
d4xeiq·x〈TJµ(x)J†

ν(0)〉NM(ρN ). (2.1)

Here qµ = (ω, q ) is the four-momentum carried by the J/ψ vector meson current
Jµ(x) = cγµc(x). Following the QSR method, when we apply an operator product
expansion (OPE) to this correlator in the deep Euclidean region (Q2 = −q2 > 0),
it is supposed that the ρN -dependence of this correlator is contained entirely in the
ρN -dependence of various condensates. Moreover, we assume the Fermi gas model
taking account of the Pauli principle among uncorrelated nucleons in nuclear matter.
In this approximation, the in-medium correlation function reads

ΠNM
µν (q) = Π0

µν(q) +
∑

spin,isospin

∫ pF d3p

(2π)32p0
Tµν(q), (2.2)

where Π0
µν(q) is the in-vacuum correlation function and

∑
spin,isospin denotes the

sum of spin and isospin states for nucleons in nuclear matter. Tµν(q) is the vector
current-nucleon forward scattering amplitude, defined as

Tµν(ω, q ) = i

∫
d4xeiq·x〈N(ps)|TJµ(x)J†

ν(0)|N(ps)〉. (2.3)

Here |N(ps)〉 denotes the nucleon state with four momentum p = (p0,p) and spin s
normalized covariantly as 〈N(p)|N(p′)〉 = (2π)32p0δ3(p− p′). The quantity Π0

µν(q)
gives the main contribution to ΠNM

µν (q) due to the perturbative contribution. On the
other hand, Tµν(q) leads to a small contribution for ΠNM

µν (q), but the effect is vital.
If we consider a normal matter density (ρN ∼ 0.17 fm−3), the integral of the last

term in Eq. (2.2) can be approximated up to the first order of nucleon density ρN
reasonably well. The linear density term corresponds to matter with static nucleons
(p = 0), and the higher order correction terms correspond to the velocity-dependent
terms involving the effect of Fermi motion (p �= 0) and the complex interaction
among nucleons. The linear expression can be calculated model-independently. On
the other hand, the higher order corrections depend on the model calculation, but
in a few effective theories 18) it is known that the effect for the linear result is fairly
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small (∼ 10%) at the nuclear matter saturation density. Hatsuda et al. 10) also insist
that the Fermi momentum correction is fairly small (∼ 10%), up to twist-4 operators.
Thus we can safely neglect the effect at the saturation density. Therefore we can set
p = (MN ,0) for Tµν(p, q), so that we proceed to discussions based on the assumption
that all nucleons are at rest in nuclear matter.

In Eq. (2.2) the second term implies a slight deviation from the properties in
the free state determined by Π0

µν . By applying the QSR method to Tµν directly, we
can relate the scattering length extracted from the QSR for Tµν with the mass shift
in the framework of QSR. Near the pole position of J/ψ, Tµν can be associated with
the T matrix for the forward J/ψ-N helicity amplitude ThH,h′H′(ω, q ), where h (h′)
and H (H ′) are the helicity of the initial (final) J/ψ and the initial (final) nucleon,
respectively. The relation between Tµν and ThH,h′H′ is given by the relation

εµ
∗

(h′)(q)Tµν(ω, q)εν(h)(q) �
−f2

J/ψm
4
J/ψ

(q2 −m2
J/ψ + iε)2

ThH,h′H′(ω, q). (2.4)

Here we introduce the coupling fJ/ψ and the J/ψ mass mJ/ψ by the relation 〈0|Jµ
|J/ψ(h)(q)〉 = fJ/ψm

2
J/ψε

(h)
µ (q) with the polarization vector ε

(h)
µ normalized as

∑
h

ε
(h)∗
µ (q)ε(h)

ν (q) = − gµν+qµqν/q2. Taking the spin average on both sides of Eq. (2.4),
Tµν(ω, q) is projected onto T (ω, q) = T µ

µ /(−3), and ThH,h′H′(ω, q) is projected onto
the spin averaged J/ψ-N T -matrix, T (ω, q). At low energy, q = (mJ/ψ,0) and
p = (MN ,0). T is reduced to the spin averaged J/ψ-N scattering length aJ/ψ =
1/3(2a3/2 + a1/2) (a1/2 and a3/2 are the scattering lengths in the spin-1/2 and spin-
3/2 channels, respectively) as T (mJ/ψ, q = 0) = 8π(MN +mJ/ψ)aJ/ψ. We note that
the negative value of aJ/ψ corresponds to attraction in our convention.

We relate the parameters of the QCD Lagrangian with the hadronic mass and
coupling using the dispersion relation. If one utilizes the retarded correlation function
as a useful quantity for dispersion analysis, we obtain the following dispersion relation
for T (ω, q):

T (ω,0) =
1
π

∫ ∞

−∞
du

ρ(u,0)
u− ω − iε

=
1
π

∫ ∞

0
du2 ρ(u,0)

u2 − ω2
. (2.5)

Here the spectral function ρ(u, q = 0) is given with three unknown phenomenological
parameters, a, b and c, in terms of the spin-averaged J/ψ-N forward T-matrix T such
as

ρ(u, q = 0) =
1
π
Im

[ −f2
J/ψm

4
J/ψ

(u2 −m2
J/ψ + iε)2

T (u,0)
]
+ · · · (2.6)

= a δ′(u2 −m2
J/ψ) + b δ(u2 −m2

J/ψ) + c δ(u2 − s0). (2.7)

The terms denoted by · · · in Eq. (2.6) represent the continuum contribution, and δ′ in
Eq. (2.7) is the first derivative of the δ function with respect to u2. The first a-term
is the double-pole term corresponding to the on-shell effect of the T matrix, and the
coefficient is associated with the scattering length aJ/ψ as a = 8πf2

J/ψm
4
J/ψ(MN +
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J/ψ-Nucleon Scattering Length and In-Medium Mass Shift 927

mJ/ψ)aJ/ψ. The second b-term is the simple-pole term corresponding to the off-shell
effect of the T matrix. The third c-term is the continuum term corresponding to
other remaining effects, where s0 is regarded as the continuum threshold in vacuum.
Now the contribution from the inelastic channels is not included in the ansatz of
Eq. (2.7). In this system the OZI rule restricts the inelastic channels of the J/ψ-N
interaction to those containing charmed quarks, for example, J/ψ+N → D+D̄+N
and J/ψ +N → Λc + D̄. But the contribution from all these processes is near the
continuum threshold (s0 � 13 GeV2) or included completely in the continuum. Here
such inelastic channels are isolated from the contribution of the a- and b-terms in
Eq. (2.7). This situation does not change even when one takes into account the effect
of the Fermi motion of the nucleons. The parametrization Eq. (2.7) for the spectral
function, however, may be quite simplified, compared to the behavior of a realistic
spectral function. This point leaves us further discussion in the future.

The parameters a, b and c in Eq. (2.7) are not completely independent. That is,
among these parameters we introduce a constraint relation, which is imposed by a
low energy theorem for the J/ψ current-nucleon forward scattering amplitude. In the
low energy limit ω → 0, T (ω,0) becomes equivalent to the Born term TBorn(ω,0),
which is zero in the J/ψ-N system for lack of intrinsic charmed quarks inside a
nucleon. Now we obtain the constraint relation

a

m4
J/ψ

+
b

m2
J/ψ

+
c

s0
= 0 (2.8)

from the low energy theorem. Therefore, the spectral function is parametrized
with the two unknown phenomenological parameters a and b, by removing c from
Eq. (2.8). The phenomenological (PH) side for ΠNM

µν can be expressed as the com-
bination of the pole position for Π0

µν and Tµν such as

ΠNM
µν =

(
qµqν
q2

− gµν

) [
F

m2
J/ψ − q2

+
ρN
2MN

{
a

(m2
J/ψ − q2)2

+
b

m2
J/ψ − q2

}
+ · · ·

]

∝ F +∆F

(m2
J/ψ +∆m2

J/ψ − q2)
+ · · · , (2.9)

where the pole residue F in Π0
µν is equivalent to f2

J/ψm
4
J/ψ and the deviation ∆F is

ρNb/2MN . The quantity expressed as the shift of the squared J/ψ mass in nuclear
matter,

∆m2
J/ψ = 2mJ/ψδmJ/ψ =

ρN
2MN

a

f2
J/ψm

4
J/ψ

=
ρN
2MN

8π(MN +mJ/ψ)aJ/ψ,

(2.10)

is proportional to the scattering length aJ/ψ through the double pole term in Tµν .
Thus we can calculate the mass shift δmJ/ψ in Eq. (2.10) from aJ/ψ obtained by
QSR for Tµν .

We explicitly write down the PH side with the unknown parameters a and b for
T (q2) using Eq. (2.5), (2.7) and (2.8). We take the n-th derivative with respect to
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928 A. Hayashigaki

q2 after dividing T ph by q2 as follows and define it as T̂ (n):

1
n!

(
d

dq2

)n T ph(q2)
q2

≡ T̂ (n) ph(q2 ; a, b)

=
a

m4
J/ψ

[
(n+ 1)m2

J/ψ

(m2
J/ψ − q2)n+1

+
1

(m2
J/ψ − q2)n+1

− 1
(s0 − q2)n+1

]

+
b

m2
J/ψ

[
1

(m2
J/ψ − q2)n+1

− 1
(s0 − q2)n+1

]
. (2.11)

In order to construct the QSR, we calculate the n-th derivative of the OPE side
similarly in the next section.

§3. The calculation of the Wilson coefficients for T��

Now we give the OPE expression for Tµν . The main task on the OPE side is
to calculate the Wilson coefficients based on perturbative QCD. In the case of J/ψ,
the charmed quark mass is so heavy that the calculation of the Wilson coefficients
must be carried out explicitly with the effect of heavy quark mass. We now expand
local operators up to dimension-4 on the OPE side. Then pure gluonic contributions
must be taken into account only for the local operators. Up to this order in the
OPE, the nucleon matrix elements of two-gluon operators (GG) are most dominant.
We note that, in contrast to the vacuum QCD sum rule, a new feature in Tµν is
that the nucleon matrix elements survive not only the Lorentz scalar operators but
also nonscalar operators. That is, we must consider new contributions from twist-
2 operators with two spins for the Wilson coefficients. In order to calculate the
coefficient function, we adopt a well-known method for massive quarks propagating
through coupling with soft gluons working as the external field, namely the fixed-
point gauge method. 19) This gauge condition is expressed as xµAa

µ(x) = 0. The
nucleon matrix element of two-gluon operators can be decomposed into a scalar part
and a twist-2 part with an additional four-vector uµ (u2 = 1), through simple tensor
analysis: 20)

〈
Ga
αβG

b
γδ

〉
N
=

δab

96

[ 〈
G2

〉
N
(gαγgβδ − gαδgβγ)− 4

〈
(u ·G)2 − 1

4
G2

〉
N

× {(gαγgβδ − gαδgβγ)− 2 (gαγuβuδ − gαδuβuγ − gβγuαuδ + gβδuαuγ)}

.

(3.1)

Here we have defined (u ·G)2 ≡ Ga
κλG

a λ
ρ uκuρ. By introducing uµ, one can imagine

uniformly moving nucleons (pµ = MNuµ) in nuclear matter, but in this case we
set u = (1,0). The OPE expression for Tµν can be written as follows with the
combination of Eq. (3.1) and the Wilson coefficients corresponding to each matrix
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J/ψ-Nucleon Scattering Length and In-Medium Mass Shift 929

element:

1
n!

(
d

dq2

)n TOPE(q2)
q2

≡ T̂ (n) OPE(q2)

=
1
3

[
C

(n)
G (ξ)

{ 〈
αs
π

G2
〉
N
− 4

〈
αs
π
ST (Ga

0σG
a
0σ)

〉
N

}
+ {D(n)

1 (ξ)−D
(n)
2 (ξ)−D

(n)
3 (ξ)}

〈
αs
π
ST (Ga

0σG
a
0σ)

〉
N

]
.

(3.2)

Here we define the dimensionless parameter as ξ = −q2/4m2
c (mc is the charmed

quark mass) and ρ = ξ/(1+ ξ). The symbol ST makes the operators symmetric and
traceless with respect to the Lorentz indices. In Eq. (3.2) each coefficient function
is given using Gauss hypergeometric functions 2F1 for arbitrary q2 as follows:

C
(n)
G (ξ) = −2

n(n+ 1)(n+ 3)!
(2n+ 5)!!

(4m2
c)

−(n+2)(1 + ξ)−(n+2)
2F1

(
n+ 2,−1

2
, n+

7
2
; ρ

)
,

(3.3)

D
(n)
1 (ξ) =

2n+3(n+ 1)(n+ 1)!
3(2n+ 3)!!

(4m2
c)

−(n+2)(1 + ξ)−(n+2)

×
[
2 2F1

(
n+ 2,

1
2
, n+

5
2
; ρ

)
− 2(n+ 2)

1 + ξ
2F1

(
n+ 3,

1
2
, n+

5
2
; ρ

)
+

3(n+ 2)2

(1 + ξ)(2n+ 5) 2F1

(
n+ 3,

1
2
, n+

7
2
; ρ

) ]
, (3.4)

D
(n)
2 (ξ) = −2

n+5(n+ 1)(n+ 2)!
3(2n+ 5)!!

(4m2
c)

−(n+2)(1 + ξ)−(n+2)

×
[

2F1

(
n+ 2,

1
2
, n+

7
2
; ρ

)
− n+ 2
2(1 + ξ) 2F1

(
n+ 3,

1
2
, n+

7
2
; ρ

) ]
,

(3.5)

D
(n)
3 (ξ) =

2n+3(n+ 1)(n+ 1)!
3(2n+ 5)!!

(4m2
c)

−(n+2)(1 + ξ)−(n+2)

×
[
(n+ 2) 2F1

(
n+ 2,

1
2
, n+

7
2
; ρ

)
+4(2n+ 5) 2F1

(
n+ 2,

1
2
, n+

5
2
; ρ

) ]
.

(3.6)

The Wilson coefficient of Eq. (3.3) for the scalar operator has already given in
Ref. 11), and Eqs. (3.4)–(3.6) are new contributions for the twist-2 operator. Even-
tually, by equating Eqs. (2.11) and (3.2) we obtain the moment sum rule expressed
in the form of the n-th derivative with respect to q2:

T̂ (n) ph(ξ ; a, b) = T̂ (n) OPE(ξ). (3.7)

The manipulation of the derivative ensures that the enhancement of the low energy
part will not depend on the details of high energy part. The vacuum sum rules have
been utilized for investigation of the free state of charmonium by Reinders et al. 11)
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in the moment sum rule and by Bertlmann 21) in the Borel sum rule. Furnstahl et
al. 22) have studied the spectra of J/ψ at finite temperature using both QCD sum
rules. Here we summarize the well-known behavior of the moment sum rule for the
variations of n and q2.

• The convergence of the OPE side is worse for large n but is better for large q2.
• In contrast to this behavior on the OPE side, the unwelcome contributions from
the continuum on the PH side grow for large q2, but decrease for large n.

We must choose a reliable stability region of the moment sum rule for investigation of
the change of both n and q2. The moment sum rule for Tµν is a method to investigate
the deviation from the properties in the vacuum obtained from Π0

µν . Here we should
adopt the same regions of n and q2 as those used for Π0

µν , which can reproduce the
behavior of J/ψ in the moment sum rule reasonably well.

§4. Moment sum rule for Π0
��

In this section, we calculate the window of n for various values of ξ by applying
the moment sum rule to the vacuum correlation function Π0(ω2) = Π0 µ

µ (ω, q = 0)
/(−3ω2) in Eq. (2.2).

On the OPE side, the n-th derivative for Π
(n)
0 (q2) is expressed as 8), 11)

1
n!

(
d

dq2

)n
ΠOPE

0 (q2) ≡ Π̂
(n) OPE
0 (ξ)

=
1
3

[
C

(n)
0 (ξ) {1 + c

(n)
1 (ξ) αs(ξ)}+ C

(n)
G (ξ)

〈
αs
π

G2
〉

0

]
,

(4.1)

where C
(n)
I (ξ) and c

(n)
1 (ξ) are given by

C
(n)
0 (ξ) =

9
4π2

2n(n+ 1)(n− 1)!
(2n+ 3)!!

(4m2
c)

−n(1 + ξ)−n 2F1

(
n,
1
2
, n+

5
2
; ρ

)
,

(4.2)

c
(n)
1 (ξ) =

(2n+ 1)!!
3 · 2n−1n!

2n+ 3
2(n+ 1)

1

2F1

(
n, 1

2 , n+
5
2 ; ρ

)
×

[
π −

{
π

3
+
1
2

(
π

2
− 3
4π

)}
1

n+ 1 2F1 (n, 1, n+ 2; ρ)

+
1
3

1
(n+ 1)(n+ 2)

(
π

2
− 3
4π

)
2F1 (n, 2, n+ 3; ρ)

]

−
(
π

2
− 3
4π

)
− 2n ln(2 + ξ)

π

2 + ξ

(1 + ξ)2
2F1

(
n+ 1, 1

2 , n+
5
2 ; ρ

)
2F1

(
n, 1

2 , n+
5
2 ; ρ

) .

(4.3)

On the other hand, the relation between the J/ψ mass (mJ/ψ) of the lowest-lying
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J/ψ-Nucleon Scattering Length and In-Medium Mass Shift 931

resonance and Π̂
(n)
0 (q2) on the PH side is given as

1
n!

(
d

dq2

)n
Πph

0 (q
2) ≡ Π̂

(n) ph
0 (q2)

=
9
4

m2
J/ψ

g2
J/ψ

1
(m2

J/ψ − q2)n+1
[1 + δn], (4.4)

where gJ/ψ is the coupling parameter and δn represents the contribution from low
resonances between J/ψ and the continuum.

We eliminate the parameter gJ/ψ by calculating Π̂
(n) ph
0 /Π̂

(n−1) ph
0 . Then the

ratio will be independent of δn or δn−1 at sufficiently large n, because δn � δn−1

for such n. Apart from these low resonances, we explicitly take account of the
continuum contribution and include it on the OPE side. For simplicity the coefficient
of the continuum term is assumed to be constant (1/4π2) without dependence on
the charmed quark mass. Finally, the J/ψ mass is derived from the relation

mJ/ψ =

q2 +
Π̂

(n−1) OPE
0 − 1

4π2

(
1 + αs

π

)
1

n−1
1

(s0−q2)n−1

Π̂
(n) OPE
0 − 1

4π2

(
1 + αs

π

)
1
n

1
(s0−q2)n

1/2

. (4.5)

We fix ξ ranging from 0.0 to 3.0 in 0.5 increments. This range corresponds to
0 ≤

√
−q2 ≤ 4 GeV. In Fig. 1 we show results for the J/ψ bare mass determined

from Eq. (4.5) for the change of ξ. Here we have used s0 = 3.62 GeV2 and
〈
αs
π G2

〉
0

= 0.0126 GeV4. 11) We must read off the range of n for each ξ from Fig. 1. The

3.3

3.2

3.1

J 
/ ψ

  b
ar

e 
 m

as
s 

 [
G

eV
]

15105

 n   (the number of moments)

  ξ = 0.0
  ξ = 0.5
  ξ = 1.0
  ξ = 1.5
  ξ = 2.0
  ξ = 2.5
  ξ = 3.0

Fig. 1. The results of the moment sum rule analysis for Π
(n)
0 are shown for the determination of

the J/ψ bare mass mJ/ψ. For each value of ξ fixed, we must read off the stability region of n

that reproduces the experimental value mexp
J/ψ

= 3.096 GeV.
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window of n corresponds to finding the region stabilizing the J/ψ bare mass for
the change of n. We obtain the window of n for each ξ as follows: n1 = 2, 3, 4 for
ξ = 0.0 (Q2 = 0.00 GeV2), n2 = 3, 4, 5 for ξ = 0.5 (Q2 = 3.18 GeV2), n3 = 4, 5, 6, 7
for ξ = 1.0 (Q2 = 6.25 GeV2), n4 = 5, 6, 7, 8 for ξ = 1.5 (Q2 = 9.23 GeV2),
n5 = 6, 7, 8, 9 for ξ = 2.0 (Q2 = 12.1 GeV2), n4 = 7, 8, 9, 10 for ξ = 2.5 (Q2 = 14.9
GeV2), n5 = 8, 9, 10, 11 for ξ = 3.0 (Q2 = 17.6 GeV2). These points seem to
reproduce the mass reasonably well for the experimental value mexp

J/ψ = 3.096 GeV.

§5. Numerical results

By inserting the sets of ξ and n obtained in §4 into Eq. (3.7), we can determine
the unknown parameters a and b simultaneously by fitting the left-hand side to the
right-hand side. The calculation proceeds as follows: First we arbitrarily choose two
points in the window of n for fixed ξ and make a simultaneous equation for a and
b by inserting the two chosen values of n. Next we consider all such combinations
for each ξ and take the average of a solved for each combination. Eventually the
scattering length is easily obtained from a.

To calculate the scattering length, we use the following values for other various
parameters. On the PH side we adopt mJ/ψ = 3.1 GeV and MN = 0.94 GeV. The
coupling is determined from the experimental value of Γ e+e−

J/ψ as

f2
J/ψ =

3Γ ee
J/ψ

4πe2
qα

2mJ/ψ
= 1.7× 10−2, (5.1)

where eq is the electric charge of a quark (ec = 2/3 for the charmed quark), and
α is the fine structure constant (= 1/137). Indeed, the coupling fJ/ψ (= 1/ecgJ/ψ)
can also be determined from the moment sum rule by oppositely substituting the
experimental values of the J/ψ bare mass into Eq. (4.4). The value of the coupling
obtained with this method agrees with the experimental value extremely well. 11) For
QCD Lagrangian parameters we use the following functions dependent on ξ given in
Ref. 11):

αs(ξ) =
αs(4m2

c)
1 + 25

12π αs(4m2
c) ln(1 + ξ)

, αs(4m2
c) � 0.3 , (5.2)

mc(ξ) = 1.28×
[
1− αs(ξ)

π

{
2 + ξ

1 + ξ
ln(2 + ξ)− 2 ln2

} ]
GeV . (5.3)

On the OPE side, we determine the nucleon matrix elements as follows:〈
αs
π

G2
〉
N
= −(1.222± 0.282) GeV2 , (5.4)〈

αs
π
ST (Ga

0σG
a
0σ)

〉
N
= −(0.094± 0.010) GeV2 . (5.5)

The scalar part is evaluated from the trace anomaly. 20), 23) The twist-2 part is deter-
mined from the gluon distribution function of a nucleon, which is obtained through
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Table I. J/ψ-N scattering length and the mass shift of J/ψ in the case of the scalar operator only

and the scalar plus twist-2 operator at normal matter density ρN = 0.17 fm−3.

ξ 0.0 0.5 1.0 1.5 2.0 2.5 3.0

− ascalar
J/ψ [fm] 0.091 0.068 0.070 0.063 0.059 0.057 0.055

δmscalar
J/ψ [MeV] 5.3 3.9 4.0 3.6 3.4 3.3 3.2

− atwist2
J/ψ [fm] 0.120 0.090 0.092 0.083 0.078 0.075 0.073

δmtwist2
J/ψ [MeV] 6.9 5.2 5.3 4.8 4.5 4.3 4.2
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Fig. 2. We calculate the J/ψ-N scattering length for each set of ξ and n obtained from Fig. 1. The

dotted line denotes the result calculated only by the contribution of the scalar operator. The

solid line is that involving the twist-2 contribution.

leading order parametrization to the experimental data of deep-inelastic scatter-
ing. 20), 24)

We list the results for the case of a scalar operator only and the case involving
the twist-2 operator in Table I and display a graph of these results in Fig. 2. These
values of the mass shift may be determined irrespective of the magnitude of the
error (∼ 20 MeV) between the theoretical values calculated with the vacuum sum
rule and the experimental value for the J/ψ mass shown in Fig. 1, because the QSR
for Tµν is independent of the vacuum QSR for Π0

µν . Therefore, the mass shift of J/ψ
induced by the interaction with nuclear matter should be regarded as a shift from
the experimental value for the J/ψ mass.

§6. Concluding remarks

The direct application of the moment sum rule to the forward J/ψ-N scattering
amplitude gives an interesting result for the J/ψ-N interaction. That is, the J/ψ-N
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scattering length aJ/ψ is found to be a negative value (about −0.1 fm). This result
suggests that the attractive J/ψ-N interaction is not sufficient to form a bound
state with one nucleon, but it could make a bound state with nuclei. The absolute
value is certainly smaller than the typical hadronic size, 1 fm, and the scattering
length of light vector meson-N systems (aρ � −0.47 fm, aω � −0.41 fm, aφ � −0.15
fm), 6) but the experimental creation of J/ψ at the threshold would lead to the
formation of a bound state inside a heavy nucleus. Our result is smaller than those
obtained recently by Brodsky et al. 25) and de Téramond et al. 26) in the QCD sum
rule approach. 27) Their method is based on an on-shell calculation to the charmed
quark mass (q2 = 0).

In this study we have given a new calculation of the Wilson coefficients for twist-
2 gluon operators (dimension-4) in a form including the quark mass. The nucleon
matrix elements of twist-2 gluon operators are about 1/10 times as large as those
of the scalar part, but the total contribution with the Wilson coefficient makes the
absolute value of the scalar part larger by about 30%. From aJ/ψ, we can estimate
the total cross section (σJ/ψ = 4πa2

J/ψ). The result is about 1.26 mb at the threshold.
Next, in the linear density approximation we can calculate the J/ψ mass shift

from aJ/ψ. The result indicates a very small decrease of the mass (about −4 to −7
MeV), about 0.1 to 0.2% at normal matter density. Since the slight mass shift is
of the order of MeV, the change is sufficiently larger than the leptonic decay width
of the order of several keV. Thus we conclude that J/ψ is a good probe for the
observation of the medium effect.

Acknowledgements

The author would like to thank Y. Koike for helpful and fruitful discussions
and T. Hatsuda and T. Matsui for useful comments and information. The author
also thanks K. Itakura for careful and critical reading of the manuscript and useful
discussions.

References

1) Quark Matter ’97, Proceeding of the 13th International Conference on Ultra-Relativistic
Nucleus-Nucleus Collisions, Tsukuba, Japan, 1-5 Dec. 1997, Nucl. Phys. A638 (1998).

2) G. E. Brown and M. Rho, Phys. Rev. Lett. C66 (1991), 2720.
K.-C. Jean, J. Piekarewicz and A. G. Williams, Phys. Rev. C49 (1994), 1981.
H. Shiomi and T. Hatsuda, Phys. Lett. B334 (1994), 281.
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