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JACOB’S LADDERS AND VECTOR OPERATOR PRODUCING

NEW GENERATIONS OF L2-ORTHOGONAL SYSTEMS

CONNECTED WITH THE RIEMANN’S ζ
(

1
2 + it

)

FUNCTION

JAN MOSER

Abstract. In this paper we introduce a generating vector-operator acting on
the class of functions L2([a, a + 2l]). This operator produces (for arbitrarily
fixed [a, a+2l]) infinite number of new generation L2-systems. Every element
of the mentioned systems depends on Riemann’s zeta-function and on Jacob’s
ladder.

1. Introduction

1.1. In this paper we introduce vector operator Ĝ defined on the class of all L2-
orthogonal systems

{fn(t)}∞n=0, t ∈ [a, a+ 2l], ∀a ∈ R, ∀l ∈ R
+

that for a fixed class L2([a, a+ 2l]) associates following new classes:

(1.1) {fn(t)}∞n=0
Ĝ−→ {fp1

n (t)}∞n=0, p1 = 1, . . . , k,

(1.2) {fp1
n (t)}∞n=0

Ĝ−→ {fp1,p2
n (t)}∞n=0, p1, p2 = 1, . . . , k,

and so on up to
(1.3)

{fp1,...,ps−1
n (t)}∞n=0

Ĝ−→ {fp1,...,ps−1,ps

n (t)}∞n=0, t ∈ [a, a+ 2l], p1, . . . , ps = 1, . . . , k,

for every fixed k, s ∈ N.
Sets (1.1) – (1.3) give consequently the first generation, the second generation

and so on up sth generation of new L2-orthogonal systems. The counts of members
of generations form the geometric sequence

k, k2, . . . , ks.

Remark 1. If, for example,

k = 102, s = 5× 104,

i. e. for the 50 000th generation of new L2-orthogonal systems, we obtain

1010
5

multiple

from one and only fixed L2-orthogonal system.

Key words and phrases. Riemann zeta-function.
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2 JAN MOSER

1.2. Let us remind the definition of the Legendre’s polynomials

(1.4) {Pn(t)}∞n=0, t ∈ [−1, 1]

by means of the generating function that is by the formula

(1.5)
1√

1− 2ut− t2
=

∞
∑

n=0

Pn(t)u
n, u ∈ (−1, 1),

where, of course, the collection (1.4) represents the simple L2-orthogonal system.

Now, let us have a look on how the operator Ĝ acts on the system (1.4). For

given natural number k the operator Ĝ produces as many as k3 new species of
L2-orthogonal systems of the third generation as follows:

P p1,p2,p3
n (t) = Pn(up1(up2(up3(t)))) ×

p1−1
∏

r=0

|Z̃(vrp1
(up2(up3(t))))|×

p2−1
∏

r=0

|Z̃(vrp2
(up3(t)))| ×

p3−1
∏

r=0

|Z̃(vrp3
(t))|,

p1, p2, p3 = 1, . . . , k, t ∈ [−1, 1], a = −1, l = 1,

(1.6)

where

upi
(t) = ϕ

pi

1

Ö pi

T̆ + 2−
pi

T

2
(t+ 1) +

pi

T

è

− T − 1, i = 1, 2, 3,

vrp1
(t) = ϕr

1

Ö pi

T̆ + 2−
pi

T

2
(t+ 1) +

pi

T

è

, r = 0, 1, . . . , pi − 1,

t ∈ [−1, 1] ⇒ upi
(t) ∈ [−1, 1] ∧ vrpi

(t) ∈ [
pi−r

T ,

pi−r

T̆ + 2].

(1.7)

1.3. Now we give the following.

Property 1. (a) Every member of every new L2-orthogonal system

{P p1,p2,p3
n (t)}∞n=0, t ∈ [−1, 1], p1, p2, p3 = 1, . . . , k

contains the function
∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

t=τ

for corresponding τ since (comp. [3], (9.1), (9.2))

(1.8) |Z̃(t)| =
 

dϕ1(t)

dt
= {1 + o(1)} 1√

ln t
|ζ
Å
1

2
+ it

ã
|, t→ ∞.

(b) property (a) holds true due to the Theorem of this paper for every genera-
tion

{fp1,...,ps

n (t)}∞n=0, t ∈ [a, a+ 2l], s ∈ N.

Remark 2. The main aim of this paper is expressed by the Property 1. Namely,
that there is a close binding between the theory of the Riemann’s zeta-function on
the critical line and the theory of L2-orthogonal systems. Let us notice also that
this paper finishes preparatory papers [5] and [6].
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2. Main result

2.1. We use the following notions:

(a) Jacob’s ladder ϕ1(t),
(b) the function

Z̃2(t) =
dϕ1(t)

dt
=

1

ω(t)

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

,

ω(t) =

ß
1 +O

Å
ln ln t

ln t

ã™
ln t, t→ ∞,

(2.1)

(c) direct iterations of the Jacob’s ladder

ϕ0
1(t) = t, ϕ1

1(t) = ϕ1(t), ϕ
2
1(t) = ϕ1(ϕ1(t)), . . . , ϕ

k
1(t) = ϕ1(ϕ

k−1
1 (t))(2.2)

for every fixed k ∈ N,
(d) reverse iterations (by means of ϕ−1

1 (t))

[
0

T ,

0

Ṫ + U ], [
1

T ,

1

Ṫ + U ], . . . , [
k

T ,

k

Ṫ + U ],

U = o

Å
T

lnT

ã
, T → ∞

of the basic segment

[T, T + U ] = [
0

T ,

0

Ṫ + U ],

that we have introduced into the theory of the Riemann’s zeta-function, see
[1] – [5].

2.2. Next we use the following analytic properties of Jacob’s ladder ϕ1(t):

(e) ϕ1(t) ∈ C∞([T0,∞]) and it is strongly increasing function, see [1],
(f) ϕp

1(t) ∈ C∞([T0,∞]), p = 1, . . . , k and it is again strongly increasing (this
property follows easily from (e))

(g) as a consequence of (f) we have next: every function

ϕ
p
1(t), t ∈ [A,B], A > T0

is absolutely continuous and strongly increasing on every segment [A,B]
with A > T0 (namely, the Lipschitz condition holds true by (f)),

(h) the composite function F [f(t)], where F is absolutely continuous and f is
absolutely continuous and monotonic is again absolutely continuous func-
tion.
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2.3. Finally, we introduce the following functions (comp. (1.7)) together with
some of their properties:

upi
(t) = ϕ

pi

1

Ö pi

Ṫ + 2l−
pi

T

2l
(t− a) +

pi

T

è

− T + a,

vrpi
(t) = ϕr

1

Ö pi

Ṫ + 2l−
pi

T

2l
(t− a) +

pi

T

è

,

t ∈ [a, a+ 2l], i = 1, . . . , s, r = 0, 1, . . . , pi−1, pi = 1, . . . , k,

(2.3)

where

(2.4) upi
(t) ∈ [a, a+ 2l], vrpi

(t) ∈
[

pi−r

T ,

pi−r

Ṫ + 2l

]

and, with regard to the second inclusion, see [5], Property 2, the segments
[

pi−r

T ,

pi−r

Ṫ + 2l

]

represent corresponding components of the disconnected set (see [5], (2.9))

(2.5) ∆(T, k, l) =
k
⋃

r=0

ñ
r

T ,

r

Ṫ + 2l

ô

and the following properties of the above mentioned set hold true1:

(2.6) l = o

Å
T

lnT

ã
, T → ∞ ⇒

(2.7)

∣

∣

∣

∣

∣

ñ
r

T ,

r

Ṫ + 2l

ô∣
∣

∣

∣

∣

=

r

Ṫ + 2l−
r

T = o

Å
T

lnT

ã
,

(2.8)

∣

∣

∣

∣

∣

[

r−1

Ṫ + 2l,
r

T

]∣

∣

∣

∣

∣

=
r

T −
r−1

Ṫ + 2l ∼ (1− c)
T

lnT
,

(2.9)

[

0

T ,

0

Ṫ + 2l

]

≺
[

1

T ,

1

Ṫ + 2l

]

≺ · · · ≺
[

k

T ,

k

Ṫ + 2l

]

,

where c is the Euler’s constant and the property (2.9) follows from (2.8).

Remark 3. Asymptotic behavior of the disconnected set (2.5) is as follows: if T →
∞, then the components of this set recede unboundedly each from other and all
together are receding to infinity. Hence the set (2.5) behaves at T → ∞ as one-
dimensional Friedmann-Hubble expanding universe.

1[5], (2.5), (2.6)
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2.4. The following Theorem is the main result of this paper.

Theorem 1. There is such a generating vector-operator Ĝ that for every fixed
L2-orthogonal system

(2.10) {fn(t)}∞n=0, t ∈ [a, a+ 2l], a ∈ R, l ∈ R
+

and for every fixed k ∈ N the operator Ĝ associates following orthogonal systems:

(a) the first generation of the following new species of L2-orthogonal systems

(2.11) {fp1
n (t)}∞n=0, t ∈ [a, a+ 2l], p1 = 1, . . . , k

i. e.

(2.12) Ĝ[{fn(t)}] = ({f1
n(t)}, {f2

n(t)}, . . . , {fk
n(t)}); {fn(t)} = {fn(t)}∞n=0,

where2

(2.13) fp1
n (t) = fn(up1(t))

p1−1
∏

r=0

∣

∣

∣Z̃(vrp1
(t))

∣

∣

∣

and every of the functions up1(t) defines an automorphism on [a, a+ 2l],
(b) the second generation of the following L2-orthogonal systems

(2.14) {fp1,p2
n (t)}∞n=0, t ∈ [a, a+ 2l], p1, p2 = 1, . . . , k,

i. e.

(2.15) Ĝ[{fp1
n (t)}] = ({fp1,1

n (t)}, {fp1,2
n (t)}, . . . , {fp1,k

n (t)}),

where

(2.16) fp1,p2
n (t) = fn(up1(up2(t)))

p1−1
∏

r=0

∣

∣

∣
Z̃(vrp1

(up2(t)))
∣

∣

∣

p2−1
∏

r=0

∣

∣

∣
Z̃(vrp2

(t))
∣

∣

∣

and each of the functions up1(up2(t)) defines an automorphism on [a, a+2l],

(c) and so on up to the sth geneation of the L2-orthogonal systems

(2.17) {fp1,p2,...,ps

n (t)}∞n=0, t ∈ [a, a+ 2l], p1, . . . , ps = 1, . . . , k,

i. e.
(2.18)

Ĝ[{fp1,...,ps−1
n (t)}] = ({fp1,...,ps−1,1

n (t)}, {fp1,...,ps−1,2
n (t)}, . . . , {fp1,...,ps−1,k

n (t)}),

2Comp. (2.3).
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where

fp1,p2,...,ps

n (t) = fn(up1(up2(. . . (ups
(t)) . . . )))×

p1−1
∏

r=0

∣

∣

∣
Z̃(vrp1

(up2(up3(. . . (ups
(t)) . . . ))))

∣

∣

∣
×

p2−1
∏

r=0

∣

∣

∣
Z̃(vrp2

(up3(up3(. . . (ups
(t)) . . . ))))

∣

∣

∣
×

...

ps−1−1
∏

r=0

∣

∣

∣
Z̃(vrps−1(ups

(t)))
∣

∣

∣
×

ps−1
∏

r=0

∣

∣

∣
Z̃(vps

(t))
∣

∣

∣

(2.19)

and each of the functions

up1(up2(. . . (ups
(t)) . . . ))

defines an automorphism on [a, a+ 2l],
(d) for every fixed k, s ∈ N the L2-orthonormal system

(2.20)

Ö
s
∏

i=0

Ã
2l

i

Ṫ + 2l −
i

T

è

fp1,...,ps

n (t), t ∈ [a, a+ 2l], p1, . . . , ps = 1, . . . , k

is corresponding with (2.19),
(e) finally, all these formulas are true for all sufficiently big T > 0, that is

we have the continuum set of possibilities how to construct new classes of
L2-orthogonal systems (2.17).

2.5. Let us denote the set of all L2-orthogonal systems not containing the functions

(2.21) ϕ1(t), Z̃
2(t) =

dϕ1(t)

dt
as

L0
2([a, a+ 2l]).

Now it is true by Theorem 1 that for every fixed

{fn(t)}∞n=0 = {fn(t)} ∈ L0
2([a, a+ 2l]),

{fn(t)} Ĝ−→ {fp1
n (t)} Ĝ−→ . . .

Ĝ−→ {fp1,...,ps

n (t)}.
We instantly get the following.

Corollary 1.

(2.22) L0
2([a, a+ 2l])

Ĝ−→ L1
2([a, a+ 2l])

Ĝ−→ . . .
Ĝ−→ Ls

2([a, a+ 2l]),

where

Li
2([a, a+ 2l])
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stands for the ith generation of the image of L0
2([a, a+2l]). Consequently, the union

(2.23)

s
⋃

i=1

Li
2([a, a+ 2l])

represents a kind of ζ-extension of the sth order of L0
2([a, a + 2l]) for every fixed

segment [a, a+2l] and every fixed k, s ∈ N. Finally, the union over all the segments

(2.24)
⋃

a∈R,l>0

{

s
⋃

i=1

Li
2([a, a+ 2l])

}

represents the complete ζ-extension of the sth order of the set

(2.25)
⋃

a∈R,l>0

L0
2([a, a+ 2l]).

2.6.

Remark 4. We may select another function

ψ(t) 6= ϕ1(t), ψ(t) ≁ ϕ1(t), t→ ∞
instead of the Jacob’s ladder and use the pair

ψ(t),
dψ(t)

dt

to extend L0
2([a, a + 2l]). This way however will not attain ζ-extensions (2.13),

(2.16), (2.19), (2.23) and (2.24) and therefore will be irrelevant.

3. Jacob’s ladders

3.1. Let us remind that the Jacob’s ladder

ϕ1(t) =
1

2
ϕ(t)

was introduced in [1], see also [3], where the function ϕ(t) is an arbitrary continuous
solution of the nonlinear integral equation3

(3.1)

∫ µ[x(T )]

0

Z2(t)e−
2

x(T )
tdt =

∫ T

0

Z2(t)dt,

where

Z(t) = eiϑ(t)ζ

Å
1

2
+ it

ã
,

ϑ(t) = − t

2
lnπ + Im

ß
ln Γ

Å
1

4
+ i

t

2

ã™(3.2)

and the class of functions {µ} is specified as

µ ∈ C∞([y0,+∞))

being monotonically increasing, unbounded from above and obeying the inequality

(3.3) µ(y) ≥ 7y ln y.

Every admissible function µ(y) generates a solution

y = ϕ(T ;µ) = ϕ(T ).

3Also introduced in [1].
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Remark 5. The function ϕ1(T ) is called Jacob’s ladder as an analogue of the Jacob’s
dream in Chumash, Bereishis, 28:12.

3.2. Let us remind that the Hardy-Littlewood integral (1918)

(3.4)

∫ T

0

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt

can be expressed as follows:

(3.5)

∫ T

0

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt = T lnT + (2c− 1− ln 2π)T +R(T ),

with, for example, Ingham’s error term

(3.6) R(T ) = O(T 1/2 lnT ) = O(T 1/2+δ), δ > 0, T → ∞

for arbitrary small δ.
Next, it is true by Good’s Ω-theorem (1977), that

(3.7) R(T ) = Ω(T 1/4), T → ∞.

Remark 6. Let

(3.8) Ra(T ) = O(T 1/4+a), a ∈
ï
δ,
1

4
+ δ

ò
, T → ∞.

Then, by (3.7), one obtain for every valid estimate of the type (3.8) that

(3.9) lim sup
T→∞

|Ra(T )| = +∞.

In other words, every expression of the type (3.5) and (3.9) possesses an unbounded
error at infinity.

3.3. Under the circumstances (3.5) and (3.9) we have shown in our paper [1] that
the Hardy-Littlewood integral (3.4) has an infinite set of almost exact representa-
tions expressed by the following formula.

Formula1.

∫ T

0

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt =

ϕ1(T ) ln{ϕ1(T )}+ (c− ln 2π)ϕ1(T ) + c0 +O
Å
lnT

T

ã
, T → ∞

(3.10)

(c is the Euler’s constant and c0 is the constant from the Titchmarsh-Kober-
Atkinson formula) with the error term vanishing at infinity:

(3.11) R̃(T ) = O
Å
lnT

T

ã
T→∞−−−−→ 0.

Remark 7. The comparison of (3.9) and (3.11) completely characterizes the level
of exactness of our representation (3.10) of the Hardy-Littlewood integral (3.4).
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3.4. Now, let us remind other formulae demonstrating the power of Jacob’s ladder
ϕ1(t).

First we have obtained the following4

Formula2.
∫ T+U

T

∣

∣

∣

∣

ζ

Å
1

2
+ iϕ1(t)

ã∣
∣

∣

∣

4 ∣
∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt ∼ 1

2π2
U ln5 T,

U = T 7/8+2δ, T → ∞.

(3.12)

Remark 8. The formula (3.12) is the first asymptotic formula of the sixth order in
|ζ| on the critical line in the theory of the Riemann’s zeta-function.

Next, let

S(t) =
1

π
arg

ß
ζ

Å
1

2
+ it

ã™
, S1(T ) =

∫ T

0

S(t)dt,

where the function arg is defined in the usual way. We have obtained the following
two formulae concerning S(t) function:5

Formula3.
∫ T+U

T

ï
arg

ß
ζ

Å
1

2
+ iϕ1(t)

ã™ò2k ∣
∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt ∼

1

2k
U lnT (ln lnT )k, U ∈

ï
T 1/3+δ,

T

lnT

ò
, T → ∞,

(3.13)

for every fixed k ∈ N.

Formula4.

(3.14)

∫ T+U

T

{S1[ϕ1(t)]}2k
∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

dt ∼ akU lnT, T → ∞.

Remark 9. New kind of the classical A. Selberg’s formulae (1946) are expressed by
means of our results (3.13) and (3.14).

Remark 10. Let us notice explicitly, that formulae (3.12) – (3.14) are ζ-correlation
formulae on the critical line. For example, (3.13) at k = 1 describes interaction
between values of the functionsï

arg

ß
ζ

Å
1

2
+ iϕ1(t)

ã™òk
,

∣

∣

∣

∣

ζ

Å
1

2
+ it

ã∣
∣

∣

∣

2

.

4. Proof of Theorem 1

4.1. In [5], (7.1) (7.2), we have shown the following results concerning direct and
reverse iterations:

Lemma 1. If

(4.1) U = o

Å
T

lnT

ã
, T → ∞,

then for every function
g(t) ∈ L([T, T + U ])

4See [3], (8.3).
5See [2], (5.4), (5.5).
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the following holds true:

(4.2)

∫ T+U

T

g(t)dt =

∫

p

Ṫ+U

p

T

g[ϕp
1(τ)]

p−1
∏

r=0

Z̃2[ϕr
1(τ)]dτ, p = 1, . . . , k

for every fixed k ∈ N.

Remark 11. Let us notice also the subsection 2.2, (g).

4.2. Proof of Theorem 1.

4.2.1. Let

(4.3) {fn(t)}∞n=0 ⊂ L2([a, a+ 2l])

is arbitrary fixed system of orthogonal functions. Then l is also fixed positive
number and condition (4.1) is fulfilled for U = 2l for all sufficiently big and positive
T . Now we have (m 6= n)

(4.4) 0 =

∫ a+2l

a

fm(t)fn(t)dt =

∫ T+2l

T

fm(τ − T + a)fn(τ − T + a)dτ =

next we obtain by Lemma 1 for any sufficiently big T

(4.5) =

∫

p

Ṫ+2l

p

T

fm[ϕp
1(ρ)− T + a]fn[ϕ

p
1(ρ)− T + a]

p−1
∏

r=0

Z̃2[ϕr
1(ρ)]dρ =

and next, by simple sunstitution

ρ = ρ(t) =

p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T , ρ ∈ [
p

T ,

p

Ṫ + 2l], t ∈ [a, a+ 2l],

where ρ(t) is absolutely continuous and increasing, we obtain

=

p

Ṫ + 2l−
p

T

2l

∫ a+2l

a

fm






ϕ
p
1

Ö p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T

è

− T + a






×

fn






ϕ
p
1

Ö p

Ṫ + 2l −
p

T

2l
(t− a) +

p

T

è

− T + a






×

p−1
∏

r=0

Z̃2






ϕr
1

Ö p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T

è




dt =

(4.6)

and, in the next step of the first cycle, we finish with

=

p

Ṫ + 2l −
p

T

2l

∫ a+2l

a

fp
m(t)fp

n(t)dt ⇒
∫ a+2l

a

fp
m(t)fp

n(t)dt = 0,(4.7)
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where

fp
n(t) = fn






ϕ
p
1

Ö p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T

è

− T + a






×

p−1
∏

r=0

∣

∣

∣

∣

∣

∣

∣

Z̃






ϕr
1

Ö p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T

è





∣

∣

∣

∣

∣

∣

∣

, t ∈ [a, a+ 2l], p = 1, . . . , k.

(4.8)

4.2.2. Now we give the following

Definition 1. The symbol Ĝ stands for vector operator defined on the set all
L2-orthogonal systems

{fn(t)}∞n=0, t ∈ [a, a+ 2l], a ∈ R, l > 0

defined by three integral transformatrions (4.4) – (4.6). Ĝ maps an L2-orthogonal
system into k-tuple of new orthogonal systems

Ĝ[{fn(t)}] = ({f1
n(t)}, {f2

n(t)}, . . . , {fk
n(t)}) = {fp

n(t)}∞n=0,

p = 1, . . . , k, t ∈ [a, a+ 2l]; {fn(t)}∞n=0 = {fn(t)}, . . .
for every fixed k ∈ N.

4.2.3. Let us notice that the transformation6

(4.9) up(t) = ϕ
p
1

Ö p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T

è

− T + a, t ∈ [a, a+ 2l]

has the following properties:

(a) By [5], subsection 6.1

up(a) = ϕ
p
1(

p

T )− T + a = T − T + a = a;
p

T = ϕ
−p
1 (T ),

up(a+ 2l) = ϕ1(

p

Ṫ + 2l)− T + a = a+ 2l.

(b) Since the continuous function ϕp
1(t) is increasing and

ρ =

p

Ṫ + 2l−
p

T

2l
(t− a) +

p

T , t ∈ [a, a+ 2l]

it is evident that the composite function

up(t), t ∈ [a, a+ 2l]

is also increasing and therefore

t ∈ [a, a+ 2l] ⇒ up(t) ∈ [a, a+ 2l].

Remark 12. We have as a consequence of (a) and (b) that new automorphism on
[a, a+2l] is defined by the one-to-one correspondence (4.9) for every fixed sufficiently
big positive T . Of course, every function upi

(t) defines an automorphism on [a, a+
2l] too.

6Comp. (2.3), (4.8).



12 JAN MOSER

4.2.4. By making use of the operator Ĝ on the system

{fp1
n (t)}∞n=0, t ∈ [a, a+ 2l], p1 = 1, . . . , k

(the second cycle) we obtain

(4.10) Ĝ[{fp1
n (t)}] = {fp1,p2

n (t)}∞n=0, p1, p2 = 1, . . . , k,

where

fp1,p2
n (t) =

fn






ϕ
p1

1

Ö p1

Ṫ + 2l−
p1

T

2l

Ö

ϕ
p2

1

Ö p2

Ṫ + 2l −
p2

T

2l
(t− a) +

p2

T

è

− T

è

+
p1

T

è

− T + a






×

p1−1
∏

r=0

∣

∣

∣

∣

∣

∣

∣

Z̃






ϕr
1

ÖÖ p1

Ṫ + 2l−
p1

T

2l

Ö

ϕ
p2

1

Ö p2

Ṫ + 2l −
p2

T

2l
(t− a) +

p2

T

è

− T

è

+
p1

T

èè





∣

∣

∣

∣

∣

∣

∣

×

p2−1
∏

r=0

∣

∣

∣

∣

∣

∣

∣

Z̃






ϕr
1

Ö p2

Ṫ + 2l−
p2

T

2l
(t− a) +

p2

T

è





∣

∣

∣

∣

∣

∣

∣

.

(4.11)

It is clear that there is need for simplification of our formulae (4.8) and (4.11). For
this purpose we use functions of (2.3)7 that provides us with the results

fp1
n (t) = fn(up1(t))

p1−1
∏

r=0

|Z̃(vrp1
(t))|,

fp1,p2
n (t) = fn(up1(up2(t)))

p1−1
∏

r=0

|vrp1
(up2(t))|

p2−1
∏

r=0

|Z̃(vrp2
(t))|,

(4.12)

where, for example,

{up1(t1), t1 = up2(t2), t1, t2 ∈ [a, a+ 2l]} ⇒ up1(up2(t2)), t2 = t,

i. e. we have formulae (2.13) and (2.16).

7See also Remark 11.
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4.2.5. Next, in the (s− 1)th-cycle we get

fp1,p2,...,ps−1
n (t) = fn(up1(up2(. . . (ups−1(t)) . . . )))×
p1−1
∏

r=0

∣

∣

∣Z̃(vrp1
(up2(up3(. . . (ups−1(t)) . . . ))))

∣

∣

∣×

p2−1
∏

r=0

∣

∣

∣Z̃(vrp2
(up3(up4(. . . (ups−1(t)) . . . ))))

∣

∣

∣×

...

ps−2−1
∏

r=0

∣

∣

∣Z̃(vrps−2(ups−1(t)))
∣

∣

∣×

ps−1−1
∏

r=0

∣

∣

∣Z̃(vps−1(t))
∣

∣

∣ , s > 2,

(4.13)

then, if we use the operator Ĝ on (4.13) to obtain the sth cycle, we get the set of
ks formulas (2.19). That means the formula (2.15) holds true for every s ∈ N.

I would like to thank Michal Demetrian for his moral support of my study of
Jacob’s ladders.
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