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1 Introduction

Exciting recent developments have revealed that the behaviour of a class of models studied

in condensed matter physics, which we will refer to generically as Sachdev-Ye-Kitaev (SYK)

models here [1, 2], is connected with the behaviour of near-extremal black holes.
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More precisely, it was shown in [3] that the behaviour of the Jackiw-Teitelboim (JT)

theory [4–6] of 2-dimensional gravity has many parallels with the SYK model. In par-

ticular, in the SYK model, conformal invariance is broken, and this breaking determines

the low temperature thermodynamics and low-energy response of the system. Similarly,

conformal invariance is also broken in the JT model, and this breaking again determines

the thermodynamics and response of the system.

In subsequent works, [7, 8] it was shown that in fact the JT model is a good ap-

proximation for the dynamics and thermodynamics of a large class of charged black holes

close to extremality. And by understanding the breaking of conformal invariance, a precise

version of the near-AdS2/near-CFT1 correspondence was also developed which applies to

these black holes. The only requirement for these considerations to apply is that the near-

horizon geometry at extremality has an AdS2 factor and the SL(2,R) symmetry associated

with it. This is true for the Reissner-Nordström black hole, and several other black holes

which can arise in string theory, including those in systems which have extra scalars and

gauge fields.

In this paper, we extend these considerations to rotating black holes. Several examples

of extremal rotating black holes including the extremal Kerr black hole in flat or asymp-

totically AdS spacetime are known to posses an AdS2 factor and an SL(2,R) symmetry in

their near-horizon geometry. We show that the low-temperature thermodynamics, close to

extremality, for these black holes is correctly obtained from a JT model with appropriate

values for the two-dimensional Newton’s constant and the scale of conformal symmetry

breaking. This is the central result of the paper.

The paper is structured as follows. After a review of the connection between the JT

model and near-extremal Reissner-Nordström black holes in section 2, we give an expla-

nation for why the JT model should give the correct low temperature free energy and

associated thermodynamics for all spherically symmetric near-extremal black holes with a

near-horizon AdS2 geometry in section 3.1. These arguments are extended to the rotating

case in general in section 3.3, once again for all cases where the extremal geometry has an

AdS2 near-horizon geometry.

In the following two sections, 4 and 5, we consider several examples, including the

near-extremal Kerr black hole in 5 dimensions in asymptotically AdS spacetime, the near-

extremal dyonic Kerr-Newman black hole in asymptotically AdS spacetime in 4 dimensions,

and in particular, the near-extremal Kerr black hole in 4 dimensions in asymptotically flat

spacetime. By explicit calculations, we show that the general conclusion referred to above

is correct, namely the low temperature behaviour of their free energy agrees with that of

the JT model.

Our results about the wide applicability of the JT model for the rotating case as

well, suggests, in fact, that this model could be useful for studying some aspects of the

dynamics of near-extremal Kerr black holes found in nature. We end the paper by making

some comments along these lines, along with a summary and some conclusions in section 6.

Appendices A–D contain some important additional supplementary material.

Before we proceed, let us mention some of the relevant literature. The various aspects

of the SYK model, its variants and the JT model have also been studied in, e.g., [9–117]. For
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a pedagogical review of the SYK model, see [118]; the connections with AdS2 holography

are reviewed in [119]. The Kerr-CFT correspondence was studied earlier in [120] and was

further explored in, for instance, [121–129]; for a review, see [130].

2 A review of the Jackiw-Teitelboim model and near-extremal Reissner-

Nordström black holes

2.1 Jackiw-Teitelboim model

Let us briefly recapitulate some of the key features of the Jackiw-Teitelboim (JT) model

of two-dimensional gravity and how it describes near-extremal Reissner-Nordström (RN)

black holes. The JT model consists of two-dimensional gravity with a dilaton φ described

by the action:

I = − 1

16πG̃

(∫
d2x
√
g φ(R− Λ2) + 2

∫
∂

dx
√
γ φK

)
. (2.1)

Note that we are working in Euclidean spacetime here since this paper is mostly con-

cerned with black hole thermodynamics.

The two-dimensional spacetimes one considers in the model have a one-dimensional

boundary, denoted by ∂ in eq. (2.1), at a fixed value of the dilaton

φ = φB. (2.2)

In addition, fluctuations in the metric also vanish sufficiently fast at the boundary; we will

be more precise about this shortly.

The equations of motion then lead to the geometry being AdS2

ds2 =
L2
2

z2
(dt2 + dz2), (2.3)

with radius L2 being given by,

L2 =

√
− 2

Λ2
. (2.4)

In addition, the dilaton can be linearly varying

φ =
1

J z
. (2.5)

This linear variation breaks the scale invariance of AdS2 and is parametrised by the scale J
which has dimensions of [M ] ∼ [L]−1. This breaking of scale invariance is very important

in the resulting behaviour of the system.

The boundary conditions imposed on the metric can be now stated more precisely. In

a coordinate system with gtz = 0,

gtt →
L2
2

z2
(
1 +O(z2)

)
,

gzz →
L2
2

z2
(
1 +O(z2)

)
, (2.6)

– 3 –
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as z → zB, where φ = φB. As was discussed in [7], these boundary conditions, along

with the Dirichlet boundary condition for the dilaton, eq. (2.2), give rise to a well-defined

variational principle, with the equations of motion having a solution, eqs. (2.3), (2.5).

In our discussion below, where the JT model arises from black holes in higher dimen-

sions, zB will be small enough at the boundary so that the O(z2) and higher corrections

in eq. (2.6) are suppressed, but not too small, so that, eq. (2.5),

φB =
1

J zB
(2.7)

is also small meeting the condition, φB � 1.

The dynamics of the system arise from fluctuations of the boundary which can be

parametrised by time reparametrisations and is described by a Schwarzian action,

I = − 1

8πG̃J

∫
dτ Sch(t, τ), (2.8)

where,

Sch(t, τ) ≡ t′′′(τ)

t′(τ)
− 3

2

(
t′′(τ)

t′(τ)

)2

. (2.9)

Here t is the Poincaré time coordinate in eq. (2.3) and τ is the proper time along the

boundary defined by,
dτ2

z2B
=

1

z2
(dt2 + dz2)

∣∣∣
∂
, (2.10)

where zB is location of the boundary, eq. (2.2) in the z coordinate.

The reader will notice that in the action, eq. (2.1), we have included a Gibbons-Hawking

(GH) boundary term,

IGH = − 1

8πG̃

∫
∂

dx
√
γ φK. (2.11)

In addition to the action eq. (2.1), we also need to add a counter-term,

ICT =
1

8πG̃L2

∫
∂

dx
√
γ φ, (2.12)

which cancels the divergence which arises from the GH term in evaluating the on-shell

action, to obtain a finite mass and a finite on-shell action. The ADM mass is then given by

MADM =
1

8πG̃J
Sch(t, τ), (2.13)

and is also proportional to the Schwarzian. The free energy at temperature T of the system

is given by

F = − π

4G̃J
T 2, (2.14)

and is quadratic in T . Notice that the scale J appears in the denominator in the Schwarzian

action, mass and free energy.
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2.2 Near-extremal Reissner-Nordström black holes

Next consider a near-extremal RN geometry in 4 dimensions in either asymptotically flat

or AdS4 spacetime with metric

ds2 = f(r) dt2 +
dr2

f(r)
+ Φ2(r)dΩ2

2. (2.15)

Here,

f(r) =

(
1− 2G4M

r
+
Q2

r2
+
r2

L2

)
, (2.16)

and

Φ(r) = r, (2.17)

L is the radius of AdS4 and the flat spacetime limit is obtained by taking L→∞. For an

electrically charged black hole, the electromagnetic field strength is

Frt =
Q

r2
. (2.18)

In the extremal limit, f(r) has a “double zero” at a radial location we denote by rh
and is given by

f0(r) =
(r − rh)2

L2
2

(2.19)

in the vicinity of the horizon. The radial location of the horizon, rh, is an important

parameter in the subsequent discussion. It determines the radius of the horizon, eq. (2.17)

and is fixed by Q and in the asymptotically AdS case, also by the radius of AdS4, L. The

near-horizon geometry for an extremal RN black hole is AdS2 × S2 with the radius L2,

eq. (2.3), also being determined in general by the charge Q, and L. The coordinate z in

eq. (2.3) is related to the radial coordinate in eq. (2.15) by

z =
L2
2

(r − rh)
. (2.20)

The spherically symmetric geometry in eq. (2.15) is suggestive and we can carry out

the dimensional reduction over the S2 and construct a 2-dimensional system consisting

of gravity and a scalar Φ, which is the radius of the two-sphere. This two-dimensional

theory turns out to be well approximated by the JT model which accurately describes

the thermodynamics at low temperatures [7]. We review how this connection with the JT

model arises next. Before proceeding, let us note that for the electrically charged case we

discuss below an additional phase mode is also present. Its action can also be expressed in

terms of a term on the boundary,

Iphase = −I
∫
∂

dτ (θ̇)2. (2.21)

How this mode arises and how the resulting value of the coefficient, I, which is related to

the charge susceptibility [31], is obtained was discussed in some detail in [8]. We mention
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it only in passing here since we will mainly study the free energy at fixed charge in this

paper and the phase mode is not very relevant in the resulting analysis.

We start with the 4-dimensional theory described by the Euclidean action,

I = − 1

16πG4

(∫
d4x
√
g (R− 2Λ4 + FµνF

µν) + 2

∫
d3x
√
γ K

)
. (2.22)

Taking the metric of the form

ds2 = gαβ dxαdxβ + Φ2dΩ2
2, (2.23)

and dimensionally reducing over the S2 (here the field Φ and the metric depend only on

the 2 coordinates xα) and further changing frames under the transformation

gαβ →
Φ0

Φ
gαβ , (2.24)

gives the two-dimensional action,

I = − 1

4G4

∫
d2x
√
g

(
Φ2R+

2Φ0

Φ
− 2Φ0ΦΛ4 +

Φ3

Φ0
FαβFαβ

)
− 1

2G4

∫
dx
√
γ Φ2K.

(2.25)

This action has a solution where the metric is AdS2, Φ takes the attractor value

Φ0 = rh =
L√
6

(√
1 +

12Q2

L2
− 1

)1/2

, (2.26)

and the field strength is given by

Fαβ dxα ∧ dxβ =
QΦ0

Φ3

√
g εαβ dxα ∧ dxβ , (2.27)

where εαβ is the Levi-Civita symbol (anti-symmetric tensor density). Note that throughout

this paper, we have chosen the convention that in the r, t coordinates, εrt = 1.

The on-shell value of the action I is known to give the grand canonical partition

function. As was mentioned above, here we will consider the canonical partition function.

This is obtained by adding a boundary term to I [131],

I∂GF =
1

G4

∫
dx
√
γ

Φ3

Φ0
nαF

αβAβ . (2.28)

in the resulting two-dimensional theory, eq. (2.25). Here nα is the outward normal one-form

on the boundary. After including it, we get,

Icanonical = − 1

4G4

∫
d2x
√
g

(
Φ2R+

2Φ0

Φ
− 2Φ0ΦΛ4 +

Φ3

Φ0
FαβFαβ

)
− 1

2G4

∫
dx
√
γ

(
Φ2K − 2Φ3

Φ0
nαF

αβAβ

)
. (2.29)

Expanding about the attractor value for Φ, eq. (2.26),

Φ = Φ0(1 + φ), (2.30)

– 6 –
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and inserting in eq. (2.29) then gives

I = −
r2h

4G4

(∫
d2x
√
g R+ 2

∫
dx
√
γ K

)
−

r2h
2G4

(∫
d2x
√
g φ
(
R+

2

L2
2

)
+ 2

∫
dx
√
γ φK

)
−

r2h
4G4

(∫
d2x
√
g φ2

(
R− 6

L2
2

− 4

r2h

)
+ 2

∫
dx
√
γ φ2K

)
+ · · · . (2.31)

On the r.h.s. above, the first line, which is independent of φ, gives the entropy for the

extremal black hole. For computing the free energy above extremality,

∆F = F − Fextremal (2.32)

as a function of temperature, we can neglect terms in this line. The last line in eq. (2.31)

has corrections which are quadratic in φ, as well as additional terms indicated by the ellipsis

which include terms with even higher orders in φ. We will also see in the next section why

these terms can be neglected for the leading order temperature dependence. This leaves

the second line in eq. (2.31) which is exactly the action for the JT model. Comparing with

eq. (2.1) we also see that the resulting value of the two-dimensional Newton’s constant is,

G̃ =
G4

8πr2h
. (2.33)

In addition to the terms in eq. (2.31), we note that the JT model also has the counter-term,

eq. (2.12). We also note that the additional boundary term we added, eq. (2.28), when

expanded at linear order in φ becomes,

I∂GF =
r2h
G4

∫
dx
√
γ (1 + 3φ)nαF

αβAβ . (2.34)

We note that if we treated (2.31) as a two-dimensional action in its own right, including

the terms of higher order in φ, the remarkable simplification accorded by the JT model

would be lost. However, one can still make progress in principle, using, for example, a

perturbative approach — in which the corrections can be kept systematically.

To make the connection with the JT model more precise, we need to be clearer about

where the boundary of spacetime is located. To begin, the spacetime has a boundary at

asymptotic infinity; it is at this boundary that the GH term and the additional boundary

term involving the gauge field in eq. (2.29) are to be evaluated. However, in the JT model,

the boundary is not at asymptotic infinity. It is located instead in the “asymptotic AdS2”

region. The two boundary terms, the GH term and the one involving the gauge field are

evaluated at this boundary to obtain the action, eq. (2.31).

Let us now explain where the asymptotic AdS2 region lies in spacetime. From eq. (2.17)

and eq. (2.30), we see that

φ =
r − rh
rh

=
L2
2

rh

1

z
. (2.35)
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Comparing with eq. (2.5) we see therefore that the energy scale which characterises the

breaking of scale invariance in the near-horizon region is

J =
rh
L2
2

. (2.36)

We are interested here in the behaviour at sufficiently small temperatures. At these low

temperatures, the geometry has a region, which is sufficiently far from the horizon so

that the effects of finite temperature have “died down”, but not so far that the effects of

the breaking of scale invariance due to the scale J have become significant. This is the

asymptotic AdS2 region we referred to above. The boundary in the JT model we consider

will be located in this asymptotic AdS2 region at a fixed value of φ, eq. (2.2).

We can now be more precise about how low T should be for our considerations to

apply. We take T to satisfy the condition,

T � J . (2.37)

The O(z2) corrections in eq. (2.6) for the black hole solutions are actually of order (Tz)2.

The asymptotic AdS2 region then lies in the range where

1

J
� z � 1

T
. (2.38)

The boundary which lies at zB also satisfies this condition. It follows then from the upper

end of the inequality in eq. (2.38) that in this region the O(z2) corrections to the metric

are small, while it follows from the lower end that the boundary is still in the near-horizon

region far from the asymptotically flat or AdS4 region of spacetime. These considerations

were also discussed above around eq. (2.7). It is worth emphasising that our considerations

apply to near-extremal black holes in asymptotically AdS and flat spacetimes, with the

boundary of the AdS2 region satisfying eq. (2.38). The relation between the scale J and

the underlying parameters varies depending on the kind of black hole being considered.

For related comments, see section 3.1.1 of this paper and ref. [8].

Note that from eq. (2.35) and eq. (2.38) it also follows that

φ� 1 (2.39)

in the region of spacetime extending from the horizon to the asymptotic AdS2 boundary,

see eq. (2.7) and the comment thereafter. Away from the AdS2 boundary, φ no longer

satisfies the condition eq. (2.39) and becomes large towards asymptotic infinity.

Comparing with the free energy for the JT model, eq. (2.14), and keeping track of the

values for G̃, and J , eq. (2.33) and (2.36), we then get that the temperature dependence

of the free energy for a near-extremal RN black hole is given by

∆F = −2π2rhL
2
2

G4
T 2. (2.40)

This agrees with the well-known result for a near-extremal RN black hole obtained using

the full on-shell action, see eq. (B.13) (with d = 3).

– 8 –
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Note that in the JT model, the action of the scaling symmetry of AdS2, under which

the coordinates (z, t) → (λz, λt) takes J → J /λ and T → T/λ. To get agreement with

the black hole free energy, eq. (2.40), we need to fix the scale in the JT model to agree

with the convention for temperature, T , at asymptotic infinity.

3 A more detailed comparison with the JT model

In this section, we explain why the JT model correctly gives the free energy for near-

extremal black holes. Our explanation is remarkably general; it applies to the low-

temperature behaviour obtained from all near-extremal black holes which have a near-

horizon AdS2 region in their geometry. We start with considering the Reissner-Nordström

black hole in this subsection, then analyse a more general theory involving scalars, gauge

fields and gravity in the following subsection, and finally in subsection 3.3, consider rotating

black holes.

One key point in the following discussion is as follows: the leading behaviour at low

temperature is obtained by computing the on-shell action for a slightly non-extremal so-

lution. This in turn is obtained by keeping the leading corrections in the solution above

extremality. Now, away from the near-horizon region, these corrections can be treated as

small perturbations and since the extremal black hole is also a solution to the equations of

motion, the contribution due to these perturbations, at first order, reduces to the surface

terms, eq. (3.9), at the boundary of the AdS2 region. In the near-horizon region, some of

the corrections cannot be treated as perturbations, but here their contribution to the bulk

action is correctly captured by the JT model action, eq. (2.1).

3.1 RN black holes

Let us now give more details for the RN case. Carrying out the dimensional reduction

described above, we get the two-dimensional action, eq. (2.29). The resulting radial integral

involved in eq. (2.29) extends from the horizon to asymptotic infinity; we can write this as

a sum of two terms:

I = I[H→∂AdS2] + I[∂AdS2→∞]. (3.1)

Here I[H→∂AdS2] denotes the contribution from the horizon to the boundary of asymptotic

AdS2 region described above while I[∂AdS2→∞] denotes the contribution from the boundary

of the asymptotic AdS2 region to asymptotic infinity. In particular, we take,

I[∂AdS2→∞] = − 1

4G4

∫ ∞
∂AdS2

d2x
√
g

(
Φ2R+

2Φ0

Φ
− 2Φ0ΦΛ4 +

Φ3

Φ0
FαβFαβ

)
− 1

2G4

∫
∞

dx
√
γ

(
Φ2K − 2Φ3

Φ0
nαF

αβAβ

)
+ I∞CT (3.2)

− 1

G4

∫
∂AdS2

dx
√
γ

Φ3

Φ0
nαF

αβAβ .

Here we have included the boundary terms in eq. (2.29) evaluated at infinity, as well as a

counter-term I∞CT , also to be evaluated at infinity, which is needed to get a finite result, as

– 9 –
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per the standard calculational procedure for computing the free energy. Finally, we have

included an additional boundary term at the AdS2 boundary — this is the last term above

involving the gauge field. In this term, the normal one-form nα is taken to point from the

AdS2 region towards asymptotic infinity. The contribution from the near-horizon region is

given by

I[H→∂AdS2] = − 1

4G4

∫ ∂AdS2

H
d2x
√
g

(
Φ2R+

2Φ0

Φ
− 2Φ0ΦΛ4 +

Φ3

Φ0
FαβFαβ

)
+

1

G4

∫
∂AdS2

dx
√
γ

Φ3

Φ0
nαF

αβAβ . (3.3)

The bulk integral extends from the horizon to the AdS2 boundary and the additional

boundary term exactly cancels the last term in eq. (3.2).

We will be interested in the contribution made in the on-shell action due to the finite

temperature deformation of the solution, at leading order in T , keeping the charge Q fixed.

Consider first the near-horizon term, eq. (3.3). We denote the contribution this term

makes by δI[H→∂AdS2]. The dimensionless parameter characterising the solution is T/J ,

where J is determined by the linear variation of the dilaton, eq. (2.5), eq. (2.36). Note

that T/J � 1 at low temperatures. The leading contribution in this parameter can be

obtained by expanding the dilaton Φ in terms of the correction φ, eq. (2.30), and only

keeping terms which are of first order in φ. This is because higher order terms will be

suppressed by additional powers of 1/J and will therefore be small. This justifies why the

last line in eq. (2.31), involving quadratic and higher powers of φ can be neglected. From

the discussion in the previous section, it then follows that

δI[H→∂AdS2] = δIbulkJT , (3.4)

where

IbulkJT = − 1

16πG̃

∫
d2x
√
g φ (R− Λ2) , (3.5)

with G̃ given by eq. (2.33).

Next consider the finite temperature contribution made from the region away from the

AdS2 horizon, eq. (3.2), which we denote by δI[∂AdS2→∞]. A black hole at small temperature

is given by the solution eq. (2.15) where f(r) takes the form,

f(r) = fext(r) + δf(r), (3.6)

where

fext(r) =
(r − rh)2

r2

(
1 +

r2 + 2rrh + 3r2h
L2

)
, (3.7)

δf(r) = −2G4δM

r
, (3.8)

with δM being the mass above extremality. In the region being considered here, fext does

not vanish and for small δM , δf can be treated as a small perturbation, since δf/fext � 1.
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As was discussed above, the change in the action then comes from a surface term evaluated

at the boundary of AdS2.

Some of the steps are described in appendix A. One finds that

δI[∂AdS2→∞] = δIGH +
1

8πG̃

∫
∂AdS2

dx δ(
√
γ)φK, (3.9)

where IGH is given in eq. (2.11) and both terms are to be evaluated at the boundary of the

asymptotic AdS2 region. Also, δ(
√
γ) arises from the first order change in the boundary

metric.

The reader will recall from our discussion of the previous section that the counter-

term (2.12) is chosen to cancel the divergence in the GH term, eq. (2.11). As argued in

appendix A, it then follows from the behaviour of the metric in the asymptotic AdS2 region

that
1

8πG̃

∫
∂AdS2

dx δ(
√
γ)φK =

1

8πG̃L2

∫
dx δ(

√
γ)φ = δICT, (3.10)

where we have used eq. (2.12). From eq. (3.9), eq. (3.10) we learn that

δI[∂AdS2→∞] = δIboundaryJT , (3.11)

where

IboundaryJT = − 1

8πG̃

∫
∂AdS2

dx
√
γ φ

(
K − 1

L2

)
. (3.12)

Combining eq. (3.4) and eq. (3.11) we see that the full change in the action is correctly

given by the JT model. Note that for establishing this result, it was important that the

boundary conditions, eq. (2.2) and eq. (2.6) are met at the AdS2 boundary.

3.1.1 Some comments

A few comments are worth making at the end of this subsection. First, we note that for

the asymptotically flat case, rh = Q ∼ q′/MPl (where q′ is the dimensionless charge carried

by the black hole) and L2 = rh; so that the condition eq. (2.37) becomes

Trh ∼
Tq′

MPl
� 1. (3.13)

In the asymptotically AdS4 case, on the other hand, for a big black hole with rh � L,

L2 = L/
√

6, while the chemical potential (as seen by the boundary CFT for example) is

µ = rh/L
2 ∼ rh/L2

2. Thus eq. (2.37) can be stated as,

T � µ. (3.14)

Second, it is straightforward to generalise the discussion above to RN black holes in

arbitrary dimensions. The action for the canonical partition function in this case is given by

I = − 1

16πGd+1

∫
dd+1x

√
g (R− 2Λd+1 + FµνF

µν)

− 1

8πGd+1

∫
ddx
√
γ (K − 2nµF

µνAν) . (3.15)
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Performing a dimensional reduction by writing the metric as in eq. (B.14), and expanding

about the attractor value for Φ gives a JT model, with G̃ given in eq. (B.22), and J given

by eq. (B.18). As a result, from the JT model, we get the free energy to be eq. (2.14) which,

in fact, agrees with the result as obtained in eq. (B.13). See appendix B for more details.

Third, while it is intuitively clear that the low temperature thermodynamics should

arise from the near-horizon region, and the well-known diverging back-reaction to per-

turbations in AdS2 [132] suggests that at least a linear variation of the dilaton must be

incorporated, what the above argument makes precise is that to get agreement with the

JT model, it is crucial that the boundary of the near-horizon region is located at a fixed

value of the dilaton, eq. (2.2).

Finally, the agreement with the JT model for thermodynamics can also be extended for

the response of the black hole to low-frequency time-dependent probes, as discussed in [7,

8].1 Higher partial waves can also be systematically incorporated in the two-dimensional

theory, and in fact, a precise version of the near-AdS2 near-CFT1 correspondence can be

then given for these systems [8].

3.2 More general theories

The arguments above, showing that the thermodynamics at low energies for near-extremal

RN black holes is correctly obtained from the JT model, can be extended to more general

theories involving additional scalars and gauge fields. Let us take a theory in d+ 1 dimen-

sions consisting of m gauge fields, n scalars and gravity, with two-derivative interactions

given by the action

I = − 1

16πGd+1

∫
dd+1x

√
g
[
R+ f̂ab(Ψi)FaµνF

µν
b + ĥpq(Ψi)g

µν∇µΨp∇νΨq + V̂ (Ψi)
]

− 1

8πGd+1

∫
ddx
√
γ K. (3.16)

Here, the indices range from a, b = 1, · · · ,m, and p, q = 1, · · · , n, f̂ab are gauge kinetic

energy coefficients, ĥpq is a metric in the space of scalars and V̂ is a potential. Repeated

indices are summed over in eq. (3.16). In four dimensions, we can also have FµνF̃
µν type of

terms and the black holes can also carry magnetic charges. Similarly, in higher dimensions

we can add higher form fields under which the black hole carries magnetic charges. We do

not explicitly consider these possibilities below although they can be easily included.

To carry out a dimensional reduction, we take the metric to have the form

ds2 =

(
Φ0

Φ

)d−2
gαβ dxαdxβ + Φ2dΩ2

d−1, (3.17)

where gαβ refers to the metric in the radial and time directions This gives from eq. (3.16)

a two-dimensional action,

I =− vd−1
16πGd+1

∫
d2x
√
g
[
Φd−1R+ V (Ψi,Φ) + fab(Φ,Ψi)FaαβF

αβ
b

+ hpq(Φ,Ψi)g
αβ∇αΨp∇βΨq

]
− vd−1

8πGd+1

∫
dx
√
γ Φd−1K +

vd−1
4πGd+1

∫
dx
√
γ fab(Φ,Ψi)nαF

αβ
a Abβ . (3.18)

1It is important to include the extra phase mode and its couplings to charged probes, which we have

not described here.
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One scalar — the dilaton Φ is special; it appears in the coefficient of the Ricci scalar,

R. Φ0 is its attractor value at the horizon. We have also added an extra boundary term

dependent on the gauge field — the last one above — since we are interested in the free

energy at fixed values of the electric charge. Here, vd−1 denotes the volume of the unit

Sd−1, eq. (B.7).

We are considering systems which have an extremal black hole solution with a near-

horizon AdS2 × Sd−1 region. The near-horizon region is well known to be an attractor in

these cases. The gauge fields in this region take the values

Fa =
1

2
fabQ

b√gεαβ dxα ∧ dxβ , (3.19)

where Qb are the charges carried by the black hole, fab is the inverse of fab, and
1
2

√
gεαβ dxα ∧ dxβ is the volume form in AdS2. The scalars in the near-horizon region

take the attractor values {Φ0,Ψ0i}. The resulting attractor values for the scalars can be

computed by extremising the entropy function [133, 134] or by using an effective poten-

tial [135].

The free energy is given by the on-shell value of this action evaluated for a black hole

at temperature T carrying charges Qa. The action in eq. (3.18) is again a sum of two

terms. One, involving the integral from the horizon to the asymptotic AdS2 region and

the second, from the asymptotic AdS2 region to asymptotic infinity. We denote them,

as above, by I[H→∂AdS2] and I[∂AdS2→∞] respectively, these are analogous to eq. (3.3) and

eq. (3.2) above.

In the near-horizon region of the extremal solution, once one is away from the horizon,

the dilaton evolves with a linear radial dependence, e.g., eq. (B.17). Similarly, the other

scalars Ψi also evolve along the radial direction and their evolution gives rise to scales Ji
which are analogous to the scale J that characterises the breaking of scale invariance due

to the non-constant dilaton. We will take all these scales to be comparable to simplify

the discussion, i.e., J ∼ Ji. The condition for temperature T to be low enough is then

given by

T � J , Ji. (3.20)

Expanding the scalars about their attractor values,

Φ = Φ0(1 + φ),

Ψi = Ψ0i + δΨi. (3.21)

we locate the boundary of the AdS2 region at a location where the dilaton takes a fixed

value, φB, with the condition, eq. (2.38), being met. The other scalars δΨi do not take

fixed values at this boundary, but it follows from eq. (2.38), eq. (3.20) that their boundary

values meet the condition, δΨBi/Ψ0i � 1.

In the near-horizon region, for calculating the contribution I[H→∂AdS2] makes to the

free energy, we can work to linear order in φ and δΨ, since higher order terms will be

suppressed by higher powers of J , Ji and will thus be suppressed at low T/J . It is then

easy to see that the contribution of the near-horizon region is given by eq. (3.5) with G̃

taking the value,

G̃ =
Gd+1

vd−1(d− 1)Φd−1
0

. (3.22)
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In the region away from the horizon, on the other hand, the leading order changes

in the metric etc., can all be treated as small perturbations, as in the RN case. Thus

the resulting contribution to δI[∂AdS2→∞] comes from surface terms at the AdS2 boundary.

Surface terms which arise from the curvature dependent term, Φd−1R, in eq. (3.18) give rise,

at linear order in φ to the boundary terms in the JT model, eq. (3.12), this follows from an

argument analogous to the RN case discussed in appendix A. Surface terms arising from

the scalar kinetic energy terms in eq. (3.18) do not lead to any contribution at leading

order, as explained in appendix A. As a result, once again, we find that the JT model

correctly gives the leading free energy at small T .

Let us end with some comments. It is easy to argue that the leading departure away

from the attractor value for φ takes the form eq. (2.5), in fact this follows from the equations

of motion in the JT model. J is now an energy scale that depends in general on all the

charges Qa, as well as the asymptotic data at infinity. Also, the resulting free energy is

given by eq. (2.14) with G̃ being given by eq. (3.22). Note that as was mentioned above, the

other scalars also evolve and this gives rise to additional sources for the breaking of scale

invariance; however quite notably, it is the breaking due to the evolution of the dilaton

that determines the free energy.

3.3 Rotating black holes

The metric for a rotating black hole is well known to be quite complicated, as will also be

apparent below. Despite these complications, quite interestingly, the discussion above can

be extended to such black holes as well in a fairly straightforward way.

A few important features come to our aid in simplifying the analysis and connecting

it to the JT model.

First, many rotating extremal black holes are also known to posses an AdS2 symmetry

in their near-horizon geometry and our analysis applies only to such cases. In fact, this

property is true quite generically for rotating black holes when their extremal entropy

is non-vanishing. For example, for an extremal 4-dimensional Kerr black hole [136], in

asymptotically flat spacetime, the near-horizon geometry is [137]

ds2 =
1 + cos2 θ

2

(
r2

2rh2
dt2 +

2rh
2

r2
dr2 + 2rh

2 dθ2
)

+
4rh

2 sin2 θ

(1 + cos2 θ)

(
dϕ− i

r

2rh2
dt

)2

. (3.23)

In these coordinates, the horizon is located at r = 0 (the radius of the event horizon is rh in

Boyer-Lindquist coordinates [138]; see below). This metric exhibits the AdS2 symmetries

with the Killing vectors being

ζ1 = −L2
∂

∂t
,

ζ0 = t
∂

∂t
− r ∂

∂r
, (3.24)

ζ−1 =
L2

2

(
L2
2

r2
− t2

L2
2

)
∂

∂t
+
tr

L2

∂

∂r
+ i

L3
2α

r

∂

∂ϕ
.

These generate an SL(2,R) algebra. In this case, L2
2 = 2r2h and α = 1/2r2h.

Second, it has also been argued that rotating extremal black holes with such an AdS2

symmetry exhibit the attractor phenomenon which fixes their near-horizon geometry. The
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values of various scalars as well as the angular dependence in the metric are fixed by

extremising the entropy function [139].

Finally, despite the fact that for the rotating case rotational invariance is broken and

many more components of the metric are excited, a key feature that allows the connection

with the JT model to be made for purposes of obtaining the free energy is the following. In

calculating the leading order temperature dependence of the free energy, many alterations

in the metric, in going from the extremal to slightly non-extremal case, can be regarded as

small perturbations in the whole of spacetime extending from the horizon to asymptotic

infinity. It follows then along the lines of the argument given above in the rotationally

invariant case, that there is no change in the on-shell action at first order due to these

alterations, since the extremal black hole we perturb about is already a solution of the

equations of motion. Furthermore, it is sufficient to work to first order in these alterations

for obtaining the leading temperature dependence. Therefore these changes in the metric,

while going from the extremal to the slightly non-extremal case, can be neglected.

This observation leaves only a few remaining changes in the metric which we have to

keep track of. Even for these, there is a further simplification. Consider computing the

free energy by dividing the contribution to the on-shell action as coming from the region

close to the horizon, and sufficiently far away from it, analogous to the two terms, eq. (3.1),

above. Now even though some changes are not small in the near-horizon region, they are

small perturbations in the region far away from the horizon. As a result, the contribution

of this far region can be expressed as a surface term at the boundary of the near-horizon

region. This finally only leaves the near-horizon region, but here, the AdS2 symmetry and

the attractor behaviour mentioned above come to our aid and allow us to conclude that

the JT model is correct!

Let us give some more details now. For concreteness, we consider the asymptotically

flat 4-dimensional case considered above. The metric, for a general non-extremal Kerr

black hole is

ds2 =
ρ2∆r

Σ
dt2 +

ρ2

∆r
dr2 + ρ2dθ2 + sin2 θ

Σ

ρ2
(dϕ+ iω dt)2, (3.25)

where

∆r = r2 − 2G4Mr + a2, (3.26)

ρ2 = r2 + a2 cos2 θ, (3.27)

Σ = (r2 + a2)2 − a2∆r sin2 θ, (3.28)

ω =
2G4Mar

Σ
. (3.29)

The various functions appearing above are obtained by taking the L→∞, qe → 0, qm → 0

limit of the functions in eqs. (5.4)–(5.9). At extremality, ∆r has a second order zero at

r = rh = a0. (We have denoted the extremal value of a by a0.) This gives the near-horizon

metric in eq. (3.23) (with ϕ→ ϕ− iΩHt, where ΩH = ω(rh); see also appendix D).
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The metric, eq. (3.25) depends on M , the mass and J , the angular momentum. They

are related through the parameter a,

J = Ma. (3.30)

The extremal mass is given by,

M0 =
rh
G4

=
a0
G4

. (3.31)

When we go to the slightly non-extremal case keeping J fixed, M changes and from

eq. (3.30) a changes as well. This results in all the functions which appear in eq. (3.25)

being altered. However, for some of them the fractional change is small everywhere in

spacetime outside the horizon. For instance, for ρ2 we have from eq. (3.27) that

δρ2 = 2a0 cos2 θ δa, (3.32)

so that δρ2

ρ2
� 1 everywhere.

In contrast, the change in ∆r while being small in the region from the AdS2 boundary

to infinity, is not small in the near-horizon region, since it vanishes at r = rh in the extremal

case. Therefore, ∆r is a function whose change we need to keep track of in going to the

non-extremal case.

To proceed, let us write the metric in the form,

ds2 =
ρ2∆r

Σ
dt2 +

ρ2

∆r
dr2 + Φ2

(
ρ2√
Σ

)
dθ2 + Φ2 sin2 θ

(√
Σ

ρ2

)
(dϕ− iAt dt)2. (3.33)

Here,

Φ2 =
√

Σ = ((r2 + a2)2 − a2∆r sin2 θ)1/2, (3.34)

At = ΩH − ω, (3.35)

and we are working in the shifted azimuthal coordinate ϕ → ϕ − iΩHt. One advantage

of parametrising the metric in this manner is that the volume of the internal two sphere

spanned by θ, ϕ is now given by 4πΦ2 and therefore only dependent on Φ, and manifestly

independent of Σ. Although Φ is evidently a function of Σ, as defined above, when Φ

and Σ are regarded formally as independent quantities, the volume of the transverse space

depends only on Φ. We emphasise the role of Φ to make the connections with the previous

discussion more transparent. As a result, after dimensional reduction to two dimensions,

the dilaton field will be proportional to Φ2 (as in eq. (2.25)), and the variation of Φ from

its attractor value (2.30) will be important in obtaining the thermodynamics. In contrast,

by repeating the analysis above for ρ2, now for the field Σ, it is easy to see that its change

from the extremal value will not be important in obtaining the leading order change in the

free energy. We also note that we will need to keep track of the change in ∆r, and At,

when going to the non-extremal case, for computing the corrections to the free energy.

It is now easy to obtain the bulk action in the near-horizon region. The metric in this

region can be written as

ds2 =
1 + cos2 θ

2
gαβ dxα dxβ +

1 + cos2 θ

2
Φ2 dθ2 + Φ2 2 sin2 θ

1 + cos2 θ
(dϕ− iAαdxα)2. (3.36)

Here, α, β take values in r, t.
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Starting from the action

I = − 1

16πG4

∫
d4x
√
gR, (3.37)

and inputting the metric eq. (3.36), we obtain,

I = − 1

4G4

∫
d2x
√
g

(
Φ2R+ 2(∇Φ)2 + 1 +

1

2
Φ4FαβF

αβ

)
+

1

G4

∫
∂

dx
√
γnαΦ∇αΦ,

(3.38)

where R which appears in eq. (3.38) is the Ricci curvature of the two-dimensional metric.

This reduction, a special case of the reduction we have carried out in section 5, (zero electric

and magnetic charges and zero cosmological constant limit) was also considered in [140].

We are interested in a rotating black hole of angular momentum J ; the field strength

in this case is given by

Fαβ =
2JG4

Φ4

√
gεαβ . (3.39)

Expanding Φ as given in eq. (2.30), where

Φ0 =
√

2G4J, (3.40)

and carrying out a change in frame

gαβ →
Φ0

Φ
gαβ (3.41)

gives, for the action eq. (3.38),

I = − Φ2
0

2G4

∫
d2x
√
g φ(R− Λ2) +

3Φ2
0

4G4

∫
∂

dx
√
γnα∇αφ

− Φ4
0

2G4

∫
∂

dx
√
γ(1 + 5φ)nαF

αβAβ . (3.42)

Here we have only included terms to linear order in φ and not included a topological term

leading to the ground state entropy. We note that the bulk term above agrees with the

JT model.

We had mentioned that the region between the AdS2 boundary and infinity contributes

a surface term at the AdS2 boundary. We add to this the two surface terms in eq. (3.42).

A convenient way of calculating the resulting total of all surface terms is the following.

We have argued that the changes in the two-dimensional metric etc. that we are interested

in cannot be regarded as perturbations in the AdS2 region. But we could consider other

changes which would be perturbations in the whole of spacetime outside the horizon. For

such changes, the total alteration in the action to first order in these perturbations from

the near AdS2 region should also have been a surface term at the boundary of AdS2 which

cancels the surface term which arises from the region between the AdS2 boundary and

infinity. This along with general covariance in the two-dimensional theory allows us to

obtain the surface terms.
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Let us denote by I[H→∂AdS2] the bulk term in eq. (3.42):

I[H→∂AdS2] = − Φ2
0

2G4

∫
d2x
√
g φ(R− Λ2). (3.43)

The change in the AdS2 region bulk action for perturbations which satisfies the Dirichlet

boundary condition for φ gives, (see appendix A)

δI[H→∂AdS2] =
Φ2
0

G4

∫
∂

dx δ(
√
γK)φ− Φ2

0

G4

∫
∂

dx δ(
√
γ)φK. (3.44)

Here the extrinsic curvature is computed using a normal which is directed outward towards

asymptotic infinity. As a result, the surface term arising from the bulk integral from the

AdS2 boundary to infinity. which cancels this contribution is opposite in sign from that in

eq. (3.44). We see that with this change in sign, this contribution then agrees with what

is obtained from the boundary terms in the JT model, we have also used the argument

in subsection 3.1, eq. (3.10) that the second term above equals the contribution from the

counter-term.

Since the bulk term in eq. (3.42) also agrees with the JT model, it then follows that

the change in the free energy will agree with the result in the JT model. Let us also note

that the connection to the JT model is tied to the near horizon geometry exhibiting an

SL(2,R) symmetry. This symmetry results in the metric in the t, r plane being conformally

AdS2, eq. (3.23), and allows the free energy calculation, after carrying out the integral in

the θ, ϕ directions, to be related to that in the JT model.

The discussion above can be extended to other rotating black holes, including those

with extra gauge fields and scalars as well. The crucial point is that the bulk action in

the near-horizon region becomes that of the JT model. It then follows that the additional

surface terms can be also obtained from the near-horizon region and agree with those in

the JT model, eq. (3.12), as was illustrated in the Kerr black hole above.

Comparing with the 4-dimensional Kerr case, it is clear that for a general d + 1-

dimensional spacetime where we start with the action,

I = − 1

16πGd+1

∫
dd+1x

√
gR+ · · · , (3.45)

G̃, eq. (2.1), in the JT model which arises, is given by eq. (3.22). Note that the volume of

the transverse space spanned by the angular directions is

Vd−1 = vd−1Φ
d−1, (3.46)

with vd−1 being the volume of the unit Sd−1, eq. (B.7), and Φ0 appearing in eq. (3.22)

is the attractor value for Φ. As in the cases above, the role of the dilaton in the JT

model is played by the linear correction to Φ when it is expanded about Φ0 as given in

eq. (2.30). And the scale J , eq. (2.5), is determined by the linear variation in φ away from

the attractor value.

We end with some comments. First, for a Kerr-Newman type of black hole, one can

consider starting with no angular momentum and then adding some rotation. For small
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angular momentum, it is easy to see that extra Kaluza-Klein (KK) modes, corresponding

to higher partial waves along the transverse sphere, are turned on. In such cases a two-

dimensional reduction can be carried out in the region between the AdS2 boundary and

infinity as well, retaining these extra modes, and the analysis for these cases can be mapped

to that in section 3.2. Second, our arguments for rotating black holes are somewhat less

straightforward than for the spherically symmetric ones in the previous subsections. We

will consider several examples below and see that the JT model does correctly give the

free energy for the rotating cases as well. This adds additional evidence in support of

these arguments.

Finally, as a summary of this section we note that we have seen that the dilaton, in all

cases including rotating ones, corresponds to the volume of the transverse sphere spanned

by the angular directions, with Φ0 being related to the area of the horizon, by eq. (3.46),

AH = vd−1Φ
d−1
0 . (3.47)

Using eq. (3.22) and eq. (2.14) this allows us to express the free energy for near-extremal

black holes in d+ 1 spacetime dimensions, as

∆F = −(d− 1)πS0
T 2

J
, (3.48)

where S0 = AH/4Gd+1 is the ground state entropy.

4 Five-dimensional rotating black holes in asymptotically Anti-de Sitter

spacetime

We are now ready to consider some specific examples of rotating near-extremal black holes.

The first case we consider in this section is that of a five-dimensional rotating black hole

in asymptotically AdS5 spacetime. This example was studied in [86] where the connection

with the JT model was also explored. We will see that this example can, in fact, be related

to the discussion in section 3.2.

We start with the Euclidean action,

I = − 1

16πG5

∫
d5x
√
g (R− 2Λ5)−

1

8πG5

∫
d4x
√
γK. (4.1)

The metric of the five-dimensional rotating black hole is given by, (see [86] and [141–143])

ds2 =
∆

Ξ
exp(U2 − U1)dt

2 +
r2

(r2 + a2)∆
dr2 + exp(−U1) dΩ2

2 + exp(−U2)(dψ +A)2, (4.2)

where ∆, U1, U2 are functions of r and A is a one-form (see appendix C). Note that the

angular coordinate ψ lies in the range [0, 4π).
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For the extremal black hole the parameter ∆ has a second order zero in r. The metric

in the near-horizon limit takes the attractor value

ds2 =
1

2
(

1 +
r2h
L2

) ((r − rh)2

L2
2

dt2 +
L2
2

(r − rh)2
dr2
)

+
r2h

2
(

1− 2r2h
L2

)dΩ2
2

+
r2h(

1− 2r2h
L2

)2 (dψ + Ā)2, (4.3)

where,

Ā = cos θ dϕ− i

(
1−

2r2h
L2

)(
1 +

2r2h
L2

)1/2
r − rh
r2h

1(
1 +

r2h
L2

)dt. (4.4)

Here L is the AdS5 radius, (C.1), and we have transformed the angular coordinate, dψ →
dψ + k dt, for a constant k. We see that in the r − t plane, at constant values for the

angular coordinates, it clearly exhibits an AdS2 geometry. The radius of AdS2 is given by,

L2
2 = r2h

(
1 +

r2h
L2

)
(

1 +
4r2h
L2

) . (4.5)

Going to the slightly non-extremal case, keeping the angular momentum J , eq. (C.8)

fixed, it is easy to calculate the entropy and the free energy as a function of temperature

T . One finds that

∆F ≡ F − Fextremal = − π

4G̃

T 2

J
. (4.6)

We have given the result in terms of the parameters G̃,J in view of the discussion that

follows. These parameters take the values,

G̃ =
G5

(
1− 2r2h

L2

)2
24π2r3h

, (4.7)

J =
3

rh

1 +
4r2h
L2

1− r2h
L2

. (4.8)

We can now compare this result with the JT model that we obtain for this black hole.

It is useful to carry out the dimensional reduction in obtaining the two-dimensional theory

here in two steps. (Note that a similar dimensional reduction was carried out in [86]).

First, writing the metric as

ds2(5) = g(4)µν dxµdxν + Σ2(dψ +A)2, (4.9)

we carry out a dimensional reduction of the standard KK type over the ψ direction. This

gives rise to a 4-dimensional theory, consisting of the metric, gαβ , a gauge field A, and
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the scalar Σ. This theory is of the kind considered in section 3.2. The action of the

4-dimensional theory is

I = − 1

4G5

∫
d4x

√
g(4)

(
ΣR− 1

4
Σ3FµνF

µν − 2ΣΛ5

)
− 1

2G5

∫
d3x

√
γ(3)ΣK (4.10)

(which is closely related to the type of action considered in section 3.2). The gauge field

here carries one unit of magnetic charge and also electric charge which is related to the

angular momentum carried by the five-dimensional black hole. It is clear from eq. (4.2)

that the 4-dimensional metric obtained after KK reduction is rotationally symmetric.

To come down to two dimensions, we next take the four-dimensional metric to have

the form

ds2(4) =
1

ΣΦ3/2
gαβdxαdxβ +

Φ3

8Σ
dΩ2

2. (4.11)

The indices α, β refer to the two-dimensional coordinates. Here Φ3 is related to the 3-

volume V3 spanned by the θ, ϕ, ψ directions as follows:

V3 = v3Φ
3, (4.12)

where v3 is the volume of a unit S3.

Inserting eq. (4.11) in eq. (4.10), with the gauge field ansatz,

Aµdxµ = cos θ dϕ+ iAαdxα, (4.13)

gives the two-dimensional action, eq. (C.22) of appendix C. This action is of the form given

in eq. (3.18).

From eq. (4.2) we see that that

Φ3 = 8 exp

(
−U1 −

1

2
U2

)
. (4.14)

Its attractor value is given by,

Φ3
0 =

4r3h(
1− 2r2h

L2

)2 . (4.15)

Expanding Φ about the attractor value, eq. (2.30), we get that φ varies linearly as

given in eq. (2.5) with z being related to the radial coordinate r in eq. (2.20), and J taking

the value, eq. (4.8). From eq. (C.26) and eq. (2.1) we see that that G̃ takes the value,

eq. (4.7).

It then follows from eq. (2.14) that the free energy of the JT model is also given by

eq. (4.6) and agrees with the result above. More details are given in appendix C.

Let us note that in [86], the authors in their analysis of the JT model found an

ambiguity in various thermodynamic parameters which corresponds to a choice of scale in

defining the temperature. We have chosen conventions here so that the temperature agrees

with the definition at asymptotic infinity.

We end this section with two comments. First, the free energy eq. (4.6) depends on rh
which in turn can be obtained in terms of the angular momentum from eq. (C.8), eq. (C.12),
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eq. (C.13). Second these black holes, for L 6=∞ could suffer from a superradiant instability,

as discussed in [144, 145], see also appendix C. The flat spacetime limit L → ∞ does not

have this instability.

5 Four-dimensional charged rotating black holes

Next we study four-dimensional rotating black holes. With the strength we have by now

acquired, we might as well consider the most general case of a Kerr-Newman near-extremal

black hole with both electric and magnetic charges in asymptotically AdS spacetime! The

uncharged near-extremal Kerr black hole in flat spacetime is a special case which we will

comment on in more detail later on in the section.

The Euclidean action is,

I = − 1

16πG4

[∫
d4x
√
g
(
R− 2Λ4 − F̂µνF̂µν

)
+ 2

∫
d3x
√
γ K

]
. (5.1)

There is a well-known rotating black hole solution given by [121, 146, 147].

ds2 =
ρ2∆r∆θ

Σ
dt2 +

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

Σ

ρ2Ξ2
sin2 θ(dϕ+ iω dt)2. (5.2)

where,

L =

√
− 3

Λ4
, (5.3)

Ξ = 1− a2

L2
, (5.4)

ρ2 = r2 + a2 cos2 θ, (5.5)

∆r = (r2 + a2)

(
1 +

r2

L2

)
− 2mr + (q2e + q2m), (5.6)

∆θ = 1− a2

L2
cos2 θ, (5.7)

Σ = (r2 + a2)2∆θ − a2∆r sin2 θ, (5.8)

ω =
aΞ[(a2 + r2)∆θ −∆r]

Σ
. (5.9)

The gauge field is given by,

Â =
qer

ρ2

(
i dt+

a sin2 θ

Ξ
dϕ

)
+
qm cos θ(r2 + a2)

Ξρ2

(
dϕ+ i

aΞ

r2 + a2
dt

)
. (5.10)

The ADM mass, the angular momentum, the physical electric and magnetic charge

are given by,

M =
m

G4Ξ2
, (5.11)

J =
ma

G4Ξ2
, (5.12)

Qe =
qe
Ξ
, (5.13)

Qm =
qm
Ξ
, (5.14)

respectively.
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Note that as in the five-dimensional case, (see appendix C) |a| can approach L only

from below.

As discussed in appendix D, close to extremality, the change in entropy, above its

extremal value, ∆S is given by

∆S =
π

2G̃

T

J
, (5.15)

where we have defined

G̃ = G4

(
1− a20

L2

)
8π(r2h + a20)

, (5.16)

and

J =
1

rh

(
1 +

6r2h + a20
L2

)
, (5.17)

with an eye towards the discussion of the JT model that follows. Here, rh is the radial

location of the extremal horizon and quantities with a subscript 0 denote the values of

these parameters at extremality. For more details, see appendix D. Using thermodynamic

relations, we then get the free energy above extremality to be,

∆F = − π

4G̃

T 2

J
. (5.18)

This result can also be obtained directly by calculating the on-shell action.

Let us now connect this discussion to the JT model. Our discussion will follow sec-

tion 3.3. The near-horizon metric for the extremal case is given by

ds2 =
ρ20

(r2h + a20)

(
(r − rh)2

L2
2

dt2 +
L2
2

(r − rh)2
dr2
)

+
ρ20Ξ0

(r2h + a20)∆θ0
Φ2
0 dθ2

+
∆θ0(r

2
h + a20)

Ξ0ρ20
Φ2
0 sin2 θ

(
dϕ− i

2rha0Ξ0

(r2h + a20)
2
(r − rh) dt

)2

, (5.19)

For further details, including the definitions of the various quantities appearing above, see

appendix D. For the uncharged, asymptotically flat case, with qe, qm = 0, L → ∞, this

agrees with eq. (3.23). The gauge fields in the near-horizon region takes the form given

below in eq. (5.24) with

At =
qe0(r

2
h − a20)

(r2h + a20)
2

(r − rh), Ar = 0, (5.20)

At =
2rha0Ξ0

(r2h + a20)
2
(r − rh), Ar = 0. (5.21)

The reader will note that the metric has an AdS2 factor, in the t, r plane and an

SL(2,R) symmetry with the generators given in eq. (3.24) with L2 given by eq. (D.21) and

α =
2rha0Ξ0

(r2h + a20)
2
. (5.22)

The gauge field eq. (5.20) preserves the SL(2,R) symmetry.
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As discussed in section 3.3, to calculate the leading dependence of the free energy at

small temperatures, we need to keep the change, due to non-extremality, in only some of

the functions which appear in the metric, eq. (5.2). For example, the fractional change in

ρ2 is small in the whole of spacetime outside the horizon, similarly the change in ∆θ and

Ξ. Thus the change in these function can be neglected and in the near-horizon region, we

can take these function to have the form they do in the attractor geometry.

With these observations in mind, we now take the near-horizon metric to have the form,

ds2 =
ρ20

(r2h + a20)

(
Φ0

Φ
gαβdxαdxβ +

Φ2Ξ0

∆θ0
dθ2
)

+
∆θ0(r

2
h + a20)

ρ20Ξ0
Φ2 sin2 θ(dϕ− iAα dxα)2,

(5.23)

and the gauge field to be of the form,

Âµ dxµ = −i (Aα + b(θ)Aα) dxα + b(θ) dϕ, (5.24)

where,

b(θ) =
1

Ξ0ρ20

(
qe0a0rh sin2 θ + qm0(r

2
h + a20) cos θ

)
. (5.25)

Here, the fields Φ, Aα,Aα are assumed to be dependent only on the 2-dimensional coordi-

nates xα. Note that volume of the two-sphere spanned by θ, ϕ is given by

V2 = 4πΦ2. (5.26)

Φ0 appearing in eq. (5.23) is the attractor value of Φ.

Inserting in the action (5.1) and carrying out the integral over θ, ϕ gives the two-

dimensional action which agrees with the JT model, as is discussed in detail in appendix D.

Here let us summarise the key point in the analysis in appendix D. The 2-dimensional

action which is obtained, eq. (D.26), has the form,

I = − 1

4G4

∫
d2x
√
gΦ2R+ · · · . (5.27)

Expanding Φ, eq. (2.30) then gives from the term linear in φ to be of the form eq. (2.1)

with G̃ given in eq. (5.16). From the expansion for Φ defined in eq. (D.42), we also learn

that J is given by eq. (5.17). It then follows from the analysis in the JT model that the

free energy, eq. (2.14) agrees with the result obtained above, eq. (5.18).

5.1 The near-extremal Kerr black hole

The asymptotically flat uncharged Kerr black hole is an important special case. This is ob-

tained by taking L→∞ and setting qe = qm = 0 in all the formulae in the previous section.

The parameter J , eq. (5.17), takes the value

J =
1

rh
. (5.28)

and, from eq. (5.16),

G̃ =
G4

16πr2h
. (5.29)
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In this case, a0 = rh, eq. (D.7), and rh is related to the angular momentum of the black

hole J by

rh =
√
G4J. (5.30)

Note that rh is of order the size of the event horizon.

The attractor values for Φ, eq. (D.23) becomes,

Φ0 =
√

2rh, (5.31)

and φ varies as given in eq. (2.5) with J taking the value, eq. (5.28).

The dimensional reduction discussion goes through as described above, resulting in a

two-dimensional action of the form

IJT = − 1

16πG̃

(∫
d2x
√
g φ

(
R+

2

L2
2

)
+ 2

∫
∂

dx
√
γ φK

)
. (5.32)

with G̃ given in eq. (5.29).

The condition for the temperature to be small, eq. (2.37), using eq. (5.28), becomes,

T � J =
1

rh
. (5.33)

We see that the temperature has to be much smaller than the inverse “light crossing time

of the horizon”.

From eq. (5.28) and eq. (5.29), we see that the resulting free energy at small temper-

atures is

F = −
4π2r3h
G4

T 2 = −2πS0
√
G4JT

2 = −2πS0
T 2

J
, (5.34)

with J being the angular momentum and S0 being the zero-temperature entropy. This

agrees with eq. (3.48) with d = 3, see also [140].

Note also that the chemical potential which is the thermodynamic conjugate of J is

given for an extremal Kerr black hole by, eq. (D.4),

ΩH =
1

2a0
(5.35)

while the angular momentum is given by, eq. (5.30)

J =
a20
G4

(5.36)

This implies that the “charge susceptibility” [31] at zero temperature is given by

dJ

dΩH
= −4a30

G4
= −4

√
G4J3 (5.37)

We had mentioned above in passing that an extra phase mode enters in the 2-

dimensional theory when one allows the charge to vary. It has an action schematically

of the form,
∫

dτI θ̇2. The susceptibility fixes the parameter I, which acts like the moment

of inertia of the phase mode.
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5.2 Superradiant instabilities

Let us also briefly discuss superradiant instabilities which can occur in the asymptotic anti-

de Sitter spacetime [148–150]; a discussion for the 5-dimensional case is in appendix C; see

also the end of section 4. A necessary condition for the superradiant instability to occur

for black holes in asymptotically AdS4 spacetime is [144, 150],

Ω∞H >
1

L
, (5.38)

or equivalently, from eq. (D.4),

r2+ < aL. (5.39)

Note that the angular velocity Ω∞H is the thermodynamical variable conjugate to the angular

momentum J . From eq. (D.7) it is easy to see that the inequality eq. (5.39), is always met

for uncharged rotating extremal black holes (qe = qm = 0). However, it is possible to evade

this bound for extremal black holes with sufficient amount of charge (see e.g., [151] for

related discussion).

An extremal black hole is specified by three parameters, qe, qm, a with the parameter

a satisfying the condition,

a2 < L2. (5.40)

The radius of the horizon, rh, is obtained from eq. (D.7) and given by

r2h =
−(L2 + a20) +

√
(L2 + a20)

2 + 12L2(a20 + q20)

6
. (5.41)

To evade the superradiant instability for the extremal case, one needs,

r2h > a0L. (5.42)

In the supersymmetric case [152], (see also [153]), q0 is determined in terms of a0 by

q20 = a0L

(
1 +

a0
L

)2

. (5.43)

One finds from eq. (5.41) that in this case r2h = a0L and one is at the edge of meeting

the condition, eq. (5.42). By increasing q0 and making it bigger than the SUSY value,

eq. (5.43), for fixed a0, it is easy to see from eq. (5.41) that rh increases and thus eq. (5.42)

is now met.

In the SUSY case, if one makes the black hole slightly non-extremal, keeping the

charges fixed at the SUSY values, one finds that the inequality eq. (5.39) is now violated

and thus the superradiant instability goes away.

6 Conclusions

In this paper, we have argued that the low-temperature free energy for near-extremal black

holes is correctly obtained from the JT model in general. In particular, our arguments apply

for rotating black holes as discussed in section 3.3. These conclusion holds for all cases
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where the extremal geometry has an AdS2 factor and the related SL(2,R) symmetry. We

have also verified by explicit calculations that these arguments are correct for near-extremal

Kerr black hole in 5 dimensions and for a general Kerr-Newman black hole in 4 dimensions.

The dilaton field in the JT model corresponds to the volume of the transverse sphere

spanned by the angular direction. It follows from our analysis that the temperature depen-

dence of the free energy for all near-extremal black holes, including rotating ones, is given

in a compact form by eq. (3.48) and determined by the ground state entropy and the scale

J which characterises how the dilaton approaches its attractor value at the horizon.

The expectation that the JT model should be a good approximation, at sufficiently

low temperatures and low frequencies for rotating black holes, which have an AdS2 factor

in their near-horizon geometry, already arises from previous work [8, 139]. In [139], it was

argued that extremal rotating black holes would also exhibit the attractor behaviour. One

way to understand this is to construct the two-dimensional theory obtained after reducing

over the angular direction. This theory contains the two-dimensional metric, the dilaton,

which is the volume of the transverse sphere and appears as the coefficient of the Einstein-

Hilbert term in the two-dimensional theory, several gauge fields, scalars and also massive

symmetric rank two tensor fields. In the rotating case, some of the gauge fields which are

excited arise from components of the higher dimensional metric and similarly some of the

scalars and the massive symmetric rank two fields arise from partial waves on the transverse

sphere — these are excited due to the rotation. However, despite these complications, the

analysis in the resulting two-dimensional theory is similar in the rotating and non-rotating

cases, and all fields are drawn to their attractor values which can be obtained by extremising

an entropy function.

The analysis of [139] was extended in [8] to include the slightly non-extremal case. It

was argued that while allowing the dilaton to vary from its attractor value is important

for controlling the back reaction, the departure for many other fields could be neglected

to leading order, at low frequencies and low temperatures. This gives rise to a theory

consisting of the JT model coupled to extra phase modes which arise from the gauge fields

present in the two-dimensional theory. It follows from the arguments in [8] that this theory

should be a good approximation for the low-frequency and low-temperature response of a

near-extremal black hole. While rotating black holes were not explicitly considered in [8],

the arguments there were based on the two-dimensional theory obtained after dimensional

reduction over the transverse sphere and should apply for the rotating case as well, since

as mentioned above, the resulting two-dimensional theories are similar.

In this paper, we have focussed on the low-temperature behaviour for near-extremal

rotating black holes and confirmed both through a general argument and also explicit checks

that this expectation is correct and that the JT model does indeed correctly account for

the low-temperature free energy of such rotating near-extremal black holes.

These developments hold out the exciting possibility that the JT model could, in fact,

be useful in analysing the dynamics of fast-spinning near-extremal black holes found in

nature! In the paper, we saw that the thermodynamics of the black hole is correctly

reproduced if the dilaton satisfies Dirichlet boundary conditions at the boundary of the

AdS2 region. From the point of view of the four-dimensional metric, this means taking
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the volume of the transverse sphere to be constant along the boundary. Therefore, these

results suggest that the dynamics of near-extremal rotating black holes, at sufficiently low

frequencies but not necessarily small amplitudes, could be well approximated by an effective

theory in which the near-horizon AdS2 region is replaced by a boundary located along the

locus where the transverse sphere takes a constant volume. This boundary would interact

with the stress tensor averaged over the transverse sphere and the dynamics of the black

hole would then arise through these from interactions of the boundary.2

To get a feel for some of the numbers involved, consider a solar mass extremal Kerr

black hole. It has a horizon of approximately 3 km, with a light crossing time of 10−5 sec.

Thus, one would expect that the JT model could be a good approximation for dynamics

at frequencies which are smaller than about 105 Hz. Some examples of fast-spinning black

holes are well known with masses in the range of a few solar masses. For example, GRS

1915+105 involves a binary system with a black hole of mass ∼ 10M� and a spin parameter

which has been measured to be around 0.98 [154–156] — making it very nearly extremal.

We hope to develop this connection with astrophysical fast-spinning black holes further

in subsequent work.

The analysis in this paper and also in [7] and [8], suggest that one should be able to for-

mulate a version of the fluid-gravity correspondence for near-extremal black holes including

rotating ones.3 Consider a near-extremal black hole in asymptotically AdS spacetime with

temperature T � µ, where µ is the chemical potential corresponding to the charge carried

by the black hole. For situations where L−1 � T , with L being the length or time scale

over which the fluid in the boundary theory varies, it is well known [157] that Einstein’s

equations lead to Navier-Stokes equations in the boundary theory. One might expect that

when the variation is more rapid and satisfies the condition T � L−1 � µ, also there

is an effective theory that describes the dynamics, and it is obtained by coupling the JT

model at the boundary of AdS2 in a suitable way with the outside. We hope to develop

this theme in a subsequent paper as well.

The universal manner in which the JT model describes near-extremal black holes also

allows for a fairly precise near-AdS2/near-CFT1 correspondence to be set up [8]. It will be

very interesting to test this correspondence in examples where the extremal black holes arise

in in string theory, with a near-CFT1 which can be understood in a microscopically precise

way. The fact that rotating black holes are included in these examples, enlarges the set of

possibilities even further. It might well be that some instances where this correspondence

can be tested and understood most fruitfully involve rotating black holes.
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A On how the Jackiw-Teitelboim model correctly reproduces the leading

thermodynamic behaviour

In this appendix, we elaborate on the comments made in section 3 and show exactly how

the evaluation of the Euclidean on-shell action in the region far from the horizon (the bulk

integral extending from the AdS2 boundary to the asymptotic infinity) gives rise to the

Gibbons-Hawking boundary term and the counter-term in the Jackiw-Teitelboim model —

which are precisely the terms contributing to the JT on-shell action. To begin we consider

the RN case studied in 3.1. The integral of interest in given in eq. (3.2),

I[∂AdS2→∞] = − 1

4G4

∫ ∞
∂AdS2

d2x
√
g

(
Φ2R+

2Φ0

Φ
− 2Φ0ΦΛ +

Φ3

Φ0
FαβFαβ

)
− 1

2G4

∫
∞

dx
√
γ

(
Φ2K − 2Φ3

Φ0
nαF

αβAβ

)
+ I∞CT (A.1)

− 1

G4

∫
∂AdS2

dx
√
γ

Φ3

Φ0
nαF

αβAβ .

We emphasise again that the normal one-form nα appearing in the last line above (and the

discussion below) points from the AdS2 boundary to the asymptotic infinity.

The change in I[∂AdS2→∞] to first order in the metric, dilaton and gauge field pertur-

bations, which we denote by, δgαβ , δΦ and δAα, respectively, is given by,

δI[∂AdS2→∞] = − 1

4G4

∫
∂AdS2

dx
√
γ
(

Φ2nβ∇αδgαβ − Φ2gαβn
κ∇κδgαβ

)
+

1

4G4

∫
∂AdS2

dx
√
γ δgαβ

(
nβ∇αΦ2 − gαβnκ∇κΦ2

)
(A.2)

− 1

G4

∫
∂AdS2

dx δ

(
√
γ

Φ3

Φ0
nαF

αβ

)
Aβ ,

where we have used the equations of motion, and also the fact that all fields vanish suffi-

ciently fast at infinity. Note that all the three terms are surface terms at the boundary of

AdS2, in agreement with the discussion in section 3. Note also that the quantity that is

being varied in the third line of eq. (A.2) above is proportional to the charge carried by the

black hole (see eq. (2.27)). Since we are interested in perturbations which do not change

this charge, the term in the last line of eq. (A.2) vanishes.
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In order to obtain the first two lines of eq. (A.2), we have used the Palatini identity,

δRαβ = ∇κδΓκαβ −∇αδΓκβκ, (A.3)

where the variation of the Christoffel connection is given by,

δΓλαβ =
1

2
gλκ (∇αδgβκ +∇βδgακ −∇κδgαβ) . (A.4)

The covariant differentiation and rearrangement of indices above are assumed to be done

with the unperturbed metric.

As discussed in section 2, for obtaining the leading dependence of the action on tem-

perature, it is enough to consider only terms up to linear order in φ, eq. (2.30) at the

boundary of AdS2. Expanding eq. (A.2) up to linear order in φ we get,

δI[∂AdS2→∞] = − 1

16πG̃

∫
∂AdS2

dx
√
γ
(
φnβ∇αδgαβ − φgαβnκ∇κδgαβ

)
(A.5)

+
1

16πG̃

∫
∂AdS2

dx
√
γ δgαβ

(
nβ∇αφ− gαβnκ∇κφ

)
.

Here we have dropped some terms coming from the first line on the r.h.s. of eq. (A.2) which

are independent of φ and turn out to vanish.

Let us now look at the Gibbons-Hawking boundary term on the AdS2 boundary,

given by,

IGH = − 1

8πG̃

∫
∂AdS2

dx
√
γ φK. (A.6)

Its variation gives,

δIGH = − 1

8πG̃

∫
∂AdS2

dx δ(
√
γ)φK − 1

8πG̃

∫
∂AdS2

dx
√
γ φ δK. (A.7)

Note that, crucially, we have imposed a strict Dirichlet boundary condition on φ on the

AdS2 boundary. We now use the relation that,

δK = ∇αδnα −
1

2
nαgκλ∇αδgκλ, (A.8)

where,

δnα = −1

2
nαnκnλδg

κλ + δgαβnβ . (A.9)

Using these relations, we obtain, after some simplification,

δI[∂AdS2→∞] − δIGH =
1

16πG̃

∫
∂AdS2

dx
√
γ
(
∇α(φnβδg

αβ) + δgαβφ(∇αnβ)
)

+
1

16πG̃

∫
∂AdS2

dx
√
γ
(
φ∇κ(nκγαβδg

αβ)−∇κ(φnκgαβδg
αβ)
)

+
1

8πG̃

∫
∂AdS2

dx δ(
√
γ)φK, (A.10)
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where,

γαβ = gαβ − nαnβ . (A.11)

To proceed, we use a coordinate system, with r, t coordinates, in which the metric of

AdS2 is

gtt =
1

grr
=

(r − rh)2

L2
2

, gtr = 0, (A.12)

and the dilaton, eq. (2.35) becomes,

φ =
r − rh
rh

. (A.13)

This gives on the constant r hyper-surface on the AdS2 boundary, the unit normal one-form,

nr =
L2

r − rh
, nt = 0. (A.14)

In this coordinate system the metric components, eq. (A.12), change as follows, when

the mass M , eq. (2.16) is changed by δM to go to the non-extremal case:

δgtt =
2L4

2G4δM

rh(r − rh)4
, δgrr = −2G4δM

rh
, δgtr = 0. (A.15)

Using this explicit form, we find that the first two lines of (A.10) vanish and we are left with,

δI[∂AdS2→∞] − δIGH =
1

8πG̃

∫
∂AdS2

dx δ(
√
γ)φK. (A.16)

Since K = 1/L2, we have,

δI[∂AdS2→∞] = δIGH +
1

8πG̃L2

∫
∂AdS2

dx δ(
√
γ)φ. (A.17)

We thus see that the change to leading order in I[∂AdS2→∞] agrees with the change

in the Gibbons-Hawking boundary term and the associated counter-term on the AdS2

boundary.

Before we end this appendix, let us make two comments. First, with reference to the

discussion in 3.3, instead of starting with the action, eq. (A.1), consider the linearised

action of the JT model, eq. (3.5) which is now evaluated in the region extending from the

horizon to the boundary of AdS2. And let us take an alteration of the metric which can

be regarded as a small perturbation in this region. Then steps which are very analogous

to those above lead to a change given in eq. (3.44).

Second, consider the general two-dimensional theory of section 3.2. All the above

arguments go through as before. The new ingredient in this case is the presence of the

extra scalars Ψp. When we vary the far-horizon action, some surface terms are generated

on the AdS2 boundary. The relevant term in the action (3.18) is,

− vd−1
16πGd+1

∫
d2x
√
g hpq(Φ,Ψi)g

αβ∇αΨp∇βΨq. (A.18)
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A variation of this action yields,

− vd−1
8πGd+1

∫
∂AdS2

dx
√
γ hpqnα∂αΨpδΨq. (A.19)

Unlike in the case of Φ, no Dirichlet condition on Ψ is imposed at the AdS2 boundary.

Therefore, the above expression does not vanish, in general. However, it is easy to see

that this does not contribute to the leading thermodynamic behaviour we are interested in.

Recall from section 3.2 that Ψi also shows the behaviour (3.21). In the asymptotic AdS2

region the effects of the mass deformation die out and this implies that δΨi will also go as

J −1i . The net contribution of this boundary term will therefore be suppressed at least as

J −2i . Since J and Ji are assumed to be of similar order, this contribution is suppressed

in comparison to the leading thermodynamic behaviour which goes as J −1.
Let us comment on the behaviour of δΨi in the asymptotic AdS2 region in some more

detail. Consider the mass deformed two-dimensional metric which can be written as,

ds2 = (r2 − δ20) dt2 +
dr2

(r2 − δ20)
. (A.20)

Here we have relabelled to the coordinate (r − rh) used in section 2 as r and δ0 ∼ T . A

perturbation δΨi of mass m which is time-independent satisfies the equation

∂r[(r
2 − δ20)∂rδΨi]−m2δΨi = 0 . (A.21)

In the asymptotic AdS2 region, r2 � δ20 ∼ T 2, eq. (A.21) becomes the same as in the

undeformed case. Regularity at the horizon chooses one of the two solutions of eq. (A.21);

the remaining overall coefficient which specifies this solution is fixed by matching with the

behaviour in the asymptotic AdS2 region. This allows the solution to meet the boundary

conditions at infinity. For the m2 = 2 case, for instance, the behaviour in the asymptotic

AdS2 region goes like ∼ r/Ji, and in fact,

δΨi =
r

L2
2Ji

(A.22)

solves eq. (A.21) identically. As the value of the dilaton in the asymptotic region changes

due to the mass deformation, the boundary of the AdS2 region also changes, however δΨi

will continue to be of order 1/Ji.

B Electrically charged near-extremal black holes in (d + 1) dimensions

The electrically charged RN case in general d+1 dimensions has been studied earlier, [102,

158]. Here we review how the free energy for this case agrees with the JT model.

We consider Euclidean Einstein-Maxwell action in asymptotically AdSd+1 spacetime,

appropriate for the canonical ensemble,

I = − 1

16πGd+1

∫
dd+1x

√
g (R− 2Λd+1 + FµνF

µν)

− 1

8πGd+1

∫
ddx
√
γ (K − 2nµF

µνAν) . (B.1)
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The electrically charged Reissner-Nordström solution is given by,

ds2 = f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

d−1, (B.2)

where,

f(r) =

(
1− 2m

rd−2
+

q2

r2d−4
+
r2

L2

)
, (B.3)

L =

√
−d(d− 1)

2Λd+1
, (B.4)

Frt =

√
(d− 2)(d− 1)

2

q

rd−1
. (B.5)

The physical mass is given by,

M = MCasimir +
(d− 1)vd−1m

8πGd+1
. (B.6)

Here we have defined

vd ≡ Vol(Sd) =
2π

d+1
2

Γ(d+1
2 )

. (B.7)

We have, in general, a non-zero MCasimir when d is even.

In the extremal case f(r), eq. (B.3) has a double zero at the horizon, r = rh. Increasing

the mass by δM keeping the charge parameter q fixed, we find the near-horizon metric to be,

ds2 =
(r − rh)2 − δ20

L2
2

dt2 +
L2
2

(r − rh)2 − δ20
dr2 + r2 dΩ2

d−1, (B.8)

where,

1

L2
2

=
d(d− 1)

L2
+

(d− 2)2

r2h
, (B.9)

δ20 =
16πGd+1L

2
2 δM

(d− 1)vd−1r
d−2
h

. (B.10)

It is easy to see that the temperature is given by

T =
δ0

2πL2
2

, (B.11)

and the entropy above extremality is given by

∆S =
π(d− 1)vd−1L

2
2r
d−2
h

2Gd+1
T. (B.12)

This leads to a free energy (using the usual thermodynamic relation),

∆F = −
π(d− 1)vd−1L

2
2r
d−2
h

4Gd+1
T 2. (B.13)
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Next let us compare this with the result in the JT model obtained in a manner anal-

ogous to what was described in section 2 for the four-dimensional case. Dimensionally

reducing the action (B.1) with the ansatz,

ds2 =

(
Φ0

Φ

)d−2
gαβ dxα dxβ + Φ2 dΩ2

d−1. (B.14)

gives the two-dimensional action,

I = − vd−1
16πGd+1

∫
d2x
√
g

(
Φd−1R+

(d− 1)(d− 2)Φd−2
0

Φ

+
d(d− 1)

L2
Φd−2
0 Φ +

Φ2d−3

Φd−2
0

FαβF
αβ

)

− vd−1
8πGd+1

∫
dx
√
γ

(
Φd−1K − 2Φ2d−3

Φd−2
0

nαF
αβAβ

)
. (B.15)

Here

Φ = r, (B.16)

and Φ0 = rh is the attractor value for Φ. Expanding about the attractor value we see that,

Φ = Φ0

(
1 +

r − rh
rh

)
= Φ0

(
1 +

1

J z

)
. (B.17)

where J , which determines the scale of conformal symmetry breaking in the near-horizon

region eq. (2.5), is

J =
rh
L2
2

. (B.18)

We get from the equations of motion,

Fαβ =
Φd−2
0

Φ2d−3Q
√
gεαβ , (B.19)

where,

Q2 =
1

2
(d− 1)(d− 2)q20, (B.20)

with q0 referring to the charge parameter at extremality.

Following the procedure outlined in section 3 and expanding about the attractor value

of Φ, we readily obtain the bulk action,

I = −
vd−1(d− 1)rd−1h

16πGd+1

∫
d2x
√
g φ

(
R+

2

L2
2

)
. (B.21)

This agrees with the JT model bulk action in eq. (2.1) and allows us to identify,

G̃ =
Gd+1

(d− 1)vd−1r
d−1
h

. (B.22)

From eq. (2.14), eq. (B.18) and eq. (B.22) we see that the free energy of this JT model

also agrees with eq. (B.13) above.
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C Rotating black holes in five dimensions in asymptotically Anti-de Sit-

ter spacetime

In this appendix, we give further details on the five-dimensional rotating black hole, dis-

cussed in section 4. The five-dimensional action is given by eq. (4.1) in which the five-

dimensional cosmological constant is given by,

Λ5 = − 6

L2
. (C.1)

The five-dimensional rotating black hole solution [86] is given by eq. (4.2), where,

Ξ = 1− a2

L2
, (C.2)

∆ = 1 +
r2

L2
− 2mr2

(a2 + r2)2
, (C.3)

exp(−U1) =
a2 + r2

4Ξ
, (C.4)

exp(−U2) =
ma2

2Ξ2(a2 + r2)
+
a2 + r2

4Ξ
, (C.5)

A = cos θ dϕ− i
a

2Ξ

(
a2 + r2

L2
− 2m

a2 + r2

)
exp(U2) dt. (C.6)

The physical mass M and the angular momentum are given by, respectively,

M =
3πL2

32G5
+

3π
(

1 + a2

3L2

)
4G5Ξ3

m, (C.7)

J =
πma

G5Ξ3
. (C.8)

Here, the first term in (C.7) corresponds to the Casimir energy for this spacetime. The

entropy and the temperature are given respectively by,

S =
π2(r2+ + a2)2

2G5r+Ξ2
, (C.9)

T =
r2+ − a2 +

2r4+
L2

2πr+(r2+ + a2)
, (C.10)

where r+ denotes the location of the outer horizon. Note that the above formulae make it

obvious that the absolute value of the parameter a cannot be arbitrarily large. It can, at

best, approach L from below.

The angular velocity which is thermodynamic conjugate of the angular momen-

tum [159] is given by,

Ω∞H = a

(
1 +

r2+
L2

)
r2+ + a2

. (C.11)

At extremality, we have the relations,

m0 = 2r2h

(
1 +

r2h
L2

)3

, (C.12)

a0 = rh

(
1 +

2r2h
L2

)1/2

. (C.13)
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The fixed angular momentum condition gives us,

m = m0 + δm, (C.14)

a = a0 −

(
1− 2r2h

L2

)(
1 +

2r2h
L2

)1/2
(

1 +
r2h
L2

)2 (
1 +

5r2h
L2 +

10r4h
L4

) δm
2rh

. (C.15)

The horizon is shifted to,

r+ = rh + δ0 +O(δ20), (C.16)

where

δ20 =
3 δm

2

(
1 +

2r2h
3L2

)
(

1 +
4r2h
L2

)(
1 +

5r2h
L2 +

10r4h
L4

) . (C.17)

The extra mass above extremality and the temperature are related as,

δM =
2π3r2hL

2
2

G5

(
1− r2h

L2

)
(

1 +
r2h
L2

)(
1− 2r2h

L2

)2T 2. (C.18)

The L2 used here is defined in eq. (4.5). At small temperature, the excess entropy is found

to be,

∆S =
12π3r3h

G5

(
1− 2r2h

L2

)2 TJ , (C.19)

From which we easily obtain the form of free energy as in eq. (4.6), where G̃,J are defined

in eqs. (4.7), (4.8).

A criterion for superradiance instability to occur [144] is given by,

Ω∞H >
1

L
. (C.20)

Since a can approach L only from below, it it easy to see that this criterion is equivalent

to demanding that,

r2+ < aL. (C.21)

In the purely rotating five-dimensional near-extremal case, one finds that this criterion is

always met and hence an instability could exist [144].

C.1 Dimensional reduction to two dimensions

We now perform the dimensional reduction of the action (4.1) — first with the metric

ansatz (4.9) to obtain the four-dimensional action (4.10), then with the metric and gauge

field ansatz (4.11), (4.13). The resulting two-dimensional action becomes, after we have

added a gauge field boundary term for the canonical ensemble,

I = − π

8G5

∫
d2x
√
g

(
Φ3R+

16

Φ3/2
− 3Φ3

2Σ2
(∇Σ)2 − 2Φ3/2

Σ
Λ5 −

32Σ3

Φ9/2
+

Φ9/2Σ3

4
FαβF

αβ

)

− π

4G5

∫
dx
√
γ

(
Φ3K − Φ9/2Σ3

2
nαF

αβAβ

)
. (C.22)
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The equation of motion for the gauge field gives,

Fαβ =
Q

Φ9/2Σ3

√
gεαβ , (C.23)

where the charge Q is given by,

Q2 = 32Σ3
0Φ

3
0

(
1− Φ3

0

8Σ0
Λ5 −

2Σ3
0

Φ3
0

)
=

(
4G5

π
J0

)2

. (C.24)

Here, J0 is the extremal value of the angular momentum (C.8) and Φ0,Σ0 are the attractor

values of the corresponding scalars. Comparing with the attractor solution (4.3), we readily

find that

Σ0 =
rh(

1− 2r2h
L2

) , (C.25)

with the value of Φ0 given by eq. (4.15).

Now, following the general procedure discussed in section 3, and linearising about the

attractor solutions, Φ = Φ0(1 + φ) and Σ = Σ0(1 + σ), we have the bulk action in the

JT form,

I = −
3πr3h

2G5

(
1− 2r2h

L2

)2 ∫ d2x
√
g φ

(
R+

2λ

L2
2

)
, (C.26)

where,

λ =
1

r
5/2
h

(
1−

2r2h
L2

)2(
1 +

r2h
L2

)
. (C.27)

Now, the constant Weyl rescaling,

gαβ →
1

λ
gαβ , (C.28)

brings the action to the form (2.1) with G̃ given by (4.7). It is worth pointing out that since

we are expanding about the attractor eq. (C.25), eq. (4.15), there is no term in eq. (C.26)

which is linear in σ.

D Rotating dyonic black holes in four dimensions in asymptotically Anti-

de Sitter spacetime

In this appendix, we elaborate on the four-dimensional set-up discussed in section 5. The

action, metric, gauge field and the various parameters are described in eqs. (5.1)–(5.14).

The expressions for entropy and temperature are given respectively by,

S =
π

ΞG4
(r2+ + a2), (D.1)

T =
(r2+ − a2 − q2e − q2m) +

r2+
L2 (3r2+ + a2)

4πr+(r2+ + a2)
. (D.2)
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Here r+ is the location of the outer horizon, ∆r(r+) = 0. The angular velocity at the

horizon is given by,

ΩH ≡ ω(r+) =
aΞ

r2+ + a2
. (D.3)

As in the five-dimensional case, the angular velocity which is thermodynamically conjugate

to the angular momentum [159] is given by,

Ω∞H = a

(
1 +

r2+
L2

)
r2+ + a2

. (D.4)

Let us now examine the black hole around extremality. Denoting all extremal quantities

with a subscript 0 and defining

q20 ≡ q2e0 + q2m0, (D.5)

the mass parameter m0 and and the angular momentum parameter a0 are parametrically

related as,

m0 = rh

(
1 +

2r2h−q
2
0

L2 +
r4h
L2

)
(

1− r2h
L2

) , (D.6)

a0 = rh

1 +
3r2h
L2 −

q20
r2h

1− r2h
L2

1/2

, (D.7)

where rh is the radial location of the extremal horizon.

For a concise presentation of the later results, it is useful to express the mass and charge

parameters as functions of the extremal radius and the angular momentum parameter. So

we have,

m0 = rh

(
1 +

a20 + 2r2h
L2

)
, (D.8)

q0 =

√
r2h

(
1 +

3r2h
L2

)
− a20

(
1−

r2h
L2

)
. (D.9)

We are interested in making the black hole slightly non-extremal by adding a small

amount of mass, but keeping the angular momentum and the electric and magnetic charges

unchanged. This necessitates that we take,

m = m0 + δm, (D.10)

a = a0

1− Ξ0(
1 +

3a20
L2

) δm
m0

 , (D.11)

qe = qe0

(
1 +

2a20
L2 + 3a20

δm

m0

)
, (D.12)

qm = qm0

(
1 +

2a20
L2 + 3a20

δm

m0

)
, (D.13)
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Then, the outer horizon is shifted to,

r+ = rh + δ0 +O
(
δ20
)
, (D.14)

where

δ20 =
2(r2h + a20)

rh

(
1 +

3a20
L2

)(
1 +

6r2h+a
2
0

L2

)δm. (D.15)

The mass above extremality and the temperature are related as,

δM =
2π2rh(r2h + a20)

G4Ξ0

(
1 +

6r2h+a
2
0

L2

)T 2. (D.16)

The entropy above extremality then goes as,

∆S =
4π2rh(r2h + a20)

G4Ξ0

(
1 +

6r2h+a
2
0

L2

)T. (D.17)

Here,

Ξ0 = 1− a20
L2
. (D.18)

We now look at the near-horizon limit of the metric. We make the scalings as in [121,

137], in a slightly more generalised form to accommodate deviations from extremality,

t→ λ−1t,

r − rh → λ(r − rh),

ϕ→ ϕ− iλ−1ΩHt,

m = m0 + λ2δm, (D.19)

a = a0

1− λ2 Ξ0(
1 +

3a20
L2

) δm
m0

 ,

q(e,m) = q(e0,m0)

(
1 + λ2

2a20
L2 + 3a20

δm

m0

)
.

Putting this into eq. (5.2) and taking the limit λ→ 0 gives us the attractor solution,

ds2 =
ρ20

(r2h + a20)

(
(r − rh)2 − δ20

L2
2

dt2 +
L2
2

(r − rh)2 − δ20
dr2
)

+
ρ20Ξ0

(r2h + a20)∆θ0
Φ2
0 dθ2

+
∆θ0(r

2
h + a20)

Ξ0ρ20
Φ2
0 sin2 θ

(
dϕ− i

2rha0Ξ0

(r2h + a20)
2
(r − rh) dt

)2

, (D.20)

where,

L2
2 =

r2h + a20(
1 +

6r2h+a
2
0

L2

) , (D.21)

ρ20 = r2h + a20 cos2 θ, (D.22)
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Φ2
0 =

r2h + a20
Ξ0

, (D.23)

∆θ0 = 1− a20
L2

cos2 θ. (D.24)

The near-horizon gauge field takes the form, after removing a part going as k dt by a

gauge transformation,

Âµ dxµ =
qe0

Ξ0ρ20

(
−i

(r2h − a20 cos2 θ)Ξ0

r2h + a20
(r − rh) dt+ a0rh sin2 θ dϕ

)
+
qm0 cos θ

Ξ0ρ20

(
−i

2a0rhΞ0

r2h + a20
(r − rh) dt+ (r2h + a20) dϕ

)
. (D.25)

Higher order corrections to the attractor metric and the gauge field can be obtained

by retaining terms of higher orders in λ. Even the first order corrections to the metric are

rather complicated.

D.1 Dimensional reduction to two dimensions

Next, we reduce the action (5.1) with metric and gauge field ansatz to be of the form (5.23)

and (5.24), respectively. Note that we take Φ, Aα,Aα to be only dependent on coordi-

nates xα.

The resulting two-dimensional action then becomes, after including appropriate bound-

ary terms for the canonical ensemble,

I = − 1

4G4

∫
d2x
√
g

(
RΦ2 + c1

Φ0

Φ
+ c2Φ0Φ− c3

Φ0

Φ3
+

Φ3

Φ0
(c4Φ

2 + c5)FαβF
αβ

)
− 1

4G4

∫
d2x
√
g

Φ3

Φ0

(
c6FαβFαβ + c7FαβFαβ

)
− 1

2G4

∫
dx
√
γ Φ2K (D.26)

+
1

G4

∫
dx
√
γ

Φ3

Φ0
nα

(
(c4Φ

2 + c5)F
αβAβ + c6FαβAβ +

c7
2

(FαβAβ + FαβAβ)
)
.

where,

c1 =
1

Ξ0

(
1−

r2h
L2

(3 + 2χ2)

)
+

1

Ξ0χ

(
(1− χ2) +

r2h
L2

(3 + χ2)

)
tan−1 χ, (D.27)

c2 =
2

L2

3 + χ2

1 + χ2
, (D.28)

c3 =
1

Ξ2
0χ(1 + χ2)

(
q20(1 + χ2)2 tan−1 χ− (q2e0 − q2m0)χ(1− χ2)

)
, (D.29)

c4 =
(1 + χ2)2

8χ3Ξ0

[(
1 +

3r2h
L2

)
χ−

(
1− χ2 +

r2h
L2

(3 + χ2)

)
tan−1 χ

]
, (D.30)

c5 =
(1 + χ2)

8χ3Ξ2
0

[(
q2m0(1 + χ2)2 + q2e0(3− 2χ2 + 3χ4)

)
tan−1 χ− (3q2e0 + q2m0)χ(1− χ2)

]
,

(D.31)

c6 =
(1 + χ2)

χ
tan−1 χ, (D.32)

c7 =
qe0(1 + χ2)[χ− (1− χ2) tan−1 χ]

χ2Ξ0
. (D.33)
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Here, we have defined,

χ =
a0
rh
, (D.34)

and have used the standard notation for field strength,

Fαβ = ∂αAβ − ∂βAα, Fαβ = ∂αAβ − ∂βAα. (D.35)

In the two-dimensional theory, we have two U(1) gauge fields. The equations of motion for

Aα and Aα, give respectively,

Φ3

Φ0
(c4Φ

2 + c5)Fαβ + c7
Φ3

2Φ0
Fαβ = Q

√
g εαβ , (D.36)

c6Φ
3

Φ0
Fαβ + c7

Φ3

2Φ0
Fαβ = Q√g εαβ . (D.37)

It is easy to see from the attractor values (5.20), (5.21) that these charges are nothing but

the extremal values of the angular momentum and the electric charge:

Q = G4J0, Q = Qe0, (D.38)

as one would expect. As suggested by the notation, the attractor value of the field Φ is

given by Φ0 and the attractor geometry is an AdS2 with,

R = − 2

L2
2

. (D.39)

Following the general procedure discussed in section 3.3, and expanding Φ about its

attractor value Φ0, eq. (2.30), eq. (D.23), we obtain the bulk action of the JT model,

I = −
(r2h + a20)

2G4

(
1− a20

L2

) ∫ d2x
√
g φ

(
R+

2

L2
2

)
(D.40)

From the above, we identify the two-dimensional Newton’s constant in the JT model to be

given by eq. (5.16).

From the full metric (5.2), we get the field Φ to be,

Φ2 =
1

Ξ

√
Σ

∆θ
. (D.41)

At the horizon in the extremal case, ∆r which appears in Σ has a second order zero. As a

result we can set ∆r to vanish in obtaining the linear variation of Φ away from the horizon.

This gives,

Φ = Φ0

(
1 +

r − rh
L2
2J

)
= Φ0

(
1 +

1

J z

)
, (D.42)

where J is as defined in eq. (5.17).

By taking certain limits of the parameters, one can easily obtain different special cases:

• The asymptotically flat spacetime limit is obtained by taking L→∞

– 41 –



J
H
E
P
1
1
(
2
0
1
9
)
0
4
7

• The purely rotating limit is obtained by taking qe0, qm0 → 0 and Aα → 0.

• The purely magnetic limit (with rotation) is obtained by taking qe0 → 0 and Aα → 0.

• The purely electric limit (with rotation) is obtained by taking qm0 → 0.

• The non-rotating limit is obtained by taking a0 → 0 and Aα → 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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