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In much of Schoenberg's work there has been a strong interconnec­
tion between analytic and geometric reasoning. Here we use a remark 
he made about imbeddings of metric spaces to prove part of a con­
jecture about when a Jacobi polynomial P(n,ô)(x) can be expanded 
in terms of another P^\x) with nonnegative coefficients. Also we 
get from a different special case of this conjecture some nonimbedding 
theorems for projective spaces. 

P£*,/3)(#), the Jacobi polynomial of degree n, order (a, /3), a, /3> — 1, 
is defined by 

CD (i - *AI+xM-%)=t^(±)n[(i - , ) - ( i + * n . 
2nn\ \dx/ 

These polynomials are orthogonal on ( — 1, 1) with respect to the 
weight function (1— x)a(l+xy and what is crucial for us is that 
P£*,/3)(1)>0. We consider the expansion 

(2) Piy,S\x) = ±akP^\x) 

and ask for what values of ce, /3, 7, 5 are all the coefficients ak, k = 0, 
1, • • • , fty nonnegative. For j8 = 5 and y>a the ak were computed by 
Szegö [s] and were found to be positive. He used this relation to 
solve the end point Cesàro summability problem for Jacobi series. 

For a = /3, y = ô the ak were given by Gegenbauer [5] and again 
they are nonnegative for ce>7. This has been used by Hua [ó] and 
Askey and Wainger [ l ] . Actually this result of Gegenbauer is a spe­
cial case of Szegö's result. For 

Pn (2x - 1) _ P2n (s) 

P(«.-l/2)(l) ~" P(«.«)(l) 

1 Supported in part by N.S.F. grant GP-6764. 
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and 
(a, 1/2) 2 n ( a ' a ) / \ 

xPn (2X ~ 1) P2n+1 (X) 

P(«.l/2)(1) P(«,«) (1) 
» x ' 2 n + l x y 

Thus (2) for /3 = ô= — § is equivalent to (2) for w even, a = /3, 7 = 8; 
and (2) for j3 = ô = § is equivalent to (2) for n odd, a = /3, 7 = §. Since 
the proof of Szegö's result is easier and more natural than any proof 
I know of Gegenbauer's result, I like to think of Szegö's result as the 
more fundamental. However, it would be nice to have ak in the general 
case (2) and to get the positivity for the known cases from the general 
case. Unfortunately I am unable to find a simple enough formula for 
ak. ak has been computed by Feldheim [3] and he gets it as a 3P2. 
I haven't seen his proof, but a proof using (1) a couple of times, many 
integrations by parts and the binomial theorem is easy. This proof is 
identical with Szegö's proof for (3 = 5 until the last step when ( l + x ) c 

is expanded in terms of (l—x)K Explicitly 

(2*+«+/5+i)r(*+a+/3+i)r(»+ife+7+«+i)r(»+*+i)r(fi-*+T-a) 
dusss ... 

T(y-a)T(k+p + l)T(n+k+a+Ô+l)T(n+y+ô+2)T(n-k+l) 
•3F2(ô-0, a-y+1, a+k+1; a-y+k-n+1, n+k+a+ô+2; 1). 

A reasonable conjecture which includes both of the above cases is 
that ak è 0 if (7, ô) lies in the triangular region above the line ô ==/3 
and to the right of the line through («, j3) and (—1, —1). By Szegö's 
result it would be sufficient to show this for (7, 8) on the line through 
( — 1, —1) and (a, /3). This is one of a number of problems that is 
equivalent to a certain 3P2 being positive. I t seems that a systematic 
study of when these and other generalized hypergeometric functions 
are positive would yield many interesting results. 

This conjecture is false for (7, S) above the line through (—1, — 1) 
and (a, 0). P{i*>(x)*=i[(a+P+2)x + (a-P)] and P ^ ) ( ^ ) = l. A 
computation shows that 

\a + 0 + 2/ + /? + 2> 
, [(7 - *)(<* + P + 2) + (0 - a)(7 + 4 + 2)] («,„ N 

H Po (*) 
2(a + 0 + 2) 

and the second coefficient is nonnegative if and only if 7 
è ( ( a + l)(ô + l ) / ( j 8 + l ) ) - l , i.e. (7, 5) lies to the right of the given 
line. 

This remark has an interesting consequence when combined with 
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some work on Bochner on positive definite functions on Riemannian 
spaces. Schoenberg defined a function ƒ on [0, <x> ] as positive definite 
on a separable metric space X if X)u-o/(dist(x t-, ffi))ptPys=0 for all 
XiÇiX and complex pi. For the sphere Sk he has found all the positive 
definite functions [7] and they are just /(0) = ]C "-o 0nP£*,a) (cos 0) 
with Z « n P ^ ' a ) ( l ) < o o , an^0. Here a = ( * - 3 ) / 2 . Since Sk can be 
isometrically imbedded in Si for &</, it follows that P%,y)(cos 6) 
= ]C*-oa*-P*a,flf)(cos #) with oj/fcèO for 7 > a and 7, OJ half integers, as 
Schoenberg observed. This remark that the isometric imbedding 
of a metric space in a second metric space gives rise to a reverse inclu­
sion in their positive definite functions can be used to obtain a couple 
of interesting results when combined with work of Bochner. For a 
number of Riemannian manifolds, including the real projective 
spaces Pd(R), the complex projective spaces, Pd{C), the quaternionic 
projective spaces Pd(H), and the Cayley elliptic plane P1 6 , Bochner 
has found the positive definite functions [2]. Here d is the real dimen­
sion of the space. They are X^n~o Un^n, with a w ^ 0 and <j>n the spheri­
cal function of degree n. These spherical functions are Jacobi poly­
nomials. For Pd(R) they are given in [4] as P<toa\cos(ird/2L)) where 
L is the diameter of the space in question. Using (3) we see 
that they are also P^"l/2)(COS{TTB/L)). Here a = ( d - 2 ) / 2 , d = 2, 
3, • • • . For Pd(C) the spherical functions are Pla'o)(cos(7r0/Z,)), 
a = ( d - 2 ) / 2 , d = 4, 6, • • • . For Pd(H) they are P^(cos( i r0 /L)) f 

a=(d — 2)/2, d = 8, 12, • • • , and for the Cayley elliptic plane they 
arePi7 '3)(cos(7rö/L)).See [4]. 

If each of these spaces has diameter equal to one we can isometri­
cally imbed Pd(R) in P2d(C), which can be isometrically imbedded 
in P*d(H). Also P*(H) can be isometrically imbedded in P 1 6 so we 
have that ak è 0 for certain values of a, j8, 7, 5. They are the values on 
the lines through ( - 1 , - 1 ) of the form (Jfe/2-1, - 1 / 2 ) , ( £ - 1 , 0 ) , 
( 2 * - l , 1), ( 7 , 3 ) , è = 2 , 3 , . . . . 

In the other direction since ak is not always greater than or equal 
to zero for points above these lines we have that you cannot isometri­
cally imbed P*n(R) in P2d(C) or P*d(H), that PU+\C) cannot be 
isometrically imbedded in P**(H) and that P 3 (P) , P6(C) and P12(H) 
cannot be isometrically imbedded in P 1 6 when they have the same 
diameter. When the space with smaller real dimension has a larger 
diameter you clearly cannot imbed isometrically. If the diameter is 
smaller, then if you could isometrically imbed one of these spaces you 
could also isometrically imbed a circle of the same diameter. Thus we 
need to consider 
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Pi I cos — 1 = 2Lt <*k cos £0 
\ L / jfc«oo 

w i t h i > l , a n d 7 > 5 è - | . 

PÎ7,I)(«) - ((7 ~ *)/2) + ((7 + « + 2)/2)* 
and so 

(7 + 8 + 2) /• * 6 
ajc I c o s — c o s jtôrfô, k = 1, 2, • • • . 

A simple calculation shows that 

ak = (7 + « + 2)(- l )* sin (T/L)/TL(P - 1/Z2) 

and since Z > 1 this is not always nonnegative. 
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