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Abstract

Background: A survey of presences and absences of specific species across multiple biogeographic units (or

bioregions) are used in a broad area of biological studies from ecology to microbiology. Using binary

presence-absence data, we evaluate species co-occurrences that help elucidate relationships among organisms and

environments. To summarize similarity between occurrences of species, we routinely use the Jaccard/Tanimoto

coefficient, which is the ratio of their intersection to their union. It is natural, then, to identify statistically significant

Jaccard/Tanimoto coefficients, which suggest non-random co-occurrences of species. However, statistical hypothesis

testing using this similarity coefficient has been seldom used or studied.

Results: We introduce a hypothesis test for similarity for biological presence-absence data, using the

Jaccard/Tanimoto coefficient. Several key improvements are presented including unbiased estimation of expectation

and centered Jaccard/Tanimoto coefficients, that account for occurrence probabilities. The exact and asymptotic

solutions are derived. To overcome a computational burden due to high-dimensionality, we propose the bootstrap

and measurement concentration algorithms to efficiently estimate statistical significance of binary similarity.

Comprehensive simulation studies demonstrate that our proposed methods produce accurate p-values and false

discovery rates. The proposed estimation methods are orders of magnitude faster than the exact solution, particularly

with an increasing dimensionality. We showcase their applications in evaluating co-occurrences of bird species in 28

islands of Vanuatu and fish species in 3347 freshwater habitats in France. The proposed methods are implemented in

an open source R package called jaccard (https://cran.r-project.org/package=jaccard).

Conclusion: We introduce a suite of statistical methods for the Jaccard/Tanimoto similarity coefficient for binary

data, that enable straightforward incorporation of probabilistic measures in analysis for species co-occurrences. Due

to their generality, the proposed methods and implementations are applicable to a wide range of binary data arising

from genomics, biochemistry, and other areas of science.
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Background
Analysis of species co-occurrences helps us understand

ecological and biological relationships among species.

Essentially, the presence (1) and absence (0) of species

are surveyed in multiple biogeographic units (or biore-

gions) using fieldwork, imaging, sequencing, and other

techniques. Then, the Jaccard/Tanimoto coefficient is one

of the most fundamental and popular similarity mea-

sures to compare such biological presence-absence data.

Given two presence-absence vectors yi and yj of length m

that represent two different species, the Jaccard/Tanimoto

similarity coefficient is the ratio of their intersection to

their union, T(yi, yj) = yi ∩ yj/yi ∪ yj [1, 2]. This quan-

tification of overlaps allows us to quantify co-existence

of species [3–6]. However, the Jaccard/Tanimoto coeffi-

cient lacks probabilistic interpretations or statistical error

controls. Surprisingly, its statistical properties, hypothe-

sis testing, and estimationmethods for p-values have been

inadequately studied. Here, we present a rigorous sta-

tistical test evaluating the similarity in presence-absence

data, derive exact and asymptotic solutions, and intro-

duce efficient estimation methods for significance of the

Jaccard/Tanimoto similarity coefficient.

Generally, analysis of co-occurrences enables us to dis-

tinguish generalist species that survive in a broad range

of environments from specialists that only thrive in a

few localities [7, 8]. Alternatively, similarity between two

localities – how two biogeographic units share an over-

lapping set of species – sheds light on the beta diver-

sity that may arise from ecological processes over time

[9–11]. There has been a long standing discussion on

how to conduct association analysis for occurrences of

species, including appropriate null models and evalua-

tion techniques [12–17]. There are also specialized prob-

abilistic approaches, including metrics related to the

Jaccard/Tanimoto coefficient [18–21]. Yet, these stud-

ies rarely utilized statistical significance. Therefore, we

investigated a hypothesis test using the Jaccard/Tanimoto

coefficient that underlies or accompanies most of such

association analyses.

The Jaccard/Tanimoto coefficient measuring similarity

between two species has long been used to evaluate co-

occurrences between species or between biogeographic

units [3–5, 22–24]. Pioneering early works on probabilis-

tic treatment of the Jaccard/Tanimoto coefficient assume

that the probability of species occurrences is 0.5 [5, 22, 23].

These can be seen as special cases of our methods where

both probabilities of yi and yj are set to 0.5. Recently, [24]

and [25] proposed estimating p-values with combinatorics

and hypergeometric distributions, respectively. We found

that they may lead to inaccurate estimates. To provide a

comprehensive statistical treatment, we have developed a

suite of methods and estimation techniques for rigorously

testing similarity between presence-absence data.

We derive a hypothesis test from the first principles

using the Jaccard/Tanimoto coefficient. In the process,

we propose an unbiased estimation of expectation and a

centered Jaccard/Tanimoto coefficient that accounts for

different probabilities of species occurrences. The nega-

tive and positive values of the centered Jaccard/Tanimoto

coefficient naturally correspond to negative and posi-

tive association. We introduce an exact distribution of

Jaccard/Tanimoto similarity coefficients under indepen-

dence that is shown to provide accurate p-values. Because

the exact solution for a large m is computationally expen-

sive, we have developed two efficient and accurate esti-

mation algorithms. We demonstrate their remarkable

accuracy and computational efficiency in comprehensive

simulation studies, where p-values and false discovery

rates (FDRs) are evaluated. As applications, we evaluated

co-occurrences of bird species from m = 28 islands of

Vanuatu and of fish species from m = 3347 freshwater

habitats in France.

All proposed methods are implemented in a statistical

programming language R [26], available on the Com-

prehensive R Archive Network (https://cran.r-project.

org/package=jaccard). We additionally provide an inter-

active web app (https://nnnn.shinyapps.io/jaccard). The

implementations are efficient and general, such that the

jaccard package can rigorously test similarity between

binary data arising from genomics, biochemistry, and oth-

ers.

Methods
Statistical model and test

Quantitative comparison of presence-absence data in

ecology and biology plays a crucial role in evaluating

species co-existences, biodiversities, and ecosystems. In

particular, one may be interested in comparing how

species are co-occurring in biogeographic units or how

biogeographic units are occupied by certain species. Note

that species are used generally to indicate groups of organ-

isms under investigations, such as operational taxonomic

units (OTUs); similarly, biogeographic units or bioregions

could be distinct survey areas, islands, or habitats. We are

interested in statistically testing similarity between a pair

of presence-absence data.

Given two presence-absence vectors yi and yj of length

m, we are interested in inferring whether they are sig-

nificantly related. Consider presence (1) and absence (0)

of two species are recorded at m biogeographic units.

We measure their similarity by the ratio of their inter-

section to their union, T(yi, yj) = yi ∩ yj/yi ∪ yj.

This is well known as the Jaccard/Tanimoto index or

similarity coefficient [1, 2]. In order to utilize the Jac-

card/Tanimoto similarity coefficient in a statistically rig-

orous manner, we propose a family of methods and

algorithms (Fig. 1).

https://cran.r-project.org/package=jaccard
https://cran.r-project.org/package=jaccard
https://nnnn.shinyapps.io/jaccard
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Fig. 1 Flowchart of the proposed statistical methods and algorithms

Under the null model of independence, yi and yj are

assumed to be independent and identically distributed

(i.i.d.). They are modeled by a Bernoulli distribution, with

corresponding occurrence (i.e., success) probabilities pi
and pj ∈[ 0, 1]. Specifically, for k = 1, . . . ,m, yi,k ∼i.i.d.

Bernoulli(pi) and yj,k ∼i.i.d. Bernoulli(pj). Because this

conventional definition is undefined if both binary vectors

contain only zeros such that yi ∪ yj = 0, we refine the

definition of Jaccard/Tanimoto coefficient

T(yi, yj) =

⎧

⎨

⎩

yi∩yj
yi∪yj

if yi ∪ yj �= 0

pipj
pi+pj−pipj

otherwise.
(1)

Following the definition of Jaccard/Tanimoto similar-

ity coefficient in Eq. (1), we derive its expected value

E[T(yi, yj)]=
pipj

pi+pj−pipj
. Substantial deviation from the

expected value signifies similarity. Note that the Jac-

card/Tanimoto coefficient can also be defined in terms

of a multinomial distribution with four categories and m

trials (for example, representing m biogeographic units).

Four categories arising from presence-absence data are

N1 = yi ∩ yj, N2 = yi ∩ (1 − yj), N3 = (1 − yi) ∩ yj and

N4 = m − N1 − N2 − N3. From pi and pj, probabilities

of those four categories are pipj, pi(1 − pj), (1 − pi)pj and

(1 − pi)(1 − pj), respectively. Putting them together, N =
(N1,N2,N3,N4) is distributed according to a multinomial

distribution,Multi(m, pipj, pi(1−pj), (1−pi)pj, (1−pi)(1−
pj)).

Proposition 1 If yi and yj are independent, then

E(T(yi, yj)) =
pipj

pi + pj − pipj
.

Proof 1 First, we compute conditional expectation given

N1 + N2 + N3. We observe that N1|N1 + N2 + N3 follows

Bernoulli(N1 + N2 + N3,
pipj

pi+pj−pipj
). Hence, on set N1 +

N2 + N3 > 0, we have

E(T(yi, yj)|N1 + N2 + N3) = E

(

N1

N1 + N2 + N3
|N1 + N2 + N3

)

= E(N1|N1 + N2 + N3)

N1 + N2 + N3

=
pipj

pi+pj−pipj
(N1 + N2 + N3)

N1 + N2 + N3

=
pipj

pi + pj − pipj

and on set N1 + N2 + N3 = 0, we have

E

(

T
(

yi, yj

)

|N1 + N2 + N3

)

=
pipj

pi + pj − pipj

Therefore,

E(T(yi, yj)) = E[E(T(yi, yj)|N1 + N2 + N3)]

=
pipj

pi + pj − pipj
P(N1 + N2 + N3 = 0)

+
pipj

pi + pj − pipj
P(N1+N2+N3 > 0)

=
pipj

pi + pj − pipj
.

This allows us to define the centered Jaccard/Tanimoto

coefficient as

Tc(yi, yj) = T(yi, yj) − E

[

T(yi, yj)
]

(2)

This accounts for expected values, naturally distinguish-

ing negative and positive associations. Generally, we

would like to measure the deviation of an observed coef-

ficient from an expected value, instead of simply looking

at a magnitude of an observed statistics. Furthermore, this

centered coefficient may be scaled by variance in order to

span a pre-defined range.

To evaluate whether yi and yj are independent, a follow-

ing statistical hypothesis testing is performed:

H0 : T
c
(

yi, yj

)

= 0

H1 : T
c
(

yi, yj

)

�= 0.
(3)

The null hypothesis H0 is that the centered Jac-

card/Tanimoto coefficient equals zero. Note that this

is equivalent to that the conventional (uncentered)

Jaccard/Tanimoto coefficient equals an expected value

under independence. Therefore, although we propose

and use the centered coefficient, this hypothesis testing

is attributed to both uncentered and centered versions.

Then, a p-value indicates a probability of observing a
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coefficient equal to or more extreme than an observed

coefficient under the null hypothesis.

Distribution of the jaccard/Tanimoto coefficient

To obtain its p-value, we derive the distribution of Jac-

card/Tanimoto coefficient under the null hypothesis. In

terms of N = (N1,N2,N3,N4), the Jaccard/Tanimoto

coefficient can be expressed as

T(yi, yj) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N1

N1 + N2 + N3
if N1 + N2 + N3 > 0

pipj

pi + pj − pipj
otherwise.

When pi and pj are known, the p-value is given by

P(KTc) where

KTc =
{

(N1,N2,N3,N4) :

∣

∣

∣

∣

N1

N1 + N2 + N3

−E

[

T(yi, yj)

]
∣

∣

∣

∣

≥ |Tc|
}

.

(4)

However, in practice, probabilities pi and pj are usu-

ally unknown. Therefore, we define the centered Jac-

card/Tanimoto coefficient by T̂c = T − p̂ip̂j
p̂i+p̂j−p̂ip̂j

, where

p̂i =
∑

yi
m , p̂j =

∑

yj
m are standard estimators of pi and pj

respectively. Plug-in estimates of E[T(yi, yj)] into Eq. (4)

will result in conservative behaviors, since we estimate the

probabilities on the same sample that we want to perform

the test. Then, the estimates of expectation are biased

toward the observed value of Jaccard/Tanimoto coeffi-

cient. To overcome this bias, we estimate probabilities pi
and pj for each configuration (N1,N2,N3,N4) separately.

So in this case, the critical region is defined as follows

K
T̂c =

{

(N1,N2,N3,N4) :

∣

∣

∣

∣

N1

N1 + N2 + N3

−
p̃ip̃j

p̃i + p̃j − p̃ip̃j

∣

∣

∣

∣

≥ |T̂c|
}

,

(5)

where p̃i = N1+N2
m and p̃j = N1+N3

m .

Because the exact distribution is computationally

expensive (see Results for comparison), we introduce an

asymptotic approximation whenm → ∞. It may be useful

when dealing with very large binary data, where compu-

tational power is a bottleneck. Denote by q1 = pipj the

probability that both yi and yj have ones, and by q2 =
pi + pj − 2pipj the probability that only one of two vectors

has one. Similarly, q̂1 and q̂2 are defined with the plug-in

estimators. Asm → ∞, we can estimate the variance:

Proposition 2 If yi and yj are independent then

√
mTc(yi, yj) → N (0, σ 2)

as m → ∞, where

σ 2 = q1q2(1 − q2)

(q1 + q2)3
.

Proof 2 Theorem 14.6 of [27] states that

√
m ((N1,N2 + N3)/m − (q1, q2)) → N (0,�)

where

� =
[

q1(1 − q1) −q1q2
−q1q2 q2(1 − q2)

]

.

Then, we define function g(x1, x2) = x1
x1+x2

and apply the

delta method. So, we get

√
m

(

T(yi, yj) − q1

q1 + q2

)

→ N (0,∇g(q1, q2)�∇g(q1, q2)
T ).

The gradient of g is

∇g(x1, x2) =
[

x2

(x1 + x2)2
,

−x1

(x1 + x2)2

]

.

Finally, after simplification, we obtain

∇g(q1, q2)�∇g(q1, q2)
T = q1q2(1 − q2)

(q1 + q2)3
.

In practice, probabilities pi and pj are unknown and

need to be estimated. Recall that p̂i = #{yik=1}
m and p̂j =

#{yjk=1}
m . We define q̂1 and q̂2 by replacing in definition

of q1 and q2 true probabilities pi and pj by its estima-

tors. So based on Proposition 2 we are able to approximate

p-values as follow:

2φ

(√
m

σ

(

T(yi, yj) − q̂1

q̂1 + q̂2

))

− 1 , (6)

where φ = 1√
2π

∫ x
−∞ e−x2/2dx is a standard Gaussian

cumulative distribution function (CDF).
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Measure concentration algorithm

The distribution of the centered Jaccard/Tanimoto coef-

ficient can be expressed in terms of the multinomial

distribution. However, evaluating a significance test based

on this representation requires exhaustive computations.

It needs summation over all possible states of the multi-

nomial distribution. For the centered Jaccard/Tanimoto

coefficient between yi and yj, we need to compute proba-

bility of event K
T̂c defined by Eq. (5).

This can be quickly and accurately estimated by the

measure concentration algorithm (MCA) with a known

error bound [28]. For every ε > 0, we will construct Iε , a

set of (N1,N2,N3,N4) with N1 +N2 +N3 +N4 = m, such

that P(N1,N2,N3,N4) ∈ Iε ≥ 1 − ε. Given the set Iε , we

have following bounds

pLε (T̂
c) = P

(

K
T̂c ∩ Iε

)

≤ P
(

K
T̂c

)

≤ P
(

K
T̂c ∩ Iε

)

+ ε = pUε (T̂c).

In addition, pUε (T̂c) − pLε (T̂
c) = ε.

The idea behind the algorithm is that a multinomial

distribution concentrates around its mode. Two possible

states N = (N1,N2,N3,N4) and N ′ = (N ′
1,N

′
2,N

′
3,N

′
4) are

neighbors, N ∼ N ′, if
∑4

i=1 |Ni − N ′
i | = 2. This means

thatN ′ can be obtained fromN by moving one element to

a different class. We construct the set Iε as follows.

At the onset, Iε contains only the mode of multinomial

distribution. We find the mode by a simple hill climb-

ing algorithm, which starts with a state close to the mean

of the multinomial distribution and follows the direction

of increasing probability until the maximum is reached.

Because of unimodality, it is indeed a global maximum.

In the next steps, we add the neighbors of states which

were previously visited. The procedure is repeated until

the total probability of set Iε reaches the desired value

1−ε. The details of the abovemethod can be found in [28].

We construct the set Iε and we estimate the p-value by

pL(T̂c) =
∑

N∈Iε
1

(
∣

∣

∣

∣

∣

N1

N1 + N2 + N3
−

p̃ip̃j

p̃i + p̃j − p̃ip̃j

∣

∣

∣

∣

∣

≥ |T̂c|
)

P(N1,N2,N3,N4).

(7)

Bootstrap procedure

The bootstrap procedure has gained mainstream popu-

larity for its wide applicability and statistical treatments

[29]. Creating an empirical distribution of null statistics

allows for a flexible and robust estimation of p-values and

related statistics. We show how to use the resampling with

replacement to obtain statistical significance of Tc(yi, yj).

Particularly, resampling with replacement yi and yj, sep-

arately, breaks any potential dependency. This allows us

to calculate an empirical distribution of Jaccard/Tanimoto

coefficients under the null hypothesis:

Algorithm 1: Bootstrap Procedure for Jaccard/Tanimoto

Coefficients
Input: two binary vectors yi and yj
Output: p-value

1 Calculate a centered Jaccard/Tanimoto coefficient

t = Tc(yi, yj).

2 for b ← 1 to B do

3 Resample with replacement yi and yj, resulting in

y∗
i and y∗

j .

4 Calculate bootstrap null coefficients

t∗b = Tc(y∗
i , y

∗
j ).

5 end

6 Compute the p-value by

p-value =
1{|t∗b | ≥ |t|; b = 1, . . . ,B}

B
.

The expectation of Jaccard/Tanimoto coefficients is

estimated directly from resampled vectors y∗
i and y∗

j , that

are effectively independent. Therefore, each iteration pro-

vides randomness, which helps avoid a bias related to

using an estimated expectation based only on observation.

Previously, there are early works in Monte Carlo proce-

dures [14, 30] and published statistical tables for assessing

randomness in species co-occurances [22, 23]. However,

earlier works have assumed that a probability of occur-

rences is 0.5 regardless of species or biogeographic units.

Permutation methods based on conventional uncentered

coefficients are available in R packages, whose operating

characteristics are not described in details [31, 32].

The resolution of the empirical null distribution

depends on B, where the larger B will result in more

precise estimation of p-values. Although the choice of B

would likely be dictated by n and m, as well as available

computational power, we recommend setting B to at least

5-10 times of m. In our simulation studies, the total boot-

strap iterations is set to B = 5×m, which are shown to be

both accurate and fast. When comparing a very large set

of species or OTUs, it may be helpful to pool null statis-

tics to increase the p-value resolution and speed up the

computation.

Results and discussion
Simulation studies

We have developed statistical methods and algorithms to

obtain statistical significance of Jaccard/Tanimoto sim-

ilarity coefficients for biological presence-absence data.
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Beyond deriving the exact solution, we introduce themea-

surement concentration algorithm (MCA) and bootstrap

method. We characterize their operating characteristics

by comprehensive simulation studies where a wide range

of parameters for presence-absence datasets are consid-

ered. Our goal is to maintain theoretically correct behav-

iors of p-values. Null p-values corresponding to H0 are

evaluated against a Uniform(0,1) distribution. False dis-

covery rates (FDRs) are directly estimated from p-values

produced by our methods to demonstrate an overall error

control.

First, we conducted 5 simulation scenarios using

different underlying occurrence probabilities p =
0.1, 0.3, 0.5, 0.7, 0.9 to generate independent presence-

absence datasets. In essence, they are two species of length

m = 100 that exhibit unrelated co-occurrence patterns,

where a proportion of presence (1’s) ranges from 10% to

90%. For each of simulation scenarios, a total of 2000

comparisons were made using a length m = 100. With-

out any information about simulation parameters, our

proposed methods are applied on an identically simu-

lated dataset (Fig. 2). Theoretically correct p-values under

the null hypothesis (null p-values) should form a Uni-

form distribution between 0 and 1, which are denoted

by dashed diagonal lines in QQ plots. An upward devi-

ation from diagonals shows an anti-conservative bias, as

shown among some asymptotic p-values. In all scenarios,

p-values from the exact solution, bootstrap (B = 500), and

measure concentration (accuracy = 1 × 10−5) algorithms

follow a theoretically correct Uniform(0,1) distribution

(Fig. 2). Asymptotic approximation is inconsistent; its

behavior is anti-conservative with p = 0.3, 0.5 and slightly

conservative with p = 0.7, 0.9. Asymptotic approximation

should only be used when computational time is a critical

bottleneck.

Second, we generated a mixture of independent and

dependent datasets out of n = 2000 presence-absence

vectors (of n = 2000 species observed in m = 200

biogeographic units) to evaluate false discovery rates. In

three separate scenarios, we simulated 25%, 50%, and

75% of n = 2000 species to be independent, result-

ing in null proportions of π0 = .25, .50, .75 respectively.

For example, a scenario with π0 = .75 produces 500

out of n = 2000 presence-absence variables that are

truly associated with the query variable. Then, our pro-

posed asymptotic approximation, bootstrap method, and

MCA are used to automatically compute p-values. To

account for variation in simulation, we repeated each sce-

nario 20 times. FDRs and π0 are estimated by the q-value

methodology [33]. Q-values are evaluated against FDR

thresholds, so that we can evaluate accuracy of observed

FDRs (Fig. 3). Twenty simulation replications are shown

in semi-transparent shades, whereas their group averages

for 3 methods are shown as solid lines. An upward devi-

ation as shown by asymptotic approximation indicates

an overall anti-conservative behavior, likely due to m �→
∞. The bootstrap and MCA maintain the overall error

rates, where the bootstrap exhibits slightly conservative

characteristics (Fig. 3).

Third, we compared the computational efficiency of our

proposed methods using our jaccard package on RStu-

dio Cloud (Intel Xeon 2.90GHz and 1GB RAM), with R

3.5.0.Wemeasured the runtime for a range of lengthsm =
50, . . . , 500. For eachm, we applied the proposedmethods

10 times, with the bootstrap iteration B = 5×m andMCA

accuracy of 1 × 10−5. The average runtimes are shown

Fig. 4. Our proposed computational methods show drastic

improvement over the exact solution as m increases. The

asymptotic approximation is mostly instantaneous. When

the similarity between two presence-absence vectors of

Exact Asymptotic MCA Bootstrap

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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T
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Probability of presence .10 .30 .50 .70 .90

Fig. 2 P-values of similarity among independent presence-absence vectors ofm = 100, with a wide range of probabilities p = .1, .3, .5, .7, .9. In each

scenario, 2000 independent variables are simulated and tested using four proposed methods. The diagonal lines indicate a theoretically correct

Uniform(0,1) distribution
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Fig. 3 False discovery rate (FDR) estimates from a mixture of independent and dependent presence-absence vectors. In 3 separate scenarios with

null proportions π0 = .25, .50, .75, 2000 presence-absence vectors ofm = 200 are simulated with occurrence probabilities of p = .5. Each simulation

scenario is repeated 20 times and the proposed methods are used to automatically compute p-values and q-values. FDR thresholds are plotted

against observed false discovery proportions, where a downward deviation from a theoretically correct diagonal red line indicates a conservative

behavior

length m = 500 were tested using the jaccard pack-

age, the exact solution was prohibitively slow, taking 41.5s

on average. The bootstrap method was 449.8 times (0.09s)

faster, whereasMCAwas 92.5 times (0.45s) faster than the

exact solution. Furthermore, we compared the runtimes of

estimation methods for m = 1000, . . . , 10000 (Additional

file 1: Figure S1). The gain in computational efficiency

is more pronounced as the dimension (i.e., a length of

presence-absence vectors) grows in size.

Last, a simulation study with p = 0.5 and m =
200 was used to evaluate two recent methods of

Fig. 4 Computational runtimes of our 4 proposed methods. The

means of 100 independent runs are plotted against an increasing size

of dimensionm = 50, . . . , 500. Compared to the exact solution, the

bootstrap and measure concentration algorithm (MCA) provide vast

improvements in speed whose relative efficiency increases with

higher dimension

species co-occurrences analysis. We generated indepen-

dent presence-absence data where two species are truly

unrelated. Then, methods of combinatorics [24] and

hypergeometric distributions [25] are applied to obtain p-

values. We followed the recommendations given in each

paper, displaying four possible p-values from [24] (Addi-

tional file 2: Figure S2) and two one-sided p-values from

[25] (Additional file 3: Figure S3). We observe these p-

values under the null hypothesis to substantially deviate

from theoretically correct Uniform(0,1) distributions.

Applications in species co-occurrences

To show applications in statistically testing biological

presence-absence data, the proposed methods are applied

to species co-occurrence data. We investigated bird

species on 28 islands in the Republic of Vanuatu, that are

available in [6] and analyzed in several pioneering stud-

ies in non-random co-occurrences of species [12, 14–16].

The data is consisted of presence and absence of bird

species in 28 islands of Vanuatu, which used to be known

as the NewHebrides. Three generalist species that existed

in all 28 islands were removed from our analysis. We

are interested in identifying what pairs of species exhibit

statistically significantly co-occurrences.

For n = 53 bird species in m = 28 islands,

we obtained 1378 pair-wise Jaccard/Tanimoto similarity

coefficients. The conventional Jaccard/Tanimoto coeffi-

cients depends strongly on their expected values under

independence (Fig. 5). Similarly, the conventional Jac-

card/Tanimoto coefficients are substantially correlated

with the proportion of occurrences, with a Pearson

correlation of 0.43 (p-value < 2.2 × 10−16). Relying

only on similarity coefficients would miss non-random
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Fig. 5 Comparison of uncentered and centered Jaccard/Tanimoto

coefficients from the bird dataset. The conventional uncentered

coefficients are shown to be strongly dependent on expectation

under independence. By centering each coefficient by its expectation,

the proposed centered coefficients alleviate this dependency

co-occurrences among bird species that live in a few

islands (Additional file 4: Figure S4). Our proposed meth-

ods account for co-occurrences that would be expected

under independence. Histograms of the uncentered and

centered Jaccard/Tanimoto coefficients are compared in

Additional file 5: Figure S5.

We computed statistical significance by applying the

bootstrap method with B = 5000 andMCAwith accuracy

of 1×10−5. Our two computational approaches estimated

p-values that are almost identical with their mean squared

deviation of 1.15 × 10−4 (Additional file 6: Figure S6).

Significant results that are substantially deviating from

random samples indicate non-random co-occurrences of

species (Fig. 6). Out of 1378 pairs of species that were

tested, the proportion of independent specie pairs was

estimated to be 24% using q-value methodology [33].

Then, we calculated FDRs from 1378 pair-wise p-values.

We discovered that 374 (27%) pairs are deemed significant

at a q-value threshold of 0.10.

Additionally, we applied the Jaccard/Tanimoto similar-

ity tests among fish species in French freshwater streams,

surveyed over a long period of time [34]. Briefly, the pres-

ence and absence data of the n = 32 most common

fish species in m = 3347 sites across French rivers are

obtained during 1980 - 1991 [34]. Our analysis estimates

that about 84.3% of 496 pairs are estimated to be non-

randomly co-occurring. As surveyed for over a decade

across Fresh rivers and surrounding habitats, it is reason-

able that many fish species are interacting or influenced

by related climate conditions. There are 21 pairs of species

with q-values > 0.1 (corresponding p-values ranging

from 0.637 and 0.969). For example, the centered statis-

tics between Pungitius pungitius and Cyprinus carpio is

3.31×10−4, whereas that between Pungitius pungitius and

Lota lota is−4.40×10−4. P. pungitius is a small fish species

typically riding in thick submerged vegetation with the

breeding season falling in April - July. C. carpio and L. lota

are much bigger species and generally prefers a large body

of water.

Conclusion
From biogeography to microbiology, evaluating similarity

among species and biogeographic units is fundamental to

assessing co-existence and biodiversity. Having observed

occurrences of species in multiple biogeographic units,

one of the primary goals in analyzing presence-absence

data is to identify non-random co-occurrences. Even if

two species would be present independently of each other,

they may occur together by chance. For the last 30 years,

the Jaccard/Tanimoto coefficient has been shown to be

highly useful for quantitative analysis of co-occurrences

that help inform systematic relationship among species

[3–5]. We have developed a rigorous statistical frame-

work and methods to efficiently calculate statistical sig-

nificance of such similarity and to identify non-random

co-occurrences.

For testing co-occurrences using the Jaccard/Tanimoto

coefficient, we introduce exact and asymptotic solutions,

as well as bootstrap and measure concentration algo-

rithm. The proposed suite of statistical methods can

provide a rigorous guideline to identify related species.

Through comprehensive simulation studies, we charac-

terized their operating characteristics using p-values and

FDRs. The proposed bootstrap and measure concentra-

tion algorithms are highly accurate and efficient, provid-

ing orders of magnitude improvement in a computational

speed. We have implemented the proposed methods in an

open source R package and a Shiny web app. A user can

upload a dataset to be analyzed, and create histograms and

heat maps automatically. This will facilitate adaptation of

p-values, FDRs, and related quantities in analyzing species

co-occurrences.

Beyond species co-occurrences, the Jaccard/Tanimoto

coefficient is used in diverse areas of biological science

where binary data are observed and compared. When

molecules and reactions are represented as hashed fin-

gerprints, it is used for quantitative comparisons and

classifications [35–37]. Similarity between biochemical

reactions can be tested by applying our methods on their

corresponding fingerprints. In genomics, the standard

tools such as BEDTools [38] evaluate genomic intervals

using the Jaccard/Tanimoto coefficients. Given genomic

intervals from two samples or groups, one could test

whether their overlap is statistically significant, provid-

ing evidences for shared genomic variations. Due to the
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Fig. 6 Heatmap of uncentered Jaccard/Tanimoto coefficients and their p-values. Similarity among 53 bird species in 28 islands of Vanuatu are tested

using the proposed method. Species are ordered from high to low occurrences, that are highly correlated with Jaccard/Tanimoto coefficients

(p-value < 2.2 × 10−16). The upper triangle shows the p-values from our methods, whereas the lower triangle the observed Jaccard/Tanimoto

coefficients

popularity of Jaccard/Tanimoto coefficients, the proposed

suite of methods would be useful in a broad range of

scientific applications.

Supplementary information
Supplementary information accompanies this paper at

https://doi.org/10.1186/s12859-019-3118-5.

Additional file 1: Computational runtimes when testing similarity

between presence-absence data uptom = 10000. We ran the proposed 4

methods to compute p-values for a wide range of dimensionm. For each

m, 100 independent simulations are conducted. Note that form ≥ 1000,

the exact solution did not compute in a reasonable time. The bootstrap

and measure concentration algorithm (MCA) are orders of magnitude

faster than the exact solution. The asymptotic solution is instantaneous

regardless ofm.

Additional file 2: Combinatoric p-values of similarity among

independent presence-absence vectors ofm = 200 with p = .5. In each

scenario, 2000 independent variables are simulated and tested using

a combinatorics [24]. [24] recommends plt + pet and pgt + pet as p-values.
The dashed red lines indicate theoretically correct Uniform distributions.

Additional file 3: Hypergeometric p-values of similarity among

independent presence-absence vectors ofm = 200 with p = .5. We used a

hypergeometric distribution [25] to obtain p-values of similarity between

independent species. The original authors suggested that pgt and plt can
be “interpreted and reported as p-values”. The dashed red lines indicate

theoretically correct Uniform distributions.

Additional file 4: Scatterplot of marginal occurrences of 53 bird species

and Jaccard/Tanimoto coefficients. As expected, we observe high

correlation (Pearson correlation = 0.43) between marginal occurrences

and Jaccard/Tanimoto coefficients.

Additional file 5: Histograms of conventional and centered

Jaccard/Tanimoto similarity coefficients. The conventional (uncentered)

Jaccard/Tanimoto coefficients are centered by their expected values under

the independence assumption.

Additional file 6: Comparison of p-values from the bootstrap and

measure concentration algorithm (MCA). Both algorithms were applied on

1378 co-occurrences of bird species. The difference between estimated

p-values from two methods is minimal with a mean squared deviation of

1.15 × 10−4 . The diagonal red line indicates the identity.
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