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First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider
(RHIC) are presented. The yield ofJ/c’s measured in the PHENIX experiment via electron-positron decay
pairs at midrapidity for Au-Au reactions atÎsNN=200 GeV is analyzed as a function of collision centrality. For
this analysis we have studied 49.33106 minimum bias Au-Au reactions. We present theJ/c invariant yield
dN/dy for peripheral and midcentral reactions. For the most central collisions where we observe no signal
above background, we quote 90% confidence level upper limits. We compare these results with ourJ/c
measurement from proton-proton reactions at the same energy. We find that our measurements are not consis-
tent with models that predict strong enhancement relative to binary collision scaling.
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I. INTRODUCTION

Lattice quantum chromodynamics(QCD) calculations in-
dicate that there is a transition of nuclear matter from con-
fined to deconfined quarks and gluons at a temperature of
orderTc=170 MeV. Characteristic of this deconfined state of
matter is the dynamic screening of the long-range confining
potential of QCD. Color screening is predicted to reduce the
attraction between heavy quark-antiquark pairs, and thus
leads to a decrease in the ratio of hidden charm and beauty
(quarkonia) to open charm and beauty[1,2]. Thus, one ex-
pects a suppression of quarkonium statesfJ/c, c8, xc,
Ys1s, 2s, 3sdg depending on their binding energy and the
temperature of the surrounding system.

In relativistic heavy ion collisions a state of a deconfined
thermalized quark-gluon plasma may be created. Measure-
ments in Pb-Pb reactions atÎsNN=17.3 GeV by the NA50
experiment[3] show a suppression of heavy quarkonia pro-
duction relative to “normal” nuclear absorption, the dissocia-
tion of cc pairs by interactions with the nucleons into sepa-
rate quarks that eventually hadronize intoD mesons[4–7].
This suppression has been interpreted in the context of color
screening in a quark-gluon plasma[6,8], additional absorp-
tion with comoving hadrons[9,10], and multiple scattering
between the charm quarks and the surrounding medium
[11,12].

At Relativistic Heavy Ion Collider (RHIC) energies,
where of order 10cc pairs are produced in central Au-Au
reactions[13,14], some models predict an enhancement of
heavy quarkonia due tocc coalescence in a quark-gluon
plasma[15], detailed balance ofD+D↔J/c+X [16], and/or
statisticalJ/c production[17]. In addition, at RHIC energies
initial state effects of shadowing and possible parton satura-
tion may play a role in initial charm production[18]. Disen-
tangling these competing effects will require a systematic
study of yields of various quarkonium states in different col-
liding systems[proton-proton, proton(or deuteron)-ion, and
ion-ion] and over a wide kinematic range in terms of trans-
verse momentum andxF.

We report here the first results onJ/c production via
electron-positron decay pairs at midrapidity from Au-Au col-
lisions atÎsNN=200 GeV from data taken during Run 2 at
RHIC in 2001. For peripheral and midcentral Au-Au colli-
sions, we present the most probable yield values, while for
central reactions, we observe no signal above background
and thus quote 90% confidence level upper limits onJ/c
production.

II. PHENIX EXPERIMENT

The PHENIX experiment is specifically designed to make
use of high-luminosity ion-ion, proton-ion, and proton-
proton collisions at the Relativistic Heavy Ion Collider to
sample rare physics probes including theJ/c and other heavy
quarkonium states. The PHENIX experiment includes two
central rapidity spectrometer arms, each covering the pseu-
dorapidity rangeuhu,0.35 and an interval of 90° in azi-
muthal anglef. The spectrometers are composed from the
inner radius outward of a multiplicity and vertex detector,

drift chambers(DC), pixel pad chambers(PC), ring imaging
cerenkov counters(RICH), time-of-flight scintillator wall,
time expansion chambers(TEC), and two types of electro-
magnetic calorimeters(EMC). This combination of detectors
allows for the clean identification of electrons over a broad
range in transverse momentum. Further details of the detec-
tor design and performance are given in Ref.[19].

The Au-Au event centrality is estimated using the com-
bined data from our beam-beam counters(BBCs) and zero
degree calorimeters(ZDCs). While the ZDCs measure for-
ward neutrons that result from fragmentation of the colliding
nuclei, the BBCs are sensitive to charged particles produced
in the collisions. Together, both detectors yield information
on the impact parameter of the nuclear reaction[20]. These
observables, combined with a Glauber model for the nuclear
geometry, allow us to determine different collision geometry
categories, referred to as centrality ranges[21].

For the analysis presented here, the electron(positron)
momentum and charge sign are determined from tracking
using the DC and the PC and then projecting back through
the PHENIX axial magnetic field to the collision point deter-
mined by the BBC[22]. The momentum resolution achieved
is dp/p=0.7%% 1.0%3p (in GeV/c). Electrons are cleanly
separated from the large background of charged pions and
kaons by associating the tracks with at least three active pho-
tomultiplier tubes in the RICH[23]. In addition, we compare
the track momentumspd to the energysEd measured in the
electromagnetic calorimeter. TheE/p ratio is used to further
reduce the pion contamination in the electron sample. Pions
typically deposit only a fraction of their energy in the calo-
rimeter whereas electrons deposit all of their energy. These
selections are augmented by requiring that the calorimeter
shower position and time-of-flight information agree with the
track projection. Thus, we obtain a clean sample of electron
and positron candidates with less than 5% contamination.

III. DATA SELECTION AND TRIGGERS

The Au-Au data atÎsNN=200 GeV used in this analysis
were recorded during Run 2 at RHIC in the fall of 2001. For
our “minimum bias” Au-Au event selection, we use a level-1
trigger that requires a coincidence between our BBCs. We
place an additional offline requirement of at least one for-
ward neutron in each of our ZDCs to remove beam related
backgrounds. Our “minimum bias” sample includes 92% of
the 6.9 barn Au-Au inelastic cross section[21]. We further
restrict our analysis to 90% of the inelastic cross section to
remove a small remaining contribution from beam related
background events.

We observed a Au-Au inelastic collision rate that in-
creased during the running period from 100 to 1200 Hz. The
level-2 triggers are implemented in a personal-computer-
based farm with 30 processors in run 2, as part of the
PHENIX Event Builder[19]. The level-2J/c trigger algo-
rithm identified electron candidates by starting with rings in
the RICH and then searching for possible matching showers
in the EMC. The EMC search window based on the RICH
ring is obtained from a lookup table, generated using Monte
Carlo simulations of single electrons. Possible matches were
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assumed to be electron candidates, and the electron momen-
tum was taken to be the EMC shower energy. The invariant
mass was calculated for all electron candidate pairs within an
event, regardless of the candidate’s charge sign. If the invari-
ant mass was higher than 2.2 GeV/c2, the pair was accepted
as aJ/c candidate, and the entire event was archived. The
level-2 trigger provided a rejection factor of order 30 relative
to our “minimum bias” level-1 trigger sample.

An additional offline requirement was imposed that the
collisions have az vertex satisfyinguzu,30 cm in order to
eliminate collisions taking place near the PHENIX magnet.
After this selection, we have analyzed 25.93106 “minimum
bias” Au-Au reactions as triggered by our BBC level-1 trig-
ger. In addition, from the high-luminosity period of running,
we also processed 23.43106 “minimum bias” events with
our J/c level-2 trigger.

IV. J/c SIGNAL COUNTING

For three exclusive centrality bins—0–20%, 20–40%,
and 40–90% of the total Au-Au cross section, we show the
dielectron invariant mass distributions for unlike sign pairs

se+e−d, like sign pairs(e+e+ or e−e−), and the subtracted dif-
ference in Fig. 1. The number ofJ/c counts for each central-
ity range is determined from the number of signal counts
above “background” within a fixed invariant mass window.
The PHENIX acceptance and level-2 trigger efficiencies are
the same within a few percent for unlike sign pairs and like
sign pairs in theJ/c mass region. Therefore, the sample of
like sign pairs is a good representation with no additional
scale factor of the “background” due to simple combinator-
ics.

In order to extract aJ/c signal strength, we employ a
counting method where we subtract from the number of un-
like sign pairs the number of like sign pairs in the mass
window 2.8,m,3.4 GeV/c2. We have chosen a wide in-
variant mass window to be consistent with the signal extrac-
tion method from our proton-proton analysis[24], and to
limit our sensitivity to the exact mass width value. Although
we expect from our Monte Carlo studies a mass width of
order 60 MeV, we cannot quantitatively verify this even with
our proton-proton data sample due to low statistics. We note,
that in principle, there is more information to be utilized in
the exact distribution of the candidates within the mass win-
dow. However, we have found that this does not add to the
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FIG. 1. (Color online) Dielectron invariant mass distribution in Au-Au reactions(top row, most central, 0–20 % central; middle row,
midcentral, 20–40 % central; and bottom row, peripheral, 40–90 % central) for unlike sign pairs containing signal1background(left
column), like sign pairs containing only background(center column), and the subtracted difference(right column).
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significance of the result, given the low counts and the lack
of constraint on theJ/c and background line shape.

Table I shows the number of unlike and like sign counts
within the mass window. For given observed counts ofNl
(like sign) and Nu (unlike sign), the likelihoodLsnl, nud for
the expectation valuesnl andnu is given as

Lsnl, nud =
nl

Nle−nl

Nl !
3

nu
Nue−nu

Nu!
. s1d

We then integrateLsnl, nud to give the likelihoodLsnsd for
the expectation value of the net signal countsns=nu−nl,

Lsnsd =E
0

` E
0

`

Lsnl, nuddsns − nu + nlddnldnu s2d

We show the likelihood distributionLsnsd for the midcentral
s20–40 %d events in Fig. 2. AlthoughLsnsd is normalized

such thate
−`

` Lsnsddns=1, it has a nonzero probability for

negative expected net signal valuesns,0d. Since the un-
like sign contains signal + background, and the like sign
contains onlybackground, the only physically allowed val-
ues forns are greater than or equal to zero. Thus, we remove
the probability range corresponding tons,0, and renormal-
ize the remaining probability integral to onef25g, as shown
in Fig. 2. We then determine for each centrality the 90%
confidence level upper limit, and the 68% confidence in-
terval around the most likely value for the peripheral and
midcentral ranges. These values are shown in Table I.

Since the net signal is negative for the 0–20 % central
event class, we can only quote a 90% confidence level upper
limit. Also, even for the 20–40 % and 40–90 % centrality
classes, the signal observed is not significant at the two stan-
dard deviation level and thus we also show 90% confidence
level upper limits for completeness. The limited statistical
significance of the results is clear from the mass distributions
shown in Fig. 1.

In the intermediate mass region below theJ/c,
2.0,m,2.8 GeV/c2, the shapes and absolute yield of like
sign and unlike sign dielectron mass distributions are well
reproduced by an event mixing method within a few percent.
This indicates that most of the dielectron pairs are from un-
correlated electron and positron candidates. They are origi-
nating from Dalitz decays, photon conversions, open charm/

beauty semileptonic decays, and a small contamination of
misidentified hadrons. The unlike sign pairs should also have
a component from semileptonic decays of charm and antic-
harm pairs, but its contribution is less than the statistical
uncertainty of the data[26]. A complete analysis of the in-
termediate mass region will be presented elsewhere[27].

Our method of measurement does not separate contribu-
tions from decay feed-down from other states such as thexc
and c8, and thus ourJ/c counts include these feed-down
sources. Our acceptance and efficiency is identical for the
resultingJ/c from these decays as for promptJ/c, and thus
they enter our signal weighted simply by their relative pro-
duction and branching fraction intoJ/c+X. Another contri-
bution may result fromB meson decays intoJ/c. However, if
we assume abb cross section in proton-proton reactions
sbb<2–5 mb [28] and that beauty production scales with
binary collisions, we would expect a contribution of order
1–4 % relative to primaryJ/c or J/c from xc. This percent-
age contribution calculation assumes that the primaryJ/c
also scales with binary collisions. If primaryJ/c are substan-
tially suppressed, theB meson decay contribution would
constitute a larger fraction of our measuredJ/c, especially at
higherpT.

It should also be noted that some signal in the unlike sign
pairs from correlated open charmcc→Ds→e++Xd+Ds
→e−+Xd will contribute in our mass window. Assuming bi-
nary scaling in charm production with a proton-proton cross
sectionscc<650 mb [14], this contribution in theJ/c mass
region is estimated to be about 0.1 events in the 0–20 %,
0.05 events in the 20–40 %, and 0.02 events in the 40–90 %
centrality bins.

TABLE I. Statistical results forJ/c counts are shown for three
exclusive centrality ranges. Shown are the number of unlike and
like sign counts within the mass windows2.8,m,3.4 GeV/c2d.
Also shown are the most likely signal value with the 68% statistics
confidence interval(for the peripheral and midcentral cases), and
the 90% confidence level upper limits.

Cent. Unlike sign Like sign Most likely 90%

counts counts signal C.L.

0–20 % 33 41 0 9.9

20–40 % 16 8 8−4.1
+4.8 14.4

40–90 % 7 2 5−2.6
+3.1 9.3
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FIG. 2. (Color online) The Poisson statistical likelihood distri-
bution as a function of the expected net signal. The distributions are
for the midcentral case ofNunlike=16 andNlike=8. The dashed curve
is the likelihood distribution, and the black is after eliminating the
unphysical net signal less than zero and renormalizing. Vertical
lines are shown to indicate the most likely value(8), the 68% con-
fidence interval values, and the 90% confidence level upper limit.
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V. J/c YIELD CALCULATION

We quote our results as the branching fraction ofJ/c
→e+e− (B=5.93±0.10310−2 [25]) times the invariant yield
at midrapiditydN/dyuy=0. We calculate this quantity for three
exclusive centrality ranges as detailed below,

BUdN

dy
U

y=0
=

NJ/c

Nmb−evt + selvl2-ef fNlvl2−evtd
3

1

Dy

1

eacc-ef f 3 ecent
.

s3d

The number of signal countsNJ/c from both the “mini-
mum bias” and level-2 triggered event samples are shown in
Table I. The number of events from the “minimum bias”
sampleNmb-evt is 25.93106 Au-Au events. The number of
effective events sampled by the level-2 trigger isselvl2-ef f

3Nlvl2-evtd, which is the level-2 trigger efficiency times the
number of events processed by the level-2 trigger, 23.4
3106 Au-Au events. This formulation appropriately weights
the two data samples by the expected number ofJ/c.

The efficiency of the level-2 triggerelvl2-ef f was deter-
mined by running the trigger algorithm on simulatedJ/c and
carrying out a full offline reconstruction of the resulting
electron-positron decay pair. The efficiency was calculated
via counting the fraction of successfully reconstructedJ/c
events that were also found by the trigger. In these trigger
simulations, the channel-by-channel calibrations for the
RICH and EMC were used to convert the simulated signals
into realistic values representative of a specific period in the
run, before passing them to the level-2 trigger.

The overallJ/c trigger efficiency from the trigger simu-
lations waselvl2-ef f=0.75±0.04. The systematic error was de-
termined by studying the dependence of the trigger effi-
ciency on the collision vertex position, the assumedJ/c
transverse momentum and rapidity distribution, collision
centrality, and the period of the run from which the channel-
by-channel calibrations were taken. After evaluating all of
the above dependencies, we assign a 5% systematic error to
the J/c trigger efficiency.

The efficiency result from the trigger simulations was
confirmed using real data in two ways. First, the minimum
bias data sample in Au-Au collisions was analyzed to calcu-
late theJ/c trigger efficiency. This was done by taking the
ratio of the events that have an electron pair with invariant
mass between 2.8 and 3.4 GeV/c2 that fired theJ/c trigger to
all of the events having electron pairs in that invariant mass
range. The trigger efficiency estimate from this check is
0.67±0.10(stat). Second, the triggers were run on a sample
of 26 events from the proton-proton dataset that passed all of
the J/c cuts in the offline analysis and had invariant masses
between 2.8 and 3.4 GeV/c2. The level-2 J/c trigger ac-
cepted 19 of these events, yielding an estimate of 0.73±0.10

0.07

(stat), in very good agreement with the trigger simulation
result. These results verify that the trigger performance is
similar for real data and simulations.

The J/c acceptance and efficiencyeacc-ef f is determined
with a GEANT based Monte Carlo simulation of the PHENIX
experiment. The detector response has been tuned to repro-
duce the resolution and performance of the real detector. The

efficiency includes not only the tracking efficiency, but also
the probability for passing all of the electron identification
selection cuts. The electron identification efficiency deter-
mined by the Monte Carlo simulation is verified by a clean
electron sample from conversion photons. We also account
for run by run efficiency changes by counting the relative
number of reconstructed electrons and positrons per event in
our data sample. We show the PHENIX acceptance and ef-
ficiency as a function of transverse momentum in Fig. 3.

Since we do not have the statistics to determine the trans-
verse momentum distribution of theJ/c, we must employ a
model for thepT dependence to determine an overall accep-
tance and efficiency. We use two different functional forms
for the pT distributions to test the model sensitivity of our
acceptance. We use an exponential inpT and an exponential
in pT

2 as motivated by fits toJ/c data at lower energies[29].
The two models give similar acceptance values given a com-
monkpTl value input. The largest uncertainty comes from the
value of kpTl assumed. PHENIX has measuredJ/c produc-
tion in proton-proton reactions atÎs=200 GeV and finds a
kpTl=1.80±0.23sstatd±0.16ssystdGeV/c [24]. We use this
value to determine our acceptance and efficiency averaged
over allpT. TheJ/c kpTl in Au-Au collisions may differ from
that in proton-proton reactions. Therefore we vary thekpTl

TABLE II. The J/c acceptance3 efficiency and the centrality
dependent efficiency are shown for three exclusive Au-Au centrality
event classes.

Centrality bin eacc-ef f ecent

0–20 % 0.0027±0.0005
0.0009 ssystd 0.61±0.06 ssystd

20–40 % 0.0027±0.0005
0.0009 ssystd 0.78±0.08 ssystd

40–90 % 0.0027±0.0005
0.0009 ssystd 0.90±0.09 ssystd
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FIG. 3. The PHENIXJ/c acceptance3 efficiency as a function
of the J/c transverse momentum is shown. Most of the acceptance
is with one lepton into each of the two PHENIX central spectrom-
eters. This contribution peaks atpT=0 and decreases with increas-
ing pT. The rise in the acceptance at highpT is from contributions
where both electron and positron are accepted into one of the
PHENIX central spectrometers.
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from 1.0 to 3.0 GeV/c to determine our model dependent
systematic errors. We assume that theJ/c rapidity distribu-
tion is flat over the range −0.35,y,0.35 where we mea-
sure. The final value for theJ/c acceptance and efficiency is
shown in Table II. This acceptance and efficiency has a 20%
systematic error from uncertainties in matching the Monte
Carlo to the detector response, a 10% systematic error from
run-to-run variation corrections, and a ±24

32% systematic error
from the uncertainty in thekpTl.

Our tracking and electron identification efficiencies ex-
hibit a centrality dependence due to overlapping hits and
energy contamination in the calorimeter. We determine this
dependence by embedding Monte CarloJ/c into real data
events of different centrality selections. The corresponding
efficiency factorecent varies from 56% for the 0–5 % most
central events to 98% for the 85–90 % most peripheral
events.

The final values for the embedding efficiency in our wide
centrality bins are sensitive to the true centrality dependence
of the J/c production. In order to estimate the systematic
error due to this uncertainty we assume two different central-
ity dependence models:(1) binary collision scaling and(2)
participant collision scaling. Within our centrality ranges, we
find that these two models yield less than a 5% difference
and we include this in our systematic error. We assign an
additional 10% systematic error to account for uncertainties
in the Monte Carlo embedding procedure. The centrality de-
pendent efficiency values are shown in Table II.

In our B dN/dy calculation, we have added the systematic
errors from all of the contributing factors in quadrature and

find +35% and −41% total systematic error on the invariant
yield in each of the centrality ranges. The dominant system-
atic error results from the uncertainty in thekpTl of the J/c
distribution.

VI. RESULTS

The B dN/dyuy=0 values for the three exclusive centrality
selections are shown in Table III. We have calculated using a
Glauber model[21] the number of expected participating
nucleonsNpart and the number of expected binary collisions
Ncoll for each centrality range. These results are shown in
Table IV, in addition to theB dN/dyuy=0 values divided by
the expected number of binary collisions.

The PHENIX result for theJ/c invariant yield in proton-
proton induced reactions atÎs=200 GeV at midrapidity[24]
is

BdN/dyuy=0sppd = 1.46 ± 0.23sstatd ± 0.22ssystd ± 0.15sabsd

3 10−6. s4d

The systematic errorsabsd represents the uncertainty of the
normalization of the total proton-proton invariant yield.

We show in Fig. 4 the results from the three Au-Au cen-
trality bins and the proton-proton data normalized per binary
collision as a function of the number of participating nucle-
ons. Note that for proton-proton reactions, there are two par-
ticipating nucleons and one binary collision.

VII. DISCUSSION

Despite the limited statistical significance and systematic
uncertainty of these firstJ/c results, we can address some
important physics questions raised by the numerous theoret-
ical frameworks in whichJ/c rates are calculated.

We show in Fig. 5 binary scaling expectations as a gray
band. We also show a calculation of the suppression ex-
pected from “normal” nuclear absorption using ascc−N

=4.4 mb [30] and 7.1 mb[31,6]. A recent measurement in
proton-nucleus collisions at lower energies[30] favors the
smaller absorption cross section, thus underscoring the im-
portance of measuringJ/c in proton(deuteron)-nucleus col-
lisions at RHIC energies. We also show the NA50 suppres-
sion pattern relative to binary scaling[3], normalized to

TABLE III. We show the statistically most likelyJ/c invariant
yield sB dN/dyuy=0d value and the 68% confidence interval for pe-
ripheral s40–90 %d and midcentrals20–40 %d collisions. We also
show the 90% confidence level upper limit and the systematic error
on this limit for all three different centrality ranges of Au-Au col-
lisions.

B dN/dyuy=0s310−4d
Centrality Most likely value 90% C.L. upper limit

0–20 % N.A. 6.08+1.56ssystd
20–40 % 4.00−2.01

+2.34 sstatd−1.60
+1.36 ssystd 7.19+2.43 ssystd

40–90 % 0.86−0.44
+0.52 sstatd−0.35

+0.29 ssystd 1.60+0.54 ssystd

TABLE IV. We show the number of participating nucleons and the number of binary collisions for three different centrality ranges of
Au-Au collisions, and the associated systematic errors. We show the statistically most likely value for theJ/c invariant yieldsB dN/dyuy=0d
divided by the expected number of binary collisions for peripherals40–90 %d and midcentrals20–40 %d collisions. We also show the 90%
confidence level upper limit and the systematic error on this limit for all three different centrality ranges of
Au-Au collisions. The systematic error in the invariant yield per binary collision does not include the systematic error in the expected number
of binary collisions. This error contribution is negligible for the central and midcentral categories and would increase the systematic error for
the peripheral category by 6%.

B dN/dyuy=0 per binary collisions310−6d
Centrality Npart Ncoll Most likely value 90% C.L. upper limit

0–20 % 280±4 779±75 N.A. 0.78+0.20ssystd
20–40 % 140±5 296±31 1.35−0.68

+0.79 sstatd−0.54
+0.46 ssystd 2.43+0.82 ssystd

40–90 % 34±3 45±7 1.91−0.97
+1.15 sstatd−0.77

+0.65 ssystd 3.55+1.21 ssystd
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match our proton-proton data point at 200 GeV. The data
disfavor binary scaling, while they are consistent with “nor-
mal” nuclear absorption alone and also the NA50 suppres-
sion pattern measured at lower energies, within our large
statistical errors.

One model calculation[16] including just the “normal”
nuclear and plasma absorption components at RHIC energies
is shown in Fig. 6. The higher temperaturesTd and longer
time duration of the system at RHIC lead to a predicted
larger suppression ofJ/c relative to binary collision scaling.
This specific model[16], and in general this class of models
[32,8], cannot be ruled out at this time due to our null result
(90% confidence level upper limit) for the most central col-
lisions.

Many recent theoretical calculations also include the pos-
sibility for additional late stage re-creation or coalescence of
J/c states. In Ref.[16], they include both breakup and cre-
ation reactionsD+D↔J/c+X. At the lower fixed target
CERN energies, this represents a very small contribution due
to the small charm production cross section. However, at
RHIC energies, where in central Au-Au collisions there are
of order 10cc pairs produced, the contribution is significant.
The sum of the initial production, absorption, and re-creation

as shown in Fig. 6 is also consistent with our experimental
data.

A different calculation[15] assumes the formation of a
quark-gluon plasma in which the mobility of heavy quarks in
the deconfined region leads to increasedcc coalescence. This
leads to a very large enhancement ofJ/c production at RHIC
energies for the most central reactions. The model considers
the plasma temperaturesTd and the rapidity widthsDyd of
charm quark production as input parameters. Shown in Fig. 6
are the calculation results forT=400 MeV and Dy
=1.0, 2.0, 3.0, 4.0. The narrower the rapidity window in
which all charm quarks reside, the larger the probability for
J/c formation. Dy=1.0 is consistent with the three dimen-
sional spherically symmetric thermal distribution, and results
in a charm yield at midrapidity that is inconsistent with the
PHENIX preliminary charm yield as determined from single
electron measurements[14]. Dy=4.0 is consistent with ex-
pectations from factorized QCD andPYTHIA with CTEQ5L
structure functions[13]. All of these parameters within this
model predict aJ/c enhancement relative to binary collisions
scaling, which is disfavored by our data.

Another framework for determining quarkonia yields is to
assume a statistical distribution of charm quarks that may
then form quarkonia. A calculation assuming thermal, but not
chemical, equilibration[17] is shown in Figure 6, and is also
consistent with our data.

Significantly larger datasets are required to address the
various models that are still consistent with our first mea-
surement. Key tests will be thepT andxF dependence of the
J/c yields, and how these compare with other quarkonium
states such as thec8.
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FIG. 4. TheJ/c invariant yield per binary collision is shown for
proton-proton reactions and three exclusive centrality ranges of
Au-Au reactions all atÎsNN=200 GeV. For the proton-proton reac-
tions, we show the most likely value as a data point(square), the
statistical error, and the estimated systematic errors as brackets. For
the three Au-Au data points, we show as arrows the 90% confidence
level upper limits. The bracket above the limit includes the esti-
mated systematic error on these limits. In the case of the peripheral
and midcentral ranges, we also show, as a square marker, the sta-
tistically most likely value and as two horizontal dashes the 68%
confidence interval. The gray band indicates binary scaling and the
width is the quadrature sum of the statistical and systematic error on
our proton-proton data point. For the Au-Au points, the systematic
error in the invariant yield per binary collision does not include the
systematic error in the expected number of binary collisions. This
error contribution is negligible for the central and midcentral cat-
egories and would increase the systematic error for the peripheral
category by 6%.
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FIG. 5. (Color online) The J/c invariant yield per binary colli-
sion is shown from proton-proton reactions and three exclusive cen-
trality ranges of Au-Au reactions all atÎsNN=200 GeV. The lines
are the theoretical expectations from “normal” nuclear absorption
with scc−N=4.4 mb(solid curve) and 7.1 mb(dashed curve) cross
section. The stars are theJ/c per binary collision measured by the
NA50 experiment at lower collision energy. In order to compare the
shapes of the distribution, we have normalized the NA50 data to
match the central value for our proton-proton results.
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VIII. SUMMARY

PHENIX has shown first results onJ/c production in
Au-Au collisions atÎsNN=200 GeV at midrapidity as mea-
sured via electron-positron pairs. We find that models that
predict J/c enhancement relative to binary collision scaling
are disfavored, while we cannot discriminate between vari-
ous scenarios leading to suppression relative to binary scal-
ing.

This first measurement from PHENIX will be followed
with high statistics measurements in both the electron chan-
nel at midrapidity and at forward and backward rapidities in
the PHENIX muon spectrometers. Such measurements are
expected in the next few years and will address the full range
of heavy quarkonia production and evolution models.
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