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A b s t r a c t .  In a generalized linear model, the jackknife estimator of the asymp- 
totic covariance matrix of the maximum likelihood estimator is shown to be 
consistent. The corresponding jackknife studentized statistic is asymptotically 
normal. In addition, these results remain true even if there exist unequal dis- 
persion parameters in the model. On the other hand, the variance estimator 
and the studentized statistic based on the standard method (substitution and 
linearization) do not enjoy this robustness property against the presence of 
unequal dispersion parameters. 

Key words and phrases: Asymptotic covariance matrix, consistency, jackknife, 
robustness. 

1. Introduction 

The  jackknife method  (Quenouille (1956), Tukey (1958)) is widely used for 
est imating the variance of a point est imator.  If the jackknife variance es t imator  
is consistent,  the studentized statistic based on the point  es t imator  and the jack- 
knife variance es t imator  is asymptot ical ly  normal, which provides fundamentals  
for large sample statistical inferences. If an al ternat ive consistent variance estima- 
tor  is available (e.g., the variance est imator  obta ined by using s tandard  methods) ,  
the jackknife does not have any apparent  superiori ty in terms of asymptot ic  per- 
formance. However, in many cases the s tandard  me thod  rests upon some model 
assumptions,  whereas the jackknife is not logically based on the same assump- 
tions and therefore its performance is less susceptible to violation of the model 
assumptions.  This robustness proper ty  of the jackknife was recognized by Tukey 
and subsequent workers. For example, Hinkley (1977) and Wu (1986) found tha t  
the jackknife variance es t imator  is robust  against the presence of unequal  error 
variances in linear models. In this paper  we s tudy the jackknife in a much broader  
modeh the generalized linear model (GLM),  and find tha t  the jackknife variance 
es t imator  is robust  against the presence of unequal dispersion parameters .  

* This research was supported by an Operating Grant from the Natural Science and Engi- 
neering Research Council of Canada. 
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Examples of GLM, including useful models such as logit models, log-linear 
models, gamma-distributed data models and survival data models, can be found 
in Nelder and Wedderburn (1972) and McCullagh and Nelder (1983). A GLM 
has the following structure: The responses {yi}iin 1 are independent with densities 
(with respect to a measure u), 

(1.1) c(yi, 6i)exp{ [rliyi - b(qi)]/¢i}, 

where *i and r/i are unknown, 6i > 0, r/i E H = {r/: 0 < f c(y, O) exp{r ly /6}du  < 
oc} for all i, and b"(r/) > 0 is assumed for all r/ E H ° (the interior of H) .  As a 
consequence, Pi = E(yi )  = b'(rl.i) and a~ = Var(yi) = Oib"(rli ). There is a known 

, T T injective link funct ion g such that g(tt.i) = xi ,2, where xi is a known p-vector, xi is 
its transpose and ~ is a p-vector of unknown parameters. The function g is third- 
order continuously differentiable on b' ( H ° ) .  Let # ( rl ) = b' ( rl ) , { ( t ) = ( g o p ) -  l ( t ), 
v(t) = b"[{(t)], h(t) = ~'(t) and ~(t) = [h(t)]ev(t). It is assumed that h(t) ¢ O. 

In a GLM, the parameter of interest is 2. The nuisance parameters 0i are 
called the dispersion parameters and are often assumed to be of the form q).i = Oi/ai 
with unknown 6i and known weights ai (see McCullagh and Nelder ((1983), p. 21)). 
Without loss of generality, we assume in the sequel that a~ = 1 for all i, since by 
replacing Yi by aiyi and b(r/) by aib(r]), the results in this paper can be extended 
to the unequal ai situation. 

Under the assumption 

(A1) 6i = ¢ for all i, 

13 can be estimated by ,2., the maximum likelihood estimator (MLE) of/3 based on 
observations {yi}i" 1. Fahrmeir and Kaufmann (1985) showed that the distribution 
of l)~ - 2  is asymptotically normal, i.e., for any fixed p-vector l ¢ 0, 

(1.2) l"([3n -/3)/(l'-Vnl) 1/2 , X(0 ,  1) 
d 

with V , :  0_~'i~-1(~), the asymptotic~ covariance matrix of ~,~,2 where 

fi 
i=1 

If V,, has a consistent estimator 17,~ satisfying 

( l ' l /n l ) / ( l 'Vf l ) - - -*  1 

in probability or almost surely, then the studentized statistic 

(1.4) - / 3 ) / ( l ' ? n l )  v 2  , N(O, 1). 
d 

Any l)~ satisfying (1.3) can be used to access the point estimator/3,~ and the cor- 
responding studentized statistic in (1.4) can be used to make statistical inferences. 
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The jackknife estimator of V~ is 

n 

- -  - -  n )  
/ /  

j=l 

where /)nj is the h.ILE of 3 based on the data with yj removed, j = 1 , . . . , n .  It 
is shown in this paper that I) J is consistent in the sense of (1.3) and therefore 
(1.4) holds with l)n = 1 ~J. Since V,~ = ¢M~-1(2), a standard substitution method 

for the estimation of V~ is to estimate the matrix 2I'/gl(~) by M~-l(~)n) and 0 by 
a consistent estimator ~. The resulting estimator V'~ = ~M~ -1 (/)n) also satisfies 
(1.3) and (1.4), but it rests upon the specific form of V~ and the model assumption 
(A1). 

Assumption (A1) is questionable in many practical situations. For example, 
in the classical linear models where b'(~?) =_ 1, 0i = ay = Var(yi). Hence (A1) is 
the same as the homoscedasticity assumption on the errors. In a GLM, (A1) is 
equivalent to the assumption that the variances a y vary with the means #i through 
the functions b p, b" and g. There are, of course, other sources of variations that 
lead to the unequality of the variances a~. For example, if the data are collected 
on several days (or by several persons), then there may be differences among 
the variances of the data collected on different days (or by different persons). 
Although in practice these variations are often slight or moderate, they are difficult 
to control. Residual analysis can sometimes be used to detect the unequality of 
~i. 

Knowing that the dispersion parameters are unequal, one may consider the 
possibility of improving the estimator /)n which is obtained under assumption 
(A1). However, if the unequality of ~i is caused by day-to-day, person-to-person 
and batch-to-batch variations which are hard to measure, it is difficult to improve 
/)~ due to lack of information. In addition, in many cases one cannot ascertain 
the equality or the unequality of the dispersion parameters. Consequently, it is 
of interest to study the robustness (against the presence of unequal ¢~) of the 
variance estimators and studentized statistics. 

The jackknife does not require assumption (A1) and therefore is more likely 
to be robust than the standard method. This is justified in Section 2. That 
is, regardless of equality or lack of equality of the dispersion parameters, the 
jackknife variance estimator and studentized statistic satisfy (1.3) and (1.4). The 
corresponding estimators based on the standard method, however, do not enjoy 
this robustness property. 

Even if assumption (A1) holds (hence I)~ and l)n s are asymptotically equiv- 
alent), the use of the jackknife method has the following advantages: (1) The 
standard method uses .hl,~-t(~) as an estimate of -bin1(/)). Even if Ms(/) , )  is 
close to M,(.2), M,yl(/)~) may not be close to M~I(/~), i.e., the speed of the con- 
vergence of MZl(/3,~) may be slower than that of ]t.I,~('),~), especially when the 
method used for computing the inverse of 5In(~n) is not efficient and/or  ]l,in(~) 
is nearly singular. (2) Unlike the standard method, the jackknife does not require 
a theoretical derivation of the formula of the asymptotic variance. See also the 
discussion in Shao (1989). 
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In the presence of person-to-person variations, in addition to the unequality of 
0i, there is often a positive correlation among the observations. The jackknife is 
generally not robust against data dependence (Ghosh (1986)); but is robust when 
the dependence is of a special structure. For example, the covariance matrix of 
(y~ . . . .  , y~) is block diagonal with small block sizes (Liang and Zeger (1986)). This 
is further discussed in Section 2. 

The jackknife method usually requires more computations than the standard 
method. But this is not a serious problem nowadays with a modern computer. 
Furthermore, making use of the result in Lemma 2.1 of Section 2, we can accelerate 
the computation of the jackknife estimators. This is discussed in Section 2. 

2. The main results 

In this section we state some asymptotic results for the jackknife estimators. 
All the proofs are given in the next section. To start with, we introduce some more 
notations. The transpose of a matrix or vector A is denoted by AR For a square 
matrix A, its minimum eigenvalue, maximum eigenvalue, trace and inverse are 
denoted by/~min(A), /~max(A), tr(A) and A -1, respectively. The Euclidean norm 
of a vector or matrix A is define to be [tr(ArA)] 1/2 and is denoted by IIAII, For a 
positive definite matrix A (i.e., A" = A and ~min(A) > 0), let A L/2 denote a left 
square root of A, i.e., A = AL/2AR/2 with A R/2 = (AL/2) ", A -L/2 = (AL/2) -1 
and A -R/2 = (AR/2) -1. The p x p identity matrix is denoted by I. 

Let B be the admissible set for 3. Throughout the paper, N(e) denote the 
set {-y E RP: I['~' -/311 -< e} and it is assumed that N(eo) c B for a positive co. 

Under assumption (A1), the MLE/)n is a solution of L~(/)~) = max~eB L~(-y), 
where L~(~/) = Y~{~(x[7)yi - b[~(x~/)]} is a normalized log-likelihood function 

under (A1). Usually ¢),~ is obtained by solving sn(7) = OL~(y)/O'y = 0, where 
s~(7) = ~-~-i xih(x[~)[yi - Pi('Y)] is the score function and Pi(7) = #[~(x~'7)]. 

The following assumptions are needed for the proofs of our results: 

(A2) 

(A3) 

The admissible set for xi is a compact subset of R p. 

Amin(D,~) -~ oo, where D~ = E xix~, and there exists a constant 
i 

C (0, 1] such that limsup[Amax(D~)]O+~)/2/Amin(D~) < oc. 

Assumption (A2) is satisfied in most practical situations. A still weaker as- 
sumption can be used to replace (A2), but we omitted the discussion for sim- 
plicity (see Fahrmeir and Kaufmann (1986)). Assumption (A3) was discussed in 
Wu (1981) and /~min(Dn) ---* ~ was shown to be necessary and sufficient for the 

consistency of f)~ in the classical linear model (Drygas (1976), Lai et al. (1979)). 
Under (A1)-(A3), (1.2) holds with V~ = OMjI (3 )  and 

(2.1) I I E ? L / 2 f z / ~ ; V #  R / 2  - Ill ,0, 
& . S .  

which implies (Uf /J l ) / ( l "Vj )  

studentized statistic. 

1 and the asymptotic normality of the jackknife 
a . S ,  
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Under assumption (A1), a standard method for estimating Vn is to esti- 
mate M / l ( 3 )  by M~-I(/)~), where M~(~/) = Y~x~x~((x '[ '~) ,  and ¢ by ¢ = (1 - 

2 where ri [Yi - Pi( .~)] /[v(x[~n)]  1/2 is Pearson's residual. Under = 

assumptions (A1)-(A3), ~ ~ 3 and 
a , S .  

(2.2) IIM L/2(/3)M ( .)M2R/2(3) -/11 
< pl/2 max I~(xr/) ,) /~(x~/3) - 1[ 

i<n 
~0. 

a . s ,  

In the general case where 4i are not necessarily equal, ¢ -  ( i / n )  y-~i~=l ¢i > 0 (see 

Shao (1992)), which implies ~ ~ 0 if (A1) holds. Therefore, under assumptions 
a . S .  

(A1)-(13),  1), s -- ~;M~-~(3~) is consistent, i.e., (2.1) holds with I)~Z replaced by 

As we discussed in Section 1, in practice assumption (A1) is often violated. A 
more reasonable assumption is 

(A1 I) 0 < infoi  _< sup¢i  < oc. 
i i 

The jackknife estimator l)~ is still consistent in this case under no extra condition. 

LEMMA 2.1. Under assumptions (Al') and (A2)-(A3), there exist ~ j ,  j = 
1 . . . . .  n, n = 1 , 2 , . . . ,  such that 

(2.3) P{snj( .3nj)  = O,j = 1 , . . .  ,n, for  all sufficiently large rt} = 1, 

X ~- where s,~j('/) = O L ~ j ( 7 ) / 0 7  and L~j(7) = }--~i¢j{~( i 7)Yi - b[~(x~[~)]}, and 

(2.4)  m a x  [l;),~j - 3[[ , 0 .  
j<n a.s. 

THEOREM 2.1. 
hold with 

Under assumptions (Al') and (A2)-(A3), 

n 

(2 .5 )  V n ~- ~17~ 1 (3) E XiX~((XT~)~)i~lnl (~)" 
i=1 

(1.2) and (2.1) 

From Theorem 2.1, the asymptotic covariance matrix is given by (2.5), which 
reduces to ¢M~-1(/3) if 0i -= 0. Hence in view of (2.2), the variance estimator K s 
obtained by the standard method is inconsistent if assumption (A1) is violated. 

^ 

Results (2.3) and (2.4) can be used in computing /3~j, j = 1 . . . .  , n. Note 
that  to obtain a solution of the likelihood equation we usually need an iteration 
method starting with an initial point in B. Since (2.4) implies maxj<n []/)nj - 
/3n I[ ,0 ,  3~ can be used as an initial point for obtaining/)~j,  j = 1 , . . . ,  n. This 

a , S .  
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may accelerate the computation of each/)nj and therefore the computation of the 
jackknife estimators. 

In some cases there is a cluster structure among the data. For example, from 
the i-th subject (i = 1 , . . . ,  n) ,  ni repeated measures, Y i l , . . . ,  Yini, are made. For 
each i, Yit has density (1.1), but Yit and Yis are not necessarily independent, 
although observations from different clusters are independent (see, e.g., Liang and 
Zeger (1986)). In such a case the covariance matrix of the whole data vector is a 
block diagonal matrix with ni as the size of the i-th block. Suppose that we still 
use ~ ,  the solution of 

?z ~z i 

~ xith(xrt"/)[Yit- . i t ( ' ) ' ) ]  

i----1 t = l  

-- 0, 

to estimate 13. In the case of ¢i = ¢, Liang and Zeger (1986) showed that ~n is 
asymptotically normal. Asymptotic normality of ~n in the general case of unequal 
0i can be established using the same argument in proving Theorem 2.1. For the 
jackknife variance estimation, we can still use formula (1.5) w i t h  ~nj defined to be 
a solution of 

Z Z = 0 .  
iCj t = l  

Using the same argument in the proof of Theorem 2.1 (see Section 3), we can 
show that (2.1) holds in this case (with Vn replaced by the asymptotic covariance 
matrix under the assumed cluster structure). 

The result in Theorem 2.1 can be extended to the ease where we need to 
estimate 0 = f ( 2 ) ,  where f is a known function from R p to R q, q <_ p. Let 
0~ = f(/)~) and O,~j = f ( ~ n j ) ,  j = 1 , . . . , n .  The jackknife estimator of the 

asymptotic covariance matrix of (~ is still defined by (1.5) with/~n a n d / ~ j  replaced 

by 0~ and ~)~i, respectively. 
We assume that the gradient Vf(~/) exists for ~ E N(e) with an e > 0 and 

is continuous at 3~ and that V f(/3) is of full rank. Furthermore, without loss 
of generality we assume that f is from R p to R p (therefore the inverse of Vf (~)  
exists). This is because if f : R p ~ R q with q < p, then we can find a differentiable 
function fl  : R p ~ R P - q  such that the inverse of Vf (~)  exists, where ] = (f, f l ) ' .  
Let l)n be the asymptotic covariance matrix of 0n = f(/)~). Then the upper left 
q x q submatrix of i)~ is the same as the asymptotic covariance matrix of 0~. 
Similarly, let 0~j = f ( ~ j )  and '~J be defined as in (1.5) with 0~ replaced by 0,~ 
and 0,j replaced by 0~j. Then the upper left q x q submatrix of l),J is l),~ J. Thus, 
the consistency of 1?~ follows from the consistency of 1 ) J .  

Denote V f(9)  by Vf .  To establish the result we need one more condition: 

(2.6) lim ] I D ~ L / 2 v f ( 7 ) V f - I D L / 2 1 [ 2  = p. 
"~ ---~ LS',rt --+ oc 

Note that (2.6) is satisfied if f is linear in the sense of f('y) = C~ with a fixed 
matrix C. Another sufficient condition for (2.6) is that limsup,~_~ )~m~x(Dn)/  
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~min(Dn) < (X) (i.e., 6 in (A3) equals one). This is because [[D~L/2v f (7)Vf -1  • 

D ~ / 2 -  Ill = IID~L/2[Vf(~)Vf-~--I]D~/211-< [Am~×(Dn)/Ami.(Dn)Jx/2HVf(~)" 
V f  -1 - I[[ and (2.6) is equivalent to 

( 2 . 7 )  lim [[D~L/2vf(~/)Vf-~D L/u - ~rll = 0, 
,7--,~,n--~oc 

s i n c e  I [ D ~ L / 2 v f ( ~ ) V f - I D ~ / 2  -- III 2 = I I D ~ L / 2 v f ( ~ ) V f - I D L / 2 I [  2 + IIIII 2 - 

2 t r [D~L/2v f (7 )V f - ID L/2] = IIDJL/2Vf(~)Vf-~D~/2 II ~ + p -  2 t r [ V f ( ~ ) V f - l ] ,  

THEOREM 2.2. Suppose that assumptions (AI'),  (A2) and (A3) hold and that 

(A4) the function f is from R p to R p, V f(3 ~) exists on N(e) and is continuous 

at/3, V f  -1 exists and (2.6) holds. 

Then 

( 2 . 8 )  

and (2.1) hold with 

(2.9) 

V~L/2(O,, - O) ~ N(O, I) 
d 

~t 

Vn = V f f  (/3)M~ 1 (/3) ~ xix{4(x~/3)¢iM~ ~ (/3)V f(/3). 
i=1 

3. Proofs 

PROOF OF LEMMA 2.1. It suffices to show that,  for any e > 0, 

(3.1) P { L , ~ j ( ~ / ) - L , ~ j ( ~ ) < O , [ [ ~ / - / 3 [ [ = e , j = I , . . . , n ,  for all n 2 nv} = 1, 

where ny is an integer depending on Yl, Y2,... and Lnj(~/) is defined in Section 2. 
Let s,~j(~/) = OLnj('y)/0% H,~j(~/) = -Os~j('y)/O'y, s~j = snj(/3) and sn = s~(/3). 
From Taylor expansion, 

Lnj(~/) - Lnj(/3) = (~ / -  /3)~'8nj -- ~('y -- /3)rHnj(~nj)(~/  - / 3 ) ,  

where %j  lies between "y and/3. Then (3.1) is the same as 

] [ 7 - ~ [ ] = e , J = l  . . . .  ,n,  for a l l n _ > n  u ~ = l .  
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Since IIs~yll ~ IIs~ll ÷ Ilsnj - s~ll = IIs~ll ÷ I I x3eyh (x '~ ) l l  ~ 211s~ll and IIs~ll/ 
[Amax(Mn)] (~+~)/2 converges to zero almost surely (Wu ((1981), Lemma 2)), where 
e~ = y , -  I~i(fl) and M,~ = M,~(fl), 

(3 .3)  s u p  max I(~ -/~)r8njl/[)~max(~In)](l+6)/2 ) O. 
i i . r_~l l= e j_<,~ a.~. 

Let M~j(3") = Y~ic jx ix~¢(x~7)  and Win("/) : ¢(x~3")x~M~l(7)xi.  Under  
(A2) and (A3), supTeN(~) max~<n win(3') --* 0. Then 1--supTeN(e ) maxi<,~ wi,~(7) _> 
1/2 for large n and therefore M . j ( 7 )  _> M . ( 7 ) / 2  for all j = 1 , . . .  ,n  and 3' • N(e) .  
Let cl = infre/v(~) infi ((x~7)/~(x~fl) .  Then cl > 0 and 

Mn(Tnj) :> clM~,  j = 1 . . . .  , n, for all sufficiently large n. 

Hence (3 ' -  3)~M~j(%j)(3" - 3) >_ ~2cl/~min(Mn)/2 and by (A3), for all sufficiently 
large n, 

(3.4) (~/ --/~)rMnj(~/nj)(~ - -2)  > c2[.~max(mn)] (1+6)/2, 

II~ - 911 = , ,  j = 1 , . . . ,  n, 

where c2 is a positive constant. Let Z~j(~/) = ~-~i#j x~x~(xT~/)[Pi(~) - #i(3')], 
where 0(t)  = h'(t). Then 

max IIZ~j(3')l? ~ ~ I l x g l l % 2 ( x T ~ ) [ m ( 9 )  - m(3')] 2, 
j<n 

i=1 

which is bounded by C3Amax(Mn) for all 3' E N(e )  and a constant ca, since (A2) 
holds and 0, # and ~ are continuous functions. Hence 

(3.5) sup max IlZnj(3")ll2/[.Xm~x(Mn)] 1"-~ ---o O. 
teN(e) j<n 

Let Wnj(7) = E~#j  xix~¢(x~3")ei and W~(7) = ~-~i x i x ~ ( x ~ / ) e i  ' Under  (AI ')  
and (A2)-(A3),  

(3.6) 

and 

(3.7) 

sup 
"yEN(e) 

sup 

IIW,~(~)ll/[,Xm~x(M,~)] (1-~)/2 ~ 0 
a . S ,  

~ iix~llaV2(xT~)(e2 _ ~/2) /[/~max(Mn)] 1+6 , 0 
a . S .  

by Corollary A of Wu (1981). Since sup~eg(e)~--~ Ilx, ll402(xT3")~2/[Am~x(Mn)] 1÷~ 
0 and IIWnj('~) Wn(3')ll 2 4 2 ~ 2 --* - = Itxj  II 0 ( x ,  3 ' ) e j ,  

sup maxIlWnj(3") - W,~(~/)ll2/[~m~x(M,~)] 1+~ , 0  
rcN(e) j<_n a.s. 
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by (3.7). This together with (3.5) and (3.6) imply 

(3.8) sup m a x  0, 
T E N ( e )  j<_n 

where Rr, j("/) = Zr~j(7) + W~j(~) .  Note tha t  Hnj('Tnj) = Mnj(~/~j) - Rnj(~/nj). 
From (3.4) and (3.8), there is a constant  c4 > 0 such tha t  

P { ( , ~  - ~)rHnj(~/nj)(~ / - / 3 )  ~_ C4[/~rnax(~In)] (1+5)/2, 

I1~-/311 = e , j  = 1 . . . .  ,n,  for all n > n~} = 1, 

which and (3.3) imply (3.2). This completes the proof. 

PROOF OF THEOREM 2.1. From Shao (1992), 

(3.9) N(0, 5 ,  -/3) 

w h e r e  [fin L/2 is a left square root of the matrix in (2.5). Then (1.2) follows from 
(3.9). 

From the mean value theorem and snj(~,~j) = 0 (see (2.3)), s,~j(~n) = 
[-Inj(~nj - ~n), where [-Inj = f2  Hnj ( tn j )d t  and tnj = fin + t(~nj - fin). By 
(2.4), 

(3.10) sup max IIt,j -/311 < Ilfln - fill + max I]flnj - ~,lt  ) o. 
tE[0,1] j<n - -  _ a.s. 

From (A2)-(A3), (3.8) and (3.10), 

fo ( tnj ).~I~ l~/2 dt max  M ~ L / 2 R , j  
j<n 

< sup maxllMgL/2R~j(t~j)MgR/21J 
re[0,1] - 

< sup max I]Rnj(tnj)[]/Amin(5ln) > O. 
- te[o,l] j<rt a.s, 

From (3.10) and (A2), there is a constant  c5 such tha t  maxj_<,, Hx3 fle4(x~tn3) _< c5. 
Then 

max [ t  M ~ L / 2 x j x j ( ( x j t " J )  M~R/2d t  <_< c5/l~min(]~/lfn) ' O. 
j<n JO a.s. 

Similarly, 

maxj<_n Jofl M j L / 2 M n ( t n j ) ~ l ~  n/2dt  _ I 

= max  M~L/2[M~( tn j )  - Mn]M~R/2d t  
j<_n 

<_ pl/2 max sup sup [~(x[ tn j ) /~ (x~ f )  - 1 I 
j<_n tE[0,1] i 

,0 .  
a . s .  
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Thus, from H~j(?)  = Mn(7) - xjx;~(x~7) - R~j(7),  we have 

(3.11) I[MnL/2[-InjM~ R/2 - 1[[ ~ O. 
3~.S. 

Let Tnj = ujL/2M~R/2[(MjL/2f- InjMjR/2)  -1 --I]. Then 

(3.12) max IIT,~II ,0 
j<_n a . s .  

by (3.11) and 

(3.13) IIu,?L/~AJ;R/~II 2 ----- tr(MnL/2u,-(1Mn R/2) <_ p~ inf ¢i, 

where Us = r jL/2uY2.  Let ei(7) = Yi-#i(7) .  Then snj (~n) = - x j h ( x ~ , ) e j  (3,) 
since 8 n ( ~ n )  = 0 (Lemma 2.1). Let O~nj = -UT-~L/2~[nlxjh(x;~n)ej(~n ) and 

A~j = - T , j  M ;  L/2Xj h(x; 3,  )ej ( ~ ) .  Then 

E:L/2(3nj - ~ )  
= u~L/2h~2R/2 (M~L/2[I ,  jMgR/2) -1M~L/2s , j  (3~) 

and 
n 

(3.14) U: L/2 E ( A j  - [~)(~, j  - A ) ' U :  R/2 
j = l  

rt 

=- CtnjO~nj -~- Anj  Anj  -~- -t- ). 
j=l 

Let ui = #i(3) - #i(.J). Then e i ( ~ )  = ei + ui and 

n 

(3.15) a~3a'~j : anjanj ÷ dnjdnj + anjdnj + dnjanj ), 
j = l  j = l  

where any = u~L/~M~ixjh(x53)e i  and dnj = u,:L/~M~tx~h(x'~3~)ui. Prom 
(3.13) and the continuity of the functions p, ~, v and h, there is a constant c6 such 
tha t  

(3.16) 

and 

j=Zl dnjd~nj <_ c6 maxj<_,~ u~ a.s.> 0 

u~L/2M~I~-~. , 2 , ^  2 , 2 -1 -R/2 j=lx¢xj[h (x j~)-  h (x j~) la~M2 U~: 

_< c6 max Ih~(x;Bn)/h2(x;/3)- 11 O. ) 

j<_n ~.s. 
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From Corollary A of Wu (1981), (A2)-(A3) and (3.13), 

U n L / 2 ~ n l  j=l~ x j x ; h  2 (xj " ?,~n)(~j2 __ 0.2) t~I2 1U~-R/2 ,0. 
& . S .  

Since~-~j anja~j v~L/2~/[gl~-~j r 2 r ^ 2 -1 -R/2 " = x j x j h  (x j3~)QMx U~ , 

(3.17) j=~ anjarj -- I ~.~.'0 

follows f r o m  VnL/2~,In I E j  xjx;h2(3?;/~)~T2~In 1vnR/2 = I. Let l and [ be fixed 
p-vectors. By Cauchy-Schwarz inequality and (3.16)-(3.17), 

(3.18) T T l anjdnjl 
\ j = l  / 

n n 

< E ( P ' a n j )  2 E ( d r j [ )  2 
j = l  j = l  

= lr anj anj I dnj drnj [ 
j=l j=l / 

,0.  
~ t , S .  

From (3.15)-(3.18), 

(3.19) E ; -  ,o O!njO~ n a.s. 
j=l 

From (3.12) and (3.19), 

<max l ITn j l f2 sup¢~}  . ~ ,0.  -- j<_n ~.-.~ O~nJO~nJ a.s. 
i j = l  

Then (3.18) holds with anj and dnj replaced by a~j and A,~j, respectively. Thus, 
by (3.14) and (n - p ) / n  --~ 1, (2.1) holds with V~ given by (2.5). 

PROOF OF THEOREM 2.2. Since any left square root of the matrix E, in 
(2.9) is equal to V f f u L / 2 P ,  with an orthogonal matrix P , ,  where Un L/2 is given 
in the proof of Theorem 2.1, (2.8) follows from 

(3.20) -L/2 r -1 ^ u; ( v / )  (On-O)~N(0,I).  
d 

From the mean value theorem for vector valued functions, ~}n-0 F ~ ^ = ,~ (/3n-/3) with 
Fn = f2 V f(~3 + t(3~ -3 ) )d t .  Then FrunL/2(~ n - [3) -- UnL/2(v  fr)- l(On - 0), 
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where Vn = U~/2FnVf - IU~  R/2. By Theorem 2.1, (3.20) holds if IIF  - I l l  

From (AY) and (A2), there is a constant c7 such that 

~0. 
a,S. 

and 

R/2 L/2 2 L/2 R/2 IIU~ D~ It = t r ( D ~  U~D~ )<_psup¢i / ipf~(x~3)<_c7 
i z 

[ID~L/2u~R/2ll2 = tr(DnL/2U~I D~R/2) <_ psup~(z~ /3)/ inf Oi <_ c7. 
i 

Since 11/3 + t (~n - / 3 )  -/31l = t[lC)n -/311 ~ II3~ -/311 ,0 by Lemma 2.1, 
&.8. 

I [ D ~ L / 2 v f ( ~  + t ( ~  - ~ ) ) V f - ; D  L/2 - I H ) 0 uniformly in t C [0, 1] 

under assumption (A4) (see (2.7)). Then 

IIF  - Zll = I[uR/aDL/aD~L/2(FnV f -~ -- [)DL/2D~L/2u~R/2[[ 

<_ CTIID;L/2(F,,V f -~ -- I)D~/21I 

/o <_ c7 [[DgL/2vf(/3 + t(3~ - 3 ) ) V f - I D  L/~ - Itldt ~.s: O. 

This proves (2.8). 
From the mean value t h e o r e m ,  Onj - O  n : G ~ j ( ~ n j  - ~ n ) ,  where G,~j = 

f~ Vf ( t~ j )d t  and t~j = 3.  + t(3~j - 2 ~ ) .  From (A4) and (3.10), 

m a x  IIA~j[[ __% c4max[ID~L/2(GnjVf -1 - I)DL/2II > o, 
j<_n j<n a.s .  

where Anj = UnR/2GnjVf-IUr~ R/2 - I. Then by Theorem 2.1, 

n 
V "  A T .U, - L /2 ~n )'r Un  R/2 (3.21) - - 

j = l  

and therefore 

n 
a r ^ (3.22) u[L /2 (V  f ' ) - I  E ,~j(/3nj - 3~)(~nj - 3n)'~U~ a/2 - I ~.~.~ O. 

j - - 1  

From the definition of the jackknife estimator Vn J, 

n u ~ L / 2 ( V f r ) _ I I ~ j V f _ I u ~ R / 2  

n 
= E - L / 2  r - I  r _ __ U• ( V f )  Cnj (~y  .2~)(~nj ~,~)~GnjVf-'U(~ "/2 

j = l  
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n 

"r - L / 2  ^ ~ " ~ r H - R / 2  A . 
: E An j  Un (~nj -- ~n) (~n j  --~'n,  ~n , ,n)  

j = l  

j = l  

÷£ 
j = l  

j = l  

u,: /2(3n 5 - - 

U n L / 2 ( V  fT  -1 r -- ~'n/ ~n 

u ~ L / 2 ( ) n j  -- ~n) (~nj  -- ~ n ) r G n j V  f - l U n  R/2. 

Then from Theorem 2.1 and (3.21)-(3.22),  

-L /2  r -1 ^ J -1 - R / 2  (3.23) [[U~ ( V f )  V~ V f  U~ - I[[ ,0. 
a . S .  

This proves (2.1) if V~/2 w ~c'rTT L / 2  = v j  ~ , where Vn is given by (2.9). For arbitrary left 

square root V L/2, there is an orthogonal matrix Pn such that V L/2 = Vf~uL/2P n. 
Then 

V n L / 2 v n J v n R / 2  - I = P ~ [ u ~ L / 2 ( V  f r ) - I v J v  f - I u n  R/2 -- I]Pn. 

Hence the result follows from (3.23) and ][p,~[[2 __ p. This completes the proof. 
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